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SUMMARY

This paper deals with applications of sliding-mode based fractional control techniques to address tracking

and stabilization control tasks for some classes of nonlinear uncertain fractional-order systems. Both single-

input and multi-input systems are considered. A second-order sliding-mode approach is taken, in suitable

combination with PI-based design, in the single-input case, while the unit-vector approach is the main tool

of reference in the multi-input case. Sliding manifolds containing fractional derivatives of the state variables

are used in the present work. Constructive tuning conditions for the control parameters are derived by

Lyapunov analysis, and the convergence properties of the proposed schemes are supported by simulation

results. Copyright c⃝ John Wiley & Sons, Ltd.
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2 B. JAKOVLJEVIĆ, ET AL.

1. INTRODUCTION

Fractional–order systems (FOSs), i.e. dynamical systems described using fractional (or, more

precisely, non-integer) order derivative and integral operators, are studied with growing interest

in recent years. It has been pointed out that a large number of physical phenomena can be modeled

effectively by means of fractional–order models [19]. Known examples are found in the areas of

bioengineering [13], transport phenomena [1, 32], economy [22], mechanics [2], and others (see

[19, 33]).

The long-range temporal or spatial hereditary phenomena inherent to the FOSs present unique

and intriguing peculiarities, not supported by their integer-order counterpart, which raise numerous

challenges and opportunities related to the development of control and estimation methodologies

involving fractional order dynamics [29, 11, 18, 9, 10].

Although fractional calculus has been previously combined with the sliding-mode control

methodology in the controller design for conventional integer-order systems [7, 4], sliding mode

control (SMC) has been applied to fractional-order systems only recently, see [21, 8, 7]. In

[21] perfectly known linear multivariable dynamics were studied, and a first-order sliding mode

stabilizing controller was suggested. Sliding manifolds containing fractional-order derivatives were

used in [21] in combination with conventional relay control techniques. The same type of sliding

manifolds has been later used, along with second-order sliding mode control methodologies, to

address control, observation and fault detection tasks for certain classes of uncertain linear FOS

[15, 16]. Among the recent works on first-order SMC for fractional-order dynamics we mention

[23], where a class of nonlinear multi-input FOS with uncertain control matrix was dealt with under

the requirement that a “sufficiently accurate” estimation of the uncertain control matrix is known

in advance. In [8] perfectly known nonlinear single-input fractional-order dynamics expressed in a

form that can be considered as a fractional-order version of the chain-of-integrators “Brunowsky”

normal form were studied.

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()
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ON THE SLIDING-MODE CONTROL OF FRACTIONAL-ORDER NONLINEAR UNCERTAIN DYNAMICS 3

In this paper, the tracking control problem for a class of fractional-order uncertain single-input

processes in canonical Brunowsky form is studied first. Sliding-mode based tracking control of

fractional-order systems expressed in such canonical form, which generalizes to the fractional-order

systems setting the widely studied corresponding integer-order counterpart, was already studied in

earlier works [8, 23] by means of first-order sliding-mode control techniques suitably tailored to

the fractional systems setting. In [8], with reference to a more general non-commensurate form

of the considered class of systems, a discontinuous control law was suggested under the strong

requirement that neither uncertainties nor perturbations were admitted to affect the plant to be

controlled. In [23], such results were improved in different directions. First of all, uncertainties

and perturbations were admitted, satisfying smoothness restrictions similar to those considered in

the present work. As for the control law, the authors presented a technique inspired to the first-order

(i.e., relay-based) sliding mode control approach. Interestingly, the control input was continuous and

belonging to the class C1−α, where α ∈ (0, 1) is the commensurate order of differentiation. Thus,

when α approaches the unit value an almost-discontinuous control input is obtained. The authors

of [23] recognized this fact suggesting the use of smooth approximations of the discontinuous sign

function to alleviate the chattering phenomenon originated by the hard nonlinearity in the definition

of the control law. In the present paper we follow a different approach based on the main novelty of

using the second-order sliding mode approach, rather than the first-order sliding mode one, along

with a special ad-hoc definition of the sliding manifold, different from that used in [8, 23]. Second-

order sliding mode algorithms (see e.g. [17]) actually constitute one of the most popular and widely

used sliding-mode based approaches, as they solve the chattering issue (due to higher smoothness

in the corresponding control laws, as compared to the conventional first-order sliding mode control

algorithms) and simultaneously provide higher control accuracy. Thanks to the combined use of the

second order sliding mode approach and the specially designed sliding surface, in this paper we

achieve the goal of robust tracking of desired state reference trajectories by means of a control law

which is of class C1 whatever the commensurate order of differentiation is, thereby improving the

smoothness of the control as compared to [23].

