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Abstract. The notion of Γ-symmetric space is a natural generalization of the classical
notion of symmetric space based on Z2-grading on Lie algebras. We consider homoge-
neous spaces G/H such that the Lie algebra g of G admits a Γ-grading where Γ is a finite
abelian group. In this work we study Riemannian metrics and Lorentzian metrics on
the Heisenberg group H3 adapted to the symmetries of a Γ-symmetric structure on H3.
We prove that the classification of Riemannian and Lorentzian Z2

2
-symmetric metrics

on H3 corresponds to the classification of its left-invariant Riemannian and Lorentzian
metrics, up to isometry. We study also the Zk

2
-symmetric structures on G/H when G

is the (2p + 1)-dimensional Heisenberg group. This gives examples of non-Riemannian
symmetric spaces. When k ≥ 1, we show that there exists a family of flat and torsion
free affine connections adapted to the Zk

2
-symmetric structures.

1. Introduction

A symmetric space can be considered as a reductive homogeneous space G/H on which
acts an abelian subgroup Γ of the automorphisms group ofGwith Γ isomorphic to Z2 = Z/2Z
and H the subgroup of G composed of the fixed points of the automorphisms belonging to
Γ. If we suppose that the Lie groups G and H are connected and that G is simply connected,
it is equivalent to provide G/H with a symmetric structure or to provide the Lie algebra g

of G with a Z2-graduation g = g0 ⊕ g1 with [gi, gj ] = gi+j(mod 2). Riemannian symmetric
spaces form an interesting class of symmetric spaces. But there are symmetric spaces which
are not Riemannian symmetric. We describe examples when G is the Heisenberg group.
Nevertheless, a symmetric space is always provided with an affine connection ∇ which is
torsion free and has a curvature tensor satisfying ∇R = 0. When the symmetric space is
Riemannian, this connection is the Levi-Civita connection of the metric. A natural general-
ization of the notion of symmetric space can be obtained by considering that the subgroup
Γ is abelian, finite and not necessarily isomorphic to Z2. When Γ is cyclic isomorphic to Zk

it corresponds to the generalized symmetric spaces of [2, 13, 15]. These structures are also
characterized by Zk-graduations of the complexified Lie algebra gC = g ⊗ C of g. We get
another interesting case when Γ = Z

k
2 because the characteristic graduation is defined on

g and not on gC. When g is simple the Z2
2-graduations of g have been classified as well as

the Z2
2-symmetric spaces G/H when G is simple connected ([1, 12]). All these spaces are

Riemannian (see [16]). But, in this paper, we provide some examples of non Riemannian
symmetric spaces studying symmetric spaces G/H when G is the Heisenberg group H2p+1.
We study also, for k > 1, Zk

2 -symmetric structures on these homogeneous spaces showing,
in particular, that these spaces are Riemannian and affine. But contrary to the symmetric
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case, there exist on these spaces affine connections different from the canonical (or the Levi-
Civita) connection and more adapted to the symmetries of G/H that the canonical one. We
describe these connections and we prove that there exists connections adapted to the Zk

2

symmetries which are flat and torsion free.

2. Z
k
2-symmetric spaces

2.1. Recall on symmetric and Riemannian symmetric spaces. A symmetric space
is a triple (G,H, σ) where G is a connected Lie group, H a closed subgroup of G and σ an
involutive automorphism of G such that Gσ

e ⊂ H ⊂ Gσ where Gσ = {x ∈ G, σ(x) = x},
Gσ

e the identity component of Gσ. If (G,H, σ) is a symmetric space, to each point x of the
homogeneous manifold M = G/H corresponds an involutive diffeomorphism σx which has x
as an isolated fixed point. Let g and h be the Lie algebras of G and H . The automorphism
σ ∈ Aut(G) induces an involutive automorphism of g, denoted by σ again, such that h

consists of all elements of g which are left fixed by σ. We deduce that the Lie algebra g is
Z2-graded: g = h⊕m with m = {X ∈ g, σ(X) = −X}, [h,m] ⊂ m, [m,m] ⊂ h and [h, h] ⊂ h.
If we assume that G is simply connected and H connected, then the Z2-grading g = h ⊕m

defines a symmetric space stucture (G,H, σ). Thus, under these hypothesis, it is equivalent
to speak about Z2-grading of Lie algebras or symmetric spaces.

An important class of symmetric spaces consists of Riemannian symmetric spaces. A
Riemannian symmetric space is a Riemannian manifold M whose curvature tensor field
associated with the Levi-Civita connection is parallel. In this case the geodesic symmetry
at a point u ∈ M attached to the Levi-Civita connection is an isometry and, if we fix u,
it defines an involutive automorphism σ of the largest group of isometries G of M which
acts transitively on M . We deduce that M is an homogeneous manifold M = G/H and the
triple (G,H, σ) is a symmetric space. Let us note that, in this case, H is compact. When
H ∩ Z(G) = {e}, this last condition is equivalent to adg(H) compact. Here Z(G) denotes
the center of G. Conversely, if (G,H, σ) is a symmetric space such that the image adg(H)
of H under the adjoint representation of G is a compact subgroup of Gl(g), then g admits
an adg(H)-invariant inner product and h and m are orthogonal with respect to it. This
inner product restricted to m induces an G-invariant Riemannian metric on G/H and G/H
is a Riemannian symmetric space. For example, if H is compact, adg(H) is also compact
and (G,H, σ) is a Riemannian symmetric space. Assume now that H is connected, then
adg(H) is compact if and only if the connected Lie group associated with the linear algebra
adg(h) = {adX, X ∈ h} is compact. In this case, g admits an adg(h)-invariant inner product
ϕ, that is, ϕ([X,Y ], Z) + ϕ(Y, [X,Z]) = 0 for all X ∈ h and Y, Z ∈ g such that ϕ(h,m) = 0.
An interesting particular case is the following. Assume that g is Z2-graded and that this
grading is effective that is h doesn’t contain non trivial ideal of g. If adg(h) is irreducible
on m, then g is simple, or a sum g1 + g1 with g1 simple or m abelian. In the first case, the
Killing-Cartan form K of g induces a negative or positive defined bilinear form on m. It
follows a classification of Z2-graded Lie algebras when g is simple or semi-simple.

