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Abstract

The problem of boundary stabilization is considered for some classes of coupled parabolic linear PDEs of the reaction-
diffusion type. With reference to n coupled equations, each one equipped with a scalar boundary control input, a state feedback
law is designed with actuation at only one end of the domain, and exponential stability of the closed-loop system is proven.
The treatment is addressed separately for the case in which all processes have the same diffusivity and for the more challenging
scenario where each process has its own diffusivity and a different solution approach has to be taken. The backstepping
method is used for controller design, and, particularly, the kernel matrix of the transformation is derived in explicit form
of series of Bessel-like matrix functions by using the method of successive approximations to solve the corresponding PDE.
Thus, the proposed control laws become available in explicit form. Additionally, the stabilization of an underactuated system
of two coupled reaction-diffusion processes is tackled under the restriction that only a scalar boundary input is available.
Capabilities of the proposed synthesis and its effectiveness are supported by numerical studies made for three coupled systems
with distinct diffusivity parameters and for underactuated linearized dimensionless temperature-concentration dynamics of
a tubular chemical reactor, controlled through a boundary at low fluid superficial velocities when convection terms become
negligible.
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1 Introduction

The problem of boundary stabilization is considered
for some classes of coupled linear parabolic Partial
Differential Equations (PDEs) in a finite spatial do-
main x ∈ [0, 1]. Particularly, by exploiting the so-called
“backstepping” approach [8], [22], this work is devoted
to “approximation-free” control synthesis not relying on
any discretization or finite-dimensional approximation.

The backstepping-based boundary control problem for
scalar heat processes was studied, e.g., in [11], [22]. Sev-
eral classes of scalar wave processes were studied, e.g.,
in [9], [21], whereas complex-valued, PDEs such as the
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Schrodinger equation were also dealt with by means of
such an approach [10]. Synergies between the backstep-
ping methodology and the flatness-based approach were
studied in [12], [13] with reference to the case of spatially-
and time- varying coefficients and covering spatial do-
mains of dimension 2 and higher. In particular, in the
latter situation conditions on the target system arise
that somewhat resemble those considered in the remain-
der of the present paper. The backstepping methodology
was also applied to observer design for linear parabolic
PDEs with non constant coefficients in one- and multi-
dimensional spatial domains [20] and [7].

More recently, high-dimensional systems of coupled
PDEs are being considered in the backstepping-based
boundary control setting. The most intensive efforts of
current literature are however oriented towards coupled
hyperbolic processes of the transport-type [1,4,5,24,25].
The state feedback design in [24], which admits sta-
bilization of 2 × 2 linear heterodirectional hyperbolic
systems, was extended in [4] to a particular type of 3 ×
3 linear systems, arising in modeling of multiphase flow,
and to the quasilinear case in [25]. In [1], a 2 × 2 linear
hyperbolic system was stabilized by a single boundary
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control input, with the additional feature that an un-
matched disturbance, generated by an a-priori known
exosystem, is rejected. In [5], a system of n + 1 cou-
pled first-order hyperbolic linear PDEs with a single
boundary input was studied.

In a recent publication [23], two parabolic reaction-
diffusion processes coupled through the corresponding
boundary conditions were dealt with. The stabilization
of the coupled equations is reformulated in terms of the
stabilization problem for a unique process, with piece-
wise continuous diffusivity and (space-dependent) reac-
tion coefficient, which can be viewed as the “cascade”
between the two original systems. The problem is solved
by using a unique control input acting only at a bound-
ary. A non conventional backstepping approach with
a discontinuous kernel function was employed under a
certain inequality constraint involving the diffusivity
parameters of the two systems and the corresponding
lengths of their spatial domains.

Some specific results concerning the backstepping based
boundary stabilization of parabolic coupled PDEs have
additionally been presented in the literature [2,26–28].
In [2], the Ginzburg-Landau equations, which represent
a 2× 2 system with equal diffusion coefficients when the
imaginary and real parts are expanded, was dealt with.
In [26], the linearized 2× 2 model of thermal-fluid con-
vection, which entails very dissimilar diffusivity param-
eters, has been treated by using a singular perturbations
approach combined with backstepping and Fourier se-
ries expansion. In [27], an observer that estimates the
velocity, pressure, electric potential and current fields in
a Hartmann flow was presented where the observer gains
were designed using multi-dimensional backstepping. In
[28], the boundary stabilization of the linearized model
of an incompressible magnetohydrodynamic flow in an
infinite rectangular 3D channel, also recognized as Hart-
mann flow, was achieved by reducing the original system
to a set of coupled diffusion equations with the same dif-
fusivity parameter and by applying backstepping.

It is of interest to note that the multidimensional trans-
formation considered in the present work generalizes the
bi-dimensional backstepping transformation used in [2].
Apart from this, the set of linear coupled kernel PDEs
that was derived in [27,28] for the magnetohydrody-
namic channel flow is another inspiration for the present
investigation. An additional interesting feature of back-
stepping, which further motivates our work, is that it
admits an easy synergic integration with robust control
paradigms such as the sliding mode control methodol-
ogy (see, e.g., [6]).

Thus motivated, the primary concern of this work is
to extend the backstepping synthesis developed in [22],
where stabilizing boundary controllers were designed
for scalar unstable reaction-diffusion processes. Here,
a generalization is provided by considering a set of n

reaction-diffusion processes, which are coupled through
the corresponding reaction terms. The motivation be-
hind the present investigation comes from chemical
processes [14] where coupled temperature-concentration
parabolic PDEs occur to describe the process dynamics.

A constructive synthesis procedure, with all boundary
controllers given in explicit form, presents the main
contribution of the paper to the existing literature. As
shown in the paper, this generalization is far from be-
ing trivial because the underlying backstepping-based
treatment gives rise to more complex development of
finding out an explicit solution in the form of Bessel-like
matrix series.

The present treatment addresses, side by side, two dis-
tinct situations which require quite different solution
approaches to be adopted. First, the case where all
processes have the same diffusivity (“equi-diffusivity”
case, recently announced in [3]) is attacked, and then
the more challenging scenario where each process pos-
sesses its own diffusivity (“distinct-diffusivity” case)
is treated. Under the requirement that the considered
multi-dimensional process is fully actuated by a set of n
boundary control inputs acting on each subsystem, all
these approaches are shown to exponentially stabilize
the controlled system with an arbitrarily fast conver-
gence rate.

