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44  Highlights

45 * Effects of Caulerpa cylindracea were tested in seagrass and bare sediments.

46 * C. cylindracea significantly affected sedimentary organic C contents and turnover.
47 * Meiofauna varied significantly among invaded and not invaded bare sediments.

48 * Nematode a-diversity was not affected by the invasive algae.

49 * Nematode (3-diversity was variably affected by the presence of the invasive algae.
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Abstract

We investigated meiofauna and sedimentary C cycling in seagrass (Posidonia oceanica) and
unvegetated sediments invaded and not invaded by the non-indigenous tropical algae Caulerpa
cylindracea. In both habitats, invaded sediments were characterized by higher organic matter
contents. No effect was observed for prokaryotes and C degradation rates. In seagrass
sediments, C turnover in invaded beds was about half that in not invaded ones. Meiofaunal
communities varied significantly among invaded and not invaded grounds only in bare
sediments. In both habitats, nematode species richness and assemblage composition were not
affected by the algae. The effect of C. cylindracea on the turnover and nestedness components
of the Jaccard dissimilarity varied between the two habitats. We show that the presence of C.
cylindracea gives rise to variable consequences on meiofauna biodiversity and C cycling in
different habitats. We conclude that further studies across different habitats and ecological
components are needed to ultimately understand and predict the consequences of C.

cylindracea invasion in shallow Mediterranean ecosystems.

Key words: Non-indigenous invasive species, Caulerpa cylindracea, seagrass, meiofauna,

nematodes, marine biodiversity
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1. Introduction

Biological invasions can have major effects on diversity, structure and functioning of marine
ecosystems (Stachowicz and Byrnes, 2006; Galil, 2007) and, consequently, on their ability to
provide goods and services to the humans (Pimentel et al., 2000; Bulleri et al., 2008; Thomsen
etal., 2011). However, results from both field and experimental studies on the role of invasions
on marine biodiversity are still contradictory (Fridley et al., 2007; Stachowicz et al., 2007
Tamburello et al., 2015). Some reviews have highlighted the occurrence of both positive and
negative interactions between invasive species and native communities (Wallentinus and
Nyberg, 2007; Rilov and Crooks, 2009). Other studies have reported either negligible or non-
negative effects of biological invasions on native marine biodiversity (Lonsdale, 1999;
Mckinney and Lockwood, 1999; Byrnes et al., 2007). The overall emerging picture is thus that
the effects of alien species on native marine assemblages might vary among recipient
assemblages characterized by different biotic and abiotic conditions (Levine and D’Antonio,
1999; Beisner et al., 2006; Ceccherelli and Sechi, 2002; Grosholz, 2002; Kennedy et al., 2002;
Arenas et al., 2006; Piazzi and Balata, 2009; Bulleri et al., 2008). A conceivably common
conclusion of most studies is that the effects of biological invasions on marine biodiversity can
be context dependent, varying at different spatial and temporal scales (Ceccherelli and Campo,
2002; Bulleri et al., 2010; Heiman and Micheli, 2010). As a consequence, very few
generalizations can be reliably made and a better understanding of the effects of invasive
species is therefore urgently needed (PysSek and Hulme, 2009).

The effects of algal species invasion on marine ecosystems have been so far assessed mostly
on macroalgae (e.g., Piazzi et al., 2001; Thomsen et al., 2009; Piazzi and Ceccherelli, 2006) or
macrofauna (e.g., McKinnon et al., 2009; Taylor et al., 2010; Lorenti et al., 2011; Gallucci et
al., 2012; Maggi et al., 2015), whereas information about the effects of invasive macroalgae on

smaller-size benthic organisms (i.e., meiofauna) is still rather limited (Yuhas et al., 2005; Reise
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et al., 2006; Usio et al., 2006; Zhu et al., 2006; Chen et al., 2007; Olenin et al., 2010; Hanfling
et al., 2011; Cordell et al. 2013). Moreover, despite the fact that several studies have addressed
the effects of macroalgal invasions on the structure of native marine communities (Piazzi and
Balata, 2008, Piazzi and Balata, 2009), only very few have documented the effect of new
invaders on aquatic ecosystem functions (Reise et al., 2006; Usio et al. 2006; Zhu et al., 2006
and literature therein; Olenin et al., 2010; Eyre et al., 2011; Hanfling et al., 2011).

The Mediterranean Sea, hosting both temperate and subtropical species, is characterized
by very high biodiversity (Coll et al., 2010). In the last decades, local changes of climate
conditions (Rivetti et al., 2014) and increasing maritime transportations in the Mediterranean
Sea have facilitated the invasion by approximately 1000 non indigenous (alien) species (Mack
et al., 2000; Galil, 2007; Zenetos et al., 2012). Biological invasions in the Mediterranean, and
particularly the Lesspsian migrations, will further increase due to the doubling of the Suez

channel (Galil et al., 2014).

The introduced tropical algae Caulerpa cylindracea (Sonder) (Belton et al., 2014),
previously known as C. racemosa var. cylindracea (Sonder) Verlaque, Huisman and
Boudouresque (Verlaque et al., 2003) is now widely distributed in the Mediterranean Sea
(Verlaque et al., 2000; Verlaque et al., 2004; Klein and Verlaque, 2008). The presence of this
species can alter abundance and diversity of several benthic assemblages and poses serious
threats to the status of the seagrass Posidonia oceanica and of rocky sub-tidal grounds
(Argyrou et al., 1999; Ceccherelli et al., 2002; Piazzi et al., 2001; Dumay et al., 2002; Cavas et
al., 2006; Raniello et al., 2007; Claudet and Fraschetti, 2010; Bulleri et al., 2011). Habitats
invaded by C. cylindracea can undergo a “biotic homogenization” (Piazzi and Balata, 2008;
Pacciardi et al., 2011). Human impacts in sub-tidal habitats can promote the distribution of this
invasive species (Piazzi et al., 2007; Bulleri et al., 2011), altering sedimentation processes

(Piazzi et al., 2007; Casu et al., 2009; Holmer et al., 2009), the structure of the benthic food
4
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webs (Deudero et al., 2011) and the composition of the benthic assemblages (Pandolfo and
Chemello, 1995; Argyrou et al., 1999; Sandulli et al., 2004; Vazquez-Luis et al., 2009a, 2009b;

Box et al., 2010; Lorenti et al., 2011).

We hypothesized that the presence of C. cylindracea alters the patterns of meiofaunal and
nematode abundance, biomass and diversity differently across different habitats as a result of
the changes in benthic trophic conditions due to the additional inputs of primary organic matter
and detritus that this alga produces. To test such hypothesis, we investigated organic matter
quantity, biochemical composition and degradation rates, meiofaunal community composition
and free-living nematodes biodiversity (in terms of both species richness and equitability)
across two very common Mediterranean coastal habitats, the seagrass P. oceanica and soft-
bottom sediments, both invaded by and free of C. cylindracea. These two habitats have been
selected due to their different primary productivity, trophic conditions (Pusceddu et al., 1999;

Pusceddu et al., 2007).

