The final publication is available at
https://www.sciencedirect.com/science/article/abs/pii/S0957417415003917
Expert Systems with Applications, Volume 42, Issue 21, 30 November
2015, Pages 7263-7275, https://doi.org/10.1016/j.eswa.2015.05.055

An Integrated System for Vehicle Tracking and
Classification

Sebastiano Battiato, Giovanni Maria Farinella, Antonino Furnari*
University of Catania - Department of Mathematics and Compute Science
Giovanni Puglisi
University of Cagliari

Anique Snijders, Jelmer Spiekstra
Q-Free, Netherlands

Abstract

We present a unified system for vehicle tracking and classification which has been
developed with a data-driven approach on real-world data. The main purpose
of the system is the tracking of the vehicles to understand lane changes, gates
transits and other behaviors useful for traffic analysis. The discrimination of
the vehicles into two classes (cars vs. trucks) is also required for electronic
truck-tolling. Both tracking and classification are performed online by a system
made up of two components (a tracker and a classifier) plus a controller which
automatically adapts the configuration of the system to the observed conditions.
The tracker component is an augmented version of the template matching which
includes four modules designed to cope with the different variabilities exhibited
by the data. The classification task is performed with a discriminative model
learned on a training set derived from the input video sequences. Experiments
show that the proposed tracker outperforms the state-of-the-art algorithms on

the considered data. The performances of the classifier are assessed with respect
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to both real-world and artificially introduced data to test its robustness with
respect to the possible variabilities.

Keywords: traffic monitoring, vehicle tracking, vehicle classification

1. Introduction

Video traffic monitoring is a popular application domain in Computer Vision.
In this context algorithms are often designed to detect, re-identify, count, track
or classify vehicles Hsieh et al. (2006); Bas et al. (2007); Zhou et al. (2007). We
tackle the last two tasks presenting a unified system for the online tracking and
classification of vehicles. The system has been designed and tested to work
with real-world data acquired by Q-Free! and can be used for a series of traffic-
related applications ranging from road charging to law enforcement, electronic
toll collection and truck tolling.

Many approaches to visual object tracking are available in literature
Maggio and Cavallaro (2011); Arnold et al. (2013). Each strategy is formulated
by making assumptions on the application domain and choosing a suitable ob-
ject representation and a frame-by-frame localization procedure. A method to
update the target representation during the tracking is usually required, espe-
cially when the target is subject to geometric and photometric transformations
(pose changes, deformations, illumination changes, etc.) Maggio and Cavallaro
(2011). The most straightforward approach is probably the Template Match-
ing, where the object is assumed to be rigid and is represented as an image
patch (the template) Maggio and Cavallaro (2011); Yilmaz et al. (2006). If no
pose changes are considered, the object is searched in the neighborhood of the
last known position by maximizing a chosen similarity function (e.g., Sum of
Squared Differences (SSD), Normalized Cross Correlation (NCC), etc.) be-

tween template and the candidate image patches. If pose changes are consid-

LQ-Free (http://wuw.q-free.com/) is a global supplier of solutions and products for Road
User Charging and Advanced Transportation Management having applications mainly within
electronic toll collection for road financing, congestion charging, truck-tolling, law enforcement
and parking/access control.
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ered, the Lucas-Kanade affine tracker can be used Lucas and Kanade (1981);
Baker et al. (2004). In this case the pose changes are modeled as a set of
affine transformations and the target is localized by estimating the transfor-
mation parameters which maximize the Sum of Squared Differences (SSD) be-
tween the template and the transformed version of the candidate. In other
approaches the object is represented as a set of local feature points which
are tracked independently Maggio and Cavallaro (2011); Tomasi and Kanade
(1991). This allows the algorithm to naturally deal with the object deforma-
tions since no global rigid coherence is required among the key-points. In order
to track each key-point, the sparse optical flow can be computed assuming
that the changes of the pixel intensities are about entirely due to motion and
not to possible lighting changes in the scene (brightness constancy assump-
tion Horn and Schunck (1981)). The Lucas-Kanade Optical Flow algorithm
Lucas and Kanade (1981) is often used to compute the optical flow. It requires
the key-points to satisfy both spatial and temporal coherence constraints. The
authors of Tomasi and Kanade (1991) state a criterion to choose which points
may be selected as key-points in order to improve the tracker performances
(specifically corners or points taken from a high texture area of the image). In
some cases the set of feature points can be directly “tracked” for specific appli-
cation contexts (e.g., video stabilization Battiato et al. (2007), human computer
interaction Farinella and Rustico (2008), traffic conflict analysis Battiato et al.
(2013)). In Comaniciu et al. (2003a) and in Bradski (1998) the object is rep-
resented by describing the image region in which it is contained as a n-bins
histogram with respect to the hue feature space. The object is then local-
ized by maximizing a similarity function between the object representation of
the current frame and the representation of the target candidate with respect
to its position. In Bradski (1998) the CAMShift algorithm is proposed. A
probability image is built back-projecting the target object hue histogram onto
the current frame in order to obtain a map of the most probable object posi-
tions. The object is localized finding the probability map relative peak in the
neighborhood of the target last known position using the Mean-Shift proce-
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dure Fukunaga and Hostetler (1975); Comaniciu et al. (2003b). In the Kernel
Based Object Tracking method Comaniciu et al. (2003a) a similarity measure
is derived based on the Bhattacharyya coefficient providing a similarity score
between the target object representation and the one of the candidate found at a
given position. The localization is performed maximizing the similarity measure
with respect to the target candidate position using the Mean-Shift procedure.
Other methods consider an extended appearance model and solve the tracking
task as a classification problem Arnold et al. (2013); Kalal et al. (2009, 2012);
Hare et al. (2011). In Kalal et al. (2012) TLD is proposed, a hybrid approach
capable of tracking the object, learning its appearance and detecting it after
its eventual disappearance from the scene. The tracker component is a Lucas-
-Kanade based tracker which tracks a set of feature points obtained using a
regular grid constructed over the target object. The trajectory in the feature
space is modelled by two parallel processes that extend and refine an online
model (the learning component). A detector component runs in parallel with
the tracker in order to enable re-initialization after its failure.

