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Abstract—Synchrophasor measurements, performed by phasor
measurement units (PMUs), are becoming increasingly important
for power system network monitoring. Synchrophasor standards
define test signals for verification of PMU compliance, and set
acceptance limits in each test condition for two performance
classes (P and M). Several PMU algorithms have been proposed to
deal with steady-state and dynamic operating conditions identified
by the standard. Research and discussion arising from design,
implementation, testing and characterization of PMUs evidenced
that some disturbances, such as interharmonic interfering signals,
can seriously degrade synchrophasor measurement accuracy.

In this paper, a new Compressive Sensing (CS) approach is
introduced and applied to synchrophasor measurements using a
Taylor-Fourier multifrequency model (CSTFM). The aim is to
exploit, in a joint method, the properties of CS and the Taylor-
Fourier transform to identify the most relevant components of
the signal, even under dynamic conditions, and to model them in
the estimation procedure, thus limiting the impact of harmonic
and interhamonic interferences.

The CSTFM approach is verified using composite tests derived
from the test conditions of the synchrophasor standard and
simulation results are presented to show its potentialities.

Keywords—Phasor Measurement Units, Compressive Sensing,
Taylor-Fourier Model, Synchrophasor, Orthogonal Matching Pur-
suit, IEEE C37.118.1

I. INTRODUCTION

Phasor Measurement Units (PMUs) are the most innova-
tive measurement devices in power network monitoring and
are expected to become a fundamental tool for managing
and supervising both transmission and distribution networks.
IEEE Standard C37.118.1-2011 [1], along with its amendment
[2], defines PMU outputs and applicable measurement accu-
racy limits. Synchrophasor, frequency and rate of change of
frequency (ROCOF) measurements are introduced with the
specific aim of describing the behavior of power network
signals under dynamic conditions. Two performance classes
are defined by the standard, M-class and P-class. The former
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is intended for measurement applications, where accuracy is
emphasized, while the latter is designed for protection, which
requires fast responses to dynamic events that can be critical
for network operation.

Accuracy requirements are given for steady-state conditions,
in the presence of off-nominal frequency, harmonic and in-
terharmonic disturbances, as well as for dynamic conditions,
considering amplitude and phase modulation, linear frequency
ramp and step changes for both amplitude and phase-angle.

Several PMU algorithms have been proposed and charac-
terized in the literature [3]–[16]. In [11] a demodulation and
filtering approach, with frequency tuning, is followed to fulfill
P- and M-class requirements, as suggested also by Annex C of
[1]. Methods based on variable sampling period with phase-
lock tracking, such as [7], [12], can be applied both to accurate
synchrophasor estimation and to harmonic analysis.

In several works, slowly changing phasors are apporoxi-
mated with a complex Taylor series expansion around the
estimation time point. In [4] and [5] synchrophasor estimation
is enhanced by post-processing correction of estimation errors
using sequential phasor estimates, computed with Discrete
Fourier Transform (DFT) and Short-Time Fourier Transform
(STFT). The Interpolated Discrete Fourier Transform (IpDFT)
is used in [10], [16] to cope with static off-nominal conditions
in synchrophasor and frequency estimation. In [14] the IpDFT
is extended to compute the phasor derivatives of a second order
expansion (thus, also frequency and ROCOF), from three DFT
components around the fundamental frequency.

An algorithm based on a linear non-orthogonal transform,
called the Taylor-Fourier filter (TFF) is introduced in [3] and
in [6] a weighted least squares (WLS) approximation of an
observation window is applied with respect to a second order
Taylor model, providing a set of maximally flat Taylor-Fourier
linear filters (WLS-TFF). In the following, these methods will
be both generically referred to as Taylor weighted least squares
(TWLS), for the sake of brevity, as in [13], because they differ
in the specific weighting. TFF is generalized to harmonics as
the Taylor-Fourier Transform (TFT) in [8].

A comparison of synchrophasor estimation performances
under dynamic conditions was presented in [17] for some of
the methods proposed in the literature. TWLS outperforms
other methods reported in [17] in all dynamic conditions except
under step tests, as confirmed in another set of comparative
analyses [18]–[20]. An adaptive version of TWLS, which
detects when the signal is undergoing fast changes and refines
phasor estimation accordingly, was proposed in [21] and [22]
to improve performance under transient conditions. A detection
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approach, using the filtering paradigm, is used also in [23]
to realize a hybrid M-class PMU with faster responses to
transients and good measurement under steady state conditions.