We focused our investigation on nematodes, which are an abundant component of the
benthic assemblages, characterized by high species richness (Danovaro et al., 2001, Danovaro
et al., 2008). They play also a key ecological role in marine benthos by linking the detrital food
chain with the higher trophic levels, covering different food levels, from detritivorous to
grazers, from microbial feeders to omnivores, to predators; meiofauna are also food for
macrofauna and fish juveniles (Watzin, 1983; De Morais and Bodiou, 1984; Montagna, 1984;
Heip et al., 1985; Danovaro et al. 1995) and can increase bacterial denitrification (Bonaglia et

al., 2014).

2. Methods

2.1. The non-indigenous species Caulerpa cylindracea
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Caulerpa cylindracea (Sonder) (Belton et al., 2014) has been reported for the first time in the
Mediterranean Sea in 1926 and progressively spread over the Mediterranean Sea at water
depths from 0 to ca 70 m (Piazzi et al., 2005a) at a much faster rate than the congeneric
Caulerpa taxifolia (Verlaque et al., 2003). This difference is likely due to fact that C.
cylindracea, besides a remarkable capability of adjustment to the ecological factors such as
temperature, substratum and depth (light) (Verlaque et al., 2000), is supported also by sexual
reproduction (Panayotidis and Zuljevi¢, 2001), whereas C. taxifolia reproduces mostly or only

by fragmentation (Meinesz and Hesse, 1991; Meinesz et al., 1998; Klein and Verlaque, 2008).

The complex structure of the C. cylindracea thalli increases spatial heterogeneity
(Véazquez-Luis et al. 2008), so that cascading effects on abundance, biomass, and biodiversity
of small metazoan (meiofauna and particularly nematodes) and C degradation rates could be

expected.

2.2. Study area and sampling strategy

Sampling was carried out in September 2005 within the Marine Protected Area of Torre
Guaceto (MPA, Southern Adriatic Sea, Italy, 40°42'N; 17°48'E, Fig. 1). This MPA, established
in 2000, covers a surface of about 2.207 ha and extends off shore till 50 m depth. The “no-
entry no-take” zone of the MPA covers an area of 183 ha and is characterized by the presence
of both sandy and rocky substrata. The seagrass P. oceanica covers about 20% of the total
surface of the protected area and is interspersed among sandy patches and dead “matte” (i.e.,
seagrass dead rhizomes and roots, including interstitial sediment) covering the seafloor up to

17 m depth (Fraschetti et al., 2005).

Two, invaded and not invaded by C. cylindracea, putatively different habitats were

identified: P. oceanica seagrass meadow without C. cylindracea, P. oceanica with C.
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cylindracea, unvegetated soft bottom sediments with and without C. cylindracea. For each of
the two habitats, presence and absence of C. cylindracea were selected. For each invaded and
not invaded habitats, two areas were randomly chosen at a distance of tens of meters and
within each area, two plots at a distance of few meters were randomly selected. Sampling was
carried out during the vegetative growth phase of C. cylindracea at ca. 6-9 m depth in two
different coastal habitats characterized by the presence (always over the 60% cover of the
plots) or the absence of the algae. From each plot (25x25 cm), six replicated sediment cores
were collected by scuba divers using plexiglass corers (4.7 cm internal diameter), of which
three dedicated to the analysis of sediment organic matter and prokaryotic variables, and three
to the analysis of meiofauna. For the determination of sediment grain size, samples were

collected with 25 cm-diameter stainless steel cores and stored at -20°C until analysis.

Samples were immediately brought to the laboratory for preservation and/or processing. The
cores were sliced into different sediment layers (0-1, 1-3, 3-5, 5-10 cm), preserved with
buffered 4% formaldehyde solution and stained with Rose Bengal (0.5 g L) for meiofaunal
counts. For prokaryotic counts and the biochemical composition of organic matter the top 1 cm
layer of the replicate sediment cores were immediately frozen and stored at -20°C until

analysis.

2.3. Sediment characteristics

Grain size analyses were carried out by dry sieving of sediments through a 0.0625 mm mesh,
to distinguish between the sandy and the silt—clay fractions. Fraction retained on the filter
(sand) were additionally sieved through a 25 mm mesh to distinguish between medium (>0.25

mm) and fine (<0.25 and >0.0625 mm) sandy fractions. The sediment water content was
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calculated as the difference between the wet and dry weights and expressed as percentages

(Dell’ Anno et al. 2002).

Chlorophyll a and phaeopigments were analyzed fluorometrically after extraction with 90%
acetone (24 h in the dark at 4°C) and their sum defined as total phytopigments (Pusceddu et al.,
2009a). Phytopigment were converted into C equivalent using 40 as a conversion factor
(Pusceddu et al.,, 2009a). Protein, carbohydrate and lipid contents were determined
photometrically and expressed as bovine serum albumin, glucose and tripalmitine equivalents,
respectively (Pusceddu et al., 2009a). For each biochemical assay, blanks were obtained using
pre-combusted sediments (450°C for 4 h). All analyses were performed in three replicates on
about 1 g of wet sediment. Carbohydrate, protein, and lipid concentrations were converted into
carbon equivalents (using the conversion factors 0.40, 0.49, and 0.75 mg C mg”', respectively),
normalized to sediment dry weight (60°C, 24 h) and their sum reported as biopolymeric carbon
(BPC, Pusceddu et al., 2009a). The algal fraction of biopolymeric C (BPC) is defined as the
percentage ratio of phytopigment (once converted into C equivalents) and biopolymeric C

contents (Pusceddu et al., 2009a).

2.4. Meiofaunal abundance and biomass

Each sediment sample (and slice) was fixed with 4% buffered formaldehyde (in filtered
seawater solution) and, once in the laboratory, was sieved through 1000 pm (to retain
macrobenthos and macroalgae) and 32 um (to retain smaller meiofauna) sieves. The sample
fraction retained by a 32 um mesh net was added to Ludox HS 40 (density arranged to 1.18 g
cm-3), for density centrifugation extraction (10°, 800 x g, for 3 times) from the sediment (Heip
et al., 1985). All metazoan animals, after staining with Rose Bengal (0.5 g L"), were counted

and classified per taxon under a stereomicroscope. Nematode abundance was calculated
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integrating values from each of the sediment horizon down to 10-cm depth in the sediment, and
normalised to a surface of 10 ¢cm’. Nematode biomass was calculated from the biovolume,
which was estimated from all of the specimens using the Andrassy (1956) formula (V = L x
W? x 0.063 x 10”, in which body length, L, and width, W, were expressed in pm). The
biovolume of all of the specimens of other taxa encountered were calculated using the formula
V =L x W? x C, where L and W were expressed in mm, and C is the approximate conversion
factor as reported for by Feller and Warwick (1988) for ostracods, kinorinchs, turbellarians,
gastrotrichs, tardigrades, polychaetes, oligochaetes, acarins, tanaidaceans, isopods, and
copepods. For all other taxa, we adopted the conversion factor of the taxon with the body shape
most similar to that of the unknown one. The total biovolume was multiplied by a mean density
of 1.13 g cm™, to estimate the wet weight. The dry weight was calculated as 25% of the wet
weight (Wieser, 1960) and converted into carbon content, which was assumed to be 40% of the

dry weight (Feller and Warwick, 1988).