This paper is the extension of our previous work Battiato et al. (2014) where
a first version of the algorithm for vehicle tracking was presented. Here we dis-
cuss the tracking algorithm in more details and provide a comparative analysis
with respect to the state-of-the-art. Moreover we add a module for online vehicle
classification and integrate the two components into a unified system for traffic
monitoring purposes. The rest of the paper is organized as follows: in Section 2
we provide an overview of the system and analyze the reference data. Sections
3 and 4 present the proposed tracking and classification algorithms respectively.
In Section 5 we discuss the controller component. In Section 6 we report the

experimental settings and discuss the results. Finally we conclude in Section 7.

2. System Overview and Reference Data

The goal of the proposed system is to correctly track the vehicles during their

transit through the road. We also want to classify the vehicles into two main
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Figure 1: Diagram of the proposed system.

classes: tall vehicles (e.g., trucks, buses, etc.) and short vehicles (e.g., cars, vans,
etc.). We assume that the detection of the vehicles is performed by an external
module based on plate detection and recognition plus a background/foreground
segmentation?. Both tracking and classification are performed online on real-
-world data. The system is composed by two main components: a tracker and
a classifier. The tracker is based on template matching and is augmented with
four additional modules tailored to cope with the specific variabilities exhibited
by the data. The classifier is based on a supervised machine learning technique
trained on a dataset containing both real and artificial examples in order to
consider a number of variabilities during learning. A controller is introduced
to optimize the performances of the tracker by turning the introduced modules
on or off on the basis of the feedback received by the different modules. Fig-
ure 1 shows the overall schema of the proposed system. The tracker component
consists in four modules plus the classic template matching technique which
is used to obtain an initial estimate of the vehicle bounding box. The output

of the tracker component is used to update the template and to keep track of

2The plate detection and recognition module is already commercialized by Q-Free.
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Figure 2: Preprocessing stage.

the vehicle position. The classifier component extracts an image patch of the
vehicle from the current frame using the vehicle estimated bounding box. This
is done once in the whole vehicle transit as explained in Section 4. Finally the
controller optimizes the performances of the tracker module by enabling or dis-
abling the modules making considerations on the vehicle trajectories (current
and past positions) and the estimated class.

Both the tracker and the classifier components have been designed using a
data driven approach, hence an analysis of the application context is necessary
before discussing the details of the developed system in the next sections. The
reference data consists of video sequences related to real video traffic monitoring
which have been acquired by Q-Free. The sequences exhibit high variability in
terms of lighting changes, contrast changes and distortion.

Specifically the input data are the result of a preprocessing stage on se-
quences originally acquired through cameras mounted on the top of the road.
The preprocessing stage produces a normalized, low resolution representation
of the scene where the distance between neighboring pixels is constant in the
real world. An example of the preprocessing results is shown in Figure 2. The
sequences have been acquired in different places and under different lighting,

weather and environment conditions and are identified by a keyword summa-
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Sequence # Short | # Tall
Low CONTRAST 231 15
LiGHT CHANGES 238 19
LEADING SHADOWS 160 23
Stop AND GO 95 7
Stop AND GO + TURN 109 18
RAIN 162 15
SEQUENCE 1 12 3
SEQUENCE 2 12 3
SEQUENCE 3 0 86
Total per class 1019 189
Total 1208

Table 1: The number of vehicles labeled in each sequence and their related classes.

rizing the main variabilities that the system should cope with, namely: Low
CONTRAST, LIGHT CHANGES, LEADING SHADOWS, STOP AND GO + TURN,
RAIN and STOP AND GO. These sequences are considered for both tracking and
classification. Three more sequences are introduced for classification purposes
only and are identified by the keywords: SEQUENCE 1, SEQUENCE 2, SEQUENCE
3. These sequences are useful to learn new variabilities for the classification and
allow to get a larger number of tall vehicles examples. In order to perform quan-
titative evaluations, the sequences have been manually labeled annotating for
each vehicle transit the number of the starting frame, the initial bounding box,
the number of the final frame and the vehicle class. Specifically each transit T;
is associated to a label I;, where I; = 1 for the short vehicles (e.g., cars), while
l; = 2 for the tall vehicles (e.g., trucks).