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()

Prepared using rncauth.cls DOI: 10.1002/rnc



4 B. JAKOVLJEVIĆ, ET AL.

Additionally, a class of uncertain multi-input FOSs, whose dynamics is affected by a state-

and time-dependent uncertain nonlinearity and whose high-frequency gain control matrix is also

uncertain, is dealt with. A generalization of the “unit vector” control strategy [3] is suggested to

stabilize the states of the system. The main improvement against the related result presented in [23]

is that we have relaxed the admitted class of uncertain high-frequency gain control matrices. More

precisely, while in [23] it was required to know a “sufficiently accurate” invertible approximation

of the HFG matrix, here we do consider it as completely uncertain and we only assume that its

symmetric part is positive definite with a known lower bound to its positive real eigenvalues. This

lowers significantly the amount of knowledge required on the controlled plant.

Preliminary results were given in our earlier works [30] and [31] for the single input and

multi input cases, respectively. As compared to [30] we study here a state tracking problem,

whereas a simpler state stabilization problem was considered previously. In addition, we allow

uncertain nonlinearities to enter the system dynamics. As for the MIMO case, in comparison to

[31] we broaden in this work the controlled class of plants by including state and time dependent

nonlinearities, whereas a drift term depending only on the time variable, but not on the system’s

state, was considered previously.

The paper is structured as follows. In the next Section 2 the main definitions and properties of

fractional order derivatives and integrals are recalled, with emphasis on their compositions which

play an important role in our successive developments. In the Sections 3 and 4 the previously

outlined single-input and multi-input cases are considered. Lyapunov based analysis supports the

claimed convergence properties in both cases. Section 5 presents some computer simulations,

including comparative performance analyses with respect to existing controllers. Concluding

remarks and perspectives for next research are given in the final Section 6.

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()
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ON THE SLIDING-MODE CONTROL OF FRACTIONAL-ORDER NONLINEAR UNCERTAIN DYNAMICS 5

2. FRACTIONAL OPERATORS AND THEIR PROPERTIES

In the present paper, all fractional integrals and derivatives are defined with lower terminal (limit)

equal to zero. In order to make the notation less cumbersome and more elegant, this will not be

emphasized further in the text.

Definition 1. (Left) Riemann-Louville fractional integral of order α > 0 of a given signal f(t) at

time instant t ≥ 0 is defined as

Iαf(t) =
1

Γ(α)

∫ t

0

f(τ)(t− τ)α−1dτ, (1)

where Γ denotes the Euler gamma function [9].

For integer values of α, (1) reduces to the well-known Cauchy repeated integration formula (see

[18]). It can also be shown that when α approaches zero the fractional integral (1) reduces to the

identity operator (in the weak sense, see [20]). In the current paper, fractional integral of order zero

is taken by definition to be the identity operator, i.e.

I0f(t) = f(t). (2)

Definition 2. (Left) Riemann-Liouville fractional derivative of order α > 0 of a given signal f(t)

at time instant t ≥ 0 is defined as the nth derivative of the left Riemann-Liouville fractional integral

of order n− α, where n is the smallest integer greater than, or equal to, α

RLDαf(t) =

(
d

dt

)n
In−αf(t). (3)

Definition 3. (Left) Caputo fractional derivative of order α > 0 of a given signal f(t) at time

instant t ≥ 0 is defined as the left Riemann-Liouville fractional integral of order n− α of the nth

derivative of f(t), where n is the smallest integer greater than, or equal to, α

CDαf(t) = In−α
(
d

dt

)n
f(t). (4)

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()
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6 B. JAKOVLJEVIĆ, ET AL.

It is of interest to note that for α = n (n being an integer) both Riemann-Liouville and Caputo

derivative coincide with the “classical” derivative of order n. This is a direct consequence of (2).

Also, for α ∈ (0, 1) the two previously defined fractional derivatives are related by the following

expression

RLDαf(t) =
1

Γ(1− α)

f(0)

tα
+ CDαf(t) . (5)

A similar relation also hold in a more general case of arbitrary positive α [9]. Relation (5) claims that

the two fractional derivative definitions differ by a decaying term depending on the initial conditions.

When all initial conditions are zero, Riemann-Liouville and Caputo operator coincide.

The following useful properties of the fractional integral and differential operators will be used

in the sequel. The proofs can be found in a number of well-known textbooks (see e.g. Kilbas, et al

[9] and Podlubny [18]).

Lemma 1. The Riemann-Liouville fractional integral satisfies the semigroup property. Let α > 0

and β > 0, then

IαIβf(t) = IβIαf(t) = Iα+βf(t) (6)

Lemma 2. The Riemann-Liouville fractional derivative of order α ∈ (0, 1) is the left inverse of the

Riemann-Liouville fractional integral of the same order,

RLDαIαf(t) = f(t), (7)

for almost all t ≥ 0. The opposite is, however, not true, since

Iα RLDαf(t) = f(t)− f1−α(0)

Γ(α)
tα−1, (8)

where f1−α(0) = limt→0 I
1−αf(t).

