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Abstract Curve-skeletons are compact and semantically
relevant shape descriptors, able to summarise both topology
and pose of a wide range of digital objects. Most of the state-
of-the-art algorithms for their computation rely on the type
of geometric primitives used and sampling frequency. In this
paper, we introduce a formally sound and intuitive defini-
tion of a curve-skeleton, then we propose a novel method
for skeleton extraction that relies on the visual appearance
of the shapes. To achieve this result, we inspect the proper-
ties of occluding contours, showing how information about
the symmetry axes of a 3D shape can be inferred from a
small set of its planar projections. The proposed method is
fast, insensitive to noise and resolution, capable of working
with different shape representations, and easy to implement.

Keywords Curve-skeleton · Perceptual shape analysis

1 Introduction

Digital objects are flooding our environments: whether they
are reproductions of real existing objects or produced by
artists and designers, they are more and more complex bear-
ing fine details. Skeletons and subdivisions in parts (seg-
mentations) are compact and semantically sound approxi-
mations of the digital objects very useful in several differ-
ent fields like, to name a few, computer animation, medical
imaging, mechanical design, and shape archival, matching
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and retrieval. Focusing on skeletons of three-dimensional
objects, we can distinguish between surface-skeletons and
curve-skeletons, where the former adhere more directly to
the definition of collecting all the equidistant points from the
boundaries of the shape, while the latter are collections of
curves, and thus are, by definition, more compact and sim-
ple to manipulate than the former. Especially when dealing
with the animation of digital characters, the curve-skeleton
is an extremely important feature since it is the best guid-
ance for changing the pose of the character and performing
interpolations among poses.

Digital machineries (e.g. range scanners) are very good
at capturing, even in the finer details, the surface of a shape,
while human sight and perception are enormously more ef-
ficient in capturing the essentials of a shape: how many sig-
nificant parts compose it, where the joints are, and so on. In
other words, a good way to compute the curve-skeleton of a
digital object is to try to mimic what the human mind does
when looking at an object. This assumption is the basis of
our approach as described in the rest of the paper.

2 Related work

Previous methods for curve-skeleton extraction can be
sorted depending on the shape representation used as in-
put. There are algorithms that are able to work on triangle
meshes (e.g. [3, 8, 11, 27, 28]) which is the usual represen-
tation found in computer animation, others are well suited
to process point clouds (e.g. [7, 29]) which range scanners
produce as output with no further post-processing, and oth-
ers with discrete volumes (e.g. [10, 12, 17, 31]) since this is
the format of acquisition for machinery like CAT and MRI.
Most of these algorithms are able to perform well only when

Author's personal copy

mailto:riccardo@unica.it
mailto:marco.livesu@unica.it


M. Livesu, R. Scateni

Fig. 1 Some results achieved with our method. The algorithm is able
to perform with shapes of any genus, and with multiple connected com-
ponents. The topology of the shape is preserved as long as the occlud-

ing contours used to extract the skeletons carry enough information to
observe it

the model resolution is fine enough, leading to unstable re-
sults when they are applied to coarse models. As skeletons
are supposed to be high-level descriptors, the difference
between the descriptors computed starting from high and
low resolution models should be negligible. These are the
biggest drawbacks of the state-of-the-art skeleton extraction
algorithms: they are too tightly coupled with the geometric
primitives and sampling frequency. They are working more
on the machine side, focusing on primitives and resolution,
than on the human side, focusing on appearance.

2.1 Main contribution

We give a formal definition of a curve-skeleton of digital
objects built as unions of Generalised Cones. We extend the
contour interpretation to partially occluded silhouettes, pro-
viding a definition of a locally unique symmetry point and
moving the early visual perception theory from the global
to the local setting. We formulate an algorithm to extract
curve-skeletons from a set of occluding contours (Fig. 1).

