
Implementation of an experimental platform for the

Social Internet of Things

Roberto Girau, Michele Nitti, Luigi Atzori

Department of Electrical and Electronic Engineering - University of Cagliari, 09123 Cagliari, Italy

{roberto.girau, michele.nitti, l.atzori}@diee.unica.it

Abstract—The convergence of the Internet of Things (IoT)
technologies with the social networking concepts has led to a
new paradigm called the Social Internet of Things (SIoT), where
the objects mimic the human behavior and create their own
relationships based on the rules set by their owner. This is aimed
at simplifying the complexity in handling the communications
between billions of objects to the benefits of the humans. Whereas
several IoT platforms are already available, the SIoT paradigm
has represented only a field for pure research and simulations,
until now.

The aim of this paper is to present our implementation
of a SIoT platform. We begin by analyzing the major IoT
implementations, pointing out their common characteristics that
could be re-used for our goal. We then discuss the major
extensions we had to introduce on the existing platforms to
introduce the functionalities of the SIoT. We also present the
major functionalities of the proposed system: how to register a
new social object to the platform, how the system manages the
creation of new relationships, and how the devices create groups
of members with similar characteristics. We conclude with the
description of possible simple application scenarios.

Index Terms—Internet of Things; social network; IoT plat-
forms

I. INTRODUCTION

Society is moving towards an “always connected”

paradigm, where the Internet user is shifting from persons

to things, leading to the so called Internet of Things (IoT)

scenario. The IoT is expected to embody a large number

of smart objects identified by unique addressing schemes

providing services to end-users through standard communi-

cation protocols and be composed of trillions of elements

interacting in an extremely heterogeneous way in terms of

requirements, behavior and capabilities. Communications will

not only involve persons but things thus bringing about the IoT

environment in which objects will have virtual counterparts on

the Internet. Such virtual entities will produce and consume

services, collaborate toward common goals and should be

integrated with all the other services.

To give the possibility to all these entities to be able to

communicate efficiently, new paradigms are needed . Indeed,

there are scientific evidences that a large number of individuals

tied in a social network can provide far more accurate answers

to complex problems than a single individual. For instance, in

[1] the authors introduce the idea of objects able to participate

in conversations that were previously only available to humans.

Analogously, the research activities reported in [2] consider

that, being things involved into the network together with

people, social networks can be built based on the Internet

of Things and are meaningful to investigate the relations and

evolution of objects in IoT. This has also brought to the conver-

gence of IoT and social network paradigms, as analyzed in [3],

which depicts the scenarios where an individual can share the

services offered by her/his smart objects with her/his friends or

their things through widespread social networks. In [4] and [5],

explicitly, the Social IoT (SIoT) concept is formalized, which

is intended as a social network where every node is an object

capable of establishing social relationships with other things in

an autonomous way with respect to the rules set by the owner;

indeed, such a network has the potential to solve problems of

network navigability and information/service discovery thanks

to the possibility to navigate a social network of “friend”

objects instead of relying on typical Internet discovery tools

that cannot scale to the trillions of future devices.

While the IoT scenario presents several implementations,

such as [6] and [7], until now the SIoT has represented only

a field for theoretical analysis. The purpose of this work is to

propose a possible implementation for the SIoT, where objects

can create their own relationships, create groups and produce

and consume services. Moreover, some possible applications

are discussed in order to show the benefits of our platform.

The paper is organized as follows. In Section II we

describes the guidelines that drove our implementation with

respect to the already existing platforms, while in Section

III we show the major functionalities implemented by our

platform. Section IV illustrates some possible applications that

can use our platform, where objects can create their own

relationships and provide simple services to the users. Finally

in Section V, we draw final remarks.

II. BACKGROUND

In this section, we show the main features of the SIoT

model. Moreover, we highlight some requirements which have

been considered for the system specification, including a

reasoned analysis of the state of the art of IoT implementations

and the description of the solutions and choices which have

driven the design and implementation of our system architec-

ture.