Many results on the problem of classifications concern more particularly the simple Lie
algebras. For solvable or nilpotent Lie algebras, it is an open problem. A first approach is
to study induced grading on Borel or parabolic subalgebras of simple Lie algebras. In this
work we describe Γ-grading of the Heisenberg algebras. Two reasons for this study

• Heisenberg algebras are nilradical of some Borel subalgebras.
• The Riemannian and Lorentzian geometries on the 3-dimensional Heisenberg group

have been studied recently by many authors.
Thus it is interesting to study the Riemannian and Lorentzian symmetries with the natural
symmetries associated with a Γ-symmetric structure on the Heisenberg group. In this paper
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we prove that these geometries are entirely determinated by Riemannian and Lorentzian
structures adapted to Z2

2-symmetric structures.

2.2. Γ-symmetric spaces. Let Γ be a finite abelian group.

Definition 1. A Γ-symmetric space is a triple (G,H, Γ̃) where G is a connected Lie group, H

a closed subgroup of G and Γ̃ a finite abelian subgroup of the group Aut(G) of automorphisms

of G isomorphic to Γ such that GΓ
e ⊂ H ⊂ GΓ where GΓ = {x ∈ G, σ(x) = x ∀σ ∈ Γ̃}, GΓ

e

the identity component of GΓ.

If Γ is isomorphic to Z2 then we find the notion of symmetric spaces again. If Γ is isomorphic
to Zk with k ≥ 3, then Γ is a cyclic group generated by an automorphism of order k. The
corresponding spaces are called generalized symmetric spaces and have been studied by A.J.
Ledger, M. Obata [15], A. Gray, J. A. Wolf, [9] and O. Kowalski [13]. The general notion of
Γ-symmetric spaces was introduced by R. Lutz [14] and was algebraically reconsidered by
Y. Bahturin and M. Goze [1].
An equivalent and useful definition is the following:

Definition 2. Let Γ be a finite abelian group. A Γ-symmetric space is an homogeneous

space G/H such that there exists an injective homomorphism ρ : Γ → Aut(G) where Aut(G)
is the group of automorphisms of the Lie group G, the subgroup H satisfies GΓ

e ⊂ H ⊂ GΓ

where GΓ = {x ∈ G/ρ(γ)(x) = x, ∀γ ∈ Γ} and GΓ
e is the connected identity component of

GΓ of G.

In [1], one proves that, ifG andH are connected, then the triple (G,H, Γ̃) is a Γ-symmetric
space if and only if the complexified Lie algebra gC = g⊗RC of g is Γ-graded: gC =

⊕

γ∈Γ gγ
where gǫ = h is the Lie algebra of H with ǫ the unit of Γ. In this case, we have the relations
[gγ , gγ′ ] ⊂ gγγ′ for all γ, γ′ ∈ Γ.

In fact, the derivative of an automorphism σ of G belonging to Γ̃ is an automorphism of

g, still denoted σ. So if γ runs over Γ̃, we obtain a subgroup Γ̂ of the group of automorphisms
of g which is isomorphic to Γ. The elements of Γ̂ are automorphisms of g of finite order,
pairwise commuting and the Γ-grading corresponds to the spectral decomposition of gC
associated with the abelian finite group Γ̂. Conversely, if we have a Γ-grading of gC, and if
we denote by Γ̌ the dual group of Γ, that is, the group of characters, thus Γ̌ is a finite abelian
group isomorphic to Γ. Any element χ ∈ Γ̌ can be considered as an automorphism of gC
by χ(X) = χ(γ)X for any homogeneous vector X ∈ gγ . Thus Γ̌ is an abelian subgroup of
Aut(gC) isomorphic to Γ and the Γ-grading of g corresponds to the spectral decomposition
associated with Γ̌ considered as an abelian finite subgroup of Aut(gC). Then, if we assume
that G is also simply connected, we have a one-to-one correspondence between the set of
Γ-symmetric stuctures and the Γ-gradings of g.

In [14], it is shown that for any x̄ ∈ M = G/H , there exists a subgroup Γx̄ of the
group Diff(M) of diffeomorphisms of M , isomorphic to Γ, such that x̄ is the unique point
of M satisfying σ(x̄) = x̄ for any σ ∈ Γx̄. By extension, the elements of Γx̄ are also called
symmetries of M .

2.3. Zk
2-symmetric spaces. Assume that Γ = Zk

2 . In this case any element of Γ̂ is an invo-

lutive automorphism of g and the eigenvalues are real. Since the elements of Γ̂ are pairwise
commuting, we define a spectral decomposition of g itself. This implies a Zk

2-grading defined
on g: g =

⊕

γ∈Γ

gγ . For example, if k = 2, then Γ = {a, b, c, ǫ} where ǫ is the identity, with

a2 = b2 = c2 = ǫ, ab = c, bc = a, ca = b. and Γ̂ contains 4 elements, σa, σb, σc and the
identity Id. These maps are involutive and satisfy σa◦σb = σc, σb◦σc = σa, σc◦σa = σb.
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Each one of these linear maps is diagonalizable, and because they are pairwise commuting, we
can diagonalize all these maps simultaneously. Let ga = {X ∈ g, σa(X) = X, σb(X) = −X},
gb = {X ∈ g, σa(X) = −X, σb(X) = X}, gc = {X ∈ g, σa(X) = −X, σb(X) = −X} and
gǫ = {X ∈ g, σa(X) = X, σb(X) = X} be the root spaces. We have g = gǫ ⊕ ga ⊕ gb ⊕ gc.

Let us return to the general case Γ = Zk
2 . If G is connected and simply connected and H

connected, then the Γ-grading of g determine a structure of Γ-symmetric space on the triple
(G,H, Γ̃). We will say also that the homogeneous space G/H is a Zk

2-symmetric space.

Proposition 3. Any Zk
2-symmetric homogeneous space G/H is reductive.

Proof. In fact if g =
⊕

γ∈Zk
2

gγ is the associated decomposition of g, thus putting m =
⊕

γ∈Γ,γ 6=ǫ

gγ ,

we have g = gǫ ⊕ m with [gǫ, gǫ] ⊂ gǫ and [gǫ,m] ⊂ m. The decomposition g = gǫ ⊕ m is
reductive.

In general [m,m] is not a subset of gǫ, except if k = 1.