Modifications and extensions of TWLS and TFT have
been employed in PMU algorithm designs. In [24] frequency
feedback is used to track the fundamental frequency and tune
the TWLS filter accordingly. This adaptive algorithm is linked
to a suitable detector to define a single output PMU [25]
that complies with both P-class and M-class requirements for
synchrophasor and frequency measurements, at the reporting
rate of 50 frames/s. An efficient implementation of TFT filters
is introduced in [26] and it is shown how frequency feedback
can be used to redefine the center frequency of a TFT filter
when the fundamental frequency is changing.

Great attention is being paid in providing estimation algo-
rithms with the capability to cope with the kind of disturbances
that can be found in the variable and quickly evolving scenarios
of emerging power networks. A thorough discussion on the
limits set by the synchrophasor standard and their physical
meaning even saw the revision or suspension of some require-
ments [2].

Some disturbances, in particular those related to out-of-band
(interharmonic) interfering signals, can be extremely difficult
to deal with and can seriously affect synchrophasor, frequency
and ROCOF estimation [23]. The presence of interharmonic
components can have a very significant impact on the perfor-
mance of a high-accuracy phasor estimator. In phasor analysis
of harmonic signals, sampling is usually assumed to be quasi-
synchronous with the power line frequency, so that spectral
interference among signal components is limited. This allows
the observation interval length to be a small number of cycles
of the fundamental sine wave. However, the minimum distance
between harmonic and interharmonic components can be far
less than the separation between harmonics. As a consequence
the effectiveness of windows, and Taylor-Fourier filters as well,
in preventing the injection of out-of-band disturbances can be
significantly impaired. Although filtering properties of longer
observation intervals can be exploited [10], this reduces the
ability to follow signal dynamics, as responsiveness to fast
changing conditions asks for short observation windows and
wider frequency pass-bands. In methods based on variable
sampling frequency, rejection of interharmonic components
also relies on effective filter design.

Very few assumptions can be made a priori with regards
to interharmonics, which first raises the problem of their
detection. In the extended Kalman filter implementation of
[27] a DFT stage is employed to identify a single interfering
out-of-band signal and filter it out by adding a notch to the
Kalman model. If known, an interharmonic can be included
in a Taylor-Fourier multifrequency model leading to perfect
rejection of the disturbance [28].

Interharmonic detection requires the ability to scan frequen-
cies with sufficient resolution, leading again, in principle, to-
wards long observation intervals. However, recent research into
the application of Compressive Sensing (CS) has shown that
it is in fact possible to achieve frequency super-resolution or,
alternatively, enhanced short-term performance [29], [30]. CS
provides the opportunity to circumvent some limitations and

estimate phasor components on a sufficiently fine frequency
grid, while keeping the observation interval comparatively
short even when interharmonics are involved [15].

The combined use of a CS approach for frequency support
estimation and a TFT adapted to the CS stage outputs has been
first investigated in [31] with a two-step estimation algorithm.
In this paper, a unified compressive sensing Taylor-Fourier
multifrequency (CSTFM) analysis is introduced, where fre-
quency support estimation also considers higher-order deriva-
tives, and allows simultaneous estimation of the phasor. The
proposed approach is applied to synchrophasor measurement
and tested under different conditions, with particular attention
to out-of-band interference and possible concurrent distur-
bances.

II. MODELING FOR ACCURATE PHASOR MEASUREMENT

A. Synchrophasor Dynamic Model

According to [1], the time-varying synchrophasor represen-
tation of a sinusoid signal x(t), whose amplitude and frequency
can vary with time, is given at the time instant t by:

X(t) =
Xm(t)√

2
ej(2π

∫
g(t) dt+φ0) (1)

where φ0 is the phase-angle at time t0 = 0 and g(t) = f(t)−f0
is the difference between the instantaneous frequency and the
nominal power-line frequency f0. With this notation the signal
can be expressed as:

x(t) = Re
[√

2X(t)ej2πf0t
]

=

[
X(t)√

2
ej2πf0t +

X∗(t)√
2
e−j2πf0t

]
(2)

The evolution of amplitude and phase-angle within the ob-
servation window, modeled in (1) by time-varying terms, can
affect synchrophasor estimation.

