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Abstract

The application of a multivariable predictive controller to an activated sludge

process is discussed in this work. Emphasis is given to the model identifica-

tion and the long term assessment of the controller efficiency in terms of eco-

nomical and environmental performances. A recurrent neural network model

is developed for the identification problem and the dynamic matrix control

is chosen as suitable predictive control algorithm for controlling the nitrogen

compounds in the bioreactor. Using the Benchmark Simulation Model No.1

as virtual platform, different predictive controller configurations are tested

and further improvements are achieved by controlling the suspended solids at

the end of the bioreactor. Based on the simulation results, this work shows

the potentiality of the dynamic matrix control that together with a careful

identification of the process, is able to decrease the energy consumption costs

and, at the same time, reduce the ammonia peaks and nitrate concentration
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in the effluent.

Keywords: Model Predictive Control, Process Identification, Activated

sludge process, BSM1

1. Introduction

The growing interest of researchers and practitioners in developing and

promoting optimisation and control methodologies for wastewater treatment

plants (WWTP) responds to the tightened regulations for the improvement

of effluent quality while reducing energy consumption, as recently discussed

in the comprehensive review of Hreiz et al. (2015). Meeting these objectives

mostly depends on real-time automation technologies which would allow an

efficient monitoring and supervision of the process units and the implemen-

tation of advanced control strategies such as model predictive control (MPC)

algorithms (Camacho and Bordons, 1999; Maciejowski, 2002). In such a

context, MPC has become an attractive control strategy for a considerable

number of WWTP applications over the last years as, for instance, witnessed

by the works of Weijers (2000); Rosen et al. (2002); Sotomayor and Garcia

(2002); Alex et al. (2002); Corriou and Pons (2004); Ekman (2008); Vrec̆ko

et al. (2011) and lately by Mulas et al. (2013, 2015); Vega et al. (2014); Kim

et al. (2014); Sant̀ın et al. (2015). This interest is mainly due to the ability

of the MPC of dealing with multivariate constrained control problems in an

optimal way, using simple and generally linear models.

The main idea behind every MPC algorithms is to use a model of the
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process to predict the effect of a control action on the plant, by solving

on-line and at each time step, an open-loop optimal control problem. The

development of a good prediction model is the most critical and time con-

suming step when developing an industrial MPC project, and it might take

up to more than 50% of the total project resources (Darby and Nikolaou,

2012). Generally, the model identification task is accomplished by means

of a campaign of open-loop step tests performed during the commissioning

stage of the controller implementation (Sotomayor et al., 2009). The nature

of WWTP makes the identification procedure more challenging mainly be-

cause of the continuous varying process disturbances. In fact, the inlet flow

rate and pollutant concentrations are never constant, being subjected to large

variations depending of the anthropic and industrial activities. In addition,

generally the disturbances are seldom measured on-line and the process is

characterised by very slow dynamics (Zhu, 1998).

In the application of MPC to wastewater treatment processes few papers

focused on the identification aspects considering the time varying nature of

the influent. For studies developed on the Benchmark Simulation Model No.

1 (BSM1, Gernaey et al., 2014), predictive models for MPC have been ob-

tained in ideal situation (Stare et al., 2007), considering step variations at

constant input load (Holenda et al., 2008) and assuming that step changes

can be also imposed to the measured disturbances in order to design a feed-

forward action (Shen et al., 2009). Recently, Han et al. (2014) proposed

a nonlinear model predictive control where a self-organising basis function
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neural network is used to describe the input-output relationships for the two

controlled outputs (nitrate in the second anoxic zone and dissolved oxygen

(DO) in the last zone of the bioreactor) and two manipulated inputs (in-

ternal recycle flow rate and mass transfer coefficient of the fifth bioreactor

zone). In this case the identification seems to mimic a real situation where

input disturbances are not constant. As full-scale applications, Dellana and

West (2009) reported a comparative study on linear and nonlinear black box

modelling applied for the prediction of real wastewater treatment plants be-

haviour. Lately, O’Brien et al. (2011) applied the MPC to a full-scale plant

for controlling the DO concentration in the anoxic zones by manipulating

the aeration power. In this case, the identification problem is carried out by

applying random changes to the manipulated inputs.

The approach proposed in this work mainly addresses two fundamental as-

pects of the control design. The first one is the obtainment of a process model

from plant data, as it is generally the case when dealing with real plants. This

step is of paramount importance for the development of a proper controller

strategy. The second issue is the process control design, which is addressed

by considering a MPC algorithm for removing nitrogen compounds. Simple

feedback and ratio controllers are also considered to improve process perfor-

mances. The study is developed by exploiting the BSM1, with the short and

long input data sets (Gernaey et al., 2014) used for conducting the model

identification and evaluating the control performance. A Recurrent Neural

Network (RNN) model is utilised as appropriate tool to deal with process

4



modelling from data (Tronci et al., 2013), while linear models revealed to

be inadequate for capturing the necessary input-output complex behaviour.

The Dynamic Matrix Control (DMC) is chosen as suitable MPC algorithm,

because of its simplicity, essential to any real WWTP application. In order

to maintain a linear MPC controller, the RNN models derived from the sim-

ulated plant data are then used to derive the Finite Step Response (FRS)

model. As a novelty with respect to previous studies (e.g., Stare et al., 2007;

Sant̀ın et al., 2015), aeration of the anoxic zone is considered as manipulated

variable in the BSM1 for improving ammonia removal and external carbon

addition is not used to improve denitrification. Furthermore, long-term sim-

ulations are here exploited to assess the performance of the linear controller

strategies, testing their reliability in presence of high variations of the influ-

ent and disturbances due to seasonal effects, particularly with respect to the

consequences of the temperature lowering.