2.5. Nematode biodiversity

Nematodes were sorted and identified to genus or species using the pictorial keys of Platt and
Warwick (1983, 1988), and Warwick et al. (1998), implemented according to NeMys
(http://nemys.ugent.be). Species identity was not considered in this study but, for the purposes
of estimating species richness and other diversity indexes, the different morphotypes belonging
to each genus were indicated as sp1, sp2, sp3 and considered as separate species (De Mesel et
al., 2006). Species richness (SR) was calculated as the total number of species collected in each
replicate using the routine DIVERSE included in the PRIMER 6+ software (Plymouth Marine

Laboratory; Clarke, 1993).
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2.6. Prokaryotic biomass and production

Prokaryote counts were carried out using epifluorescence microscopy after staining with SYBR
green I (Zeiss Axioplan; magnification, x1000) (Danovaro et al., 2010). A minimum of 10 to
20 microscope fields and at least 400 prokaryote cells were examined for each filter.
Prokaryote biovolume (as maximal length and width) was estimated using a micrometer ocular
assigning prokaryote cells to different size classes and then converted into carbon content

assuming 310 fg C pm (Palumbo et al., 1984).

Prokaryotic heterotrophic (C) production was measured by H-leucine incorporation (Van
Duyl and Kop, 1994). Sediment sub-samples (200 pl), added to an aqueous solution of H-
leucine (6-pCi final concentration per sample), were incubated for 1 h in the dark at in situ
temperature. After incubation, prokaryotic C incorporation was stopped with 1.7 ml of 80%
ethanol before scintillation counting. Sediment blanks were made adding ethanol immediately
after *H-leucine addition. Data were normalized to sediment dry weight after desiccation (60°,

24 h).

2.7. Extracellular enzymatic activities, C degradation rates and turnover

Extracellular enzymatic activities (aminopeptidase and B-glucosidase) in sediments were
determined by cleavage of artificial fluorogenic substrates (L-leucine-4-methylcoumarinyl- 7-
amide, Leu-MCA; 4-methylumbelliferone-B-D-glucopyranoside, Glu-MUF, respectively;
SIGMA) (Hoppe, 1993) at saturating concentrations (200 uM for Glu-MUF and Leu-MCA).
Incubations were performed in the dark at in sifu temperature for 1 h (enzymatic activities
increased linearly with time up to 3 h). After incubation, supernatants were analyzed
fluorometrically (at 380 nm excitation, 440 nm emission for Leu-MCA and 365 nm excitation,

455 nm emission for Glu-MUF). Fluorescence was converted into nmol of hydrolyzed
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substrate using calibration curves obtained from standard solutions of 7-amino-4-
methylcoumarin for Leu-MCA and of 4-methylumbelliferone for Glu-MUF. The amount of
hydrolyzed substrates was normalized to the incubation time and the sediment dry weight
(60°C, 24 h). Activities are hence reported as nmol of substrate released g' h™.
Aminopeptidase and B-glucosidase activities were converted into equivalents of C mobilized
assuming that 1 nmol of substrate hydrolyzed enzymatically corresponds to 72 ng of mobilized
C, and their sum reported as C degradation rates (Pusceddu et al., 2009b). The turnover of
biopolymeric C was calculated as the ratio of the hourly C degradation rates (per day once

multiplied by 24) and the biopolymeric C contents in the sediment (Pusceddu et al., 2014).

2.8. Statistical analyses

The experimental design consisted of four factors: 1) Habitat (Ha, fixed factor with 2levels:
seagrass beds vs. bare sediments); 2) Caulerpa (Ca, fixed factor with two levels — present and
absent — orthogonal to Habitat); 3) Area (A, random factor with 2 levels nested in Ha and Ca);
and 4) Plot (P, random factor nested in Ha, Ca and A), with n=3 for each combination of

factors.

Variations in sediment grain size, chlorophyll-a, phaeopigment, protein, carbohydrate,
lipid and biopolymeric C sedimentary contents, prokaryote abundance and biomass;
heterotrophic C production and extracellular enzymatic activities were assessed by means of

univariate ANOVA, using the GMAV software (Underwood and Chapman, 1997).

The differences across the four conditions in the composition of meiofauna as a whole, of
nematode assemblages, and OM biochemical composition were investigated using
PERMANOVA (Anderson, 2001; McArdle and Anderson, 2001). The PERMANOVA

analyses were based on Euclidean distances of previously normalized data (OM) and Bray-
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Curtis similarity triangular matrixes (faunal data), using 999 random permutations of the
appropriate units (Anderson and ter Braak, 2003). The pseudo-multivariate variance
components for each term in the model were calculated using direct multivariate analogues to
the uni-variate ANOVA estimators (e.g., Searle et al., 1992). For those PERMANOVA tests
providing significant differences for the different sets of variables, pairwise tests for the
relevant factors were also carried out, followed by Multidimensional Scaling (MDS) plots,
drawn using the same matrixes as for the PERMANOVA tests (see supplementary figures).
Moreover, CAP (canonical analysis of principal coordinates) plots were also obtained to

ascertain the allocation of experimental groups to those established a priori.

Since PERMANOVA is sensitive to differences in multivariate dispersion among groups,
we used also a test of homogeneity of dispersion (PERMDISP) to test the null hypothesis of
equal dispersions among groups. Since the PERMDISP analysis reveals no significant
differences in the multivariate dispersion of both meiofaunal and nematode assemblages across

scales, results are not reported.

PERMANOVA (followed by pairwise comparisons when appropriate), MDS, CAP, and

PERMDISP tests were carried out using Primer6+ software (Anderson et al., 2008).

2.9. Beta diversity

Beta diversity is generally defined as the ratio between gamma and mean alpha diversities
(Tuomisto, 2010). Since gamma diversity can differ from mean alpha diversity if, and only if,
local sites differ in species composition, this ratio represents the degree to which species
composition changes from site to site, i.e., beta diversity (Anderson et al., 2011). Differences in
species composition between two sites can be produced by: 1) the replacement of some species

by others from site to site (i.e. spatial turnover; Gaston and Blackburn, 2000); 2) nestedness, a
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pattern characterized by the poorest site being a strict subset of the richest one (Baselga, 2010).
Beta diversity can be partitioned into two components: dissimilarity due to species replacement
and dissimilarity due to nestedness (nestedness-resultant dissimilarity). Nestedness occurs
when the biotas of sites with smaller numbers of species are subsets of the biotas at richer sites
(Ulrich and Gotelli, 2007), therefore reflecting a non-random process of species loss as a
consequence of any factor that promotes the disaggregation of assemblages (Gaston and

Blackburn, 2000).

In this study, beta diversity was assessed by Jaccard dissimilarity (Jaccard, 1912; Koleff et
al., 2003), and then decomposed into the turnover and nestedness resultant components

according to Baselga (2012), using the following equations:

1) Jaccard dissimilarity:

b+c
a+b+c

Bjac =

2) turnover component of the Jaccard dissimilarity:

2 min(b,c)
a+2min(b,c)

Bitu =

3) nestedness resultant component of the Jaccard dissimilarity:

B' __max(b,c)—min(b,c) a
Jne a+b+c a+2min(b,c)

where, a is the number of species present in both sites or sampling units, b is the number of
species present in the first site but not in the second, and c is the number of species present in

the second site but not in the first.

3. Results
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3.1. Sediment characteristics

Data on sediment grain size and organic matter contents in the sediments of the investigated

habitats are reported in Table S1.