A. Main SIoT features

Without losing of generality, we refer to the SIoT model

proposed in [8]. According to this model, the objects mimic

the human behavior and create their own relationships based



on the rules set by their owner. In the same way humans

have relationships with their family, objects create the parental

object relationship with similar objects, which are built in the

same period by the same manufacturer (the role of family

is played by the production batch). Furthermore, humans

establish relationships when they share the same location, this

is personal, e.g. cohabitation, or public, e.g. work, and likewise

the objects create co-location object relationship and co-work

object relationship. A further type of relationship is established

when objects come into contact, sporadically or continuously,

for reasons purely related to relations among their owners

(e.g., devices/sensors belonging to friends) and it is named

social object relationship. Finally, objects owned by the same

user, such as smartphone, tablets and game consoles can create

ownership object relationship.

B. IoT platforms

From the analysis of the IoT scenario [9], we identified

around 10 different platforms. All these systems have common

characteristics, especially the followings:

• the objects use a HTTP protocol to send and receive

data. This choice allows a high interoperability among

the different platforms;

• an intermediary server is used. The objects do not com-

municate directly with each other;

• every object has a “data point” associated with it on the

server-side to keep track of the data sent;

• the methods POST and GET are used to send and request

data;

• a tag is assigned to every data point;

• data point discovery is performed using tags through an

internal search engine;

• the system identifies every object with its API key.

The need to store and process data from a multitude of

sensors has led the implementation of the IoT to the creation

of platforms with the main purpose of data logging. Among

the European platforms, Cosm (former Pachube) [6] is one

of the biggest ones: it has been presented as a platform

to store and redistribute real-time data, freely usable, which

manages millions of devices per day. One of the most dramatic

demonstrations of Cosm’s potential was the visualizations of

data that showed the radiation levels around the Japan and

especially near the nuclear reactor in 2011.

Nimbits [10] is an open source java web application,

built on Google App Engine, which can provide complex

functionalities such as email alert, math calculations and

complex queries on API Wolfram Alpha, in addition to simply

storing and processing data. Every user can define data points

and use them to share several kinds of data. The integration

with Twitter, Facebook and Google+ allows to manage your

data points, to share sensor diagrams, activate alarms, etc.

Paraimpu [11] is a Web of Things platform, which allows

people to connect together sensors, actuators and other web

applications, taking care to forward data among the objects

[12]. Moreover, through the integration with Twitter, it is

possible for a user to obtain and use data from a friend.

Finally, ThingSpeak [13], was founded as an open source

branch of IoBridge [7] and shares with it the main features.

ThingSpeak is an IoT application that allows users to store

and retrieve data from objects through HTTP communications.

Moreover, it enables the creation of several kinds of appli-

cation, involving different pairs of API keys, such as GPS

tracking and data logging. ThingSpeak API enables to perform

averaging, summing, rounding and time-scaling. In addition,

this platform allows for integrating several data representation,

such as JSON, XML and CSV.

However, none of the platforms foresees some kinds of

social relationships between objects. Indeed, even if integra-

tion with main human social networks is allowed, the objects

can not communicate independently.

C. RESTful vs WS-*

Web Services (WSs) are widely used in several IT sys-

tems; they can be defined as development techniques for

interoperable and distributed applications that make use of

standard protocol such as HTTP [14]. WSs can be classified

in two major categories: WS-* and Representational State

Transfer (REST).

The former declares its functionalities and interfaces using

a Web Services Description Language (WDSL) file. Com-

munications are encapsulated using Simple Object Access

Protocol (SOAP) usually using the HTTP protocol. WS-* is

mainly used in enterprise applications where interoperability

with other applications is not an important issue; moreover,

for applications with advanced security requirements [15] or

for WSNs solutions [16] it can provide good results.

The RESTful architecture is based on the concept of re-

sources as representation of the objects, that are uniquely iden-

tified through Uniform Resource Identifiers (URIs). Through

the HTTP protocol is then possible to obtain, delete, post

or update object information using a given method (GET,

DELETE, POST, PUT). The payload of the message can be

incapsulated in a negotiated format such as XML or JSON.

A RESTful architecture is then lightweight and scalable and

then fits perfectly with the principles and the current protocols

of the Internet.

To maintain interoperability with existent IoT platforms

and future implementations, we decide to adopt a RESTful

approach, and then every entity in the SIoT is represented

using JSON, XML or CSV format.

III. PLATFORM IMPLEMENTATION

In this section we describe our implementation of the SIoT

platform, pointing out its major functionalities required to run

simple applications.

