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Abstract

Pattern recognition systems based on machine learning techniques are nowadays widely
used inmany different fields, ranging from biometrics to computer security. In spite of the
huge performance often provided by these systems, there is a general consensus that their
reliability should be carefully assessed, in particular when applied to critical applications
like medicine, criminal justice, financial markets, or self-driving cars. Especially in the
era of big data, the chance of these systems inadvertently making wrong decisions while
misguided from artifacts or spurious correlations in the training information is not
negligible. Accordingly, to increase the trust of the users and identify the potential design
flaws of the algorithms, many scientists started to explore the research field of explainable
machine learning, with the goal of designing systems that are not only able to perform a
pattern recognition task accurately, but that are also interpretable, i. e., they can "explain or
present their decisions in understandable terms to a human". In parallel, another research
field raised more than 10 years ago: adversarial machine learning. In the context of security
tasks like spam filtering or malware detection, skilled and adaptive adversaries (human
beings) may modify legitimate samples to defeat a system, by creating the so-called
adversarial attacks. Thus, scientists started to consider such adversarial environments
during the engineering process, by evaluating the potential vulnerabilities, measuring
the performance in terms of robustness against these attacks, and designing potential
countermeasures. Despite the vast amount of work in this direction, providing a thorough
definition of the effects of adversarial attacks is still an open issue, especially if the systems
are not able to provide an explanation alongside their automated decisions.

In this thesis, we conduct a systematic investigation of the connections between
explainability techniques and adversarial robustness, in order to gain a better under-
standing of the reasons behind the brittleness of modern machine learning algorithms,
and with the goal of designing more robust systems that can be trusted by the users
to safely operate in an adversarial environment. To this end, we start by proposing a
novel optimization framework for crafting different adversarial attacks under the same
unified mathematical formulation, which eases the study of their different security
properties, like one of the most sudden, transferability. After providing a formal definition
of this property and different quantitative metrics for its evaluation, we apply a novel
explainability method based on highly-interpretable relevance vectors, that allows one to
compare different models with respect to their learned behavior, and to get insights on
their security properties, including adversarial robustness and their resilience to transfer
attacks. Finally, to facilitate the practical application of these concepts, we also present
secml, an open-source Python library that integrates all the tools required for developing
and evaluating secure and explainable machine learning based systems, without the
need of leveraging multiple third-party libraries.
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Introduction 1
Machine learning has been defined by the pioneering work of Arthur
Lee Samuel as the "field of study that gives computers the ability to learn
without being explicitly programmed" [1]. In fact, one of themain abilities
of human beings and some animal species is to recognize and classify
objects in a fast and efficient way, making decisions after observing
the surrounding environment. For instance, most people encounter no
difficulty recognizing a friend in a picture or avoiding an obstacle while
walking. In the latest decades, many scientists studied how to translate
these processes into algorithms, without being able however to replicate
them with enough accuracy for all the different tasks a human usually
performs. The underlying reason is that these processes are carried out
subconsciously, thus it is neither possible to explain nor understand in
detail how they work. While in the early days it has been theorized that
computers will be able to flawlessly perform tasks like automatic reading
of handwritten texts, or understanding of human speech in real-time,
these are still open research problems today. Generally, the machine
learning field tries to address the problem of automated pattern recognition,
including the above applications as well as many others, like identity
verification from biometric traits, text categorization, malware detection
in computer systems, or, more recently, objects recognition for robot
vision and self-driving cars.

Pattern recognition, "the act of taking in raw data and taking an action
based on the category of the pattern" [2], is often used as a synonym for
machine learning [3]. In fact, it represents the study of algorithms that,
givena set of samples (the rawdata),whose category (or class) is unknown,
assign such samples to one of the possible (predetermined) classes. This
typically requires the system to have some previous knowledge of the
problem, acquired through a set of pre-collected data. Then, after the
recognition process is completed, i. e. the classification phase, similar to
what a human would do, an action may be taken. For instance, when a
walking robot recognizes an object in front of it, it may choose to slow
down or change direction to avoid crashing. Similarly, when a mobile
app is recognized to have malicious behaviors, a detection system may
decide to delete it from its memory.

Although pattern recognition systems based on machine learning had
shown impressive accuracy on many different tasks, when they started
to penetrate critical application areas like medicine, criminal justice,
financial markets, self-driving cars, the general public raised questions
about the reliability of these algorithms. For example, while not correctly
classifying a spam email may have no serious consequence, a self-driving
car not accurately identifying a road sign may endanger the lives of
the transported passengers. Thus, many industrial companies are very
cautious in applying ofmachine learning in these critical applications. For
example, Tesla, nowadays considered to offer one of the most advanced
autopilot systems, explicitly tells the users that this technology is not
supposed to replace the human driver, which always has to keep attention
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to the street; or Waymo, the new autonomous vehicles by Google, have
only been recently authorized to operate autonomously, yet only in
specific limited areas.

Another inherent risk of these systems is the possibility of inadvertently
making wrong decisions while misguided from artifacts or spurious
correlations in the training information. Especially in the era of big data,
by virtue of the increased scalability and high-performance of the infras-
tructures, a considerable amount of information is often acquired from
social networks or other mass media sources (e.g., list of purchases from
e-commerce sites, comments under social posts). From them, machine
learning models may inherit human biases and prejudices during the
training process, possibly leading to unfair and wrong decisions.

Even though a mistake made by an autonomous system is usually
easy to detect, given that some supervision mechanism is involved, the
underlying reason why it happened may be hard to understand. To
troubleshoot these systems when they make resounding errors, and thus
increasing the users’ trust, scientists started to explore a new research field
called explainable machine learning (or explainable Artificial Intelligence,
xAI). The goal in this case is to design algorithmswhich are not only able to
performapattern recognition task accurately, but that are also interpretable,
i. e., they can "explain or present their decisions in understandable terms
to a human" [4].

While there is little to no consensus on a formal definition of interpretabil-
ity, the benefits of employing an explainable machine learning algorithm
are widely recognized [5, 4, 6]. Firstly, by acquiring an explanation for
a certain wrong decision, the source of the mistake may be easier to
track and fix. Understanding it can also directly impact the progression
of science, as the insights provided by an explanation can lead to new
discoveries. In addition, interpretability may also help knowledge transfer,
when machine learning models support human decision makers (e.g.,
for medical diagnosis). In this case, the explanations may highlight hid-
den patterns in the data that are evident for the machine, but possibly
unknown for the human. Lastly, there are also legal reasons behind the
study of explainable machine learning. The European Parliament has
recently adopted a new legislation on data protection, the General Data
Protection Regulation (GDPR). An innovative aspect of the GDPR is the
clauses on automated decision makers, which introduce the right for all
individuals to obtain "meaningful explanations of the logic involved"
when automated decision-making occurs [7]. All things considered, there
is a general agreement on the urgent need for the implementation of
such explainability principle in machine learning based systems, and it
represents today a huge open scientific challenge.

In parallel, another research field started to rise more than 10 years ago
[8]: adversarial machine learning. It embraces all the techniques necessary
to evaluate machine learning algorithms employed on security-related
applications, like spam filtering, or malware detection. In this case, the
task is usually to discriminate between benign and malicious samples,
e.g., legitimate and intrusive network traffic. In this context, skilled
and adaptive adversaries (human beings) may modify benign samples
to defeat the system, creating the so-called adversarial attacks. In spam
filtering, for example, spammers usually alter the text in their messages
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1: This misconception about adversarial
examples, i. e., they should be minimally
perturbed, has held popularity in the sci-
entific community formanyyears [8]. Only
recently, high-confidence attacks started to
be considered better suitable for the pur-
pose of security evaluation. See Section
2.2.2 for more details.

to have them misclassified as benign, by misspelling a specific keyword
(like "viagra" changed to "v14gr4"), or by adding some known good
words to spam e-mails [9]. In intrusion detection systems, a hacker may
camouflage intrusive traffic by mimicking legitimate transmissions, like
using the same packet size or content [10].

For these reasons, scientists started to consider such adversarial environ-
ments when designing the pattern recognition systems, by explicitly
taking into account the possible presence of malicious entities. This
includes identifying the vulnerabilities which an adversary can exploit
to make the system ineffective; evaluating the performance not only in
terms of recognition accuracy, but also in terms of robustness against the
attacks (by simulating the possible attack strategies); and designing the
necessary countermeasures to these threats.

Adversarial machine learning has recently gained attention also in the
computer vision field. It happened in fact that a very popular type of
machine learning algorithmnamedneural networks, despite the impressive
performance, was making bizarre mistakes without an apparent reason,
e.g., recognizing a bus as an ostrich. Trying to interpret their (wrong)
decisions, it has been found that these systems can be fooled using
legitimate images that are carefully perturbed by an adversary to be
misclassified, namely adversarial examples [11]. These attacks are often
(but not necessarily1 ) indistinguishable from normal data, making them
an even more sudden threat. Despite the vast amount of work on this
issue, providing a thorough definition of the effects of adversarial attacks
is still an open problem, especially if the systems are not able to provide
an explanation alongside their decisions.

In this thesis we thus argue that the process of designing a pattern
recognition system that operates in an adversarial environment, should
not only be based on a quantitative evaluation of the most critical
properties of adversarial attacks, but may also directly benefit from
the insights provided by explainable machine learning techniques. As
this research direction has only been sparsely explored in the current
literature [12, 13, 14, 15], we hope that our work may contribute to the
formulation of more robust learning algorithms in the future.

1.1 Outline

We start in Chapter 2 by providing a state of the art on machine learning
algorithms for classification tasks, as well as describing themain concepts
and methods for their security evaluation in adversarial environments,
and to provide an explanation for their decisions.

Then, after presenting in Chapter 3 a summary of the main limitation of
the current state of art and our contributions in that context, we start by
proposing a novel unified framework for crafting the two different types
of adversarial attacks, i. e., evasion and poisoning, through a gradient-
descent optimization procedure (Chapter 4).

In Chapter 5 we study one of the most sudden properties of these attacks,
transferability, which is their ability to be effective even on different
systems from the one which have been crafted on. We provide a formal
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definition of transferability and three quantitative metrics to evaluate the
security of machine learning algorithms to this threat.

Afterwards, in Chapter 6, we discuss how gradient-based explanation
methods can be used effectively to compare different machine learning
models with respect to their learned behavior, and get insights into their
security properties, like adversarial robustness or the resilience to transfer
attacks.

In Chapter 7 we present secml, an open-source Python library that aims
to integrate all the tools required for developing and evaluating secure
and explainable machine learning based systems, without the need of
leveraging multiple third-party libraries.

Subsequently, in Chapter 8, we conduct an experimental investigation
of the transferability of adversarial attacks on three different applicative
cases, andwe statistically evaluate the connections between theuniformity
of gradient-based explanations and adversarial robustness.

The conclusive remarks and the future research directions are finally
discussed in Chapter 9.

1.2 Related Publications

This thesis includes research work part of the following publications:

I A. Demontis, M. Melis, et al., “Why do adversarial attacks transfer?
explaining transferability of evasion and poisoning attacks”, in
Proceedings of the 28th USENIX Security Symposium, 2019 [16];

I M. Melis, et al., “Explaining black-box android malware detection”,
in Proceedings of the 26th European Signal Processing Conference
(EUSIPCO), 2018 [17];

I M. Melis, et al., “Do gradient-based explanations tell anything
about adversarial robustness to android malware?”, arXiv preprint
arXiv:2005.01452, 2020 [18];

I M.Melis, et al., “Secml: A python library for secure and explainable
machine learning”, arXiv preprint arXiv:1912.10013, 2019 [19].

Moreover, the author of this thesis collaborated to the following publica-
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IEEE International Conference on Computer Vision Workshops
(ICCVW), 2017 [20];

I A. Demontis, M. Melis, et al., “Yes, machine learning can be more
secure! a case study on android malware detection.”, IEEE Transac-
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examples”, EURASIP Journal on Information Security, 2020 [22];

I F. Crecchi, M. Melis, et al., “FADER: Fast Adversarial Example
Rejection.”, arXiv preprint arXiv:2010.09119, 2020 [23].
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In this chapter we provide an overview of the necessary steps to build a
pattern recognition system based onmachine learning (Section 2.1), includ-
ing a description of the most used learning algorithms and techniques
in popular applications like computer vision, malware detection, and
biometric recognition. We also discuss how to evaluate its performance
on the specific recognition tasks. Within this state of the art, we describe
how easily many of these techniques can be fooled by an adversary,
crafting powerful adversarial attacks (Section 2.2). We highlight the attack
surface available to the adversary, and present a generalized threat model.
Then, we review both test-time and training-time attacks, as well as few
of the defence techniques proposed in the literature. In the last part of the
section, we discuss how the adversary can successfully attack a system
even if he possesses limited or no knowledge of it, leveraging a property
of adversarial attacks called transferability. Finally, in Section 2.3, we
examine the issue of trusting these automated systems, especially when
applied to safety-critical applications, like self-driving cars or medical
diagnosis. In these cases, the user may require an explanation of the
decisions, which could be a challenge depending on how interpretable is
the underlying machine learning model.

2.1 Machine Learning Systems

We start by considering the task of automatically select a specific species
of flower from a set on unknown samples. Instinctively, this represents
a classification problem, as the system must be capable of distinguish
between a limited number of species, i. e. classes, and assign the correct
one to each sample.

Figure 2.1: Architecture of a typical ma-
chine learning based system.

As depicted in Figure 2.1, to build a machine learning system able to
tackle this classification task the first phase should be data acquisition,
when the samples to be analyzed are collected. As the information about
the real objects is transferred to the system using particular interfaces, for
example, cameras,microphones,movement sensors, it cannot understand
the characteristics of each sample in their entirety. Thus, it is fundamental
to choose themore appropriate representation for the specific application.
In the case of flower species classification, an intuitive choice could be to
acquire an image of the sample to analyze, while in other applications it
could be more effective to jointly consider two or more representation of
the same object, like a video and an audio sample for a voice recognition
task, by following a multimodal paradigm [24, 25].
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The data acquisition phase is a critical step as it can be disrupted by
undesirable contamination, e.g., noise in an audio track, causing problems
in the subsequent analysis phase. In particular, it is always preferable
to acquire all data in the same conditions, e.g., same illumination or
prospective in the case of images, so that will be easier for the system to
distinguish between all the differences or similarities that could actually
exist between the samples. To mitigate the problem, data acquisition it
is often followed by a pre-processing phase, when different techniques
are used trying to uniform the representation of all the samples and
remove, as much as possible, the noise. For example, in the case of images
a standard procedure involves normalizing the samples to make them
independent from translation, rotation or distortion [26].

The next question which should be answered when designing a machine
learning system is: which aspect of the samples can be measured?
From the same acquired data, in fact, it is possible to extract many
different characteristics, namely features, not always relevant for the
specific classification task. In the case of flower species recognition, one
could think about measuring the width and the length of the petals,
as they may allow to discriminate between the different classes, while
it could be inappropriate to analyze the color of the flowers as it does
not represent a peculiar characteristic of a species. The set of extracted
features forms the feature space, where the learning system works in. A
2-dimensional representation example of a feature space constituted by
the length of the sepals and the petals of different flowers, extracted from
the famous iris-flower dataset [27], is reported in Figure 2.2.
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Figure 2.2: Feature space of the 3-classes
iris-flower dataset [27]. Each dot represents
a sample from the three different species,
setosa (blue), versicolour (green), virginica
(red). Each sample is defined by two fea-
tures, sepals and petals length.

The choice of which features to extract from the data, however, should
not be based only on the relevance for the specific application. It should
take into account the computational cost of analyzing a large number of
characteristics and, generally, the specificities of the learning algorithm
which will be used by the system. Some algorithms, in fact, work better
when the feature space is large,while others provide a higher performance
with a small set of independent features. In the latter case, to the feature
extraction phase often follows a feature reduction or feature selection step,
when specific methods (e.g. PCA, LDA) are employed to compact the
size of the feature space [28, 29, 30].

Notation. In the following, for each sample we define its vector rep-
resentation x = [G(1) , G(2) , . . . , G(d)], with d the number of features. We
denote the set of all possible features as F. The dataset with the N ac-
quired samples is defined asX= {x8}N8=1. If known, the label representing
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the class of the 8-th sample is indicated as H8 . Each label H is part of the
set of all the c classes $, defined as H ∈ Y= {$:}c:=1.

2.1.1 Classification Algorithms

After building the feature space, it is necessary to choose a mathematical
function that performs the classification, i. e., allows the system to assign a
certain numerical, or textual, value to each input sample, representing
the predicted class. This value usually takes the name of label. Formally,
this requires selecting a decision function 5 ★ : X ↦→ Ywhich exactly
maps each sample x ∈ X to the corresponding true class H ∈ Y. From
a statistical point of view, this translates into defining a function 5 that
estimates as precisely as possible the value of 5 ★(x), i. e.minimizes the
prediction error 5 (X) ≠ ..

To this end, let’s extract a subset of n samples from all the acquired
data, which is usually called the training set, denoted as Dtr = {x8}n8=1,
with x8 ∈ X. The learning algorithm has the task of selecting the best
function 5 through the information contained in this data and the set
of the corresponding true labels Ytr = {H8}n8=1, with H8 ∈ Y. This type
of classification paradigm is named supervised. Conversely, if the set Ytr
is only partially known or unknown, the learning process is defined
semi-supervised or unsupervised [2, 3].

Considering again the task of automatically select the correct flower
species, this is defined as a classification problem where the set of all the
possible predictions is limited to only 3 elements, i. e. Y= {$1 , $2 , $3}.
Computing the mapping function 5 actually involves partitioning the
feature space into different decision regions, one for each class. The border
that separates each region is called decision boundary. Depending on the
chosen learning algorithm, one could obtain quite different decision
regions, as illustrated in Figure 2.3.
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Setosa Versicolour Virginica

Figure 2.3: Decision regions learned by
different machine learning algorithms in
the feature space of the 3-classes dataset
iris-flower [27]. To the samples inside each
region is assigned a different class: setosa
(blue region), versicolour (green region),
virginica (red region). The decision bound-
aries are reported in black. The decision
function on the right is overfitting the train-
ing data, while the (left) one generalizes
better on never-before-seen samples.

The choice of the learning algorithm to employ should take into account
different factors related to the behavior expected during the prediction
phase. For example, the decision function reported in Figure 2.3 (left)
probably performs better in terms of generalization, meaning that may
be able to assign the correct class to never-before-seen samples more
accurately. Conversely, the function in Figure 2.3 (right) minimizes the
prediction error on the samples from the training set, while probably
loosing accuracy on new data. The latter case is called overfitting [2, 3].
To evaluate the behavior of the system in this sense, one can compute the
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prediction error on a different set of samples Dval ⊄ Dtr, usually called
validation set, which are not used for learning the decision function.

A more complete definition of a classification problem is provided by
the canonical model, schematized in Figure 2.4 [2, 31]. The output of the
decision function 5 , i. e., the predicted label H∗, is obtained by evaluating a
set of c discriminant functions {61(x), . . . , 6c(x)}, each of them providing a
score for the input sample w.r.t. each class $ ∈ Y. Typically, the predicted
class is the one corresponding to the discriminant function 6: which
outputs the higher score, following the maximum support rule [31]:

H∗ = 5 (x) = $: ∈ Y with $: = arg max
:=1,...,c

6:(x) . (2.1)

 

 

 

  𝑦∗ 
argmax 

⋯ 

g1(x) 

g2(x) 

gc(x) 

𝑥 

𝑓(𝑥) 

Figure 2.4: Canonical classification model.
The predicted class H∗ corresponding to
the sample x is chosen by computing the
arg max on the outputs of the c discrimi-
nant functions {61(x), . . . , 6c(x)}.

Linear Models

As previously mentioned, the choice of the learning algorithm should
take into account the specific application requirements and many other
factors.While does not exist a system that perfectly tackles any recognition
task providing the same performance (no free lunch theorem, [32]), few
machine learning algorithms demonstrate good generalization abilities
even if applied to wide range of applications. This is the case of the linear
models, which decision function is given by the following:

H∗ = 5 (x) = sign(w>x + 1) , (2.2)

with w a vector of parameters and 1 the bias, representing the distance
of the decision boundary from the origin of the chosen reference system.
From Equation 2.2 it is clear that the predicted class H∗ can only take
two values, depending on sign(w>x + 1), which are +1 (−1) if 5 (x) ≥
0 ( 5 (x) < 0). As a result, these classifiers are considered binary algorithms,
as the set of all the possible labels is limited to Y= {−1,+1}. The class
corresponding to H = −1 is usually named the negative, while the positive
class corresponds to H = +1. The wording linear model derives from the
form of the decision boundary, given by w>x + 1 = 0, which is linear the
feature space.

The parameters w and the bias 1 are not given along with the decision
algorithm, and should be chosen by solving the following optimization
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problem [33] over all the training samples x ∈ Dtr:

min
w,1

'(w) + �
n∑
8=1

!(H8 ,w>x8 + 1) . (2.3)

In Equation 2.3 we find !, which is the so-called loss function, a measure
of the difference between the classifier’s predictions and the true class
H8 of each training sample x8 ; the regularizer ', which goal is to limit
the magnitude of the parameters w (usually leading to less overfitting);
and �, a constant to be chosen during the design phase that balances the
contribution of ! and ', which represents a hyperparameter of the system.
Depending on the chosen mathematical notation, this latter constant may
be denoted with .

Support Vector Machines

By a particular choice of the loss function and the regularizer, a decision
region with specific properties can be obtained [33]. One of the most
common choices is the hinge loss and the quadratic regularizer ' = ‖w‖22,
which constitutes a particular type of linear classifiers named Support
Vector Machines (SVMs) [34]. The rationale behind these models is to
maximize the separation, i. e., the margin 2

‖w‖ , between the training
samples of the two different classes, as schematized in Figure 2.5.
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Figure 2.5: A binary classification prob-
lem in the feature space solved by a Sup-
port Vector Machine (SVM). The double-
circled points are the support vectors, blue
for the negative class, red for the positive
class. The decision hyperplanes are given
by sign(6+1(x)), with 6+1 the discriminant
function for the positive class. ) is a func-
tion that maps the samples into a high-
dimensional space, where the classes are
more likely to be linearly separable. Lastly,
1
‖w‖ is the distance of the decision bound-
ary from the origin.

The optimization problem in Equation 2.3 can be rewritten in this case
using the following primal form:

min
w,�,1

1
2

w>w + �
n∑
8=1

�8 (2.4)

s.t. �8 ≥ 0 ,

�8 ≥ 1 − H8(w>x8 + 1) .

For the mathematical properties of the SVMs [35], the parameters vector
w can be expressed as a linear combination of the training samples,
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1: If the optimization problem is not con-
vex, the solution converges to a local mini-
mum, which is still an acceptable outcome
in most cases [37].

resulting in the following Wolfe dual form [36] of Equation 2.4, which
only depends on a series of scalar products:

min
"

1
2

n∑
8=1

n∑
9=1

H8H 98 9 (x8 , x 9) −
n∑
8=1

8 (2.5)

s.t. 0 ≤ 8 ≤ � ,

n∑
8=1

H88 = 0 .

The solution found by Equation 2.5 is sparse, meaning that 8 > 0 only for
a subset of the dual parameters ", as a result of the constraint 0 ≤ 8 ≤ �.
The training samples associated with the non-null  values take the name
of support vectors (SVs).

Finally, one can compute the discriminant function for the input x
associated with the positive class, which will depend solely on a scalar
product between the training samples:

6+1(x) =
n∑
8=1

H88 (x , x8) + 1 . (2.6)

Kernel trick. The scalar products in Equation 2.5 and Equation 2.6 are
expressed using the function  (·, ·), which takes the name of kernel. Using
this kernel trick, it is possible to implicitly solve the optimization problem
in Equation 2.5 by simply knowing the value of the scalar products
between the training samples. It has been proved that only for the kernel
functions under the Mercer theorem, the optimization problem is convex
and the solution unique1 [38]. An additional advantage of the kernel
trick is that allows to implicitly map the optimization problem into a
high-dimensional space Φ, using a function ) : X ↦→ Φ, which can also
be non-linear. In this space, it is more likely that the samples from the
different classes are linearly separable, which can be useful in the case
of complex classification problems like biometric recognition [39] or
computer vision. To this end, one of the most used kernels is the Radial
Basis Function (RBF), given by:

 (x8 , x 9) = exp

(
−‖x8 − x 9 ‖2

2�2

)
, (2.7)

where ‖ · ‖ is the ℓ2 norm operator and � is a free tuning constant. Other
notable kernel functions are the Polynomial Kernel, the Laplacian Kernel,
and the Histogram Intersection Kernel.

Multiclass Classification

If the set Y= {$1 , . . . , $c} of all the possible classes is constituted by
more than two elements, the corresponding classification task could not
be directly tackled using a binary learning algorithm, like the support
vector machines. However, it has been demonstrated that a multiclass
classification task can be solved effectively by transforming it to a series
of binary, i. e., 2-classes, problems and combining the outputs following
the canonical model (Figure 2.4) [2, 3].
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2: Occasionally called One-vs-Rest (OvR)
or One-Against-All (OAA).

3: The OvA binarization process works
by assigning the label +1 to all samples
from the :-th class, and the label −1 to the
rest of the samples.

One of the most used strategies to decompose a multiclass problem is
called One-vs-All (OvA)2 , which consists on learning a binary discrimi-
nant function for each of the available classes, for a total of c different
classifiers, by considering the training samples from that class as posi-
tives, while all the other samples are treated as negatives [3]. A different
method, called One-vs-One (OvO), considers c(c − 1)/2 binary discrimi-
nant functions, one for each pair of available classes [3]. To assign the
predicted class, in the case of OvA, the maximum support rule is used
(Equation 2.1), while in the OvO case, a common choice is to follow a
most-votes paradigm, by assigning the class which is picked more often
by the binary classifiers (positive value of the score) [40].

These techniques allow to employ linear classifiers like the support vector
machines in multiclass problems [41] by learning, for example in the case
of One-vs-All, one SVM for each class, indexed using : = {1, . . . , c}, and
predicting the label H∗ of an input sample x as follows:

H∗ = 5 (x) = arg max
:=1,...,c

6:(x) =
n∑
8=1

H:8 
:
8  (x , x8) + 1: , (2.8)

where H: are the true labels binarized w.r.t the :-th class following the
OvA scheme3 , and 6: , ": , 1: are, respectively, the decision function, the
dual parameters and the bias of the :-th binary classifier.

Although, even in this case, the solution is sparse for each binary classifier
taken separately, as only a subset of the dual parameters {:

8
}n
8=1 is not

null, for the multiclass system as a whole the combination of all the
support vectors is often coincident with the entire training set, and thus
the global solution will be dense.

Neural Networks

The human brain excels in performingmany different tasks as it is formed
by a thousand billions of interconnected neurons, a basic unit that reacts
in a very fast way to specific patterns in the input electrical signals. It
implements a massive parallelized structure and, more importantly, it
is able to learn from real time data received from the skin, the eyes, the
ears, etc., by changing or creating new connections between units.

Neural Networks are classifiers inspired by the architecture of the human
brain [3]. Their basic unit is called perceptron, developed in the 1950s and
1960s by the scientist Frank Rosenblatt [42], inspired by the earlier work
of Warren McCulloch and Walter Pitts [43]. With a very simple structure,
a perceptron takes several inputs {G(1) , G(2) , . . .} ∈ x and produces a
single binary output 6(x), which is determined as 0 or 1 depending on
whether the weighted sum

∑
9 w(9)G(9) is less than or greater than some

threshold value th. This can be rewritten as a dot-product to obtain the
decision function of a perceptron as follows:

6(x) =
{

0, if w>x + th ≤ 0
1, if w>x + th > 0

, (2.9)

which is identical to the sign function in Equation 2.2,with th ≡ 1, making
perceptrons equivalent to a classifier based on the linear model.
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4: For a complete overview on the theory
behind back-propagation see [46].

5: Sigmoids allow small changes in the
weights and bias to cause only minimal
variations in the output, making the learn-
ing process more stable. Conversely, for
standard perceptrons a little change in the
weights and bias can sometimes cause the
output to completely flip.

By combining multiple instances of this basic unit into different layers,
complex networks can be built, like the one depicted in Figure 2.6, which
takes the name ofMulti Layer Perceptron (MLP). In this way, a many-layers
network of perceptrons can engage in sophisticated decision making.

i1 

i2 

h1 

h2 

h3 

o1 

o2 

Input Layer 

Hidden Layer 

Output Layer 

Figure 2.6: Example of multi layer percep-
tron with two neurons in the input layer,
three in the hidden layer, and two final
output units, one for each class.