Lemma 3. The following is true when applying fractional integral operation to the Caputo

fractional derivative of the same order

Iα CDαf(t) = f(t)− f(0). (9)

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()
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ON THE SLIDING-MODE CONTROL OF FRACTIONAL-ORDER NONLINEAR UNCERTAIN DYNAMICS 7

It is important to notice that, unlike the classical derivative, the fractional derivatives do not

commute. For any positive α and β

RLDα RLDβf(t) = RLDα+βf(t)−
n∑
j=1

RLDα−jf(0)

Γ(1− j − α)
t−j−α , (10)

with n being the smallest integer less than or equal to β [9]. The similar expression can be derived

for Caputo derivatives also, using (10) and (5). Thus, in general

RLDα RLDβf(t) ̸= RLDβ RLDαf(t) ̸= RLDα+βf(t), (11)

CDα CDβf(t) ̸= CDβ CDαf(t) ̸= CDα+βf(t). (12)

However, by definition the following equalities hold for all n ∈ N, α ∈ R+, and for any signal f(t)

dn

dtn
RLDαf(t) = RLDn+αf(t) , (13)

CDα dn

dtn
f(t) = CDn+αf(t) . (14)

In some applications of fractional calculus, fractional derivatives of some are sequentially applied

multiple times to the same signal. The combined action of these multiple derivative operators forms

a separate “higher order” derivative operator called sequential derivative, see [18]. Such sequential

derivatives, formed by multiple application of the Caputo derivative, will be utilized in the present

paper in accordance with the next definition.

Definition 4. Sequential Caputo fractional derivative of order α ∈ (0, 1) and multiplicity n ∈ N

of a given signal f(t) at time instant t ≥ 0 is defined as n-times repeated Caputo derivative of order

α, i.e.

CDn,αf(t) = CDα CDα · · ·CDα︸ ︷︷ ︸
n times

f(t) (15)

Note that the sequential Caputo derivative of α and multiplicity n is different from the Caputo

derivative of the order nα. However, assuming all initial condition of signal f are zero, the two

definitions coincide. Under the same restriction on the initial conditions, all previously introduced

definitions of fractional derivatives are equivalent. In fact, in the case of zero initial conditions, all

fractional operators commute and meet the semi-group property, and any fractional derivative can

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()
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8 B. JAKOVLJEVIĆ, ET AL.

be seen as both left and right inverse to the Riemann-Liouville fractional integral. The following

relations then hold

RLDαf(t) = CDαf(t) = CD1,αf(t) , (16)

Dnαf(t) = CDn,αf(t) , (17)

DαDβf(t) = Dα+βf(t) , (18)

DαIαf(t) = IαDαf(t) = f(t) , (19)

where Dα denotes a fractional derivative of any type (Rieman-Liouville, Caputo or sequential

Caputo).

The next Lemma, that will be instrumental in the present treatment, was proven in [15].

Lemma 4. Consider an arbitrary signal z(t) ∈ R. Let β ∈ (0, 1). If there exists T <∞ such that

Iβz(t) = 0 ∀t ≥ T (20)

then

lim
t→∞

z(t) = 0. (21)

3. FRACTIONAL SLIDING-MODE CONTROL FOR NONLINEAR SINGLE-INPUT FOS

We consider nonlinear uncertain commensurate-order fractional systems governed by the “chain of

(fractional) integrators” dynamic model

CDαxi = xi+1, i = 1, 2, ..., n− 1,

CDαxn = f(x, t) + u(t) + ψ(t).

(22)

where α ∈ (0, 1) is the commensurate order of differentiation, vector x(t) =

[x1(t), x2(t), ..., xn(t)] ∈ Rn collects the process internal variables (pseudo-states), u(t) ∈ R

is the control input, ψ(t) ∈ R is an exogenous disturbance, and f(x, t) : Rn × [0,∞) → R is a

nonlinear function referred to as the “drift term”.

Regarding the process model (22), several notes and clarifications are in order. First, the variables

xi are denoted as the “internal” variables, or pseudo states, because the notion of state variables

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()
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ON THE SLIDING-MODE CONTROL OF FRACTIONAL-ORDER NONLINEAR UNCERTAIN DYNAMICS 9

is often inappropriate and generally not used in the context of FOS. Fractional order systems

are infinitely dimensional, and any actual set of process states would have to be of infinite

cardinality. The notion of pseudo states was considered originally in [24], and used later in numerous

publications, including [25, 23, 34, 35]. For a more recent and detailed discussion regarding the

nature of initial conditions in fractional order systems, the reader is referred to [26, 27, 28].