A. Server Architecture

As presented in [8], Figure 1 shows the main components

of the platform. The network layer is needed in order to

transfer data across different networks, while the core of the

proposed platform is represented by the application layer,

where IoT applications and middleware functionalities are



Fig. 1: Proposed platform implementation (taken from [5])

developed and which consists of three sublayers. Not all the

functionalities have been implemented, since the platform is

still in its infancy and the developed vertical applications are

very specific.

The Base Sublayer includes the database for the storage

and the management of different data types, such as tempera-

ture, latitude, longitude and humidity. Objects can memorize

up to 16 different data fields; the first 12 fields have a fixed

type, whereas the others 4 are reserved for future uses. For

example, field 1 is always used to track temperature data, field

3 is used to track voltage data and so on. The last four fields

are left for uses decided by client application devolopers.

The Component Sublayer implements the functionalities

of: objects profiling, which is needed in order to configure

information about the objects; ID management, which assigns

a unique ID to every object in order to identify them; owner

control (OC), which enables the users to specify the objects’

behavior; and the relationship management (RM), which has

to create and manage the relationships of every object.

The other functionalities, i.e. the service discovery and

composition (SD and SC) and the trustworthiness manage-

ment (TM) [17], are not implemented and, when needed, are

provided by the specific vertical application.

The Interface Sublayer is where the interfaces and the

service APIs, such as read/write API keys, are located.

Fig. 2: Registration of a new channel

B. Server Functionalities

As a RESTful architecture, a URI is associated to every

resource. These resources are modeled as follow:

• every object in the server is identified as a channel. A

channel represents a real entity, such as a smartphone, a

laptop or a sensor;

• every device can have one or more fields associated with

it, based on the number of its sensors; each field is

identified with a data point.

When a user wants to register a new channel, the pro-

filing module is activated. As shown in Figure 2, the owner

can then indicate the characteristics of the objects such as

the name, a description and its mobility. For those devices

with enough computation capabilities, such as a laptop or

a smartphone, some information about the object itself are

provided automatically by the application, e.g. the brand and

the MAC address: in this way it is possible to greatly shorten

the registration process for the benefit of the owner. Eventually,

if the owner is registering a fixed device, such as a desktop or a

printer, it is possible to insert the location of the object, which

enables the creation of location-based relationships, such as

the co-location one. During the registration phase, the owner

can choose which relationships the objects can create with

other peers and which sensors, and consequently which fields,

should be activated. When the registration is completed, the

ID management module assigns a unique ID number to the

object.

Objects can then start to create their own social relation-

ships that are managed by the RM in two different ways:

• Profiling relationship. These relationships are generated

based only on the profile information of the objects,

and do not depend on the owner behavior. To this

category belong Ownership Object Relationship (OOR),

Co-Location Object Relationship (CLOR) and Parental

Object Relaziontship (POR). Indeed, OOR are created

among objects registered in the SIoT by the same user.

When objects have the same value of the attribute model,

a POR is created. To activate a CLOR two objects need

to be fixed in the same location (numeric ID).



• Dynamic relationship. These relationships are created

when users, and consequently objects, interact with each

other and satisfy the rules defined in [5]. To this category

belong Co-Work Object Relationship (CWOR) and Social

Object Relationship (SOR). In particular, it is important

that the server recognizes two objects in the same loca-

tion, even if the objects are not in visibility.

The RM module is activated every time a new object

is registered in the SIoT or every time an object sends

information about its own location or about the IDs (i.e.

mac address, RFID id) of the objects it has encountered. For

Dynamic relationships, the RM module is activated by events

about devices visibility when a device posts a sensed mac

address or RFID. For CWOR events, it is necessary either

a work-type location post in the same time of the ID post

or that at least one of the two devices is fixed in a work-

type location.Two devices must be in visibility in two separate

thirty-minute intervals spaced at least 8 hours for a friendship

request storing. Every pass in the friendship request process

is managed by the server and devices need only to send the

sensor data. For example, as shown in Figure 3, device 1 senses

the presence of another device, number 2, and then sends this

information to the server, updating the relative data point, in

particular the mac address data field. The server recognizes

this field as a potential event and checks if this mac address

belongs to a registered object. If this is the case, the RM

module is activated to verify if, with the last data received,

there are the conditions to create a new dynamic relationship.

Eventually, the friendship request from device 1 is stored and

if the device 2 performs a friendship request toward the device

1 as well, a new relationship is created.

