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Abstract 

 

Objective. Graph theory and network science tools have revealed fundamental mechanisms of 

functional brain organization in resting-state M/EEG analysis. Nevertheless, it is still not clearly 

understood how several methodological aspects may bias the topology of the reconstructed 

functional networks. In this context, the literature shows inconsistency in the chosen length of the 

selected epochs, impeding a meaningful comparison between results from different studies. 

Approach. The aim of this study was to provide a network approach insensitive to the effects that 

epoch length has on functional connectivity (FC) and network reconstruction. Two different 

measures, the phase lag index (PLI) and the Amplitude Envelope Correlation (AEC) were applied 

to EEG resting-state recordings for a group of eighteen healthy volunteers using non-overlapping 

epochs with variable length (1, 2, 4, 6, 8, 10, 12, 14 and 16 seconds). Weighted clustering 

coefficient (CCw), weighted characteristic path length (Lw) and minimum spanning tree (MST) 

parameters were computed to evaluate the network topology. The analysis was performed on both 

scalp and source-space data.  

Main results. Results from scalp analysis show a decrease in both mean PLI and AEC values with 

an increase in epoch length, with a tendency to stabilize at a length of 12 seconds for PLI and 6 

seconds for AEC. Moreover, CCw and Lw show very similar behaviour, with metrics based on AEC 

more reliable in terms of stability. In general, MST parameters stabilize at short epoch lengths, 

particularly for MSTs based on PLI (1-6 seconds versus 4-8 seconds for AEC). At the source-level 

the results were even more reliable, with stability already at 1 second duration for PLI-based MSTs.  



Significance. The present work suggests that both PLI and AEC depend on epoch length and that 

this has an impact on the reconstructed network topology, particularly at the scalp-level. Source-

level MST topology is less sensitive to differences in epoch length, therefore enabling the 

comparison of brain network topology between different studies. 



Introduction 

In the last decade, the use of tools derived from graph theory and network science in resting-state 

EEG and MEG analyses have revealed fundamental mechanisms of normal and pathological 

functional brain organization (Stam 2014; Bullmore & Sporns 2009; Sporns 2013). Nevertheless, it 

is still not clearly understood how several methodological choices may affect the topology of 

reconstructed functional brain networks, eventually hindering the meaningful comparison of results 

from different studies. In a recent review, van Diessen and colleagues discussed the methodological 

choices in EEG and MEG resting-state analysis that affect the reconstruction of functional network 

topology (Van Diessen et al, 2015), including the duration of the time-window over which 

functional connectivity is estimated. 

Previous studies have shown that estimates of functional connectivity are biased by epoch 

length and that the severity of this bias varies for different connectivity metrics (Bonita et al. 2014; 

David et al. 2004; Chu et al. 2012; Honey et al. 2007; Vinck et al. 2011). Together with the 

observation of inhomogeneity in the length of EEG epochs across resting-state functional 

connectivity studies, these aspects may severely impede the meaningful comparison of results 

between studies. Furthermore, these biases may have direct consequence for the estimation of 

network topology (van Wijk et al. 2010). Approaches that allow for the characterisation of brain 

networks, whilst avoiding arbitrary choices, are therefore required. Recently, it has been shown that 

the minimum spanning tree (MST), a backbone of the original weighted network, enables an 

unbiased comparison between networks (Tewarie et al. 2015; Stam et al. 2014), although it is 

unknown how epoch length affects the MST.  

In this study we aimed to provide a network approach insensitive to the effects that epoch 

length has on functional connectivity (FC) and network reconstruction. We therefore first 

demonstrated the effect of different durations (in the range of commonly selected EEG segments for 

resting-state analysis) on two well-known and widely used connectivity measures: the phase lag 

index (PLI) (Stam et al. 2007) and the Amplitude Envelope Correlation (AEC) (Brookes et al. 2011; 



Hipp et al. 2012). These measures capture two distinct types of intrinsic coupling (one arising from 

phase coupling, the other from fluctuations of signal envelopes) that seem to play a role in defining 

the interactions in on-going brain activity (Engel et al. 2013; Guggisberg et al. 2015). Furthermore, 

we investigated the effect of epoch length on MST topology, as well as on some commonly used 

network measures: weighted clustering coefficient (CCw) and weighted characteristic path length 

(Lw). We hypothesized that traditional approaches to network representation (CCw and Lw) would 

be strongly affected by the biases in FC estimates that are due to epoch length, since the strength of 

connections are taken into account in weighted network analyses. In contrast, the MST was 

expected to be less affected as it is based on the rank order of the connections rather than the 

(biased) absolute values. 

