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The full Bayesian significance test (FBST) was introduced by Pereira and Stern for measuring the evi-
dence of a precise null hypothesis. The FBST requires both numerical optimization and multidimensional
integration, whose computational cost may be heavy when testing a precise null hypothesis on a scalar
parameter of interest in the presence of a large number of nuisance parameters. In this paper we propose
a higher order approximation of the measure of evidence for the FBST, based on tail area expansions of
the marginal posterior of the parameter of interest. When in particular focus is on matching priors, further
results are highlighted. Numerical illustrations are discussed.

Keywords: evidence; highest probability density set; HOTA algorithm; matching priors; Pereira and Stern
procedure; profile and modified profile likelihood root; tail area approximation

1. Introduction

Consider a sampling model f (y; θ), with parameter θ ∈ � ⊆ R
d , d ≥ 1, and let L(θ) = L(θ ; y)

denote the likelihood function for θ based on data y. Let π(θ) be a prior distribution for θ and let
π(θ | y) ∝ π(θ)L(θ) be the posterior distribution. In many applications it is usual to distinguish
between quantities of primary interest and others not of direct concern by writing θ = (ψ , λ),
with ψ being scalar parameter of interest and λ(d − 1)-dimensional nuisance parameter. We are
interested in testing the precise (or sharp) null hypothesis H0 : ψ = ψ0 versus H1 : ψ �= ψ0. A
possible example occurs in regression problems, when the parameter of interest ψ is a regression
coefficient, the null hypothesis is H0 : ψ = 0, and the nuisance parameter is given by the remaining
regression coefficients and possible variance parameters.

The usual Bayesian procedure for testing or model selection is based on the well-known Bayes
factor (BF), which is defined as the ratio of the posterior to the prior odds in favour of H0. We decide
in favour of H0 whenever the BF, or the corresponding weight of evidence log(BF), assumes high
value. However, it is well known that, when the null hypothesis is precise and improper or vague
priors are assumed, the BF can be undetermined, and it can lead to the so-called Jeffreys–Lindley’s
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2990 S. Cabras et al.

paradox; see, e.g. Kass and Raftery.[1] Moreover, the BF is not calibrated, i.e. its finite sampling
distribution is unknown and it may depend on the nuisance parameter.

Alternative to the BF, Pereira and Stern [2,3] provide an intuitive measure of evidence for the
full Bayesian significance test (FBST) in favour of H0. This measure is the posterior probability
related to the less probable points of the parametric space, and it favours the null hypothesis
whenever it is large; see, e.g. Madruga et al. [4,5] and Pereira et al.,[6] and references therein.
Moreover, the FBST is based on a specific loss function,[4] and thus the decision made under this
procedure is the action that minimizes the corresponding posterior risk.

When testing the null hypothesis H0 : ψ = ψ0, the FBST requires numerical optimization
and multidimensional integration (see, e.g. [3,6]), which may be heavy or timely consuming in
particular when the dimension of the nuisance parameter is large. These computational steps make
the FBST a computationally intensive procedure.

In this paper we discuss a simple approximation of the FBST based on the higher order tail area
approximation (HOTA) of the marginal posterior distribution of the parameter of interest (see,
e.g. [7,8], and references therein), which requires little more than standard likelihood quantities
for its implementation. In this respect, it is available at little additional computational cost over
the first-order approximation.

Moreover, when in particular matching priors are used (see, e.g. [9], and references therein), the
proposed approximation presents further advantages, since it does not require the elicitation of the
prior on the nuisance parameters, it allows to perform accurate Bayesian inference even for small
sample sizes, and it is shown that it is calibrated with respect to the Uniform(0, 1) distribution.

The paper is organized as follows. Section 2 briefly reviews both the Pereira–Stern procedure
and the tail area approximation for the marginal posterior distribution of ψ . Section 3 discusses
the higher order approximation of the measure of evidence for the FBST. Some examples are
discussed in Section 4. Finally, some concluding remarks are given in Section 5.