The paper is organised as follows. After a brief description of the BSM1

model in Section 2, the proposed approach is extensively presented in Sec-

tion 3, starting with the definition of the control objectives and the adopted

performance indexes in Section 3.1. Then, it follows the description of the

system identification method in Section 3.2, the selected model predictive

control algorithm in Section 3.3 and the definition of basic controllers for the

improvement of the process performances in Section 3.4. Next, the results

of the predictive controllers are presented and discussed in comparison with

basic feedback controllers in Section 4. The most important conclusions are
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drawn in Section 5.

2. The activated sludge process

To test the potentialities of predictive control strategies on a biological

wastewater treatment plant, the Benchmark Simulation Model No.1 (Ger-

naey et al., 2014) is here exploited. The BSM1 is a fully defined protocol

that characterises a common activated sludge process in terms of a typical

municipal WWTP influent. The benchmark is based on the two accepted

first principle process models: the Activated Sludge Model No.1 proposed by

Henze et al. (2000) and the Takàcs model (Takács et al., 1991). The former

is used to describe the biological process and the latter is a non-reactive one

dimensional layer model that describes the settling process. The models are

fully calibrated, meaning that the kinetic and stoichiometric parameters are

provided within the benchmark description. The full set of data is available

at benchmark group website: http://www.benchmarkwwtp.org/.

QW, EXCESS SLUDGE

EFFLUENT

QA, INTERNAL RECIRCULATION

INFLUENT

PI

AIRAIR AIR AIR AIR

PI

QR, EXTERNAL RECIRCULATION

Z5- SO,sp

Z2- SNO,sp

SO

Z1 Z2 Z3 Z4 Z5

SNO

Figure 1: Benchmark Simulation Model No.1: default configuration

The influent data are provided over short (14 days) and long period (609
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Figure 2: Long term data: Examples of influent data for ammonia (a) and flow rate (b)
during approximately one-month and temperature (c) for approximately one year.

days) with 15 minutes sampling time. The 14 days data files consider three

different weather conditions: dry (normal influent variation for a municipal

WWTP), storm (same as dry weather with two storm events) and rain (dry

weather with a long rain period). The long-term (LT) data set takes into

account seasonal effects and temperature variations (Figure 2), allowing a

demanding test for the proposed control strategies (Gernaey et al., 2006).

2.1. BSM1 default controllers

The scheme in Figure 1 includes the two feedback loops used in the BSM1.

A PI controller regulates the aeration given the DO concentration in Z5 (Z5-

SO) and the nitrate concentration in zone Z2 (Z2-SNO) is controlled by the

internal recirculation flow rate given by a PI controller. The default control

configuration is used in the following for comparison purposes, in order to
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show how an advanced control strategy may enhance process performances.

3. Development of the control strategy

The improvement of the activated sludge process performance is ad-

dressed by finding a suitable control strategy. This implies the definition

of the control objective, including the degree of freedom analysis, the se-

lection of controlled outputs and manipulated variables, together with the

determination of the requirements and the performance indexes. As a model

predictive control is considered, achieving a good model of the process is

essential for the control design.

In order to capture the input-output dynamics of the activated sludge

process, output response data are collected from the simulation platform

excited by varying the manipulated inputs when considering the long-term

influent data (Figure 2). Process identification from plant data is obtained

by means of a nonlinear model, which is then exploited to obtain the linear

Finite Step Response (FSR) model. Basic controllers are also introduced to

saturate the remaining degrees of freedom, leading to an improvement of the

plant performances. In the following of this section, the procedure for the

development of the proposed strategy is described in details, whereas Figure

3 schematically reports its main steps.

3.1. Problem statement

Main goal of the developed control strategies is to avoid violations of the

effluent limits, especially for the nitrogen compounds, while improving the
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Figure 3: Main steps of the proposed control strategy

process performances and decreasing the operational costs. This has to be

achieved in a simple way in order to allow practical and intuitive application

on a full-scale plant. It is has been demonstrated that the ammonia-based

control of the activated sludge process might imply significant savings in

the energy cost and potential improvements in the ammonia removal process

(Rieger et al., 2012; Åmand, 2014). On the other hand, it is also manda-

tory to guarantee that total nitrogen effluent concentration does not exceed

the limits imposed by the laws to protect the aquatic environment against

eutrophication. For these reasons, the control strategies developed in the

present paper aims to: (i) guarantee nitrification and denitrification pro-
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cesses, i.e., an efficient ammonia and nitrate removal; (ii) reduce the energy

consumption. Based on the analysis of the available degrees of freedom and

on the knowledge on the process, the manipulated and controlled variables

are identified and different configurations are investigated (Table 1).