 Furthermore, many resting-state EEG studies still use activity recorded at the scalp to 

estimate patterns of functional connectivity and brain network organization. However, in this case 

several factors (e.g. field spread and volume conduction effects) can affect the reliability of the 

estimated parameters. Although these problems cannot simply be overcome by using source 

analysis, several methods that project scalp signals to the underlying sources enable a more 

straightforward interpretation of results (in terms of relation to anatomy) (Michel et al. 2004). In 

order to assess differences between these two approaches, the analyses were performed on both 

scalp EEG and sources-reconstructed time-series. 



Material and Methods  

Participants.  

Eighteen healthy volunteers (13 male and 5 female; age = 38.6 ± 14.0 years) were enrolled in the 

present study. Informed consent was obtained prior to the recordings. The present study was 

approved by the local ethics committee. 

 

Recordings.  

EEG signals were recorded using a 61 channels EEG system (Brain QuickSystem, Micromed, Italy) 

in eyes-closed resting-state condition. Recordings were acquired in sitting position in a normal 

daylight room; a dimly lit and sound attenuated room and supine position were avoided to prevent 

drowsiness (Van Diessen et al, 2015). Signals were digitized with a sampling frequency of 1024 Hz, 

low-pass filter at 70 Hz, the reference electrode was placed in close approximation of the electrode 

POz and all signals were digitally offline re-referenced to the common average reference. For each 

subject three artifact-free segments of 32 seconds (32.768 samples) were selected for the analysis. 

EEG segments were chosen as the first after the start of the recording (Van Diessen et al, 2015). 

Since it has been shown that EEG frequencies above 20 Hz mainly reflect myogenic artifacts 

(Muthukumaraswamy, 2013; Pope et al, 2009; Whitham et al, 2007), EEG signals were off-line 

band-pass filtered between 1 and 20 Hz using two-way least-squares filtering method as 

implemented in EEGLAB with fir1 filter type. Data were converted to EDF format and all analyses 

were performed using Matlab (MATLAB R2010a, The MathWorks Inc., Natick, MA), EEGLAB 

(version 13.1.1b) (Delorme et al, 2004) and the Brain Connectivity Toolbox (version 2014_04_05) 

(Rubinov et al, 2010). 

 

Protocol. 

To study the effect of epoch length on functional connectivity and brain network organization, the 

three segments were sub-divided in non-overlapping epochs with variable length of 1, 2, 4, 6, 8, 10, 



12, 14 and 16 seconds. All the results reported in the study refer to the use of 6 epochs. Moreover, 

in order to investigate the effect of sample frequency, the analyses were also performed on the same 

dataset after down-sampling to 128 and 256 Hz (see Supplementary material). 

 

Source reconstruction. 

In order to explore differences between signal-space and source-space, the analysis was also 

performed on source-reconstructed time-series. For this, a head model was generated using a 

symmetric boundary element method in OpenMEEG (Gramfort et al, 2010; Kybic et al, 2005); the 

head model was based on a default anatomy derived from the MNI/Colin27 brain (Collins et al. 

1998). Sources, and their time-series, were reconstructed using weighted Minimum Norm Estimates 

(wMNE), which allows compensating for the tendency of MNE to favour superficial sources (Eddy 

et al, 2006; Hämäläinen et al, 1994; Lin et al, 2004). To avoid differences between scalp- and 

source- analysis due to differences in network size, source-reconstructed time-series were projected 

onto 64 ROIs (regions of interest) defined by the Desikan-Killiany atlas (Desikan et al, 2006), 

following which time-series within the same region were averaged (after flipping the sign of 

sources with opposite directions). See Supplemental Material for a list of the ROIs. All the analyses 

were performed using the Brainstorm software (version 3.2) (Tadel et al, 2011).  

 

Functional connectivity. 

Functional connectivity was estimated using two different measures: the Phase Lag Index (PLI) 

(Stam et al, 2007) and the Amplitude Envelope Correlation (AEC) (Brookes et al. 2011; Hipp et al. 