Two Zk
2 -gradings g =

⊕

γ∈Zk
2

gγ and g =
⊕

γ′∈Zk
2

g′γ′ of g are called equivalent if there

exist an automorphism π of g and an automorphism ω of Zk
2 such that g′γ′ = π(gω(γ)) for

any γ′ ∈ Zk
2 . If we consider only connected and simply connected groups G, and connected

subgroups H , then the classification of Zk
2-symmetric spaces is equivalent to the classifica-

tion, up to equivalence, to Zk
2-gradings on Lie algebras. For example, the Z2

2-grading of
classical simple complex Lie algebras are classified in [1]. This classification is completed for
exceptional simple algebras in [12].

2.4. Riemannian and pseudo-Riemannian Zk
2-symmetric spaces. Let (G,H,Zk

2) be
a Z

k
2-symmetric space with G and H connected. The homogeneous space M = G/H is

reductive. Then there exists a one-to-one correspondence between the G-invariant pseudo-
Riemannian metrics g on M and the non-degenerated symmetric bilinear form B on m

satisfying B([Z,X ], Y ) +B(X, [Z, Y ]) = 0 for all X,Y ∈ m and Z ∈ gǫ.

Definition 4. [8] A Zk
2-symmetric space M = G/H with AdG(H) compact, is called Rie-

mannian Zk
2 -symmetric if M is provided with a G-invariant Riemannian metric g whose

associated bilinear form B satisfies

(1) B(gγ , gγ′) = 0 if γ 6= γ′ 6= ǫ 6= γ
(2) The restriction of B to m = ⊕γ 6=ǫgγ is positive definite.

In this case the linear automorphisms which belong to Γ̂ are linear isometries. Some
examples are described in [16].

Proposition 5. Let (G,H,Zk
2) be a Riemannian Zk

2-symmetric space, G and H supposed

to be connected. Then H is compact.

Proof. In fact, H coincides with the identity component of the isotropy group which is
compact.

Example: Zk
2-symmetric nilpotent spaces. Let (G,H,Zk

2) be a Zk
2 -symmetric space

with G nilpotent. Such a space will be called a Zk
2-symmetric nilpotent space. If k = 1,

we cannot have on G/H a Riemannian symmetric metric except if G is abelian. But, if
k ≥ 2, there exist Riemannian Z

k
2 -symmetric nilpotent spaces. For example, let G be the

3-dimensional Heisenberg Lie group. Its Lie algebra h3 admits a basis {X1, X2, X3} with
[X1, X2] = X3. We have a Z2

2-grading of h3:

h3 = {0} ⊕ R{X1} ⊕ R{X2} ⊕ R{X3}
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and the metric g = ω2
1 + ω2

2 + ω2
3 defines a structure of Riemannian Zk

2-symmetric nilpotent
space on H3/{e} = H3 where {ω1, ω2, ω3} is the dual basis of {X1, X2, X3}. We will develop
this calculus in the next sections.

A Lorentzian metric on a n-dimensional differential manifold M is a smooth field of
non-degenerate quadratic forms of signature (n − 1, 1). We say that a homogeneous space
(M = G/H, g) provided with a Lorentzian metric g is Lorentzian if the canonical action of
G on M preserves the metric. If M is reductive and if g = gǫ ⊕m, the Lorentzian metric is
determinate by the adgǫ-invariant non-degenerate bilinear form B with signature (n− 1, 1).

Definition 6. Let (G,H,Zk
2) be a Zk

2-symmetric space. It is called Lorentzian if there

exists on the homogeneous space M = G/H a Lorentzian metric g such that one of the two

conditions is satisfied:

(1) The homogeneous non trivial components gγ of the Zk
2-graded Lie algebra g are

orthogonal and non-degenerate with respect to the induced bilinear form B.

(2) One non trivial component gλ0
is degenerate, the other components are orthogonal

and non-degenerate.

Let us note that, in this case, H is not necessarily compact. Some examples of Lorentzian
Zk
2-symmetric nilpotent spaces are described in the next sections.

3. Affine structures on Zk
2-symmetric spaces

Let (G,H,Zk
2) be a Zk

2-symmetric space. Since the homogeneous space G/H is reduc-
tive, from [11], Chapter X, we deduce that M = G/H admits two G-invariant canonical
connections denoted by ∇ and ∇. The first canonical connection, ∇, satisfies







R(X,Y ) = −ad([X,Y ]h), T (X,Y ) = −[X,Y ]m, ∀X,Y ∈ m

∇T = 0
∇R = 0

where T and R are the torsion and the curvature tensors of ∇. The tensor T is trivial if and
only if [X,Y ]m = 0 for all X,Y ∈ m. This means that [X,Y ] ∈ h that is [m,m] ⊂ h. If the
grading of g is given by Zk

2 with k > 1, then [m,m] is not a subset of h and then the torsion T
need not to vanish. In this case the other connection ∇ is given by ∇XY = ∇XY −T (X,Y ).
This is an affine invariant torsion free connection on G/H which has the same geodesics as
∇. This connection is called the second canonical connection or the torsion-free canonical

connection.

Remark. Actually, there is another way of writing the canonical affine connection of a
Γ-symmetric space, without any reference to Lie algebras. This is done by an intrinsic
construction of Γ-symmetric spaces proposed by Lutz in [14].

3.1. Associated affine connection. Any symmetric space G/H is an affine symmetric
space, that is, it is provided with an affine connection∇ whose torsion tensor T and curvature
tensor R satisfy

T = 0, ∇R = 0

where

∇R(X1, X2, X3, Y ) = ∇(Y,R(X1, X2, X3))−R(∇(Y,X1), X2, X3)
−R(X1,∇(Y,X2), X3)−R(X1, X2,∇(Y,X3))

for any vector fields X1, X2, X3, Y on G/H . It is the only affine connection which is invariant
by the symmetries of G/H . This means that the two canonical connections, which are
defined on an homogeneous reductive space, coincide if the reductive space is symmetric.
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For example, if G/H is a Riemannian symmetric space, this connection ∇ coincides with
the Levi-Civita connection associated with the Riemannian metric.

Let us return to the general case. Let us assume that G/H is a reductive homogeneous
space, and let g = h ⊕ m be the reductive decomposition of g. Any connection on G/H is
given by a linear map

∧

: m → gl(m) satisfying
∧

[X,Y ] = [
∧

(X), λ(Y )] for all X ∈ m and
Y ∈ h, where λ is the linear isotropy representation of h. The corresponding torsion and
curvature tensors are given by: T (X,Y ) =

∧

(X)(Y )−∧

(Y )(X)− [X,Y ]m and R(X,Y ) =
[
∧

(X),
∧

(Y )]−
∧

[X,Y ]− λ([X,Y ]h) for any X,Y ∈ m.