Table 1 shows the number of vehicles which have been labeled in each se-
quences and the corresponding classes. It should be noted that the ratio between
the number of tall vehicles and the number of short ones is approximately equals
to 1 : 5, while ideally we would like to work with a balanced (i.e., 1 : 1 ratio)
since we assume uniform priors for the two classes. The effects of using a bal-
anced dataset are discussed in the experiments (Section 6). The overall data
contain 1208 vehicle transits in total.

In analyzing the application context, we highlight the following relevant
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Figure 3: Data variabilities. (a) Object distortion: the figure shows the appearance of the
same vehicle in the left and in the right parts of the scene. (b) Artifacts in the form of spots
due to the appearance of light reflections on the vehicles. (c¢) Light and contrast changes: the
figure shows the effects of illumination changes on two different vehicles in two near frames of
the same sequence. (d) Perspective changes: the figure shows how the appearance of a given
vehicle changes due to perspective.

characteristics of the reference data:

Grayscale: all the sequences are greyscale, which makes color-based

representations unfeasible;

Distortion: the vehicles are subject to distortion as show in Figure 3
(a);
Rigidity of the vehicles: despite the distortion the vehicles are rigid

in the real world;

Artifacts: light reflections cause the appearance of artifacts in the form

of white spots on the vehicles as shown in Figure 3 (b);

Geometric and photometric variabilities: the sequences are subject
to lighting and contrast changes (Figure 3 (¢)). Moreover the appearance
of the vehicles can rapidly change due to perspective reasons especially

for tall vehicles (Figure 3 (d));

Slow scenes: in some cases the motion of the vehicle is very slow,
which makes a template update strategy necessary in order to avoid the

propagation of a drifted version of the template.
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3. Tracker Component

The proposed tracking algorithm (see Figure 1) is based on the general tem-
plate matching schema. At the initialization step, the plate detection module
returns the bounding box of the frontal part of the current vehicle, then the
template is extracted as a part of the current frame and the object position is
set to the bounding box center (see Figure 9 (a) for a visual example). At each
frame an exhaustive search is performed: a search window is centered at the
object last known position and a number of candidates centered at each point
of the search window and having the same size as the template are extracted.
The object position is then set to the one which maximizes the similarity score
between the target template and the candidate one according to a selected sim-
ilarity measure. We use this general schema Maggio and Cavallaro (2011) as a
baseline and augment it considering different modules which can be dynamically
switched on or off by a controller. The proposed algorithm can be summarized

by the following steps:

1. perform a regular template matching search to get an initial guess of the
vehicle bounding box;

2. if the similarity score is under a given threshold ¢,,, use the multicorrela-
tion method to reduce the influence of the artefacts (see Section 3.1);

3. refine the position to correct the template drift caused by the distortion
(see Section 3.2);

4. refine the position to correct the template drift caused by the perspective
changes (see Section 3.3);

5. if the similarity score is under a given threshold t,, update the vehicle
representation (selective update). This prevents from storing a wrong
representation of the object in the scenes characterized by slow motion

(see Section 3.4).

In the following sections we summarize the scope of each module used to extend

the basic template matching procedure providing the related details.
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Figure 4: The issues tackled by the introduced modules (top) and the results of the proposed
techniques (bottom). (a) Artifacts and multicorrelation. (b) Template drift and refinement.
(c) perspective issues and background subtraction based refinement. (d) Slow motion scenes
and selective update.

8.1. Multicorrelation

The presence of artifacts (see Figure 3 (b)) contributes to radical changes of
the vehicles appearance between consecutive frames. In such cases the similarity
between the current instance of the object and its representation can be low,
thus making the template matching based tracker less accurate and possibly
leading to a failure. An example of this problem is shown in Figure 4 (a). In
order to avoid the influence of the artifacts, we act as if it were an occlusion
problem introducing an alternative way to compute the similarity between two
image patches. Figure 5 summarizes schematically such computation: both the
template and the candidate image patches are divided into nine regular blocks.
A similarity score is computed between each couple of corresponding blocks and
the final score is obtained by averaging the nine subwindows similarity values.
A statistical analysis of the similarity values highlighted that when this issue
arises, the similarity measure computed in the regular way tends to be lower
than a given threshold ¢,,. So we use the multicorrelation similarity measure
only when the regular similarity score is under the given threshold. Figure 4
(a) shows the effects of the artifacts on the baseline algorithm and the result of

the proposed technique.

10
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Figure 5: The multicorrelation procedure.