Caputo definition of fractional derivatives is utilized in (22) for convenience, as it allows to take

into account a finite and physically meaningful initial condition x(0) for the pseudo-states [18, 9].

Although it is true that the Caputo derivative must be used with care in modeling and identification

of physical systems, see [26] and references therein, the Caputo definition can be used freely when

analyzing robust control strategies. In particular, any influence of the past process history which

has not been taken into account can effectively be merged into the “disturbance term” ψ, which is

supposed to fulfill the following assumption

Assumption 1. The exists an a priori known constant M and a time instant tψ ≥ 0 such that∣∣∣∣ ddtψ(t)
∣∣∣∣ ≤M, t ≥ tψ. (23)

Assume that the uncertain drift term f(x, t) is imprecisely known by means of a certain estimate

f̂(x, t). Denote

ϵ(x, t) = f(x, t)− f̂(x, t) (24)

and assume the following

Assumption 2. There exist an a priori known constant W and a time instant tε ≥ 0 such that∣∣∣∣ ddtϵ(x, t)
∣∣∣∣ ≤W, t ≥ tε (25)

Let a sufficiently smooth reference trajectory x1r(t) be given. Denote

xr(t) = [x1r(t), x2r(t), ..., xnr(t)]
T

= [x1r(t),
CDαx1r, ...,

CDαx(n−1)r]
T

= [x1r(t),
CD1,αx1r, ...,

CDn−1,αx1r]
T (26)

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()
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10 B. JAKOVLJEVIĆ, ET AL.

The reference trajectory x1r(t) is supposed to fulfill the next smoothness restriction

Assumption 3. The exist an a-priori known constant Xr and a time instant tγ such that

∣∣CDn,αx1r(t)
∣∣ ≤ Xr, t ≥ tγ . (27)

Define the tracking error vector of the pseudo-state

e(t) = [e1(t), e2(t), ..., en(t)] = x(t)− xr(t) (28)

The aim is that of finding a control law capable of steering the tracking error vector e(t) of

the closed loop process to the origin regardless of the assumed uncertainties and perturbations. By

straightforward computations, one obtains the error dynamics

CDαei = ei+1, i = 1, 2, ..., n− 1

CDαen = f(x, t) + u(t) + ψ(t)− CDn,αx1r(t).

(29)

Consider the fractional order sliding variable

σ(t) = I(1−α)

[
en(t) +

n−1∑
i=1

ciei(t)

]
, (30)

where the constants c1, c2, ..., cn−1 are selected in such a way that all the roots pi of the polynomial

P (s) = s(n−1) +

n−2∑
i=0

ci+1s
i = Πn−1

i=1 (s− pi) (31)

satisfy the next relation

α
π

2
< arg(pi) ≤ π. (32)

The stability of system (29) once constrained to evolve along the sliding manifold σ(t) = 0 is

analyzed in the next Lemma 5. A controller capable of steering the considered dynamics onto the

sliding manifold in finite time will be illustrated later on.

Lemma 5. Consider system (22) and let the zeroing of the sliding variable (30) be fulfilled starting

from the finite moment t1, i.e. let

σ(t) = 0, t ≥ t1, t1 <∞, (33)

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()
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ON THE SLIDING-MODE CONTROL OF FRACTIONAL-ORDER NONLINEAR UNCERTAIN DYNAMICS11

with the ci parameters in (30) satisfying (31)-(32). Then, the next conditions hold

lim
t→∞

ei(t) = 0, i = 1, 2, ..., n (34)

Proof of Lemma 5 Define the quantity

ξ(t) = en(t) +

n−1∑
i=1

ciei(t). (35)

By taking into account Lemma 4 specialized with β = 1− α and z(t) = ξ(t), it yields that the finite

time zeroing of σ(t) guarantees that signal ξ(t) decays asymptotically to zero. We then simply derive

from (35) that

en(t) = −
n−1∑
i=1

ciei(t) + ξ(t) (36)

where

lim
t→∞

ξ(t) = 0. (37)

Now, in light of (36) we rewrite the first n− 1 equations of (29) as

CDαei = ei+1, i = 1, 2, ..., n− 2

CDαen−1 = −
∑n−1

i=1 ciei(t) + ξ(t)

(38)

and notice that (38) form a reduced-order (as compared to (29)) fractional order system with an

asymptotically decaying input term ξ(t). It readily follows from (31)-(32) that system (38) is

Mittag-Leffler stable when ξ(t) = 0 (see [18]), thereby the input decay property (37) implies the

same for the error variables ei(t) with i = 1, 2, ..., n− 1. We now conclude from (36) that en(t)

asymptotically decays, too. Lemma 5 is proved. �

It is worth to remark that the enforcement of conditions (35), (37) actually “cancels” the last

equation of (29) by making the system to behave as the reduced order one (38). We seek for a

control law expressed in the form

u(t) = up(t) + ui(t) + ueq(t) (39)

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()
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12 B. JAKOVLJEVIĆ, ET AL.