The Taylor-Fourier approach [3] considers the Taylor expan-
sion of the phasor X(t) around the reference time t0, so that
time variations occurring within the observation interval can
be represented. It can be defined as the projection of signal
x(t) on a set of linearly independent basis functions:

ψk(t) = tke±j2πf0t, k = 0, . . . K. (3)

When a finite sample record is considered, basis functions are
replaced by their basis vector counterparts, ψk[n]. Legendre
polynomials can also provide a basis for higher K but, in that
case, derivatives would be computed indirectly [32].

Let x[n] be a sequence of samples, having finite length N .
In the following, N is assumed to be even and −N/2 ≤ n ≤
N/2 − 1, so that the time reference for the synchrophasor
computation is located at n = 0 in the sample record. Using a
K-th order expansion, the approximate model of the dynamic
phasor becomes, in discrete form:

X(nT ) =

K∑
k=0

p(k)
(nT )k

k!
(4)
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where the complex number p(k) is the k-th order derivative of
the dynamic phasor X(nT ) at n = 0 and T is the sampling
interval.

The Taylor-Fourier basis (3) is referred to the nominal
frequency whereas, in practice, powerline fluctuations may
occur. If the product ROCOF·NT/2 is small enough in relation
to f0, the sinusoid frequency f1 can be assumed to remain
approximately constant within the observation interval, but
may in general differ from the nominal value. A more accurate
model could be obtained using f1 in place of f0 in (2) and (3).
Thus, synchrophasor X1(nT ), where f1 is taken as reference
for the basis function, is considered instead of X(t), yielding:

x[n] = Re
[√

2X1(nT )ej2πf1nT
]

(5)

Using the Taylor expansion, the signal can then be modelled
as:

x[n]=

K∑
k=0

(nT )k

k!

[
p
(k)
1√
2
ej2πf1nT +

p
∗(k)
1√

2
e−j2πf1nT

]
(6)

where, as in (4), p(k)1 represents the k-th order derivative of
the dynamic phasor X1(nT ) at n = 0.

B. Taylor-Fourier Multifrequency TFM Model
In actual conditions an electrical waveform can be rep-

resented as a multi-sine signal containing harmonics of the
powerline frequency, as well as interharmonics. Its model is:

x[n] =
∑
h

ah[n] cos(2πfhnT + φh[n]) (7)

where ah and φh are the (time-varying) amplitude and phase
angle of the h-th component, respectively. For harmonics, fh
would be an integer multiple of f1 (as, for instance, in [8]),
otherwise it may represent a generic interharmonic frequency.

Defining a generic phasor:

Xh[n] ,
ah[n]√

2
ejφh[n] (8)

referred to frequency fh, allows to extend the dynamic phasor
approach to the generic signal (7), considering the Taylor
expansion of each harmonic/interharmonic phasor Xh. The
signal can thus be approximated as:

x[n]=
∑
h

Kh∑
k=0

(nT )k

k!

[
p
(k)
h√
2
ej2πfhnT +

p
∗(k)
h√

2
e−j2πfhnT

]
(9)

where p
(0)
h is the “average” harmonic/interharmonic phasor

[17] and p(k)h is the k-th derivative of the phasor at frequency
fh. For each component h a different order of expansion
Kh may be used [9]. If frequencies fh are known, the
corresponding phasors can be computed from (9) along with
their derivatives.

Model (9) provides the basis for analyses of different
kinds, including the determination of harmonic phasors [8]
and interharmonics. In the following it is referred to as TFM
model, irrespective of the actual set of signal components

covered by index h, but it should be emphasized that only
a few relevant ones need to be explicitly considered for the
purpose of synchrophasor estimation, such as interharmonics
close to the fundamental frequency and, possibly, lower-order
harmonics.

III. CSTFM SYNCHROPHASOR ESTIMATION

A. Taylor-Fourier Basis and Sparsity
Let νh = fhT be the signal component frequencies nor-

malized by the sampling rate 1/T . Given a sample record
of size N , both DFT and Taylor-Fourier (TF) basis vectors
refer to a set of N normalized frequencies νm = m/N , with
m = 0, . . . , N . The corresponding set of N coefficients is
defined on a uniform frequency grid with step ∆f = 1/NT .