2. Statistical methods

2.1. The Pereira–Stern measure of evidence

Pereira and Stern [2] introduce a measure of evidence in favour of a null hypothesis H0, which
does not require explicitly elicitation of prior probabilities for the hypotheses Hi, i = 0, 1; see
also Pereira and Stern,[3] Madruga et al.,[5] and Pereira et al.[6] Consider the following two
hypotheses for θ :

H0 : θ = θ0 ∈ �0 versus H1 : θ /∈ �0,

where �0 = {(ψ , λ) ∈ � : ψ = ψ0} is a subset of the parametric space �. To define the measure of
evidence for the FBST, Pereira and Stern first consider the maximum of the posterior density over
the null hypothesis, attained at θ∗ = arg maxθ∈�0

π(θ | y), given by the value π(θ∗ | y). Second,
they define T∗ = {θ ∈ � : π(θ | y) ≥ π(θ∗ | y)} as the set ‘tangent’ to the null hypothesis, whose
credibility is κ∗ = ∫

T∗ π(θ | y) dθ . The measure of evidence for the FBST is the complement of
the probability of the set T∗, that is

EV = 1 − κ∗. (1)

The procedure rejects the null hypothesis whenever EV is small.
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The FBST is a Bayes test. Indeed, Madruga et al. [4] prove that the FBST procedure is the
posterior minimization of an expected loss function defined by

Loss(Accept H0, θ) = b + cI(θ ∈ T∗)

Loss(Reject H0, θ) = a[1 − I(θ ∈ T∗)],

where a, b and c are real positive numbers. With respect to this loss function, the optimal Bayesian
decision is to accept H0 if

EV >
b + c

c + a
= p,

i.e. if EV is greater than a fixed critical level 0 < p < 1.
The computation of Equation (1) is performed in two steps: (a) a numerical optimization and

(b) a numerical integration.[2] The numerical optimization step consists in finding the argument
θ∗ that maximizes π(θ | y) under the null hypothesis. The numerical integration step consists
of integrating the posterior density over the region where it is greater than π(θ∗ | y), to obtain
κ∗. Even if efficient computational algorithms are available for local and global optimization, as
well as for numerical integration, the two steps may be heavy or timely consuming to perform,
in particular when the dimension of the nuisance parameter λ is large. Moreover, as pointed out
in [6], the sophisticated numerical algorithms used in the computation of Equation (1) may be a
serious obstacle to the popularization of the FBST.

2.2. Bayesian higher order asymptotics

Bayesian inference on ψ , in the presence of the nuisance parameter λ, is based on the marginal
posterior distribution

πm(ψ | y) =
∫

π(ψ , λ)L(ψ , λ) dλ∫
π(ψ , λ)L(ψ , λ) dλ dψ

. (2)

In order to compute Equation (2) and the related tail area, it is possible to resort to higher order
asymptotics, i.e. accurate approximations which provide very precise inferences even when the
sample size is small (see, among others [7], and references therein). The basic regularity conditions
for the approximations given in this section are that there exists a unique maximum likelihood
estimate (MLE) or a unique posterior mode of θ (see, for instance, [10]).

Let �p(ψ) = log L(ψ , λ̂ψ) be the profile loglikelihood for ψ , with λ̂ψ -constrained MLE of λ

given ψ . Moreover, let (ψ̂ , λ̂) be the full MLE, and let jp(ψ) = −∂2�p(ψ)/∂ψ2 be the profile
observed information. The marginal posterior distribution (2) can be approximated by expanding
the numerator L(ψ , λ) as a function of λ about λ̂ψ and by using the Laplace formula for the
denominator, see, e.g. Tierney and Kadane.[11] We get

πm(ψ | y) =̇ c|jp(ψ̂)|1/2 exp{�p(ψ) − �p(ψ̂)} |jλλ(ψ̂ , λ̂)|1/2

|jλλ(ψ , λ̂ψ)|1/2

π(ψ , λ̂ψ)

π(ψ̂ , λ̂)
, (3)

where c is the normalizing constant, jλλ(ψ , λ) is the (λ, λ)-block of the observed Fisher information
j(ψ , λ) from L(ψ , λ), and the symbol ‘=̇’ indicates that the approximation is accurate to O(n−3/2).
An application of the tail area argument gives the corresponding O(n−3/2) approximation to the
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2992 S. Cabras et al.

marginal posterior tail area probability.[7] In particular, we have

∫ ∞

ψ0

πm(ψ | y) dψ =̇ 
(r∗
B(ψ0)), (4)

where 
(·) is the standard normal distribution function and

r∗
B(ψ) = rp(ψ) + 1

rp(ψ)
log

qB(ψ)

rp(ψ)
, (5)

with rp(ψ) = sign(ψ̂ − ψ)[2(�p(ψ̂) − �p(ψ))]1/2 profile likelihood root and

qB(ψ) = �′
p(ψ)|jp(ψ̂)|−1/2 |jλλ(ψ , λ̂ψ)|1/2

|jλλ(ψ̂ , λ̂)|1/2

π(ψ̂ , λ̂)

π(ψ , λ̂ψ)
.