The sediments of the two investigated, invaded and not invaded by C. cylindracea,
habitats are characterized by a highly variable fine sand fraction varying from 29 + 14 %
(seagrass beds without C. cylindracea, on average of all plots) to 69 + 9 % (bare sediments

without C. cylindracea, on average of all plots).

ANOVA does not reveal significant differences in the percentage of fine sands among the
two habitats, nor any effect of the presence of the algae, but significant variations only among
plots within each area, presence/absence of the algae and habitat (Table 1). In both bare and
seagrass sediments, protein, carbohydrate and biopolymeric C contents were affected by the
presence of C. cylindracea (Table 1), with highest values consistently observed in invaded
sediments (Fig. 2a-c), whereas lipid contents varied among the two habitats, but were not
affected by the presence of the algae (Table 1). In both habitats, the presence of C. cylindracea
resulted in values of the algal fraction of biopolymeric carbon in the sediments significantly

higher than those in not invaded grounds (Fig. 2d).

The biochemical composition of sedimentary organic matter was significantly affected
by the presence of the algae (Table 1; Fig. 3; Fig. S1), with a large variability also explained at
the scale of plot. The pairwise comparisons reveal the presence of a significant effect of the
invading algae on the biochemical composition of sediment organic matter in both habitats

(bare sediments: t =4.157, p<0.001; seagrass sediments: t = 3.427, p<0.001).

3.2. Prokaryotic abundance, biomass, production, enzymatic activities and C turnover

14
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Data on prokaryotic abundance, biomass and C production and extracellular enzymatic

activities are reported in Table S2.

The results of the ANOVAs reveal that the presence of the algae does not alter
significantly the microbial variables, but significant differences in prokaryotic C production,
aminopeptidase activity and C degradation rates were observed among the two habitats (Table
2), with values in seagrass sediments significantly higher than those in bare grounds (Fig. 4a-
¢). In seagrass sediments, biopolymeric C daily turnover mediated by extracellular enzymatic
activities was about half than in not invaded beds, whereas in bare sediments this effect was

much less evident (Fig. 4d).

3.3. Meiofaunal abundance, biomass, and community composition

Abundance data for each meiofaunal taxa, and for total meiofaunal abundance, biomass and
richness of taxa are reported in Table S3 and Table S4, respectively. Total meiofaunal
abundance and biomass did not vary between habitats nor between invaded and not invaded

sediments of both habitats (data not shown).

Overall, meiofauna was dominated by Nematoda representing the 55-97% of the total
abundance (Fig. 5a), followed by Copepoda (2-33%), Polychaeta (0.2-13%), Tardigrada (0.1-

4.4%) and thirteen other taxa (cumulatively 1-10%) (Fig. 5b).

The results of the PERMANOVA reveal a significant effect of the HabitatX Caulerpa
interaction on the composition of the whole meiofaunal communities (Table 3a). A-posteriori
pairwise comparisons, corroborated by the MDS plot (Fig. S2), indicate that the effect of the
invasive algae on the composition of meiofaunal communities is significant only in bare
sediments (PERMANOVA t=2.073; p<0.05), where the presence of the algae is characterized

by an increased contribution of oligochaetes (Fig. 6).
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3.4. Nematode biodiversity

The results of univariate ANOVAs reveal that nematode species richness varies significantly

only among plots in each area, presence/absence of the algae and habitat (Table S5).

The PERMANOVA results, corroborated by the MDS plot (Fig. S3), reveal that the
composition of the nematode assemblages does not vary between habitats, presence of

Caulerpa and areas within each habitat, but are highly variable among plots (Table 3b).

The highest values of the Jaccard dissimilarity are observed among plots (on average 0.62,
range 0.59-0.65), and the lowest between invaded and not invaded sediments of both habitats
(0.52 and 0.48 in bare and seagrass sediments, respectively). In both habitats the turnover
component (species replacement) of Jaccard dissimilarity between plots in invaded sediments
is higher than that in not invaded grounds, whereas the presence of C. cylindracea is associated
with lower values of turnover diversity among areas (Fig. 7a-b). The turnover diversity
between invaded and not invaded bare sediments is higher than that in seagrass sediments (Fig.
7¢). The nestedness component of the Jaccard dissimilarity is much lower than the turnover
one at all the investigated scales, with highest values between invaded and not invaded
sediments of both habitats (0.06 and 0.11 in bare and seagrass sediments respectively), and
lowest values between areas of not invaded sediments of both habitats (0.006 and 0.004 in bare
and seagrass sediments, respectively). In both habitats, the nestedness component of the
Jaccard dissimilarity between plots of invaded sediments is lower than that in not invaded
sediments (Fig. 7d), whereas nestedness between areas is higher in invaded sediments (Fig.
7e). The nestedness component of Jaccard dissimilarity between invaded and not invaded

sediments in seagrass sediments is higher than that in bare sediments (Fig. 7).
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4. Discussion

Our results show that the presence of C. cylindracea in the Marine Protected Area “Torre
Guaceto” was associated with a significant accumulation of organic matter in surface
sediments of both seagrass and bare (unvegetated) sediments. Such accumulation, although
significant, did not result in the eutrophication of the investigated habitat (i.e., biopolymeric C
contents always <2.5 mg C g’'; sensu Pusceddu et al., 2009a). In all investigated sediments the
fresh micro-algal contribution (determined as chlorophyll-a content of the sediments) to the
biopolymeric C pool was typically <5%. This finding, along with the relatively high
concentrations of phaeopigments, suggests the prevalence of detrital (i.e., non-living) and
heterotrophic (i.e., non-algal) composition of the sedimentary organic pools in the investigated
sediments. However, both habitats, when invaded by C. cylindracea, displayed a higher micro-
algal (total phytopigment) contribution to the sedimentary C pools (Fig. 2d), indicating the
presence of a larger fraction of organic matter bioavailable for benthic consumers. We would
conclude that the presence of C. cylindracea in both seagrass and unvegetated sediments
resulted in an increased availability of fresh primary organic substrates available for benthic
heterotrophic metabolism, with potentially positive effects for the benthos inhabiting sediments
invaded by this macroalgae. However, seagrass sediments colonized by C. cylindracea were
characterized by significantly lower C turnover rates than those observed in sediments without
the macroalgae. Our results show that the increased availability of organic substrates in
sediments invaded by C. cylindracea does not stimulate microbial abundance and activity,
conversely to what expected. Since in both habitats organic loads in invaded sediments are
much higher than those in grounds free of the algae, C turnover rates are lower in presence of
C. cylindracea. This result indicates that the biogeochemical processes are affected by the

presence of this invasive algae. This effect is more evident in seagrass than in bare sediments,
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likely as a result of their more complex architectural structure, which makes these systems
more vulnerable to the effects of C. cylindracea than bare sediments.

Taken as a whole, the abundance and biomass of meiofauna in sediments of both habitats
invaded by C. cylindracea did not change significantly from those without the macroalgae.
These results are in contrast with those reporting a positive effect of the presence of C.
cylindracea on total meiofaunal abundance (Carriglio et al., 2003), and let us to hypothesize
that the organic pools derived from C. cylindracea biomass could be not easily exploited as a
primary resource by meiofauna. However, the presence of C. cylindracea in unvegetated
sediments was associated with a meiofaunal community significantly different from that
observed in vegetated sediments invaded by C. cylindracea, in particular because of an
increased abundance of oligochaetes (Fig. 6), and the appearance of isopods, gastrotrichs and
kinorinchs, otherwise absent in not invaded sediments (Table S3). These taxa, once pooled
together, represented on average less than 1.0% of the total meiofaunal abundance. In
accordance with Vazquez-Luis et al. (2009a) we also observed that C. cylindracea stands
supported a higher abundance of amphipods (Table S3). Even though these results have to be
substantiated with additional information collected in larger space and longer time, it can be
inferred that this invasive macroalgae can influence in particular rare meiofaunal taxa (sensu
Bianchelli et al., 2010), possibly as a result of changes in the (spatial/trophic) resources offered
by the macroalgae itself.