Figure 1. Architecture Comparison between linear (left) and nonlinear PI.

where up(t) and ui(t) are, respectively, combined linear/nonlinear proportional and integral control

actions taking the form

up(t) = −k1σ − k2|σ|1/2sign (σ) (40)

u̇i(t) = −k3σ − k4sign(σ), ui(0) = 0 (41)

and ueq(t) is a control component that will be specified later on. By setting constants k2 and k4 to

zero then the two control components (40)-(41) reduces to the standard PI controller. On the other

hand, by setting k1 and k3 to zero one obtains the well-known “super-twisting” second-order sliding

mode controller (see [12]). The similarities between a classical PI controller and the super-twisting

(STW) one are evident (see Figure 1) in that they both possess a static component (a pure gain, for

the PI, and a nonlinear gain with infinite slope at 0 for the STW) and an integral component (a pure

integration, for the PI, and the integration of the sign of the error variable, for the STW). A further

novelty here is the use of such a combined PI/sliding mode algorithm with a fractional order sliding

variable σ.

We are now in position to state the next result.

Theorem 1. Consider system (22) along with the sliding variable (30)-(32), and let Assumption 1

be in force. Then, the control law (39)-(41), specified with

ueq(t) = −f̂(x, t)−
n−1∑
i=1

ciei+1(t) +
CDn,αx1r, (42)

and with the tuning parameters chosen according to

k1 > 0, k2 > 2
√
ρ, k4 > ρ, (43)

k3 > k21
k22 +

5
2 [(

1
4k

2
2 − ρ) + k2k4]

( 14k
2
2 − ρ) + k2k4

. (44)

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()
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ON THE SLIDING-MODE CONTROL OF FRACTIONAL-ORDER NONLINEAR UNCERTAIN DYNAMICS13

where

ρ > M +W, (45)

provides the asymptotic decay of the pseudo-state x(t).

Proof of Theorem 1 By virtue of Definition 2, specified with n = 1 and f(t) = en(t) +∑n−1
i=1 ciei(t), and exploiting as well the linearity of the fractional derivative operator, one can easily

derive that

d

dt
σ(t) = RLDα

[
en(t) +

n−1∑
i=1

ciei(t)

]
= RLDαen(t) +

n−1∑
i=1

ci
RLDαei(t) (46)

In light of relation (5), eq. (46) can be rewritten in terms of Caputo derivatives as follows

d

dt
σ(t) = CDαen(t) +

n−1∑
i=1

ci
CDαei(t) + φ(t) (47)

where

φ(t) =
1

Γ(1− α)

en(0) +
∑n−1

i=1 ciei(0)

tα
=
K0

tα
(48)

with implicitly defined constant K0 =
en(0)+

∑n−1
i=1 ciei(0)

Γ(1−α) .

The system equations (22) can be now substituted into (47), yielding the simplified expression

σ̇(t) = f(x, t) + u(t) + ψ(t) +

n−1∑
i=1

ciei+1(t) + φ(t)− CDn,αx1r(t) (49)

Although the disturbance (48) and all its time derivatives are unbounded at t = 0, one has that the

first-order time derivative

d

dt
φ(t) = −αK0

tα+1
(50)

is bounded, in magnitude, along any time interval t ∈ [t1,∞), t1 > 0, according to

∣∣∣∣ ddtφ(t)
∣∣∣∣ ≤ αK1

tα+1
1

≡ Ψ1, K1 =

∣∣∣∣∣en(0) +
n−1∑
i=1

ciei(0)

∣∣∣∣∣ . (51)

We now substitute the control (39)-(42) into (49), yielding

d

dt
σ = −k1σ − k2|σ|1/2sign (σ) + ui(t) + ψ(t) + φ(t) + ε(x, t) (52)

d

dt
ui = −k3σ − k4sign(σ) (53)

Copyright c⃝ John Wiley & Sons, Ltd. Int. J. Robust. Nonlinear Control ()
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14 B. JAKOVLJEVIĆ, ET AL.