Apart from this, the stabilization problem of an underac-
tuated system of 2 coupled reaction-diffusion processes,
which is relevant to regulation of tubular chemical re-
actors [14], is addressed under the restriction that only
a unique scalar boundary input is available whereas the
overall system features a certain minimum-phase prop-
erty and it meets an additional restriction in the form of
a suitable inequality involving both the plant and con-
troller parameters. Exponential stability of the closed
loop system is achieved in this case as well, but unlike
the previously developed approaches the associated con-
vergence rate cannot be made arbitrarily fast anymore.

The structure of the paper is as follows. In Section 2,
the problem statement is presented and the underlying
backstepping transformation is introduced. In Section 3,
the “equi-diffusivity” scenario is investigated. Explicit
solution of the kernel PDE is given for both the direct
and inverse transformations, and the resulting boundary
control design is presented. In Section 4, the “distinct-
diffusivity” case is dealt with, which involves a simplified
backstepping transformation defined by a scalar kernel
function rather than a matrix one. Section 5 investigates
the stabilization problem of an underactuated system
of 2 coupled reaction-diffusion processes where only a
unique scalar manipulable boundary input is available.
Section 6 presents some simulation results. Finally, Sec-
tion 7 collects concluding remarks and features future
perspectives of this research.
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1.1 Notation

The notation used throughout is fairly standard.L2(0, 1)
stands for the Hilbert space of square integrable scalar
functions z(ζ) on (0, 1) with the corresponding norm

‖z(·)‖2 =

√
∫ 1

0

z2(ζ)dζ. (1)

Also, the notation

[L2(0, 1)]
n
=

L2(0, 1)× L2(0, 1)× . . .× L2(0, 1)
︸ ︷︷ ︸

n times

and

‖Z(·)‖2,n =

√
√
√
√

n∑

i=1

‖zi(·)‖22 (2)

is adopted for the corresponding norm of a generic vector
function Z(ζ) = [z1(ζ), z2(ζ), ...., zn(ζ)] ∈ [L2(0, 1)]

n
.

J1(·) and J2(·) (I1(·) and I2(·)) stand for the first and
second order (modified) Bessel functions of the first kind.

With reference to a generic real-valued square matrix
A of dimension n, S[A] denotes its symmetric part
S[A] = (A+AT )/2, and σi(A) (i = 1, 2, ..., n) the corre-
sponding eigenvalues. Provided that A is also symmetric
and positive definite, σm(A) and σM (A) denote respec-
tively the smallest and largest eigenvalues of A, i.e.,
σm(A) = min1≤i≤n σi(A), σM (A) = max1≤i≤n σi(A).
Finally, In×n stands for the identity matrix of dimension
n.

2 Problem formulation and backstepping trans-
formation

A n-dimensional system of coupled reaction-diffusion
processes is under investigation. Throughout, it is gov-
erned by the parabolic PDE

Qt(x, t) =ΘQxx(x, t) + ΛQ(x, t) (3)

and equipped with Neumann-type boundary conditions

Qx(0, t) = 0, (4)

Qx(1, t) =U(t), (5)

where Q(x, t) = [q1(x, t), q2(x, t), . . . , qn(x, t)]
T

∈
[L2(0, 1)]

n is the vector collecting the state of all sys-

tems, U(t) = [u1(t), u2(t), . . . , un(t)]
T

∈ ℜn is the
vector collecting all the manipulable boundary control
signals, Θ ∈ ℜn×n is the diagonal diffusivity matrix
of the form Θ = diag(θi), with θi > 0 ∀i = 1, 2, ..., n,

Λ ∈ ℜn×n is a real-valued square matrix whose elements
are denoted as λij , with i, j = 1, 2, . . . , n.

The open-loop system (3)-(5) (with U(t) = 0) possesses
arbitrarily many unstable eigenvalues when the matrix
S[Λ] has sufficiently large positive eigenvalues. Since the
term ΛQ(x, t) is the source of instability, the natural ob-
jective for a boundary feedback is to “reshape” (or can-
cel) this term by reversing its effect into a stabilizing one.
Thus motivated, our objective is to exponentially stabi-
lize system (3)-(5) by using an invertible backstepping
transformation

Z(x, t) = Q(x, t)−

∫ x

0

K(x, y)Q(y, t)dy (6)

with a n×n kernel matrix function K(x, y). The entries
kij(x, y) (i, j = 1, 2, . . . , n) of K(x, y) are selected in
such a manner that the underlying closed-loop system is
transformed into the target one

Zt(x, t) =ΘZxx(x, t) − CZ(x, t), (7)

Zx(0, t) = 0, (8)

Zx(1, t) = 0, (9)

written in terms of the state vector Z(x, t) = [z1(x, t),
z2(x, t), . . . , zn(x, t)]

T ∈ [L2(0, 1)]
n
. The exponential

stability of the target system (7)-(9) is then ensured
with an arbitrarily fast convergence rate by an appro-
priate choice of the real-valued square matrix C ∈ ℜn×n

with entries cij , i, j = 1, 2, . . . , n.

The PDE governing the kernel matrix function K(x, y)
is now derived through the standard procedure adopted
in the backstepping design [8]. By applying the Leibnitz
differentiation rule to (6), spatial derivatives Zx(x, t)
and Zxx(x, t) are readily developed as a straightfor-
ward matrix generalization of corresponding well-known
scalar counterparts. Furthermore, using (3) and apply-
ing recursively integration by parts, the time derivative
Zt(x, t) is derived as well. Combining such expressions,
and performing rather lengthy but straightforward com-
putations (see [3] for more detailed derivations), yield

Zt(x, t)−ΘZxx(x, t) + CZ(x, t)

=
[
Λ + C +Ky(x, x)Θ + ΘKx(x, x) + Θ d

dx
K(x, x)

]

×Q(x, t) +
∫ x

0
[ΘKxx(x, y)−Kyy(x, y)Θ−K(x, y)Λ

−CK(x, y)]Q(y, t)dy + [ΘK(x, x)−K(x, x)Θ]Qx(x, t)

+K(x, 0)ΘQx(0, t)−Ky(x, 0)ΘQ(0, t).