Table 1: Control configurations tested on the BMS1.
C1 C2 C3 C4 C5 C6

Manipulated
Variables

Z2-SO-SP DO set-point in Z2 X X X X X X
Z3-SO-SP DO set-point in Z3 X X X X
Z4-SO-SP DO set-point in Z4 X X X X X
Z5-SO-SP DO set-point in Z5 X X X X X
QA Internal rec. flow-rate X X X X X X
QR External rec.flow-rate X X
QW Waste sludge flow-rate X

Controlled
Variables

Z5-SNH Ammonia in Z2 X X X X X X
Z2-SNO Nitrate in Z2 X X X X X X
Z5-SS Suspended Solids in Z5 X
I-Q Influent flow-rate X X

In the configurations from C1 to C4 the nitrate concentration in zone

Z2 together with the ammonia concentration in zone Z5 are the controlled

outputs. Dissolved oxygen set-point from Z2 to Z5 together with the internal

recycle flow rate are used as inputs for the model predictive control, to deal

with the complex dynamics and constraints of the nitrification-denitrification

processes. The manipulation of dissolved oxygen in the second zone, which

is always anoxic in the BSM1 layout, is considered in every configuration

because it should help to reduce ammonia peaks when the aeration of the

three aerated zones is not sufficient and possibly avoid the use of external

carbon source for improving denitrification. Also the use of the internal

recycle flow rate is maintained in each configuration because it is necessary for
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the denitrification process. Configuration C5 adds to the predictive controller

in C4 a simple ratio control that adapts the external recirculation flow rate to

the influent wastewater flow rate. This configuration is further improved by

introducing a feedback controller to maintain constant the suspended solids

in zone Z5 by manipulating the waste sludge flow rate in order to keep an

appropriate sludge quality in the system and assure a beneficial sludge age.

The performance of every configuration is evaluated from a quality and

economical point of view, using the criteria in Gernaey et al. (2014) for the

short and long term scenarios. In particular, for the three weather scenarios

(dry, rain and storm) the evaluation is done considering a time interval T of

seven days (with t1 = 7 d and t2 = 14 d). For the LT simulation, the time

interval consists of 298 days of simulation, with t1,LT = 311 d and t2,LT = 609

d.

The evaluation of the quality level considers the effluent violations for

the main process variables (ammonia (SNH), total nitrogen (TN), total

suspended solid (TSS), and chemical oxygen demand (COD)) as percentage

of time the plant is violating the limits (Table 2).

Table 2: Effluent limits.

SNH TN TSS COD BOD
Limit 4 mgN/L 18 mgN/L 30 mgSS/L 100 mgCOD/L 10 mgBOD/L

The Effluent Quality Index (EQI) in Equation 1 is used for the overall

assessment of the pollutant concentrations in the effluent. It relates to the
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fine to be paid for discharging pollutants in the receiving water bodies and it

is a weighted average of the effluent loads of compounds that have a major

influence on the receiving water quality.

EQI =
1

T × 1000

∫ t2

t1

(
(BSSTSS + BCODCOD + BTKNTKN

+BNOSNO + BBOD5BOD)E-Q
)
dt

(1)

The weight for the effluent TSS, COD, Total Kjeldahl Nitrogen (TKN),

nitrate and Biological Oxygen Demand (BOD5) are given as in the BSM1:

BSS=2, BCOD=1, BNK=30, BNO=10 and BBOD5=2. E-Q represents the

effluent flow rate (cf. Figure 1).

The economy of the plant is assessed by calculating the total cost (TC)

as a function of the aeration (AE), pumping (PE) and mixing (ME) energy

together with the cost due to sludge production (SP ) for disposal:

TC = kE × (AE + PE +ME) + kD × SP. (2)

where the electricity price kE is set equal to of 0.09 e per kWh and the sludge

disposal price is set equal to 80 e per tonne.

The individual terms in Equation 2 are calculated using the relationships

given in the BSM1 description (Alex et al., 2002; Gernaey et al., 2014). Here,

AE (kWhd−1) is function of the oxygen mass transfer coefficient (KLai) in

every i-zone of the bioreactor with a given volume Vi. The pumping energy in

kWhd−1 is calculated as weighted sum of the nitrate recycle flow rate (QA),
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the external recycle flow rate (QR) and the waste sludge flow rate (QW ).

The mixing energy (kWhd−1) is required in the reactor i when not aerated

or if the KLai is lower than 20 d−1. The sludge production SP is calculated

as function of the solids removed from the process in the waste sludge flow

rate and solids accumulated in the system. That is:

AE =
Ssat
O

T × 1800

∫ t2

t1

5∑
z=2

ViKLaidt;

PE =
1

T

∫ t2

t1

(
0.004QA(t) + 0.008QR(t) + 0.05QW (t)

)
dt;

ME =
24

T

∫ t2

t1

5∑
z=1

(
0.005× Vi < 20 otherwise 0

)
dt;

SP =
1

T × 1000

(
X-TSS(t2)−X-TSS(t1) +

∫ t2

t1

(W -TSS QW )dt
)

(3)

In Equation 3, Ssat
O is the oxygen saturation concentration and X-TSS

is the total solid concentration in the activated sludge reactors and in the

secondary settler.

3.2. Input-output model

The development of a model is required to predict output trajectories in

MPC algorithms. Considering the BSM1 as a virtual plant, input-output

data for model development can be collected from an identification test that

is designed to make the data maximally informative about the system proper-
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ties that are of interest to the user. Unlike most chemical processes, WWTPs

are subjected to large time-varying disturbances, as the quality of the inlet

wastewater changes continuously. This fact implies that it could be difficult

to capture the required input-output behaviour because when the manipu-

lated variables are varied during an identification test, the output responses

are also affected by disturbances. As further tangle, it is also important to

note that typically, most of the input variables (e.g., quality of the influent) is

not measured online (lack of proper hardware sensors) and that normally per-

formed laboratory analysis usually does not give a complete characterisation

of the influent (Holenda et al., 2008).