Define

z(x, t) = ui(t) + ψ(t) + φ(t) + ε(x, t) (54)

and rewrite (52)-(53) as

d

dt
σ = −k1σ − k2|σ|1/2sign (σ) + z(x, t) (55)

d

dt
z = −k3σ − k4sign(σ) +

d

dt
ψ(t) +

d

dt
φ(t) +

d

dt
ϵ(x, t) (56)

Notice that, by Assumptions 1 and 2 and by relation (51), the perturbation terms in (53) fulfill the

next estimation∣∣∣∣ ddtψ(t) + d

dt
φ(t) +

d

dt
ϵ(x, t)

∣∣∣∣ ≤M +Ψ1 +W, t ≥ max{tψ, tϵ} > 0 (57)

Since φ(t) is aymptotically vanishing along with its time derivative d
dtφ(t), it readily follows that

there exist a finite moment t2 > t1 > 0 such that | ddtψ(t) +
d
dtφ(t) +

d
dtϵ(x, t)| ≤ ρ at every t ≥ t2

thus it can be set ρ as in (45) by neglecting the bound on d
dtφ(t).

Stability of the dynamics (55)-(57) was already investigated in the literature (cfr. [14], Th.

5), where, particularly, the global finite time stability of the uncertain system trajectories was

demonstrated by means of a positive definite and radially-unbounded non-smooth Lyapunov

function which specifies as follows in the present context

V = ξTΠξ, ξ =


|σ|1/2sign(σ)

σ

z

 , Π =
1

2


(4k4 + k22) k1k2 −k2

k1k2 2k3 + k21 −k1

−k2 −k1 2

 . (58)

It turns out after the appropriate computations (cfr. [14], Proof of Th. 5) that the tuning conditions

(43)-(45) imply the existence of a positive constant γ1 such that

d

dt
V ≤ −γ1

√
V , t ≥ t2. (59)

Inequality (59) guarantees the global finite time convergence of V to zero, and, hence, the same

property for the σ(t) and z(t) variables. By (52), the finite time convergence to zero of d
dtσ(t)

can be easily concluded, too. The asymptotic decay of x(t) , thus, readily follows from Lemma 4.

Theorem 1 is proven. �.
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ON THE SLIDING-MODE CONTROL OF FRACTIONAL-ORDER NONLINEAR UNCERTAIN DYNAMICS15

4. FRACTIONAL UNIT-VECTOR CONTROL OF A CLASS OF NONLINEAR UNCERTAIN

MULTI-INPUT FOS

A class of multi-input dynamics is under investigation. More precisely, we consider a commensurate

fractional-order linear multivariable square system affected by an unknown perturbation

CDαx(t) = Bu(t) +ψ(x, t), (60)

where α ∈ (0, 1) is the non-integer order of the system, x = [x1, x2, ..., xn]
T ∈ Rn is the pseudo-

state vector, u = [u1, u2, ..., un]
T ∈ Rn is the input vector, ψ = [ψ1, ψ2, ..., ψn]

T ∈ Rn is an

uncertain disturbance vector, and B is an uncertain, nonsingular, control matrix.

We cast the next assumptions:

Assumption 4. A lower bound Λm to the eigenvalues of the uncertain symmetric matrix

G =
B+BT

2
(61)

is known a priori such that

Λm ≤ min
i
λiG, i = 1, 2, ..., n, (62)

where λiG denotes the i-th eigenvalue of the matrix G.

Assumption 5. There exist a-priori known functions Ψi(x, t) and finite time instant tψ such that

|RLD1−αψi(x, t)| ≤ Ψi(x, t), t ≥ tψ i = 1, 2, ..., n, (63)

and define

ΨM (x, t) =

√√√√ n∑
i=1

Ψ2
i (x, t), (64)

in such a way that

∥RLD1−αψ(x, t)∥2 ≤ ΨM (x, t) t ≥ tψ (65)

The next controller is suggested:

u(t) = − 1

Λm
I1−α

{
(ΨM (x, t) + η1)

x

∥x∥2
+ η2x

}
, (66)
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16 B. JAKOVLJEVIĆ, ET AL.

where η1 and η2 are positive tuning constants.

Theorem 2. Consider system (60), satisfying the Assumptions 4 and 5. Then, the controller (66)

with η1 > 0 and η2 ≥ 0 provides for the global finite-time convergence of the pseudo-state vector

x(t) to the origin.

Proof

For α ∈ (0, 1) one can easily prove that combination of the Riemann-Liouville differential operator

RLD1−α· with the Caputo operator of the complement order CDα· yields the “standard” first order

differential. By Definitions 2 and 3, taking into considerations the semi-group property of Lemma

1 and the fact that the first derivative is the left inverse of the first-order integration operator (stated

in a more general form by Lemma 2), it follows that for any x

RLD1−α CDαx =
d

dt
IαI1−α

d

dt
x =

d

dt
I1
d

dt
x =

d

dt
x (67)

Thus, by applying the operator RLD1−α· to both sides of (60) it yields

ẋ(t) = RLD1−αBu(t) + RLD1−αψ(x, t) . (68)