Let (G,H,Zk
2) be a Z

k
2-symmetric space. We have recalled that, when k = 1, the homo-

geneous space G/H is an affine symmetric space. But, as soon as k > 1, in general the two
canonical connections do not coincide and the torsion tensor of the first one is not trivial.
We can consider connections adapted to the Zk

2 -symmetric structures.

Definition 7. Let ∇ be an affine connection on the Zk
2-symmetric space G/H defined by

the linear map
∧

: m → gl(m). Then this connection is called adapted to the Zk
2-symmetric

structure, if
∧

(Xγ)(gγ′) ⊂ gγγ′ for any γ, γ′ ∈ Zk
2 , γ, γ′ 6= ǫ. The connection is called

homogeneous if any homogeneous component gγ of m is invariant by
∧

.

Examples

(1) If k = 1, the affine canonical connection is adapted and homogeneous.
(2) Let us consider the 5-dimensional nilpotent Lie algebra, l5 whose Lie brackets are

given in a basis {X1, · · · , X5} by [X1, Xi] = Xi+1, i = 2, 3, 4. This algebra admits a
Z2-grading l5 = R{X3, X5} ⊕ R{X1, X2, X4}. Thus

∧

(X1),
∧

(X2),
∧

(X4) are ma-
trices of order 3. If we assume that the torsion T is zero, we obtain

∧

(X1) =





a 0 0
b 0 0
c d a

2



 ,
∧

(X2) =





0 0 0
0 e 0
d f a

2



 ,
∧

(X3) =





0 0 0
0 0 0
−a

2 0 0



 .

The linear isotropy representation of H whose Lie algebra is h is given by taking
the differential of the map l5/H → l5/H corresponding to the left multiplication
x → hx with x = xH4. We obtain

λ(X3) =





0 0 0
0 0 0
1 0 0



 , λ(X5) = (0) .

We deduce that the curvature is always non zero.

4. The Zk
2-symmetric spaces (H3, H,Zk

2)

We denote by H3 the 3-dimensional Heisenberg group, that is the linear group of dimen-
sion 3 consisting of matrices





1 a c
0 1 b
0 0 1



 a, b, c ∈ R.

Its Lie algebra, h3 is the real Lie algebra whose elements are matrices




0 x z
0 0 y
0 0 0



 with x, y, z ∈ R.
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The elements of h3, X1, X2, X3, corresponding to (x, y, z) = (1, 0, 0), (0, 1, 0) and (0, 0, 1)
form a basis of h3 and the Lie brackets are given in this basis by [X1, X2] = X3, [X1, X3] =
[X2, X3] = 0.

4.1. Description of Aut(h3). Denote by Aut(h3) the group of automorphisms h3. Every
τ ∈ Aut(h3) admits in the basis {X1, X2, X3} the following matricial representation:

(1)





α1 α2 0
α3 α4 0
α5 α6 ∆



 with ∆ = α1α4 − α2α3 6= 0.

We will denote by τ(α1, α2, α3, α4, α5, α6) any element of Aut(h3) in this representation. Let
Γ be a finite abelian subgroup of Aut(h3). It admits a cyclic decomposition. If Γ contains
a component of the cyclic decomposition which is isomorphic to Zk, then there exists an
automorphism τ satisfying τk = Id. The aim of this section is to determinate the cyclic
decomposition of any finite abelian subgroup Γ.

• Subgroups of Aut(h3) isomorphic to Z2

Let τ ∈ Aut(h3) satisfying τ2 = Id. If we consider the matricial representation (1) of τ ,
we obtain:





α2
1 + α2α3 α1α2 + α2α4 0

α1α3 + α3α4 α2α3 + α2
4 0

α1α5 + α3α6 +∆α5 α2α5 + α4α6 +∆α6 ∆2



 =





1 0 0
0 1 0
0 0 1



 .

Proposition 8. Any involutive automorphism τ of Aut(h3) is equal to one of the following

automorphisms

Id, τ1(α3, α6) =







−1 0 0
α3 1 0

α3α6

2
α6 −1






, τ2(α3, α5) =





1 0 0
α3 −1 0
α5 0 −1



 ,

τ3(α1, α2 6= 0, α6) =











α1 α2 0
1− α2

1

α2
−α1 0

(1 + α1)α6

α2
α6 −1











, τ4(α5, α6) =





−1 0 0
0 −1 0
α5 α6 1



 .

Corollary 9. Any subgroup of Aut(h3) isomorphic to Z2 is one of the following:

Γ1(α3, α6) = {Id, τ1(α3, α6)}, Γ2(α3, α5) = {Id, τ2(α3, α5)},
Γ3(α1, α2, α6) = {Id, τ3(α1, α2, α6), α2 6= 0}, Γ4(α5, α6) = {Id, τ4(α5, α6)}.

• Subgroups of Aut(h3) isomorphic to Zk, k ≥ 3. If τ = τ(α1, α2, α3, α4, α5, α6) ∈
Aut(h3) satisfies τk = Id, then ∆ = α1α4 − α2α3 = 1 and its minimal polynomial has 3
simple roots and it is of degree 3. More precisely, it is written

mτ (x) = (x− 1)(x− µk)(x − µk)

where µk is a root of order k of 1. Since we can assume that τ is a generator of a cyclic
subgroup of Aut(h3) isomorphic to Zk, the root µk is a primitive root of 1. There exists

m relatively prime with k such that µk = exp

(

2miπ

k

)

. We have α1 + α4 = µk + µk and

α1 + α4 = 2 cos
2mπ

k
. Thus

α1 = cos
2mπ

k
−
√

cos2
2mπ

k
− 1− α2α3,
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α4 = cos
2mπ

k
+

√

cos2
2mπ

k
− 1− α2α3

or

α1 = cos
2mπ

k
+

√

cos2
2mπ

k
− 1− α2α3,

α4 = cos
2mπ

k
−
√

cos2
2mπ

k
− 1− α2α3.