3.2. Template Drift Refinement Module

The presence of light, perspective, contrast changes and distortion, together
with the continuous update of the template, generate the template drift problem
in the form of the progressive inclusion of the background into the template.
This effect is shown in Figure 4 (b). In order to reduce the template drift, a
module to refine the vehicle position is introduced (see Figure 6). The refinement
is based on the fact that the vehicle is stretched horizontally by effect of the
distortion introduced in the preprocessing stage (see Figure 3 (a)). According
to this assumption, we adopt the following strategy: given the current frame
and the template found at the previous frame, we search for a version of the
object at a smaller horizontal scale, obtaining a smaller tracking box. The
smaller tracking box is properly enlarged backward to fit the original template
dimensions in order to enclose more information. An exhaustive search of the
object at different horizontal scales would make the algorithm much slower, so,
in order to improve the performances, we first perform a regular search (i.e.,
without any refinement) in order to obtain an initial guess. Afterwards we
search for the best match among a number of candidates (called cuts) obtained

by discarding the rightmost pixels (the ones which are more likely to contain

background information) and horizontally-scaled versions of the template. The

11
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best match identifies both the right scale factor and the correct position. The

described method can be summarized in the following steps:

1.

Initial Guess: a regular search (i.e., without any refinement) is per-

formed in order to obtain a first guess of the vehicle position;

. Cuts: for each scaling factor in a given range, a cut is obtained by discard-

ing the rightmost pixels form the initial guess in order to build a candidate
of width equals to cut_width = initial_guess_width x scaling_factor;
Similarity: the similarity scores between the x-scaled templates and the
cuts are computed;

Best Match: the best match identifies a narrower bounding box (the
background pixels are removed);

Bounding Box Enlargement: in order to enclose more information,
the narrower bounding box is enlarged including the leftmost pixels to fit

the original bounding box dimensions.

3.8. Background Subtraction Module

When tracking tall vehicles, the perspective issue shown in Figure 4 (c)

arises: the radical change of the vehicle appearance in consecutive frames leads

12



to the progressive inclusion of the background inside the template model up to
a possible failure of the tracker. In order to correct this behavior we perform
a0 a background aware position refinement on the basis of a rough background
subtraction technique based on subsequent frames subtraction. In order to
identify the background pixels, we build a foreground mask using the following

simple procedure:

e Let f; be the current frame and let f;_; be the previous frame. Compute:

Af =1fi— fical; (1)

o Let ¢ € [0,255] be a given threshold. Compute the initial foreground

mask as following:

ifA
Miz.y) = 255 if f(:z;,y)>t; @)

0 otherwise

e Apply a median filter of size sp; to M in order to remove noise (e.g.,

245 rain);

e Apply a morphological dilation with an ellipsoidal structuring element of

size sq to M in order to fill the holes in the mask.

Note that the foreground mask is not perfect but it is already useful for the case
(see Figure 7). The second stage consists in moving the tracking box backwards
0 using the information coming from the foreground mask in order to exclude the
background pixels. We define a foreground region as an area in the foreground
mask which has at least N * d non-zero pixels, where N is the number of total
pixels in the region and d € [0,1] is the minimum foreground percentage. To

refine the tracking box position we use the following procedure:

255 1. Let d € [0,1] be the maximum accepted foreground percentage and let

M Dbe the foreground mask corresponding to the current tracking box;

13
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2. Consider the rightmost p-pixels wide column of the M mask and let N

be the total number of pixels in the considered row;

e If the row contains less than d* N non zero values, the tracking box

is shifted p pixel backward in the horizontal direction, go to step 1;

e Otherwise stop.

Figure 7 shows an example of applying the above procedure.

3.4. Selective Update Module

The continuous update of the vehicle representation (i.e., the template) in-
duces the template drift problem in those sequences in which the motion is
slow. The problem is similar to the one tacked in Section 3.2 but it is caused
by a different variability. An example of this problem is shown in Figure 4 (d).
Since the vehicles move very slowly and considering that the object changes
of appearance between two consecutive frames are slight, a shifted version of
the template still returns a high similarity score, while the continuous update
favorites the propagation of a wrong representation of the vehicle. In order to
correct this behavior, we update the object representation only when it is sig-
nificantly different from the old one, i.e., when the similarity score is lower than

a fixed threshold ¢,. Figure 4 (d) shows the results of the proposed module.

4. Classifier Component

The classification is tackled as a linear classification problem where the data
are image patches extracted during the tracking according to the vehicle es-
timated bounding box. Specifically the classification is performed when the
vehicle approaches the central part of the scene, where the perspective variabil-
ity discussed in Section 2 is less significant. Figure 8 shows a general schema
of the training/classification pipeline which is briefly presented in the follow-
ing, whereas the details are discussed in the next sections. In order to build

the classifier, a training set is obtained considering the image patches extracted

14
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Figure 8: The training/classification pipeline

from the input sequences discussed in Section 2. To make the learning proce-
dure more robust, the training set is augmented by generating artificial image
patches aimed at introducing translation, perspective, rotation and photomet-
ric variabilities. The patches are normalized to the training set mean patch
size and the HOG (Histogram of Oriented Gradients) features are extracted
Dalal and Triggs (2005). The feature vectors dimensionality is reduced through
the Principal Component Analysis (PCA) Hotelling (1933). The Linear Dis-
criminant Analysis Fisher (1936) is performed on the PCA reduced data to
project the samples to the most discriminant base. This unidimensional feature
is aggregated to the image patch height in pixels, obtaining a two-dimensional

vector. A new LDA projection is hence performed on the two-dimensional data

15
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and the projected populations are modeled as distinct unidimensional Gaussian
distributions. In the classification step, the sample is projected using the previ-
ously learned PCA and LDA bases and is aggregated to the image height feature
as in the training phase. The Mahalanobis distances Mahalanobis (1936) be-
tween the projected sample and the Gaussian distributions related to the two
classes are computed. The sample is assigned to the class giving the smallest

distance according to the Maximum a Posteriori (MAP) criterion.