When the particular class of matching priors is considered (see [9], and references therein), the
marginal posterior distribution for ψ can be expressed as

πm(ψ | y) ∝ Lmp(ψ)πmp(ψ), (6)

where Lmp(ψ) = Lp(ψ)M(ψ) is the modified profile likelihood for a suitably defined correction
term M(ψ) (see, e.g. [12, Chapter 9]), and πmp(ψ) ∝ iψψ ·λ(ψ , λ̂ψ)1/2 is the corresponding match-
ing prior, with iψψ ·λ(ψ , λ) = iψψ(ψ , λ) − iψλ(ψ , λ)iλλ(ψ , λ)−1iλψ(ψ , λ) partial information, and
iψψ(ψ , λ), iψλ(ψ , λ), iλλ(ψ , λ), and iλψ(ψ , λ) blocks of the expected Fisher information i(ψ , λ)

from L(ψ , λ).
Accurate tail area probabilities are computable from Equation (6). In particular, we have

∫ ∞

ψ0

πm(ψ | y) dψ =̇ 
(r∗
p (ψ0)), (7)

where

r∗
p (ψ) = rp(ψ) + 1

rp(ψ)
log

qF(ψ)

rp(ψ)
(8)

is the modified profile likelihood root of see Barndorff-Nielsen and Chamberlin,[13] with

qF(ψ) = �′
p(ψ)

jp(ψ̂)1/2

iψψ ·λ(ψ̂ , λ̂)1/2

iψψ ·λ(ψ , λ̂ψ)1/2

1

M(ψ)
. (9)

Thus, Equation (8) is a higher order pivotal quantity, which allows one to obtain frequentist
p-values, confidence limits and accurate point estimators.

3. Higher order approximation for EV

We are interested in testing the precise (or sharp) null hypothesis H0 : ψ = ψ0 versus H1 : ψ �=
ψ0. In order to avoid the numerical optimization and multidimensional integration required for
the FBST, in this section we discuss a simple approximation of the FBST based on the HOTA
of the marginal posterior distribution of the parameter of interest. Moreover, when focus is on
matching priors, further theoretical results are highlighted.
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Figure 1. Shaded area: EV for the precise hypothesis H0 : ψ = ψ0.

Consider the marginal posterior distribution (2) for the parameter of interest ψ , and consider
the set

T(y) = {ψ : πm(ψ | y) ≥ πm(ψ0 | y)}. (10)

Starting from πm(ψ | y), the Pereira–Stern measure of evidence in favour of H0 can be computed
as (Figure 1)

EV = 1 − Prπ (ψ ∈ T(y)), (11)

where Prπ (·) denotes posterior probability, and the null hypothesis H0 is accepted whenever EV
is large enough.

A first-order approximation for Equation (11) is simply given by Pereira et al.,[6]

EV
O(n−1/2)= 2


⎛
⎜⎝ ψ0 − ψ̂√

jp(ψ̂)−1

⎞
⎟⎠ . (12)

In practice, it is well known that Equation (12) is often inaccurate, in particular when the dimension
of λ is large with respect to the sample size. Moreover, it forces the marginal posterior distribution
to be symmetric.

The following theorem provides the higher order approximation for EV based on the tail area
approximation (4).

Theorem 1 The third-order approximation of the measure of evidence (11) used in the FBST is

EV =̇ 1 − 
(r∗
B(ψ0)) + 
(r∗

B(ψ∗
0 )). (13)

Proof Let us assume, without loss of generality, that ψ0 is smaller than the posterior mode of
πm(ψ | y) (as in Figure 1), and let ψ∗

0 be the value of the parameter such that πm(ψ∗
0 | y) =

πm(ψ0 | y). Then

EV =
∫ ψ0

−∞
πm(ψ | y) dψ +

∫ +∞

ψ∗
0

πm(ψ | y) dψ .

Using Equation (4), we can compute EV as in Equation (13), with r∗
B(ψ) defined in Equation (5).

Note that the higher order approximation (13) does not call for any condition on the prior
π(ψ , λ), i.e. it can be also improper, and on the corresponding marginal posterior πm(ψ | y). �
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2994 S. Cabras et al.