When an object needs to send or retrieve its own data to

the server, it uses its write API key, known only by the object

itself. Instead, when an object needs to retrieve friends data

from the server, it uses the read API key of the object to which

it wants to retrieve data. The read API key is only known by

the object itself and by its friends but it is allowed to share

read API keys in those cases in which data from friend of

a friend are required. Data from the server can be obtained

using one of the two following methods:

• Pull. Every object requires data at regular intervals or

when needed.

• Push. Data are sent from server to objects when available.

Indeed, a HTTP daemon always listening is needed on

every capable device. On smart devices, such as smart-

phone, tablet or laptop, it is also possible to use the push

system of the operating system of the device itself.

If, during registration, the owner has set the object as

public, any object that wants to retrieve information about the

status of the public object, using the pull method, just needs

to know its ID number; however, if an object wants to require

data from a private object, it will also need the read API key

of that object. Indeed, a device can retrieve the list of the IDs

and the read API keys of its friends. This list can be obtained,

in JSON, XML or CSV format as shown in the Listing 1,

Fig. 3: device identification during a meeting

through a POST to the REST resource friendships, using the

write API key.

Instead, with the push method, the server sends directly to

all the objects in the friendship list the available data. In the

same way, when a new friendship is created the server sends

the updated list to the new object.

<?xml version="1.0" encoding="UTF-8"?>

<relationships>

<relation-type>OOR</relation-type>

<channel-id type="integer">12</channel-id>

<read-api-key>UXFN5F6SWXWIM3UM</read-api-key>

<relation-type>OOR</relation-type>

<channel-id type="integer">167</channel-id>

<read-api-key>Q4CL7WQM5SUNSMS5</read-api-key>

<relation-type>POR</relation-type>

<channel-id type="integer">32</channel-id>

<read-api-key>GIG8Z8WQBAPMO17G</read-api-key>

<relation-type>POR</relation-type>

<channel-id type="integer">126</channel-id>

<read-api-key>WV3EOODHHISN8JZK</read-api-key>

<relation-type>SOR</relation-type>

<channel-id type="integer">4</channel-id>

<read-api-key>C71DKJVOEDLU2K06</read-api-key>

</relationships>

Listing 1: Response to a friendship list request

C. Groups management

The relationships we identified so far, can include a large

number of objects, and this leads to problems such as a long

time for service discovery, since not all the objects can be

helpful for a particular request. If we consider, for example,

a large company, all the devices of every employee and the

devices of the company itself, such as printers, scanners and

desktops, would be tied by a co-work relationship, whereas

it would be useful to have a group of objects belonging to

different departments.

It is then important to have a tool to divide social

relationships into groups. In the same way, humans create

groups of particular interest (football teams, politic groups,

online shopping) in SNs, the objects can create their own

groups based on the applications they are using.



Three different solutions can be implemented, as described

in the following:

Client-side groups management. The application must

be able to create automatically the various groups with min-

imal user intervention and to do so, it has to verify some

conditions that are specific to the use-case. These conditions

are not limited by the fields of the device, i.e. its sensors, but

may include other information. For example, an application

can distinguish among the devices of employees that belong

to different departments: it first verifies if they share a CWOR

and then it could check in a file for the employee ID to

perfectly associate the devices of the other employees to the

group. The benefit of this solution is that the groups created

are exactly those required and specific to the application.

The disadvantage is that, since the application manages the

groups, different devices may create different groups that

instead should be coincident, if, for example, a device has

an out-of-date file, and moreover this solution increases the

workload of the devices.

Server-side groups management. In this case, a user

must create manually the group and set the rules, based on the

fields associated to each device. Then the server takes care of

binding to the group all the devices that comply with the above

mentioned rules, in the same way the RM module creates the

dynamic relationships. This solution has the advantage that the

devices have a lighter workload but there may be excessive

fragmentation of the groups, due to users that should belong

to the same group creating new groups with different rules

and the need to identify superusers for the creation of groups.

Hybrid solution for groups management. Groups are

managed on the server-side, but the rules are set by the client

using the fields provided by each device; information are

tagged in order to help the server to identify the characteristic

of each group. Only one group is created since the server

associated all similar groups with the same tags, and then the

workload on the devices remains light. The list of members

of a group, as a REST resource, can be required in the same

way of the friendship list.