(10)

Clearly, the target system’s PDE (7) requires that the
right hand side of (10) has to be identically zero. Em-
ploying the homogeneous BC (4), this leads to the fol-
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lowing relations

ΘKxx(x, y)−Kyy(x, y)Θ−K(x, y)Λ− CK(x, y) = 0,

(11)

Λ + C +Ky(x, x)Θ + ΘKx(x, x) + Θ
d

dx
K(x, x) = 0,

(12)

ΘK(x, x)−K(x, x)Θ = 0, (13)

Ky(x, 0)Θ = 0. (14)

The main critical feature of (11)-(14) is in the presence
of relation (13). While being identically satisfied in the
scalar case when n = 1 [22], this relation is in general
contradictive, and there are two options to fulfill (13).
One of these options is to impose the constraint that all
the coupled processes possess the same diffusivity value
θi = θ, i = 1, 2, ..., n, so that

Θ = θIn×n. (15)

An alternative option is to enforce the next constraint
on the form of the kernel matrix

K(x, y) = k(x, y)In×n. (16)

Assumption (16) greatly simplifies the complexity of the
underlying backstepping transformation, which is deter-
mined by a scalar function. This simplification, however,
will also bring some constraint on the choice of the ma-
trix C when the relation (16) is in force. Solution of the
kernel PDE (11), (12), (14) under the additional con-
straints (15) or (16) will be addressed in Sections 3 and
4.

2.1 Stability of the target system dynamics

The following result is in force.

Theorem 1 Consider the target system (7)-(9). If the
matrix S[C] is positive definite then system (7)-(9) is ex-
ponentially stable in the space [L2(0, 1)]

n with the con-
vergence rate specified by

‖Z(·, t)‖2,n ≤ ‖Z(·, 0)‖2,ne
−σm(S[C])t. (17)

Proof The detailed proof can be found in [3]. �

3 Stabilization in the “equi-diffusivity” case

Boundary stabilization of system (3)-(5) under the con-
straint (15) is addressed by following the previously in-
troduced backstepping design [3] with the correspond-
ing treatment being included in the present work for the
sake of completeness.

3.1 Explicit solution of the relevant kernel boundary-
value problem

Specializing system (11), (12), (14) in light of the actual
form (15) of the diffusivity matrix Θ yields

Kxx(x, y)−Kyy(x, y) =
1

θ
K(x, y)Λ +

1

θ
CK(x, y),

(18)

Λ + C + 2θ
d

dx
K(x, x) = 0, (19)

Ky(x, 0) = 0. (20)

Integrating (19) with respect to x gives K(x, x) =
− 1

2θ (Λ + C)x + K(0, 0). Substituting the boundary
conditions (4) and (8) into the relation Zx(0, t) =
Qx(0, t) − K(0, 0)Q(0, t), which is obtained by spatial
differentiation of (6) at x = 0, one derives that

K(0, 0) = 0. (21)

Hence, relation (19) is replaced by

K(x, x) =−
1

2θ
(Λ + C)x. (22)

The following result is in order.

Theorem 2 The problem (18), (20), (22) possesses a
solution

K(x, y) = −
∞∑

j=0

(x2 − y2)j(2x)

j!(j + 1)!

(
1

4θ

)j+1

×

[
j
∑

i=0

(
j

i

)

Ci (Λ + C)Λj−i

]

(23)

which is of class C∞ in the domain 0 ≤ y ≤ x ≤ 1.

Proof The detailed proof is presented in [3]. �

Remark 1 If the condition ΛC = CΛ holds, then (23)
simplifies to

K(x, y) =−

∞∑

j=0

(x2 − y2)j(2x)

j!(j + 1)!

[
Λ+ C

4θ

]j+1

. (24)

In the scalar case n = 1, relation (24) specifies to that
obtained in [22].

4

CONFIDENTIAL. Limited circulation. For review only
Automatica submission 14-0257.3

Preprint submitted to Automatica
Received January 14, 2015 11:31:29 PST



Remark 2 Uniqueness of the solution (23) to the kernel
PDE (18), (20), (22) can be proven following the same
steps as, e.g., in [6, Lemma 2.1]. The complete treatment
is , however, beyond the scope of the present paper as it
does not impact the underlying closed-loop stability result,
and it is skipped for brevity.

Finally, let us show that the transformation (6) is invert-
ible, and its inverse is representable in the form

Q(x, t) = Z(x, t) +

∫ x

0

L(x, y)Z(y, t)dy. (25)

By performing analogous developments as those made
for the derivation of the gain kernel PDE (18), (20), (22),
the next PDE is obtained

Lxx(x, y)− Lyy(x, y) = −
1

θ
L(x, y)C −

1

θ
ΛL(x, y),

(26)

L(x, x) = −
1

2θ
(Λ + C)x, (27)

Ly(x, 0) = 0, (28)

governing L(x, y). By comparison between (18), (20),
(22) and (26)-(28) one immediately notice that in
this case L(x, y) = −K(x, y) when Λ and C are
replaced by −Λ and −C. To reproduce the latter
conclusion it suffices to explicitly denote the depen-
dence of the solutions L(x, y) = L(x, y; Λ, C) and
K(x, y) = K(x, y; Λ, C) on Λ and C and verify that the
substitution L(x, y; Λ, C) = −K(x, y;−Λ,−C) trans-
fers (26)-(28) into (18), (20), (22).

3.2 Boundary controller design

The next result specifies the proposed boundary control
design and summarizes the first stability result of this
paper.

Theorem 3 Let matrix C be selected in such a manner
that S[C] is positive definite whereas σm(S[C]) is arbi-
trarily large. Then, the boundary control input

U(t) = −
1

2θ
(Λ + C)Q(1, t) +

∫ 1

0

Kx(1, y)Q(y, t)dy,

(29)

Kx(1, y) = −

∞∑

j=0

[
2(1− y2)j + 4j(1− y2)j−1

j!(j + 1)!

]

×

(
1

4θ

)j+1
[

j
∑

i=0

(
j

i

)

Ci (Λ + C)Λj−i

]

, (30)

exponentially stabilizes system (3)-(5) in the space
[L2(0, 1)]

n
with an arbitrarily fast convergence rate in

accordance with

‖Q(·, t)‖2,n ≤ A‖Q(·, 0)‖2,ne
−σm(S[C])t, (31)

where A is a positive constant independent of Q(x, 0).