If τ ′ and τ ′′ denote the automorphisms corresponding to these solutions, we have, for a
good choice of the parameters αi, τ

′ ◦ τ ′′ = Id and τ ′′ = (τ ′)k−1. Thus these automorphisms
generate the same subgroup of Aut(h3). Moreover, with same considerations, we can choose
m = 1. Thus we have determinate the automorphism τ5(α2, α3, α5, α6) whose matrix is













cos
2π

k
+

√

cos2
2π

k
− 1− α2α3 α2 0

α3 cos
2π

k
−
√

cos2
2π

k
− 1− α2α3 0

α5 α6 1













Proposition 10. Any abelian subgroup of Aut(h3) isomorphic to Zk,k ≥ 3, is equal to

Γ6,k(α2, α3, α5, α6) =

{

Id, τ6(α2, α3, α5, α6), · · · , τk−1
6 , α2α3 ≤ −1 + cos2

2π

k

}

.

General case. Suppose now that the cyclic decomposition of a finite abelian subgroup Γ

of Aut(h3) is isomorphic to Z
k2

2 × Z
k3

3 × · · · × Z
kp

p with ki ≥ 0.

Lemma 11. Let Γ be an abelian finite subgroup of Aut(h3) with a cyclic decomposition

isomorphic to Z
k2

2 × Z
k3

3 × · · · × Z
kp

p . Then

(1) If there is i ≥ 3 such that ki 6= 0, then k2 ≤ 1.

(2) If k2 ≥ 2, then Γ is isomorphic to Z
k2

2 .

Proof. Assume that there is i ≥ 3 such that ki ≥ 1. If k2 ≥ 1, there exist two automorphisms
τ and τ ′ satisfying τ ′i = τ2 = Id and τ ′ ◦ τ = τ ◦ τ ′. Thus τ ′ and τ can be reduced
simultaneously in the diagonal form and admit a common basis of eigenvectors. Since for
any σ ∈ Aut(h3) we have σ(X3) = ∆X3, X3 is an eigenvector for τ ′ and τ associated to the
eigenvalue 1 for τ ′ and ±1 for τ . As the two other eigenvalues of τ ′ are complex conjugate
numbers, the corresponding eigenvectors are complex conjugate. This implies that the
eigenvalues of τ distinguished of ∆ = ±1 are equal and from Proposition 8, τ = τ4(α5, α6).

If we assume that k2 ≥ 2, there exist τ and τ ′′ not equal and belonging to Z
k2

2 . Thus we
have τ = τ4(α5, α6) and τ ′′ = τ4(α

′
5, α

′
6). But τ4(α5, α6)◦τ4(α′

5, α
′
6) = τ4(α

′
5, α

′
6)◦τ4(α5, α6)

if and only if α5 = α′
5, α6 = α′

6 and τ = τ ′′, this contradicts the hypothesis. �

From this lemma, we have to determine, in a first step, the subgroups Γ of Aut(h3)
isomorphic a (Z2)

k with k ≥ 2.
• Any involutive automorphism τ commuting with τ1(α3, α6) with τ 6= τ1(α3, α6) is equal
to τ2(−α3, α5) or τ4(α5,−α6) and we have τ1(α3, α6) ◦ τ2(−α3, α5) = τ4

(

−α3α6

2 − α5,−α6

)

and
[

τ2(−α3, α5), τ4
(

−α3α6

2 − α5,−α6

)]

= 0. Thus

Γ7(α3, α5, α6) =
{

Id, τ1(α3, α6), τ2(−α3, α5), τ4

(

−α3α6

2
− α5,−α6

)}

is a subgroup of Aut(h3) isomorphic to Z2
2. Moreover it is the only subgroup of Aut(h3) of

type (Z2)
k, k ≥ 2, containing an automorphism of type τ1(α3, α6).
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• A direct computation shows that any abelian subgroup Γ containing τ2(α3, α5) is either
isomorphic to Z2 or equal to Γ7.
• Assume that τ3(α1, α3, α6) ∈ Γ. The automorphisms τ3(−α1,−α2, α

′
6) and τ4(α5, α

′
6)

commute with τ3(α1, α3, α6). Since

τ3(α1, α2, α6) ◦ τ3(−α1,−α2, α
′
6) = τ4

(

α′
6(1− α1)− α6(1 + α1)

α2
,−α6 − α′

6

)

we obtain the following subgroup, denoted Γ8(α1, α2, α6, α
′
6):

{

Id, τ3(α1, α2, α6), τ3(−α1,−α2, α
′
6), τ4

(

α′
6(1− α1)− α6(1 + α1)

α2
,−α6 − α′

6

)}

which is isomorphic to Z2
2.

• We suppose that τ4(α5, α6) ∈ Γ. If Γ is not isomorphic to Z2, then Γ is one of the groups
Γ7,Γ8.

Theorem 12. Any finite abelian subgroup Γ of Aut(h3) isomorphic to (Z2)
k is one of the

following

(1) k = 1, Γ = Γ1(α3, α6), Γ2(α3, α5), Γ3(α1, α2, α6), α2 6= 0, Γ4(α5, α6),
(2) k = 2, Γ = Γ7(α3, α5, α6), Γ8(α1, α2, α6, α

′
6).

Assume now that Γ is isomorphic to Z
k3

3 with k3 ≥ 2. If τ ∈ Γ5, its matricial representa-
tion is











−1−
√
−3− 4α2α3

2
α2 0

α3
−1 +

√
−3− 4α2α3

2
0

α5 α6 1











.

To simplify, we put λ =
−1−√−3− 4α2α3

2
. The eigenvalues of τ are 1, j, j2 and the

corresponding eigenvectors X3, V, V with

V =

(

1,−λ− j

α2
,− α5

1− j
+

α6(λ− j)

α2(1− j)

)

if α2 6= 0. If τ ′ is an automorphism of order 3 commuting with τ , then τ ′V = jV or j2V.

But the two first components of τ ′(V ) are λ′ − β2

α2
(λ− j), β3 − λ′(λ−j)

α2

where βi and λ′ are

the corresponding coefficients of the matrix of τ ′. This implies α2λ
′ − β2(λ − j) = α2j or

α2j
2. Considering the real and complex parts of this equation, we obtain

{

α2λ
′ − β2λ = 0,

β2j = α2j or α2j
2.

As α2 6= 0, we obtain α2 = β2 and λ = λ′. Let us compare the second component of τ ′(V ).
We obtain β3α2 − λ′(λ− j) = −(λ− j)j or −(λ− j)j2. As λ = λ′, we have in the first case
2λj = j2 and in the second case 2λj = j3 = 1. In any case, this is impossible. Thus α2 = 0
and, from Section 2.2, τ = Id. This implies that k3 = 1 or 0.