When πm(ψ | y) is symmetric, Equation (13) reduces to EV =̇ 2(1 − 
(r∗
B(ψ0))). Moreover,


(r∗
B(ψ0)) − 
(r∗

B(ψ∗
0 )) =̇

∫ ψ∗
0

ψ0

πm(ψ | y) dψ = Prπ (ψ ∈ T(y)) = 1 − EV,

gives the posterior probability of the HPD credible interval (ψ0, ψ∗
0 ).

To compute Equation (13) in practice, a simple simulation scheme based on HOTAs can be
used.[8] The implementation of the HOTA sampling scheme is available at little additional com-
putation cost over simple first-order approximations, and it has the advantage over Markov Chain
Monte Carlo (MCMC) methods that samples are drawn independently in much lower computa-
tion time. Starting from πm(ψ | y), the simulation algorithm can be summarized as follows. For
j = 1, . . . , J:

(1) generate a pseudo-random number zj∼N(0, 1), independently;
(2) compute ψj as the solution of r∗

B(ψj) = zj;

obtain thus a sample (ψ1, . . . , ψJ) from the marginal density πm(ψ | y). The HOTA simulation
procedure is essentially an inverse method of sampling and it provides independent samples from
πm(ψ | y) by inverting the cumulative distribution function approximation (4). In this respect,
HOTA has an advantage over MCMC methods in that it is easier to implement and computationally
faster. Moreover, it provides also a convenient approach for a sensitivity analysis with respect to
the prior specification.[8]

When the class of matching priors is considered, then Equation (13) reduces to

EV =̇ 1 − 
(r∗
p (ψ0)) + 
(r∗

p (ψ∗
0 )), (14)

where r∗
p (ψ) is defined in Equation (8). Note that Equation (14) does not require the explicit

elicitation on the nuisance parameters.
The following theorem shows that Equation (14) is calibrated to second order with respect to

the Uniform(0, 1) distribution.

Theorem 2 The sampling null distribution of the EV given in Equation (13) at θ = θ0 is
Uniform(0, 1) to second order if and only if the prior is matching.

Proof Let us denote with Gm(ψ) the cumulative distribution function of the posterior πm(ψ | y).
Consider a function B(α) ⊆ [0, 1] for α ∈ [0, 1] with Lebesgue measure α. Then, there exists the
set T̄α(y) = G−1

m (B(α)), complementary to the set T(y), such that Pπ {ψ ∈ T̄α(y)} = α. Moreover,
when considering the matching prior πmp(ψ), it holds

Pπ {ψ ∈ T̄α(y)} = Pθ {ψ ∈ T̄α(Y)} + Op(n
−1) = α + Op(n

−1),

where Pθ (·) denotes probability under f (y; θ).
The if part can be shown as follows. Let B(α) = [0, α), and assume that EV ∼ Uniform(0, 1)

under H0. Then

Op(n
−1) + α = Pθ0{EV ∈ [0, α)}

= Pθ0{EV ∈ B(α)}
= Pθ0{G−1

m (EV) ∈ G−1
m (B(α))}

= Pθ0{ψ ∈ T̄α(Y)},
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where the last equality is the definition of matching prior. For the converse, assuming that the
prior is matching, then

Op(n
−1) + α = Pθ0{ψ ∈ T̄α(Y)}

= Pθ0{Gm(ψ) ∈ Gm(T̄α(Y))}
= Pθ0{EV ∈ B(α)}
= Pθ0{EV ∈ [0, α)}.

�

4. Monte Carlo studies and applications

The aim of this section is to illustrate the use and the accuracy, even for small sample sizes, of the
approximation (13) of the EV in comparison to the original measure (1). The EV (11) from the
marginal posterior distribution πm(ψ | y) can be obtained exactly (EVex) if the marginal posterior
distribution is known analytically, or from Equation (13) using the HOTA method (EVr∗

B ), or from
Equation (12) when considering the first-order approximation (EVfo). The HOTA method has
been employed as explained in [8] that is approximating r∗

B(ψ) in a grid of 50 points and then
using 10,000 Monte Carlo samples from the approximated marginal posterior.

In the examples different default priors have been considered together with the matching prior,
in order to perform a sensitivity analysis of the EV with respect to the prior specification.