The input layer of a MLP is constituted by one perceptron for each feature
of the input sample. The intermediate layer(s) are referred to as hidden
layers, being their inputs and outputs not explicitly visible in the final
network’s output. Each connection between perceptrons represents the
weight used in Equation 2.9 to compute the decision. These parameters
must be carefully chosen to reproduce a desired input-output behaviour,
according to the set of training samples. Finally, the output layer is usually
constituted by one unit for each existing class, making neural networks
suitable for multiclass classification tasks.

To learn the appropriate weights from the training set, an efficient
algorithm was devised in the 1980s, which is called back-propagation [44].
At the beginning, all the edge weights are initialized randomly, or with a
specific criteria like symmetry breaking [45]. Then, for each sample in the
training dataset, the output of the network is observed and compared,
using an error function �, with the desired output, i. e. the true labels of
the input samples. The error value is back-propagated through the network
to adjust the parameters, usually leveraging a gradient-based learning
procedure like gradient descent.4 This process is repeated until the output
error is below a predetermined threshold. For a network with a single
output unit (e.g., for binary classification tasks), an elementary error
function is the mean squared error:

�(w) = 1
n

n∑
8=1

(
6(x8) − H8

)2
. (2.10)

For multiclass classification problems, more complex error functions
are usually employed, including the well-known cross-entropy loss. To
mitigate the problem of overfitting, the error function may include a
regularization term, similarly to Equation 2.3.

As the back-propagation algorithm requires the function of each basic
unit to be continuous and differentiable, the sign function in Equation
2.9 and, thus, the decision function 6(·) in Equation 2.10, is replaced by a
so-called activation function. A common choice is the sigmoid5 :

�(x) = 1
1 + 4−6(x)

. (2.11)

The choice of the activation function, e.g., Gaussian, Radial Basis Function,
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Hyperbolic Tangent, Rectified linear unit (ReLU) [47], may lead to very
different outcomes of the learning process.

Deep Learning

While basic neural networks like multi layer perceptrons provide impres-
sive performance for a wide range of tasks, due to the flexibility in their
structure (one may tune the number of layers and basic units, choose
a different loss and activation functions, etc.), to tackle very complex
classification problems like a human brain does, a more advanced archi-
tecture, e.g., compared to the one reported in Figure 2.6, is required. To
represent, often non-linear, patterns of increasing complexity, researchers
in the 1980s and 1990s started designing Deep Neural Networks (DNNs),
which have the basic structure of MLPs, but with many hidden layers.
Nowadays, DNNs are widely employed for many pattern recognition
tasks, with different variants of a few basic approaches depending on
the specific application [48].

Recurrent Neural Networks (RNNs) [44, 49] are designed to take as input a
data serieswith no predetermined limit on size, like temporal data. To this
end, the hidden units form a directed graph along the sequence, creating
a memory of the inputs. This characteristic makes them particularly
suitable for language modeling tasks [50, 51]. When unfolded, a RNN
may appear as depicted in Figure 2.7.

yt-1

xt-1

ht-1

xt

ht

yt

xt+1

ht+1

yt+1 Figure 2.7: A standard Recurrent Neural
Network (RNN) unfolded in time [49]. The
hidden units form a directed graph along
the sequence, generating in the network a
memory of the inputs.

In the field of computer vision, a widely employed set of architectures
takes the name of Convolutional Neural Networks (CNNs) [52]. In this case
the network is not fully-connected (where all units are linked, like MLPs),
but it exploits the spatial adjacency in grid-like inputs, like images pixels.
This design is inspired by the vision processes of living organisms. Early
work by Hubel and Wiesel [53] showed that the animal visual cortex
contains neurons that individually respond to small regions of the visual
field, known as the receptive fields. The receptive fields of neighboring
neurons partially overlap such that they cover the entire visual field.

A standard CNN design is reported in Figure 2.8. The hidden layers carry
out specific image processing operations, alternating two kinds of layers:
(i) convolutional filtering layers, whose connection weights that determine
the filter implemented are learnt during training; (ii) pooling layers, which
have predefined connection weights, and carry out a down-sampling
operation on the outputs of the previous layer. In particular, each neuron
in the filtering layer is connected to a small region of the input neurons,
called the local receptive field. Then, the pooling operation replaces the
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output of the layer with a summary statistic of nearby outputs, e.g., by
taking the maximum in a certain region. Finally, the upper layers of the
CNN usually consist of standard, fully-connected, networks similar to a
MLP.

Figure 2.8: A Convolutional Neural Network (CNN) to classify handwritten digits [54]. The network is formed by two repeated pairs of
filtering-pooling layers and a fully-connected top MLP with one hidden layer and ReLU as the activation function.

Surprisingly, by visualizing the output of the activation functions of each
pair of filtering-pooling layers, can be clearly seen how a CNN gradually
learns more complex and abstract notions from the training data. While
shallow layers show only borders and color traces, in the deeper layers
patterns of actual objects can be easily recognized, as shown in Figure
2.9 [55, 56]. An analysis of these intermediate outputs can help the
understanding of how these classifiers work, and possibly give an insight
of why they show high vulnerability to external attacks like adversarial
examples (see Section 2.2.2) [11].

Figure 2.9: Visualization of the activation
functions of six layers of a deep convolu-
tional neural network, from the shallower
(layer 1) to the deeper (layer 8), obtained
using an input sample of class pirate ship
[56]. This shows the increase in complexity
and variation on higher layers, comprised
of simpler components from lower lay-
ers. The distinctive features of the input
objects can be clearly recognized at the
output (deeper) layer.

Another interesting type of DNN architectures which gained a lot of
attention in the latest years are the Generative Adversarial Networks
(GANs) [57]. They are based on two separate neural networks, usually
CNNs if applied to computer vision tasks, that contest with each other in
a zero-sum game, where one gain is the other’s loss. In other words, one
network (the generator or decoder) learns to generate new data from the
training set, while the other network (the discriminator or encoder) tries to
distinguish between real examples and synthetic ones. For example, a
GAN trained on real-world images can generate new artificial images
that look authentic to a human observer, having learned to replicate many
of the characteristics of the depicted objects or subjects. These systems
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raised many security concerns lately, as are being used to produce the
so-called DeepFakes [58], highly realistic, possibly incriminating, material,
including fake celebrity videos, fake audio tracks, and fake news.

2.1.2 Performance Evaluation

To evaluate the performance of a machine learning algorithm, it is
generally necessary to compute the prediction error, i. e. how the predicted
value (label) H∗

8
for sample x8 is consistent with its true class H8 . This

procedure is repeated for each sample in a new dataset Dts = {x8}M8=1,
disjointed from the training set Dtr and the validation set Dval, which is
called test set.

One of the most used metrics to compute the prediction error in the case
of classification problems is the accuracy, which represents the portion of
correct predictions with respect to the total number of tested samples:

acc(y∗, y) = 1
M

M∑
8=1
(H∗8 == H8) . (2.12)

For a binary classification problem, it is also possible to define few
different metrics to evaluate specific aspects of the learning algorithm.
Considering the samples from the positive class only, we define the True
Positives (TP) as the set of samples which classes have been correctly
predicted, and the False Positives (FP) as the set of samples to which
have been assigned the wrong labels. Considering the samples from the
negative class, similar definitions can be provided in terms of the True
Negatives (TN) and the False Negatives (FN).

Ideally, the value of the discriminant function computed for a specific
class $2 on the samples from that same class will be always higher than
the values obtained by computing the function on samples from the
other classes $:≠2 . As a consequence, a single threshold �2 chosen a
priori may perfectly separate the set of positives and negatives scores. As
depicted in Figure 2.10, however, the two sets can overlap, for example, if
high positive score is given to a sample from the negative class, meaning
it becomes a false positive, or vice-versa, if high negative score is given,
resulting in a false negative.
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Figure 2.10: Plotting of the positives
(green) and the negatives (red) scores to
determine the False Positive Rate (FPR),
the False Negative Rate (FNR) and the
decision threshold �2 .

The choice of the decision threshold �2 is fundamental, as in specific
applications one may prefer to have, for example, as few as possible
false positives (like in a biometric recognition systems applied to access
control for a bank). To correctly estimate the best threshold for each case,
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the performance of the system is usually measured using the following
metrics:

I False Positive Rate (FPR), representing the probability that a neg-
ative sample is recognized as positive. A common range for this
metric is 1-5% FPR.

I False Negative Rate (FNR), representing the probability that a
positive sample is recognized as negative.

To graphically analyse the performance in terms of FPR and FNRmetrics,
one can plot the Receiver Operating Characteristic (ROC) curve. It shows
the ratio between the false negatives and the false positives at increasing
values of the decision threshold. From the ROC curve, the system perfor-
mance can be directly observed and, in addition, the threshold �2 can be
easily balanced in order to obtain the desired value for the two metrics
depending on the task to tackle.

2.2 Secure Machine Learning Systems

Machine learning techniques are nowadays being extensively employed
in security applications, like spam filtering, intrusion detection systems,
or malware detectors. The underlying reason is that traditional security
systems struggle to generalize on never-before-seen samples, i. e., detect
new attacks. Instead, we already illustrated howmany different classifica-
tion algorithms have indeed shown high generalisation capability. Since
the 90s, computer viruses, malware and Internet scams have increased
not only in volume, but also in terms of inconsistency and sophistication,
in response to the growing complexity of defense systems. Automatic
tools to design novel attacks have been developed, making large-scale
automatization of subtle attacks practical for non-skilled attackers too.
A straightforward example of this is provided by phishing kits, which
automatically compromise legitimate (vulnerable) websites, and hide
phishing web-pages within them [59, 60]. The increasing availability of
such attack vectors, malware and other threats, is also strongly motivated
by a worrying underground economy around them, which enables the
attackers an easy monetization on vulnerable systems.

On the other hand, the introduction of machine learning algorithms
in such applications raises itself an issue, namely, if these techniques
are themselves secure [61]. In fact, they turn out to introduce specific
vulnerabilities that skilled attackers can exploit to compromise the whole
system, i. e., machine learning itself can be the weakest link in the security
chain. These threats have to be first identified, then the behavior of the
system under attack can be analysed to eventually propose any possible
countermeasures.

2.2.1 Attack Surface and Threat Model

In principle, an adversary may devise attacks at any stage of a machine
learning based system (see Figure 2.11). For instance, an attacker may
compromise the training set used to learn the decision function, by
injecting carefully designed samples during the data acquisition phase
[62]. Also, an attacker can mislead the data pre-processing step (e.g.,
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Figure 2.11: The attack surface of a typical
machine learning based system.

in spam filtering, different techniques can be used to avoid correct
parsing of e-mails), as well as the feature extraction processes (e.g.,
samples may be altered tomake themodule or algorithmwhich performs
feature extraction ineffective). In addition, an adversary may exploit
some characteristics of the selected learning algorithm to design effective
attacks at the operating phase. For example, a spammer may be able to
understand which are the most relevant words used by a spam filter to
classify legitimate e-mails, and use them to craft a more powerful attack,
namely perform a good word attack [63, 64, 9].

All these possible security issues raise from the fact that machine learning
techniques are not designed from the ground up to be attack-robust. In
other words, they were not originally thought to operate in an adversar-
ial environment. The design process should instead explicitly take into
account that malicious adversaries can, at least in principle, attack the
system at any stage. To this end, the designers should put themselves in
the adversary’s shoes and try to anticipate his attacks. So the first step
to design secure pattern recognition systems is to model threats and
thoroughly evaluate their security against the corresponding attacks. To
this end, we describe in the following a framework based on the popular
attack taxonomy proposed in [61, 65, 66] and subsequently extended in
[20, 67, 68, 69, 70], which enables a designer to envision future attack
scenarios, and to implement the corresponding attack strategies. In this
context, we characterize the attackers by: (8) their objective in attacking
the system; (88) their knowledge of the system; (888) their capabilities in
influencing the system through manipulation of the input data [8].

Attacker’s Goal

The adversary’s goal or objective in attacking the system can be defined
in terms of security violation, attack specificity, and error specificity.

SecurityViolation. The attackermay aim to cause: an integrityviolation,
to penetrate the system without compromising its normal operation
(minimizing the chance of being detected); an availability violation, to
compromise the normal system functionalities available to legitimate
users; or a privacyviolation, to obtainprivate information about the system
or its users, usually by reverse-engineering the underlying machine
learning model.

Attack Specificity. We distinguish between targeted and indiscriminate
attacks, depending onwhether the attacker aims to causemisclassification
of a specific set of samples, or of any available data. The former attacks are
usually performed to target a specific system user or protected service.
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Error Specificity. If the adversary aims to have a sample misclassified
as a precise class we consider the attack as specific; or generic, if the
attacker aims to have a sample misclassified as any of the available classes
excluding its true one. Other works [71] mix error and attack specificity
by defining targeted and indiscriminate attacks depending on whether
the attacker aims to cause specific or generic errors.

Attacker’s Knowledge

We characterize the attacker’s knowledge + as a tuple in an abstract
knowledge space K consisting of four main dimensions, respectively
representing knowledge of: (:.i) the training data Dtr; (:.ii) the feature set
F; (:.iii) the decision function 5 , along with the objective function (loss)
Lminimized during training; and (:.iv) the parametersw learned during
the training process. This categorization enables the definition of many
different threats, ranging from white-box attacks with full knowledge of
the target classifier, to gray-box or black-box attacks in which the adversary
has only limited or no information about the target system.

White-Box Perfect-Knowledge (PK) Attacks. We assume in this case
that the attacker has full knowledge of the target classifier, i. e., + =

(Dtr ,F, 5 ,w). This white-box setting allows one to perform a worst-case
evaluation of the security of a machine learning algorithm, providing
empirical upper bounds on the performance degradation expected under
attack (see Section 2.2.4).

Gray-Box Limited-Knowledge (LK) Attacks. Onemay consider in this
category different settings, depending on the attacker’s knowledge about
each of the components (:.i)-(:.iv). Typically, the attacker is assumed
to know, at least, the input feature representation F. For example, in
case of images this means that he knows that the input features have the
form of pixels’ values, which is an assumption adopted in many recent
works[72, 73]. At the same time, the attacker may know the form of the
decision function 5 , e.g., if the classifier is linear, or it is a neural network
with a given architecture, etc., but neither the training data Dtr nor the
classifier’s parameters w.

The attacker, however, may be able to collect a surrogate dataset D̂tr,
ideally sampled from the same underlying distribution of Dtr, and train
on such data a surrogate model 5̂ that approximates as close as possible the
target function 5 . Then, the attacks can be crafted against 5̂ and transferred
to the target classifier 5 [74, 72, 73] (see Section 2.2.6). By denoting the
limited knowledge of a given component of the system with the hat
symbol, these gray-box attacks can be defined as + = (D̂tr ,F, 5 , ŵ), or
as + = (D̂tr ,F, 5̂ , ŵ) if the type of the target classifier is unknown. It is
worth remarking that surrogate models are used in the field of black-box
mathematical optimization to find the optima of functions which are
non-differentiable, nor analytically tractable. In these cases, the gradient
information from a (differentiable) surrogate function 5̂ (that resembles
the target 5 ) can be leveraged to speed up the optimization process.
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Black-Box Zero-Knowledge (ZK) Attacks. Classifiers working in an
adversarial environment can also be threatened without any substantial
knowledge of the feature space, the learning algorithm, or the training
data, if the attacker can query the system in a black-boxmanner and get
an output in terms of the predicted labels or the classification scores
[73, 75, 76, 77, 78]. It should be noted however, that the attacker must
at least know that the classifier is designed to perform some precise
task (e.g., identity recognition through fingerprint scanning, or malware
classification), and must have a clear idea on how to alter the data
to cause some feature changes, otherwise no variation of the outputs
can be obtained, nor any useful information can be extracted from the
system. For example, if one attacks a malware detector based on dynamic
analysis by injecting static code which is never executed, there will be no
impact at all on the classifier’s decisions. This means that the attacker,
to be effective against the system, must know at least (or has to get to
know) which kind of features are used (e.g., features based on static
or dynamic analysis in malware detection). In other words, knowledge
of the feature representation may be partial, but not completely absent.
This is even more evident for algorithms trained on images, where the
attacker generally knows if the input features are, e.g., the pixels. Similar
considerations hold regarding the knowledge of the training data. If the
attacker knows that the system is used for a specific task, it may also
know what kind of data has been used to learn its decision function. For
example, if a deep network is trained to recognize road signs, then it is
highly probable that the training set is constituted by images of such
objects. Hence, also in this case, the attacker may not know the exact
training set but, at least, should have some knowledge of the data used
during the learning process.

We thus characterize this setting as + = (D̂tr , F̂, 5̂ , ŵ). Even if surrogate
classifier are not necessarily used when simulating these attacks, as
described in [75, 76, 77, 78], as well as in pioneering work on black-box
attacks [79, 80], one may learn a surrogate function anyway (potentially
on a different feature representation) to evaluate the transferability of the
attacks to the targeted classifier (see Section 2.2.6). Feedback from the
classifier’s decisions on carefully-crafted query samples can then be used
to refine the surrogate model, as shown in [73].

Attacker Capability

This characteristic defines how the attacker can influence the system,
and how the data can be manipulated based on application-specific
constraints. If the adversary can manipulate both training and test data,
the attack is said to be causative. It is instead referred to as exploratory,
if the attacker can only manipulate test data. These scenarios are more
commonly known as evasion [74, 11, 81, 82] (Section 2.2.2) and poisoning
[83, 84, 85, 68, 86] (Section 2.2.3).

Another aspect related to the attacker’s capability depends on the pres-
ence of application-specific constraints on data manipulation. For ex-
ample, to attack a malware detector, malicious code has to be modified
without compromising its intrusive functionality. This may be done
against systems leveraging static code analysis, by injecting instructions
that will be never executed [74, 87, 21, 88]. These constraints can be
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generally accounted for in the definition of the optimal attack strategy, by
assuming that an initial attack sample x′ can only be changed according
to a space of possible modifications, which we denote with Φ(x′), or
by mapping the feature space F in terms of some value constraints,
e.g., by imposing that the feature corresponding to occurrences of some
instructions can only be incremented [74, 87, 21].

Taxonomy of Adversarial Attacks

We provide in Table 2.1 a simplified categorization of the main attacks
against machine learning algorithms based on the aforementioned threat
model; in particular, considering the attacker’s goal and his main capa-
bilities. As mentioned before, the most common threats are evasion and
poisoning availability attacks (aimed to maximize the test error). A dif-
ferent kind of poisoning integrity attacks which manipulate the training
data to cause specific misclassifications have also been studied under the
name of backdoor and trojaning attacks [89, 90]. These attacks maliciously
manipulate pre-trained models to create subtle vulnerabilities which,
when the corrupted models are publicly released, can be activated using
specific input samples that are misclassified as desired, and thus allow
gaining access to the system to achieve the malicious goal.

All the aforementioned attacks can be staged under different levels of
the attacker’s knowledge. When knowledge is limited or absent, as in
the gray-box and black-box cases, privacy or confidential attacks can be
performed to gain further knowledge about the target classifier or its
users. A few practical examples of such threats include model-extraction
attacks aimed to steal machine learning models, and model-inversion
against biometric systems used to steal the face and fingerprint templates
of their users (or any other sensitive information) [67, 75, 91, 92, 93, 94].

Attacker’s Goal
Attacker’s
Capability Integrity Availability Privacy

Test data Evasion (adversarial
examples)

Sponge examples
(to maximize energy
consumption) [95]

Model stealing and
model inversion

Training data
Poisoning (to allow
future intrusion; e.g.
backdoors, trojans)

Poisoning (to max-
imize classification
error)

-

Table 2.1: Taxonomy of the attacks against
machine learning based systems under the
threat model described in Section 2.2.1.

2.2.2 Evasion Attacks (Adversarial Examples)

Evasion attacks consist on manipulating input data to have them mis-
classified, i. e., to evade a trained classifier at test time. These include, e.g.,
altering images to mislead object recognition, adding specific words to
an email to fool a spam filter, or manipulating malware code to have
the corresponding sample misclassified as legitimate. A sample that has
been modified to this end is often called an adversarial example. We denote
the changes, i. e., the perturbation, added to a sample to make it an attack
input, with �. In the following, we consider the formulation we reported
in [20] for generic multiclass recognition problems, which extends the
framework proposed in [74] for binary classifiers.
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Two evasion settings, different by their error specificity, are conceptually
depicted in Figure 2.12: error-generic and error-specific. In Chapter 4 we
provide an optimization framework to solve both settings through a
straightforward gradient-based attack, for differentiable learning algo-
rithms (including neural networks, SVMs with differentiable kernels,
etc.) [20, 74]. Non-differentiable learning algorithms, like decision trees
and random forests, can be attacked with more complex strategies [96],
or by using a differentiable surrogate classifier [97].

1 0 1

   1

   0

   1

Indiscriminate evasion

1 0 1

   1

   0

   1

Targeted evasion
Figure 2.12: Examples of evasion attacks
by error specificity, error-generic (left) and
error-specific (right) [20]. Decision bound-
aries among the three classes (blue, red
and green points) are shown as black lines.
In the error-generic case, the initial sample
(from blue class) is shifted towards the red
class, as it is the closest class to the initial
sample. In the error-specific case, instead,
it is shifted towards the green class, as it
is selected as target. The gray circle rep-
resents the feasible domain, given as an
upper bound on the ℓ2 distance between
the initial and the adversarial example.

In the error-generic case, the attacker is interested in misleading classi-
fication, regardless of the predicted output class. The underlying idea
behind this attack formulation, similarly to [98], is to ensure that an attack
sample to which the system assigns the class $: , is rather misclassified
as a sample of the closest candidate class, i. e., the one exhibiting the
highest value of the decision function among the remaining classes. In
the error-specific setting instead, the attacker aims to mislead classifi-
cation by requiring the adversarial example to be misclassified as an
input from a specific class. The rationale in this case is to maximize the
confidence assigned to the wrong target class $ ≠ $: , while minimizing
the probability of correct classification [98, 20].

Minimal Perturbation vs High Confidence Attacks In many works
on evasion attacks, one of the main definitions states that adversarial
examples should be minimally perturbed, meaning that they are modified
as little as possible compared to the original sample, but enough to fool
the classifier in the desired way. This misconception has taken hold in the
community since the initial work by Szegedy et al. [11], where the notion
of adversarial examples was introduced, which analyzed the instability of
deepneural networks, i. e., their sensitivity tominimal inputperturbations,
but not to perform a detailed security evaluation of the machine learning
algorithms. Instead, it is more reasonable to assume that the attacker aims
tomaximize the classifier’s confidence, i. e. the score, on the desired output
class $ ≠ $: , rather than onlyminimally perturbing the original samples.
For this reason, while minimally-perturbed adversarial examples can be
used to analyze the sensitivity of a learning algorithm, high- ormaximum-
confidence attacks are more suitable for an accurate security assessment
of machine learning based systems under attack [8, 74, 69] (see Section
2.2.4), as well as to evaluate transferability across different models (see
Chapter 5). More recent works by Carlini and Wagner [82, 99] and
follow-up [100, 101], also showed that several defenses proposed against
minimally-perturbed adversarial examples are vulnerable to maximum-
confidence ones, which use a stronger perturbation. Figure 2.13 depicts
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the difference between maximum-confidence and minimum-distance
evasion attacks with respect to the decision boundary of the targeted
classifier.

surrogate classifier !"($) used to craft black-box adversarial examples

target classifier ! $ used to craft white-box adversarial examples

minimum-distance black-box adversarial example

maximum-confidence black-box adversarial example
maximum-confidence white-box adversarial example

initial / source example

minimum-distance white-box adversarial example

Figure 2.13: Conceptual representation
of maximum-confidence evasion attacks
vs. minimum-distance adversarial exam-
ples [16], within an ℓ2 ball of radius �.
Maximum-confidence attacks tend to be
more powerful as they are misclassified
with higher confidence, even though are
generated using a heavier perturbation.

2.2.3 Poisoning Attacks

Poisoning attacks consist on manipulating training data to either compro-
mise normal system operation by causing a denial of service, or to favor
intrusions without affecting normal system operation. The former are
referred to as poisoning availability attacks, while the latter are known as
poisoning integrity attacks [98, 21]. To this end, a small fraction of poisoning
samples is injected into the training data, often by simply duplicating
existing samples but with flipped label (assuming a binary classification
problem). These attacks, conversely to evasion, are performed at the
training phase. A conceptual example of how poisoning attacks work is
given in Figure 2.14.

As for evasion attacks, we distinguish two settings by error specificity,
namely error-generic and error-specific poisoning attacks, both in a
perfect-knowledge scenario, given that the extension to gray-box and
black-box is trivial through the use of surrogate learners [68]. In the error-
generic case, the attacker aims to cause a denial of service by inducing
the system to misclassify as many samples as possible, regardless of the
classes in which they occur. Conversely, in the error-specific setting the
attacker aims to cause specific misclassifications, usually to allow future
intrusion (see Figure 2.15).

0% (0.01)

Figure 2.14: Conceptual example of poisoning attacks against a linear classifier [83, 84]. The training points (red and blue dots) and the
decision boundary of the trained classifier (black solid line) are shown on each plot. The fraction of injected poisoning points w.r.t. the
training set size is reported on top of each plot, along with the test error (in parentheses) of the resulting poisoned classifier. The attacks are
initialized by cloning the legitimate points denoted with white crosses and flipping their label. The optimization process moves the samples
to some local optima, following the black dashed trajectories, to obtain the final poisoning points (highlighted with black circles).
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Backdoor / poisoning integrity attacks place mislabeled training points in a region of the 
feature space far from the rest of training data. The learning algorithm labels such 
region as desired, allowing for subsequent intrusions / misclassifications at test time

Training data (no poisoning)

61

Figure 2.15: Conceptual representation of
the impact of error-specific poisoning in-
tegrity attacks on the decision function
of a trained model [89, 8]. The attacker
places mislabeled training points in a re-
gion of the feature space far from the rest
of data, leading the learning algorithm to
consider them as legit samples. As a result,
attack points are misclassified as desired
by the adversary at test time, allowing a
successful intrusion in the system.

Similarly to evasion attacks, in Chapter 4 we provide an optimization
framework to craft poisoning attacks through a straightforward gradient-
based algorithm, which allows solving a bi-level optimization problem
by replacing the inner optimization with its equilibrium conditions
[83, 84, 85, 68]. This enables gradient computation in closed form and,
thus, the derivation of gradient-based attacks. However, gradient-based
poisoning attacks are much more computationally demanding compared
to their evasion counterpart, as they require retraining the classifier
iteratively on the modified attack samples. This can be unpractical for
advanced classifiers like deep neural networks, due to computational
complexity and instability of the closed-form gradients. To tackle this
issue, a more efficient technique has been recently proposed, named
back-gradient poisoning, which relies on automatic differentiation and on
reversing the learning procedure to compute the gradient [68].

2.2.4 Security Evaluation

Assessing the performance of a machine learning algorithm on a set of
previously collected and labelled data, according to methodologies like
the ones described in Section 2.1.2, may provide an optimistic estimate of
the real performance of the system, especially when it tackles a security-
related task. The reason behind this, is that the collected data either does
not contain attack samples at all, or it does contain attack samples which
are not targeted against the system being designed [102]. In other words,
the performance of a classifier is typically assessed without taking into
account its robustness under attack.

Instead, the existence of carefully crafted attacks aimed to evade the sys-
tem should be considered during the design process and the performance
evaluation. This includes analyzing the attacker’s knowledge, capability
or strength, and his possible goals (see Section 2.2.1). In fact, a system
which is more robust under attack may be a better choice with respect to
a system which is more accurate (according to the standard evaluation
process), since the performance of the latter may decrease faster at the
operating phase, as it gets targeted by the adversary’s attacks.

To provide a thorough security evaluation ofmachine learning algorithms
by taking into account the attacker’s strength, one can vary the maximum
amount � of perturbation used to craft evasion attacks, or the number
of poisoning attack points injected into the training data. The resulting
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security evaluation curve, conceptually represented in Figure 2.16, shows
the extent to which the performance of a learning algorithm drops more
or less gracefully under attacks of increasing strength. This ensures that,
e.g., if the noise applied to the input data is within an ℓ2 ball of radius �,
then the classification performance should drop no more than a certain
value Δ. This is crucial to enable a fairer comparison among different
attack algorithms and defenses [69, 70]. It should be noted that, by using
minimally-perturbed adversarial examples (see Section 2.2.2), one can
only provide guarantees against an average level of perturbation (rather
than a worst-case bound).
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Figure 2.16: Security evaluation curve of
two hypothetical classifiers C1 and C2 [8].
Accuracy of the C2 classifier in absence
of attack (zero strength) is higher then C1
accuracy, and so it may appear as the best
choice as amodel for theML-based system.
However, simulating attacks of increasing
(maximum) strength, the C1 classifier is
revealed to be more robust to adversarial
input perturbations, and it’s then a better
choice from a security perspective.