Theorem 13. Let Γ be a finite abelian subgroup of Aut(h3). Thus Γ is isomorphic to one

of the following group

(1) Z2 × Z2,

(2) Z
k2

2 × Z
k3

3 × · · · × Z
kp

p with ki = 0 or 1 for i = 2, · · · , p.
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To prove the second part, we show as in the case i = 3 that ki = 1 as soon as ki 6= 0.

Remark. We have determined the finite abelian subgroups of Aut(h3). There are non-
abelian finite subgroups with elements of order at most 3. Take for example the subgroup
generated by

σ1 =





1 0 0
0 1 0
0 0 −1



 , σ2 =





− 1
2 α 0

− 3
4α − 1

2 0
0 0 1



 α 6= 0.

The relations on the generators are σ2
1 = Id, σ3

2 = Id, σ1σ2σ1 = σ2
2 . Thus the group

generated by σ1 and σ2 is isomorphic to the symmetric group Σ3 of degree 3.

4.2. Description of the Z2 and Z2
2-gradings of h3. Let Γ be a finite abelian subgroup

of Aut(h3) isomorphic to Z
k
2 (k = 1 or 2).

• If Γ = Z2, we have obtained Γ = Γi, i = 1, 2, 3, 4. Up to equivalence of gradings, the
Z2-grading of h3 are:

h3 = R{X2}
⊕

R{X1, X3} and h3 = R{X1}
⊕

R{X2, X3}.

• If Γ = Z2
2 then Γ = Γ7 or Γ = Γ8.

Lemma 14. There is an automorphism σ ∈ Aut(h3) such that σ−1Γ7σ = Γ8.

The proof is a simple computation. There also exists σ ∈ Aut(h3) such that
{

σ−1τ1(α3, α6)σ = τ1(0, 0),
σ−1τ2(−α3, α5)σ = τ2(0, 0).

We deduce:

Proposition 15. Every Z2
2-grading on h3 is equivalent to the grading defined by Γ7(0, 0, 0) =

{Id, τ1(0, 0), τ2(0, 0), τ4(0, 0)}.
This grading corresponds to h3 = {0} ⊕ R{X1} ⊕ R{X2} ⊕ R{X3}.

4.3. Non existence of Riemannian symmetric structures on H3/H. Consider the
symmetric space H3/H1 associated with the grading

h3 = R{X2}
⊕

R{X1, X3}.

Let {ω1, ω2, ω3} be the dual basis of {X1, X2, X3}. Any pseudo-Riemannian metric on the
symmetric space H3/H1 where H1 is a one-dimensional connected Lie group whose Lie
algebra g0 = R{X2} is given by a non-degenerate adg0-invariant bilinear form B = aω2

1 +
bω1 ∧ ω3 + cω2

3 on g1 = R{X1, X3}. This implies B([X2, X1], X3) = −B(X3, X3) = −c = 0.
But we have also B([X2, X1], X1)+B(X1, [X2, X1]) = −2B(X3, X1) = −2b = 0. We deduce

Proposition 16. The nilpotent symmetric space H3/H associated to the grading h3 =
R{X2}

⊕

R{X1, X3} doesn’t admit any pseudo-Riemannian symmetric metric.

Consider now the symmetric space H3/H2 associated with the grading
h3 = R{X3}

⊕

R{X1, X2}. Then H2 is the Lie subgroup whose Lie algebra is R{X3} and
the bilinear form B = aω2

1 + bω1 ∧ ω2 + cω2
2 on g1 = R{X1, X2} is adX3-invariant because

adX3 = 0. But AdG is an homomorphism of G onto the group of inner automorphisms
of g with kernel the center of G, we deduce that AdG(H) is compact in this case and any
non-degenerate bilinear form B on g1 defines a Riemannian or a Lorentzian structure on the
symmetric space H3/H2.
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Proposition 17. The nilpotent symmetric space H3/H2 associated to the grading h3 =
R{X3}

⊕

R{X1, X2} admits a structure of Riemannian symmetric space. It admits also a

structure of Lorentzian symmetric space.

4.4. Riemannian Z2
2-symmetric structures on H3. Consider on H3 a Z2

2-symmetric
structure. It is determined, up to equivalence, by the Z2

2-grading of h3

h3 = {0} ⊕ R{X1} ⊕ R{X2} ⊕ R{X3}.
Since every automorphism of h3 is an isometry of any invariant Riemannian metric on H3,
we deduce

Theorem 18. Any Riemannian Z
2
2-symmetric structure on H3 is isometric to the Rie-

mannian structure associated with the grading h3 = {0} ⊕ R{X1} ⊕ R{X2} ⊕ R{X3} and

the Riemannian Z2
2-symmetric metric is written g = ω2

1 + ω2
2 + λ2ω2

3 with λ 6= 0, where
{ω1, ω2, ω3} is the dual basis of {X1, X2, X3}.
Proof. Indeed, since the components of the grading are orthogonal, the Riemannian metric
g, which coincides with the form B satisfies g = α1ω

2
1 + α2ω

2
2 + α3ω

2
3 with α1 > 0, α2 > 0,

α3 > 0.
According to [6], we reduce the coefficients to α1 = α2 = 1. �

Remark. According to [7] and [10], this metric is naturally reductive for any λ.

Corollary 19. A Riemannian tensor g on H3 determines a Riemannian Z2
2-symmetric

structure over H3 if and only if it is a left-invariant metric on H3.

This is a consequence of the previous theorem and of the classification of left-invariant
metrics on Heisenberg groups ([6]).

4.5. Lorentzian Z2
2-symmetric structures on H3. We say that an homogeneous space

(M = G/H, g) is Lorentzian if the canonical action of G on M preserves a Lorentzian metric
(i.e. a smooth field of non-degenerate quadratic forms of signature (n− 1, 1)) (see [3]).

Proposition 20 ([5]). Modulo an automorphism and a multiplicative constant, there exists

on H3 one left-invariant metric assigning a strictly positive length on the center of h3.