For the multivariable control (configurations C1-C4), it is required to

model the effects of the five manipulated inputs (u) on the controlled out-

put variables (y=Z2-SNO, Z5-SNH). The inlet ammonia concentration

and flow rate (I-SNH and I-Q) are considered as measured disturbances.

The ammonia and nitrate concentration behaviours are affected by the inlet

pollutant concentration, flow rate and temperature variations together with

the excited manipulated inputs, and it is quite demanding to discern the ef-

fect of one variable with respect to the others. Linear autoregressive models

with exogenous inputs (ARMAX) are the most used when dealing with MPC

(Darby and Nikolaou, 2012) and, as first attempt, they were used to describe

the input-output relationships. However, they were not able to capture the

relationships between the manipulated inputs and the outputs because of the

strong effects of the disturbance variations. A clear evidence of their failure
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was the frequent wrong evaluation of the process gain sign.

The recurrent neural network (RNN) model, which belongs to the class

of nonlinear ARMAX provides a better fitting and it is used to model the

process. The recurrent neural network used in this work is sketched in Figure

4. Here, y(t + Ts) represents the output prediction at each sampling time

Ts; y(t) is the lagged network output, u(t) and d(t) are the vectors of the

manipulated inputs and measured disturbances, which can be constituted by

actual and previous values. This implies that the output at time t + Ts is a

function of the past values of both the inputs and the output. The neural

network is recurrent, in the sense that the output is fed back to the network

input nodes, such as dynamics are introduced into the network.

A RNN is developed for each input-output relationship necessary to define

the model-based controllers. The sigmoidal activation function is used for the

neurons belonging to the hidden layers, and the linear activation function is

used for the output neurons, as reported in Equation 4.
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u(t)

u(t � du ⇥ Ts)

d(t)

d(t � dd ⇥ Ts)

...

y(t)

y(t � dy ⇥ Ts)

b

.....

b

y(t + Ts)

Input Layer

Hidden Layer

Figure 4: Schematic representation of the recurrent neural network, where [y(t), . . . , y(t−
dy × Ts)] is the delayed output vector fed back to the input.

y(t+ Ts) =
n2∑
i=1

w2(i, 1)z2(i) + w2(n2 + 1, 1)b;

z2(i) =
1

1 + e
−(

n1∑
j=1

w1(j,i)z1(j)+w1(n1+1,i)b)

;

z1(t) = [y(t),u(t),d(t)];

y(t) = [y(t), y(t− Ts), . . . , y(t− dy × Ts)];

u(t) = [u(t), u(t− Ts), . . . , u(t− du× Ts)];

d(t) = [d(t), d(t− Ts), . . . , d(t− dd× Ts)].

(4)

n1 and n2 represent the number of input and hidden neurons, respectively.
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The model parameter w1(j, i) represents the weight related to the connection

between the jth input and ith hidden neuron and w2(i, 1) is the weight be-

tween ith hidden neuron and the unique output neuron. The weights of the

neural model are estimated during the training phase. The term b represents

the bias and it is set equal to +1, z1(j) is the jth input to the network and

z2(i) is the ith output of the hidden layer. The choice of the delayed output

to feed back to the input layer (dy) and delayed inputs (du and dd) along with

the number of hidden neurons is addressed using a trial and error approach,

aiming to the best compromise between prediction capability and simplicity

of the model (parsimonious model). The network training is performed by

the Levenberg-Marquardt algorithm, and data for the parameter estimation

have been divided into training (70%) and test (30%) sets. Input and output

data used to develop the RNN models are scaled such as their variations

belong to the interval [-1,+1].

The selection of the best neural model for each input-output relationship

is performed using both the Mean Squared Error (MSE) calculated on the test

set and evaluating the process gain calculated for each neural network model

at different values of the inputs. In more details, the sign of the gain must be

coherent with the physics of the process (e.g., ammonia concentration must

decrease as oxygen concentration increases in the bioreactor) and it should

be the same at different inlet ammonia concentrations.
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3.3. Model predictive control development

Nitrification and denitrification processes are strongly correlated and they

have a strong impact on aeration energy consumption. A model predictive

control provides an integrated solution for controlling such processes because

of its ability to deal with interacting variables, complex dynamics, and con-

straints. MPC also allows the use of more inputs than outputs, and through

the solution of the optimisation problem leads to performance improvements.

Following the practical requirement of an easy implementation of the con-

troller, the DMC formulation is selected and the input-output models are

calculated with finite step response (Ogunnaike and Ray, 1994).

The DMC considers as output controlled variable y, the nitrate concen-

tration in Z2 (Z2-SNO) and ammonia concentration in Z5 (Z5-SNH) of the

bioreactor. The configurations C1 to C4 in Table 1 are formulated by combin-

ing the available manipulated variables, u: the dissolved oxygen set-points in

the bioreactor (Zz-SO-SP with z = 2, . . . , 5) and the internal recirculation

flow rate (QA):

y =

Z2-SNO

Z5-SNH

 ; u =



Z2-SO-SP

Z3-SO-SP

Z4-SO-SP

Z5-SO-SP

QA


(5)

The DMC of the every configuration with m inputs and n outputs finds
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the vector ∆u(k) ∈ RmHu of future control moves that minimises the sum

of squared deviations of the predicted control variables from a time-varying

reference trajectory, while constraining the magnitude of ∆u(k), for a pre-

diction horizon Hp and a control horizon Hu. That is, the DMC optimises

the following objective function:

J [∆u(k)] =
[
e(k + 1)−A∆u(k)

]T [
e(k + 1)−A∆u(k)

]
+[

∆u(k)
]T
W
[
∆u(k)

]
.