Considering the same expansion order K for every h, (9)
can be translated into matrix form as:

x = Bp + e (10)

where x = [x[−N/2], . . . , x[+N/2 − 1]]T is the vector of
signal samples. Columns of the N × (K + 1)N matrix B are
the TF basis vectors, defined by the discrete-time version of
(3). Vector p has length (K+1)N and is the concatenation of

the N vectors ph =
[
p
(0)
h , . . . p

(K)
h

]T
for h ∈ {0, . . . , N − 1}:

p =
[
pT
0 pT

1 . . . pT
N−1

]T
. (11)

Finally, vector e represents noise, discrepancies between the
mathematical model and experimental data, as well as any
other contribution to uncertainty that may arise in the data
acquisition system (e. g. because of analog-to-digital converter
(ADC) quantization error).

In harmonic phasor analysis, elements p(0)h differ from zero
at frequency indexes h corresponding to the fundamental
component and to harmonic terms. The same may be true
of elements p(k)h representing the dynamic extension of the
phasor model. The condition ‖ph‖2 � 0, where ‖ · ‖2 is the
Euclidean norm of the vector, can therefore be associated with
the presence of a non-negligible phasor component.

Since most vectors ph will still be approximately zero, p can
be considered a sparse or, more precisely, block sparse vector,
which motivates interest in the formulation of (10) as a CS
problem. However, if interharmonics are present the sparsity
assumption is harder to meet.

B. Enhanced Resolution and Compressive Sensing
If a finer frequency grid with a smaller step ∆′f = ∆f/P

is considered, (with P a suitable integer), the total number
of grid points becomes N ′ = P · N and signal component
frequencies ν can be expressed as:

νh =
ĥ+ δ′

ĥ

N ′
, with: |δ′

ĥ
| ≤ 1

2
(12)

for some integer ĥ ∈ [0, 1, . . . , N ′ − 1]. The closest approxi-
mation to νh on the new grid is: ν̂ĥ = ĥ/N ′.
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Defining a full set of TF basis vectors on this finer grid
yields the generic basis vector expression:

ψhk [n] = (nT )kej2π
h
N′ n, n = −N/2 . . . N/2− 1 (13)

where h = 0, . . . , N ′−1 and the discrete normalized frequen-
cies are now h/N ′.

The creation of a finer frequency grid does not imply in
itself a corresponding enhancement in the capability to resolve
frequency components. To attain this or, equivalently, a shorter
measurement interval with the same resolution, the use of
an overcomplete dictionary to explicitly model the truncation
effects related to finite observation length has been proposed
in [29], [30].

From (9), using standard properties of Fourier transforms,
one has the Fourier components:

X
[m
N

]
=
∑
h∈Sh

{
K∑
k=0

p
(k)
h√
2

[
1

k!

(
j

2π

)k
D(k)

(m
N
− νh

)]}
,

(14)
where 0 ≤ m < N and D(k)(ν) is the k-th order derivative
of the Dirichlet kernel:

D(ν) =
sinπNν

N sinπν
(15)

Replacing νh in (14) by its finite-grid approximation h/N ′

allows to reformulate the relationship in matrix form with
Taylor-Fourier coefficients defined on the finer frequency grid.
In the time domain the resulting equation is:

x = WH
K∑
k=0

D(k)p(k) (16)

where p(k) =
[
p
(k)
0 p

(k)
1 . . . p

(k)
N ′−1

]T
and [D(k)]m,h =

D(k)(mN − h
N ′ ). The columns of matrix WH are the

vectors of the DFT basis set. The superscript denotes conjugate
transposition and it should be reminded that 1

NW defines the
DFT operation in matrix form.

By suitably recombining matrices and vectors, (16) can be
rewritten in a form equivalent to (10):

x = WHDp + e (17)

where p is still obtained by concatenation, as in (11), but here
its length has grown to (K+1)N ′. It should be noticed that the
size of WH is N ×N , while D has size N × (K+1)N ′. The
latter is an overcomplete dictionary which explicitly models
spectral leakage and accounts for both Taylor expansion and
sparsification. Accordingly, CSTFM analysis is formulated as
a CS problem, whose solution is:

p̂ = arg min
p
‖p‖0 subject to: ‖x−WHDp‖2 ≤ ζ , (18)

where the pseudo-norm ‖p‖0 indicates the number of non-zero
elements of p and ζ is a given threshold.