The Lie algebra h3 is generated by the central vector X3 and X1 and X2 such that
[X1, X2] = X3. The automorphisms of the Lie algebra preserve the center and then send
the element X3 on λX3, with λ ∈ R∗. Such an automorphism acts on the plane generated
by X1 and X2 as an automorphism of determinant λ.
It is shown in [17] and [18] that, modulo an automorphism of h3, there are three classes
of invariant Lorentzian metrics on H3, corresponding to the cases where ||X3|| is negative,
positive or zero.
We propose to look at the Lorentzian metrics that are associated with the Z2

2-symmetric
structures over H3. If g is the Heisenberg algebra equipped with a Z2

2-grading, then by
automorphism, we can reduce to the case where Γ = Γ7. In this case, the grading of h3 is
given by:

h3 = g0 + g+− + g−+ + g−−

with g0 = {0}, and

g+− = R

{

X2 −
α6

2
X3

}

, g−+ = R

{

X1 −
α3

2
X2 +

α5

2
X3

}

, g−− = R {X3} .

Assume Y1 = X1 − α3

2 X2 +
α5

2 X3, Y2 = X2 − α6

2 X3, Y3 = X3. The dual basis is

ϑ1 = ω1 ϑ2 = ω2 +
α3

2
ω1 ϑ3 = ω3 −

α6

2
ω2 −

(α3α6

4
+

α5

2

)

ω1
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where {ω1, ω2, ω3} is the dual basis of the base {X1, X2, X3}.

Case I The components g+−, g−+, g−− are non-degenerate. The quadratic form induced
on h3 therefore writes

g = λ1ω
2
1 + λ2

(

ω2 +
α3

2
ω1

)2

+ λ3

(

ω3 −
α6

2
ω2 −

(α5

2
+

α3α6

4

)

ω1

)2

with λ1, λ2, λ3 6= 0. The change of basis associated with the matrix




1 0
α3

2 1 0
−α5

2 − α3α6

4 −α6

2 1





is an automorphism. Thus g is isometric to g = λ1ω
2
1 + λ2ω

2
2 + λ3ω

2
3 . Since the signature is

(2, 1) one of the λi is negative and the two others positive.

Proposition 21. Every Lorentzian Z2
2-symmetric metric g on H3 such that the components

of the grading of h3 are non-degenerate, is reduced to one of these two forms: g = −ω2
1 +

ω2
2 + λ2ω2

3 or g = ω2
1 + ω2

2 − λ2ω2
3

Case II Suppose that a component is degenerate. When this component is R{X2+
α6

2 X3}
or R{X1 − α3

2 X2 +
α5

2 X3} then, by automorphism, it reduces to the above case.
Suppose then that the component containing the center is degenerate.
Thus the quadratic form induced on h3 is written

g = ω2
1 +

[

ω3 −
α6

2
ω2 −

2α5 + α3α6

4
ω1

]2

−
[

ω2 − ω3 +
α6

2
ω2 +

2α5 + α3α6

4
ω1

]2

.

The change of basis associated with the matrix




1 0
α3

2 1 0
−α5

2 − α3α6

4 −α6

2 1





is given by an automorphism. Thus g is isomorphic to g = ω2
1 + ω2

3 − (ω2 − ω3)
2.

Proposition 22. Every Lorentzian Z2
2-symmetric metric g on H3 such that the component

of the grading of h3 containing the center is degenerate, is reduced to the form g = ω2
1 +

ω2
3 − (ω2 − ω3)

2.

Corollary 23. A Lorentzian tensor g on H3 determines a Lorentzian Z2
2-symmetric struc-

ture over H3 if and only if it is a left-invariant Lorentzian metric on H3.

The classification, up to isometry, of left-invariant Lorentzian metrics on H3 is described
in [4] and in [18]. It corresponds to the previous classification of Lorentzian Z2

2-symmetric
metrics.

5. Zk
2-symmetric spaces based on H2p+1

5.1. Z
k
2-gradings of h2p+1. Let σ be an involutive automorphism of the (2p+1)-dimensional

Heisenberg algebra h2p+1. Let {X1, · · · , X2p+1} be a basis of h2p+1 whose structure constants
are given by

[X1, X2] = · · · = [X2p−1, X2p] = X2p+1.

Since the center R{X2p+1} is invariant by σ, it is contained in an homogeneous component
of the grading h2p+1 = g0 ⊕ g1 associated with σ. But for any X ∈ h2p+1, X 6= 0, there
exists Y 6= 0 such that [X,Y ] = aX2p+1 with a 6= 0. We deduce that any Z2-grading is
equivalent to one of the following:
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(1) If X2p+1 ∈ g0, then
• h2p+1 = R{X2p+1} ⊕ R{X1, X2, · · · , X2p}
• h2p+1 = R{X1, X2, X3, · · · , X2k, X2p+1} ⊕ R{X2k+1, X2k+2, · · · , X2p}

(2) If X2p+1 ∈ g1, then
• h2p+1 = R{X1, X3, · · · , X2p−1} ⊕ R{X2, X4, · · · , X2p, X2p+1}
• h2p+1 = R{X2, X4, · · · , X2p} ⊕ R{X1, X3, · · · , X2p−1, X2p+1}.

Let h2p+1 =
⊕

γ∈Zk
2

gγ be a Zk
2-grading of the Heisenberg algebra. The support of this

grading is the subset {γ ∈ Zk
2 , gγ 6= 0}. We will say that this grading is irreducible if the

subgroup of Zk
2 generated by its support is the full group Z

k
2 .

Lemma 24. If h2p+1 admits an irreducible Zk
2-grading, then k = 1 or k = 2.

In fact, this is a consequence of the previous classification of the Z2-gradings of h2p+1.
We deduce also that any Z2

2-grading is equivalent to

h2p+1 = {0} ⊕ R{X2p+1} ⊕ R{X1, X3, · · · , X2p−1} ⊕ R{X2, X4, · · · , X2p}.

5.2. Pseudo-Riemannian symmetric spaces H2p+1/H. We consider the symmetric spa-
ces H2p+1/H corresponding to the previous symmetric decomposition of h2p+1, where H is
a connected Lie subgroup of H2p+1 whose Lie algebra is g0.
• With the Z2-grading h2p+1 = R{X2p+1} ⊕ R{X1, X2, · · · , X2p}. Since ad(X2p+1) is zero
any non-degenerate bilinear form on g1 defines a symmetric pseudo-Riemannian metric on
H2p+1/H where H is a connected one-dimensional Lie Group.
• Consider the Z2-grading

h2p+1 = R{X1, X2, X3, · · · , X2k, X2p+1} ⊕ R{X2k+1, X2k+2, · · · , X2p}
In this case, H is a Lie subgroup isomorphic to H2k+1. Since we have [g0, g1] = 0, any non-
degenerate bilinear form on g1 defines a symmetric pseudo-Riemannian metric onH2p+1/H2k+1.
• We consider the Z2-gradings

h2p+1 = R{X1, X3, · · · , X2p−1} ⊕ R{X2, X4, · · · , X2p, X2p+1}
or h2p+1 = R{X2, X4, · · · , X2p} ⊕ R{X1, X3, · · · , X2p−1, X2p+1}.