By substituting the controller equation (66) into the first term in the right hand side of (68) one

obtains

RLD1−αBu(t) = −ΨM (x, t) + η1
Λm

B
x

∥x∥2
− η2

B

Λm
x , (69)

Consider the Lyapunov function V = 1
2x

Tx = 1
2∥x∥

2
2, whose time derivative along the solutions of

(68)-(69) is

V̇ = xT
[
ψd(x, t)−

ΨM (x, t) + η1
Λm

B
x

∥x∥2
− η2

B

Λm
x

]
(70)

where

ψd(x, t) =
RLD1−αψ(x, t) (71)

Rewrite (70) as

V̇ = −ΨM (x, t) + η1
Λm

1

∥x∥2
xTBx− η2

Λm
xTBx+ xTψd(x, t) (72)
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By exploiting the following trivial chain of relations

xTBx = xT
(
B+BT

2

)
x+ xT

(
B−BT

2

)
x

= xTGx ≥ min
i
λiG∥x∥22 ≥ Λm∥x∥22 (73)

that follows from basic properties of quadratic forms and skew-symmetric matrices, one can

manipulate (72) as

V̇ ≤ −[ΨM (x, t) + η1]∥x∥2 − η2∥x∥22 + xTψd(x, t) (74)

By applying the Cauchy-Schwartz inequality to the last term in (74), and taking into account (71)

and (65), it yields

|xTψd(x, t)| ≤ ∥x∥2∥ψd(x, t)∥2 ≤ ΨM (x, t)∥x∥2 . (75)

By combining (74) and (75) it yields that

V̇ ≤ −η1∥x∥2 − η2∥x∥22 = −η1
√
2V − 2η2V (76)

which guarantees, by the comparison Lemma, the finite time convergence to zero of V (t) and thus

the same behavior for the entries of the pseudo-state vector x(t). The Theorem is proven.

5. SIMULATIONS

5.1. Single-input case

Consider system (22) of dimension n = 3, fractional order α = 0.5 and with f(x, t) = x21
√

|x2|+

x3|x3|. The input disturbance is set as ψ(t) = 0.2 sin(5πt), which is infinitely times continuously

differentiable, and let the reference signal be x1r = sin(0.1πt).

Let us design the combined second-order sliding mode/PI controller (39)-(42) with f̂(x, t) = 0,

i.e. assuming that the nonlinear function f(x, t) is totally uncertain. The polynomial P (·) (31) is

selected with two coinciding zeros at p = −λ = −3. Consequently, c1 = λ2 = 9 and c2 = 2λ = 6.

The upper bound on the disturbance time derivative (see Assumption 1) is taken as M = 4. The

upper bound W on the time-derivative of the error ϵ(·) (25) is not straightforward to evaluate by
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means of analytic computations, and the value W = 5 was found appropriate after few trial and

error tests. Thus, one gets the value ρ = 9 for the constant entering into the controller tuning rules.

It gives rise, according to (43) and (44), to the parameter setting k2 = 7, k4 = 10, k1 = 1, k3 = 4.

The simulation results with the initial conditions x1(0) = x2(0) = x3(0) = −0.1 are presented in

Figures 2 and 3. The good tracking performance of the closed loop system are illustrated in Figure 2,

where the time evolutions of the pseudo-states and their reference profiles are shown. Time history of

the control signal is depicted in Figure 3-left. Note the slow harmonic oscillations, due to the chosen

reference profiles, and the fast ones due to the instantaneous compensation of the disturbance ψ(t).

The sliding variable σ is shown in Figure 3-right, from which the finite-time convergence to the

chosen sliding manifold is apparent.

Initial peaking of the control signal (not fully depicted in Figure 3-Left) is caused by the

equivalent control component ueq(t), as defined in (42), and is particularly affected by the chosen

value of λ. By changing λ, the peaking amplitude may be affected. As depicted in Figure 4-left,

reducing the value of λ causes the initial peak of the control signal to correspondingly decrease. At

the same time, the chosen value of λ affects the convergence speed of the pseudo states tracking

errors, the larger λ is, the faster the convergence. This trade-off is investigated in Figure 4-right,

therefore a proper design compromise has to be found.

From now on, performance comparisons are made with respect to the sliding-mode based scheme

proposed by Valério and Sá da Costa in [23]. The sensitivity of both schemes to measurement noise

will be investigated as well. The approach proposed in Section 3 of [23] is now specialized to the

problem under consideration. The sliding variable takes a more general form

σ̄(t) =
(
C
0 D

β
t + λ

)(n−1)α
β

e(t) , (77)

where β is an arbitrary coefficient such that α/β ∈ N. In our approach, the sliding variable is a

function of the pseudo-state tracking errors, and the same happens in (77) if we choose β = α.