2.2.5 Defenses against Adversarial Attacks

In this section we describe the proactive defenses aimed to prevent
adversarial attacks to machine learning based systems. The majority of
methods proposed so far in the literature can be categorized according
to the paradigms of security by obscurity and security by design [8].

Security by obscurity. This category of defenses, also known as disin-
formation techniques [61, 65, 66], follow a paradigm where the informa-
tion is hidden to the attacker with the goal of improving security. These
defenses aim to counter gray-box and black-box attacks in particular, as a
probing mechanism (i. e., send multiple samples to the system to receive
its output score or prediction) is often used to improve the surrogate
models, or to refine evasion attempts by querying the target classifier. We
categorize obscurity-based defenses as follows [103]: (8) randomization
of training data collection (at different timings, and locations); (88) use of
classifiers that are difficult to reverse-engineer (e.g., ensembles); (888) ac-
cess denial to the learned model or training data; and (8E) randomization
of outputs to give variable feedback to the attacker. Regarding the latter
approach, even if applied successfully to counter adversarial examples
[104, 105, 106], it is still an open issue to understandwhether and to which
extent randomization may be used to make it harder for the attacker to
learn a proper surrogate model, and to implement privacy-preserving
mechanisms [107] against model inversion [67, 75, 91, 108, 93, 94]. Finally,
gradient masking has been proposed to hide the gradient direction used
when crafting adversarial examples with gradient-based algorithms [71,
109], but it has been shown that this can be easily circumvented with
surrogate learners [73, 82, 74].
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Security by design. This paradigm encourages the designer to devise
a robust system from the ground up, namely, build an adversary-aware
system. Based on this idea, several learning algorithms have been adapted
to explicitly take into account the possible existence of different kinds of
adversarial data manipulations. Moreover, this paradigm often assumes
the worst-case white-box scenario, where the attacker has a perfect
knowledge of the target system. In the following, we describe different
techniques to design robust machine learning algorithms against evasion
and poisoning adversarial attacks.

Defenses against Evasion Attacks

The first adversary-aware classification algorithm against evasion attacks
has been proposed in 2004, which is based of simulating attacks and
iteratively retrain the classifier on them [110]. More recently, similar
techniques took the name of adversarial training, and employed to counter
adversarial examples against deep neural networks [11, 81], or to harden
particular classifiers like decision trees and random forests [96].

As the aforementioned techniques are all based on heuristics, with
no formal guarantees on convergence and robustness properties, more
structured approaches relying on game theory have been proposed, like
zero-sum games to learn invariant transformations like feature insertion,
deletion and rescaling [111, 112, 113]. Also, other works introduced Nash
and Stackelberg games for secure learning derive formal conditions for
existence and uniqueness of the game equilibrium under the assumption
that each player knows everything about the opponents and the game
[114, 115], or by randomizing players [106] and uncertainty on the players’
strategies [116]. Despite these approaches seem promising, machine
learning in an adversarial environment is not a board game with well-
defined rules [8]. Understanding the extent to which the resulting attack
strategies are representative of practical scenarios remains an open issue
[117, 118]. Also, the scalability of these methods to large datasets and high-
dimensional feature spaces is in doubt, as it may be too computationally
costly to generate a sufficient number of attack samples to correctly
represent the data distribution.

Robust optimization is a more computational efficient defense approach.
It formulates machine learning in adversarial settings as a min-max
problem in which the inner problem maximizes the training loss by
manipulating the training points under worst-case, bounded perturba-
tions, while the outer problem encourages the learning algorithm to
minimize the corresponding worst-case training loss [81, 119, 120, 121].
The inner problem can be solved in closed form, for linear support
vector machines, yielding a standard regularized loss formulation that
penalizes the classifier parameters using the dual norm of the input
noise [119], and for non-linear classifiers [122]. A direct result derived
from these techniques is the equivalence between regularized learning
problems and robust optimization, which has enabled approximating
computationally-demanding secure learning models, like the aforemen-
tioned game-theoretical ones, with more efficient strategies based on the
regularization of the objective function in a specific manner [21, 123, 97].
In fact, the main effect of these methods is to smooth out the decision
function of the classifier, reducing the norm of the input gradients, and
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6: Note that this is always possible with-
out affecting system performance, by di-
viding 5 by ‖w‖1, and normalizing the
feature values on a compact domain be-
fore the learning process.

thus making it less sensitive to worst-case input changes. To achieve this,
few works proposed to improve the so-called evenness of the classifier’s
parameters [102, 124].

In [21] we proposed a more principled approach to smooth out the
decision function of a machine learning model, derived from the idea of
bounding sensitivity to feature changes. This starts with the definition of
the classifier’s sensitivity as:

Δ 5 (x , x′) =
5 (x) − 5 (x′)
‖x − x′‖p

=
w>(x − x′)
‖x − x′‖p

, (2.13)

where ‖ · ‖p is the ℓp norm operator. This evaluates the decrease of 5 when
a sample x is manipulated as x′, with respect to the required amount of
modifications, given by ‖x − x′‖p. Let us assume now, without loss of
generality, that w has unary ℓ1-norm and the features are normalized
in [0, 1].6 We also assume that, for simplicity, the ℓ1-norm is used to
evaluate ‖x − x′‖p. Under these assumptions, it is not difficult to see that
Δ 5 ∈

[ 1
d , 1

]
, where the minimum is attained for equal absolute weight

values, and the maximum is attained when only one weight is not null,
confirming the intuition that more evenly-distributed parameters should
improve classifier security under attack. This can also be formally shown
by selecting x , x′ to maximize Δ 5 (x , x′), which gives:

Δ 5 (x , x′) ≤ 1
K
∑K
:=1 |w(:) | ≤ max9=1,...,d |w(9) | = ‖w‖∞ . (2.14)

Here, K = ‖x − x′‖1 corresponds to the number of modified features
and |w(1) |, . . . , |w(d) | denote the weights sorted in descending order of
their absolute values, such that we have |w(1) | ≥ . . . ≥ |w(d) |. The last
inequality shows that, tominimize classifier sensitivity to feature changes,
one can minimize the ℓ∞-norm of w. This tends to promote solutions
which exhibit the same absolute weight values, a well-known effect of
ℓ∞ regularization [125], and are also more robust to evasion attacks.
Moreover, the intuition behind more evenly-distributed parameters to
improve security also led to the discovery of a strong connection between
the robustness to adversarial examples and gradient-based explanations,
as we discuss in Chapter 6.

Practically, to build a defense based on these principles, one can define,
for example, a secure linear support vector machine by adding a box
constraint on the weights w, obtaining the following robust optimization
algorithm, which we call Sec-SVM [21]:

min
w,1

1
2 w>w + �∑n

8=1 max
(
0, 1 − H8 5 (x8)

)
(2.15)

s.t. w(:)lb ≤ w(:) ≤ w(:)ub , : = 1, . . . , d ,

where the lower and upper bounds on w are defined by the vectors
wlb = [w(1)lb , . . . ,w

(d)
lb ] and wub = [w(1)ub , . . . ,w

(d)
ub], which are application

dependent. As shown in Figure 2.17, the parameters learned by Sec-SVM
have a lower absolute value compared to a standard support vector
machine, making the resulting model more robust to evasion attacks.

Another line of defenses against evasion attacks is based on detecting
and rejecting samples which are sufficiently far from the training data in
feature space [20, 105, 126, 127, 128]. These samples are usually referred to
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Absolute weight values (in descending order) Figure 2.17: Comparison of the absolute

values of the feature weights, in descend-
ing order (i. e., |w(1) | ≥ . . . ≥ |w(d) |), be-
tween two standard Support Vector Ma-
chines (SVM and MCS-SVM) and our ro-
bust Sec-SVM [21]. In the case of Sec-SVM
(M) a different bound has been used for a
subset of the feature space. Flatter curves
correspond tomore evenly-distributed fea-
ture weights and more secure classifiers.

as blind-spot evasion points, as they appear in regions of the feature space
scarcely populated by training data, and can be countered by a rejection
mechanism, i. e., instructing the system to avoid any decision on them.
In fact, this is a consequence of the stationarity assumption underlying
many machine learning algorithms (according to which training and
test data should come from the same distribution) [129, 130], and such
rejection-based defenses simply aim to overcome this issue. In Figure 2.18,
it is conceptually depicted a rejection-based defense applied to a support
vector machine with RBF kernel [20]. We can observe how the decision
boundaries are substantially changed after applying the defense (middle
and right plots), with the stationary training classes tightly enclosed.
This in turn may require one to trade-off between the security against
potential attacks and the number of misclassified (stationary) samples at
test time which may end up in the rejection region.
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Figure 2.18: Effect of class-enclosing defenses against blind-spot adversarial examples on multiclass SVMs with RBF kernels, adapted from
[20]. Rejected samples are highlighted with black contours. The attack (black star) is misclassified only by the standard SVM (left figure),
while SVM with rejection correctly identifies it as an adversarial example (middle figure). Class enclosure can be tightened to improve
classifier security (right figure), at the expense of misclassifying more legitimate samples.

It is worth remarking that, by using the aforementioned rejection-based
algorithms, one can counter blind-spot evasion samples, but definitely not
adversarial examples whose feature vectors become indistinguishable from
those training samples belonging to the other classes. In the latter case,
indeed, any learning algorithm would not be able to tell such samples
apart [131]. In the case of deep convolutional neural networks, for example,
most of the problems arise from the fact that the feature representation
violates the smoothness assumption of learning algorithms: samples that
are close in input space may be very far in the mapped deep space. To
counter this vulnerability, one may re-train or re-engineer the deeper
layers of the network (and not only the last ones) [11, 20].

Finally, classifier ensembles have also been exploited to improve the
robustness against evasion attempts, e.g., by implementing rejection-
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based mechanisms or secure fusion rules [102, 60, 132, 127, 133, 134]. The
underlying rationale in this case is that a Multi-Classifier System (MCS)
can improve security since, at least in principle, it forces the adversary to
evade more than one model. However, it may also worsen security if the
base classifiers are not properly combined [60, 127].

Defenses against Poisoning Attacks

Compared to the number of works aimed to study methods to counter
evasion attacks, only a few defenses against poisoning attacks have been
proposed [135, 136, 127, 137, 138, 139, 140, 86]. This is mainly due to the
fact that, to compromise a learning algorithm during the training process,
an attacker must know the characteristics of the training samples and
produce attacks that are different from the rest of the data (otherwise
they would have no impact at all) [127]. As a result, poisoning attacks
can be often detected as outliers, and countered using data sanitization,
i. e., attack detection and removal [127, 138, 140].

Another strategy to counter poisoning attacks is to employ robust tech-
niques, where the learning algorithm is based on secure statistics that are
intrinsically less sensitive to outlying training samples, e.g., via bounded
losses or employing kernel functions [136, 139, 86, 141, 142, 107]. More-
over, a few defenses to strengthen support vector machines have been
proposed: Label Noise Robust SVM (LN-SVM) [143], where the classifier
is heuristically enforced to increase the number of support vectors (en-
hancing its stability against outliers); and Least-Square SVM (LS-SVM)
[144], where a quadratic loss function is used in place of the hinge loss to
reduce the sparsity of the solution, by making all the training point have
some weight in the prediction instead of just using the support vectors.

2.2.6 Transferability of Adversarial Attacks

Crafting poisoning and evasion attacks is not a trivial task and, generally,
requires at least some knowledge of the system’s architecture and the data
which, in the real world, are rarely fully disclosed publicly. For example,
a commercial machine learning based mobile malware detector can rely
on a publicly known architecture, but use proprietary data collected
from end hosts, and a mixture of known features (e.g., system calls of an
app), and undisclosed features (e.g., reputation scores of the app). As a
result, attackers are often forced to craft their attacks in black-box settings
against a surrogate model 5̂ , possibly built by querying the target model
5 [72], with no guarantee that the attack will be actually effective.

Unfortunately, several works demonstrated that adversarial attacks gen-
erated for one machine learningmodel may also successfully fool another
model. Such property is referred to as transferability. This represents
a serious threat for any machine learning based system, as it actually
increases the potential strength of many existing adversarial attacks.
Additionally, it should be noted that attacks may transfer not only intra-
technique, i. e., when both 5̂ and 5 are trained using the same algorithm
(while, possibly, using different datasets or hyperparameters), but also
cross-technique, when the surrogate and the target classifiers use different
learning techniques [72].
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7: In Chapter 8 we provide a similar in-
sight after comparing the global explana-
tions of different classification models.

Attack transferability of adversarial examples was first examined in [11]
between different models trained over the same dataset, and between
the same or different models trained over disjoint subsets of a dataset.
Later, in [81] the phenomenon was attributed to the fact that adversarial
perturbations are highly aligned with the parameters vector of a model.
Additionally, [145] suggested that decision boundaries learned by the
original and target models must be extremely close to one another for
the attacks to successfully transfer.7 With the advancement of machine
learning based cloud services, many works studied the possibility of
constructing a surrogate model by querying an online system to obtain
predictions. In [73], black-box attacks are shown to be feasible towards
machine learning services hosted by Amazon, Google, and MetaMind.
Alongside, other works reported empirical findings about the transfer-
ability of evasion attacks [74, 101, 146, 145, 147]. Finally, [148] showed the
existence of an universal perturbation, which is image-agnostic and can
transfer with high probability across many different samples, making
them adversarial examples without specific modifications.

Only recently, the transferability of poisoning integrity attacks has gained
some attention [149], largely because existing black-box attacks have few
shortcomings similar to white-box attacks, as they assume a threat model
where the attacker has full control over the training process of the target
classifier [150, 151, 152]. In fact, error specific poisoning attacks [135, 153,
90] require control of the labeling phase, which in the real-world is rarely
part of the capabilities of an attacker. For example, consider the case
where a malware creator provides to the system a poisoning sample to be
added to the training set, but the learning process involves that the label,
malicious or benign, is assigned by a human operator or a community
voting process. These attacks can be easily detected by existing defenses,
as theymay stand out from the rest of the training set. Moreover, they also
risk of causing collateral damage by accidentally lowering the accuracy
on legitimate samples, which may alert the system’s maintainer and thus
the potential impact of the attack.

In spite of these efforts, the question of when and why do adversarial attacks
transfer remains largely unanswered, including the absence of reliable metrics
to evaluate the security of machine learning systems against these threats.
In the next chapters we provide a formal definition of transferability
and present the first comprehensive evaluation of this property for both
evasion and poisoning availability attacks.

2.3 Explain Machine Learning Systems

Procedures like performance evaluation (Section 2.1.2) are necessary
steps in the build process of an automated classification system, as no
machine learning model is able to perfectly tackle all existing tasks
(no free lunch theorem [32]), and the one that best suits the needs of the
specific application should be carefully chosen. But then, if a ML-based
system is able to provide the expected performance level, why do not
just trust its decisions and leave it without monitoring? One reason is
that these automated systems are shown to be vulnerable to attacks such
as adversarial examples (see Section 2.2), which may lead to unexpected
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decisions. In this case, a security evaluation procedure (see Section 2.2.4)
can help identify the vulnerability of a model to such external attacks.

Unfortunately, performance and security metrics are an incomplete
description of most real-world cases, especially for safety-critical applica-
tions [4]. Let’s consider for example a self-driving car which has learned
to perfectly recognize cyclists, but it suddenly fails when there is a side
bag which partially covers one of the wheels; or a system which has to
automatically accept or reject credit-cards transactions, which happens to
block all operationsmade by users from a certain country. This type of un-
expected situations may lead to the users asking for an explanation of the
system’s decisions, which requires the learned machine learning model
to be interpretable. To interpret means to give or provide the meaning in
understandable terms to a human [4]. Thus, an explanation should be a
comprehensible interface between humans and the decision-maker, in
this case, the machine learning based system [154]. Also, the explanation
must be self-contained, i. e., no further interpretation of it should be
required. It will help assessing safety, fairness (by detecting biases), and
reliability (by facilitate the debug process). Also, most automated systems
do not guarantee causality, and thus explanations may help to highlight
undesired spurious correlations between the input data and the output
decision. Finally, while single performance or security metrics may only
provide a quantitative measure of some specific system’s property, ex-
planations may also be useful for understanding previously unknown
aspects of the learning algorithm, facilitating scientific research [5, 4].

Interpretability of aML-based system is defined by the transparency of the
learned model, which connotes the sense of understanding one may have
of the workingmechanisms.We distinguish between simulatability, which
denotes transparency at the level of the entire model, and decomposability,
when individual components are understandable [5]. In the former case,
the user should be able to contemplate the entire model at once, i. e.,
it can be readily presented to the user in visual or textual form [155].
This requirement mainly comes from the capacity of human cognition
of processing only a limited amount of information [5]. In the latter
case, each part of the model, e.g., the feature space, the weights, the
algorithm, should be intelligible [5, 156]. As we discuss in Section 2.3.1,
however, while some well-known algorithms, like decision trees and
linear models, are often considered to posses these properties by-design,
it may be difficult to actually explain them depending on, e.g., the number
of features or the complexity of the learned rules. Also, for gray-box
or black-box systems, when limited to no knowledge is available of the
underlying mechanisms, a direct explanation of the model’s behavior can
be impossible to provide. In this case, additional techniques are used for
interpretability, like post-hoc explanation methods (see Section 2.3.2).

Local Interpretability vs Global (Model) Interpretability

When it comes to explain a machine learning based system, one needs to
identify what are the aspects of the system which need to be or can be
interpreted [4]. In fact, properties like safety and fairness, i. e., if the learned
model generates decisions that are free from discrimination of specific
inputs, especially when working with sensitive data, may be difficult
to evaluate by only explaining the model’s predictions. For example, a
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system that makes automated medical diagnoses and a profanity filter
for social media posts may both have learned biases against a certain
ethnic group, even if the outputs take different forms in the two tasks.
In other cases however, like for computer vision applications, it may be
more useful to understand why the system made certain decisions by
analyzing the components relevant for the outputs themselves.

In this context, we distinguish between global interpretability, which
implies being able to understand the whole patters learned by a model
and the working mechanisms that produce all the different possible
decisions, and local interpretability, which implies knowing the reasons
that lead to a specific prediction [4, 154]. As shown in Figure 2.19, in the
former case explanations are provided to the user as an independent
representation of the learnedmodel as a whole (global explanations), while
in the latter they are given as an additional information alongside a
prediction (local explanations).

Learning 

Global Explanation 

Training Set 

x y* 

Local Explanation 

Perf. Evaluation 

Sec. Evaluation 

Classification 

Trained Model 

Figure 2.19: Architecture of an inter-
pretable system.After the learningprocess
from the training set is finished (orange),
explanations may be provided to the user
as an interpretation of the whole learned
model (global explanation, blue), or during
the classification process alongside a pre-
diction H∗ and, optionally, a performance
or security metric (local explanation, red).

Most of the works in the current literature propose methods to produce
explanations that achieve the latter, as it is arguably more difficult to
describe a whole model compared to interpret its single predictions,
especially if it is learned, from example, by complex algorithms like
neural networks [5]. Conversely, global or model explanations are a
research topic which has only been sparsely tackled in the past. Most
works are focused in this case on producing interpretable models, which
can be directly decomposed and simulated, and, thus, globally explained,
or by fusing the local explanations computed on different samples to
produce a global interpretation from the predictions [155, 17]. In Chapter
6 we describe a structured method to produce highly-interpretable
model explanations for any machine learning based system, including
black-boxes, which can be used to compare multiple models and also
understand their intrinsic security properties, like adversarial robustness
or the vulnerability to transfer attacks (see Section 2.2.6).

2.3.1 Interpretable Models

The easiest way to achieve interpretability is to purposely design systems
based on a learning algorithm that, i. e. which predictions and behaviors
are, directly (human) understandable. Among many others, decision trees,
rule sets, and linear models are generally considered self-explaining
algorithms, especially when applied to classification problems involving
a limited number of features and classes.
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8: Other types of rule sets can be used:
(i) unordered listings, where each rule is
evaluated independently; (ii) m-of-n rules,
where, given a set of = conditions, if < are
verified, then the outcome of the rule is
considered true.

Decision Trees and Rule Sets

Decision trees are classifiers that during the training process splitmultiple
times the data into different subsets according to certain cutoff values in
the features (e.g., by checking if a feature has a value lower or greater
than a threshold). The intermediate subsets are the split nodes, while the
final ones are called terminal or leaf nodes, and represent a class label.
To make a prediction, the input sample is evaluated through the tree
until a leaf is reached, making its associated label the output class. The
path followed from the root node to the leaf node to make a prediction
is called decision rule. This classifiers are widely adopted in situations
where the relation between the features and the outcome is non-linear,
or when the features are not independent from each other.
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<= 4.9 

> 4.9 

<= 1.5 

> 1.5 

sepal length 

setosa 

virginica 

petal length 

sepal length 

sepal length 

versicolor 

x Figure 2.20: Example of a decision tree
classifier for the 3-classes dataset iris-flower
[27]. The decision rules are easily inter-
pretable as they depend on the value of
the features sepal length and petal length.
For example, if the sepal length is ≤ 0.6,
the predicted class for sample x will be se-
tosa; otherwise if the sepal length is > 1.7,
then virginicawill be predicted.

Decision trees are often considered explainable by-design. Looking at
Figure 2.20 for example, even a non-expert human can understand why
the classifier makes a certain prediction given the value of the features
of the input sample. Although, when the number of features or classes
increases, or when the model is overfitting the training data, the depth
of the tree can quickly grow, as more split nodes are added. The deeper
the tree, the more difficult it becomes to interpret the decision rules [157].
Thus, generally, decision trees should not be considered explainable
by design as they can lack simulatability. To address this issue, many
works in literature proposed methods to post-process a tree classifier by
simplifying its decision rules [158, 159].

Another possible solution to represent the patterns learned by a decision
tree is to use rule sets. They are listings of ordered IF-THEN statements
consisting of a condition (also called antecedent) and an outcome. Tomake a
prediction, each rule should be evaluated in the order they are presented8

until a true one is found, which outcome will be the predicted class. For
example, the decision tree from Figure 2.20 can be represented using the
following rules:

IF sepallength <= 0.6 THEN setosa

ELSE IF sepallength > 1.7 THEN virginica

ELSE IF petallength <= 4.9 THEN versicolor

ELSE IF sepallength <= 1.5 THEN versicolor

ELSE IF sepallength > 1.5 THEN virginica

All decision trees can be linearized into a set of rules using the IF-THEN
form [160, 161], while keeping the expressivity of the former with the
more compact representation of the latter. Also, the IF-THEN structure
semantically resembles the natural language and the way a human
generally thinks, making it more easily interpretable. Unfortunately, even
for rule sets, there is no guarantee on simulatability as the number of
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conditions can quickly grow with the number of features or the possible
outcomes [157]. Furthermore, to mitigate the cases where no rule applies
for never-before-seen samples, a default condition can be introduced
which will be a failover if no other rule applies.

Linear Models

As described in Section 2.1.1, a linear model predicts the class of an
input sample x by computing a weighted sum of the features. As the
learned relationship between the features and the output is linear, they
are often considered highly-interpretable models. In fact, the value of
each parameter in w represents the relevance of the corresponding feature
towards a prediction [155]. If the value of a certain weight w(8) is positive
(negative), then the corresponding feature G(8) contributes by increasing
(decreasing) themodel’s output by w(8) ·G(8). Also, if a feature has a higher
contribution than another, it means that it has for the model a higher
relevance on the prediction. As shown in Figure 2.21, by visualizing the
sign and the magnitude of each weight, one can directly understand
what the algorithm has learned from the training data (producing a global
explanation). In addition, by plotting the contribution of each weight-
feature pair for an input sample, one can directly explain why the model
made a certain prediction and which are the most relevant components
towards it (producing a local explanation).
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Figure 2.21: Conceptual example of
weight-based feature importance global
and local explanations for a malware de-
tection system based on a linear model
and Boolean features. We plot the sign
and the magnitude of each weight, dis-
covering that, for example, the LAUNCHER
component has a negative value, meaning
that the model learned that it defines be-
nign samples. Conversely, the SEND_SMS
permission is representative of malware,
having a positive value. Given an input
x, we report the components present in
the sample along with their contribution
towards the prediction.

An intrinsic problem of linear models, however, is that they can quickly
loose decomposability and simulatability [5]. Especially when the model
does not optimally fit the training data, the interpretation of a specific
weight can be counter-intuitive, because it may depend on all the other
features. Thus, the correlation with a certain class outcome may be hard
to interpret for a human. Also, similarly to decision trees and rule sets,
linear models are actually directly interpretable only if the number of
features is limited. To mitigate this, there are ways to encourage a more
sparse solution, i. e., where the weight associated to many features will
be 0, for example by using in Equation 2.3 a ℓ1-norm regularizer [3].
Alternatively, algorithms like support vector machines (see Section 2.1.1)
generally learn a very sparse model which can be easier to interpret.
Unfortunately, as highlighted in Section 2.2.5, models which use a limited
number of features for the decisionmay bemore vulnerable to adversarial
attacks. The trade-off between interpretability and adversarial robustness
is an integral part of a machine learning based system design process.
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Generalized Additive Models

Recently, Generalized Additive Models (GAMs) [162] have been proposed
as highly-interpretable yet accurate classifiers that may overcome the
downsides of linear models. Conversely to the latter, in fact, where the
relation between the weighted sum of the features and the output is
linear, GAMs combine the sum of single-feature models called shape
functions ℎ(·)with a, possibly non-linear, link function 6(·) to obtain the
prediction H∗. The resulting expression is the following:

6(H∗) =
d∑
9=1

ℎ 9(G(9)) . (2.16)

By visualizing the form of the shape functions, the actual contribution
of each feature can be independently explained [156]. However, any
link function that is not the identity complicates the interpretation,
and complex non-linear shape functions can also be difficult to fully
understand and decompose.

2.3.2 Post-hoc Explanations

Giving a proper explanation for all machine learning based systems could
be challenging, especially because, in many different applications, may
not be viable to only employ interpretable models, due to performance or
security specifications, or because, aswe described in the previous section,
these algorithms may not actually provide the desired transparency. In
addition, in case of gray-box or black-box systems where the learning
function, its parameters and the training dataset are not or only partially
know or, even worse, if the feature set is unspecified, it may be impossible
to directly provide an interpretation of the system’s behavior.

To tackle these cases, different post-hoc explanation methods have been
proposed, which goal is to provide an interpretation for systems which
algorithms are not necessarily explainable by their own, or which are
partially or completely unknown. These methods can be considered as
a way to reverse-engineer trained models in order to understand the
information which has been acquired from the data [154]. Depending
on which aspects of the system the interpretation focuses on, post-hoc
methods may explain a model locally or globally.

In the following, we distinguish post-hoc explanation methods by how
the information is presented to the human. We broadly consider three
categories: rule- and tree- based, feature-based, and prototype-based
explanations. Furthermore, we distinguish between methods that rely
in approximating the decision function 5 of the learning system with a
surrogate function 5̂ , which may be easier to interpret, or can provide
some properties that the original function does not have, e.g., differentia-
bility. Also, if the original system is gray-box or black-box, learning an
interpretable approximation can often be the only viable method. In this
latter case, the explanation methods are often called agnostic, as they are
not tied to a particular type of function to approximate.
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Tree- and Rule- based methods

A widespread type of techniques to provide explanations for a generic
model, even black-boxes, is called single-tree approximation. They rely on
training a comprehensible decision tree which accurately approximates
the original model by only evaluating its predictions. Single-tree ap-
proximations were first presented in 1996 [163], based on maximizing
the gain ratio of the information represented by neural networks. Other
methods use genetic programming instead, to evolve a decision tree that
mimics the behavior of a network [164, 165]. While these methods are
often exclusively applied to neural networks, they can potentially be
adopted as agnostic explanators, due to their exclusive reliance on the
queried predictions.

Another commonly used solution is to determine a set of rules that
accurately describes the behavior of the target system. A variety of
methods have been proposed to this end, especially targeting neural
networks [166]. Typically, they transform the rule extraction process,
which is basically a search problem, into a learning one. If the prediction
of the network to a certain input sample is not covered by the rules set,
then a new m-of-n rule is added [163]. This ensures that all target classes
have been covered. Conversely to decision tree -based techniques, these
approaches are often strongly dependent on the type of classifier to
explain and the specific form of rules used, thus are rarely generalizable
to multiple cases. Other solutions are based on Bayesian frameworks
which do not rely on the traditional greedy rules-finding methods [167,
168, 169, 170]. Worthmentioning, fewworks proposedmethods to convert
support vector machines into rule sets [171, 172].