3 Theoretical background

Shape analysis and recognition problems can be approached
from another point of view, focusing more on appearance

and less on primitives. We largely based our work on the
perception-based approach developed during the 1970s.
People from M.I.T. Artificial Intelligence Laboratory, in
particular David Marr, developed the theory of early visual
perception, a study of how the human brain behaves while
looking at an image containing the projection of a real ob-
ject. We briefly recall the background of this theory with our
contributions before entering into the details of our proposed
algorithm for skeleton extraction.

3.1 The generalised cones’ theory

According to the early perception theory, in [20] Marr and
Nishihara stated that only the shapes belonging to the class
of generalised cones can be fruitfully analysed. A gener-
alised cone is the surface swept out by moving a cross-
section of constant shape but smoothly varying size along
an axis [4], or more formally

Definition 1 (Generalised cone) Let ρ(r, θ) be a simple
closed planar curve twice continuously differentiable, and
let h be a twice continuously differentiable positive real
function. Let Λ be a line at some angle ψ to the plane con-
taining ρ, and denote positions along Λ with z. Then, the
surface G C = h×ρ is a generalised cone with axis Λ, cross-
section ρ, scaling function h, and eccentricity ψ .
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Extracting curve-skeletons from digital shapes using occluding contours

There are strong links be-
tween generalised cones and
curve-skeletons. First of all,
only objects that can be de-
scribed in terms of generalised
cones can be well described by
curve-skeletons. It is really dif-
ficult, for instance, to imagine

the skeleton of a mug, a door, or a crumpled newspaper be-
cause the natural axes of these shapes are either too weak to
describe them or external to the shape. In [9], Cornea et al.
suggested that the skeleton of a shape having a cavity should
contain at least one loop around it but this would completely
break down the topological connection between an object
and its skeleton. To describe shapes containing tunnels or
deep cavities, mono-dimensional shape descriptors like [21]
or [22] would be no longer suitable.

We can express the relation between the generalised
cones’ primitives and curve-skeletons, formalising their de-
scriptions. Given a real object O,

O =
n⋃

i=1

G Ci (Λi, ρi, hi,ψi),

composed of n generalised cones, according to the ideas ex-
pressed in [20], we define the skeleton of O as the union of
the axes of each generalised cone, that is,

Skel(O) =
n⋃

i=1

Λi.

Sticking to this definition of a skeleton, in the remainder
of the paper, we will introduce a new algorithm for curve-
skeleton extraction that makes use of the tools provided by
the early visual perception framework to catch the axes of
the generalised cones composing a shape.

In [19], Marr formally proved that, under a few hypothe-
ses, the axes Λi of an object O may be found just by
analysing one of its occluding contours (see [30]). A similar
result, for a narrower set of shapes, has been achieved some
years later by Rao and Medioni. In [24], they proved that the
contour of a solid of revolution is symmetric about the pro-
jection of its axis for any view. These results can therefore
be used to find the component axes of 3D objects without
any a priori knowledge about their shapes.

The main drawbacks of the perceptual approach arise in
the analysis of axes which are either foreshortened or hidden
behind another part of the shape (i.e. occluded). To over-
come the foreshortening problem, we decided to feed our
algorithm with a set of silhouettes gathered from different
points of view, making sure that every single axis is not fore-
shortened in at least one of them. To handle occlusions, we
have moved Marr theory from the global to the local set-
ting, so that we could to get as much information as possible
from every single contour, either containing occlusions or

not. The multi-view approach is also justified by the fact that
shapes belonging to the class of unions of generalised cones
can have complex topology or pose. For these shapes a view
point that ensures that all the components are not occluded
or foreshortened sometimes does not exists at all.