Therefore, this is the choice which will be utilized in the sequel, for the sake of comparison. The
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Figure 2. Single input case with noise-free measurements. The pseudo state components and their reference

profiles.
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Figure 3. Single input case with noise-free measurements. (Left) The control signal. (Right) The sliding

variable σ.
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Figure 4. Single input case with noise-free measurements for different values of λ. (Left) Initial time

evolution of the control signal u(t). (Right) Tracking error e1 of the first pseudo-state component.
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Figure 5. Single input case with noise-free measurements. Comparison of the control signal and the sliding

variable.

control law suggested in [23] takes the form

u(t) = usm(t) + ueq(t) . (78)

Due to the choice β = α, the equivalent control component, ueq(t), is the same as in (42). The

sliding-mode control component is, however, different. It takes the form,

usm(t) = −k5 0I
1−α
t sign(σ̄) , (79)

with k5 > 0 has to be taken large enough according to the actual uncertainty bounds.

Figure 5 compares the control signal and the sliding variable time evolution using the proposed

approach and that of [23]. For the sake of comparison, the discontinuous control gains are set to the

same values, k3 = k5 = 10, and also λ was set to 3 in both cases. Both simulations were performed

with sampling time T = 0.001 seconds. It is apparent that the approach proposed in this paper

provides higher smoothness of the control signal, as well as higher accuracy in maintaining the

system on the sliding manifold.

In order to improve the smoothness of the control signal, the utilization of soft-sign function

soft signθ(s) =


s
θ |s| < θ

sign(s) |s| ≥ θ

(80)
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Figure 6. Single input case with noise-free measurements and soft-sign function with θ = 0.25. (Left)

Control signals. (Right) Sliding variables.

was recommended in [23]. By adopting this modification smoother control profiles are obtained, as

shown in Figure 6-left. Although the smoothness of control signals is now comparable, the scheme

proposed in the present paper results in a more accurate sliding motion, see 6-right.

Let us now consider the case of noisy measurements. A uniformly distributed random noise

with maximal amplitude 0.01 was added to the pseudo-state variables. The resulting control signal

and sliding variable time evolutions are displayed in Figure 7. The two control signals exhibit a

comparable amount of chattering. However, the sliding motion is more accurate using the controller

proposed in the current work.

In short, the main pros of the approach here presented are the higher degree of smoothness

of the control law and the higher accuracy of the resulting sliding motion. Both these aspects

contribute to achieve improved chattering alleviation features as compared to the existing schemes.

The propagation of the noise towards the plant input seems comparable. The main drawback of

the scheme here proposed, as compared with the scheme in [23], is that it requires more restrictive

assumptions on the uncertainties, notably we require constant upper bounds to the time derivatives

of the uncertainties (see (23), (27) and (25)) whereas the approach in [23] may allow time-varying

and state dependent uncertainty upper bounds as well (even if, likely for the simplicity sake, this

option is not exploited in [23]).
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Figure 7. Single input case with uniform measurement noise and soft-sign function with θ = 0.25. (Left)

Control signals. (Right) Sliding variables.

5.2. Multi-input case

Consider system (60), with commensurate order α = 0.5, dimension n = 3, and with the control

matrix and disturbance vectors taken as

B =


4 2 1

2 5 1

1 2 1

 , ψ(x, t) = x+
1

2


sin(0.4πt)

sin(πt)

1

 . (81)

The bound ΨM in (64) is set to 4, and Λm in (62) is set to 0.2 (the minimal eigenvalue of

G = 1
2 (B+BT ) is in fact near the value 0.46). Controller (66) has been applied with gains η1 = 6

and η2 = 1. The initial conditions are x1(0) = x2(0) = 1. Figure 8 shows the trajectories of the

states. The attainment of the finite time convergence property is apparent from the given plots. The

control signals are shown in Figure 9.

6. CONCLUSIONS

Fractional sliding-mode controllers are proposed for some classes of commensurate single-input

and multi-input fractional order dynamics subject to uncertainties and disturbances. A second-

order sliding-mode approach is suitably combined with PI-based design in the single-input case,

while the unit-vector approach is the main tool of reference in the multi-input case. Among the

most interesting directions for next researches, managing wider classes of fractional dynamics (e.g.
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Figure 8. Multi input case. Time evolution of the process pseudo-state variables.
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Figure 9. Multi input case. Time evolution of the control signals.

non commensurate ones) appears of great interest. Furthermore, the development of theoretical

ad practical tools for implementing the suggested controllers in a sampled data environment also

appears an important task deserving research efforts.
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15. Pisano, A., Rapaić, M.R., Jeličić, Z.D., Usai, E.: Sliding mode control approaches to the robust regulation of linear

multivariable fractional-order dynamics. International Journal of Robust and Nonlinear Control 20, 18, 2045-2056,

December 2010
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