Our initial hypothesis was that the presence of C. cylindracea is able to modify the local
structural complexity, having measurable effects on nematode biodiversity. Contrarily to
previous studies dealing with other (macro)benthic components (e.g., Argyrou et al., 1999), we
found that in both habitats C. cylindracea had not effects on nematodes o-diversity (i.e.,
nematode species richness). In addition, C. cylindracea did not have any effect on the levels of

multivariate dispersion of meiofaunal and nematode communities in both habitats. This result,
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corroborated for the nematodes by values of total Jaccard dissimilarity between invaded and
not invaded sediments, suggests that this algae can have only a minor, if any, role on the spatial
organization of meiofaunal and nematode communities. However, when the Jaccard
dissimilarity in nematode assemblages is disentangled into the turnover (species replacement)
and nestedness resultant (species loss) components, our results show (Fig. 7) that, in both
habitats, in presence of C. cylindracea the compositional turnover between plots is higher than
in not invaded sediments. On the other hand, in both habitats the values of the nestedness
resultant component of Jaccard dissimilarity between areas in invaded sediments are higher
than in not invaded areas, whereas the opposite is observed when contrasting plots. These
results suggest that the effects of this algae on species replacement is evident at the smallest
spatial scale, whereas its effects on species loss is better identified at the largest spatial scale
(i.e. area).

When comparing the two habitats, irrespectively of variations at the scales of area and
plot, the presence of C. cylindracea determines and increased compositional heterogeneity,
more specifically determining a larger species replacement between invaded and not invaded
bare sediments, but a higher rate of species loss between invaded and not invaded seagrass
sediments.

Overall, our results could be due to the fact that the habitat complexity provided by the
seagrass Posidonia oceanica, that is a habitat former, could interact with the effects of the
macroalgae invasion on the meiofauna. In this regard, previous investigations have shown that
the spreading of C. cylindracea within P. oceanica meadows is favored at the edge of the
meadow where the density of the seagrass shoots is low and sand grounds are sufficiently vast
(Ceccherelli et al., 2000), indicating that seagrass meadows could, to a certain extent,
counteract the potential consequences of the invasion by this macroalgae. Most recently, it has

been also demonstrated that C. cylindracea growth within seagrass beds can be limited by the
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shading determined by the meadow (Marin-Guirao et al., 2015). However, although our results
overall suggest variable effects of the presence of C. cylindracea on meiofauna and nematode
assemblages, the compositional turnover between invaded and not invaded grounds in seagrass
sediments are relatively larger than those in unvegetated sediments, indicating that the former
habitat is potentially more vulnerable than the latter one.

Our results thus confirm that the effects of invasive species on local assemblages might
vary idiosyncratically among different benthic components, and, wherever documented, could
be context dependent, varying also at different spatial scales (Ceccherelli and Campo, 2002;
Ceccherelli and Sechi, 2002; Grosholz, 2002; Kennedy et al., 2002; PySek and Hulme, 2009;
Bulleri et al., 2010; Piazzi et al., 2005b; Arenas et al., 2006; Beisner et al., 2006; Bulleri et al.,
2008; Heiman and Micheli, 2010). Results presented here indicate that the presence of C.
cylindracea could exert consistent effects on most of the investigated variables, with exception
of C turnover and nematode species turnover and loss rates (Table 4), and suggest that the so-
far documented negative effects of this invasive algae on Mediterranean macroalgal

communities could be context dependent on heterotrophic communities.
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Figures’ caption

Fig. 1 Study area.

Fig. 2 Protein (a), carbohydrate (b), biopolymeric C (c) sedimentary contents and values of the
algal fraction of BPC (d) in bare (unvegetated) and seagrass sediments invaded and not
invaded by C. cylindracea. Error bars indicate standard errors.

Fig. 3 CAP plot illustrating differences in the biochemical composition of sedimentary organic
matter between unvegetated and seagrass sediments invaded and not invaded by C.
cylindracea.

Fig. 4 Prokaryotic C production (a), aminopeptidase activity (b) and C degradation rates (c), in
bare and seagrass sediments, and C turnover rates in bare (unvegetated) and seagrass
sediments invaded and not invaded by C. cylindracea. Error bars indicate standard
errors.

Fig. 5 Composition of meiofaunal communities in in bare (unvegetated) and seagrass
sediments invaded and not invaded by C. cylindracea: a) all meiofaunal taxa, b) all
taxa but Nematoda and Copepoda.

Fig. 6 CAP plot illustrating differences in the composition of meiofaunal communities in bare
(unvegetated) and seagrass sediments invaded and not invaded by C. cylindracea.

Fig. 7. Turnover (a, b, ¢) and nestedness resultant (d, e, f) components of Jaccard dissimilarity

of nematode assemblages between plots, areas and invaded and not invaded sediments.
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Table 1 Results of the univariate and multivariate permutational ANOVAs ascertaining
variations in the quantity and composition of sedimentary organic matter among levels of the
experimental factors: Ha = habitat (seagrass vs. unvegetated sediments); Ca = Caulerpa (present
vs. absent); Ar = area (nested in Ha and Ca); P1 = plot (nested in Ha, Ca and Ar). df = degrees
of freedom; MS = mean square; F = statistic F. P= probability level; ns = not significant; * =
p<0.05; ** =p<0.01; *** = p<0.001. Reported are also the results of the Cochran’s test and the
eventual data transformation.

Find sands (%) Chlorophyll-a Phaeopigments
Source Df MS F P MS F P MS F P
Ha 1 6503.27 1.9 ns 5.62 13.32 * 4.46 5.58 ns
Ca 1 315 0.09 ns 11.17 26.47 ok 13.41 16.75 *
Ar(HaXCa) 4 3423.21 1.9 ns 0.42 0.4 ns 0.8 1.17 ns
Pl(HaXCaXAr) 8 1804.26 55.12 ok 1.06 8.51 HHE 0.69 12.35 ok
HaXCa 1 3309.06 0.97 ns 0.1 0.25 ns 0.2 0.25 ns
Residual 32 32.73 0.12 0.06
Cochran'’s test 0.18 0.3 0.2
Transformation None In(x) In(x)

Proteins Carbohydrates Lipids

Source df MS F P MS F P MS F P
Ha 1 0 0.15 ns 0.02 2.34 ns 0.07 46.55 ok
Ca 1 0.11 22.26 ok 0.15 18.63 * 0.01 7.45 ns
Ar(HaXCa) 4 0.01 0.65 ns 0.01 1.51 ns 0 0.31 ns
PI(HaXCaXAr) 8 0.01 3.93 *x 0.01 4.6 HAE 0 25.03 ok
HaXCa 1 0 0.02 ns 0.02 2.96 ns 0 0.09 ns
Residual 32 0 0 0
Cochran'’s test 0.23 0.3 0.3
Transformation None In(x+1) None