4.1. Example 1. Inverse Gaussian distribution

Let y = (y1, . . . , yn) be a random sample from an Inverse Gaussian distribution, with likelihood
function

L(ψ , λ; y) = ψn/2 exp

[
ψ

(
n

λ
− t

2λ2
− a

2

)]
,

where t = ∑n
i=1 yi = nȳ and a = ∑n

i=1 1/yi. Let ψ be the parameter of interest and suppose to
test H0 : ψ = 1 versus H1 : ψ �= 1.

We consider the reference prior [14] with parameter order (ψ , λ), i.e. πR(ψ , λ) ∝ ψ−1λ−1/2.
Based on such prior, we calculate the original measure (1) and the first-order and higher order
approximations (12) and (13), respectively.We further consider the matching priorπmp(ψ),[15] for
which the marginal posteriorπm(ψ | y) is a gamma distribution with mean (n − 1)/2s and variance
(n − 1)/2s2, where s = (n/2)(a/n − 1/ȳ). Quantiles for the exact computation of Equation (11)
can be thus obtained numerically.

For a sample of n = 20 observations drawn under the null model (with ψ0 = 1 and λ = 1),
Figure 2 highlights the original EV under the reference prior (a), according to the original definition
in Pereira and Stern,[2] and of EVfo (d) and EVr∗

B (c) under the reference prior (denoted, respec-
tively, with EVπR , EVfo

πR
and EV

r∗
B

πR ), and of EVex under the matching prior (b), denoted with

EVex
πmp

. The EV in Equation (1) is about EVπR = 0.999, while EV
r∗

B
πR = 0.923 and EVfo

πR
= 0.789.

When using the matching prior, we have EVex
πmp

= 0.823. Note that EV
r∗

B
πR is quite close to EVπR ,

while the first-order approximation EVfo
πR

appears inaccurate.
In order to study the asymptotic error in approximating the sampling null distributions of the EV

with the Uniform(0, 1), a simulation study has been performed with 1000 independent samples
of sizes n = 5, 10, 20, 50, with ψ0 = λ = 1. For each sample, we evaluated EVπR , EV

r∗
B

πR , EVfo
πR
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Figure 2. Inverse Gaussian example: (a) tangent set T∗ under the reference prior (small grey area), (b) the tangent set
T under the matching prior, (c) tangent set T with the third-order approximation and the reference prior and (d) tangent
set T with the first-order approximation and the reference prior.

and EVex
πmp

, and Figure 3 reports the QQ-plots against the Uniform(0, 1) distribution. Moreover,
Table 1 gives the nominal and empirical lower quantiles of the sampling null distribution of the
different EV.

Figure 3 shows that EVex
πmp

is uniformly distributed under the null model, as well as EV
r∗

B
πR , and

even is EVfo
πR

for larger sample sizes, under the reference prior. On the contrary, EVπR appears to
be conservative for the null model, more than expected under the uniform distribution; see also
the quantiles in Table 1. For instance, from Table 1 we note that, for a sample of size n = 5, the
frequency of observing a value of EV smaller than 1% under the null hypothesis tends to be larger
for the reference analysis, while it is almost 1% under the matching analysis. The same occurs
also for other nominal values of the EV and n.

4.2. Example 2. Extreme value regression

Let yi, i = 1, . . . , n, be a random sample from the Weibull regression model, given by

log(yi) = β0 + β1xi1 + · · · + βpxip + σεi, (15)

where εi has density f (ε) = exp(ε − eε), i.e. the density of a log-Weibull variable, also called the
extreme value density. Let ψ = β1 be the parameter of interest, so that all other regression and
scale parameters are nuisance parameters. For the null hypothesis H0 : ψ = 0 versus H1 : ψ �= 0,

the higher order approximation r∗
p (ψ), which gives EV

r∗
p

πmp is illustrated in [16, p. 78] and [9].
The aim of this example is to illustrate the computational advantages of the higher order

approximations of the EV with respect to the original expression (1), which requires integration
and calculation of the tangential set T∗ over the full parameter space. In general, the computational
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Figure 3. Inverse Gaussian example. Sampling null distribution of EVπR (or), EV
r∗
B

πR (rb), EVfo
πR

(fo) and EVex
πmp

(ex),
for n = 5, 10, 20 and 50.

Table 1. Nominal and empirical quantiles for different sample sizes of the sampling null distribution of the measures
of evidence.