(6)

Equation 6 translates the trajectory following problem to a more practi-

cal constrained problem on the manipulated variables. Here, k denotes the

time index and e(k+ 1) is the nHp-dimensional error vector representing the

difference between the desired input trajectory r(k + 1) ∈ RnHp and current

output prediction in the absence of further control actions y0(k) ∈ RnHp .

The prediction error is corrected by the measured outputs dm(k) ∈ RnHp

available at the sampling instant k and considered constant for the whole

prediction horizon. W ∈ RmHu×mHu is a block diagonal weighting matrix

that is used to penalise changes in the control signals and avoid excessive

effort on the manipulated variables. That is, W = bd[b1I, b2I, ..., bmI] where

bm are the coefficient of the block matrices and I is the Hu × Hu identity

matrix. It is worth noticing that prediction errors are inevitable, therefore

the entire control sequence of Hu control moves is not implemented, but only

the first move is applied at every sampling time.
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3.3.1. Dynamic matrix

In Equation 6, the simplified model of the process is represented by the

dynamic matrix A ∈ RnHp×mHu , which is obtained by arranging nm blocks

of step-response coefficients between pairs of inputs and outputs, each for a

prediction horizon Hp and a control horizon Hu:

A =



a111 0 . . . 0 . . . . . . a1m1 0 . . . 0

a211 a111 . . . 0 . . . . . . a2m1 a1m1 . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a
Hp

11 a
Hp−1
11 . . . a

Hp−Hu+1
11 . . . . . . a

Hp

m1 a
Hp−1
m1 . . . a

Hp−Hu+1
m1

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a11n 0 . . . 0 . . . . . . a1mn 0 . . . 0

a21n a11n . . . 0 . . . . . . a2mn a1mn . . . 0

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

a
Hp

1n a
Hp−1
1n . . . a

Hp−Hu+1
1n . . . . . . a

Hp
mn a

Hp−1
mn . . . a

Hp−Hu+1
mn


(7)

The coefficients akij represent the change observed in the output j of a

FRS model at different, consecutive, equally space, discrete-time instants k

after implementing a unit change in the input variable i. The coefficients in

the matrix A are obtained by performing “off-line” new step tests on the neu-

ral model described in Section 3.2, starting from different initial conditions.

Even if the activated sludge process exhibits strong nonlinear behaviour, lin-
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ear controllers are more appealing for real plant operators because they are

generally simple to develop and implement if compared to nonlinear con-

trollers. The following assumptions are made: (i) the input of the neural

model corresponding to the ammonia inlet flow rate is kept constant, and

equal to its mean value calculated considering the same period of the LT

dataset used for training the neural model; (ii) the input corresponding to

the manipulated variable are changed starting from different initial points.

The calculated coefficients vary when changing the initial operating condi-

tion, because the system is nonlinear, therefore their mean values are used to

obtain the final matrix A. This choice is source of uncertainty, but the avail-

able output measurements can adjust the model prediction at each sampling

time.

3.4. Basic controllers

The DMC configurations do not saturate all the available degrees of free-

dom, meaning that further control loops might be implemented in order to

improve the process performances. The first consideration regards the ex-

ternal recycle flow rate (QR), which has been kept constant in the previous

control configurations as in the BSM1. Given the inlet flow rate (I-Q) sub-

jected to large variations, it is reasonable to adapt QR to I-Q, by applying

a ratio controller. The combination of DMC with five manipulated variables

(C4) and the ratio controller is indicated as configuration C5.

The excess sludge flow rate (QW ) is the last remaining degree of freedom
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and can be used to further improve the efficiency of ammonia and nitrogen

removal. A simple PI feedback control is implemented to maintain constant

the mixed liquor suspended solid (Z5-SS) by manipulating QW . The sus-

pended solids concentration relates to the sludge age, from which depends

the efficiency of nitrification. This PI loop aims to preserve the accumula-

tion of solids and keep an appropriate sludge quality in the system. This

configuration is referred as configuration C6 in Table 1.

4. Results and discussion

The proposed control strategies relate to the following issues: design of

the underlying regulatory controls, design of the MPC, test design for model

identification and model development for MPC, improvement of the system

performance using PI and ratio controllers. Ideal sensors are considered for

the simulations and the different control configurations are assessed in order

to find the best one in terms of energy saving and nitrate removal, according

to the criteria in Section 3. Considering the BSM1 as a virtual plant, the

control strategies are evaluated using the short and long-term input datasets.

4.1. DO regulatory control

The dissolved oxygen set-points in the four zones of the bioreactor are

used as manipulated variables for the model predictive control (as given in

equation 6). In each zone a PI control is used to drive the dissolved oxygen

at the desired set-point, manipulating the oxygen transfer rate, KLa. For
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each control loop, the values for the constant gain and the integral time

are, respectively: kc = 100 d−1g(-COD)−1m3 and τI = 0.002 d. The tuning

parameters are obtained applying IMC rules to input-output models obtained

through step tests. In this case, because the oxygen response to aeration

changes is quite fast, the effects of the manipulated KLa are easier identified

using the long-term input data set and described through a first order model.