Biopolymeric C Biochemical composition
Source df MS F P MS F P
Ha 1 0.22 15.98 * 36.96 5.27 *
Ca 1 0.83 60.47 ok 69.98 9.98 *
Ar(HaXCa) 4 0.01 0.31 ns 7.57 1.08 ns
Pl(HaXCaXAr) 8 0.04 6.89 HHx 7.01 0.851 ns
HaXCa 1 0.05 3.48 ns 8.24 9.94 HEE
Residual 32 0.01 0.829
Cochran'’s test 0.25
Transformation None
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Table 2. Results of the univariate ANOVAs ascertaining variations in prokaryotic abundance, biomass and production, extracellular enzymatic
activities, and C degradation rates among levels of the experimental factors: Ha = habitat (seagrass vs. unvegetated sediments); Ca = Caulerpa (present
vs. absent); Ar = area (nested in Ha and Ca); Pl = plot (nested in Ha, Ca and Ar). df = degrees of freedom; MS = mean square; F = statistic F. P=
probability level; ns = not significant; * = p<0.05; *** = p<0.001. Reported are also the results of the Cochran’s C test and the eventual data

transformation.

Prokaryotic abundance Prokaryotic biomass Prokaryotic C production
Source ad MS F P F versus MS F P F versus MS F P F versus
Ha 1 935 6.19 ns Ar(HaXCa) 10.57 6.22 ns Ar(HaXCa) 65255.45 10.99 * Ar(HaXCa)
Ca 1 1.17 0.78 ns Ar(HaXCa) 1.51 0.89 ns Ar(HaXCa) 7289.07 123 ns Ar(HaXCa)
Ar(HaXCa) 4 1.51 0.86 ns Pl(HaXCaXAr) 1.7 0.98 ns Pl(HaXCaXAr) 5935.86 0.56 ns Pl(HaXCaXAr)
Pl(HaXCaXAr) 8 1.77 254 *** RES 1.74 3433 **x* RES 10587.78 5.01 *** RES
HaXCa 1 0.27 0.18 nns Ar(HaXCa) 0.63 037 ns Ar(HaXCa) 34239.48 5.77 ns Ar(HaXCa)
Residual 32 0.07 0.05 2112.35
Cochran's test 0.30 0.14 0.29
Transformation None In(x) None

Beta-glucosidase Aminopeptidase C degradation rate

Source df MS F P F versus MS F P F versus MS F P F versus
Ha 1 1.6 11.18 * Ar(HaXCa) 612.77 2.59 ns Ar(HaXCa) 1.47 9.14 * Ar(HaXCa)
Ca 1 021 1.44 ns Ar(HaXCa) 170.74 0.72 ns Ar(HaXCa) 0.12 0.75 ns Ar(HaXCa)
Ar(HaXCa) 4 0.14 0.18 ns Pl(HaXCaXAr) 236.67 1.19 ns Pl(HaXCaXAr) 0.16 0.32 ns Pl(HaXCaXAr)
Pl(HaXCaXAr) 8 0.78 7.92 *x* RES 198.92 7.53 *kx* RES 0.5 6.34 HxE RES
HaXCa 1 2.85 19.94 * Ar(HaXCa) 31.8 0.13 ns Ar(HaXCa) 2.24 1391 * Ar(HaXCa)
Residual 32 0.1 26.41 0.08
Cochran's test 0.23 0.27 0.33 0.19
Transformation None In(x) None In(x)
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Table 3

847  Table 3. Results of the PERMANOV As ascertaining variations in the composition of the whole
848  meiofaunal communities (a) and nematode assemblages (b) among levels of the experimental
849  factors: Ha = habitat (seagrass vs. unvegetated sediments); Ca = Caulerpa (present vs. absent);
850  Ar = area (nested in Ha and Ca); PI = plot (nested in Ha, Ca and Ar). df = degrees of freedom;
851  MS =mean square; F = statistic F. P(perm)= probability level; ns = not significant; * = p<0.05;
852  *** =p<0.001.

853
a) Whole meiofaunal community
Source df MS Pseudo-F P(MC) % of explained variance
Ha 1 2924 6.791 o 21
Ca 1 1479 3.434 ok 9
HaxCa 1 1360 3.159 ok 16
Ar(HaxCa) 4 431 0.679 ns 0
Pl(Ar(HaxCa)) 8 635 7.812 HAE 38
Residual 32 81 17
b) Nematode assemblages
Source df MS Pseudo-F P(MC) % of explained variance
Ha 1 9886 3.040 *x 12
Ca 1 4414 1.357 ns 2
HaxCa 1 3537 1.088 ns
Ar(HaxCa) 4 3252 1.199 ns
Pl(Ar(HaxCa)) 8 2712 2.044 oAk 21
Residual 32 1327 60
854
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Table 4

849  Table 4. Synopsis of the effects of the invasive algae Caulerpa cylindracea on sedimentary
850  features, prokaryote, meiofauna and nematode variables in seagrass and bare sediments. + =

851  positive effect on univariate variables (increase); - = negative effect on univariate variables

852  (decrease); o = significant effect on multivariate sets of variables, ns = not significant effects.

853
Seagrass Bare
Typology Variable sediments sediments
Sediments Sediment grain size ns ns
Total phytopigment + +
Protein + +
Carbohydrate + +
Lipid ns ns
Biopolymeric C + +
Algal fraction of organic C + +
Biochemical composition ° °
Prokaryotes Abundance ns ns
Biomass ns ns
C production ns ns
Enzymatic activities ns ns
C turnover - ns
Meiofauna Abundance ns ns
Biomass ns ns
Community composition ns °
Nematodes Species richness ns ns
Assemblage composition ns ns
Species replacement between plots + +
Species replacement between areas - -
Species loss between plots - -
Species loss between areas + +
854
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Pusceddu et al. - Meiofauna communities, nematode diversity and C degradation rates in seagrass (Posidonia oceanica L.) and unvegetated sediments invaded by the algae Caulerpa cylindracea (Sonder)