Proof The backstepping transformation (6), (23) was
derived to map system (3)-(5) into the target dynamics
governed by (7). It remains to prove that the homoge-
nous BCs (8)-(9) hold as well. Spatial differentiation of
(6) at x = 0 and x = 1 yields

Zx(0, t) =Qx(0, t)−K(0, 0)Q(0, t)

Zx(1, t) =Qx(1, t)−K(1, 1)Q(1, t)−

∫
1

0

Kx(1, y)Q(y, t)dy.

The boundary conditions (4) and (5) and relation (22),
coupled together, ensure thatK(0, 0) = 0 andK(1, 1) =
− 1

2θ (Λ + C), thereby yielding

Zx(0, t) = 0

Zx(1, t) = U(t) +
1

2θ
(Λ + C)Q(1, t)−

∫
1

0

Kx(1, y)Q(y, t)dy.

Thus, the boundary control input vector (29)-(30),
where the kernel spatial derivative Kx(1, y) is obtained
by differentiating (23) with respect to x at x = 1, results
in the target dynamics (7)-(9) with homogeneous BCs.

Recall that the exponential stability of (7)-(9) was
guaranteed by Theorem 1 provided that S[C] is positive
definite. With this in mind, it is followed [22] to derive
analogous convergence properties for the original system
(3)-(5) as well. The estimates ‖K(x, y)‖ ≤ Me2Mx and
‖L(x, y)‖ ≤ Me2Mx are established for some positive
constant M by generalizing [22] where the scalar coun-
terparts of such estimates were obtained. A straightfor-
ward generalization of [22, Th 4] yields that the above
two upper estimates, coupled together, establish the
equivalence of norms of Z(x, t) and Q(x, t) in [L2(0, 1)]

n

thereby ensuring that there exists a positive constant A
independent of Q(ξ, 0) such that (31) straightforwardly
follows from (17). This completes the proof of Theorem
3. �

4 Stabilization in the distinct diffusivity case

In the present section, boundary stabilization of system
(3)-(5) is addressed by following the previously intro-
duced backstepping design specified with (16). Relation

5

CONFIDENTIAL. Limited circulation. For review only
Automatica submission 14-0257.3

Preprint submitted to Automatica
Received January 14, 2015 11:31:29 PST



(15) is no longer in force, and now all processes possess
their own distinct diffusivity parameter. As noted in Sec-
tion 2, constraint (16) has to be brought into play in or-
der to ensure that the stabilization problem is solvable
through the backstepping route.

Let us now specialize system (11), (12), (14) by consid-
ering the constraint (16) on the kernel matrix:

(kxx(x, y)− kyy(x, y))Θ = k(x, y)(Λ + C) (32)

Λ + C + 2
d

dx
k(x, x)Θ = 0 (33)

ky(x, 0) = 0. (34)

Being represented in the component-wise form, relation
(32) gives rise to n independent scalar PDEs of the form

kxx(x, y) − kyy(x, y) = k(x, y)

(
λii + cii

θi

)

, i = 1, 2, .., n

(35)

and to the constraints

λij + cij = 0, i, j = 1, 2, ..., n, i 6= j. (36)

In turns, relation (33), represented in the component-
wise form, results in the same constraints (36) and ad-
ditionally imposes the next scalar relations

d

dx
k(x, x) =

1

2

(
λii + cii

θi

)

, i = 1, 2, ..., n. (37)

It is clear that a solution may only exist if the constants
λii+cii

θi
in the right hand sides of (35) and (37) possess

the same value for all i = 1, 2, ..., n. Therefore, the next
constraints

cii = γ∗θi − λii, i = 1, 2, ..., n, (38)

cij = −λij , i, j = 1, 2, ..., n, i 6= j, (39)

on the elements of the matrixC must be imposed with an
arbitrary constant γ∗, thereby yielding the kernel PDE

kxx(x, y) − kyy(x, y) = γ∗k(x, y), (40)

ky(x, 0) = 0 (41)

d

dx
k(x, x) = −

γ∗

2
. (42)

Integrating (42) with respect to x gives the relation

k(x, x) = − γ∗

2 x + k(0, 0) whereas the additional rela-
tion k(0, 0) = 0 is deduced by specifying the derivation
of formula (21) to the current case.

System (40)-(42) can thus be specified to the boundary-
value problem

kxx(x, y)− kyy(x, y) = γ∗k(x, y), (43)

ky(x, 0) = 0 (44)

k(x, x) = −
γ∗

2
x, (45)

whose explicit solution

k(x, y) = −γ∗x
I1(
√

γ∗(x2 − y2))
√

γ∗(x2 − y2)
(46)

is extracted from [22]. By making lengthy but straight-
forward computations, the kernel PDE of the inverse
transformation can be derived as follows:

lxx(x, y)− lyy(x, y) = −γ∗l(x, y), (47)

ly(x, 0) = 0, (48)

l(x, x) = −
γ∗

2
x, (49)

whose explicit solution is also drawn from [22] in the
form

l(x, y) = −γ∗x
J1(
√

γ∗(x2 − y2))
√

γ∗(x2 − y2)
. (50)

4.1 Controller design

Clearly, relations (38)-(39) require the γ∗-dependentma-
trix C to be selected in the form

C = −Λ+ γ∗Θ. (51)

The next condition ensures that matrix S[C] is positive
definite.

Condition 1 The scalar parameter κ and the design pa-
rameter γ∗ are respectively chosen according to

κ > max
1≤i≤n

|σi(−S[Λ])|, (52)

γ∗ >
σM (−S[Λ] + κIn×n) + κ

σm(Θ)
, σm(Θ) = min

1≤i≤n
θi.

(53)

The proposed boundary control design is specified for
the distinct diffusivity case as follows
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Theorem 4 Let matrix C be selected according to (51)
and let Condition 1 be satisfied. Then, the boundary con-
trol input

U(t) = −
γ∗

2
Q(1, t) +

∫ 1

0

kx(1, y)Q(y, t)dy, (54)

kx(1, y) = −γ∗ I1(
√

γ∗(1 − y2))
√

γ∗(1 − y2)
− γ∗ I2(

√

γ∗(1− y2))

1− y2
,

(55)

exponentially stabilizes system (3)-(5) in the space
[L2(0, 1)]

n
with an arbitrarily fast convergence rate

‖Q(·, t)‖2,n ≤ A‖Q(·, 0)‖2,ne
−σm(S[C])t, (56)

where A is a positive constant independent of Q(ξ, 0).