4.2. Recurrent neural network models

The variability of the bioreactor influent characteristics and flow rate did

not allow to directly obtain a linear FRS model for DMC from step test

data, because it was impossible to estimate the contribution of each input

(disturbances or manipulated variables) affecting the process responses. RNN

models are therefore exploited to reconstruct the dynamic behaviour of ni-

trate in the second bioreactor zone and ammonia in the fifth bioreactor zone

with respect to the manipulated inputs indicated in Equation 5. This task is

addressed by simulating the long-term scenario and obtaining input-output

plant data by exiting the plant through step variations of the manipulated

inputs. GBN sequences are created for each manipulated input, with a prob-

ability of switching equal to 0.6 and a minimum switching time equal to 0.5

d. From the simulation platform, the data are collected within a fixed time

interval of circa 20 days for each test and sampled every 15 min, for a total

of 105 d starting from the 5th day of the long-term inputs data set (Figure

5).
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Figure 5: Sequence of input steps for system identification.

For the problem at hand, ten neural network models are obtained to cor-

relate each output to each manipulated input. In order to improve the model

capability prediction, the product of inlet ammonia concentration and flow

24



rate is used as input to the neural model. The dynamics of the two mea-

sured disturbances (inlet ammonia and flow rate) are those already reported

in Figure 2(a) and Figure 2(b).

Table 3: Neural models describing the input-output relationship. The number of hidden
units is equal to 8 for each RNN

Input at time t
Output at
time t + Ts

I-SNH × I-Q Z2-SNO

Z2-SO-SP

Z2-SNO
Z3-SO-SP
Z4-SO-SP
Z5-SO-SP
QA

I-SNH × I-Q Z5-SNH

Z2-SO-SP

Z5-SNH
Z3-SO-SP
Z4-SO-SP
Z5-SO-SP
QA

The structures of the obtained neural models in terms of inputs are re-

ported in Table 3; the number of hidden neurons is set equal to 8 for each

network configuration. The output prediction at time (t + Ts) is a function

of the output and inputs (manipulated and disturbance) at time t, whereas

previous values do not improve the prediction capability of the model. It is

worth noticing that a one-step ahead prediction is used during the training

procedure, and autonomous mode (the lagged output values are always that

calculated with the neural model) is used for evaluating the sign of the gain

predicted with the neural model.
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4.3. Dynamic matrix

A linear predictive model is required to implement the DMC in its tra-

ditional form (Ogunnaike and Ray, 1994). This task is addressed using the

neural models to carry on “off-line” step response tests from which the dy-

namic matrix A is obtained. Each RNN is excited by varying the input cor-

responding to the manipulated variables, starting from its mean value and

considering step changes of different sizes. The RNN input corresponding to

the ammonia inlet flow rate is kept constant and it is set equal to its mean

calculated considering the data collected for the previous phase (Section 4.2),

that is I-SNH×I-Q = 4.91.105 gNd−1 in actual dimension. The coefficients

of the dynamic matrix A are obtained by averaging the responses of the dif-

ferent step changes and they are reported in Figure 6. A scaling procedure is

implemented to avoid ill-conditioning, according to the procedure reported

in Skogestad and Postlethwaite (2005).

4.4. MPC tuning

The parameters related to the DMC development, such as prediction

and control horizon, sampling time and weights, are found by analysing the

dynamic response of the process, considering the frequency of the inputs

variations and by tuning.

For achieving an acceptable dynamic matrix conditioning while maintain-

ing good controller performances, the dimension of the prediction horizon Hp

is set equal to 10 for each configuration. A positive effect on the condition-
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Figure 6: Step response coefficient calculated by the neural model of Z5-SNH (left panel)
and Z2-SNO (right panel) with respect to the five manipulated inputs.
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ing of the A matrix can be obtained using less manipulated variables. On

the other hand, increasing the manipulated variables increases the domain

space of the possible solutions and the adaptability of the system to different

input conditions, as demonstrated in the following of the present work. The

control horizon Hu is set equal to 4 for the entire control configuration, as

suggested by Ogunnaike and Ray (1994). The control signal remains con-

stant during the prediction horizon and only the first control move is applied

at each sampling time.

The weighting matrix W ∈ Rm×m penalises the changes of the manipu-

lated variables, avoiding a too aggressive action of the controllers, reducing

possible oscillations and minimising the energy consumption. The elements

bm of the matrix are set as reported in Table 4.

Table 4: Coefficients bm of the block diagonal matrix W in Equation 6.

C1 C2 C3

bm

[0.01 0.01 0.1] [0.01 0.01 0.01 0.1] [0.01 0.01 0.01 0.1]

C4 C5 C6
[0.05 0.05 1 0.05 0.5] [0.05 0.05 1 0.05 0.5] [0.05 0.05 1 0.05 0.5]

4.5. Basic controllers tuning

The tuning of the basic controllers in configuration C5 and C6 involved

the selection of the ratio QR/I-Q and the PI controller parameters, kc and

τI . A sensitivity analysis of the ratio QR/I-Q led to a value equal to 1.2,
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which guarantees good performance of the system.