1 Table S1. Fine sand fraction (%) and organic matter content in the investigated sediments.

Habitat Area Plot Finesand Chlorophyll-a Phaeopigment Protein Carbohydrate Lipid Biopolymeric C
% ngg! ngg' mgC g mgC g mgC g mgC g
Bare sediments with Caulerpa 1 1 52+4 1.94 £ 0.01 22.25+8.82 0.30+0.07 0.23 £0.06 0.11 £ 0.00 0.65+0.14
2 82+9 1.07 £0.18 13.50 +£3.48 0.22 £0.02 0.31+£0.07 0.15+0.03 0.68 £0.12
2 1 13+1 3.30+0.91 16.00 + 6.27 0.28 £0.02 0.40+0.11 0.23 £0.03 091+0.16
2 43+£5 1.02+£0.22 4.28 £0.36 0.18 £0.03 0.27 £0.04 0.10 £0.02 0.55+0.04
Bare sediments without Caulerpa 1 1 77+ 10 0.59+0.23 3.08 +£0.08 0.21£0.08 0.09 £ 0.01 0.13 £0.00 0.43 +£0.09
2 83+9 0.81 +£0.38 4.89 +0.50 0.14 £0.02 0.07 £0.01 0.12+0.01 0.32+0.04
2 1 43+3 1.42 £ 0.81 3.17+0.61 0.17 £0.06 0.19+£0.01 0.12 £ 0.00 0.48 £0.07
2 74£5 0.49 £0.10 3.31+£0.57 0.07 £0.02 0.11 £0.05 0.08 £ 0.02 0.26 =0.09
Seagrass with Caulerpa 1 1 90+9 2.58+1.49 14.34 +1.80 0.26 £0.03 0.17£0.01 0.04 £ 0.00 0.47 £0.04
2 14+1 11.35+0.89 51.56+£15.71  0.27+0.09 0.21 £0.05 0.10 £ 0.00 0.57 +£0.04
2 1 37+4 2.45+0.56 13.22 +£3.34 0.18 £0.05 0.15+0.02 0.08 £0.02 0.41 £0.09
2 22+3 2.64+0.84 13.88 £4.09 0.24 £0.02 0.26 £0.01 0.06 £ 0.00 0.55+0.03
Seagrass without Caulerpa 1 1 37+5 1.13 £0.04 7.28 £1.65 0.14 £ 0.04 0.15+0.01 0.05 £ 0.00 0.34 £0.05
2 66+ 8 1.32+£0.08 8.71 £0.63 0.17 £0.02 0.16 =0.03 0.04 £ 0.00 0.37+0.06
2 1 4+1 1.26 £ 0.06 7.61 £0.35 0.10 £ 0.00 0.06 £ 0.00 0.03 £0.00 0.19+£0.01
2 10+ 1 1.16 £1.16 6.44 +1.31 0.16 £0.02 0.10 +0.02 0.04 £ 0.00 0.30 £ 0.04




Supporting Table S2

Pusceddu et al. - Meiofauna communities, nematode diversity and C degradation rates in seagrass (Posidonia oceanica L.) and unvegetated sediments invaded by the algae Caulerpa cylindracea (Sonder)

3 Table S2. Prokaryotic abundance, biomass and C production and extracellular enzymatic activities in the investigated sediments.

Habitat Area  Plot  Abundance Biomass C Production Aminopeptidase  p-glucosidase
N. cells 10" g ngCg' ngC g''h’! nmol g h’! nmol g h’!
Bare sediments with Caulerpa 1 1 2.25+0.24 1.49+0.15 109+23 31.8+7.3 213+6.0
2 3.44+£0.34 2.19+0.15 174.0 £ 38.9 139.4+10.2 89+53
2 1 0.25 +0.07 0.14£0.05 132.2+£15.8 69.7+18.9 147+39
2 3.80+1.95 2.09+0.67 64.6 104 118.5+33.4 6.6+2.0
Bare sediments without Caulerpa 1 1 2.26+0.18 1.60 £0.02 1522+ 193 449+ 13.7 323+35
2 4.18£0.64 2.69 +0.56 71.8+12.1 39.1+£99 12.7+0.3
2 1 2.19+0.49 1.48 £0.39 120.4 £23.5 571+17.7 10.2+2.1
2 2.03+0.42 1.55+0.35 152.3 £ 13.1 31.3+1.0 49+25
Seagrass with Caulerpa 1 1 6.01 +£1.73 3.89+0.65 118.6+1353 47.1+7.5 13.0+3.4
2 516+1.25 3.61£0.58 263.0 £ 84.3 743 +27.2 16.7+5.5
2 1 6.92+1.32 4.95+0.45 208.7 £ 66.5 104.7 £ 6.2 17.3+4.8
2 2.01+0.50 1.44 £0.30 234.0+41.9 68.5+38.8 26.7+4.4
Seagrass without Caulerpa 1 1 9.39+2.08 6.02 +1.78 220.0£99.5 100.3 £13.1 18.1+7.4
2 6.28 £2.44 4.65+1.39 154.4 £ 479 929+5.1 340+11.8
2 1 3.34+0.06 2.14+0.17 60.9 + 13.1 66.5+31.2 17.3+£3.1
2 427+1.22 2.93 +£0.88 142.8 £20.8 163.1 £ 67.6 259+52
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Pusceddu et al. - Meiofauna communities, nematode diversity and C degradation rates in seagrass (Posidonia oceanica L.) and unvegetated sediments invaded by the algae Caulerpa cylindracea (Sonder)