In the literature, there are several examples of centreline
extraction from multiple views, especially in the Computer
Vision field. Bullitt et al. [6] used stereo views to extract
centrelines from medical datasets. Yoon et al. [32] employed
a set of real cameras to catch many different silhouettes of
a human, gather them together to compose a discrete vol-
ume, and then apply a curve-skeleton extraction algorithm
based on Gradient Vector Flow. However, the theory of oc-
cluding contours has not ever been taken into account until
recently. In a previous work [18] we assumed that the medial
axes of a set of silhouettes of a 3D model were projections
of the curve-skeleton of the shape. Then, we gathered the
medial axis points in the discrete 3D space in order to re-
construct the skeleton with an ad hoc heuristic. Even though
our assumption did not stand for every medial axis point of
each silhouette, we have been able to achieve good results
for a wide class of shapes of different topology and genus.
Unfortunately, the drawbacks of our approach became ev-
ident when the number of occlusions was large. In these
cases, the medial axis projected in the 3D space will bring
a large amount of noise, making the skeleton extraction dif-
ficult and unstable. Nothing can be done to distinguish be-
tween noise and skeleton points because they both project
into every single considered contour. Moreover, our method
did not guarantee the skeleton paths to be centred because a
discrete grid was used during the extraction and the smooth-
ness was achieved only in post processing, thus deviating
the curves from the medial lines of the shape. The method
proposed in this paper is able to perform better with any
kind of shape, producing incredibly noise-free point clouds
(see Fig. 2) from which medial and naturally smooth skele-

Fig. 2 Two raw point clouds produced by our method (left) and [18]
(right) for the Olivier hand model. The same set of occluding contours
has been used to make the comparison. By back-projecting only occlu-
sion-free locally unique symmetry points, we can fully get rid of the
noise, without any cleaning or post-processing. Moreover, working in
the continuous setting, the skeleton paths suggested by the cloud are
naturally smooth and appealing

Author's personal copy



M. Livesu, R. Scateni

ton curves can be easily computed, without requiring any
further post-processing.

The advantages of the perceptual approach are several.
Firstly, it is usually faster than the state-of-the-art counter-
parts; secondly, it is completely unrelated with the geomet-
ric primitives used to describe the shape so that it is possible
to extract coherent skeletons from any kind of representa-
tion (e.g. polygon meshes, implicit surfaces, parametric sur-
faces). Moreover, as long as the appearance of the object is
preserved, resolution and noise has a negligible impact on
the final result.

Most natural and artificial objects are unions of smooth
elongated parts, and can thus be described as unions of gen-
eralised cone primitives.

3.2 Inspecting symmetries

The symmetry set of a domain Ω ∈ R
2 is the set of the cen-

tres of circles tangent to the boundary ∂Ω at least two dis-
tinct points. We here describe the Smoothed Local Symme-
try, a local shape descriptor introduced in [5].

Let a, b be two points
on the boundary ∂Ω , and u
the unit vector in the direc-
tion ab. By definition, the
midpoint of the segment
ab belongs to SLS(Ω) if
and only if the angle α be-
tween u and the outward
normal at a is equal to the
angle β between u and the
inward normal at b.

SLS is a very powerful shape descriptor as it is able to
catch all the local symmetries of a contour; to have an ex-
ample, one can look at Fig. 3, where a comparison with the
Medial Axis Transform (MAT) is provided. This is partic-
ularly interesting because it makes the characterisation of
locally unique symmetry points easier. A symmetry point
p = (a + b)/2 ∈ SLS(Ω) is said to be locally unique if and
only if

ab ∩ SLS(Ω) = p. (1)

For example, looking at Fig. 3, one can note that most
of the SLS points in the surroundings of the sharp corners
of the boundary are not locally unique. When a point is lo-
cally unique, the distance ‖a − b‖ can be used as an approx-
imation of the local thickness of the shape. This particular
property will be discussed in the remainder of the paper.

3.3 Analysis of occluding contours

When humans look at a silhouette, they perceive it as a par-
ticular 3D shape even though such silhouette could, in the-
ory, be generated by an infinite number of shapes. In this

Fig. 3 A comparison between Medial Axis Transform (left) and
Smoothed Local Symmetry (right). SLS is more powerful as it is able
to capture all the symmetries of the figured shapes. Symmetry points
are locally unique when their contact lines with the boundary do not
intersect each other at any other symmetry point (close-up): red, blue
and violet symmetry points are not unique, as their segments intersect
each other, while the green point is locally unique

section, we will briefly introduce the theory of early visual
perception, and we will discuss some improvements of it,
useful to analyse occluded silhouettes.