We finally note that, when decision trees or rule sets are used for post-hoc
explanation, the provided interpretations are almost always at global
level. In fact, the methods described above try to generate the most
compact and easier representation that allows to understand the whole
model, following the notions of simulatability and decomposability [5].
To our knowledge, only a handful of methods provide local explanations
using rule sets. One example is Anchors, which is based on computing
a decision rule that ties a certain prediction locally in the feature space,
such that similar instances covered by the same anchor have the same
prediction outcome [173].

Feature-based methods

In many common pattern recognition applications the feature set is
composed by human-understandable components, like the pixel values
of an image, or by features to which a text description can be associated
with, like the components of a mobile application (e.g., Figure 2.21). Thus,
many explainability methods try to associate a value to each feature,
representative of the meaning that component has for the classifier. These
set of values are called attributions, saliency masks [174], or explanation
vectors [175]. Figure 2.22 shows different feature-based explanations for a
handwritten digit from the MNIST dataset, obtained using a few of the
methods described in this section.
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Figure 2.22: Local feature-based explanations of a handwritten digit (true label 6) from theMNIST dataset w.r.t. each different class, obtained
using three different gradient-based explanation methods, namely, Gradient [175], Gradient*Input [176, 177, 17], and Integrated Gradients [178].

9: Most of the higher-order terms in the
expansion involves several features at the
same time. Thus, for simplicity, only the
first-order terms are considered for com-
puting the attributions [177].

Many feature-based methods are derived from the computation of the
gradient of the classifier’s output, i. e., the value of the discriminant
function 5 , with respect to the input sample x [175, 174, 179, 176, 177, 178,
180, 181]. In this case, a non-null value of an attribution indicates that
the corresponding feature is relevant for the class prediction of the input
sample. The general rationale behind these approaches is that the sign of
each element of the gradient indicates whether the classification score
would increase or decrease when the corresponding feature is changed,
and the absolute value of each element gives the amount of influence
in the change of the score [175], which is similar to the intuition behind
interpretable linear models (Section 2.3.1).

Gradient. The simplest method to obtain an explanation for the predic-
tion on a sample x is by considering the gradient as it is [175]. For the
9-th feature it is computed as:

Gradient9(x) :=
% 5 (x)
%G(9)

. (2.17)

By taking the attribution for each feature, one obtains the explanation
vector [175] or, as later named, the saliency map [174] for the sample x.

Arguably, if the decision function 5 is highly non-linear, it may be unclear
how this provides accurate attributions for the input [174]. In fact however,
the value of the decision function 5 computed on x can be approximated9

using the Taylor expansion at some well-chosen baseline x0 [177]:

5 (x) ≈ 5 (x0) +
% 5

%x

���
x=x0
· (x − x0) =

= 5 (x0) +
∑
9

% 5

%G(9)

���
x=x0
· (G(9) − G(9)0 ) . (2.18)

To simplify this relation, it is possible to choose a baseline for which
the score is equal or near zero, i. e., 5 (x0) ' 0. As for most classifiers,
including deep networks, the all-zeros vector 0 satisfies this property
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(especially on image recognition tasks) [178], Equation 2.18 becomes:

5 (x) ≈
∑
9

% 5 (x)
%G(9)︸︷︷︸

Gradient9 (x)

· G(9) , (2.19)

showing how the gradient ∇ 5 (x) defines the relevance of each feature in
x for computing the classification score 5 (x).

Gradient*Input. Other works [176, 177] showed that the saliency map
for a certain input x can be substantially improved by considering the
entire Equation 2.19 as an explanation, i. e., by multiplying the gradient
with the sample itself. Firstly proposed in [176] and utilized in our work
[17] (see Section 6.1), the Gradient*Inputmethod computes the attribution
for the 9-th feature as follows:

Gradient*Input9(x) :=
% 5 (x)
%G(9)

· G(9) . (2.20)

By projecting the gradient ∇ 5 (x) onto x, it ensures that the relevance is
proportional to the input features. In mathematics, this notion takes the
name of directional derivative [17].

Integrated Gradients. As an evolution of the Gradient*Input method,
Sundararajan et al. [178] proposed an explanation technique that, instead
of computing the gradient of the decision function only at the input
sample x, considers the straight-line path from the baseline x0 to the
input sample, and computes the gradient at each point along that path.
Once accumulated, this gradients define the explanation vector. Formally,
the relevance along the 9-th dimension for an input x and a baseline x0 is
defined as:

IntegratedGrads9(x) :=(
G(9) − G(8)0

)
·
∫ 1

=0

% 5 (x0 +  · (x − x0))
%G(9)

3 . (2.21)

To efficiently approximate the previous integral, one can add up the
gradients computed at p fixed intervals along the path from x to x0:

IntegratedGradsapprox
9

(x) :=(
G(9) − G(9)0

)
·

p∑
:=1

% 5
(
x0 + :

p · (x − x0)
)

%G(9)
· 1

p
. (2.22)

From Equation 2.22, it is clear that for classifiers which gradient of
the decision function is independent from the input, like the linear
models where % 5 /%G(9) = w(9), the Integrated Gradients method is in fact
equivalent to Gradient*Input when the all-zeros vector x0 = 0 is chosen
as baseline, which, as previously discussed, is a well-suited choice in
many applications.
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Layer-Wise Relevance Propagation. Another set of post-hoc explana-
tion methods, specific for neural networks, are based on performing a
backward pass from the output to the input layer, in order to backpropagate
the effects of a decision on a certain sample up to the input level. This
technique takes the name of Layer-wise Relevance Propagation (LRP)
[179]. The basic idea is derived from a layer-wise conservation principle,
which forces the propagated quantity, e.g., the score of the sample w.r.t.
the predicted class, to hold between consecutive layers. Supposing '(9)

;

is the relevance of the 9-th neuron at layer ;, the conservation principle
requires for the adjacent layer ; + 1:∑

9

'
(9)
;
=

∑
:

'
(:)
;+1 , (2.23)

where : is the index of each neuron in the layer ; + 1 instead. By applying
this condition through all the neural network, it results that the sum of
the attributions in the pixel space is equal to the total relevance detected
by the classifier for the input sample. In the first explanation method
leveraging this technique, called Pixel-wise Decomposition (PWD) [179],
the input images are encoded using a bag-of-world representation and
the resulting saliency maps are referred to as heatmaps. Figure 2.23 shows
a schematization of the process of producing a local explanation for a
computer vision application using the PWD method.

Figure 2.23: Process of computing a
heatmap using the Pixel-wise Decompo-
sition (PWD) method to locally explain
a prediction in a computer vision appli-
cation based on a neural network with
three layers, adapted from [179]. After the
classification phase, the score for the input
sample is backpropagated through the net-
work to obtain the final relevancemap'(1)@
at the input layer. The layer-wise conserva-
tion principle ensures that the propagated
quantity holds between consecutive layers,
resulting in a heatmap which is equal to
the total relevance detected by the classi-
fier for the input image.

It is worth nothing that, when all activation functions are linear and the
bias terms are included in the calculation, the LRP method is basically
equivalent to Gradient*Input [182], and thus derived from Equation 2.18.
In fact, an evolution of LRP is the Deep Taylor Decomposition (DTD)
method [177], where the relevance is backpropagated from the top layer
down to the input by applying the Taylor decomposition locally at each
layer. Even in this case, the layer-wise conservation principle ensures
that the relevance of the score for a certain sample is propagated intact
to the bottom layer, producing an accurate heatmap for the input.

CAM, grad-CAM and grad-CAM++. Another line of research, strictly
related to neural networks, embraces few explanation methods that
produce saliency maps incorporating layers activations into the attribu-
tions. As firstly proposed in [183], the Class Activation Mapping (CAM)
technique produces a local explanation for an input w.r.t. each output
class, indicating the discriminative features that identify each label. This
is achieved by feeding global average pooled convolutional feature maps
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computed at the penultimate layer of the network into the top one. The
Grad-CAMmethod generalizes CAM by allowing use of the technique in
a wider range of CNN architectures, which may include fully-connected
layers or provide structured outputs [180]. In this case, the attributions
are obtained as a linear combination of the penultimate layer’s feature
maps and the output-specific weights. Finally, an extension of Grad-CAM
named grad-CAM++ has been proposed to produce more accurate ex-
planations when the relevance features for a specific class are scattered
in the input sample [181].

Explanation of non-differentiable models. All gradient-based expla-
nation methods work under the assumption that the decision function 5
is differentiable w.r.t the input x, and that its gradient ∇ 5 (x) is sufficiently
smooth to provide meaningful information at each point. When 5 (x)
is not differentiable (e.g., for decision trees and random forests), or its
gradient vanishes (e.g., if 5 (x) becomes constant away from x), one can
approximate 5 by means of surrogate models, similarly to the procedure
described in Section 2.2 to perform adversarial attacks when limited or
no knowledge of the target system is available. In this case, a differen-
tiable approximation 5̂ of the original function 5 is used in the standard
gradient-based methods to compute the explanations [175, 155, 17].

LIME, LEMNA and SHAP. Inspired by the notion of surrogate models
to explain hardly interpretable, non-differentiable, or black-box classifiers,
few research works proposed agnostic methods that query the target
system in the neighborhood of the sample to explain, producing a local
approximation of the original decision function which can be used for
explanation purposes.

In [155], the authors of LIME (Local Interpretable Model-agnostic Expla-
nations) start by querying the target system using the synthetic samples
Z= {x̃8 , . . . , x̃;}, that are randomly generated in the vicinity of the input
x. Then, an interpretable model 6 is trained on these inputs to minimize
the following objective:

arg min
6

∑̃
x∈Z

�x(x̃) ·
(
5 (x̃) − 6(x̃)

)2 +Ω(6) , (2.24)

where �x is a proximity measure between x and x̃, and Ω(6) is a
complexity function that encourages generation of simpler explanations
(e.g., the level of sparsity of theweights for linearmodels).While Equation
2.24 may accurately approximate a decision function which is sufficiently
linear in the neighborhood of x, it may be less accurate for more complex
models like SVMs with non-linear kernels or neural networks.

A similar approach, called LEMNA [184], tries to overcome this limitation
by employing a mixture regression model, which allows to locally approx-
imate even non-linear decision boundaries by performing a weighted
sum of K linear models. This linear combination of functions is furtherly
enhanced by fused lasso, a penalty termwhich forces the solution to group
related features together, producing more relevant explanations. Figure
2.24 shows how accurately amixture regressionmodel can approximate a
complex decision function compared to the single linear regression used
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by LIME. Formally, this techniques minimizes the following objective
over n training samples:

n∑
8=1
| |

K∑
:=1

�:(#:x8 + &:) − H8 | | (2.25)

s.t.
d∑
9=2

�(9): − �(9−1)
:

 ≤ (, : = 1, . . . , K , (2.26)

where �: and #: represent, respectively, the weight and the regression
coefficients of each linear model, and &: ∼ #(0, �) is a random perturba-
tion variable that originates from a normal distribution. Finally, Equation
2.26 represents the fused lasso term that bounds the dissimilarity of the
coefficients assigned to adjacent features within a small threshold (.

Figure 2.24: Comparison of the approxi-
mation procedure of a non-linear decision
function, in the vicinity of sample x, by
a single linear regression (LIME) and a
mixture regression model (LEMNA) [184].

SHAP (SHapley Additive exPlanations) [185] method takes a similar
approach to LIME and LEMNA, where the explanations have the form
of the, game theoretically optimal, Shapley values [186]. This coalitional
game is designed so that the feature values of an input sample act as
players in a coalition and the Shapley values represent how to fairly
distribute the payout, i. e., the classification score, among the features.
Starting from Equation 2.24, to obtain Shapley compliant weighting, the
�G(x̃) term is given by the SHAP Kernel:

�G(x̃) =
M − 1(

M
|x̃ |

)
|x̃ | (M − |x̃ |)

, (2.27)

where M is the maximum coalition size and |x̃ | is the number of non-null
features in the instance x̃. This variant of the SHAP method, called
KernelSHAP, may be impractical to use when the Shapley values for
many instances should be calculated, due to its computational complexity.
To overcome this downside, few model-specific versions of SHAP have
been proposed, including LinearSHAP (for linear models) or DeepSHAP
(for deep neural networks) [185].

Prototype-based methods

The final category of post-hoc explanation methods we describe are
based on selecting particular instances of the training dataset to explain
the behavior of a machine learning model. Prototype-based explanations
are particularly helpful as humans usually construct mental models in
an associative or, more frequently, contrastive way [6], i. e. by relating an
event to other similar or different ones that have been experienced in
the past. In the same way, a machine learning based system can provide
the set of samples which more strictly represent a certain information
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acquired from the data (e.g., the most related ones or the most un-related
ones). In this context, prototypes are instances representative of all the
dataset or some clusters of it, while a criticism is a data instance that is
not well represented by any set of prototypes. The purpose of criticisms
is to provide insights together with prototypes, especially for under-
represented samples like data outliers. Nevertheless, these methods can
only be used if the samples are represented in a humanly understandable
way, like images or texts. Conversely, it may be unhelpful to present a
sample as an explanation if, for example, it consists on tabular features
or it is a list of the components in a mobile application, because the
explanation may consist of hundreds or thousands of elements.

k-medoids. Arguably the simplest technique to find the prototypes for a
dataset is called k-medoids [187], a clustering algorithm related to k-means
where the centroids are always actual data points (while for k-means
this is not guaranteed). This method however, like any other clustering
algorithm, only finds the prototypes and not the criticisms, which are
a fundamental part of the contrastive philosophy to prototype-based
explanations.

Maximum Mean Discrepancy. In a recent work by Kim et al. [188], a
technique that combines prototypes and criticisms in a single frame-
work is presented under the name of MMD-critic. This method selects
prototypes by minimizing the Maximum Mean Discrepancy (MMD)
between the distribution of the data and the distribution of the selected
samples. Specifically, data points in areas with high density are good
prototypes, while samples from regions that are not well represented
by the prototypes are chosen to be criticisms. To estimate the density of
the different data distributions, a kernel function is used, like the Radial
Basis Function (RBF). After minimizing MMD through a greedy search
algorithm, a so-called witness function is computed, which identifies the
portions of the input space that most misrepresents the dataset. This is
achieved by measuring for each point the average proximity with the
rest of the samples and with the set of prototypes. Finally, after choosing
the two sets of relevant samples, one may provide global explanations of
the machine learning model by computing the predictions for both the
prototypes and criticisms and analyze in which cases is the algorithm
right orwrong. An important drawback of thismethod is the arbitrariness
of the choice of the number of prototypes and criticisms, which may be
not enough to well represent the dataset, or be too high, and leading to
explanations that are more difficult to analyze.

Influence functions. While an analysis of the dataset to find the most
representative (or under-representative) samples may be helpful, to
explain the behavior of a machine learning model using samples, it may
be necessary to trace the predictions through the learning algorithm
back to the training data, from which the parameters have been learned.
To this end, similarly to feature-based explanation methods where each
relevance value ultimately represents how the prediction score would
change if the corresponding feature is changed, we may ask how the
model would change if one or more training instances are removed
from the training data during the learning process. Achieving this by
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retraining the model multiple times after perturbing the data can be
extremely expensive. Thus, Koh and Liang [189] proposed a method to
compute the influence functions, which are a measure of how strongly
a prediction depends on a certain training instance. The key idea is to
modify a certain training instance z ∈ Dtr by an infinitesimally small step
& and compute howmuch the loss ! computed using the new parameters
ŵ consequently changes. Formally, the influence I(z, x) of each training
sample z at a test point x can be computed as follows:

I(z, x) = −∇w!(x , ŵ)>�−1
ŵ ∇w!(z, ŵ) (2.28)

where ∇w!(·, ŵ) is the loss gradient with respect to the parameters, and
�−1

ŵ is the inverse of the Hessian matrix, the second derivative of the
loss with respect to the changed model parameters. Figure 2.25 shows
an example of prototype-based explanations for two handwritten digits
from the MNIST dataset obtained using the influence functions method.
In this case, we can observe a direct correspondence between the most
influential prototypes and the true class of the test samples, which should
increase the trust in the predictions of the machine learning model.

Figure 2.25: Examples of prototype-based
explanations for two handwritten digits
from the MNIST dataset classified by a
binary SVM with RBF kernel, computed
using theKohandLiangmethod [189]. The
influence value for each training prototype
has a negative or positive sign depending
on the corresponding class label. We can
observe a direct correspondence between
the most influential prototypes and the
true class of each test sample, validating
the information learned by the model.

As an interesting connection between prototype-based explanations and
adversarial attacks, Koh and Liang demonstrated that influence functions
can also be used to craft poisoning attacks that are minimally perturbed
and can flip a model’s prediction on a separate test image [189], which
is a procedure mathematically equivalently to the label-flipping attacks
described in [83] (see Section 2.2.3).

2.3.3 Evaluating Explanations

When it comes to perform a complete evaluation of a machine learning
algorithm one may want to asses which are the methodologies and
metrics that allow to objectively validate if some specific requirements
are met. We described in Section 2.1.2, for example, that the prediction
error (i. e., accuracy) is one of these broadly used metrics. Comparing
the accuracy obtained on a set of test samples with a minimum required
level of precision, allows to establish if the learned model is satisfying
enough for the given application. Similarly, evaluating the robustness to
adversarial attacks is commonly achieved through the computation of
security evaluation curves,which allow to fairly compare differentmodels
under the same assumptions of the attacker’s knowledge and strength, as
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described in Section 2.2.4. Regarding explanations however, there is little
to no consensus in the scientific literature on how to evaluate themethods
described in the previous sections, and how to quantify or measure how
well they represent the behavior of the system to interpret.

In fact, due to the nature of interpretability itself, which is the ability to
explain something to humans [4], it may be something that cannot be
directly measured or quantified, as it relates to the different nature of
the users of the system and their needs in each different application [190,
191]. Rather, interpretability should be considered a latent property that
is influenced by multiple aspects of the machine learning model, e.g., the
number of features or the sparsity of the parameters, and has a direct
impact on how the users perceive the working mechanisms, like their
ability to simulate or debug the system’s behavior and, more importantly,
how they trust its automated decisions [190]. Thus, few works proposed
structured experiments to evaluate explanations, which are based on
human subjects challenged with appropriate and specific tasks.

Nevertheless, the lack of quantitative and objectivemeasures to assess the
quality of the explanations is problematic for engineers trying to choose
amongst the differentmachine learningmodels depending on how secure
or trustworthy they are [192]. For this reason, other works proposed
well-defined criteria and metrics to compare explanation methods when
applied to different models and pattern recognition tasks [193, 177, 184].

Later, in Chapter 6, we also discuss how explanation methods can be
evaluated and compared in terms of the specific information they may
highlight about a machine learning based system, including its security
properties [18].

Human-centered evaluation

Many works proposed structured methodologies to evaluate the inter-
pretability of a system based on the judgement of human subjects. As
human beings have limited knowledge, abilities and available time, the
main challenge of these approaches is to properly design the experiments
so that the required tasks can be efficiently and effectively performed.

Arguably, the best approach to assess if an explanation is relevant and the
corresponding system can be trusted, is by means of application-grounded
evaluations, where domain experts judge the automated predictions and
the obtained explanations, providing feedback such as identification of
errors or biases, or discovering of new facts [4]. While finding humans
with sufficient domain knowledge and enough willingness or available
time could be challenging but achievable, the main drawback of these
approaches is that they directly test the objective the system is built for,
often obtaining strong but biased evidence of success.

Human-grounded evaluations are more appealing approaches when exper-
imenting with a domain-specific community is challenging. In this case,
human subjects are provided with simplified tasks to perform, which try
to maintain the essence of the target system [4]. Generally, three cognitive
tasks are part of these evaluations [4, 194, 190]:
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I Simulation, where humans have to predict the system’s decision
after being presented with an explanation and a set of inputs.
The performance on this task is usually computed as the absolute
deviation between the model’s prediction and the subject’s guess;

I Verification or Detection, where humans have to judge the sys-
tem’s behavior given a set of inputs, the corresponding predictions
and an explanation. Figure 2.26 shows an example of user interface
for this type of evaluation task;

I Counterfactual, where humans decide how an input should be
modified to make the system’s decision change based on the
provided explanation.

Figure 2.26: Example of user interface for
a human-centered evaluation based on a
verification task [194]. The subject is chal-
lenged to decide if the system’s recommen-
dation is correct, based on the features
(observations) of the input sample and the
rule-based explanations.

Since the scope of these experiments is twofold, i. e., evaluate the system
in terms of precision and user’s trust, but also verify the consistency of
the explanations, there are multiple ways in which the tasks described
above can be varied to generate a comprehensive set of test cases. For
example, the size of the explanations, e.g., how many relevant features
are displayed, greatly impacts the response time and the willingness of
subjects [194]. Also, themodel complexity, e.g., the number of parameters,
or how much knowledge of it the subject has, usually affects his ability
to simulate or verify the system’s predictions, but can also impact the
percentage of detectedmistakes on unusual samples. Specifically, humans
are more likely to trust the decisions of a simulatable and known model,
but may also be less prone to correct its inaccurate predictions, as their
caution level is lower [190].

Finally, to measure how an explanation improves the credibility of the
system, and thus the trust of the users in its decisions, Schmidt and
Biessmann [192] proposed a test based on a metric called Information
Transfer Rate (ITR), which can be independently applied to different
models, tasks and explanation methods. ITR builds around the concept
that the better an explanation is, the faster and more accurately an user
will reproduce the decisions of the model. Formally, this is given by:

ITR =
�(H∗

�
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are, respectively, the predictions of the human subject and
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the machine learning model, ?(·, ·) and ?(·) are the joint and marginal
probability functions, and C is the average response time of human subject.
By computing ITR before and after showing the explanations to the user,
one can measure how the trust in the system has improved. In addition,
to capture if the humans are too biased towards the decisions of the
automated system, i. e., over-trust it, one can compute the trust coefficient
)̄ as follows:

)̄ =
ITRH∗

"!

ITRY

, (2.30)

where ITRH∗
"!

is given by Equation 2.29, and ITRY is obtained by consid-
ering the true labels instead of the system’s predictions. )̄ should be small
if the users are able to correctly recognize the system’s mistakes, and big
if they still agree with the system even if the decisions are wrong.

Metric-centered evaluation

Few works address the problem of systematically evaluate the quality of
explanations and the trust of the users in the relative systems, by propos-
ing different well-defined mathematical criteria. We broadly divide these
techniques in two categories: fidelity metrics, which validate how the expla-
nations accurately represent the learnedmodel; and interpretability metrics,
which give an indication on how capable the explanations are to provide
insights into the system’s behavior and improve its trustworthiness.

Fidelitymetrics. Toevaluate the consistency (fidelity) of a feature-based
explanation method, one possibility is to consider the set of relevant
features obtained from a sample of a certain class, as representative of
the class itself. In this case, three different tests can be performed [184]: (8)
feature deduction, (88) feature augmentation, and (888) synthesization. In case
(8), if the explanation for sample x is correct, then removing the set of
relevant features from x should lead the system to assign a different label
to the sample. Similarly, in case (88) adding the explanation for sample x
to a sample x′ from a different class, should induce the model to assign
the latter the same label of x. Finally, case (888), a consistent explanation
allows to synthesize a sample which only contains the relevant features
and that will be recognized as a sample from the same class of x.

A similar idea is proposed in [177] and [193], where a pixel-flipping
or descriptive accuracy test is performed to measure the fidelity of an
explanation. The rationale in this case is that a method that produces
correct explanations, assigns relevance to the features that have the
strongest impact on the decision function. Thus, removing the set of
relevant features from x should lead to a sharp drop of the value of 5 (x),
measurable as a metric to compare different explanation methods.

Interpretability metrics. A different set of metrics allow to assess how
successfully the explanations can be used to interpret the system’s
decisions or behavior, by providing a quantitative measure of some of
the characteristics proper of interpretable models (Section 2.3.1), like
simulatability or decomposability. As an example, a descriptive sparsity test
allows to measure how large the set of relevant features is, by computing
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a normalized histogram ℎ of them, and calculate theMass Around Zero
(MAZ) [193], defined as:

MAZ(A) =
∫ A

−A
ℎ(x)3G , for A ∈ [0, 1] . (2.31)

Sparser explanations show a steep rise in MAZ close to 0, and are flatter
around 1, consequence of a large set of non-relevant features.

Conversely, dense, uniform explanations are often obtained from systems
which are more robust to adversarial attacks, as we describe andmeasure
in Chapter 6 through means of different evenness metrics [18].

2.3.4 Explainable Machine Learning in Adversarial
Environments

Explainable Machine Learning and Adversarial Machine Learning have
historically raised almost independently. Although, in the recent years,
many researchers started to hypothesize that a deep connection exists
between explanations and adversarial attacks [12, 13, 14, 15, 195, 17, 18].
While in this thesis we mainly focus on how the process of designing
a pattern recognition system which operates in an adversarial environ-
ment may directly benefit from the insights provided by explainability
techniques, allowing robustness and other security-related properties
(e.g., attack transferability) to be evaluated through the analysis of expla-
nations [17, 18], few works proposed to leverage explanations for both
generating and detecting attack samples.

We previously discussed how, in the context of evasion attacks, the goal
of the adversary is to manipulate input data so that it gets misclassified
by the machine learning algorithm (see Section 2.2.2). Assuming that
the attacker aims to maximize the classifier’s error, he may also need to
modify a set of features as small as possible, especially when altering
particular types of samples like mobile applications, where any change
of the components can potentially break the executable. Thus, the most
impacting features for a specific sample towards the classifier’s decision
are usually modified first. Rosenberg et al. [195] proposed to leverage
explainability algorithms, including Integrated Gradients, LRP, and
SHAP (see Section 2.3.2), to intuitively obtain thesemost relevant features
in a malware classification task. From this feature set, the easier to modify
(e.g., the static components) are selected to be used to craft the adversarial
examples. It should be noted, however, that many older attack algorithms
against linearmodels leverage a similar idea [74, 21, 16],where the features
to modify are ranked by their (absolute) weight value. In fact, this is
equivalent to computing the explanations using the Gradient method
first (Equation 2.17), and then sorting the resulting features by their
(absolute) relevance value. Despite this, more complex explainability
techniques like IG, LRP or SHAP, may arguably lead to better results.

One of the underlying motivations behind the effectiveness of these
feature-ranking methods is given by the work of Ilyas et al., where it is
argued that the existence of adversarial examples is actually an intrinsic
property of the dataset itself [196]. The authors distinguish between
non-robust features, which are highly predictive, yet very fragile and prone
to change drastically even after a small perturbations of the input; and
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robust features, which are both highly predictive and less subject to be
influenced by small changes in the input. As non-robust features usually
take a larger role in the learnedmodel [196], thismay explainwhy altering
the most relevant components to produce evasion attacks has a higher
impact on the target classifier.

Fidel et al. start from the same hypothesis to propose a highly accurate
detector of adversarial examples, based on the SHAP values computed
for the internal layers of a DNN classifier [14]. As different patterns in
the importance of robust vs. non-robust features can be distinguished
between normal and adversarial inputs, a supervised binary classifier
can be trained to discriminate between the two. A major downside of this
technique is that, in order to obtain a goodgeneralization result, it requires
a large training dataset of attacks crafted using various algorithms, which
may be unfeasible to generate.

Unfortunately, a direct problem of including explanation techniques in
the design process of a machine learning based system is that the attack
surface (Figure 2.11) available to the adversary actually increases. For
example, Dombrowski et al. show how saliency maps can bemanipulated
arbitrarily by applying perturbations to the input, while keeping the
model’s output approximately constant [197]. This is a worst case scenario
where not only the prediction of the system is wrong (the perturbed
malicious point is evading detection), but also the explanation which
may be used to identify the vulnerability is compromised. An adversarial
explanation attack x′ can be obtained from an input x by optimizing:

min
x′
‖r(x′) − r t‖2 + �‖ 5 (x′) − 5 (x)‖ , (2.32)

where r t is a target explanation produced by any of the post-hoc tech-
niques described in Section 2.3.2, ‖ · ‖ is the ℓ2 norm operator, and �
is a constant hyperparameter. An example of such attack is reported in
Figure 2.27. As a counter-measure to increase robustness, a smoothing
mechanism can be applied to the explanation method, basically leading
to less noisy and less sensitive saliency maps.