2012). The PLI quantifies functional connectivity on the basis of phase-relationships, whereas the 

AEC detects amplitude-based coupling among brain signals. Before estimating the correlation 

between amplitude envelopes (using the absolute value of the analytical signal) the time-series were 

orthogonalized by means of linear regression analysis (Hipp et al. 2012; Brookes et al. 2011), in 

order to remove trivial correlations that are due to field spread or volume conduction (leakage-



corrected AEC). For every epoch length, the mean value of PLI and AEC across all channels was 

estimated. Mean PLI and AEC values were successively averaged over epochs and over subjects. 

In-house Matlab implementations were used for these analyses. 

 

Network measures. 

To evaluate the effects of epoch length on network measures, the clustering coefficient (CCw) and 

the characteristic path length (Lw), were computed for each weighted connectivity matrix, where 

EEG electrodes/ROIs and PLI/AEC values were represented as nodes and edges of the network, 

respectively. CCw and Lw are two commonly used network measures, which respectively reflect 

functional segregation and functional integration (Rubinov & Sporns 2010; Watts & Strogatz 1998). 

Even though graph measures are often normalized via random surrogate data, we decided not to use  

normalized versions of CCw and Lw since it has been shown that this procedure may increase the 

sensitivity to differences in network size and average degree distribution (van Wijk et al. 2010). To 

avoid these biases altogether the minimum spanning tree (MST) was computed. The MST is an 

acyclic sub-graph that contains most of the strongest connections1 of the original graph, which was 

computed from each weighted connectivity matrix using Kruskal’s method (Kruskal 1956). MST 

topology was characterised using several parameters: leaf fraction (Lf, number of nodes with degree 

of 1 divided by the total number of nodes), diameter (D, largest distance between any two nodes in 

the network2), tree hierarchy (Th, reflects the balance between diameter reduction and overload 

prevention), eccentricity (E, the longest distance between a node and any other node) and kappa (K, 

the broadness of the degree distribution). See (Tewarie et al. 2015; Stam et al. 2014; Boersma et al. 

2013; Demuru et al. 2013) for a detailed description of these parameters. Network measures were 

evaluated for each epoch and then averaged. 

 
1 For the construction of the MST, the edge weight is defined as 1 – (functional connectivity estimate). 

2  The distance between nodes is expressed as the inverse of the sum of the weights on the shortest path between the 
nodes. 



 

Statistical analysis. 

Non-parametric Friedman tests were used to detect the effect of different epoch lengths on 

functional connectivity measures and network parameters. In case the Friedman test showed a 

significant effect, the shortest epoch length that did not show a significant difference (using post-

hoc Dunn's multiple comparison tests) with any longer epoch was defined as the onset of a stability 

zone. Linear regression analysis was used to estimate the relationship between epoch lengths and 

the standard error of the mean for the different measures. The level of significance was accepted at 

p < 0.05. All statistical analyses were performed using Prism (GraphPad, version 5.0f). 



Results 

Scalp analysis: effect on functional connectivity. 

Both PLI and AEC showed a decrease in mean values for increasing epoch lengths (Figure 1 left 

panel), with Friedman statistics χ2(8) = 137.7.0, p <.0001 for PLI and χ2(8) = 96.6, p <.0001 for 

AEC. The effect is slightly more evident for the PLI, where the results stabilize for epochs with 

lengths of 12 seconds, compared to 6 seconds for the AEC. It is of interest to note that epoch length 

not only affects the mean FC values, but shorter epochs also show less clear (more blurred) FC 

patterns than those obtained for longer epochs (Figure 2, upper panel). 

 

 

 

 

Fig. 1. Mean PLI and AEC values for scalp analysis (left panel) and source analysis (right panel). Error bars refer to 

standard error of the mean. The white and black boxes indicate the stability zones for PLI and AEC, respectively. 

 



 

Fig. 2. Representation of FC patterns for different epoch lengths for PLI and AEC for scalp (upper panel) and source 

(lower panel) EEG analysis. In order to allow comparison between conditions, images represent the rank order of the 

FC metric (see Supplementary Material for a list of channels/ROIs). 

 

Scalp analysis: effect on network measures. 

As for the functional connectivity, the weighted network measures also decreased with increasing 

epoch lengths. CCw and Lw stabilized earlier for networks based on AEC than for those based on 

PLI (4 versus 12 seconds for both metrics). In contrast, MST parameters already stabilized for 

shorter epochs, namely for epochs between 1 and 6 seconds for PLI-based MSTs and for epochs 

between 4 and 6 seconds for AEC-based MSTs (depending on the MST parameter). All the results 

are summarized in Table 1, Figure 3 and Figure 4. 