Matching prior Reference prior

EVex
πmp

EVπR EV
r∗
B

πR EVfo
πR

n 1% 5% 10% 1% 5% 10% 1% 5% 10% 1% 5% 10%

5 0.02 0.05 0.11 0.15 0.34 0.44 0.02 0.05 0.11 0.00 0.12 0.17
10 0.01 0.04 0.10 0.07 0.22 0.36 0.01 0.04 0.10 0.01 0.08 0.13
20 0.01 0.05 0.11 0.07 0.21 0.33 0.01 0.05 0.11 0.01 0.06 0.12
50 0.01 0.06 0.11 0.03 0.18 0.30 0.01 0.06 0.11 0.01 0.05 0.10

issues under Equation (1) are not cumbersome with MCMC and small d. However, when the
dimension of the nuisance parameter is large, the computation of the tangential set T∗ over the
full parameter space may be problematic as well as the elicitation on the nuisance parameters.

Consider a real data set concerning a clinical study on malignant mesothelioma (MM).[17]
This data set reports survival times for 77 individuals, with other covariates, like the gender, the
type of MM, i.e. type epithelioid (37 cases), biphasic (18 cases) or sarcomatoid (22 cases), and a
set of genetical markers. Consider the Weibull regression (15) of the survival times with all the
covariates for a total of 36 regression parameters and 77 observations. The effect of the histotype,
with respect to the baseline epithelioid, is modelled by two scalar regression parameters, which

are here regarded as separately parameters of interest. In the following, we consider EV
r∗

p
πmp from

Equation (14), EVfo from Equation (12) and the original (1), where the latter two are both based
on the noninformative prior π(β1, . . . , β36, σ) ∝ σ−1.

D
ow

nl
oa

de
d 

by
 [

U
ni

ve
rs

id
ad

 C
ar

lo
s 

Ii
i M

ad
ri

d]
 a

t 0
2:

43
 2

3 
Se

pt
em

be
r 

20
15

 



2998 S. Cabras et al.

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
v

15 255 10 20 30 35

15 255 10 20 30 35

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

E
v

Figure 4. Extreme value regression. Evidence for the significance of the histotype effect on the survival from malignant
mesotheliomas.[17] Evidence has been calculated using the original EV, the first-order EVfo and the third-order EVr∗

B

approximations for nested regression models.

In order to illustrate the effect of the dimensionality of the nuisance parameter, in the evaluation
of the measure of evidence for the histotype biphasic and for the histotype sarcomatoid, we con-
sidered different nested regression models all containing the initial regressor histotype. Figure 4
reports, for all the considered models, the value (1) of the original EV, the first-order approxima-

tion EVfo and the third-order approximation EV
r∗

p
πmp . The latter two have been obtained with the

HOTA sampling scheme, while Equation (1) has been computed using a random walk Metropolis
over the full parameter space with a multivariate normal proposal. In both cases, 105 samples
were used, but HOTA has the advantage over MCMC methods that it samples independently.
Moreover, using the same MCMC setup for the regression analyses up to 25 coefficients, we were
not able to obtain a satisfactory approximation of the posterior with more than 25 coefficients and
the corresponding values (1) have been not presented.

The values of EV given in Figure 4 indicate that according to EV
r∗

p
πmp there is a significant effect

on the survival of sarcomatoid and biphasic histotypes with respect to the epithelioid, since the
corresponding values are fairly below 0.5. Similar results are obtained with EVfo and such findings
are in line with those obtained in [17]. On the contrary, when considering the original EV for
the biphasic effect and also for the sarcomatoid effect, along with a large number of covariates,
the results are quite different. Note also that the analyses with EV tends to diverge with respect
to those with EVfo and EVr∗

B as the dimensionality of the integration space increases and this is
mainly related to the computational problems in approximating the full posterior distribution with
MCMC.

In order to study the asymptotic error in approximating the sampling null distribution of EV
r∗

p
πmp ,

a simulation study has been performed under the null hypothesis of no effect of histotypes in
survival. The simulation study is conducted using the same full design matrix as in [17], by
simulating the response with all coefficients and scale equal to those estimated for this data set
except those of sarcomatoid and biphasic which have been forced to be 0. The QQ-plot of the
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Figure 5. Extreme value regression: sampling null distribution of EVfo and of EV
r∗
p

πmp for the significance of the effect
of biphasic histotype. The corresponding 100 measures of evidence have been simulated under no effect of histotypes on
the survival.

sampling null distribution of EV
r∗

p
πmp and EVfo for 100 simulated samples, for the biphasic histotype,

is reported in Figure 5. Note that EV
r∗

p
πmp exhibits a clear improvement over EVfo.