4.1. Data Extraction, Augmentation and Normalization

The image patches for the classification step are automatically extracted
from the video frames during the tracking. Since we track the front part of the
vehicle (see Section 3), we can assume that meaningful information is contained
on the left of the tracking box. On the basis of this assumption an image ex-
traction window is obtained enlarging the tracking box backwards. Specifically,
the window has the same height as the tracking box but it is three times larger
(see Figure 9 (a)-(b)). In order to make the training phase robust to some
variabilities and in order to get more data, we augment the dataset, which is
a common practice in machine learning Shotton et al. (2008). For each transit
we introduce four variabilities: perspective, translation, rotation and photo-
metric transformation. The perspective variabilities are obtained extracting for
each transit three image patches when the extraction window center is found
approximately on the scene horizontal central line and when it is found be-
fore or after that line at a uniform step p,s (see Figure 9 (g)). The translation
variabilities are obtained extracting 8 additional patches for any previously ex-
tracted patch shifting the window by p; pixels in the main directions: top-left,
top, top-right, right, bottom-right, bottom, bottom-left, left (see Figure 9 (c)).
The rotation variabilities are obtained by extracting two additional patches for
any previously extracted patches (including the ones related to perspective and
translation variabilities) rotating the extraction window about its center by +p,
degrees (see Figure 9 (d)). The photometric variabilities are obtained extract-

ing two additional patches for any previously extracted patch (including all the

16
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Figure 9: Data extraction (white) and augmentation (yellow). (a) Original tracking box. (b)

Extraction window. (c) Alignment variabilities. (d) Rotation variabilities. (e)-(f) Photometric
variabilities. (g) Perspective variabilities: the scene central vertical line is in red.

other variabilities) after photometric processing: I} iz (pa) LI £ pp (see
Figure 9 (e)-(f)). The combination of all the variabilities allows to obtain 99
patches per each vehicle labelled in the dataset. All the patches are normalized

to the training set mean patch size s.

4.2. Feature Extraction

The feature extraction step allows to obtain a representation of the vehicle
which is suitable for describing the main characteristics of the vehicle class. In
order to obtain robustness to misalignment, the HOG (Histogram of Oriented
Gradients) features are considered Dalal and Triggs (2005). In the HOG ex-
traction process the input image is divided into blocks of a given size (cellSize
parameter) and the histograms of the gradient orientations are computed for
each block. A post-processing procedure which considers contrast normalization
is employed. The HOG features provide a representation of the object which
is robust to misalignment since local spatial information is lost, but valuable
global spatial information is still considered. The output of the HoG feature
extraction is a table of histograms (one per block) which is properly reshaped

to a vector x [n x 1].

4.8. Training Chain

In this section we discuss the training chain, which is the process used to
learn the classifier parameters: the normalization size s, the PCA bases and bias

W1, by, the LDA bases and bias W5, bs, the LDA bases and bias W3, bs, the

17
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Gaussian distributions means and variances p1, p2, 01, 02. The training chain is

represented in the left part of Figure 8.

After the feature extraction, the Principal Component Analysis (PCA) Hotelling

(1933) is used to reduce the dimensionaly of the HOG feature vectors. This is
done by computing the matrix W7 [n x m] and the vector b [m x 1] which are

used to project the vectors x; into the m principal components:
_ T
yi=Wixi+b 3)

the number of the principal components m can be obtained by choosing how
much variability (i.e., information) to discard.

The Linear Discriminant Analysis (LDA) Fisher (1936) is then used on the
reduced vectors y; to project them to the most discriminant dimension, i.e.,
the dimension which maximizes the between-class variance and minimizes the
within-class variance. The outputs of the LDA analysis are the matrix Wa [mx1]
and the bias be [1 x 1]. Since LDA is a supervised procedure, the data labels I;
corresponding to the reduced feature vectors y; are involved. The projection to

the most discriminative LDA dimension is performed using the formula:
_wT
zi =Wy yi+be (4)

It should be noted that the result of this projection consists in unidimensional
features z; since LDA projects the data to a k — 1 dimensional space, where k
is the number of classes (k = 2 in our case).

Meaningful information is encoded in the image patch size. This information
depends on the way the detection of the vehicle is performed. Assuming that
the plate position is used as a starting point and that a segmentation technique
is used to infer the initial bounding box, the image patch height is dependent
on the vehicle frontal width. We use this information to get a better separation
of the classes. To do so we simply concatenate the most discriminative LDA

features z; and the respective patch height h;, obtaining the two dimensional

18
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features p; = (2, hs).