Original Image Manipulated Image Figure 2.27: Example of adversarial expla-
nation attack [197]. The machine learning
model predicts the same class for both the
original and themanipulated image,while
the saliency map corresponding to the lat-
ter shows a text stating "this explanation
was manipulated".
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In the previous chapter we briefly described the state-of-art machine
learning algorithms (Section 2.1) and discussed how an adversary can
leverage any part of a pattern recognition system based on these auto-
mated decision-makers to perform different types of attacks, including
the so-called evasion and poisoning attacks (Section 2.2). We also focused
on many techniques for explaining the decisions of these systems, as en-
suring the user’s trust in them is a fundamental step before the adoption
in any real-world application (Section 2.3).

One of the missing items in the current literature on machine learning
algorithms applied in adversarial environments is a common framework to
encompass both evasion and poisoning attacks targeting a specific learned
model. In fact, most of the research works are focused on crafting either
one of these threats. In addition, many of the proposed techniques are
hardly applicable to comprehensive threat models (like the one described in
Section 2.2.1), as they focus on specific malicious goals, and on specific
levels of knowledge or capabilities available to the adversary.

Also, many security-critical properties of these attacks are only sparsely
studied, like for example their transferability between different models. Wor-
ryingly, the question of when and why do adversarial attacks transfer
remains mostly unanswered, mainly for the absence of a formal mathe-
matical definition. In addition, the designers of machine learning based
systems are currently missing a reliable metric to quantitatively evaluate
the robustness of the learned models to transfer attacks, which may bring
a massive benefit in terms of proactive defense to this threat.

However, transferability is not the only issue that should be evaluated
during the design of a machine learning based system. The general
adversarial robustness of a model, for example, is often analyzed mainly
through means of the security evaluation curves. These are obtained
by running costly simulations of the attacks, especially when advanced
learning algorithms like neural networks are employed. Also, the user’s
trust in the system’s decisions cannot be directly measured using the
standard performance metrics, as it is strictly related to the ability of the
system to clearly explain their outputs to the human. How to compare the
behavior of different systems based on these types of user-dependent aspects
is still an open question, mainly due to the strict connection between
most explanation methods with the specific machine learning model
they try to interpret (e.g., its feature space or the hyperparameters).

Finally, when it comes to practically implementing a machine learning
based system, the Python programming language has established itself
as one of the most popular of the latest years, mainly due its nature
of general-purpose platform for fast prototyping. However, despite
the huge number of third-party libraries that allow a straightforward
implementation of machine learning algorithms, only a few choices
are available for evaluating these automated systems in an adversarial
environment. Also, the issue of interpretability is only sparsely tackled in
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the Python ecosystem, mainly with research code in support of scientific
publications. As a result, engineers are often required to integrate a plethora
of very specific libraries case-by-case for their application, slowing down
the development process and the time to market.

3.1 Contributions

In this thesis, we first propose a unified framework for crafting evasion
and poisoning attacks through a gradient-descent optimization proce-
dure. This fully supports the threat model described in Section 2.2.1,
including the different adversarial goals (integrity and availability), the
available knowledge (white-box, gray-box, black-box), as well as the
different adversarial capabilities (causative or exploratory). We derive
and present the mathematical formulation required to craft both types of
attacks, including the hypergradients that define the poisoning bi-level
optimization problem.

Secondly, we provide a formal definition of transferability integrated with
our unified attack framework, and present the first comprehensive evalu-
ation of this property for both evasion and poisoning availability attacks.
In particular, we discuss the intriguing connection among transferabil-
ity, input gradients and model complexity, and we highlight the factors
impacting transferability between a surrogate and a target model. We
also provide three reliable metrics to measure the robustness of machine
learning based systems to transfer attacks, allowing to compare the
security of different models to these threats.

Afterward, we present a study on how to leverage gradient-based expla-
nationmethods to analyze and compare different machine learning based
systems, in particular with respect to their security-related properties.
We start by describing a novel method to compute local and global
explanations based on highly-interpretable relevance vectors, also applicable
to non-differentiable models or black-box systems. Our explanations not
only allow to compare the behavior learned by the different models, but
also allow to directly get an insight into the vulnerability to transfer
attacks, without computing any additional specific metric. Then, moti-
vated by the intuition that classifiers whose attributions are more evenly
distributed should also be the more robust (as they rely on a broader set
of features for the decision, see Section 2.2.5), we statistically investigate
how gradient-based explanations may effectively be leveraged to pro-
vide a quantitative measure of the adversarial robustness of a machine
learning model, without the need of running a full security evaluation.
To this end, we propose few synthetic metrics that allow correlating the
uniformity of the attributions with the adversarial robustness.

Finally, we also present secml, an open-source Python library that aims
to provide engineers with all the tools necessary for developing and eval-
uating secure and explainable machine learning based systems without
leveraging multiple third-party libraries. secml seamlessly integrates the
most popular scientific libraries for machine learning, including numpy,
scipy, PyTorch, and TensorFlow, within our unified framework to perform
an empirical security evaluation against evasion and poisoning attacks,
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and provides an easy-to-use implementation of many techniques for
post-hoc local and global interpretation described in Section 2.3.2.

Outline of the next chapters

In the following chapters, we focus on each specific contribution of this
thesis, as outlined below:

I Chapter 4: we describe a generalized optimization framework for
crafting gradient-based evasion and poisoning attacks [16];

I Chapter 5: we provide a formal definition of transferability and
different metrics to evaluate this property [16];

I Chapter 6: we discuss the possible connections between gradient-
based explanations and adversarial robustness;

• Section 6.1: we describe a highly-interpretable approach to
explain and compare any machine learning model [17];

• Section 6.2:weproposedifferent quantitativemetrics to statisti-
cally correlate the uniformity of explanations with adversarial
robustness [18];

I Chapter 7: we describe secml, a Python library for secure and
explainable machine learning [19];

I Chapter 8: we conduct an experimental investigation of the trans-
ferability of adversarial attacks on three different applicative cases,
andwe statistically evaluate the correlation between gradient-based
explanations and the robustness to adversarial attacks using the
metrics proposed in Chapter 6.
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This chapter describes a unified framework for crafting evasion (see Sec-
tion 2.2.2) and poisoning (see Section 2.2.3) adversarial attacks through
a gradient-descent optimization procedure [16]. This generalizes existing
attacks proposed by previous works for evasion [74, 11, 81, 82, 121] and
poisoning [83, 85, 84, 189, 68, 86]. The framework supports the threat
model described in Section 2.2.1, with the different adversarial goals (in-
tegrity and availability), amount of knowledge available to the adversary
(white-box and black-box), as well as the different adversarial capabilities
(causative or exploratory).

We start by providing a general projected-gradient solving algorithm
(Section 4.1), and then we describe the specific procedures to craft evasion
(Section 4.2) and poisoning (Section 4.3) attacks. The latter are more
difficult to derive than evasion ones, as they require computing hyper-
gradients for a bi-level optimization problem, to capture the dependency
on how a machine learning model changes while the training poisoning
points are modified [83, 85, 84, 189, 68, 86].

4.1 Gradient-based Optimization Algorithm

Given the attacker’s knowledge + ∈ K (as defined in Section 2.2.1), and
an attack sample x′ ∈ Φ(x) along with H, the true label of x, the attacker’s
goal can be defined in terms of an objective function A(x′, H, +) ∈ ℝ,
which measures how effective the attack sample x′ is on the target
classifier (e.g., how the classification loss changes under attack). Thus,
the optimal attack point x★ can be obtained as:

x★ ∈ arg max
x′∈Φ(x)

A(x′, H, +) . (4.1)

Equation 4.1 only considers a single attack sample, but this formulation
can be easily extended to account for multiple ones. In particular, the
attacker can maximize the objective by optimizing one attack point at a
time [8, 84].

Algorithm 1 provides a general projected gradient-ascent algorithm that
can be used to solve Equation 4.1 for both evasion and poisoning attacks. It
iteratively updates the attack sample x′ along the gradient of the objective
function A, ensuring the resulting point to be within the feasible domain
through a projection operatorΠΦ. The gradient step size � is determined
at each iteration using a line-search procedure based on the bisection
method, which solves:

max
�

A(x′(�), H, +), with x′(�) = ΠΦ

(
x + �∇xA(x , H, +)

)
. (4.2)
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As Equation 4.2 requires the classifier decision function to be differ-
entiable, non-differentiable learning algorithms like decision trees and
random forests can be attacked using the gradient-based optimization
against a differentiable surrogate learner [72, 97], or with more complex
strategies [96, 198].

Algorithm 1: Gradient-based Evasion and Poisoning Attacks
input : (x , H), the input sample and its true label; A(x , H, +), the

attacker’s objective; + = (D,F, 5 ,w), the attacker’s
knowledge on the target model; Φ, the set of feasible
manipulations that can be made on x; C > 0, a small number.

output : x′, the adversarial attack.
1 Initialize the attack sample: x′← x;
2 repeat
3 Store the attack from previous iteration: x ← x′;
4 Choose the optimal step size � by solving Equation 4.2;
5 Update the attack point: x′← ΠΦ

(
x + �∇xA(x , H, +)

)
;

6 until |A(x′, H, +) −A(x , H, +)| ≤ C;
7 return x′

4.2 Crafting Evasion Attacks

As described in Section 2.2.2, the goal of an adversary in case of evasion
attacks is to perturb a legitimate sample so that it gets wrongly labeled
at test time. The intuition here is that he has to maximize the loss on the
adversarial example w.r.t the original class, to cause misclassification to
another class (e.g., the opposite one in case of binary problems).

When full knowledge of the target model is acquired (including the
classifier parametersw), i. e., white-box evasion, the optimization problem
given in Equation 4.1 can be rewritten as:

max
x′

A(x′, H,w) (4.3)

s.t. ‖x′ − x‖p ≤ � , (4.4)
xlb � x′ � xub , (4.5)

where ‖ · ‖p is the ℓp norm operator. As demonstrated in [74], the classifi-
cation score can be used as an objective by considering:

A(x′, H,w) = −H 5 (x′) . (4.6)

Also, Equation 4.3 can be directly extended to the black-box case by
leveraging the parameters ŵ of a surrogate classifier 5̂ .

Manipulation constraints. The set of feasible manipulations Φ that
can be made on the sample x are given in terms of: (4.4) a distance
constraint ‖x′ − x‖p ≤ �, which sets a bound on the maximum input
perturbation between x and x′; and (4.5) a box constraint xlb � x′ � xub
(where u � v means that each element of u has to be not greater than
the corresponding element in v), which bounds the values of the attack
sample x′. For images, the former distance constraint is used to implement
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either dense or sparse evasion attacks [123, 97, 20]. Normally, the ℓ2 and the
ℓ∞ distances between pixel values are used to cause an indistinguishable
image blurring effect (by slightly manipulating all pixels). Conversely,
the ℓ1 distance corresponds to a sparse attack in which only few pixels
are significantly manipulated, yielding a salt-and-pepper noise effect
on the image [123, 97]. Similarly, in case of attacks towards a malware
detection system, ℓ1 distance leads to changing only one component of the
original application at each optimization step. The latter box constraint,
instead, can be used to bound each feature inside a given range, e.g.,
the pixel values between 0 and 255, or to ensure manipulation of only a
specific region of the image. For example, if some pixels should not be
manipulated, one can set the corresponding values of xlb and xub equal
to those of x.

Initialization. When it comes to performing evasion attacks in both
white-box and black-box settings, the choice of the start point x plays an
important role in the effectiveness of the resulting adversarial example
x′. A good strategy to improve the solution found through Equation
4.3 consists on running the attack starting from different initialization
points, thus mitigating the problem of getting stuck in poor local optima
[74, 199, 101]. In addition, for non-linear classifiers one can also consider
starting the gradient ascent from the projection of a randomly-chosen
point of class 2 ≠ H onto the feasible domain. This double-initialization
strategy helps finding better local optima, through the identification of
more optimization paths towards evasion [16, 199, 101, 147].

4.3 Crafting Poisoning Attacks

By injecting adversarial points into the training set, an adversary can
perform poisoning attacks (see Section 2.2.3). His goal in this case can be
to either favor intrusions without affecting normal system operation, or
to purposely compromise normal system operation to cause a denial of
service. The former are referred to as integrity attacks, while the latter are
known as availability attacks [8, 84]. Our framework focuses on poisoning
availability attacks, as crafting integrity attacks has a much more modest
goal of modifying prediction only for a small set of targeted points. The
attacker’s capability in this case is limited by assuming that he can inject
only a fraction  · n, with  ∈ (0, 1], of poisoning points into the training
set of size n.

As for the evasion case, we provide the derivation of poisoning attacks
in a white-box setting, given that the extension to black-box is immediate
through the use of surrogate learners. The optimization problem is now
bi-level, with the outer formula that maximizes the attacker’s objective A
(typically, a loss function ! computed on m untainted samples), while the
inner formula amounts to learning the classifier on the poisoned training
data [83, 84, 85]. By rewriting Equation 4.1 accordingly, we obtain:

max
x′

!(Dval ,w★) =
m∑
9=1

A(x 9 , H9 ,w★) , (4.7)

s.t. w★ ∈ arg min
w

L(Dtr ∪ (x′, H),w) , (4.8)
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1: More rigorously, one can write the KKT
conditions in this case as ∇wL(Dtr ∪
(x′, H),w) ∈ 0, given that the solutionmay
not be unique.

where Dtr and Dval are the training and validation datasets available to
the attacker. The former, along with the poisoning point x′, is used to
train the learner on poisoned data (minimizing its training lossL), while
the latter is used to evaluate its performance on untainted data, through
the loss function !(Dval ,w★). Notably, the objective function A implicitly
depends on x′ through the parameters w★ of the poisoned classifier.

4.3.1 Gradient of validation loss

While poisoning points can be easily optimized via projected-gradient
procedures like Algorithm 1, the main challenge with solving Equation
4.7 is computing the gradient of the validation loss ! with respect to
each poisoning point. In fact, this gradient has to capture the implicit
dependency of the optimal parameters vector w★ (learned after training)
on the poisoning point being optimized, as the classification function
changes while this point is updated.

Provided that the attacker objective A is differentiable w.r.t. w and x, its
gradient can be computed using the chain rule [83, 84, 68, 8, 85]:

∇xA= ∇x! +
%w
%x

>
∇w! , (4.9)

where the term %w
%x captures the implicit dependency of the parameters

w on the poisoning point x. Under some regularity conditions, this
derivative can be obtained by replacing the inner optimization problem
with its stationarity Karush-Kuhn-Tucker (KKT) conditions, i. e., with its
implicit equation ∇wL(Dtr ∪ (x′, H),w) = 0 [85, 68].1 By differentiating
this expression w.r.t. the poisoning point x, one yields:

∇x∇wL+
%w
%x

>
∇2

wL= 0 . (4.10)

Finally, rearranging Equation 4.10, we obtain %w
%x
>
= −(∇x∇wL)(∇2

wL)−1,
which can be substituted in Equation 4.9 to obtain the required gradient:

∇xA= ∇x! − (∇x∇wL)(∇2
wL)−1∇w! . (4.11)

Depending on the type of the target classifier, Equation 4.11 can be
computed using a non-approximated closed form. In the following,
we report the derivation for both support vector machines, as already
proposed in [83], and for logistic regression classifiers.

Gradients for Support Vector Machines

By considering L as the dual form learning problem of a support
vector machine (see Equation 2.5), and ! as the hinge loss (in the outer
optimization), Equation 4.11 becomes:

∇xA= −2
%k:2
%x2

y: + 2
[
%kB2
%x 0

] [
KBB 1
1> 0

]−1 [
KB:

1>

]
y: . (4.12)
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Here we use 2, B, and : to index, respectively, the attack point, the
support vectors, and the validation points for which A(x , H,w) > 0
(corresponding to a non-null derivative of the hinge loss). The coefficient
2 is the dual parameter assigned to the attack point by the learning
algorithm, and (vector) k and (matrix) K contain the kernel values
between the corresponding indexed sets of points.

Gradients for Logistic Regression

Logistic regression is a linear classifier that estimates the probability
of the positive class using the sigmoid function � (Equation 2.11). A
derivation of poisoning attacks against this algorithm has been already
proposed in [85], yet by maximizing a different outer objective and not
the validation loss directly. The following is a novel formulation that
computes the gradients under our general optimization framework.

Using the logistic loss as the attacker’s loss, Equation 4.11 for logistic
regression can be computed as:

∇xA= −
[
∇x∇wL

� I2 w

]> [
∇2

wL X z �
� z X �

∑n
8 I8

]−1 [
X(y ◦ 2 − y)
y>(2 − 1)

]
� , (4.13)

where X and y are, respectively, the matrix of the training samples and
the vector of their true labels, w are the classifier weights, and ◦ is the
element-wise product. z = 2(1 − 2) includes the contribution of the
signed decision function, with each element given by:

�8 =
1

1 + 4−H8 58 (x8 )
. (4.14)

Finally, the derivatives of the training loss L in Equation 4.13 are:

∇2
wL= �

n∑
8

x8I8x>8 + 1 , (4.15)

∇x∇wL= �(1 ◦ (H2�2 − H2) + I2wx>) , (4.16)

with 1 denoting the identity matrix.
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Transferability captures the ability of an attack against amachine learning
model to be effective against a different one, potentially unknown. While
previous works have reported empirical findings about this property of
adversarial attacks in both evasion [74, 101, 81, 146, 148, 73, 72, 11, 145,
147] and, limitedly, poisoning integrity [149] cases, the question of when
and why do adversarial attacks transfer remains largely unanswered,
including the absence of reliable metrics to evaluate the security of
machine learning based systems against these threats.

In this chapter [16] we start by providing a formal definition of transfer-
ability in case of evasion and poisoning availability attacks (Section 5.1).
Then, we discuss the intriguing connection among transferability, input
gradients and model complexity, and highlight the factors impacting
transferability between a surrogate and a target model (Section 5.2).

It is important to emphasise right from the start, that model complexity
is a measure of the capacity of a learning algorithm to fit the training
data. It is typically penalized to avoid overfitting by reducing either
the number of classifier parameters to be learnt or their size (e.g., via
regularization) [3]. Given that complexity is essentially controlled by the
hyperparameters (e.g., the number of neurons in the hidden layers of a
neural network, or the regularization hyperparameter � of a SVM), only
models that are trained using the same learning algorithm should be compared
in terms of complexity. As we later discuss, this is an important point to
correctly interpret the results of our analysis.

Afterward, in Chapter 8, we provide a comprehensive experimental
evaluation of transferability by considering three different application
cases: (8) handwritten digit recognition; (88) Android malware detection;
(888) identity verification via face recognition.

Notation. For convenience, in this chapter we denote an adversarial
(attack) sample as x̂ = x + %̂, where x is the initial point, and %̂ is the
adversarial perturbation optimized by the attack algorithm against the
surrogate classifier 5̂ , for both evasion and poisoning attacks.

5.1 Formal Definition

In the following we provide a formal definition of transferability in case
of evasion and poisoning availability attacks.
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5.1.1 Evasion Attacks

Given an attack point x̂, crafted against a surrogate learner 5̂ (parameter-
ized by ŵ), we define its transferability as the attack loss attained by the tar-
get classifier 5 (parameterized by w) on that point, i. e.,) = A(x+ %̂, H,w).
This can be linearly approximated for sufficiently-small input perturba-
tions as:

) = A(x + %̂, H,w) u A(x , H,w) + %̂>∇xA(x , H,w) . (5.1)

Equation 5.1 may also hold for larger perturbations if the classifica-
tion function is linear or has a small curvature (e.g., if it is strongly
regularized).

Under this linear approximation, for any given point x, the evasion
problem in Equation 4.3 (without considering the feature bounds in
Equation 4.5) can be rewritten as:

%̂ ∈ arg max
‖%‖p≤�

A(x + %, H, ŵ) , (5.2)

where the perturbation % is bounded within an ℓp ball of radius �.

Notably, the previous also corresponds to the maximization of an inner
product over the ℓq ball of radius �:

max
‖%‖p≤�

%>∇xA(x , H, ŵ) = �‖∇xA(x , H, ŵ)‖q , (5.3)

where ℓq is the dual norm of ℓp. For the common values of the latter, this
is maximized as follows:

I p = 2, the maximum is %̂ = �
∇xA(x ,H,ŵ)
‖∇xA(x ,H,ŵ)‖2 ;

I p = ∞, the maximum is %̂ ∈ � · sign(∇xA(x , H, ŵ));
I p = 1, the maximum is achieved by setting the values of %̂ that

correspond to the maximum absolute values of ∇xA(x , H, ŵ) to
their sign, i. e., ±1, or 0 otherwise.

After substituting the relevant value of %̂ from above into Equation 5.1,
we compute the loss increment ΔA= %̂>∇xA(x , H,w) under a transfer
attack in closed form; e.g., for p = 2, it is given as:

ΔA= �
∇xÂ

>

‖∇xÂ‖2
∇xA≤ �‖∇xA‖2 , (5.4)

where, for compactness, we use Â= A(x , H, ŵ) and A= A(x , H,w).

In Equation 5.4, the left-hand side is the increase in the loss function in
the black-box case, while the right-hand side corresponds to the white-
box case. The upper bound is obtained when the parameters ŵ of the
surrogate classifier are equal to the parameters w of the target (white-box
attacks). These results also hold for p = 1 and p = ∞ (using the dual
norm in the right-hand side).
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5.1.2 Poisoning Attacks

A similar derivation can be followed for poisoning attacks. Instead of
defining transferability in terms of the attacker objective computed on a
single input sample, we define it in terms of the validation loss attained by
the target classifier under the influence of the poisoning points, similarly
to Equation 4.7.

Using the same linear approximation described in the previous section,
this yields:

) u !(Dval ,w) + %̂>∇x!(Dval ,w) , (5.5)

where Dval are the untainted validation points, and %̂ is the perturbation
applied to the initial poisoning point x against the surrogate classifier. As
in Equation 4.7, ! depends on the poisoning point through the classifier
parameters w, and the gradient ∇x!(Dval ,w) here is equivalent to the
generic one defined by Equation 4.11.

It is clear now that the perturbation %̂maximizes the (linearized) objective
when it is best aligned with its derivative ∇x!(Dval ,w), according to the
constraint used, as in the previous case.

5.2 Evaluation metrics

The formal definitions given in the previous section reveal some interest-
ing connections between the transferability of adversarial attacks, model
complexity (controlled by the classifier hyperparameters), and the input
gradients, allowing the definition of few simple and computationally-
efficient metrics to quantitatively measure this property.

5.2.1 Size of Input Gradients

The first interesting observation is that transferability depends on the
size of the gradient of the objective Acomputed using the target classifier,
regardless of the surrogate: the larger this gradient is, the larger the
attack impact may be. This is inferred from the upper bound in Equation
5.4. We define the corresponding metric ((x , H) as:

((x , H) = ‖∇xA(x , H,w)‖q , (5.6)

where ℓq is again the dual of the perturbation norm ℓp.

The size of the input gradient also depends on the complexity of the
given model, controlled, e.g., by its regularization hyperparameter. Less
complex, strongly-regularized classifiers tend to have smaller input
gradients, i. e., they learn smoother functions that are more robust to
attacks, and vice-versa. Notably, this holds for evasion attacks, but also for
poisoning attacks, as the latter’s gradient in Equation 4.12 is proportional
to 2 (the dual parameter assigned to the attack point by the learning
algorithm), which is larger when the model is weakly regularized. In
Figure 5.1 we report an example showing how increasing regularization
(i. e., decreasing complexity) for a neural network trained on MNIST89
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(see Section 8.1.1), by controlling its weight decay, reduces the average size
of its input gradients, improving adversarial robustness to evasion.

It should be noted however that, since complexity is a model-dependent
characteristic, the size of input gradients cannot be directly compared across
different learning algorithms; e.g., if a linear SVM exhibits larger input
gradients than a neural network, we cannot conclude that the former is
more vulnerable.
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Figure 5.1: Size of test set’s input gradients
and test error (in the absence and presence
of evasion attacks), against regularization
(controlled via weight decay) for a neu-
ral network trained on MNIST89 (see Sec-
tion 8.1.1). Note how the size of the input
gradients and the test error under attack
decrease as regularization (complexity) in-
creases (decreases).

Another interesting observation is that, if a classifier has large input
gradients (e.g., due to high-dimensionality of the input space and low
level of regularization), for an attack to succeed it may suffice to apply
only tiny, imperceptible perturbations. As we experimentally demonstrate
in Section 8.1, this explains why adversarial examples against deep neural
networks can often be only slightly perturbed and still mislead detection
while, when attacking less complex classifiers in low dimensions, the
necessary modifications become more evident.

5.2.2 Gradient Alignment

The second relevant impact factor on transferability is based on the
alignment of the input gradients of the loss (objective) function computed
using the target and the surrogate learners. If we compare the increase in
the loss function in the black-box case (the left-hand side of Equation 5.4)
against that corresponding to white-box attacks (the right-hand side), we
find that the relative increase in loss, at least for ℓ2 perturbations, is given
by the value of the gradient alignment metric '(x , H):

'(x , H) = ∇xÂ
>∇xA

‖∇xÂ‖2‖∇xA‖2
, (5.7)

where the gradient terms are indicated as in Equation 5.4.

Notably, this is exactly the cosine of the angle between the gradient of the
objective computed on the surrogate and the one computed on the target
classifier. This is a novel finding which explains why the cosine angle
metric between the target and surrogate gradients can well characterize
the transferability of attacks, confirming empirical results from previous
work [146]. For other perturbation norms this definition slightly changes,
but gradient alignment can be similarly evaluated. Differently from the
gradient size (, gradient alignment ' is a pairwise metric, allowing
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comparisons across different surrogate models; e.g., if a surrogate SVM
is better aligned with the target model than another surrogate, we can
expect that attacks targeting the surrogate SVM to transfer better.

5.2.3 Variability of the Loss Landscape

We define here another useful metric to characterize attack transferability.
The idea is to measure the variability of the loss function, i. e., the
attacker’s objective Â, when the training set used to learn the surrogate
model changes, even though it is sampled from the same underlying
distribution. In fact, if this loss landscape changes dramatically evenwhen
simply resampling the surrogate training set D̂tr (which may happen,
e.g., for surrogate models exhibiting a large error variance, like neural
networks and decision trees), it is very likely that the local optima of the
corresponding optimization problem change too, and this may in turn
imply that the attacks will not transfer correctly to the target learner.

We define the variability +(x , H) of the loss landscape as its variance:

+(x , H) = E
D̂tr1
{A(x , H, ŵ)2} − E

D̂tr2
{A(x , H, ŵ)}2 , (5.8)

where E
D̂tr

is the expectation taken with respect to different (surrogate)
training sets. This is similar to what is typically done to estimate the
variance of classifiers’ predictions. Figure 5.2 reports a conceptual rep-
resentation of this notion. As for the size of input gradients (, the loss
variance + should only be compared across models trained with the
same learning algorithm.
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Figure 5.2: Conceptual representation
of the variability of the loss landscape
+(x , H). The green line represents the ex-
pected loss with respect to different train-
ing sets used to learn the surrogate model,
while the gray area represents the variance
of the loss landscape. If the variance is too
large, local optima may change, and the
attack may not successfully transfer.
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In Chapter 5 we explained how to compare machine learning based
systems, through the use of few reliable and efficient metrics, to assess
their vulnerability to transfer attacks, i. e., attacks that are not only effective
against the model they have been crafted on, but can also successfully
fool other ones. Transferability, however, is not the only security-related
property that should be evaluated while comparing different classifiers.
The general adversarial robustness of a model, for example, is often
analysed mainly through means of the security evaluation curves (see
Section 2.2.4), obtained by running costly simulations of the attacks.

We also discussed how properties like the user trust in the system’s
decisions cannot be measured using standard performance metrics, as
they are strictly related to the ability of the system to explain their outputs
(see Section 2.3). How to compare the behavior of different systems based
on these user-dependent aspects is still an open question in the literature,
due to the strict connection between most explanation methods with the
machine learning model they try to interpret.

In this chapter we discuss how gradient-based explanations can be
leveraged effectively to evaluate the security of machine learning based
systems. We start in Section 6.1 by describing a novel method to compute
local and global explanations based on highly-interpretable relevance vectors,
which can be used to compare different machine learning models, even
non-differentiable ones, or black-box systems. Notably, by applying this
method, we are able to obtain some insights on the vulnerability to
transfer attacks, without computing any additional specific metric. Then,
in Section 6.2, we provide few quantitative metrics that allow to correlate
the gradient-based explanations with the adversarial robustness, obtaining
insights on the vulnerability of a machine learning model, without the
need of running a full security evaluation.

Later, in Chapter 8, we conduct a thorough experimental analysis of the
proposed techniques by evaluating different machine learning models
trained for the task of detecting Android malware.

Notation. In the following, we denote a feature-based explanation as
r = [A(1) , A(2) , . . . , A(d)], where A(:) is the attribution (relevance) of the :-th
component (feature) in the sample x.