Proof Noticing that k(1, 1) = − γ∗

2 by virtue of (45),
the form of the chosen boundary feedback control is jus-
tified by following the same line of reasoning used in the
beginning of the proof of Theorem 3. The stability prop-
erties of the target dynamics (7)-(9) are established in
Theorem 1, that requires S[C] to be positive definite.
Now let us show that selecting the matrix C as in (51),
with the scalar parameter γ∗ chosen according to (52)-
(53), ensures that S[C] is positive definite and σm(S[C])
is arbitrarily large.

Since Θ is a diagonal matrix, and γ∗ is a scalar, it follows
from (51) that S[C] = −S[Λ] + γ∗Θ. Matrix S[C] is
positive definite iff the quadratic form pTS[C]p takes
positive value for every nontrivial real-valued column
vector p of dimension n. The quadratic form pTS[C]p
can be expanded as follows by adding and subtracting
to S[C] the dummy quantity κIn×n

pTS[C]p = pT (−S[Λ] + γ∗Θ+ κIn×n − κIn×n) p

= pT (−S[Λ] + κIn×n) p+ γ∗pTΘp− κpT p. (57)

It is well-known that adding κIn×n to any matrix shifts
the corresponding eigenvalues by κ, which results in the
eigenvalues of matrix −S[Λ] + κIn×n to be located at
k + σi(−S[Λ]), i = 1, 2, ..., n. Therefore, condition (52)
guarantees that the symmetric matrix −S[Λ]+κIn×n is
positive definite. In light of this, the estimate

pTS[C]p≥ [−σM (−S[Λ] + κIn×n) + γ∗σm(Θ)− κ] pT p

(58)

can be derived from (57) by exploiting well-known prop-
erties of quadratic norms.

By taking into account that σi(Θ) = θi, it follows from
(53) that the right hand side of (58) is strictly posi-
tive, thus ensuring that matrix S[C] is positive definite.

Since (58) holds for an arbitrary nontrivial p ∈ ℜn, and
its right hand side grows unbounded with increasing γ∗,
one concludes that the smallest eigenvalue σm(S[C]) of
S[C] can be made arbitrarily large. Thus, the exponen-
tial stability of the target system’s dynamics (7)-(9) is
established with an arbitrarily fast convergence rate in
accordance with Theorem 1.

The rest of the proof follows [22] to derive analogous
convergence properties for the original system (3)-(5) as
well. As shown in [22, Th.2, Th.3], both the kernel func-
tions (46) and (50) are bounded according to the esti-
mates |k(x, y)| ≤ Me2Mx and |l(x, y)| ≤ Me2Mx where
M is a positive constant. [22, Th.4] states that those
two upperbounds, coupled together, establish the equiv-
alence between norms ofZ(x, t) andQ(x, t) in [L2(0, 1)]

n

which means that there exists a positive constant A in-
dependent of Q(ξ, 0) such that the estimate (56) is in
force as a direct consequence of (17). Theorem 4 is thus
proved. �

5 Underactuated boundary stabilization of two
coupled distinct diffusion processes

Let us now consider a 2-dimensional system of coupled
reaction-diffusion processes

q1t(x, t) = θ1q1xx(x, t) + λ11q1(x, t) + λ12q2(x, t), (59)

q2t(x, t) = θ2q2xx(x, t) + λ21q1(x, t) + λ22q2(x, t), (60)

equipped with Neumann-type boundary conditions

q1x(0, t) = q2x(0, t) = 0, (61)

q1x(1, t) = u1(t), q2x(1, t) = 0, (62)

where qi(x, t) ∈ L2(0, 1), i = 1, 2, are the state vari-
ables and u1(t) is the manipulable boundary input act-
ing on the q1-subsystem only. To add practical value to
the present investigation it is worth noticing that such a
system represents linearized dimensionless dynamics of a
tubular chemical reactor controlled through a boundary
at low fluid superficial velocities when convection terms
become negligible (cf. that of [14]). Thus interpreted, the
meaning of the two state variables becomes normalized
temperature and reactant concentration, respectively.

In contrast to the investigation of Section 4, where in-
dependent boundary actuation of each subsystem was
available, the present system of two coupled diffusion
processes is underactuated by a unique boundary control
input applied to subsystem (59). It it easy to check that
system (59)-(62) can be rewritten in the form (3)-(5)

where Q(x, t) = [q1(x, t), q2(x, t)]
T
, U(t) = [u1(t), 0]

T
,

and

Θ =

[

θ1 0

0 θ2

]

, Λ =

[

λ11 λ12

λ21 λ22

]

. (63)
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The next “minimum phase” assumption is imposed on
the system to ensure that the q2 subsystem (60) of (59)-
(62) is asymptotically stable when q1(x, t) = 0.

Assumption 1 The parameter λ22 is negative.

Our objective is to exponentially stabilize system (59)-
(62) by applying the invertible backstepping transfor-
mation (6) specified with

K(x, y) =

[

k(x, y) 0

0 0

]

. (64)

It follows from (6) and (64) that

z1(x, t) = q1(x, t)−

∫ x

0

k(x, y)q1(y, t)dy, (65)

z2(x, t) = q2(x, t), (66)

i.e., the second state variable of the target dynamics is
the same as that of the original system (59)-(62).

The main difference from the developments of the previ-
ous sections comes from the fact that relation (11) will
be now in general impossible to fulfill. As a consequence,
the target system dynamics will contain an additional
integral term in contrast to (7), and it will take the form
of a Partial Integro-Differential Equation (PIDE). It is
worth to remark that the presence of extra integral terms
in the target system is not unusual in backstepping de-
signs when dealing with terms that cannot be compen-
sated otherwise (see e.g. [5], [25], [29]).

The next lemma presents the derivation of the target
system dynamics in the present underactuated scenario.