The Linear Discriminant Analysis is again applied in order to project the
p; data to the most discriminant LDA dimension of the new two dimensional
feature space:

g = Wi pi +bs (5)

where W3 [2 x 1] and b3 [1 x 1] are computed using LDA and considering the
labels [;.

Two unidimensional populations P; = {¢|l; = 1}; and P2 = {¢;|l; = 2}4
are defined. In order to be able to classify new instances, a probability model
is built fitting two Gaussian distributions G(u1,01) and G(ua,02) to the data.

The probability of a given sample g; to belong to class j is then assumed as:

p(q =Tq;lclass = j) = G(u;,05) (6)

The Gaussian distributions parameters (namely, means p1, ue and variances
01,09) are estimated through Maximum Likelihood (ML) Bilmes et al. (1998).

Figure 10 (a) shows the pseudocode for the training process.

4.4. Classification Chain

The classification algorithm operates on image patches extracted from the
video stream. Although in the data extraction process (Section 4.1) three in-
stances are extracted for each transit and then augmented, here we classify the
vehicle using just the patch extracted from the left part of the scene (see Figure 9
(g)). Motivations for this choice are supplied in Section 6.

When a new image patch I is extracted, it is first resized to the size S (see
Section 4.1). The HOG features are then extracted and the x feature vector
is obtained. The feature vector is then projected directly into the PCA-LDA

space using the expression:

2=WEWEx+by)+by=WTx+b (7
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Input: Training Set {I;}

Output: Classifier (5, Wi, b1, Wa,bo, W3,bs, 1, p2,01,02)

Compute the mean patch size 5 and normalize {I;} to 3

Extract the HOG features from {I;} using cellSize and reshape to the
vectors {x;}

Compute Wi and by using PCA on {x;}

vi « Wlxi + by

Compute W and b2 using LDA on {y;}

z; = Wlyi+ by

Aggregate to the image patch height p; = (z;,h;)

Compute W3 and bz using LDA on {p;}

qi = Wp; + b3

Estimate p1 and o1 by ML on {qj|l; =1}

Estimate p2 and o2 by ML on {q;|l; =2}

(a) Training Procedure

Input: Image patch I, Classifier (5,W,b, Ws, bs,u1,u2,01,02)
Output: Estimated class ¢
Normalize I to 5
Extract the HOG features from I and reshape to obtain the vector x
z+—WTx+b
p < (z,h) where h is the height of I
q<—W3Tp+2b3
|d1 « (a=m)
o1
| da « (a—p2)?
a2
if di<da
c+—1
else
c+ 2

(b) Classification Procedure

Figure 10: Training (a) and Classificaiton (b) procedures.

where W = WT - WT and b = Wby + bs.
The z value is hence concatenated with the image patch height A and the

two-dimensional p = (z, h) vector is projected to the final LDA space:
q=Wip+bs (8)

The classification is performed applying the Maximum A Posteriori (MAP)

criterion over the probability model defined in (6) using the Bayes rule:

p(class = j) - G(puy,05)
p(q)

p(class = jlq) = Jj=1,2 9)
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The MAP criterion assigns the vector p to the class j for which p(class = j|p)
is maximum. Since we assume uniform priors (i.e., p(class = j) = %,j =1,2)

the assignment can be summarized as follows:
class(q) = argmax G, o, (q) (10)
J

It should be noted that, taking the logarithms, discarding a constant, squaring

and dealing with a change of sign, the above expression is equivalent to:

class(q) = argmin M?(q, 415, 05) (11)
J

where M?(q, pj,05) = (q—;: 1)” is the square Mahalanobis distance between the
sample ¢ and the Gaussian distribution G(p;,0;). Figure 10 (b) shows the

pseudocode for the classification process.

5. Controller

During the experiments we found that the performances of some modules
depend on the speed of the tracked vehicles. This is mainly due to the depen-
dence of the operations involved in the specific modules on the way the informa-
tion changes between consecutive frames. Moreover the background subtraction
module has been introduced specifically to deal with perspective issues related
to the tall vehicles. In order to maximize the performances of the overall sys-
tem on the data, we distinguish between high-speed (60 km/h or more) and
low-speed (less than 60 km/h) transits and introduce a controller component
which dynamically enables or disables the multicorrelation and selective up-
date modules depending on the estimated speed. The background subtraction
module is activated only when a tall vehicle is detected. To get a rough estima-
tion of the vehicle speed at each frame we estimate the vehicle displacement as
d = y1 — yo, where y; is the last known position and yg is the previous one. We

then define two thresholds:

e t1 used to activate the multicorrelation module when d > tq;
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Figure 11: (a) A detail of the plot of the Bhattacharya coefficients for a given search. (b) The
CAMShift probability image approach in the initialization step. (c¢) The Kernel-Based Object
Tracking approach in the initialization step.

e 15 used to activate the selective update module when d < t,.

The performances of the template drift and refinement module are found to be

independent from the vehicle speed.