4.3. Example 3. Logistic regression

Consider a logistic regression model applied to the urine data set given in [18]; see also Brazzale
et al.[16, Chapter 4] The data set concerns calcium oxalate crystals in n = 77 samples of urine. The
binary response y indicates the presence of such crystals, and there are six explanatory variables:
specific gravity (gravity), i.e. the density of urine relative to water; pH (ph); osmolarity
(osmo, mOsm); conductivity (conduct, mMho); urea concentration (urea, millimoles per litre)
and calcium concentration (calc, millimoles per litre). Let X be the n × 7 fixed design matrix
composed by a first column of ones and the six covariates, as listed above, and let β = (β0, . . . , β6)

be the vector of coefficients including the intercept. The log-likelihood function for β is

�(β) = yT Xβ −
n∑

i=1

log{1 + exp{xT

i β}},

where xi represents the ith row of X , i = 1, . . . , n, and y is the vector of binary responses.
In order to assess the significance of a scalar regression coefficient, we consider the EV

computed under the flat prior πF(β) ∝ 1, the noninformative G-prior πG(β) given in [19,
p.101], and the EV defined in Equation (14), i.e. under the matching prior πmp(ψ). The
higher order approximations of the EV have been computed according to the HOTA simula-
tion scheme,[8] while Equation (1) has been obtained, for each prior, using a separately random
walk Metropolis–Hastings with 50,000 samples after thinning a chain made of 106 steps.

Figure 6 gives the marginal posterior distributions of the coefficients of interest in the analysis:
β4 (conduct), β5 (urea) and β6 (calc), as well as the values of the EV for H0 : β4 = 0,
H0 : β5 = 0 and H0 : β6 = 0.

The original EV defined in Equation (1) in general seems to provide larger evidences for the
null hypotheses, as also reported in Table 2. The evidence for the significance of β6 is still strong,
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Figure 6. Logistic regression example: marginal posterior distributions obtained with the HOTA algorithm along with
the corresponding measures of evidence for β4, β5 and β6 under the flat prior (first row), the matching prior (second row)
and the Zellner G-prior (last row).

Table 2. Logistic regression example: values of the evidence across different priors, and high-order p-values
from Brazzale et al.[16]

Original HOTA approximations

Null hypothesis EVπF EVπG EV
r∗
B

πF EV
r∗
B

πM EV
r∗
B

πG EVfo High-order p-value

H0 : β4 = 0 0.833 0.963 0.047 0.060 0.158 0.084 .085
H0 : β5 = 0 0.648 0.968 0.022 0.027 0.110 0.047 .047
H0 : β6 = 0 0.002 0.063 <0.001 <0.001 <0.001 0.001 .001

but much less than that provided by EV
r∗

B
πmp , which in general agrees also with the evidence of the

higher order frequentist analysis illustrated in [16] (see the p-values in Table 2).

5. Final remarks

This paper discusses higher order asymptotics for the measure of evidence EV for the FBST,
originally proposed in [2]. The computation of the EV considered here differs from the original
one since the maximization in Equation (10) and integration in Equation (11) is done only in
the dimension of the scalar parameter of interest, instead of the full parameter space �. In this
respect, in particular when the dimension d is large, the proposed EV is computationally lighter
and is preferable to the original EV which requires heavy or timely consuming computations. In
particular, as illustrated in Examples 2 and 3 of Section 4, this may occur in regression problems,
when the parameter of interest ψ is a regression coefficient, and the nuisance parameter is given
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by the remaining regression coefficients and possible variance parameters. Examples in Section 4
show also that the HOTA method can be successfully employed to compute Equation (13) in
practice, with the advantage over MCMC methods that it samples independently, and to perform
sensitivity analyses with respect to the prior specification.

With respect to the existing literature on procedures for testing or model selection, we note
that, on the contrary of the BF, the higher order approximation of the EV is always defined and
does not call for any condition on the prior π(ψ , λ). Indeed, in the computation of Equation (13)
the prior enters in r∗

B(ψ) as π(ψ̂ , λ̂)/π(ψ , λ̂ψ), and thus it can be also improper. Finally, when
in particular matching priors are used, we note that the approximate EV does not require the
explicit elicitation on the nuisance parameters and is calibrated to second order with respect to
the Uniform(0, 1) distribution.
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