D. SIoT Prototype Development

We realized our implementation based on ThingSpeak

project [13], and we concentrated our efforts on social net-

working aspects. We implemented the relationship manage-

ment module and the possibility to create and manage groups.

Furthermore, we developed a location indexing system based

on Google Maps to localize coherently fixed devices. We

modified the channel structure to handle more than eight

sensors and to manage text messages with tags among devices;

we improved the owner control management of the objects and

allowed devices to update remotely their own profile.

The service is available for tests here1. It is an alpha

version still under development, but it is already capable to

create relationships among registered devices. As ThingSpeak,

SIoT is an open source project, and source code is released

by the beta version.

1http://siot.diee.unica.it:8088/

IV. SCENARIOS

In this section we describe some scenarios under devel-

opment at the Faculty of Engineering of Cagliari that use the

defined platform, where objects create their own relationships

and groups, in order to provide several functionalities to the

final users. Considering, smartphones, laptops and sensors

in the area of the campus, we show some possible appli-

cations that exploit their social relationships. The focus of

these applications is to provide usuful information to the

object owners (the students, tipically) with minimal human

intervention, except in the initial configuration phase. Every

object can send messages, i.e. the data obtained by its sensors,

to its own dashboard, and these messages can be seen by its

friends as updates.

A. Lectures Information

The first application addresses the problem of commu-

nicating in an efficient way information such as the time of

classes/tests and the availability of new teaching materials.

The main problem to address concerns the identification of

the actual recipients of these information. In the area of the

campus, all the students’ devices would be tied by a CWOR;

this relation could be useful to share generic information, such

as holidays, employers strikes, student elections. However, it

should be impossible to provide more granular services based

on the field of study, the academic year or the single classes.

Here comes into play the groups of interests concept.

With the use of the hybrid method, described in Section

III-C, the application decides the parameters to create the

groups and the server manages and merges them, if necessary.

This solution allows the same precision as the client-side

method with a light workload on the devices.

The application gives information (alerts, web links,

timetables and others) about the lectures to all the devices

participating to the same group. As initial configuration of

the application, it is possible to download the class timetable

and the building map of the campus, for example using QR-

codes. The application is able to assess when the professor

and at least 50% of the students of the group are in the same

location by sensing vicinity with the Bluetooth interface, and

then it can notify to all the missing students of that group that

a class is started and provide information to guide them to that

class location.

B. Student car pooling

Rebecca needs to go to the university cafeteria after her

class to have lunch but unfortunately she does not own a

car. Her smartphone can create SOR with other students’

smartphones at the cafeteria or CWOR with her colleagues’

smartphone, so when Rebecca needs a ride, she can simply

use an application to discover if any other student is going

to the cafeteria. The application automatically sends messages

asking for a ride to all the devices that meet the parameters

set by the user, for example:

• the number of common friends

• the membership to the same groups



Fig. 4: Trustworthiness by social parameters

• the frequency meeting

In the same way, the application can be set to receive requests

only from devices with a certain relationship or that belong to

certain groups and sort them accordingly. It is thus guaranteed

a certain level of trustworthiness using only social parameters.

As shown in Figure 4, consider for example the set of all

the devices tied by a CWOR in the campus in the grey area.

Since Rebecca attended courses in Mathematics and Computer

Science, she also belongs to groups A and B, respectively.

Nicola’s smartphone belongs to groups A and B as well,

since Nicola is her study partner. Mario’s laptop shares only a

CWOR with Rebecca’s smartphone since he studies in another

department, whereas Lisa’s tablet is part of the group A. In

this scenario, Nicola’s device represents the most trustworthy

device and then it represents the best choice to share a ride.

C. Other university social life events

In the same way of the use-cases illustrated above, it

can be possible to manage general information on the use

of common areas such as university cafeteria, library and

computer workstations. The library room is usually very

crowded depending on the time of day, especially the PC

workstations run out quickly. In this case, the application

provides an assessment of the crowding of these environments

by monitoring the number of devices and allows to give an

approximate indication of the availability of seats. By the

statistics of attendance, the application provides information

on timing, categorized by crowding. Likewise, you can assess

the crowding of canteen or cafeteria, in order to decide whether

you prefer a less crowded place for time limits, or a popular

spot for increasing socialization.