Let G C be a generalised cone, and let Ω be its silhou-
ette as seen from a viewpoint v, with πv being the linear
projection which defines the mapping πv : G C → Ω . We
call occluding contour the boundary ∂Ω , and contour gen-
erator (G C∂Ω ) the set of points p ∈ G C that project onto
∂Ω . In [19], Marr proved that, given a generalised cone
G C(Λ,ρ,h,ψ) and a projection function πv , if the axis of
symmetry of the projection πv(G C) is unique, then it is the
actual projection of the axis of symmetry Λ. To prove this,
he assumed the following restrictions to be globally satis-
fied:

R1: Each point on the contour generator projects to a dif-
ferent point on the contour, that is, G C is convex as
seen from v or, in other words, the inverse π−1

v : ∂Ω →
G C∂Ω is one-valued;

R2: Nearby points on the contour arise from nearby points
on the contour generator, that is, the mapping πv :
G C∂Ω → ∂Ω is continuous;

R3: The contour generator is planar.

The first thing we observed is that there is an interesting
link between Marr’s theory and the Smoothed Local Sym-
metry (SLS). When restrictions R1–R3 are satisfied, the fol-
lowing relation is satisfied as well

πv(Λ) ⊆ SLS(Ω). (2)

This is straightforward to prove because, by construction,
each symmetry point in Ω belongs to SLS(Ω). Therefore,
if Λ projects to the axis of symmetry of Ω , it has to belong
to SLS(Ω). It is important to notice that, if the axis of sym-
metry of Ω is unique, then πv(Λ) = SLS(Ω). In any other
case, at least one symmetry point p such that p ∈ SLS(Ω)
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and p /∈ πv(Λ) must exist. One should note that the rela-
tion above is true only for medial descriptors able to catch
every possible symmetry. For example, for the Medial Axis
Transform (MAT) it would be false in the surroundings of
the sharp corners of the shapes in Fig. 3.

What happens when the silhouette is partially occluded?
Should we discard it? Or can we still get some good in-
formation from it? The first thing to do is to get rid of
the symmetry points that have been affected by occlusions.
Occlusion-free symmetry points can be locally characterised
exploiting the locality properties of SLS. To do this, we de-
fine a function Φ : Ω → I

+ that assigns to each point of
the silhouette the number of points projected over it by πv .
Since each symmetry point p = (a + b)/2 ∈ SLS(Ω) de-
pends only on the behaviour of the boundary restricted to a

and b, we can state that p is occlusion-free if and only if
each point in ab is occlusion-free, that is,

∀q ∈ ab, Φ(q) ≤ 2. (3)

Restrictions R1–R3 can be formulated in local fashion
too, so now we are ready to define an occlusion-aware equiv-
alent of the Marr’s theory. Let p = (a + b)/2 be an inner
point of SLS(Ω), if the symmetry is locally unique and
occlusion-free in p, and if restrictions R1–R3 locally hold,
then

p ∈ π(Λ). (4)

Firstly, if R1–R3 are satisfied in a and b then p will al-
ways be an SLS point, regardless of the behaviour of the rest
of the boundary ∂Ω . Secondly, let Ω1,Ω2 be the connected
components of Ω\ab. By construction, SLS is connected,
hence two points λ1 ∈ Ω1, λ2 ∈ Ω2 always exist. Moreover,
as the axis Λ and the mapping π are linear, π(Λ) and ab

have exactly one intersection. Therefore, due to (1) and (2),
they intersect in p.

4 Curve-skeleton extraction

We propose here a novel curve-skeleton extraction algo-
rithm that exploits the theory presented in the previous sec-
tion to extract curve-skeletons of a 3D shape just by look-
ing at multiple silhouettes of it. The idea is, at a high-level,
very simple and intuitive. Firstly, we gather together multi-
ple occluding contours of a 3D shape as seen from differ-
ent viewpoints. Secondly, we extract from each contour the
symmetry points that are projection of the axes of the gen-
eralised cones composing the object. We eventually match
such symmetry points among the collected views in order
to discover the axes in the 3D space using basic computer
vision tools.