6. Experimental Settings and Results

All the experiments have been performed on the dataset introduced in Sec-
tion 2 (see Table 1). When the first frame of a given vehicle transit is processed,
the labeled tracking box is used to initialize the tracker component. The tracker
is then executed in the subsequent frames till the last frame of the transit. The
tracker performances are assed by manually annotating if the tracking is succes-
ful and the first frame of failure. The classification is performed once during the
vehicle transit according to what discussed in Section 6.2. The performances of

the classifier are assessed using k-fold cross validation techniques.
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(c) (d)

Figure 12: Example of the failures of the compared trackers. (a) Kernel Based Object Tracking
in the intensity space. (b) Kernel Based Object Tracking in the edges orientation space. (c)
Lucas-Kanade optical flow. (d) Tracking Learning Detection.

6.1. Tracker Component

The parameters of the tracking algorithm have been tuned through a statis-
tical analysis in order to maximize the performances on the reference data. The
Normalized Cross Correlation is used as similarity measure for the template
matching, the search window size dimensions are 20 pz x 12 pzx, in order to
handle vehicles with a maximum horizontal speed of 381 km/h and a maximum
vertical speed of 32 km/h. The exhaustive search is performed using an asym-
metrical window (forward only) in order to reduce the computation (the vehicles
can only move forward or stay still). Since in the given context a scaling factor
equals to 0.02 corresponds to less than 1 pz and considering that a statistical
analysis pointed out that in most cases the best scaling factor is in the range
[0.90, 1], the scaling factors are taken form this range at step of 0.02. Both the
multicorrelation and the selective update thresholds are set to t,, = t, = 0.8.
The background subtraction refinement parameters are set to: ¢t = 4, s, = 7,
sq =5, d=0.2, while p is set to p = 1. The two controller displacement thresh-
olds are set to t1 = t2 = 10 pizels which correspond to the speed of 60km/h.

The quantitative evaluations of the tracking algorithm performances are
obtained by manually marking each tracked transit cither as “successful” or
“failed” according to the visually assessed performances. We have also anno-

tated the first frame of failure. In order to analyze the performances of the
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tracker component, two evaluation methods are used:

Transit Based Accuracy (TBA): focused on the ability to correctly track

the vehicle in all the frames of his transit. This measure is defined as:

1<
TBA= N ; s5¢(T) (12)

%

=

where N is the total number of transits, {7 };cjo, ny—1] are the transits and

1 if the tracking has no errors
s(T;) = ; (13)
0 otherwise

Longevity Based Accuracy (LBA): focused on the tracker longevity, i.e.,
the mean transit percentage correctly tracked before a possible failure.

This measure is defined as:

1 Nl
LBA=— Z; s1(Ty) . (14)
where N and T; are defined as above,
m;
5 E = 1
() = 2 (15)

m; is the number of frames in which the vehicle is tracked correctly in transit
T; and n; is the total number of frames in T;.

430 We compare the performances of the proposed tracker module with the ones
of some relevant approaches discussed in Section 1, namely, CAMshift Bradski
(1998), Kernel Based Object Tracking Comaniciu et al. (2003a), Lucas-Kanade
optical flow Lucas and Kanade (1981) and Tracking Learning Detection (TLD)
Kalal et al. (2009). The CAMShift algorithm gives poor results since the ini-

w5 tlalization step in the intensity domain fails as shown in Figure 11 (b). This is
due to the simplicity of the probability image which doesn’t ensure the max-

imization of the similarity measure between the target representation and the
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candidate one. The Kernel-Based Object Tracking algorithm Comaniciu et al.
(2003a) succeeds in the initialization step as shown in Figure 11 (c¢) but fails in
the tracking as shown in Figure 12 (a)-(b). Both CAMShift and Kernel-Based
Object Tracking do fail in the gradient orientations feature space since the sim-
ilarity measure is not a smooth function (no gradient based optimizations are
possible) as shown in Figure 11 (a). The Lucas-Kanade optical flow approach
Lucas and Kanade (1981) gives poor results as shown in Figure 12 (c) due to
the violation of the brightness constancy and the spatial coherence constraints
caused by the varying light, contrast condition and by the object distortion.
Finally, Tracking Learning Detection Kalal et al. (2009) fails in the last frames
of the transits due to the sudden change of appearance as shown in Figure 12
(d). It should be noted that, even if a learning component is included in the
TLD algorithm, it can’t cope with previously unseen appearances due to the
high appearance changes caused by distortion and perspective changes.