Lemma 1 The backstepping transformation (6), (64),
where k(x, y) is the solution (46) to the boundary-value
problem (43)-(45), transfers system (59)-(62) into the
target system dynamics

Zt(x, t) = ΘZxx(x, t)− CZ(x, t)

+

∫ x

0

[

−λ12k(x, y)z2(y, t)

λ21l(x, y)z1(y, t)

]

dy, (67)

where Z(x, t) = [z1(x, t), z2(x, t)]
T

∈ [L2(0, 1)]
2
is the

corresponding state vector, C = C(γ∗) = {cij} ∈ ℜ2×2

is the γ∗-dependent real-valued matrix given by

C(γ∗) = −Λ+ γ∗

[

θ1 0

0 0

]

=

[

−λ11 + γ∗θ1 −λ12

−λ21 −λ22

]

,

(68)
γ∗ ∈ ℜ is an adjustable design parameter and l(x, y) is
the solution (50) to the boundary value problem (47)- (49)

Proof To support the derivation of (67), the previous
multidimensional matrix-based treatment is kept to take
advantage of the computations previously made. Partic-
ularly, relation (10) is still valid and the kernel conditions
(12)-(14) are going to be considered and specialized to
the current scenario. As for relation (11), it will be now
in general impossible to fulfill and a new form of it, with
the right-hand side not being identically zero anymore,
will be derived and employed within the present proof.

Relations (12) and (64) yield

d

dx
k(x, x) =

(
λ11 + c11

2θ1

)

, (69)

λ12 + c12 = 0, λ21 + c21 = 0, λ22 + c22 = 0. (70)

The following relation

c11 = γ∗θ1 − λ11, (71)

which involves an arbitrary constant γ∗, must then be
enforced. By inspection, relations (70) -(71) result in the
constrained form (68) of the γ∗-dependent matrix C(γ∗)
with a unique free parameter γ∗ ∈ ℜ which is available
for design.

The “critical” relation (13) is automatically satisfied due
to (64), and relation (14) yields (44).

By taking into account the constraint (64) on the kernel
matrix one derives that

ΘKxx(x, y)−Kyy(x, y)Θ −K(x, y)Λ− CK(x, y)

=

[

θ1kxx(·)− θ1kyy(·)− (λ11 + c11)k(·) −λ12k(·)

−c21k(·) 0

]

.

(72)

Zeroing the first diagonal element in the right hand
side of (72) yields the scalar PDE (43) After employing
simple manipulations, analogous to those made in Sec-
tion 4, and considering as well (69) and (71), the kernel
boundary-value PDE problem (43)-(45) is thus verified
for the kernel function k(x, y) so that while being a so-
lution of (43)-(45), it is given by (46).

Zeroing the off-diagonal elements in the right hand side
of (72) requires that both the coefficients λ12 and c21
should be identically zero (and, by (70), the same for
λ21). This would clearly trivialize the underlying stabi-
lization problem (see Remark 3). Therefore, as apparent
from (10), there will be an additional entry in the tar-
get dynamics in contrast to (7)-(9) since the right hand
side of (11) cannot be made identically zero anymore.
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By considering (10) along with relations (72), (43) and
(70), it follows that

Zt(x, t) = ΘZxx(x, t)− CZ(x, t)

+

∫ x

0

[

0 −λ12k(x, y)

λ21k(x, y) 0

]

Q(y, t)dy

= ΘZxx(x, t) − CZ(x, t)

+

∫ x

0

[

−λ12k(x, y)q2(y, t)

λ21k(x, y)q1(y, t)

]

dy. (73)

To rewrite (73) entirely in terms of Z-coordinates, the
identity

∫ x

0

k(x, y)q1(y, t)dy =

∫ x

0

l(x, y)z1(y, t)dy (74)

is employed. Relation (74) is derived by summing (65)
and the associated inverse transformation

q1(x, t) = z1(x, t) +

∫ x

0

l(x, y)z1(y, t)dy (75)

and canceling the identical terms in the resulting equal-
ity. Substituting (74) into the last term of (73) the target
dynamics PIDE (67) is obtained. Lemma 1 is proved. �

Remark 3 It has been demonstrated within the proof of
Lemma 1 that in order to obtain a target system dynam-
ics equivalent to (7)-(9) both the coupling coefficients λ12

and λ21 must be zero, i.e., the original system (59)-(62)
should already be decoupled. Clearly, this would have triv-
ialized the underlying result, which is why such restric-
tion has not been made and the more involved target dy-
namics PIDE (67) has been brought into play.

The subsequent synthesis involves the next condition,
which ensures the asymptotic stability of the target sys-
tem dynamics. This condition relies on the feasibility
problem of seeking a solution to a nonlinear inequality
subject to a positive definiteness constraint on a certain
parameter-dependent matrix.

Condition 2 The nonlinear inequality

σm(S[C(γ∗)]) > λ̄Mγ∗e2γ
∗

(76)

with λ̄M = max {|λ12|, |λ21|} possesses a solution γ∗ such
that the symmetric γ∗-dependent matrix

S[C(γ∗)] =

[

−λ11 + γ∗θ1 −λ12+λ21

2

−λ12+λ21

2 −λ22

]

(77)

is positive definite.

It is worth noticing that the smallest (real, and positive)
eigenvalue σm(S[C(γ∗)]) of matrix S[C(γ∗)] in Condi-
tion 2 admits the explicit representation

σm(S[C(γ∗])) =
T

2
−

√

T 2

4
−D, (78)

where

T =−λ11 + γ∗θ1 − λ22, (79)

D=−λ22 (−λ11 + γ∗θ1)−
(λ12 + λ21)

2

4
, (80)

are, respectively, the trace and determinant of S[C(γ∗)].

5.1 Controller design

The next result specifies the proposed boundary control
design for the distinct diffusivity case with n = 2 and a
scalar input only.

Theorem 5 Consider system (59)-(62) with Assump-
tion 1 and let Condition 2 hold. Then, the boundary con-
trol input

u1(t) = −
γ∗

2
q1(1, t) +

∫ 1

0

kx(1, y)q1(y, t)dy, (81)

kx(1, y) = −γ∗ I1(
√

γ∗(1− y2))
√

γ∗(1− y2)
− γ∗ I2(

√

γ∗(1− y2))

1− y2
,

(82)

exponentially stabilizes system (59)-(62) in the space

[L2(0, 1)]
2
with the convergence rate given by

‖Q(·, t)‖2,2 ≤ A‖Q(·, 0)‖2,2e
−M(γ∗)t, (83)

where A is a positive constant independent ofQ(x, 0) and

M(γ∗) = σm(S[C(γ∗)])− λ̄Mγ∗e2γ
∗

(84)

Proof The form of the proposed boundary feedback
control is justified by following the same line of reasoning
as that made in the beginning of the proof of Theorem
3. It guarantees that the target dynamics PIDE (67) is
actually equipped with the homogeneous BCs

Zx(0, t) = Zx(1, t) = 0, (85)

The asymptotic stability of the target system dynamics
PIDE (67), specified with the BCs (85), is investigated
by means of the candidate Lyapunov function

V (t) =
1

2

∫ 1

0

ZT (x, t)Z(x, t)dx =
1

2
||Z(·, t)||22,2, (86)
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whose time derivative along the solutions of (67), (85)
takes the form

V̇ (t) =

∫ 1

0

ZT (x, t)Zt(x, t)dx

=

∫ 1

0

ZT (x, t)ΘZxx(x, t)dx −

∫ 1

0

ZT (x, t)CZ(x, t)dx

+

∫ 1

0

ZT (x, t)

(
∫ x

0

[

−λ12k(x, y)z2(y, t)

λ21l(x, y)z1(y, t)

]

dy

)

dx.