 

Table 1. Statistics for PLI and AEC –based network measures at scalp level, reporting the main effect from the 

Friedman test. 

 

 

Fig. 3. CCw (top panel) and Lw (bottom panel) values for scalp analysis (left panel) and source analysis (right panel). 

Error bars refer to standard error of the mean. The white and black boxes indicate the stability zones for PLI and AEC –

based networks, respectively. 

 

Scalp analysis: linear regression. 

A significant relation between epoch length and the standard error of the mean was found for PLI, 

AEC, and the different network metrics (see Table 3).  

 



Source analysis: effect on functional connectivity. 

As for the scalp analysis, in the source space both PLI and AEC show a decrease of mean values for 

increasing epoch lengths (Figure 1 right panel), with Friedman statistics χ2(8) = 141.1, p < 0.0001 

for PLI and χ2(8) = 99.2,  p < 0.0001 for AEC. The onset of the stability zone occurred for epoch 

length of 6 seconds for AEC and 10 seconds for PLI. Again, shorter epochs show less clear (more 

blurred) FC patterns than those obtained for longer epochs (Figure 2, lower panel). 

 

 

Table 2. Statistics for PLI and AEC –based network measures at source level, reporting the main effect from the 

Friedman test.  

 

 

Table 3. Linear regression analysis for standard errors and epoch lengths. The significant relations between epoch 

length and the standard error of the mean was positive for all metrics, except for PLI, CCw and Lw based on PLI. 

 



 

Fig. 4. MST parameters for scalp analysis (left panel) and source analysis (right panel). Error bars refer to standard error 

of the mean. The white and grey boxes indicate the stability zones for PLI and AEC –based networks respectively. 



Source analysis: effect on network measures. 

As for the functional connectivity, the weighted network measures also decreased with increasing 

epoch lengths. CCw and Lw stabilized earlier for networks based on AEC than for those based on 

PLI (6 versus 12 seconds for both metrics, respectively). In contrast, as for scalp analysis, MST 

parameters already stabilized for shorter epochs, namely for epochs of 1 second for PLI-based 

MSTs (for all MST parameters) and for epochs between 2 and 6 seconds for AEC-based MSTs 

(depending on MST parameter). All the results are summarized in Table 2, Figure 3 and Figure 4. 

 

Source analysis: linear regression. 

As for scalp analysis, for AEC a significant positive relation between epoch length and the standard 

error of the mean for most of the measures was observed, indicating an increase of the standard 

error with increasing epoch lengths (see Table 3). For mean PLI and PLI-based networks (as for 

AEC based MST- leaf fraction, eccentricity and hierarchy) no significant relation with standard 

error was found. 

 

The effect of sample frequency. 

As reported in detail in the Supplemental Material the results show no significant differences when 

applying different sample frequencies (128, 256 and 1024 Hz), further highlighting the importance 

of the time-window (epoch length). 

 



Discussion 

The present study investigated the effect of epoch length on estimated functional connectivity and 

brain network organization in resting-state EEG analysis. In summary, we found that i) functional 

connectivity measures, namely PLI and AEC, are affected by the length of the selected EEG epoch; 

ii) traditional network measures, namely CCw and Lw are affected by these biases; and iii) the 

topology of source-space PLI –based MST is almost unaffected by epoch length. 

 

Functional connectivity is biased by epoch length 

Our results confirm previous findings that have reported a similar behaviour for connectivity 

measures based on linear coupling (Chu et al. 2012; David et al. 2004; Bonita et al. 2014). It should 

be noted that, as previously reported (Tewarie et al. 2014), AEC and PLI behave similarly at group 

level analysis. Our results suggest to use epoch lengths of at least of 6 seconds and to keep into 

consideration the types of coupling captured by the adopted metric. Moreover, even though, 

compared to PLI, results from AEC stabilize earlier as epoch length increases, this higher stability 

may be, at least in part, due to the reported increase of variance for AEC with longer epochs, which 

could be responsible for non-significant post-hoc tests. 

It is of interest to note that epoch length not only affects the mean FC values but also it is evident 

(especially for AEC metric) that shorter epochs also show less clear (more blurred) FC patterns than 

those obtained for longer epochs (Figure 2). The less clear FC patterns for shorter epochs may be 

explained as in increase of inter-epoch variability, which would suggest to use shorter epochs to 

examine the network dynamics. 