4.1 Silhouette analysis

The usage of a local analysis of the occluding contours is the
major innovation of this paper and also the most innovative
part of the proposed method over our approach previously
presented in [18]. Basically, it consists in taking silhouettes,
calculating their symmetries, and filtering all the symmetry
points that are not unique or occlusion-free. To compute the
SLS, an algorithm is proposed in [5]. While uniqueness can
be easily checked during the SLS calculation, to check if a
point is occlusion-free or not, a discrete version of the func-
tion Φ must be implemented. To do this, we employed the
OpenGL stencil buffer, with the following setting:

glEnable(GL_STENCIL_TEST);
glStencilFunc(GL_ALWAYS, 0x1, 0x1);
glStencilOp(GL_INCR, GL_INCR, GL_INCR);

The code above makes sure that each time an object’s
primitive is projected over one pixel, the stencil buffer entry
corresponding to it will be increased by one.

4.2 View collection

The choice of the viewpoints is the core factor in the con-
struction of the perceptual skeleton of the object. In [14],
Laurentini stated that the number of silhouettes necessary to
optimally describe a polyhedron with n faces is: unbounded
if the viewpoints are not allowed to lie inside the convex-
hull of the object; O(n5) if the viewpoints are allowed to
stay in the convex hull. Moreover, even if the view choice
is optimal, some problems may occur, for example, in case
the object contains cavities (see [13]). In our method, silhou-
ettes are gathered just by rotating along the most important
axis given by the Principal Component Analysis (PCA) of
the 3D shape with a step of 3◦. We used at most 60 silhou-
ettes for complex models, thus covering a rotation of 180◦
around the object (e.g. fertility and knots) and fewer views
for simple models (e.g. Olympics). This choice proved to be
sufficient in most of our experiments. However, the method
does not depend on the particular camera positioning. Some
heuristics, like [23, 25] and [26], would accommodate better
contours for some shapes.

4.3 Scanline matching

In all our experiments, we used parallel projections in or-
der to produce rectified sequences of contours. This choice
makes the point matching problem very easy to solve be-
cause candidate matches always lie in the same scanline.

We used a two-step matching algorithm. Let p(i) and p(j)

be two symmetry points belonging respectively to the ith
and j th occluding contours. To have a positive match, p(i)

and p(j) must belong to adjacent views, lie in the same scan-
line, and their distance along the scanline must be lower than
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Fig. 4 Four raw point clouds produced back-projecting 2D symmetry
points with our method. For each model we used a set of contours
gathered by rotating around the most important axis given by the PCA.
From each silhouette we select only the occlusion-free medial points,
thus producing incredibly noise-free clouds for many different kinds of
objects

a predefined threshold. In our simplified environment, this
can be stated as

|i − j | = 1 ∧ p(i)
r = p

(j)
r ∧ ∣∣p(i)

c − p
(j)
c

∣∣ ≤ δ, (5)

where δ is the maximum allowed displacement between two
consecutive observations of the same point of a generalised
cones axis (in all our tests, δ = 2 pixels). This first matching
has the effect of grouping together all the subsequent obser-
vations of a symmetry point. We refer to this sets as bundles.
However, the same point can be observed for a certain num-
ber of views, disappear due to an occlusion, and then ap-
pear again. In the second matching step, we merge together
all the bundles that have been generated by projections of
the same skeleton point. To do this, we apply the correspon-
dence search algorithm proposed in [16]. Grouping in a sin-
gle set all the observations of a skeleton point makes the al-
gorithm more robust and also decreases the overall size and
redundancy of the cloud (see Fig. 4).