6.1 Relevance Vectors for Model (Global)
Explanations

In the following, we describe a novel local and global explainability
method which, in contrast to other post-hoc feature-based techniques
(Section 2.3.2), allows to compare different machine learning models
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through highly-interpretable relevance vectors [17]. As our approach is
based on the Gradient*Input method, it is more suitable than many other
gradient-based techniques (like considering the simple gradient, see
Equation 2.17), especially when the feature vectors are sparse, because
they often assign high relevance to features which corresponding com-
ponents are not present in the considered samples, e.g., when applied to
malware detection applications. Moreover, our method can be directly ex-
tended to explain, and compare, non-differentiable models and black-box
systems, through the use of surrogate models.

6.1.1 Local relevance vectors

Given an input sample x which prediction given by the classifier 5 should
be locally explained, we start by taking the output . of the Gradient*Input
method [176, 177] (Section 2.3.2). For reference, we report a compact
formulation of its original Equation 2.20 below:

. = ∇x 5 (x) · x , (6.1)

where · denotes the element-wise product between two vectors. As
already discussed, this method basically projects the gradient of the
decision function w.r.t. the input sample, i. e., ∇x 5 (x), onto x itself, thus
ensuring that the relevance is proportional to the input features, including
setting as zero the attribution of the null features of x.

The magnitude of the explanation . however, directly depends on the
magnitude of the classification scores given by the decision function
5 (through its gradient), and on the value of each feature in x. Thus,
to compare explanations obtained on different decision functions, we
propose to normalize . to have an unary ℓ1 norm, obtaining the local
relevance vector:

r = ./‖.‖1 . (6.2)

The explanations obtained using Equation 6.2 are highly-interpretable
as the attribution of the :-th feature is limited to A(:) ∈ {0, 1}, e.g., if the
classifier assigns all the relevance to a single feature, the value of the
corresponding attribution will be 1, and all the other d − 1 components
will have attribution equal to 0. The vector r can then be displayed as
normally done for saliency maps, or its absolute values can be ranked in
ascending/descending order to identify the most influential features for
the input sample, e.g., as done in Figure 2.21, for interpretable models.

6.1.2 Global relevance vectors

Equation 6.2 can be directly extended to provide an interpretation of the
learned model as a whole. Our idea is to average the relevance vectors r
computed over different samples, obtaining the global relevance vector:

r̄ =
∑
8

r8 , (6.3)
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where r8 represents the local relevance vector computed on a generic
sample x8 ∈ X. Then, as in the local case, the absolute values of the
average relevance vector r̄ can be displayed in the form of saliency maps,
to get a feature-based snapshot of the behavior learned by the model, or
its values ranked in ascending/descending order to identify the most
influential global features.

It should be noted however, that the choice of which set of samples
to consider when computing Equation 6.3 plays a big role in the inter-
pretability of the obtained global explanation. In fact, especially for highly
unbalanced datasets, i. e., where the samples of a certain class outnumber
the samples from few or all other classes, the attribution corresponding to
the features that are highly relevant only for a limited set of samples can
bemassively soften by the averaging process. Thus, it is oftenmore useful
to compute a global relevance vector separately for the samples from
each class in a dataset, or for each logically-related set of samples. Part of
our experiments, in Chapter 8 we show an example of this methodology
applied to a malware detection system (Figure 8.25), where the global
explanations are computed separately for benign and malware samples,
and for different types of malicious apps in the dataset.

6.1.3 Explaining black-box systems

Our explanation method, similarly to other gradient-based techniques,
works under the assumption that the decision function 5 is differentiable
w.r.t the input x, and that its gradient ∇x 5 (x) is sufficiently smooth to
provide meaningful information at each point. However, when 5 (x) is
not differentiable (e.g., for random forests), one can approximate 5 by
means of a surrogate model 5̂ [175, 155, 17], using the latter to compute
the relevance vectors. The resulting explanations should provide a good
approximation of the attributions assigned by the original classifier to
the features in the input sample, as we report in Chapter 8.

6.2 The connection between Explanations and
Adversarial Robustness

We now discuss the possible connections between gradient-based expla-
nations and the robustness of machine learning models to adversarial
attacks.Motivated by the experimental findings obtained using our global
relevance vectors (see Chapter 8), and by the intuition that classifiers
whose attributions are more evenly distributed should also be the more
robust (as they rely on a broader set of features for the decision, see
Section 2.2.5), we propose few synthetic metrics that allow to correlate
the uniformity of the explanation vectors with the adversarial robustness of
a machine learning model.

6.2.1 Explanation Evenness

We start by describing two different metrics that allow to compute the
evenness of a relevance vector, i. e., the uniformity of its values.
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The following has been originally proposed in [102] and later expanded
in [124]. Let’s define a function �(r , k) which, given a relevance vector r ,
computes the ratio of the sum of the k highest relevance values to the
sum of all absolute relevance values. This, for k = 1, . . . ,D, is given by:

�(r , k) =
∑k
9=1 |A(9) |
‖r ‖1

, (6.4)

where the relevance values are sorted in descending order of their
absolute values, i. e., |A(1) | ≥ |A(2) | ≥ . . . ≥ |A(D) |, and D is the number of
considered relevance values (withD ≤ d). Since inmany applications each
sample only exhibits a small number of non-zero features compared to the
entire, very large, d-dimensional feature space (e.g., in Android malware
detection systems), the corresponding relevance vector computed by
Equation 6.2 will be sparse. Thus, to reduce computational cost, one may
restrict the analysis to the first non-null D components.

For Equation 6.4, the evenest distribution (the one for which all attribu-
tions are equal), corresponds to �(r , k) = k/D, whereas the most uneven
is attained when only one relevance differs from zero and, in this case,
it yields �(r , k) = 1 for each k value. However, to avoid dependence on
k and to obtain a single scalar value, the final evenness metric can be
computed as follows [124]:

E1(r) =
2

D − 1

[
D −

D∑
:=1

�(r , k)
]
, (6.5)

which value is limited to E1 ∈ [0, 1]. In this case, E1 = 0 and E1 = 1
indicate, respectively, the most uneven and the most even vector.

A different metric has been proposed in [123], based on the ratio between
the ℓ1 and ℓ∞ norms:

E2(r) =
1
D
· ‖r ‖1‖r ‖∞

, (6.6)

which value in this case is limited to E2 ∈ [ 1
D , 1], with E2 =

1
D being the

uniformity of a relevance vector with only one component different from
zero, and E2 = 1 if the attribution is identical for all the features.

To obtain a broader perspective of the attributions evenness, we compute
the metrics on multiple samples, and we average the results. Formally,
we define the explanation evenness as:

� =
1
M

M∑
8=1

E(r8) , (6.7)

where r8 is the relevance vector computed on each sample of the M-sized
test dataset Dts, and E is any of the uniformity metrics described before.
Specifically, in our experiments, we represent the averaged evenness
computed considering the per-sample metric E1 (E2) with �1 (�2).
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6.2.2 Adversarial Robustness

To compute the correlation between explanation evenness and the robust-
ness to evasion attacks, we need a metric that compactly represents the
information usually given by means of security evaluation curves (see
Section 2.2.4). We thus propose to quantitatively measure the robustness
of a classifier to the adversarial examples crafted using a maximum input
perturbation of size �, as follows:

AR(D� , 5 ) =
1
M

M∑
8=1

4−A8 , (6.8)

where A8 = A(x′
8
, H8 ,w) is the adversarial loss (see Equation 4.4) attained

by the classifier 5 on each sample from the M-sized set D� of �-perturbed
adversarial examples. Thismeasure can then be averaged over the security
evaluation curve, by considering multiple D� with different �, obtaining
the final adversarial robustnessmetric:

�' = ED� {AR(D� , 5 )} . (6.9)

Explanation evenness (Equation6.7) andadversarial robustness (Equation
6.9) are the two metrics we correlate in Chapter 8 to investigate the
connections between gradient-based explanations and the robustness of
machine learning based systems to adversarial (evasion) attacks.
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In the previous chapters we discussed how a machine learning based
system can be evaluated overmany different aspects, from the accuracy of
its decisions, to its robustness to adversarial attacks. Moreover, we shown
that being able to explain the automated decisions is a fundamental step
to acquire enough users trust so that they will employ the system in a
real-world scenario. When it comes to practically implement all these
procedures, the Python programming language has established itself as one
of the most popular choices of the latest years [200, 201]. It provides a
general-purpose platform for fast algorithmic development, scientific
data analysis and, thanks to a vast ecosystem of libraries, it is often an
attractive option for specific industry applications.

Despite the huge number of handy libraries that allow a straightforward
implementation of many machine learning algorithms [202, 200, 203],
including neural networks [204, 205], and allow data analysis and visual-
ization [206, 207, 208], only a few choices are available for testing these
automated systems in an adversarial environment [209, 210, 211]. This
should include being able to simulate evasion and poisoning attacks, and
perform a thorough security evaluation of the adversarial robustness of
the models, along with testing of their vulnerability to transfer attacks.
Lastly, the issue of interpretability is only sparely tackled in the Python
ecosystem, mainly with specific libraries implementing research code in
support of scientific publications [155, 185].

In this chapter, we present secml [19], an open-source Python library that
aims to tackle all the aforementioned aspects of developing and testing
pattern recognition systems in a single framework, thus favoring an easier
development of more secure and explainable learning algorithms. To
this end, secml implements: (8) a seamless integration between the most
popular scientific libraries for machine learning, including numpy, scipy,
PyTorch and TensorFlow; (88) a single unified data structure which allows
developing algorithms working in both dense and sparse features spaces;
(888) a unified framework to perform empirical security evaluation against
evasion and poisoning attacks; and (8E) different techniques for local
and global interpretation of machine learning models, including feature-
based and prototype-based explanation methods. With respect to other
popular libraries mainly focused on implementing attacks against deep
neural networks [209, 210, 211], secml provides training-time poisoning
attacks and computationally-efficient test-time evasion attacks against
many traditional algorithms, including support vector machines and
random forests.

secml is a project born in 2014 and open-sourced in August 2019. Thanks
to an emerging community of users and developers fromboth ourGitLab1
and GitHub2 repositories, it is constantly updated to enrich it with new
functionalities, novel attacks and defenses, and wrappers for supporting
other third-party libraries.

https://gitlab.com/secml/secml
https://github.com/pralab/secml
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Code dependencies:
❏cleverhans for additional support to evasion attacks
❏pytorch for DNN support
❏sklearn for ML algorithms and normalizers

mladv expl

seceval

attacks classifiers

normalizers

optim utilsdata

loggerloaders

array figure

Evasion:
❏FGSM, BIM, MIM, CW
❏PGD, PGD-LS, ...

parallel

❏DNNs (incl. pretrained models)
❏SVMs (incl. kernels)
❏DTs, RFs, Logistic, Ridge, ...

❏Min-max, mean-std, ...
❏DNN-based feature extractors

Poisoning:
❏SVM, Ridge, Logistic

❏numpy and scipy for data and array management
❏matplotlib for visualization
❏joblib for parallel execution

plots

❏ROC, Confusion matrix
❏Security evaluation, ...

❏CIFAR10, MNIST, LFW, ...
❏blobs, moons, circles, ...

Figure 7.1: Architecture and main packages of secml.

7.1 Architecture and Implementation

secml has a modular architecture oriented to code reuse, depicted in
Figure 7.1. We define one or more abstract interfaces for each component,
including (but not limited to) loss functions, regularizers, optimizers,
classifiers and attacks. Notably, the definition of an optimization problem
is separated from the algorithm used to solve it, so that one can easily
implement novel attacks or classifiers (in terms of constrained optimiza-
tion problems), and then use different optimizers to obtain a solution.
This is a great advantage with respect to other libraries like CleverHans
[209] as, e.g., we can switch from white-box to black-box attacks by just
changing the optimizer (from a gradient-based to a gradient-free solver),
without redefining the entire optimization problem.

secml integrates different components via easy-to-use wrapping classes.
We provide many attacks as implemented by CleverHans, but we also
extended them to compute the values of the loss function, and of the
intermediate points optimized during the attack iterations, as well as the
number of function and gradient evaluations. This is useful to debug
and compare different attacks, e.g., by checking their convergence to a
local optimum, and properly tune their hyperparameters (e.g., step size
and number of iterations). secml also supports deep neural networks via
a dedicated PyTorch wrapper, which can be extended, if desired, to other
popular deep-learning frameworks, like Keras. Notably, this functionality
allows to run attacks that are natively implemented in CleverHans also
against PyTorch models.

Main packages

The adv package implements a framework to perform both evasion and
poisoning attacks, following the formulation described in Chapter 4. It
also provides the functionalities necessary to perform a full security
evaluation of the machine learning models against both attacks, and
test their transferability. Moreover, it encompasses the evasion attacks
provided by CleverHans, which are directly integrated in our framework.
The related package optim, provides an implementation of the Projected
Gradient Descent (PGD) optimization algorithm, and the more efficient
version of it that runs a bisect line-search along the gradient direction
(PGD-LS) to reduce the number of gradient evaluations (Algorithm 1).
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The ml package provides an implementation of many classifiers from
scikit-learn, and of the deep neural networks from PyTorch. We extended
the scikit-learn classifiers with the gradients required to run evasion and
poisoning attacks, which are analytically implemented in closed form.
Our library also supports chaining different modules (e.g., scalers and
classifiers), and can automatically compute the corresponding end-to-end
gradient via the chain rule.

The explanation package implements many feature- and prototype-
based explanation methods described in Section 2.3, including Gradient,
Gradient*Input, and Integrated Gradients techniques [175, 174, 176, 177,
178], as well as influence functions [189], and our gradient-based expla-
nation method based on relevance vectors, presented in Section 6.1.

Packages array and data provide the structures necessary to load and
manage input data, integrating those provided by scikit-learn and PyTorch.
Unique to our library, the main data structure CArray is a higher-level
interface for both dense (numpy) and sparse (scipy) arrays, enabling an
efficient execution of attacks especially on sparse data representations,
e.g., for malware detection systems.

Finally, package figure implements some advanced plotting functions
based on matplotlib (e.g., to visualize and debug attacks); while package
utils provides functionalities for logging and parallel code execution.

Testing, documentation, and contributions

Our library is extensively tested on Ubuntu and Windows operating
systems, via a dedicated continuous-integration server. We also run
frequent tests on the latest macOS versions. This ensures a high-quality
source code, and reduces the possibility of encountering problems during
use. To furtherly enhance the user experience, we provide a complete
documentation online at https://secml.gitlab.io, along with many
examples in jupiter-notebook format on how to use both the basic and
the advanced functionalities of the library.

secml is an open-source project, and we are committed to encourage
code contributions by maintaining an up-to-date developers’ guide and
documentation on how to extend each package with more attacks, classi-
fiers, wrappers of deep-learning frameworks, etc. The latest version of
the dev-docs is available at https://secml.gitlab.io/developers.

7.2 Applications

In this section, we show how to use secml to build, explain, attack,
and evaluate the security of different machine learning based systems
for practical application tasks, including support vector machines for
Android malware detection and deep neural networks for computer
vision. The following examples are extracted from the user guides
available at https://secml.gitlab.io, to which we refer for the full
source code and documentation.

https://secml.gitlab.io
https://secml.gitlab.io/developers
https://secml.gitlab.io
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7.2.1 Android Malware Detection

This first example shows how to use secml for building and testing
an Android malware detection system. In particular, we simulate the
Drebin architecture [212], depicted in Figure 8.12, by learning a linear
Support Vector Machine (SVM) on a subset of the Drebin dataset. Our
library allows to leverage all the computational advantages of SVMs,
which provide remarkable performance even when working on high-
dimensional but sparse features spaces (over 1 million features in this
case, mostly zeros).

Training and Performance Evaluation

We start by loading a toy dataset of Android applications, consisting
of 12,000 benign and 550 malicious samples extracted from the Drebin
dataset. Then, we train the support vector machine classifier, using the
secml’s CClassifierSVM class, on half the dataset, while using the rest
for testing. The single hyperparameter of the SVM has been set to � = 0.1
via a cross-validation procedure, directly available in the library’s class.

After the learning procedure is finished, we assess the performance of the
classifier on the task of recognizing benign and malicious applications.
The results are reported in Figure 7.2 by means of a Receiver Operating
Characteristic (ROC) curve. secml provides all the necessary functions to
compute and visualize ROC curves, as well as other performance metrics
to evaluate any trained classifier, including neural networks.

0.5 1 2 5 10 20
False Positive Rate (%)

90

92

94

96

98

De
te

ct
io

n 
Ra

te
 (%

)

Figure 7.2: ROC curve to evaluate the per-
formance of a linear support vector ma-
chine implemented in secml, trained on
a subset of the Drebin data [212]. The de-
tection rate represents the probability that
a malicious sample is correctly labeled
by the classifier. The false positive rate
(2%) which is used for computing the se-
curity evaluation curve (Figure 7.3) is high-
lighted with a dashed black line.

Explanations

The post-hoc explanations for the trained malware detector can then be
computed to understand which components of the Android applications
are more relevant for the classifier during the decision (classification)
phase. For two samples from the test set, one benign and one malicious,
we compute the local relevance vectors leveraging our explanation method
(Equation 6.2). In secml, this can be obtained using the standard Gradi-
ent*Input implementation provided by the CExplainerGradientInput
class and dividing the output by its ℓ1 norm.

The top-10 influential features and the corresponding relevance are
reported in Table 7.1. Looking at the first sample, a benign application, we
observehow themajority of the features have anegative relevance towards
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Explanations for sample 137 (true class: 0)
A (%) Feature Name

-8.30 android.permission.CALL_PHONE
-6.59 suspicious_calls::android/net/Uri;->toString
5.60 android.permission.INTERNET
-5.39 used_permissions::ACCESS_NETWORK_STATE
-5.08 api_calls::android/media/MediaPlayer;->start
-4.24 used_permissions::VIBRATE
-3.65 android.intent.category.LAUNCHER
-3.56 android.permission.ACCESS_FINE_LOCATION
-3.43 used_permissions::ACCESS_FINE_LOCATION
-2.63 LocationManager;->getLastKnownLocation

Explanations for sample 138 (true class: 1)
A (%) Feature Name

15.18 TelephonyManager;->getNetworkOperator
12.55 android.permission.SEND_SMS
8.69 android.permission.READ_SMS
5.83 android.permission.INTERNET
5.58 android.intent.action.BOOT_COMPLETED
-4.41 used_permissions::VIBRATE
3.96 android.intent.category.HOME
-3.80 android.intent.category.LAUNCHER
3.66 com.google.android.c2dm.C2DMBroadcastReceiver
3.39 android.permission.READ_PHONE_STATE

Table 7.1: Top-10 influential features and corresponding relevance as computed by our explanation method (Equation 6.2) implemented
in secml, for one benign sample (left) and one malware (right) from the Drebin dataset [212]. Notice how the majority of the features in
the benign sample have a negative relevance towards the decision, meaning that, for the classifier, are an indication of a benign behavior.
Conversely, most features for the malware have a positive relevance and, thus, considered malicious components.

3: See Section 8.1.2 for some details on the
structure of Android applications.

thedecision,meaning that, for the SVM, those are an indicationof a benign
behavior. Conversely, we obtain the opposite for the second sample, as
most of the features have a positive relevance value and, thus, considered
malicious components. We also observe how the classifier identifies
different cellular- and SMS-related features as malicious, coherently with
the actual behavior of many malware apps, which goal is often to send
SMS messages to premium-rate numbers. Similar results are obtained in
the experiments discussed in Chapter 8.

We also discover that more than ∼50% of the relevance is assigned to
only 10 features in both cases. This highlights a known behavior of
these classifiers, which tend to assign most of the weight to a small set
of features, making them highly vulnerable to evasion attacks as we
described in Section 2.2.

Security Evaluation

We now set up a gradient-based maximum-confidence evasion attack to
craft adversarial examples against the linear SVM classifier, as described
by Algorithm 1 and implemented in secml by the CAttackEvasionPGDLS
class. The attacks are then used to perform a security evaluation of the
malware detection system.

The solver parameters should be chosen according to the specific appli-
cation. As we are working with sparse Boolean features (each can take
either 0 or 1 value), we use a ℓ1 norm constraint (Equation 4.4). Secondly,
the lower and the upper bound constraints for the features (Equation 4.5)
are critical in this case. In fact, to create malware able to fool a classifier,
an attacker may, in theory, both adding and removing features from
the original applications. However, in practice, feature removal is a non-
trivial operation that can easily compromise the malicious functionalities
of the application and, generally, only be performed for components not
from the manifest 3 [21]. Feature addition is a safer operation, especially
when the injected features belong to the manifest; for example, adding
permissions does not influence any existing functionality of the app. In
secml, to only allow feature addition one can set xlb = ’x0’ and xub = 1.
To also allow feature removal, the lower bound can be set to xlb = 0.
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Finally, secml provides different handy classes to produce and visualize
a security evaluation curve using the computed adversarial samples.
The process for this example should last around 60 seconds, despite
a feature space of over 1 million components, as all the functions are
optimized to work on sparse data. The resulting plot is reported in Figure
7.3, with the detection rate at 2% False Positive Rate (FPR) for increasing
values of the ℓ1-order maximum perturbation �. We can observe how
this malware detector is highly vulnerable to adversarial attacks, and
after changing less than 10 features half of the malicious samples are
incorrectly classified as benign applications. This known vulnerability
has also been highlighted when we listed the top influential features
(Table 7.1), and observed that most of the relevance is assigned to a very
limited set of features.
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Figure 7.3: Security evaluation of the
Drebin malware detector implemented in
secml against white-box evasion attacks.
Detection rate at 2% FPR against an in-
creasing number of added features �. We
can observe how after changing less than
10 features, half of the malicious samples
are incorrectly classified as benign appli-
cations, due to the high vulnerability of
the linear SVM to this type of attacks.

7.2.2 Computer Vision

In the following, we show another possible application of secml, run-
ning different evasion attacks against ResNet-18, a convolutional neural
network trained on the ImageNet dataset, available from torchvision. This
example demonstrates how our library enables running also attacks from
third-party libraries, likeCleverHans (implemented in TensorFlow), against
PyTorch models. In particular, we aim to have the race car depicted in
Figure 7.4 (leftmost plot) misclassified as a tiger.

Experimental settings

We use three different ℓ2-norm targeted attacks: Carlini-Wagner (CW)
[82] (from CleverHans); our Projected Gradient Descent (PDG) with line-
search (Algorithm 1); and a variant of the latter, namely PGD-patch,
where we restrict the attacker to only change the pixels of the image
corresponding to the license plate, using a box constraint [20]. All the
attacks run for 50 iterations, adjusting the step size to reach convergence
within this range. For CW, we set the confidence parameter � = 106 to
generate high-confidence misclassifications, and 2 = 0.4, yielding an ℓ2
perturbation size of � = 1.87. We add a bound constraint to the PGD
attack to create an adversarial image with the same perturbation size.
For PGD-patch instead, we do not bound the perturbation size to avoid
unreasonably limiting of the capabilities of the attack.
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Adversarial Attacks

The crafted adversarial images are shown in Figure 7.4, for each different
attack algorithm. In Figure 7.5 (left) we show how the attack losses (scaled
linearly in [0, 1] to enable comparison) are minimized while the attacks
iterate. Also, Figure 7.5 (right) shows how the confidence assigned to the
class race car (dashed line) decreases in favor of the confidence assigned to
the class tiger (solid line) for each attack, across different iterations. These
plots are particularly useful to tune the attack’s hyperparameters (e.g.,
the step size or the number of iterations), and to check the converge to a
good local optimum. Also, such visualizations may help avoid common
pitfalls in the security evaluation of learning algorithms, facilitating
understanding and configuration of the attacks.

race car tiger (CW) tiger (PGD) tiger (PGD-patch) explanations

Figure 7.4: Adversarial images representing a race car misclassified as a tiger, produced by three different attack algorithms implemented in
secml: Carlini-Wagner (CW); Projected Gradient Descent with line-search (PDG); and PDG-patch, where a box constraint restricts the attack
area. For PGD-patch, we also report the explanations computed using the integrated gradients method (Equation 2.22).
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Figure 7.5:Analysis of the optimization process for the different attack algorithms implemented in secml: CW (red); PGD (blue); PDG-patch
(green). Left: minimization of the loss; Right: confidence of source class (race car, dashed lines) vs confidence of target class (tiger, solid lines).

Explanations

For the adversarial example crafted using the PGD-patch algorithm, we
highlight the most relevant pixels that lead the deep neural network to
classify the attack sample as a tiger (Figure 7.4, rightmost plot). To produce
this explanation, we use the integrated gradients method (Equation 2.22),
which is implemented insecmlby theCExplainerIntegratedGradients
class. We observe how the most relevant pixels are found around the
perturbed region containing the license plate, unveiling the presence of a
potential adversarial manipulation.
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This chapter presents a systematic experimental evaluation of the tech-
niques we proposed in this thesis. We start in Section 8.1 by analysing
the transferability property of adversarial attacks on three different ap-
plicative cases: (8) handwritten digit recognition; (88) Android malware
detection; (888) identity verification via face recognition. To this end, we
test and compare the quantitative metrics proposed in Section 5.2: (9)
size of input gradients; (9 9) gradient alignment; (9 9 9) variability of the
loss landscape. Then, in Section 8.2, we follow up on the experiments on
Android malware detection by verifying the applicability of our method
for computing global model explanations through highly-interpretable
relevance vectors (Section 6.1). Finally, in Section 8.3, we statistically evalu-
ate the correlation between the uniformity of gradient-based explanations
and the adversarial robustness of a machine learning model to evasion
attacks, using the corresponding metrics described in Chapter 6.

We proudly remark that all the experiments are implemented using
secml, our open-source Python library described in Chapter 7.

8.1 Transferability of Adversarial Attacks

In this section, we evaluate the transferability of both evasion and poison-
ing attacks across a range of machine learning models. In particular, we
highlight some interesting findings about this security-critical property
by measuring the three synthetic metrics described in Section 5.2. Given
their dependency on the initial attack sample x and its original label H,
we compute the mean values averaging on different points.

We consider three practical applications: handwritten digit recognition
(Section 8.1.1); Android malware detection (Section 8.1.2); identity verifi-
cation via face recognition (Section 8.1.3). Evasion and poisoning attacks
are both performed in the digits recognition case, and specific evasion
and poisoning attacks are crafted against the malware detection and face
recognition systems, respectively. Different machine learning algorithms
are tested, including support vector machines (with both linear and
non-linear decision functions), logistic and ridge classifiers, and neural
networks. It should be noted however, that designing efficient poisoning
availability attacks against neural networks is still an open problem due
to the complexity of the bi-level optimization (Equation 4.7) and the
non-convexity of the inner learning problem.1 For this reason, we test
this type of classifiers only against evasion attacks. Similarly, poisoning
random forests is not feasible with gradient-based attacks, and we are
not aware of any existing work considering this ensemble algorithm.

We conclude the analysis by summarizing our findings in Section 8.1.4.
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2: The level of regularization in the stan-
dard formulation of these classifiers in-
creases as  increases, and as � decreases.

Experimental parameters. Equally for all the considered cases, we set
the maximum number of iterations of our gradient-based optimization
algorithm to 1, 000, yet convergence (Algorithm 1, line 6) is typically
reached only after a hundred iterations. Also, we allow a maximum of
20 iterations for the line-search step (Algorithm 1, line 4), which reduces
the overall time required to reach a local or global optimum.

8.1.1 Handwritten Digit Recognition

The goal of a machine learning model in this case is to assign the correct
label to each input digit. We use the MNIST89 data, which includes the
MNIST handwritten digits from classes 8 and 9. Each image consists of
784 pixels ranging from 0 to 255, normalized in [0, 1] by dividing such
values by 255. Few example images used for the experiments are reported
in Figure 8.1. The two original classes, i. e., 8 and 9, are remapped to 0
and 1 (respectively), defining a binary classification problem.

Figure 8.1: Example of handwritten digits
from the MNIST89 dataset.

Experimental Setup (Evasion)

We run 10 independent repetitions to average the results on different
training-test splits. In each repetition, white-box and black-box attacks
are performed, using 5, 900 samples to train the target classifier, 5, 900
distinct samples to train the surrogate classifier (without even relabeling
the surrogate data with labels predicted by the target classifier; i. e., we
do not query the target). 1, 000 samples are used for testing. We perturb
the test digits to craft the optimal attacks using Algorithm 1 under the ℓ2
distance constraint ‖x − x′‖2 ≤ �, with � ∈ [0, 5].