V. CONCLUSIONS

It is common opinion that the IoT will increase its size by

orders of magnitude in the next years and then it is necessary

to find new strategies to make the objects communicate effi-

ciently. Several independent papers investigated the benefits of

the integration between IoT with social networking concepts,

which leads to the new paradigm named the Social Internet

of Things. In this paper, we briefly present some of the main

platforms among the IoT implementations, and identify their

common characteristics. Then, we propose the first, to the best

of our knowledge, implementation of an experimental platform

for the Social Internet of Things. The main innovations, with

respect to the others IoT platforms, are the possibility for the

objects to create their own relationships, based on the rules set

by their owners, and to create groups of interest as it happens

in human social networks. We also introduced some prototype

applications, currently under development at the University

of Cagliari. We are now planning to add more functionalities

to our implementation, e.g. the possibility to assign different

reading permission based on the relationship, the discovery of

complex services and a system to evaluate the trustworthiness

of the service received. In parallel, we are carrying out the

development of the applications that implement the presented

use-cases.

VI. ACKNOWLEDGEMENTS

This work has been partially funded by the project Artemis

JU Demanes, Design, Monitoring and Operation of Adaptive

Networked Embedded Systems, grant agreement no. 295372.

REFERENCES

[1] P. Mendes, “Social-driven internet of connected objects,” in Proc. of the
Interc. Smart Objects with the Internet Workshop, 25th March 2011.

[2] L. Ding, P. Shi, and B. Liu, “The clustering of internet, internet of things
and social network,” in Proc. of the 3rd Inter. Symp. on Knowl. Acquis.
and Modeling, 2010.

[3] D. Guinard, M. Fischer, and V. Trifa, in PERCOM Workshops, 29 2010-
april 2 2010, pp. 702 –707.

[4] E. Kosmatos, N. D. Tselikas, and A. C. Boucouvalas, “Integrating rfids
and smart objects into a unified internet of things architecture,” Advances

in Internet of Things, vol. 1, no. 1, pp. 5–12, 2011.
[5] L. Atzori, A. Iera, and G. Morabito, “Siot: Giving a social structure to

the internet of things,” Communications Letters, IEEE, vol. 15, no. 11,
pp. 1193 –1195, november 2011.

[6] (2013) Cosm. [Online]. Available: http://cosm.com
[7] (2013) Iobridge. [Online]. Available: http://www.iobridge.com
[8] L. Atzori, A. Iera, G. Morabito, and M. Nitti, “The social internet of

things (siot)–when social networks meet the internet of things: Concept,
architecture and network characterization,” Computer Networks, 2012.

[9] (2013) Postscapes. [Online]. Available: http://www.postscapes.com
[10] (2013) Nimbits. [Online]. Available: http://www.nimbits.com
[11] (2013) Paraimpu. [Online]. Available: http://www.paraimpu.com
[12] A. Piras, D. Carboni, and A. Pintus, “A platform to collect, manage and

share heterogeneous sensor data,” in Networked Sensing Systems (INSS),

2012 Ninth International Conference on, june 2012, pp. 1 –2.
[13] (2013) Thingspeak. [Online]. Available: http://www.thingspeak.com
[14] A. Castellani, N. Bui, P. Casari, M. Rossi, Z. Shelby, and M. Zorzi,

“Architecture and protocols for the internet of things: A case study,”
in Pervasive Computing and Communications Workshops (PERCOM

Workshops), 2010 8th IEEE International Conference on, 29 2010-april
2 2010, pp. 678 –683.

[15] D. Guinard, I. Ion, and S. Mayer, “In search of an internet of things
service architecture: Rest or ws-*? a developers perspective,” Mobile

and Ubiquitous Systems: Computing, Networking, and Services, pp. 326–
337, 2012.

[16] N. B. Priyantha, A. Kansal, M. Goraczko, and F. Zhao, “Tiny web
services: design and implementation of interoperable and evolvable
sensor networks,” in Proceedings of the 6th ACM conference

on Embedded network sensor systems, ser. SenSys ’08. New
York, NY, USA: ACM, 2008, pp. 253–266. [Online]. Available:
http://doi.acm.org/10.1145/1460412.1460438

[17] M. Nitti, R. Girau, L. Atzori, A. Iera, and G. Morabito, “A subjective
model for trustworthiness evaluation in the social internet of things,”
in Personal Indoor and Mobile Radio Communications (PIMRC), 2012
IEEE 23rd International Symposium on, sept. 2012, pp. 18 –23.