 

Traditional network measures are biased by epoch length 

As expected, biases in estimates of FC affect the estimated topology of functional networks, at least 

for the common and widely used metrics that allow estimating global network integration (Lw) and 

segregation (CCw). These results suggest that caution should be taken when comparing results from 



studies on network organization when the analysis is performed with different epoch length, 

especially for short epochs. The use of epoch length shorter than 4 seconds should be avoided 

(Figure 3). 

 

MST is almost unaffected by epoch length 

Importantly, the use of the MST, which has been shown to be as sensitive to alterations in network 

topology as conventional network measures (Tewarie et al. 2015), provides stable results also for 

very short epochs. This can be explained observing that even though mean FC values are affected 

by epoch length, the rank order is less influenced (Figure 2), especially for PLI based FC. This 

result implies that results from different studies can be meaningfully compared using the MST. In 

particular, by the combination of PLI (as functional connectivity index) and MST (for network 

characterization) in source space it is possible to obtain results that are already stable for time-

windows of 1 second. This latter result is also of importance in the context of time-varying 

(dynamic) network analysis, which is currently a hot topic in (EEG) resting-state analysis (Khanna 

et al. 2015; Betzel et al. 2012; Hutchison et al. 2013; Mehrkanoon et al. 2014). Indeed, our study, 

which shows how results depend on the specific approach, can strengthen the idea that time-varying 

approaches can generate spurious signs of non-stationary dynamics (induced by the procedure 

itself) even when applied to a stationary process (Hlinka & Hadrava 2015). In this context, the 

stability of parameters extracted from the MST would give the opportunity to study topology 

changes (at least at time-scale of 1 second) and to investigate how this topology may correspond to 

intrinsic resting-state networks (Mantini et al. 2007; Greicius et al. 2003).  

 

Effect of epoch length is reduced in source-space  

Better behaviour (in terms of stability) was observed for measures extracted from source analysis as 

compared with results from scalp analysis. This finding suggests that the use of techniques to 

reconstruct the time-series at the level of the sources reduces the dependency on epoch length, 



possibly due to demixing of signals, consequent reduction of volume conduction effects and 

increased signal to noise ratio. This phenomenon is particularly evident for PLI and PLI–based 

network parameters, where, differently from other metrics, no relationship between epoch length 

and the standard error was observed. It should be noted though that many approaches exist to 

reconstruct source time-series (Baillet et al. 2001; Hillebrand & Barnes 2005; Hillebrand et al. 

2005). However, the main focus of this work was not to investigate details, advantages, and/or 

limitations of these different techniques, but to understand the effect of epoch length in source-

space. We therefore decided to use a method (wMNE) that is widely used in EEG analysis and easy 

to implement with available tools. Furthermore, it has been recently suggested that the combination 

of wMNE and phase synchronization measures represent a reliable solution to characterize EEG 

networks (Hassan et al. 2014). Nevertheless, we expect that the general conclusions would hold for 

other techniques (Hillebrand et al. 2012), where the spatial filtering  characteristics of e.g. 

beamforming may aid to reduce the effects of epoch length even further. 

 

Limitations 

Even though the reported results show some clear patterns with respect to epoch length, it should be 

noted that in real EEG analysis, the real functional connectivity patterns are unknown. Thus it may 

still be difficult to know whether the PLI and AEC (and network measures) converge, for long 

epochs, to something that is closer to realistic neurophysiological processes or represent simply 

some stable statistical estimates unrelated to underlying biological mechanism. It would be of 

relevance for future works trying to elucidate these mechanisms using simulated data from neural 

mass modelling approaches, where the ground truth is known (Deco et al. 2008). Furthermore, it 

should be noted that the present study shows results with a lower limit of 1-second epoch length. 

However, to study dynamics at millisecond resolution different FC metrics (which avoid the 

introduction of a time-window) should be investigated, as recently proposed by (Shine et al. 2015). 



Sampling frequency seems to play a less important role in the estimation of both functional 

connectivity and network topology, confirming that our results strongly depend on the definition of 

the epoch length itself (see Supplemental Material).



Conclusion 

Our results show that epoch length has an important impact on both functional connectivity and 

estimated network topology. Furthermore, the topology of the MST, which has been shown to 

represent a valid alternative to traditional network analyses, can be reliably estimated for a range of 

epoch lengths, and may thus facilitate the comparison between results from different studies.  
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