For each of the following learning algorithms, we train a high-complexity
(H) and a low-complexity (L) model, by changing its hyperparameters: (8)
SVMs with linear kernel (SVMH with � = 100 and SVML with � = 0.01);
(88) SVMs with RBF kernel (SVM-RBFH with � = 100 and SVM-RBFL
with � = 1, both with � = 0.01); (888) logistic classifiers (logisticH with
� = 10 and logisticL with � = 1); (8E) ridge classifiers (ridgeH with  = 1
and ridgeL with  = 10);2 (E) fully-connected neural networks with two
hidden layers including 50 neurons each, and ReLU activations (NNH
with no regularization, i. e., weight decay set to 0, and NNL with weight
decay set to 0.01), trained via cross-entropy loss minimization; and (E8)
random forests consisting of 30 trees (RFH with no limit on the depth of
the trees and RFL with a maximum depth of 8). These configurations are
chosen to evaluate the robustness of classifiers that exhibit similar test
accuracies but different levels of complexity.
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Figure 8.2: Security evaluation curves for white-box evasion (a) and poisoning (b) attacks on the handwritten digits MNIST89 dataset.

Experimental Setup (Poisoning)

We consider 500 training samples, 1, 000 validation samples to compute
the attacks, and a separate set of 1, 000 test samples to evaluate the
error. The latter is computed against an increasing number of poisoning
points fed into the training set, from 0% to 20% (corresponding to 125
poisoning points). The reported results are averaged on 10 independent,
randomly-drawn data splits.

Similarly to the evasion case, we employ as surrogate learners: (8) linear
SVMs with � = 0.01 (SVML) and � = 100 (SVMH); (88) logistic classifiers
with � = 0.01 (logisticL) and � = 10 (logisticH); (888) ridge classifiers
with  = 100 (ridgeL) and  = 10 (ridgeH); and (8E) SVMs with RBF
kernel with � = 0.01 and � = 1 (SVM-RBFL) and � = 100 (SVM-RBFH).
We additionally consider as target classifiers: (E) random forests with 100
base trees, each with a maximum depth of 6 for RFL, and with no limit
on the maximum depth for RFH; (E8) feed-forward neural networks with
two hidden layers of 200 neurons each and ReLU activations, trained via
cross-entropy loss minimization with different regularization (NNL with
weight decay 0.01 and NNH with no decay); and (E88) the Convolutional
Neural Network (CNN) used in [99].

Results (Evasion)

The results for white-box evasion attacks are reported for all classifiers
that fall under our framework and that can be tested for evasion with
gradient-based attacks (SVMs, logistic, ridge, and NN). This excludes
random forests, as they are not differentiable. We report the complete
security evaluation curves in Figure 8.2(a), showing the mean test error
(over 10 runs) against an increasing maximum admissible distortion �.

In Figure 8.3 we report the results for black-box evasion, in which the
attacks against the surrogate models (in rows) are transferred to the
target models (in columns). The top plots show the results for surrogates
trained using only 20% of the surrogate training data, while in the bottom
plots the surrogates are trained using all surrogate data, i. e., a training
set of the same size as that of the target. These plots report (from left to
right) the results for � ∈ {1, 2, 5}.
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Figure 8.3: Black-box (transfer) evasion attacks on MNIST89. Each cell contains the test error of the target classifier (in columns) computed
on the attack samples crafted against the surrogate (in rows). Matrices in the top (bottom) plots correspond to attacks crafted against
surrogate models trained with 20% (100%) of the surrogate training data, and (from left to right) for � ∈ {1, 2, 5}. The test error of each
target classifier in the absence of attack (target error) and under (white-box) attack are also reported for comparison, along with the mean
transfer rate of each surrogate across targets (rightmost column of each plot). Darker colors mean higher test error, i. e., better transferability.

Results (Poisoning)

The results for white-box poisoning are reported in Figure 8.2(b), by
means of security evaluation curves showing the average test error against
an increasing fraction of poisoning points (over 10 runs).

Figure 8.4 reports the results for black-box poisoning. Conversely to
evasion case, here we only use surrogates trained on all the surrogate
data, i. e., a training set of the same size as the one used for the target.
The three plots report the results for (from left to right) {5%, 10%, 20%}
fraction of poisoning points.

How does model complexity impact evasion attack success in the
white-box setting?

In Figure 8.5 (left) we report themean test error after the evasion attacks at
� = 1 for each target model against the size of its input gradients (metric
(, averaged over the test samples and over the 10 runs). These results
show that, for each learning algorithm, the low-complexity model has
smaller input gradients, and it is less vulnerable to evasion than its high-
complexity counterpart, confirming our theoretical hypotheses. This is
also confirmed by the ?-values reported in Table 8.1 (evasion, MNIST89,
left column), obtained by running a binomial test for each learning
algorithm to compare the white-box test error of the corresponding high-
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Figure 8.4: Black-box (transfer) poisoning attacks on MNIST89. Each cell contains the test error of the target classifier (in columns) computed
on the attack samples crafted against the surrogate (in rows). Each plot reports the results for an increasing fraction (from left to right)
{5%, 10%, 20%} of poisoning points. The test error of each target classifier in the absence of attack (target error) and under (white-box)
attack are also reported for comparison, along with the mean transfer rate of each surrogate across targets (rightmost column of each plot).
Darker colors mean higher test error, i. e., better transferability.

Evasion Poisoning

MNIST89 DREBIN MNIST89 LFW

& = 1 & = 1 & = 5 & = 30 5% 20% 5% 20%
SVM <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 0.75

logistic <1e-2 <1e-2 <1e-2 0.02 <1e-2 <1e-2 0.10 0.21
ridge <1e-2 <1e-2 <1e-2 <1e-2 0.02 <1e-2 0.02 0.75

SVM-RBF <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 <1e-2 0.11
NN <1e-2 <1e-2 <1e-2 0.02

Table 8.1: Statistical significance of our results. For each attack, dataset and learning algorithm, we report the ?-values of two two-sided
binomial tests, to respectively reject the null hypothesis that: (8) for white-box attacks, the test errors of the high- and low-complexity target
follow the same distribution; and (88) for black-box attacks, the transfer rates of the high- and low-complexity surrogate follow the same
distribution. Each test is based on 10 samples, obtained by comparing the error of the high- and low-complexity models for each learning
algorithm in each repetition. In the first (second) case, success corresponds to a larger test (transfer) error for the high-complexity target
(low-complexity surrogate).

and low-complexitymodels. All the ?-values are smaller than 0.05, which
confirms 95% statistical significance. Recall that these results hold only
when comparing models trained using the same learning algorithm. This
means that we can compare, e.g., the ( metric of SVMH against SVML,
but not that of SVMH against logisticH. In fact, even though logisticH
exhibits the largest value of (, it is not the most vulnerable classifier.
Another interesting finding is that non-linear classifiers tend to be less
vulnerable than linear ones.

Similarly to the evasion case, high-complexity models with larger input
gradients, as shown in Figure 8.6 (left), are more vulnerable to poisoning
attacks than their low-complexity counterparts (i. e., given that the same
learning algorithm is used). This is also confirmed by the statistical
tests of Table 8.1 (poisoning, MNIST89, left column). Therefore, model
complexity plays a large role in the model’s robustness also against
poisoning attacks, confirming our analysis.

How do evasion attacks transfer between models in black-box
settings?

For evasion attacks, it can be noted from Figure 8.3 that lower-complexity
models (with stronger regularization) provide, on average, better surro-
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Figure 8.6: Evaluation of our transfer-
ability metrics for poisoning attacks on
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poisoning points) vs average size of in-
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gate models. In particular, this can be seen best in the middle column
for medium level of perturbation, in which the lower-complexity models
(SVML, logisticL, ridgeL, and SVM-RBFL) provide on average higher error
when transferred to other models. The reason is that they learn smoother
and stabler functions, that are capable of better approximating the target
function. Surprisingly, this holds also when using only 20% of training
data, as the black-box attacks relying on such low-complexity models still
transfer with similar test errors. This means that most classifiers can be
attacked in this black-box setting with almost no knowledge of the model,
and no query access, but provided that one can get a small amount of
data similar to that used to train the target model.

These findings are also confirmed by looking at the variability of the
loss landscape, computed as discussed in Section 5.2 (by considering 10
different training sets), and reported in Figure 8.5 (right) against the aver-
age transfer rate of each surrogate model. It is clear that higher-variance
classifiers are less effective as surrogates than their less-complex coun-
terparts, as the former tend to provide worse, unstable approximations
of the target classifier. To verify this result, for each learning algorithm
we also compare the mean transfer errors of high- and low- complexity
surrogates with a binomial test, reported in Table 8.1 (evasion, MNIST89,
right column). All the ?-values are smaller than 0.05 even in this case,
confirming 95% statistical significance.

For poisoning attacks (Figure 8.4), the best surrogates are those matching
the complexity of the target, as they tend to be better aligned and to
share similar local optima, except for low-complexity logistic and ridge
surrogates, which seem to transfer better to linear classifiers. Thus,
according to our findings, reducing the variability of the loss landscape
(+) of the surrogatemodel is less important thanfinding a good alignment
between the surrogate and the target. In fact, from Figure 8.6 (right) it is
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evident that increasing + is even beneficial for SVM-based surrogates,
result also confirmed by the statistically significant tests reported in Table
8.1 (poisoning, MNIST89, right column).

It is worth nothing that, after a visual inspection of the adversarial exam-
ples (Figure 8.7(a)) and poisoning points (Figure 8.7(b)), it appears that
the digits crafted against high-complexity classifiers are only minimally
perturbed, while the ones computed against low-complexity classifiers
exhibit larger, visible perturbations. This is due to the instability induced
by high-complexity models into the loss function, whose sudden changes
cause the presence of closer local optima to the initial attack point.

SVML SVMH SVM-RBFL SVM-RBFH
�min = 1.7 �min = 0.45 �min = 1.1 �min = 0.85

�min = 2.35 �min = 0.95 �min = 2.9 �min = 2.65

(a) Adversarial examples (evasion attacks)

SVML SVMH SVM-RBFL SVM-RBFH

(b) Poisoning attacks

Figure 8.7: Adversarial digits crafted from the MNIST89 dataset to attack a linear SVM and the SVM-RBF. Larger perturbations are required
to mislead low-complexity classifiers (L), while smaller ones suffice to fool high-complexity classifiers (H). For evasion attacks, the values of
�min reported here correspond to the minimum perturbation required to evade detection.

On the vulnerability of random forests. A noteworthy finding is that
random forests can be successfully attacked at test-time by small pertur-
bations optimized usingmost of the othermodels (see last two columns of
each plot in Figure 8.3). We looked at the learned models and discovered
that trees are actually often susceptible to small changes. In one example,
a node of the tree checked if a particular feature value was above 0.002,
and classified the samples as digit 8 if that condition holds (or as digit
9 otherwise). The attack modified that feature from 0 to 0.028, causing
it to be immediately misclassified. This vulnerability is intrinsic in the
selection process of the threshold values used by these decision trees to
split each node. The threshold values are selected among the existing
values in the dataset (to correctly handle categorical attributes). Therefore,
for pixels which are highly discriminant (e.g., mostly black for one class
and white for the other), the threshold will be either very close to one
extreme or the other, making it easy to subvert the prediction by a small
change. Since ℓ2-norm attacks change almost all feature values, with high
probability the attack modifies at least one feature on every path of the
tree, causing misclassification.

Surprising however, random forests are instead quite robust to poisoning
(see Figure 8.4), as well as NNs, when attacked with low-complexity
linear surrogates. The reason may be that these target classifiers have a
large capacity, and can thus fit outlying samples (like the digits crafted
against low-complexity classifiers in Figure 8.7(b)) without affecting the
classification of the other training samples.
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Is gradient alignment an effective transferability metric?

In Figure 8.8, we report for the evasion case the gradient alignment (')
computed between the surrogate and the target models (left plot), and
(right plot) the Pearson correlation coefficient �(%̂, %) between the pertur-
bation optimized against the surrogate (i. e., the black-box perturbation %̂)
and that optimized against the target (i. e., the white-box perturbation %).
We observe immediately that gradient alignment provides an accurate
measure of transferability: the higher the cosine similarity, the higher the
correlation (meaning that the adversarial examples crafted against the
two models are similar). We correlate these two measures in Figure 8.9
(left), and show the statistical significance for both Pearson and Kendall
coefficients (?-values� 0.05 in both cases). In Figure 8.9 (right) we also
correlate gradient alignment with the ratio between the test error of the
target model in the black- and white- box setting (extrapolated from
the matrix corresponding to � = 1 in the bottom row of Figure 8.3), as
suggested by our theoretical derivation. The corresponding permutation
tests confirm once again statistical significance.
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Figure 8.8: Gradient alignment and per-
turbation correlation for evasion attacks
on MNIST89. Left: gradient alignment
' between surrogate (rows) and target
(columns) classifiers, averaged on the un-
modified test samples. Right: Pearson cor-
relation coefficient �(%, %̂) between white-
box and black-box perturbations for � = 5
maximum ℓ2 distance.
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Figure 8.9: Evaluation of our transferabil-
itymetrics for evasion attacks onMNIST89.
Pearson (P) and Kendall (K) correlations
are reported along with the ?-values ob-
tained from a permutation test to assess
statistical significance. Left: Pearson coef-
ficient �(%̂, %) between black-box (%̂) and
white-box (%) perturbations (values in Fig-
ure 8.8, right) vs gradient alignment '
(values in Figure 8.8, left) for each target-
surrogate pair. Right: correlation of gradi-
ent alignment with the ratio between the
test error of the target model in the black-
and white- box setting.

The same can be witnessed for poisoning attacks by looking to the
gradient alignment metric reported in Figure 8.10, which is again not only
correlated to the similarity between black- and white- box perturbations
(Figure 8.11, left), but also to the ratio between the black- and white-
box test errors (Figure 8.11, right). Interestingly, these error ratios are
larger than 1 in some cases, meaning that attacking a surrogate model
can be more effective than running a white-box attack against the target.
A similar phenomenon has been observed for evasion attacks [72], and
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it is due to the fact that optimizing attacks against a smoother surrogate
may find better local optima of the target function (e.g., by overcoming
gradient obfuscation [100]).
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Figure 8.11: Evaluation of our transfer-
ability metrics for poisoning attacks on
MNIST89. Pearson (P) and Kendall (K)
correlations are reported along with the
?-values obtained from a permutation test
to assess statistical significance. Left: Pear-
son coefficient �(%̂, %) between black-box
(%̂) and white-box (%) perturbations (val-
ues in Figure 8.10, right) vs gradient align-
ment ' (values in Figure 8.10, left) for each
target-surrogate pair. Right: correlation of
gradient alignment with the ratio between
the test error of the target model in the
black- and white- box setting.

8.1.2 Android Malware Detection

This section describes another application case where a machine learning
model is trained todistinguishbetweenmalicious andbenign applications
for the Android mobile operating system. In this binary classification
task, the system should assign the class 1 to malign samples, and the
label 0 to all the other inputs. We first provide some background on the
structure of Android applications [18]; secondly, we describe Drebin [212],
the Android malware detector that we consider in our case study; third,
we report the experimental analysis on the transferability property of
evasion attacks against these systems.

Android Background

Android applications are compressed in apk files, i. e., archives that
contain the following elements: (8) the AndroidManifest.xml file; (88)
one ormore classes.dexfiles; (888) resource and asset files, such as native
libraries or images; (8E) additional xml files that define the application
layout. Since Drebin only analyzes the AndroidManifest.xml and the
classes.dex files, we briefly describe them below.
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Figure 8.12:A schematic representation ([21]) of Drebin [212]. First, applications are represented as binary vectors in a d-dimensional feature
space. A linear classifier is then trained on an available set of malware and benign applications, assigning a weight to each feature. During
classification, unseen applications are scored by the classifier by summing up the weights of the present features: if 5 (x) ≥ 0, they are
classified as malware. Drebin also explains each decision by reporting the most suspicious (or benign) features present in the app, along
with the weight assigned to them by the linear classifier.

Android Manifest (manifest). The basic information about the An-
droid application is held in the AndroidManifest.xml, including its
package name or the supported API levels, together with the declaration
of its components, i. e., parts of code that perform specific actions. For
example, one component might be associated with a screen visualized by
the user (activity), or to the execution of background tasks (services). App
components can also perform actions (through receivers) on the occur-
rence of specific events, e.g., a change in the device’s connectivity status
(CONNECTIVITY_CHANGE) or the opening of an application (LAUNCHER).
The manifest also contains the list of hardware components and permissions
requested by the application to properly work (e.g., Internet access).

Dex bytecode (dexcode). The classes.dex file embeds the compiled
source code of the application, including all the user- implemented
methods and classes; the bytecode can be executed with the Dalvik
Virtual Machine (until Android 4.4) or the Android runtime (ART). The
classes.dexmay contain specificAPI calls that access sensitive resources
such as personal contacts (suspicious calls). Additionally, it contains all,
system-related, restricted API calls that require specific permissions (e.g.,
writing to the device’s storage). Finally, it can also contain references to
network addresses that might be contacted by the application.

Drebin

The majority of the approaches for Android malware detection employ
static and dynamic analyses, extracting information such as permissions,
communications through Inter-Component Communication (ICC), and
system- and user-implemented API calls [212, 213, 214, 215, 216].

Drebin [212] is among the most popular and used architectures. It
performs the detection of Android malware through a static analysis of
the applications. In a first phase (training), it employs a set of benign
and malicious apps provided by the user to determine the features that
will be used for detection (meaning that the feature set will be strictly
dependent on the training data). Such features are then embedded into
a sparse, high-dimensional vector space. Finally, after learning a linear
model like a support vector machine, the system is able to perform the
classification of previously-unseen apps. An overview of the architecture
of this system is given in Figure 8.12.
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Feature extraction. Drebin processes the data by statically analyzing
a set of n training Android applications to construct a suitable feature
space. The extracted features are presented as strings and organized in 8
different feature sets, as listed in Table 8.2.

manifest dexcode

(1 Hardware components (5 Restricted API calls
(2 Requested permissions (6 Used permission
(3 Application components (7 Suspicious API calls
(4 Filtered intents (8 Network addresses

Table 8.2: Overview of feature sets in the
Drebin system [212].

Android applications are then mapped onto the feature space as follows.
Let us assume that an app is represented as an object z ∈ Z, being
Z the abstract space of all apk files. We denote with Φ : Z ↦→ F

a function that maps an apk file z to a d-dimensional feature vector
x = [G(1) , . . . , G(d)] ∈ F= {0, 1}d, where each feature is set to 1 (0) if the
corresponding string is present (absent) in the apk file z. An application
encoded in this feature space may thus look like the following:

x = Φ(z) ↦→

©«

· · ·
0
1
· · ·
1
0
· · ·

ª®®®®®®®®¬

· · · }
(2

permission::SEND_SMS

permission::READ_SMS

· · · }
(5

api_call::getDeviceId

api_call::getSubscriberId

· · ·

Learning, Classification, and Explanation. Drebin employs a linear
model such as a Support Vector Machine (SVM) to perform detection of
malicious apps, which can be efficiently trained in a sparse feature space.
Then, during classification, unseen apps are labeled as malware if the
score is 5 (x) ≥ 0, or as benign otherwise.

Leveraging interpretable models (see Section 2.3.1), explanations are
provided by-design by Drebin, reporting, for any given application, the
most influential features, i. e., the ones that are assigned the highest
absolute weights by the classifier. For instance, in Figure 8.12 we report
an example of an app correctly identified as malware since it connects to
a suspicious URL and uses SMS as a side-channel for communication. It
should be noted, however, that in the standard Drebin implementation
the relevance of each feature corresponds exactly to the value of the
relative parameter in w, thus components not actually present in a certain
input app may appear as relevant for the system.

Experimental Setup

The Drebin data [212] consists of around 120,000 legitimate and around
5000 malicious Android applications, cataloged using the VirusTotal
service. A sample is labeled as malicious (or positive, H = +1) if it is
classified as such by at least five out of ten anti-virus scanners, while it is
flagged as legitimate (or negative, H = −1) otherwise. The sparse feature
vector resulting from the static analysis of the applications, consists of
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more than a million binary feature. Since we are dealing with sparse
binary features, we use the ℓ1 norm for the attack.

We use 30, 000 samples to learn the surrogate and the target classifiers,
and the remaining 66, 944 samples are used for testing. The classifiers
and their hyperparameters are the same used for the experiments on
MNIST89, apart from (8) the number of hidden neurons for NNH and
NNL, set to 200, (88) the weight decay of NNL, set to 0.005; and (888) the
maximum depth of RFL, set to 59.

We perform feature selection to retain those 5, 000 features which max-
imize information gain, i. e., |?(G(:) = 1|H = +1) − ?(G(:) = 1|H = −1)|.
While this process does not significantly affect the detection rate (which
is only reduced by 2%, on average, at 0.5% false positive rate), it reduces
even more the computational complexity of the classification step.

In each experiment, we run white-box and black-box evasion attacks
on 1, 000 distinct malware samples (randomly selected from the test
data) against an increasing number of modified features in each malware
� ∈ {0, 1, 2, . . . , 30}. This is achieved by imposing the ℓ1 constraint
‖x′ − x‖1 ≤ � (Equation 4.4). As in previous works, we further restrict
the capabilities of the attacker to only inject features into each malware
sample (using the bounds in Equation 4.5), to avoid compromising its
intrusive functionality [21, 74].

Results

To evaluate the impact of the aforementioned evasion attack, we measure
the evasion rate (i. e., the fraction of malware samples misclassified
as legitimate) at 0.5% false positive rate (i. e., when only 0.5% of the
legitimate samples are misclassified as malware).

The results forwhite-box andblack-box evasion attacks, reported in Figure
8.13, and Figure 8.14, respectively, along with the metrics evaluation in
Figure 8.15, Figure 8.16, and Figure 8.17, and the statistical tests in Table
8.1, confirm the main findings described before on the MNIST89 data.
One significant difference is that random forests are much more robust
in this case. The reason is that the ℓ1-norm attacks (differently from ℓ2)
only change a small number of features, and thus the probability that all
the features considered by the ensemble trees are modified is very low.
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Figure 8.14: Black-box (transfer) evasion attacks on Drebin. Each cell contains the test error of the target classifier (in columns) computed on
the attack samples crafted against the surrogate (in rows). Matrices in the top (bottom) plots correspond to attacks crafted against surrogate
models trained with 20% (100%) of the surrogate training data, and (from left to right) for � ∈ {5, 10, 30}. The test error of each target
classifier in the absence of attack (target error) and under (white-box) attack are also reported for comparison, along with the mean transfer
rate of each surrogate across targets (rightmost column of each plot). Darker colors mean higher test error, i. e., better transferability.
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Figure 8.15: Evaluation of our transferabil-
ity metrics for evasion attacks on Drebin.
Left: test error under attack vs average size
of input gradients (() for low- (denoted
with ‘×’) and high- complexity (denoted
with ‘◦’) classifiers. Right: average transfer
rate vs variability of loss landscape (+).
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Figure 8.16: Gradient alignment and
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tacks on Drebin. Left: Gradient alignment
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(columns) classifiers, averaged on the un-
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Figure 8.17: Evaluation of our transferabil-
ity metrics for evasion attacks on Drebin.
Pearson (P) and Kendall (K) correlations
are reported along with the ?-values ob-
tained from a permutation test to assess
statistical significance. Left: Pearson coef-
ficient �(%̂, %) between black-box (%̂) and
white-box (%) perturbations (values in Fig-
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surrogate pair. Right: correlation of gradi-
ent alignment with the ratio between the
test error of the target model in the black-
and white- box setting.

8.1.3 Face Recognition

The last case we consider is a machine learning model which has to verify
the identity of specific persons from an image of their face. We use the
Labeled Faces in the Wild (LFW) dataset [217, 218], which includes faces
of famous peoples collected on Internet. We consider the six identities
with the largest number of images in the dataset, assigning to the person
withmost images the positive class, and labeling all the others as negative.
The resulting dataset consists of 530 positive and 758 negative images.
The classifiers and their hyperparameters are the same used for MNIST89
experiments, except that we set: (8) � = 0.1 for logisticL, (88)  = 1 for
ridgeH, (888) � = 0.001, � = 10 for SVM-RBFL, (8E) � = 0.001, � = 1000
for SVM-RBFH, and (E) weight decay to 0.001 for NNL. We run 10
repetitions with 300 samples in each training, validation and test set.

Results

The results for white-box and black-box poisoning attacks are shown
in Figure 8.18 and Figure 8.19, respectively. The main findings on trans-
ferability discussed for MNIST89 are confirmed by the analysis of our
metrics reported by Figure 8.20, Figure 8.21, and Figure 8.22, as well as
by the statistical tests for significance reported in Table 8.1. In this case,
there is no significant distinction between the mean transfer rates of high-
and low- complexity surrogates, probably due to the reduced size of the
used training sets.
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Figure 8.19: Black-box (transfer) poisoning attacks on LFW. Each cell contains the test error of the target classifier (in columns) computed
on the attack samples crafted against the surrogate (in rows). Each plot reports the results for an increasing fraction (from left to right)
{5%, 10%, 20%} of poisoning points. The test error of each target classifier in the absence of attack (target error) and under (white-box)
attack are also reported for comparison, along with the mean transfer rate of each surrogate across targets (rightmost column of each plot).
Darker colors mean higher test error, i. e., better transferability.
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Figure 8.20: Evaluation of our transferabil-
ity metrics for poisoning attacks on LFW.
Left: test error under attack vs average size
of input gradients (() for low- (denoted
with ‘×’) and high- complexity (denoted
with ‘◦’) classifiers. Left: average transfer
rate vs variability of loss landscape (+).
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Figure 8.21: Gradient alignment and per-
turbation correlation for poisoning at-
tacks on LFW. Left: Gradient alignment
' between surrogate (rows) and target
(columns) classifiers, averaged on the un-
modified test samples. Right: Pearson cor-
relation coefficient �(%, %̂) between white-
box and black-box perturbations at 20%
poisoning.
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Figure 8.22: Evaluation of our transferabil-
ity metrics for poisoning attacks on LFW.
Pearson (P) and Kendall (K) correlations
are reported along with the ?-values ob-
tained from a permutation test to assess
statistical significance. Left: Pearson coef-
ficient �(%̂, %) between black-box (%̂) and
white-box (%) perturbations (values in Fig-
ure 8.21, right) vs gradient alignment '
(values in Figure 8.21, left) for each target-
surrogate pair. Right: correlation of gradi-
ent alignment with the ratio between the
test error of the target model in the black-
and white- box setting.
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8.1.4 Summary

The experimental results reported in the previous sections demonstrate
the main finding of our analysis: attack transferability strongly depends on
the complexity of the target model, i. e., on its inherent vulnerability. Also,
this security-critical property of adversarial attacks can be measured
effectively by our proposed metrics, with interesting insights provided
by each of them.

Size of input gradients. Firstly, reducing the size of input gradients,
e.g., via regularization, may allow to learnmore robust classifiers not only
against evasion [219, 220, 221, 222] but also against poisoning availability
attacks. Also, in general, non-linear models are more robust than linear
models to both threats.

Gradient alignment. Secondly, even though it cannot be directly mea-
sured in black-box scenarios, transferability is also impacted by the
surrogate model’s alignment with the target model. For evasion attacks,
low-complexity surrogate classifiers provide stabler gradients which are
better aligned, on average, with those of the target models; thus, it is
generally preferable to use strongly-regularized surrogates. For poisoning
attacks, instead, gradient alignment tends to improve when the surrogate
matches the complexity (regularization) of the target (which may be
estimated using techniques from [223]).

Variability of the loss landscape. Third, surrogate loss functions that
are stabler and have lower variance tend to encourage gradient-based
attack algorithms to find better local optima (see Figure 8.23). As less
complex models exhibit a lower variance of their loss function, they
typically result in better surrogates.
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Figure 8.23: Conceptual representation of
transferability [16].We show the attack loss
as a function of a single feature, denoted in
this context as x. The top row includes two
surrogate models (high and low complex-
ity), while the bottom row includes two
models as targets. The adversarial samples
are represented as red dots for the high-
complexity surrogate, and as blue dots
for the low-complexity surrogate. If the
adversarial loss is below a certain thresh-
old (i. e., the black horizontal dashed line),
the point is correctly classified, otherwise
it is misclassified. The attack computed
against the high-complexity model (top
left) lays in a local optimum due to the ir-
regularity of the objective. This point is not
effective even against the same classifier
trained on a different dataset (bottom left)
due to the variance of the high-complexity
classifier. The attack computed against the
low complexity model (top right), instead,
succeeds against both low- and high- com-
plexity targets (bottom left and bottom
right, respectively).
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8.2 Relevance Vectors for Model (Global)
Explanations

In this section, we leverage our explainability technique based on highly-
interpretable relevance vectors (Section 6.1), to provide local and global
interpretations for linear and non-linear (including non-differentiable)
classifiers employed on Drebin [212], the Android malware detection
system introduced in Section 8.1.2. As previously hinted, this analysis
also provides some interesting insights on the security of such algorithms
against adversarial manipulations [21, 224].