4.4 Back-projection

After all the 2D symmetry point projections have been
grouped in coherent bundles, the next step consists in pro-
jecting the points back to the shape space, in order to dis-
cover the skeleton paths. Every symmetry point in the bun-
dle defines a projective ray in the space; the intersection
of all these lines defines a candidate skeleton point in R

3.
A projective ray is a line and it can be expressed as the inter-
section of two planes in the space. Let p ∈ R

3 be the coor-
dinates of a general point belonging to the ray, and d be the

Direction Of Projection (DOP) of that ray. We can express it
with the following linear system
{

dyx − dxy = dypx − dxpy,

dzx − dxz = dzpx − dxpy.

For any bundle we therefore set up a dense linear system
Ax = b composed of 2n equations, where n is the number
of symmetry points in the bundle. The matrix A contains the
directions of projection of the rays generating the symmetry
points, the unknowns of the problem are the xyz coordinates
of a generalised cones’ axes point. To increase the overall
robustness, we discard bundles having fewer than 3 points;
therefore, the system is always overdetermined and can be
solved in the least squares sense, according to the normal
equations x̃ = (AT A)−1AT b, such that

x̃ = arg min
x

‖b − Ax‖2.

An example of the point clouds produced by our method
can be seen in Fig. 4. As one can note, due to the power of
the SLS filtering and the robustness of the scanline match-
ing, even for complex models like Fertility and Neptune, the
clouds are almost noise-free and the skeleton paths are quite
clean.

4.5 Shape thickness

Besides the xyz coordinates of the skeleton points, another
important information can be inferred from the SLS of the
occluding contours. As stated in Sect. 3.2, when a symmetry
point is unique, the distance from its closest contact points
can be thought as an approximation of the local thickness
of the shape as seen from a viewpoint. For each skeleton
point we therefore set the local thickness as the lower dis-
tance observed among the SLS points involved in the back-
projection step. This information will be really useful in
the following step, where the skeleton paths will be recon-
structed starting from the point cloud just created. Thickness
information can also be used in a lot of applications. For
example, in collision detection, where a coarse representa-
tion of a model can be really useful to detect collisions be-
tween articulated objects, drastically reducing the complex-
ity of the problem. In Fig. 7, an example of reconstruction
achieved using about 50 maximal balls has been produced
for Fertility and Olivier hand models.

4.6 Curve extraction

The last step of our algorithm consists in the creation of
the skeleton paths starting from the point cloud produced
at the previous step. To do this, we used an approach first
proposed in [15], and also used in [29]. As can be noted
in Fig. 4, point clouds have a very thin structure along the
branches, while points are a bit scattered near the joints. We
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Fig. 5 The pipeline of the whole process: we first collect a set of oc-
cluding contours from neighbouring viewpoints; the result is a cloud of
points sampling the axes of the generalised cones composing the shape;

we eventually reconstruct the curve-skeleton, and an approximation of
the shape is given by the union of the medial balls

then employ a 1D moving least squares (MLS) approach for
the branches, iteratively projecting points onto their corre-
sponding locally best fitting lines via principal component
analysis (PCA). At each iterative step, we select a subset
of points lying in a small neighbourhood. Since the cloud
has been produced by the discrete representation of the con-
tours, we use as neighbourhood size a quantity proportional
to the distance between two points that would project to two
adjacent pixels. However, as near joints points are too scat-
tered, this neighbourhood measure is not able to work prop-
erly to infer branch connectivity. To thin the cloud and re-
veal how the branches connect with each other, we therefore
apply Laplacian smoothing, using our estimation of the lo-
cal thickness of the shape to infer point connectivity. It is
now clear how important thickness is: in [29], the authors re-
trieved point connectivity with the help of the Mahalanobis
distance. This was the most time consuming task of their
algorithm; for 10K points they needed about 3 min of com-
putations. The pipeline of the whole process is sketched in
Fig. 5.