Figure 13 shows the results of the proposed approach for each sequence
(identified by its relative keyword as described in Section 2) and the global
accuracy according to the TBA and the LBA measuring methods. The in-
troduction of the two measuring methods can be justified observing that they
measure two different qualities of the tracker. In the STOP and ROTATION
sequences, it can be noticed that the TBA values are consistently lower than
the related LBA values. This happens because the tracker correctly tracks the
object for the most part of the scene (obtaining a high LBA score) systemat-
ically failing in the last frames of the transit due to poor lighting. Figure 14
compares the results of the proposed technique with respect to the results of
a standard template matching pipeline (as described in Section 1), the TLD
algorithm and a tracker based on the estimation of the optical flow for multiple
feature points using the Lucas Kanade algorithm. The results are related to the
LBA measurement method in order to have a fair comparison since the TBA
methods yields low results for the competitor algorithms. The results of the
TLD algorithm are related to the implementation in Nebehay (2012). A video

showing the results of the compared algorithms can be found at the following
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100,009 22:37% 99.19% o7,67% 99.83% 98,36% 99.82% 98,30% g4 979, 99,20% 98.87%

91,73% 89,87%
90,00%
82,52%
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70,00% 63,90%
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50,00%
40,00%
30,00%
20,00%
10,00%

0,00%

TBA TBA | LBA | TBA TBA

LBA TBA LBA LBA | TBA LBA TBA LBA LBA
Low Contrast | Light Changes | High Contrast Rain Rotation Stop Global

Figure 13: The results of the proposed technique on the sequences identified by corresponding
keywords according to the LBA and TBA measures.

link: http://iplab.dmi.unict.it/download/VehicleTracking.avi.

6.2. Classifier Component

In the classification experiments a standard implementation of the HOG
extraction algorithm is used Vedaldi and Fulkerson (2010) setting the parameter
cellSize = 6. For the augmentation step we set the perspective extraction
step ps = 20pz, the translation p, = 1 px, the rotation step r = 1° and the
photometric processing values o = 1.2, § = 10. The discarded variability in the
PCA computation amounts to the 10%.

The robustness and generalizability of the classifier are assessed with respect
to the original data and to the introduced variabilities (i.e., the augmented
patches) using k-fold cross validation tests. Moreover we analyze the effect of
using balanced data, changing the position where the data is extracted in the
scene and considering the patch height. Hence we consider both the proposed
pipeline and a simplified one which doesn’t make use of the patch height infor-
mation. Similarly we consider both the discussed dataset and an unbalanced
dataset obtained removing a number of tall vehicle instances in order to get
a tall-to-short vehicles ratio approximately equals to 1 : 10. We perform 10-

fold tests on the data and evaluate the per-class accuracy considering both the
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Figure 14: The results of the proposed technique (PS) vs a standard template matching
pipeline (TM), the TLD algorithm (TLD) and a tracker based on the Lucas-Kanade optical
flow on multiple feature points (LK). The results are related to the LBA measurement.

original (not augmented) instances and all the variabilities which have been
introduced artificially by augmentation.

Figure 15 (a) shows the accuracy values for the classifier on the unbalanced
set (i.e., ratio 1 : 10) when no patch height information is exploited. It can be
noted that the accuracy values for the tall vehicles are consistently low. We
argue that this is due to the unbalanced nature of the dataset. Figure 15 (b)
shows the results for the same classifier when the input dataset has a tall-to-
short vehicles ratio approximately equals to 1 : 5 (i.e., the dataset discussed in
Section 2). A comparison between Figure 15 (a) and (b) highlights the effect
of balancing the dataset and how even better results could be achieved if more
data concerning tall vehicles was available.

In both Figure 15 (a) and (b), the accuracy values relative to the perspective
variabilities are higher than the ones relative to the original instances for the
tall vehicles. This behavior can be explained looking at Figure 15 (c), where
a detailed comparison between the accuracy related to instances extracted in
different parts of the scene is shown (see Figure 9 (g)). The best accuracy value
is found when the patches are extracted from the left part of the scene, which

means that in that point, due to perspective reasons, the appearances of vehicles
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(c) (d)
Figure 15: The diagrams show the results of a series of 10-fold tests on the data. Different color
shades indicate different datasets. (a) The accuracy values of the classifier on the unbalanced
dataset when no patch height is considered. (b) The accuracy values of the classifier on the
balanced dataset when no patch height is considered. (c¢) A detail of the perspective accuracy

of (b) for the different perspective variabilities. (d) The accuracy values for the whole pipeline
including the size information.

are more discriminative.

Finally, Figure 15 (d) shows the results of the proposed pipeline (including
the feature related to the image patch height) on the balanced dataset. An
increment in the tall vehicles classification accuracy approximately equals to

+2% can be inferred comparing Figure 15 (d) and (b).

7. Conclusion

In this paper we have proposed a unified system for vehicle classification
and tracking suitable for traffic monitoring purposes. The tracking component
is based on the template matching method augmented to be able to cope with a
series of challenging conditions related to real word sequences such as high vari-
ability in perspective, light and contrast changes, object distortions and artifacts
in the scene. The effectiveness of our approach has been demonstrated through

a series of experiments in critical conditions and comparisons with standard and
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recent techniques. The classification component is built on the basis of a training
set derived from the reference data. In order to get more data for the train-
ing phase, the dataset is augmented with artificially introduced patches. The
performances of the classifier have been tested considering the real variabilities
and the artificial ones, as well as with respect to the variation of different pa-
rameters. A controller has been introduced to optimize the performances of the
tracker component on the basis of the feedback received by the other modules.
The results show that our system outperforms the state-of-the-art algorithms

on the considered application domain.
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