(87)

The first two terms in the right hand side of (87) can be
estimated as follows (cf. [3, Th. 2]):

∫ 1

0

ZT (x, t)ΘZxx(x, t)dx ≤ −σm(Θ)||Zξ(·, t)||
2
2,2,

(88)
∫ 1

0

ZT (x, t)CZ(x, t)dx ≤ −σm(S[C(γ∗)])||Z(·, t)||22,2,

(89)

where σm(Θ) = min{θ1, θ2}. By construction, both
σm(Θ) and σm(S[C(γ∗)]) are strictly positive quanti-
ties. To estimate the third term in the right hand side
of (87), which is sign-indefinite, the relations

|k(x, y)| ≤ He2Hx, |l(x, y)| ≤ He2Hx, (90)

H = γ∗ =
λ11 + c11

θ1
, (91)

established in [22, Th.2, Th.3], are subsequently ex-
ploited. Within the (x, y) domain of interest (for which
0 ≤ x ≤ 1) the worst case value x = 1 can be considered
in (90), i.e.:

|k(x, y)| ≤ γ∗e2γ
∗

, |l(x, y)| ≤ γ∗e2γ
∗

. (92)

The third term of (87) is expanded as follows:

∫ 1

0

ZT (x, t)

(
∫ x

0

[

−λ12k(x, y)z2(y, t)

λ21l(x, y)z1(y, t)

]

dy

)

dx

= λ21

∫ 1

0

z2(x, t)

(∫ x

0

l(x, y)z1(y, t)dy

)

dx

− λ12

∫ 1

0

z1(x, t)

(∫ x

0

k(x, y)z2(y, t)dy

)

dx. (93)

By virtue of (92), the magnitude of the first term in the
right hand side of (93) can be estimated by means of the

next chain of inequalities

∣
∣
∣
∣
λ21

∫ 1

0

z2(x, t)

(∫ x

0

l(x, y)z1(y, t)dy

)

dx

∣
∣
∣
∣

≤ |λ21|

∣
∣
∣
∣

∫ 1

0

|z2(x, t)|

(∫ x

0

|l(x, y)||z1(y, t)|dy

)

dx

∣
∣
∣
∣

≤ |λ21| γ
∗e2γ

∗

∣
∣
∣
∣

∫ 1

0

|z2(x, t)|

(∫ x

0

|z1(y, t)|dy

)

dx

∣
∣
∣
∣

≤ |λ21| γ
∗e2γ

∗

∣
∣
∣
∣

∫ 1

0

|z2(x, t)|

(∫ 1

0

|z1(y, t)|dy

)

dx

∣
∣
∣
∣
.

(94)

Using the triangle and Holder inequalities, the integrand
in the last row of (94) is manipulated to

|z2(x, t)|

(∫ 1

0

|z1(y, t)|dy

)

≤
1

2

[
z22(x, t)

+

(∫ 1

0

|z1(y, t)|dy

)2
]

≤
1

2

[
z22(x, t) + ‖z1(·, t)‖

2
2

]
.

(95)

Substituting (95) into (94) one concludes that

∣
∣
∣
∣
λ21

∫ 1

0

z2(x, t)

(∫ x

0

l(x, y)z1(y, t)dy

)

dx

∣
∣
∣
∣

≤
1

2
|λ21| γ

∗e2γ
∗

∫ 1

0

[
z22(x, t) + ‖z1(·, t)‖

2
2

]
dx

=
1

2
|λ21| γ

∗e2γ
∗ (

‖z1(·, t)‖
2
2 + ‖z2(·, t)‖

2
2

)
. (96)

By performing analogous manipulations, the last term
in the right hand side of (93) is straightforwardly shown
to obey the estimate

∣
∣
∣
∣
λ12

∫ 1

0

z1(x, t)

(∫ x

0

k(x, y)z2(y, t)dy

)

dx

∣
∣
∣
∣

≤
1

2
|λ12| γ

∗e2γ
∗ (

‖z1(·, t)‖
2
2 + ‖z2(·, t)‖

2
2

)
. (97)

Combining (96) and (97) yields

∣
∣
∣
∣
∣

∫ 1

0

ZT (x, t)

(
∫ x

0

[

−λ12k(x, y)z2(y, t)

λ21l(x, y)z1(y, t)

]

dy

)

dx

∣
∣
∣
∣
∣

≤ λ̄Mγ∗e2γ
∗ (

‖z1(·, t)‖
2
2 + ‖z2(·, t)‖

2
2

)

= λ̄Mγ∗e2γ
∗

‖Z(·)‖22,2, (98)
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where λ̄M = max {|λ12|, |λ21|}. Therefore, combining
(98), (88) and (89), one further elaborates (87) by getting

the next final estimate of V̇ (t):

V̇ (t) ≤ −σm(Θ)||Zξ(·, t)||
2
2,2 − (σm(S[C(γ∗)])

−λ̄Mγ∗e2γ
∗

)

‖Z(·)‖22,2 ≤ −2M(γ∗)V (t), (99)

where M(γ∗) is given in (84). Thus, under condition
(76) (which implies that M(γ∗) > 0), the exponential
stability of the target dynamics (67), (85) is concluded.
Following [22], analogous exponential convergence prop-
erties, as specified in (83), are ensured for the original
system (59)-(62) as well, according to the supporting
arguments given in the concluding part of the proof of
Theorem 4. Theorem 5 is proven. �

Remark 4 The stabilization result just demonstrated
relies on the nonlinear inequality (76) to possess a fea-
sible solution. The feasibility of such a solution, which
critically affects the subsequent stability analysis, intrin-
sically depends on the plant parameters and there exist
some actual plants for which no constant γ∗, satisfying
(76), can be found. However, the numerical evidences of
Subsection 6.2 show that the proposed synthesis can be
applied to successfully stabilize a physically relevant class
of underactuated coupled reaction-diffusion processes. It
is also worth to stress that Condition (76) is only suffi-
cient for an underactuated boundary stabilizing synthe-
sis to exist due to heavily conservative estimations made
within the Lyapunov based convergence proof. Finally, it
should be pointed out that the developments of the Section
5 don’t really hinge on having constant coefficients and
may be likely extended to more general scenarios where
the coefficients of (59)-(60) are spatially and/or time
varying.