5 Results and comparisons

We implemented our methods in C++, using [2] for the ma-
nipulation of geometric data structures and [1] for numerical
computations. Experiments were run on an iMac equipped
with 2.66 GHz Intel Core 2 Duo and 4 GB RAM. The
application runs on a single core. We used silhouettes of
size 500 × 500 in all our tests; this choice proved to be a
good trade-off between efficiency and precision. If neces-
sary, higher resolution would permit higher precision.

We discuss here the skeletons produced with our algo-
rithm according to the properties listed in [9]. Homotopy
is observed but not guaranteed. It depends on the consid-
ered contours; we can guarantee it as long as any cone axis
is projected without occlusions enough times to generate a
bundle. Centredness is also observed but not guaranteed, in

Fig. 6 Being based on shape appearance rather than on geometry, our
method is able to handle noise successfully. In this image, two curve
skeletons are extracted respectively from a noise-free and a noise-af-
fected double torus

the sense that the least squares solution may move some
skeleton point slightly further from the cone’s axis. Being
based on the visual appearance of the objects, the algorithm
is very robust. It is almost insensitive to noise and missing
parts (see Fig. 6). Moreover, thickness information allows a
rough reconstruction of the shape (see Fig. 7).

In Table 1, we compared our method with three state-of-
the-art algorithms. In this comparison, we considered three
synthetic shapes (a double torus and two knot models) with
convex cross-section everywhere. We evenly sampled the
skeletons and, for each skeleton point, we cut the mesh with
a plane centred at it and having as normal direction the di-
rection normal to the skeleton curve. We then measured the
distance between the skeleton point and the centroid of the
cross-section, normalising it with respect to the diagonal of
the axis aligned bounding box containing the shape. As can
be noted from the table, our results are comparable with the
results achieved in [11] and [28] while [18] behaves slightly
worse, probably because the curves are extracted from a
voxel grid and then smoothed in post processing, thus de-
viating from the middle of the shape.
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Fig. 7 Shape approximation of the Fertility model (55 balls) and
Olivier Hand model (42 balls). Maximal balls are spanned along the
skeleton paths, creating a good approximation of the original shape.
This representation can be useful for applications like hole filling, sur-
face reconstruction, and collision detection

Table 1 Numerical comparisons with three state-of-the-art solemni-
sation algorithms. We considered a set of synthetic shapes with convex
cross-section. We first sub-sampled the skeletons and then, for each
sample, measured its distance from the centroid of the local cross-
section. Mean displacements are normalised with respect to the diago-
nal of the axis aligned bounding box containing the shape

Method Model Avg displ. Std. dev.

Our method Eight 0.059918 0.009305

Dey and Sun [11] (θ = 0.0) 0.063134 0.012655

Dey and Sun [11] (θ = 0.5) 0.065679 0.012750

Tagliasacchi et al. [28] 0.001762 0.011715

Livesu et al. [18] 0.065188 0.025373

Our method Knot 1 0.044990 0.022698

Dey and Sun [11] (θ = 0.0) 0.046228 0.023781

Dey and Sun [11] (θ = 0.5) 0.050125 0.024415

Tagliasacchi et al. [28] 0.001570 0.012924

Livesu et al. [18] 0.092037 0.027562

Our method Knot 1 0.052322 0.008020

Dey and Sun [11] (θ = 0.0) 0.054011 0.008043

Dey and Sun [11] (θ = 0.5) 0.054063 0.008049

Tagliasacchi et al. [28] 0.001742 0.013306

Livesu et al. [18] 0.079337 0.018083

In Table 2, we report running times and number of con-
sidered contours for some models we tested. Our method
runs faster than the state-of-the-art counterparts, especially

for high resolution models. For instance, on models with ap-
proximatively 60,000 faces, we compute the skeleton in half
a second, [28] takes a few seconds, [3] a few minutes, and
[11] almost half an hour. Moreover, since the most time-
consuming task is the rasterisation, times may be further
lowered using smart rendering techniques.

5.1 Implicit surfaces

Triangle meshes are the most common data structure for sur-
face representation, and all the state-of-the-art algorithms
we compared with are able to deal with them. However, they
have two big drawbacks: they are only C 0-continuous and
their topology must be checked explicitly in order to avoid
self-intersections that are not found in real world objects.