The PI feedback control loop in configuration C6 aims to preserve the

accumulation of solids and keep an appropriate sludge quality in the system,

being the suspended solids concentration related to the sludge age and, in

turns, to the nitrification efficiency. For the purpose, the PI parameters are

set equal to kc = -0.375 m6 d−1 g−1 and τI = 8 d. The controller tuning was

conducted through a trial and error approach, based on Z5-TSS step change

response with respect to QW . Noticeably, in spite of the influent variations,

the slow dynamics of the suspended solids allowed here a simple identification

of the excess sludge effects and a linear first-order plus time delay model

was used to fit the simulated input-output data. In order to have good

performances of the system in every environmental condition, the set-point

of Z5-TSS needed to be adjusted according to the weather conditions. In

fact, during the warmest period, when the temperature is higher than 18◦C,

the DMC controller was unable to maintain the level of dissolved oxygen in

the anoxic tank at the set-point value. This behaviour could be due to high

load of Z5-TSS, which decreased the sludge age with a consequent loss of the

nitrification efficiency in the anoxic zone. Therefore, two different set-points

were used for controlling the suspended solids: the set-point was set equal

to 4500 mgSS L−1 when the temperature was lower then 18◦C and equal to

4000 mgSS L−1 when the temperature was above 18◦C. This strategy led to

efficiency improvement of ammonia and nitrogen removal.
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4.6. Performance assessment

Given the performance indexes in Section 3.1, the control strategies in

Table 1 are tested for an evaluation period of two weeks during the three

short scenarios (dry, rainy and storm weather) and for about one year with

the LT input conditions. For every configurations, the set-points for the DMC

controlled variables are fixed as 1 mgN L−1 for the nitrate at the outlet of the

anoxic zone, Z2-SNO-SP , and as 1 mgN L−1 for the ammonia at the end

of the bioreactor, Z5-SNH-SP . Comparison results are given in Figure 7.

The average and maximum values of the effluent concentrations are reported

in terms of COD in Figure 7(a), TSS in Figure 7(b), TN in Figure 7(c) and

ammonia in Figure 7(d), evaluated for the short and long term simulations.
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Figure 7: Maximum (dark grey) and mean (light grey) effluent values: Simulation results
comparison during the dry (first column), rain (second column), storm (third column) and
long term (fourth column) scenario for the effluent COD (a), TSS (b), TN (c) and SNH
(d). The red line gives the effluent limit for the component as in Table 2.

Results show that DMC always outperforms the BMS1 for ammonia re-
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moval, for each of the considered situations. Among the configurations with

the sole DMC controller (C1 to C4), the C1 shows better performance partic-

ularly during normal, dry weather conditions. For the long term simulation,

results for ammonia obtained with C1 and C3 are comparable.

On the other hand, the total nitrogen removal does not improve with

the mere implementation of the DMC controllers. This is due to the en-

hancement of nitrification for the removal of ammonia, which produces more

nitrates. The effect can be also noticed when considering the averaged total

nitrogen, which is generally higher for the DMC configuration when com-

pared to BSM1. Exception being the long-term simulation, where the DMC

proved better performances.

It can be further noticed that the proposed configurations do not affect the

removal efficiency of COD and its average and maximum values are almost the

same of BSM1. This is mostly true also for the effluent TSS concentration

which slightly overcomes its limits only during the storm and LT scenario

with the last two control configurations. C5 violates the TSS effluent limit

for 2.3% of the time during the storm simulation and 0.58% of the time

during the yearly simulation. Similarly with the C6 configuration, the TSS

limits are violated 2.5% of the time during the short and 0.60% during the

long simulations.

The violation of the effluent limits is more evident and severe for the

ammonia and total nitrogen, as shown in Figure 8. This is particularly true

for the effluent ammonia (Figure 8(a)), which exceeds its limit for over 60%
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of the time during the one year simulation with the default BSM1 configu-

ration. The violation drops to about 40% if only the DMC controller takes

place in the C1 to C4 configurations and to 30% and 17% when the ratio

and solid controllers are introduced as in the C5 and C6 configurations. The

improvement of the process performances with the C5 and the C6, in partic-

ular, is more evident for the total nitrogen removal. In fact, the violation of

its effluent limits drops from 44% with the BSM1 default controller to 12%

with the C6 control configuration during the long-term simulation.
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Figure 8: Percentage of the limit violations for SNH (a) and TN (b) in the effluent.

The improvement of the process performance in terms of effluent quality

can be also noticed from the EQI comparison in Figure 9(a), which con-

siderably decreases with the introduction of the proposed controllers. The

same holds for the total average total cost, which is reduced with the DMC

controllers. The maximum values though increase remarkably with every

configuration, especially due to the higher variations in aeration energy re-

quired to reduce the peaks of ammonia.
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Figure 9: Maximum (dark grey) and mean (light grey) effluent values: Simulation results
comparison during the dry (first column), rain (second column), storm (third column) and
long term (fourth column) scenario for the effluent quality index (a) and total costs (b)

Table 5 summarises the results for the configuration C4, C5 and C6 and

compare them with the performances of the BSM1 default layout over a

simulation period of about ten months (300 days). The results of C5 and

C6 evidence a better removal efficiency of ammonia and less total nitrogen in

the effluent, coupled with a decrease in the average energy consumptions. On

the other hand, C5 and C6, along with C4, lead to higher maxima of energy

consumption, which is required to reduce the ammonia peaks. It is worth

noticing that the BSM1 configuration has two always anoxic zones (Z1 and

Z2) and maintains a constant aeration in zone Z3 and Z4, which implies a

less efficient ammonia peak reduction.
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Table 5: Comparison – Results over 298 days of LT simulation for the quality and economic
performance assessment.