Experimental Setup

Similarly to Section 8.1.2, we randomly select 60,000 apps from the Drebin
data to train the learning algorithms, and use the rest for testing. The
results are averaged over 5 independent repetitions.

We compare the standard Drebin implementation based on a linear
Support Vector Machine (SVM), against a SVM with the RBF kernel
(SVM-RBF), and a (non-differentiable) RandomForest (RF). As previously
discussed, a surrogate model is needed to interpret the latter; to this end,
SVMswith theRBFkernel have beenproposed as a reliable approximation
of ensemble classifiers [225]. The surrogate in this case is trained on the
training set relabeled by the random forest, providing an approximation
of the original decision function more than 99% accurate, on average, on
the corresponding test sets.

We optimize the hyperparameters of each classifier through a 3-fold cross-
validationprocedure. Inparticular,weoptimize� ∈ {10−2 , 10−1 , . . . , 102}
for both linear and non-linear SVMs, the RBF kernel parameter � ∈
{10−4 , 10−3 , . . . , 102} for the SVM-RBF, and the number of estimators
ne ∈ {5, 10, . . . , 30} for the random forest.

Results

To validate the detection performance of each classifier, we start by
reporting in Figure 8.24 the Receiver Operating Characteristic (ROC)
curve averaged over the 5 repetitions. We recall that, in the context of
malware detection, the detection rate represents the probability that a
malicious sample is correctly labeled by the classifier.
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Figure 8.24: Average ROC curves for the
given classifiers trained on the Drebin data.
The detection rate represents the probability
that amalicious sample is correctly labeled
by the classifier.

We then perform an analysis of the models learned by each algorithm
by applying our global explanation method (Equation 6.3) to M tests
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samples. As previously discussed, to improve the interpretability of the
results, we average the local relevance vectors r1 , r2 , . . . , rM over different
groups of samples: benign apps, malware, and the apps from the top-15
malware families with the largest number of available samples in the
Drebin dataset (see Table 8.3).

Family # Family # Family #

FakeInstaller 901 BaseBridge 318 Geinimi 88
DroidKungFu 640 Iconosys 149 DroidDream 81
Plankton 609 Kmin 144 LinuxLotoor 69
Opfake 591 FakeDoc 128 MobileTx 68
GingerMaster 332 Adrd 88 GoldDream 67

Table 8.3:Top 15malware families bynum-
ber of samples in the Drebin test set.

The results are shown in Figure 8.25. For each group of samples (benign
apps, malware, FakeInstaller apps, etc.), we report a compact and a
fine-grained analysis of the global relevance vectors r̄ . In the compact
analysis (top plots), we further average these vectors over each feature
sets (1 , . . . , (8 (Table 8.2). In the fine-grained analysis (bottom plots), we
report the global relevance for the top-44 features, selected by aggregating
the top 5 features with the highest average relevance value for each group
of samples. The components are sorted from top to bottom by their
corresponding feature sets.

This representation demonstrates how highly-interpretable are the rele-
vance vectors produced by our method, even for a non-skilled user. Being
the values normalized, considering their absolute values in the [0, 100]
range, one can immediately observe to which components is assigned the
highest or the lower relevance, and thus compare the behavior learned
by each classifier. Using other explainability techniques for which the
magnitude of each attribution depends on the characteristics of themodel,
a similar comparative analysis can be harder or impossible to perform.
Moreover, the tested classifiers, after being explained by our technique,
can be considered both simulatable and decomposable, as the user is able to
contemplate the entire model at once (using the compact analysis), or
evaluate the contribution of each of the relevant components (using the
fine-grained representation).

Discussion

The compact analysis highlights the importance of permissions ((2) and
suspicious API calls ((7 group) for the detection of malware. This is
reasonable, as the majority of the malicious samples require permissions
to perform specific actions, like stealing contacts and opening SMS and
other side communication channels. The fine-grained analysis provides a
more detailed characterization of the aforementioned behavior, highlight-
ing how each classifier learns a specific behavioral signature for each group
of samples. In particular, the different malware families are characterized
by their communication channels (e.g., SMS and HTTP), by the amount
of stolen information and accessed resources, and by specific application
components or URLs ((3 and (8).

This analysis also highlights a fundamental security-related vulnerability
of these classifiers: they tend to assign high relevance to a very small
set of features in each decision, both at a local and at a global scale. In
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Figure 8.25: Average attribution assigned to each feature as computed by our global explanation method (Equation 6.3) with respect to
benign apps, malware, and the apps from the top-15 malware families by number of available samples in the Drebin dataset (Table 8.3), for
SVM (left), SVM-RBF (middle) and RF (right). The compact representation (top) reports the feature relevance averaged over the feature sets
(1 , . . . , (8 (Table 8.2). The fine-grained representation (bottom) reports relevance values for the top-44 features with the highest average
relevance score, aggregated for each group of samples (benign apps, malware, FakeInstaller apps, etc.). Positive (negative) relevance
values denote malicious (benign) behavior.

fact, as discussed in Section 2.2.5, if the decision of a classifier relies on a
limited set of features, it is intuitive that detection can be easily evaded
by manipulating only few components, as also confirmed in previous
works [21, 224]. Conversely, if a model distributes the relevance more
evenly among features, evasion may be more difficult (i. e., requires a
higher number of manipulations, which may not be always feasible).

Another interesting observation relates to the transferability of evasion
attacks across different models, especially our findings on the gradients
alignment (see Chapter 5). It is clear that in the tested cases the expla-
nations depend more on the available training data rather than on the
specific learning algorithm: the three considered classifiers learn very
similar patterns of features relevance, as highlighted by both the compact
and the fine-grained representations in Figure 8.25. Being our explanation
method based on the gradient of the decision function of each classifier,
this simply means that models with similar global explanations, i. e.,
aligned gradients, can be fooled by the same adversarial perturbation,
coherently with the experimental results from Section 8.1. As a follow-up
to these findings, in Section 8.3 we statistically demonstrate how gradient-
based explanations are directly correlated to the robustness of machine
learning models to evasion attacks.
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3: For a fairer comparison of the results be-
tween the different explanation methods,
in this analysis we use the standard (non-
normalized) version of Gradient*Input.

8.3 The connection between Explanations and
Adversarial Robustness

In this section, we practically evaluate whether the synthetic metrics
introduced in Section 6.2 can be used effectively to analyse the security
properties of machine learning models in an adversarial environment.
Motivated by the insights on transferability obtained in Section 8.2 using
our gradient-based explanation method on three different models for
Android malware detection, and by the intuition that classifiers whose
attributions are more evenly distributed should also be the more robust
(as they rely on a broader set of features for the decision, see Section 2.2.5),
we statistically correlate the uniformity of the attributions (Equation 6.7)
with the adversarial robustness (Equation 6.9) to evasion attacks.

Experimental Setup

We expand the experimental framework introduced in Section 8.1.2 and
Section 8.2 by comparing, in addition to the standard Drebin linear
Support Vector Machine (SVM) and a SVM with RBF kernel (SVM-RBF),
a logistic regression (logistic), a ridge regression (ridge), and the secured
linear SVMwe proposed in [21], as defined by Equation 2.15 (Sec-SVM).

Using a 5-fold cross-validation procedure, we optimize the hyperpa-
rameters of each classifier in this case to maximize the detection rate
(i. e., the fraction of detected malware) at 1% false positive rate (i. e., the
fraction of legitimate applications misclassified as malware). In particu-
lar, we optimize � ∈ {10−2 , 10−1 , . . . , 102} for both linear and non-linear
SVMs and logistic, the kernel parameter � ∈ {10−4 , 10−3 , . . . , 102} for
the SVM-RBF, and the parameter  ∈ {10−2 , 10−1 , . . . , 102} for ridge.
For Sec-SVM, we optimize the parameters −wlb = wub ∈ {0.1, 0.25, 0.5}
and � ∈ {10−2 , 10−1 , . . . , 102}. When similar detection rates (±1%) are
obtained for different configurations of the hyperparameters, we select
the configuration corresponding to a more regularized classifier, as less
complex models are expected to be more robust under attack, according
to what we demonstrated in Section 8.1. The typical values of the afore-
mentioned hyperparameters found after cross-validation are � = 0.1 for
SVM,  = 10 for ridge, � = 1 for logistic, � = 1 and −wlb = wub = 0.25
for Sec-SVM, � = 10 and � = 0.01 for SVM-RBF.

We compute the explanations for 1, 000 malware samples randomly
chosen from the Drebin test set. We compare the relevance vectors, w.r.t
the malicious class, obtained using the Gradient*Input method Equation
2.203 , with the explanations based on the simple Gradient (Equation
2.17), and the ones computed using Integrated Gradients (Equation 2.22),
with x0 = 0 as the baseline. We recall that a positive (negative) relevance
value in our analysis denotes malicious (benign) behavior. Given the
high sparsity ratio of the Drebin dataset, we use D = 1, 000 to compute
the explanation evenness metrics, as detailed in Section 6.2.1.

Results

We start by expanding the detection performance analysis previously
reported in Figure 8.24, with the addition of logistic, ridge, and Sec-SVM
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4: Our previous work [21] provides an
in-depth experimental analysis of the Sec-
SVM algorithm.

5: f8bcbd48f44ce973036fac0bce68a5d5
6: eb1f454ea622a8d2713918b590241a7e

classifiers. The new Receiver Operating Characteristic (ROC) curves,
averaged over the 5 repetitions, are reported in Figure 8.26. We recall
that the detection rate represents the probability that a malicious sample is
correctly labeled by the classifier (true positive rate, see Section 2.1.2).
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Figure 8.26: Average ROC curves for the
given classifiers trained on the Drebin data.
Sec-SVM is the secured linear SVM we pro-
posed in [21]. The detection rate represents
the probability that a malicious sample is
correctly labeled. The false positive rate
(1%), which is used for computing the se-
curity evaluation curves in Figure 8.27, is
highlighted with a dashed black line.

To obtain a reference indication of the security of each classifier, to be
later compared with the results of our correlation analysis, we perform a
white-box evasion attack against each model. 1, 000 malware samples are
randomly chosen from the Drebin dataset to this end, and we simulate
an adversary trying to make them misclassified as benign. The resulting
security evaluation curves are shown in Figure 8.27, which reports the
variation of the detection rate at 1% false positive rate as the number of
modified features � increases. We can notice that, while the Sec-SVM
classifier provides a slightly worse detection rate compared to the other
models (Figure 8.26), it is highly robust against evasion attacks. In fact,
more than 25 features (on average) should be altered in each malicious
sample to evade this robust classifier.4 Conversely, all the other models
are evaded after 5 to 10 feature additions. Notably, the non-linearity of the
SVM-RBF helps this model maintain a higher robustness to adversarial
examples compared to the other linear classifiers.
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Figure 8.27:White-box evasion attacks on
the Drebin data. Detection rate at 1% false
positive rate against an increasing num-
ber of added features �. We can see how
the Sec-SVM, despite providing a slightly
lower detection rate compared to the other
tested classifiers (Figure 8.26), requires on
average more than 25 different new fea-
ture additions to the original apps to be
fooled by the attacker.

Is adversarial robustness correlated with explanation evenness?

We now investigate the connection between adversarial robustness and
the evenness of gradient-based explanations. We start with two illustra-
tive examples based on local explanations. Table 8.4 shows the top-10
influential features for twomalware samples of the FakeInstaller5 and
Plankton6 families, reported for the SVM-RBF and Sec-SVM algorithms,
and obtained through the Gradient*Input technique. Both classifiers
correctly label the samples as malware.



8 Experimental Analysis 94

SVM-RBF (E1 = 46.24%, E2 = 22.47%, �min = 6)
Set Feature Name A (%)

S2 SEND_SMS 10.35
S7 android/telephony/TelephonyManager

;->getNetworkOperator
10.05

S4 LAUNCHER -8.89
S5 android/os/PowerManager$WakeLock

;->release
-8.01

S2 READ_PHONE_STATE 5.03
S2 RECEIVE_SMS -5.00
S3 c2dm.C2DMBroadcastReceiver 4.56
S2 READ_SMS 3.52
S4 DATA_SMS_RECEIVED 3.50
S5 android/app/NotificationManager

;->notify
-3.49

Sec-SVM (E1 = 73.04%, E2 = 66.24%, �min = 31)
Set Feature Name A (%)

S2 READ_PHONE_STATE 3.51
S7 android/telephony/TelephonyManager

;->getNetworkOperator
3.51

S2 SEND_SMS 3.51
S3 c2dm.C2DMBroadcastReceiver 3.51
S2 INTERNET 3.44
S3 com.software.application.ShowLink 3.39
S3 com.software.application.Main 3.39
S3 com.software.application.Notificator 3.39
S3 com.software.application.Checker 3.39
S3 com.software.application.OffertActivity 3.39

SVM-RBF (E1 = 60.74%, E2 = 25.84%, �min = 31)
Set Feature Name A (%)

S4 LAUNCHER -1.89
S7 android/net/Uri;->fromFile 1.34
S5 android/os/PowerManager$WakeLock

;->release
-1.25

S2 INSTALL_SHORTCUT 1.23
S7 android/telephony/SmsMessage

;->getDisplayMessageBody
-1.21

S7 android/telephony/SmsMessage
;->getTimestampMillis

-1.20

S2 SET_ORIENTATION -1.20
S2 ACCESS_WIFI_STATE 1.15
S4 BOOT_COMPLETED 1.08
S5 android/media/MediaPlayer;->start -1.06

Sec-SVM (E1 = 63.14%, E2 = 52.70%, �min = 39)
Set Feature Name A (%)

S2 ACCESS_NETWORK_STATE 0.93
S2 READ_PHONE_STATE 0.93
S6 READ_HISTORY_BOOKMARKS 0.93
S7 android/telephony/TelephonyManager

;->getNetworkOperatorName
-0.93

S6 ACCESS_NETWORK_STATE -0.93
S7 android/telephony/SmsMessage;-

>getDisplayOriginatingAddress
0.93

S7 android/telephony/TelephonyManager
;->getNetworkOperator

0.93

S7 android/net/Uri;->getEncodedPath -0.93
S2 SET_ORIENTATION -0.93
S7 java/lang/reflect/Method;->invoke 0.93

Table 8.4: Top-10 influential features and
corresponding Gradient*Input relevance
(A %) for two malware apps of the Drebin
dataset, one from the FakeInstaller fam-
ily (top) and one from the Plankton family
(bottom). Notice that the minimum num-
ber �min of features to add to evade the
classifiers increaseswith the evennessmet-
rics E1 and E2.

Looking at the relevant features of the first sample, the FakeInstaller
malware, we discover how both the classifiers identify the cellular- and
SMS-related features, e.g., the GetNetworkOperator() method or the
SEND_SMS permission, as highly relevant. This is coherent with the actual
behavior of the malware, since its goal is to send SMS messages to
premium-rate numbers. With respect to the relevance values, the first
aspect to point out comes from their relative magnitude, expressed
as a percentage in Table 8.4. In particular, we observe that the top-10
relevance values for SVM-RBF vary, regardless of their signs, from 3.49%
to 10.35%, while for Sec-SVM the top values lie in the 3.39%–3.51% range.
This suggests that SVM-RBF assigns high prominence to few features;
conversely, Sec-SVM distributes the relevance values more evenly. This
behavior is also represented by the synthetic evenness measures E1 and
E2, reported in Table 8.4, both showing higher values for the Sec-SVM.

In Table 8.4 we also report the �min value, i. e., the minimum number of
features to add to the malware to evade the classifier. We can notice how
the �min measure is strictly related to the evenness distribution, since
higher values of E1 and E2 correspond to higher values of �min. This is
in accordance to the hypothesis that a higher effort from the attacker is
required to evade a model which gradient-based attributions are more
uniform. In the case of this first malware, it is possible to identify a
clear difference between the behavior of SVM-RBF and Sec-SVM: the
diversity of their evenness metrics, which causes the �min values to be
quite different as well, indicating that the SVM-RBF is more susceptible
to an evasion attack compared to the Sec-SVM.

Conversely, the attributions (regardless of the sign) and the evenness
metrics computed on the second sample present similar values, inside
the 1.89%–0.93% range. Such behavior is also reflected by the associated
�min values, which are over 30 (feature additions) for both models. In this
case, the relevance values are more evenly distributed, which indicates
that the adversary needs to modify more components of the application
in order to evade each classifiers.
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7: The only off-scale value is Pearson (P)
on E1 for the Gradient method, probably
caused by its sensitivity to outliers.

We now correlate the explanation evenness metrics with the adversarial
robustness, as defined by Equation 6.9. Figure 8.28 shows the measures
computed on 100 randomly-selected samples from the test set of Drebin,
reported for each explainability technique. From this broader view,we can
observe how the evenness values calculated on top of the Gradient*Input
and Integrated Gradients explanations present a significant connection
to the adversarial robustness. Conversely, it seems that such relation
does not subsist for the Gradient technique, and specifically against the
linear classifiers (SVM, logistic, and ridge), whose occurrences in Figure
8.28 are perfectly vertical-aligned. A simple explanation of this behavior
can be provided by recalling that the gradient of the decision function
w.r.t the input sample is given, for these classifiers, by the vector of the
parameters itself. As a result, the explanations computed by the Gradient
method are constant across all the samples, and the values of the relative
evenness metrics are constant as well.

In order to assess the statistical significance of these plots, in Table 8.5
we also report the associated correlation values, computed with three
different metrics: Pearson (P), Spearman Rank (S), Kendall’s Tau (K). As
we obtain ?-val� 0.05 in almost all cases7 , these statistical tests confirm
the validity our findings.
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Figure 8.28: Evaluation of the adversarial robustness �' against the evenness E1 (top plots), E2 (bottom plots) metrics for the different
gradient-based explanation techniques applied to 1, 000 randomly-selected samples of the test set (only 100 samples are shown for
compactness). The statistical significance of these plots is assessed in Table 8.5 by means of the relative correlation coefficients and ?-values.

Is adversarial robustness correlated with detection rate?

Finally, we inquire whether the connection between the evenness met-
rics and the detection performance of a classifier can provide a global
assessment of its robustness. Figure 8.29 reports the correlation between
the explanation evenness and the mean detection rate under attack,
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Gradient Gradient*Input Int. Gradients

E1 E2 E1 E2 E1 E2

logistic P
S
K

0.67, <1e-5
0.67, <1e-5
0.51, <1e-5

0.75, <1e-5
0.72, <1e-5
0.54, <1e-5

0.67, <1e-5
0.67, <1e-5
0.51, <1e-5

0.75, <1e-5
0.72, <1e-5
0.54, <1e-5

ridge P
S
K

0.48, <1e-5
0.58, <1e-5
0.41, <1e-5

0.56, <1e-5
0.67, <1e-5
0.49, <1e-5

0.48, <1e-5
0.58, <1e-5
0.41, <1e-5

0.56, <1e-5
0.67, <1e-5
0.49, <1e-5

SVM P
S
K

0.68, <1e-5
0.66, <1e-5
0.49, <1e-5

0.70, <1e-5
0.73, <1e-5
0.54, <1e-5

0.68, <1e-5
0.66, <1e-5
0.49, <1e-5

0.70, <1e-5
0.73, <1e-5
0.54, <1e-5

SVM-RBF P
S
K

0.03, 0.769
0.46, <1e-5
0.34, <1e-5

0.46, <1e-5
0.70, <1e-5
0.51, <1e-5

0.82, <1e-5
0.94, <1e-5
0.81, <1e-5

0.82, <1e-5
0.94, <1e-5
0.80, <1e-5

0.89, <1e-5
0.93, <1e-5
0.78, <1e-5

0.91, <1e-5
0.93, <1e-5
0.77, <1e-5

Sec-SVM P
S
K

0.73, <1e-5
0.76, <1e-5
0.62, <1e-5

0.76, <1e-5
0.78, <1e-5
0.67, <1e-5

0.73, <1e-5
0.76, <1e-5
0.62, <1e-5

0.76, <1e-5
0.78, <1e-5
0.67, <1e-5

Table 8.5: Correlation between the adver-
sarial robustness �' (Equation 6.9) and
the evenness metrics E1 and E2 (respec-
tively, Equation 6.5 andEquation 6.6). Pear-
son (P), Spearman Rank (S), Kendall’s Tau
(K) coefficients along with corresponding
?-values. The linear classifiers lack a corre-
lation value since the evenness is constant
(being the gradient constant as well), thus
resulting in a non-defined correlation.

calculated for � in the range [1, 50]. Similarly to the previous tests, the
synthetic metrics computed on the explanations from Gradient*Input
and Integrated Gradients methods present a significant connection to the
detection rate in most cases, also witnessed by the ?-values largely under
0.05, while the correlation of the Gradient technique is again lower, due
to the explanations being constant for the linear models.
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Figure 8.29: Evaluation of the evenness metrics �1 (top plots) and �2 (bottom plots) against the detection rate (at FPR 1%) for the different
gradient-based explanation techniques applied on 1, 000 randomly-selected samples from the test set. On top of each plot we report the
correlation values, using Pearson (P), Spearman Rank (S), Kendall’s Tau (K) coefficients, along with the corresponding ?-values.
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While pattern recognition systems based onmachine learning models are
increasingly being applied to many practical applications, the research
on defending them against adversarial attacks should be considered still
at a very early stage. The number of scientific works published daily
on this topic, reporting new discovered vulnerabilities and new attack
strategies, is a worrying signal for the general public, which leads to
a very low trust in these automated decision-makers. In addition, the
relatively limited work that has been done until now on the techniques
to explain their behavior has not helped to this end. Machine learning
based systems are still in need of a single clear theoretical framework
that defines their behavior when employed in adversarial environments,
including proper metrics to quantitatively evaluate their performance,
security, and trustworthiness. We believe this thesis provided several
contributions toward this direction.

First, in Chapter 4we proposed a unified framework for crafting evasion and
poisoning attacks through a gradient-descent optimization algorithm. As
by our knowledge, this was the first structured attempt to jointly tackle
the two different types of adversarial threats with a single mathematical
formulation. Notably, we provided the challenging derivation of poi-
soning attacks for both support vector machines and logistic regression.
Our attack framework can be applied effectively to comprehensive threat
models that describe a wide range of possible applications, by including
the different goals an adversarial may have (integrity and availability),
the different knowledge of the model which may be available (white-box,
gray-box, or black-box), as well as the different capabilities the attacker
may have to influence the targeted system.

In Chapter 5 we provided the first thorough evaluation of one of the
arguably most insidious properties of adversarial attacks: transferability,
the ability of an attack crafted against a machine learning model to be
effective against a different one, potentially unknown. We provided a
formal definition in the context of our unified attack framework, and then,
in Section 8.1, we presented a comprehensive evaluation considering
both evasion and poisoning availability attacks. Our experiments demon-
strated that attack transferability strongly depends on the complexity
of the target model, i. e., on its inherent vulnerability. In particular, we
observed that for evasion attacks, an adversary might prefer to decrease
the complexity of the surrogate model by adjusting the hyperparameters
of its learning algorithm, as this results in adversarial examples that
transfer better to a wide range of models. For poisoning attacks, the best
surrogates are generally models with similar levels of regularization
as the target. The reason is that the poisoning objective function has a
relatively low variance for most classifiers, and the gradient alignment
between the surrogate and the target becomes a more critical factor.
These conclusions have been supported by an analysis of three newly
proposed metrics, (8) size of input gradients, (88) gradient alignment, and
(888) variability of the loss landscape, which can be used to quantitatively
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measure transferability and compare the robustness of different machine
learning models. We believe this analysis may increase the awareness of
the community on the issue of attack transferability, especially to design
more robust algorithms in the future.

Afterward, in Chapter 6, we presented a study on how gradient-based
explanation methods can be leveraged to compare different models with
respect to their learned behavior and get insights into their security
properties, like adversarial robustness or the resilience to transfer attacks.
Also, concepts like the user’s trust in the system’s decision cannot
be measured using standard performance metrics, as they are strictly
related to the ability of a system to clearly explain its outputs to humans.
Thus, comparing the behavior of different systems based on these user-
dependent aspects is still an open question, also because of the strict
connection betweenmost interpretability techniqueswith the attributes of
the machine learning model they try to explain, like the hyperparameters
or the magnitude of the output scores.

To overcome this limitation, in Section 6.1 we proposed a novel tech-
nique that, by normalizing the attributions obtained using the traditional
Gradient*Input method, allows to compare different classifiers indepen-
dently from their specificities. Our local and global relevance vectors are
highly-interpretable, as the attribution assigned to each feature is limited
inside a definite interval. Notably, ourmethod can be successfully applied
even in the case of black-boxes or non-differentiable models, allowing to
analyze anymachine learning based system. Moreover, this approach can
also help to understand the security-related properties of the algorithms,
including the vulnerability to transfer attacks. From our experiments
of Section 8.2, in fact, it became clear that many classifiers learn very
similar patterns of feature relevance from the available training data.
This behavior is fascinating as, being our method based on the gradient
of the decision function w.r.t. the input sample, it merely means that
models with similar global explanations, i. e., aligned gradients, can be
fooled by the same adversarial perturbations, in agreement to what we
observed in Section 8.1 evaluating transferability.

In Section 6.2we proposed to correlate few syntheticmetrics thatmeasure
the uniformity of the attributions and the adversarial robustness to statistically
demonstrate this evident connection between gradient-based explana-
tions and the security properties of machine learning models. Inspired by
one of the known vulnerabilities of linear classifiers, i. e., that models that
distribute the relevance over a broader set of features should also be more
robust, we showed in Section 8.3 that more uniform explanation vectors
correspond to less vulnerability to evasion attacks. We believe that this
finding will greatly ease the design process of machine learning based
systems, as gradient-based explanations may be leveraged to provide a
useful indication of the adversarial robustness of a model, without the
necessary need of performing a costly full security evaluation, especially
when advanced learning algorithms like neural networks are involved.

Finally, in Chapter 7 we presented secml, an open-source Python library
that aims to provide all the tools for developing and evaluating secure
and explainable machine learning based systems, without the need of
integrating multiple third-party libraries. secml not only implements
most of the functions available in the most popular scientific libraries,
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including numpy, scipy, and PyTorch, but also allows to conduct a full
security evaluation of the implemented system by crafting evasion and
poisoning attacks using the built-in algorithms. Last but not least, it pro-
vides many techniques to produce post-hoc local and global explanations,
which may help the engineers increase the users’ trust in their newly
developed algorithms.

Future Work

Different avenues for future research works are still open after this thesis.
Firstly, our analysis of the transferability issue has been carried out on
few different application cases, but all of them designed to use binary
classifiers. While our unified attack framework can be easily extended to
the multiclass case, similarly to what we have already done for evasion
attacks in [20], it would be interesting to prove the applicability of our
proposed metrics in a multiclass classification setting. We may also
consider in the future a range of gray-box models in which attackers
have only partial knowledge of the machine learning based system. The
different attack scenarios may in fact provide additional constraints that
could impact the transferability of the attacks in interesting ways.

Secondly, different strategies to provide global explanations using our
proposed technique could be explored. In fact, merely averaging the
local relevance vectors can have the effect of softening the attribution of
features that are highly relevant only for a few samples. In the future,
we may test the effect of weighting the explanations before averaging,
or more advanced solutions like the combination of related explanation
vectors (i. e., crafting global relevance prototypes).

We also plan to validate our analysis on the connection between gradient-
based explanations and adversarial robustness on other malware de-
tectors in addition to Drebin, as well as considering other applicative
domains (e.g., PDFmalware detection or web application security), learn-
ing algorithms (e.g., neural networks), and poisoning attacks.Moreover, it
could be interesting to verify if our correlation metrics can be successfully
applied when the attacker does not know the classifier parameters, or
when the model is not differentiable, e.g., by leveraging a surrogate clas-
sifier. Finally, another interesting research avenue may be to modify the
objective functions used for learning themodels by adding a penalty term
inversely proportional to the explanation evenness. This should force the
algorithms to learn models with more evenly distributed attributions
and, consequently, increase the robustness to adversarial attacks.

Closing Remarks

We hope that the contributions of this thesis will capture the attention of
the scientific community to improve the research in both the adversarial
machine learning and explainable machine learning fields. There is in-
deed an increasing number of applications that deal with these problems,
and thus the demand for more secure and interpretable implementations
of pattern recognition and machine learning techniques is expected to
soar in the following years.
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