When one wants to over-
come these drawbacks, one
uses other surface repre-
sentations like parametric
or implicit surfaces. One
of the greatest advantages
of our method (as well as
[18]) is the possibility to
deal with this representa-
tions without any additional

effort: the computation of the silhouettes can be merely re-
duced to the computation of the projection of the surface
onto the projection planes. Meshing an implicit surface is
instead a time consuming task, and this is why the sur-
face is usually calculated on-the-fly at raster time, without
any explicit representation. To the best of our knowledge,
contour-based approaches are the only techniques available
in the literature for the direct solemnisation of implicit sur-
faces. In the figure above, we show an example of the curve
skeleton extracted from a Dupin’s cyclide with equation
693x4 + 1386x2y2 − 18880x2y + 1386x2z2 + 59000x2 +
693y4 − 18880y3 + 1386y2z2 + 187000y2 − 18880yz2 −
800000y + 693z4 + 67000z2 + 1250000 = 0. To compute
the projections, raster the silhouettes, and, finally, compute
the skeleton, we considered the zero set of the equation.

6 Limitations and further work

It is worth to clearly remind that the method we describe
here is meant to work only for objects that can be repre-
sented by a union of a finite number of generalised joined
cones. To describe shapes with weakly defined symmetry
axes, like mugs, busts or buildings, one should probably use
a different descriptor.

The multi-view based approach, besides the advantages,
carries some limitations. Back-projected points are not guar-
anteed to be inside the shape. Even if the matching algo-
rithm is extremely robust, it can happen that when there are
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Table 2 Time splitting (in
milliseconds) of the skeleton
extraction pipeline

Model Faces Occluding
contours

Rasterisation
time (ms)

Skeletonisation
time (ms)

Total
time (ms)

Olivier Hand 49,586 37 646 249 895

Hand 273,060 6 247 74 321

Neptune 56,112 32 321 250 571

Double torus 1,536 6 22 79 101

Fertility 50,000 60 546 391 937

Twirl 10,402 20 112 175 287

Knot #1 4,160 60 202 382 584

Knot #2 6,400 60 227 396 623

Knot #3 11,520 60 266 302 568

Olympics 7,862 6 24 155 179

Spider 23,808 60 357 442 799

a lot of occlusions some points may be projected outside the
shape due to a wrong matching. Moreover, as we are deal-
ing with contours, we can only guarantee that the skeleton
lies inside the Visual Hull of the object rather than the ob-
ject itself. We lack a stop rule for the silhouette acquisition
system. Our method uses a set of silhouettes constructed by
rotating around the most important PCA direction; however,
as one can note by looking at Table 2, some models need
few contours and some others need more. A stop rule to au-
tomatically determine how many views we need should be
used. Regarding shape representations, our method is able to
work with any polygonal mesh and any discrete volume rep-
resentation. Any kind of representation that allows the cal-
culation of occlusions can be used interchangeably. We are
currently working to extend the work to point clouds. This
can be done by inferring the occlusion map (the discretized
Φ function) by post processing the information contained in
the stencil buffer. We are also working to extend this 2D-to-
3D paradigm to real objects moving in front of a camera or
multiple views of a static object.

7 Conclusions

In this paper, we introduced an intuitive definition of a
curve-skeleton and we showed how the axes of a complex
generalised cone can be inferred just by looking at their
planar projections from a few viewpoints. We extended the
classical theory of early visual perception in order to deal
with occlusions, proposing a solemnisation algorithm which
is fast, insensitive to noise and missing data, and easy to im-
plement. Moreover, we showed that the results produced by
our algorithm are qualitatively comparable with the state-
of-the-art counterparts, but the algorithm is more versatile
because it can be used with any kind of surface representa-
tion. We also showed that the centredness of the skeletons

produced by our algorithm is higher than previous contour-
based approaches because our skeleton curves are naturally
smooth and do not need any post processing.
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