6 Simulation results

To support the theory developed, capabilities of the the
proposed boundary synthesis are tested in simulation
runs. First, the boundary stabilization of three coupled
PDEs with distinct diffusivity parameters is treated,
and then the underactuated boundary stabilization of
two coupled processes is dealt with. To solve the closed-
loop PDEs a standard finite-difference approximation
method is used in all simulations by discretizing the spa-
tial solution domain x ∈ [0, 1] into a finite number of N
uniformly spaced solution nodes xi = ih, h = 1/(N+1),
i = 1, 2, ..., N . The value N = 40 is set and the resulting
discretized system of ODEs is then solved in the Matlab-
Simulink environment by using the fixed-step Runge-
Kutta method with the fixed step Ts = 10−4.
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0
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2x 10
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Time [sec]

||q
1(.

,t)
|| 2

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2
0

2

4x 10
7

Time [sec]

||q
2(.
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|| 2

Fig. 1. TEST 1. Temporal evolution of the norms ‖qi(·, t)‖2,
i = 1, 2, 3, in the open loop test.

6.1 TEST 1: fully actuated case

System (3)-(5) of three (n = 3) coupled reaction-
diffusion processes, specified with the parameters

Θ =







4 0 0

0 5 0

0 0 6






, Λ =







1 2 3

4 5 3

2 5 1






, (100)

is first considered for simulation purposes. The initial
conditions are set as q1(x, 0) = q3(x, 0) = 2 + 2cos(πx),
q2(x, 0) = 5cos(πx). Matrix Λ possesses a real positive
eigenvalue and the system in the open-loop (i.e., with
u1(t) = u2(t) = u3(t) = 0) is unstable, as displayed
in the Figure 1 which shows the diverging temporal
evolutions of the state norms ‖q1(·, t)‖2, ‖q2(·, t)‖2 and
‖q3(·, t)‖2. The boundary controller (54)-(55) is imple-
mented by selecting the parameter γ∗ = 5 as prescribed
in Condition 1 to fulfill the requirement S[C] > 0, where
C is given in (51). The converging spatiotemporal evo-
lutions of the states in the closed-loop is shown in Fig-
ure 2 as well as the associated norm ‖Q(·, t)‖2,3 is. As
expected, this associated norm monotonically tends to
zero. Figure 3 displays the time histories of the three con-
trol inputs ui(t) (i = 1, 2, 3) showing the initial peaking,
and subsequent convergence to zero, which are typical
for the backstepping design.

6.2 TEST 2: underactuated case

Next, the underactuated system (59)-(60), specified with
the parameters θ1 = 9, θ2 = 1, λ11 = 3, λ12 = λ21 = 1
and λ22 = −5, is under numerical study. The initial
conditions are set as q1(x, 0) = 2 + 2cos(πx), q2(x, 0) =
5cos(πx). The considered system in the open-loop (i.e.,
with u1(t) = 0) is unstable since the Λmatrix possesses a
positive eigenvalue. The unstable behaviour of the open-
loop plant is displayed in the Figure 4, which shows the
diverging spatiotemporal evolutions of the states q1(x, t)
and q2(x, t).
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Fig. 2. TEST 1. Spatiotemporal evolution of the states
qi(x, t), i = 1, 2, 3, in the closed-loop test and (bottom-right)
time profile of the corresponding norm ‖Q(·, t)‖2,3
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Fig. 3. TEST 1. Temporal evolution of the boundary controls
ui(t), i = 1, 2, 3.

Fig. 4. TEST 2. Spatiotemporal evolution of q1(x, t) and
q2(x, t) in the open loop.

Clearly, Assumption 1 holds true, and the boundary con-
troller (81)-(82) is implemented by selecting the param-
eter γ∗ = 0.7. With the adopted choice of γ∗ it turn
out that σm(S[C(γ∗)]) = 2.58, whereas the right hand
side of (76) takes the value 2.52, hence Condition 2 is
satisfied thereby ensuring that the closed-loop system
meets desired exponential stability properties according
to Theorem 5.

Figure 5 shows the resulting stable spatiotemporal evo-
lutions of the state variables q1(x, t) and q2(t) in the
closed-loop, which both vanish in L2 norm as shown in
the Figure 6. The time evolution of the boundary control

Fig. 5. TEST 2. Spatiotemporal evolution of q1(x, t) and
q2(x, t)in the closed-loop test.
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Fig. 6. TEST 2. Vector norm ‖Q(·)‖2,2 in the closed-loop
test.
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Fig. 7. TEST 2. Time evolution of the boundary control
input u1(t).

input u1(t) is displayed in the Figure 7.

7 Conclusions

The backstepping-based boundary stabilization of cer-
tain classes of unstable coupled parabolic linear PDEs
was tackled, and explicit state feedback boundary con-
trollers were derived to attain the exponential decay of
the closed-loop system in the state space [L2(0, 1)]

n
.

These results provide a non trivial multidimensional
counterpart to the “scalar” (n = 1) treatment previously
developed in [22]. Addressing the observer-based out-
put feedback design, dealing with spatially-dependent
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parameters, and including the convection terms in the
coupled PDEs, are among the most interesting lines
of future related investigations. It is also of interest to
deepen the present investigation on the underactuated
case where only one scalar manipulable input variable
is available, by generalizing the 2-dimensional prob-
lem statement, studied in the present work, towards
higher dimensional scenarios. Additionally, integration
with other design methodologies such as the sliding
mode approaches, will be pursued as well to enhance
the underlying robustness features. Particularly, recent
investigations of [16]-[19] are hoped to complement the
presented approaches by integrating them with suitably
designed second-order sliding mode based boundary
controllers in order to deal with the control of perturbed
coupled PDEs.
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