5 Table S3. Abundance of meiofaunal taxa in the investigated habitats. sd = standard deviation among n=3 replicates.
Habitat Area Plot Nematode Copepod Polychaete Bivalve Ostracod Kynorhinc
n. ind. 10cm™ sd n. ind. 10cm™ sd n. ind. 10cm™ sd n. ind. 10cm™ sd  n.ind. 10cm™ sd n. ind. 10cm™ sd
Bare sediments
with Caulerpa 1 1 783.4 518.3 40.6 31.4 13.1 5.6 2.1 0.8 4.9 2.6 0.0 0.0
2 1279.1 790.0 67.5 29.1 20.3 15.6 3.5 1.2 1.6 1.1 0.0 0.0
2 1 764.7 349.1 133.7 52.4 77.7 12.5 0.6 0.3 1.6 1.5 0.6 0.3
2 1649.0 751.7 26.9 10.6 354 17.8 1.8 0.9 1.0 1.0 0.6 0.3
Bare sediments
without
Caulerpa 1 1 2380.7 1167.9 38.7 20.0 3.9 1.0 1.0 1.0 11.1 7.5 0.0 0.0
2 1261.1 202.1 58.6 49.9 5.9 4.3 1.0 1.0 17.0 4.0 0.0 0.0
2 1 1342.4 875.9 38.7 23.9 23.9 18.3 0.6 0.3 9.7 3.8 0.0 0.0
2 1751.9 717.1 31.8 20.0 8.8 2.9 1.8 0.9 25.2 15.4 0.0 0.0
Seagrass with
Caulerpa 1 1 1632.0 624.0 38.0 18.5 16.4 3.5 6.8 2.5 5.1 2.1 0.0 0.0
2 482.9 307.2 247.4 89.5 14.7 8.4 3.1 1.4 2.0 2.0 0.0 0.0
2 1 1134.3 863.6 177.0 106.6 40.0 37.2 3.9 1.0 5.2 4.6 0.0 0.0
2 713.0 516.1 82.7 32.3 21.6 19.7 4.1 1.5 4.6 4.0 0.6 0.3
Seagrass
without
Caulerpa 1 1 2019.6 950.0 459 25.3 9.8 5.9 4.6 32 33 1.1 0.0 0.0
2 530.5 67.9 21.0 10.8 10.5 7.2 1.3 1.1 2.6 2.0 0.0 0.0
2 1 440.7 247.9 68.5 19.7 16.7 12.1 0.0 0.0 33 1.3 0.6 0.3
2 809.9 786.6 29.5 9.2 26.6 10.5 0.7 0.6 1.6 0.6 0.0 0.0
Habitat Area Plot Turbellarian Oligochaeta Tardigrade Gastrotrich Cumacean Amphipod
n. ind. 10cm? sd n.ind. 10cm”  sd  n.ind. 10cm®? sd  n.ind. 10em® sd n.ind.10cm? sd  n.ind.10cm”  Sd
Bare sediments
with Caulerpa 1 1 0.0 0.0 0.6 0.3 0.0 0.0 1.6 1.5 1.3 0.6 1.6 0.6
2 0.0 0.0 2.1 0.8 0.0 0.0 0.0 0.0 2.4 1.1 12.0 5.1
2 1 0.0 0.0 33 1.3 11.5 4.3 0.0 0.0 1.6 1.5 4.9 2.3
2 0.0 0.0 1.8 0.9 0.0 0.0 1.0 1.0 1.2 0.6 4.7 1.8
Bare sediments
without
Caulerpa 1 1 0.0 0.0 0.0 0.0 0.6 0.3 0.0 0.0 0.6 0.3 2.0 2.0
2 0.0 0.0 0.0 0.0 0.6 0.3 0.0 0.0 0.6 0.3 2.0 2.0
2 1 0.0 0.0 2.4 1.1 4.5 1.9 0.0 0.0 2.4 1.1 0.7 0.6
2 0.0 0.0 0.0 0.0 0.6 0.3 0.0 0.0 1.2 0.6 1.8 0.9
Seagrass with
Caulerpa 1 1 0.0 0.0 2.1 0.8 0.0 0.0 0.0 0.0 0.6 0.3 2.6 1.1
2 0.0 0.0 1.0 1.0 33.2 15.2 0.6 0.3 0.0 0.0 2.1 0.8
2 1 0.6 0.3 1.3 0.6 8.6 33 0.6 0.3 0.0 0.0 1.0 1.0
2 0.0 0.0 2.0 1.0 6.6 5.8 0.0 0.0 0.0 0.0 1.0 1.0
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Seagrass
without
Caulerpa 1 1 0.0 0.0 0.6 0.3 0.0 0.0 0.0 0.0 0.6 0.3 2.1 0.8
2 0.0 0.0 2.7 1.0 2.0 2.0 2.1 0.8 0.0 0.0 0.0 0.0
2 1 0.0 0.0 4.5 1.9 8.1 2.9 1.0 1.0 0.0 0.0 0.6 0.3
2 0.0 0.0 1.0 1.0 0.6 0.3 0.6 0.3 0.6 0.3 0.6 0.3
Habitat Area Plot Isopod Tanaidacean Acarin Decapod larvae Others
n. ind. 10cm” sd n.ind. 10cm”  sd  n.ind. 10em® sd  n.ind. 10cm®  sd  n.ind. 10cm®  Sd
Bare sediments
with Caulerpa 1 1 0.0 0.0 14.7 10.3 0.6 0.3 2.0 2.0 0.0 0.0
2 0.0 0.0 7.5 7.1 0.0 0.0 5.6 1.5 0.0 0.0
2 1 0.0 0.0 3.6 2.0 1.2 0.6 2.0 0.0 0.0 0.0
2 24 1.1 11.6 4.7 0.0 0.0 1.0 1.0 0.0 0.0
Bare sediments
without
Caulerpa 1 1 0.0 0.0 29 2.0 0.0 0.0 7.9 7.8 0.0 0.0
2 0.0 0.0 3.3 2.5 0.6 0.3 8.5 3.0 0.0 0.0
2 1 0.0 0.0 2.0 1.7 0.0 0.0 3.6 3.0 0.0 0.0
2 0.0 0.0 29 1.7 0.0 0.0 3.3 2.5 0.0 0.0
Seagrass with
Caulerpa 1 1 0.0 0.0 3.9 1.6 0.7 0.6 1.2 0.6 0.6 0.3
2 0.0 0.0 1.2 0.6 25.1 11.6 43 2.0 1.2 0.6
2 1 0.0 0.0 2.7 1.0 14.2 5.3 2.3 1.5 0.6 0.3
2 0.0 0.0 0.0 0.0 1.2 0.6 6.1 2.1 0.6 0.3
Seagrass
without
Caulerpa 1 1 0.0 0.0 0.0 0.0 0.6 0.3 1.6 0.6 1.6 1.5
2 0.0 0.0 0.0 0.0 0.7 0.6 0.6 0.3 0.0 0.0
2 1 0.0 0.0 0.6 0.3 29 1.7 1.2 0.6 1.2 0.6
2 1.8 0.9 0.0 0.0 0.0 0.0 0.6 0.3 0.0 0.0




Supporting Table S4
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8  Table S4. Meiofaunal abundance, biomass and richness of taxa in the two habitats invaded and

9 not invaded by C. cylindracea.

Habitat Area Plot Abundance Biomass N. taxa
n. ind. 10 cm™ pgC 10 cm”
867 + 573 538 £ 659 10+1
1402 + 849 132 +57 9+1
1007 =422 182 +48 9+2
1739 + 788 145 +£ 36 8+3
2449+ 1209 291 +189 8+1
1359 +£268 112+ 15 8+2
1431 +927 133 +£20 8+1
1830 + 761 114+ 52 7+2

Bare sediments with C. cylindracea 1

Bare sediments without C. cylindracea 1

819 +394 78 £36 8+5
1392+1020 318+ 305 10£2

1
2
1
2
1
2
1
2
Seagrass with C. cylindracea 1 1 1710 £ 652 217 £ 104 8+1
2
1
2 844 + 567 108 £ 10 9+2
1
2
1
2

Seagrass without C. cylindracea 1 2090 + 988 145+ 70 7+1

574+ 93 70 + 34 7+1

2 550 +286 90+6 7+1

874 + 804 232 £330 7+2
10
11
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Pusceddu et al. - Meiofauna communities, nematode diversity and C degradation rates in seagrass (Posidonia oceanica L.) and
unvegetated sediments invaded by the algae Caulerpa cylindracea (Sonder)

Table S5. Results of ANOVAs ascertaining variations in nematode species richness (SR),
among levels of the experimental factors: Ha = habitat (seagrass vs. unvegetated sediments); Ca
= Caulerpa (present vs. absent); Ar = area (nested in Ha and Ca); P1 = plot (nested in Ha, Ca and
Ar). df = degrees of freedom; MS = mean square; F = statistic F. P= probability level; ns = not

significant; ** = p<0.01.

Index Source df MS F P

Species Richness Ha 1 184.080 4.90 ns
Ca 1 5.333 0.14 ns
HaxCa 1 192.000 5.11 ns
Ar(HaxCa) 4 37.542  0.66 ns
Pl(Ar(HaxCa)) 8 56.625 235  **
Residual 32 24.083




Supporting Figure S1
Pusceddu et al. - Meiofauna communities, nematode diversity and C degradation rates in seagrass (Posidonia oceanica L.) and
unvegetated sediments invaded by the algae Caulerpa cylindracea (Sonder)

19  Figure S1. MDS plot illustrating differences in the biochemical composition of organic matter

20  between in bare and seagrass sediments invaded and not invaded by C. cylindracea.
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Supporting Figure S2
Pusceddu et al. - Meiofauna communities, nematode diversity and C degradation rates in seagrass (Posidonia oceanica L.) and
unvegetated sediments invaded by the algae Caulerpa cylindracea (Sonder)

24 Figure S2. MDS plot illustrating differences in the composition of meiofaunal communities

25  between bare and seagrass sediments invaded and not invaded by C. cylindracea.
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Supporting Figure S3

29  Figure S3. MDS plot illustrating differences in the composition of nematode assemblages

30  between unvegetated and seagrass sediments invaded and not invaded by C. cylindracea.
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