BSM1 C1 C2 C3 C4 C5 C6
Effluent SNH
Mean 11.4 4.9 5.9 4.9 5.2 3.7 2.9 mgN/L
Standard deviation 9.9 4.7 5.5 4.4 4.5 2.9 2.0 mgN/L
Effluent TN
Mean 17.8 15.3 16.2 15.4 15.8 13.7 12.1 mgN/L
Standard deviation 7.4 5.7 5.5 5.7 5.6 4.8 4.8 mgN/L
Effluent Quality
Mean 11145 7921 8544 7932 8143 7248 6736 kg/d
Standard deviation 6982 4415 4692 4343 4391 3816 3531 kg/d
Aeration Energy
Mean 3506 3233 2941 3211 3043 3041 3056 kWh/d
Standard deviation 308 933 900 1011 1135 1234 1314 kWh/d
Pumping Energy
Mean 492 272 246 255 223 287 295 kWh/d
Standard deviation 80 140 117 121 78 103 87 kWh/d
Mixing Energy
Mean 252 197 168 194 175 187 188 kWh/d
Standard deviation 42 107 83 116 105 110 112 kWh/d
Sludge Production
Mean 2573 2594 2592 2595 2595 2508 2294 kg/d
Standard deviation 323 335 334 336 336 198 769 kg/d
Total Costs
Mean 377 333 302 329 310 316 318 EUR/d
Standard deviation 29 82 74 85 95 106 112 EUR/d

Finally, the configuration C6 shows a sensible improvement in the nitrogen

compounds removal given by the improved nitrification in the bioreactor,

especially during the most demanding cold period of the year. For this reason,

it is selected as the most convenient configuration for the task (Figure 10).

The dynamic comparison of the manipulated and controlled variables for

C6 and the original BSM1 configurations is reported in Figure 11 and Figure
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Figure 10: Benchmark Simulation Model No.1: Configuration C6

12 for a period of approximately 10 days corresponding to a low temperature

time in the LT data. In particular, Figure 11 reports the DMC performances.

It evidences how compared to the default BSM1, the selected configuration

is able to keep the nitrate concentration in Z2 close to its set-point (Figure

11(a)) and the ammonia level at the end of the bioreactor rather low (Fig-

ure 11(b)), confirming the ability of the system to compensate the effects of

temperature on the nitrification process. This is achieved by increasing the

dissolved oxygen in Z2 (Figure 11(c)) and decreasing it in zone Z3 (Figure

11(d)) and zone Z4 (11(e)). Being the maximum achievable value of dis-

solved oxygen set equal 2.5 mg L−1, Z5-SO-SP is slightly higher that the
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Figure 11: Comparison – LT simulation for approximately 10 days. Controlled variables:
Nitrate in Z2 (a) and ammonia in Z5 (b); manipulated variables as dissolved oxygen in
Z2 (c), Z3 (d), Z4 (e), Z5 (f) and internal recirculation (g) in the C6 (grey) and BSM1
default (black) configurations.
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BSM1 default set-point (Figure 11(f)). From Figure 11(g) is also noticeable

the smoother adjustment given by the DMC controller to the internal re-

circulation flow rate compared to the BSM1 controller. Unlike the DMC,

the BSM1 nitrate controller needs the anti-windup to avoid saturation of the

manipulated variable at low temperature; otherwise, in such conditions, the

controller would not be able to efficiently transform ammonia into nitrate.

Clearly, the results of the DMC must be considered together with the perfor-

mances of the suspended solids control during the same time period (Figure

12). It can be noticed that Z5-SS (Figure 12(a), 12(b)) is kept close to it

set-point with slow and smooth adjustments of the excess sludge flow rate.
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Figure 12: Comparison – LT simulation for approximately 10 days. Controlled (a) and
manipulated variable (b) in the sludge feedback controller for the C6 (grey) and BSM1
default (black) configurations.

5. Conclusion

This paper presented the development of model based control strategies

for an activated sludge process in a biological wastewater treatment plant.
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In particular, the proposed control strategies were applied to the Benchmark

Simulation Model No.1 used as a virtual plant, with the main purpose of

minimising energy consumption by guaranteeing good nitrogen removal ef-

ficiency. The DMC algorithm in its linear formulation was used to obtain

the optimal control of ammonia and nitrate concentration by using as ma-

nipulated variables dissolved oxygen concentrations in the bioreactor, and

internal recycle flow rate. First, the identification problem related to the

obtainment of the input-output predictive models to be used for control de-

velopment was addressed by means of a Recurrent Neural Network. The

modelling approach based on neural networks showed to be able to capture

the main characteristics of the output step responses, when input distur-

bances were varied according to the long term simulation input data and the

inlet ammonia flow rate was assumed as only measured disturbance. Dynamic

matrices for the different configurations of the model predictive control were

then obtained by averaging the responses predicted by the neural model at

different manipulated input conditions. Four different DMC configurations

were compared, and the selected one, which led to lowest energy consumption

involved five manipulated variables (i.e. dissolve oxygen in the bioreactor,

except that in the first anoxic zone, and the internal recycle flow rate) for

the two controlled variables (ammonia in the 5th zone and nitrate in the 2nd

zone of the bioreactor). It is important to underline that the coefficients

of the dynamic matrix used in the model predictive control were kept con-

stant, even if the activated sludge process is highly nonlinear. Even with this
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assumption, DMC performance was satisfactory for different weather scenar-

ios and persistent disturbances, as it was simulated by the long-term input

data, indicating that the proposed controllers showed robust performance.

Anyway, ammonia removal efficiency decreases during the coldest period of

long term simulation, because temperature lowering has a negative effect on

reaction rates. The control configuration had been improved by adding two

further controllers: a ratio control to maintain constant the ratio between

recycle flow rate and inlet flow rate, and a feedback control to maintain at

a target value the suspended solid in the bioreactor exit stream. This last

configuration was able to significantly improve the system performance both

in terms of energy consumption and ammonia and nitrogen removal even at

low temperature.
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