In this case, any bilinear form on g1 which is ad(g0)-invariant is degenerate. In fact, if B is
such a form, we have

B([X2k+1, X2k+2], X1) = B(X2p+1, X2p+1) = 0

and for any k = 0, · · · , p− 1 and s 6= k + 1

B([X2k+1, X2k+2], X2s) = B(X2p+1, X2s) = 0,

and X2p+1 is in the kernel of B. We have the same proof for the second grading.

Proposition 25. The symmetric spaces H2p+1/H corresponding to the Z2-grading of h2p+1:

• h2p+1 = R{X1, X3, · · · , X2p−1} ⊕ R{X2, X4, · · · , X2p, X2p+1}
• h2p+1 = R{X2, X4, · · · , X2p} ⊕ R{X1, X3, · · · , X2p−1, X2p+1}

are not pseudo-Riemannian symmetric spaces.

5.3. Riemannian Z2
2-symmetric spaces H2p+1/H. Let us consider the Z2

2-grading of the
Heisenberg algebra

h2p+1 = {0} ⊕ R{X2p+1} ⊕ R{X1, X3, · · · , X2p−1} ⊕ R{X2, X4, · · · , X2p}.
Since g0 = {0}, then H is reduced to the identity and the Z2

2-symmetric space H2p+1/H is
isomorphic to H2p+1. The reductive decomposition h2p+1 = g0 ⊕ m is reduced to m. Since
g0 = {0}, any bilinear definite positive form on m for which the homogeneous components
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R{X2p+1}, R{X1, X3, · · · , X2p−1} and R{X1, X4, · · · , X2p} are pairwise orthogonal defines
a Riemannian Z2

2-symmetric structure on H2p+1.
The Levi-Civita connection associated with this Riemannian metric is an affine connec-

tion. In case of Riemannian symmetric space, the Levi-Civita connection associated with the
Riemannian symmetric metric is torsion-free and the curvature tensor R satisfies ∇R = 0,
where ∇ is the covariant derivative of this connection, and correspond to the canonical
connection defined in [11] which defines the natural affine structure on a symmetric space.
This is not the case for Riemannian Z2

2-symmetric spaces. In the next section, we define a
class of affine connections adapted to the Z2

2-symmetric structures, and we prove, in case of
the Riemannian Z2

2-symmetric space H2p+1/H , that there exist adapted connections with
torsion and curvature-free.

5.4. Adapted affine connections on the Z2
2-symmetric spaces H2p+1/H. Let G/H

be a Zk
2-symmetric space. Since G/H is a reductive homogeneous space, that is g admits a

decomposition g = g0 + m with [g0, g0] ⊂ g0 and [g0,m] ⊂ m, any connection is given by a
linear map

∧

: m → gl(m)

satisfying
∧

[X,Y ] =
[

∧

(X), λ(Y )
]

for all X ∈ m and Y ∈ g0, where λ is the linear isotropy representation of g0. The corre-
sponding torsion and curvature tensors are given by:

T (X,Y ) =
∧

(X)(Y )−
∧

(Y )(X)− [X,Y ]m

and R(X,Y ) =
[

∧

(X),
∧

(Y )
]

−
∧

[X,Y ]− λ([X,Y ]g0
)

for any X,Y ∈ m.

Definition 26. Consider the affine connection on the Zk
2-symmetric space G/H defined by

the linear map
∧

: m → gl(m).

Then this connection is called adapted to the Zk
2-symmetric structure, if any

∧

(Xγ)(gγ′) ⊂ gγγ′

for any γ, γ′ ∈ Zk
2 , γ, γ 6= 0. The connection is called homogeneous if any homogeneous

component gγ of m is invariant by
∧

.

Now we consider the case where G/H = H2p+1/H is the Z2
2-symmetric space defined by

the grading

h2p+1 = {0} ⊕ R{X2p+1} ⊕ R{X1, X3, · · · , X2p−1} ⊕ R{X2, X4, · · · , X2p}.
We have seen that H is reduced to the identity and H2p+1/H is isomorphic to H2p+1.
Consider an adapted connection and let

∧

be the associated linear map. Since the connection
is adapted to the Z2

2-symmetric structure,
∧

satisfies:


































∧

(X2k+1)(X2l+1) =
∧

(X2s)(X2t) = 0, k, l = 0, · · · , p− 1, s, t = 1, · · · , p,
∧

(X2k+1)(X2s) = C2k+1
s X2p+1, s = 1, · · · , p, k = 0, · · · , p− 1,

∧

(X2s)(X2k+1) = C2s
k X2p+1, s = 1, · · · , p, k = 0, · · · , p− 1,

∧

(X2k+1)(X2p+1) =
∑p

s=1 a
s
2k+1X2s, k = 0, · · · , p− 1,

∧

(X2s)(X2p+1) =
∑p

k=0 a
k
2sX2k+1, s = 1, · · · , p.
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Theorem 27. Any adapted connection ∇ on the Z2
2-symmetric space H2p+1/H = H2p+1

satisfies T = 0 and R = 0 where T and R are respectively the torsion and the curvature of

∇ if and only if the corresponding linear map
∧

satisfies






∧

(X2k+1)(X2s) = C2k+1
s X2p+1, s = 1, · · · , p, k = 0, · · · , p− 1,

∧

(X2k+1)(Xi) = 0, k = 0, · · · , p− 1, i /∈ {2, · · · , 2p},














∧

(X2s)(X2k+1) = C2k+1
s X2p+1, s = 1, · · · , p, k = 0, · · · , p− 1, k 6= s− 1,

∧

(X2s)(X2s−1) = (C2k+1
s − 1)X2p+1, s = 1, · · · , p,

∧

(X2s)(Xi) = 0, s = 1, · · · , p, i /∈ {1, · · · , 2p− 1}.

In fact, we determine in a first step, all the connection adapted to the Z2
2-symmetric

structure and which are torsion-free. In this case,
∧

satisfies
∧

(X)(Y )−
∧

(Y )(X)− [X,Y ] = 0, for any X,Y ∈ h2p+1.
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