Dictionary-based relationships (16), (17) imply a significant
difference from other approaches, in the way the adverse
effects on accuracy of a finite observation length are dealt
with. In the proposed algorithm, spectral effects of truncation

are explicitly modelled by matrix D, that is defined over the
finer frequency grid. It has to be emphasized that it is the
presence of D that makes the block sparsity assumption for p
hold approximately even when interharmonics are present.

This allows to position the Taylor-Fourier filters center
frequencies much closer to actual component frequencies. At
the same time, if two signal components are close, solving
(18) disentangles reciprocal contributions even when some
degree of interference occurs. This preserves accuracy, while
the minimum observation interval length can remain shorter.

C. CSTFM Algorithm
Solution (18) can be found by a greedy algorithm, such as

Orthogonal Matching Pursuit (OMP) [33]. The block-sparse
feature of p can be exploited to speed-up the process.

The algorithm is iterative, starting from the given measure-
ment vector x defined above. Let p̂(i) be the vector estimate at
the i-th iteration and x̂i = WHDp̂(i) the corresponding signal
reconstruction, where it is assumed x̂0 = 0. At each iteration
the index ĥi of the largest frequency component, approximated
to the nearest bin in the N ′-point grid, is found as:

ĥi = arg max
0≤h<N ′

‖(D(0))H 1
NW(x− x̂i−1)‖2, (19)

and is included in the set: Ŝh(i) = {ĥ1, . . . , ĥi} providing the
frequency estimates (indexes of image components need to be
checked as well). The set Ŝh(i) is called the support of vector
p̂(i) at iteration i. Support cardinality is equal to the iteration
number, i.e., |Ŝh(i)| = i.

For this step of the algorithm, only the zero order matrix
D(0) is involved. Here block sparsity comes into play since,
once the index of a static phasor component has been located,
the corresponding indexes for matrices D(1) and D(2) are
easily determined.

Next, a reduced matrix of dictionary elements DŜh(i)
is

obtained by keeping only the columns of the full matrix
D whose indexes belong (or are related) to Ŝh(i). Model
coefficient estimates are computed by solving the reduced
system:

x = WHDŜh(i)
p̂(i) (20)

The current solution p̂(i) is updated and the corresponding
signal reconstruction x̂i = WHDp̂(i) is computed. This will
be subtracted from the measurement vector x to compute the
residue at the next iteration.

Suitable termination criteria, or a combination of them, must
be defined. Typically, either the current residual norm is lower
than threshold ζ in (18), or the maximum iteration number
(maximum assumed support cardinality) has been reached.

The CS approach requires a minimum frequency separa-
tion of approximately 1.5 ·∆f between two equal-magnitude
waveform components lying on the fine grid [30]. When this
condition is satisfied, the indices h can be determined correctly
to within ±(∆f/2P ), that is, with the enhanced resolution
provided by the finer grid. It should be remembered this value
cannot be made arbitrarily small, as the numerical conditioning
of D tends to get worse for large P . Improvement by about
one order of magnitude is, however, achievable.
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D. Computational considerations
The OMP algorithm consists in the iterative execution of

two main stages: enhanced-resolution identification of the
signal spectral support and TFM-based phasor estimation.
The contribution to overall computational cost of each OMP
iteration step can be assessed in terms of basic arithmetic
operations as follows:
• as a first iteration step, the current residue vector

x − x̂i−1 is multiplied by (D(0))H 1
NW. This would

require a total of N ′ ·N multiplications and N ′ ·(N−1)
additions, but the same result is obtained more efficiently
by zero-padding the residue to length N ′ = NP and
computing the DFT. Hence, the total number of opera-
tions is actually O(N(logN + 2P − 1))

• support recovery (19) requires a search for the max-
imum, whose complexity is proportional to the size
of vector p. Hermitian symmetry allows to limit the
search range to 0 ≤ h < N ′/2 and this can be further
restricted. In particular, the first OMP iteration aims to
locate the index of the fundamental frequency. If the
observation interval is about W cycles, this will fall in
the neighborhood of h = WP and the search range
can be limited accordingly. In subsequent iterations, the
search can in most cases be restricted to an approximate
range 0 ≤ h ≤ k ·WP , with k ≥ 2. Since W � N ,
computational burden is significantly reduced;

• once the updated support Ŝh(i) has been determined, a
pseudo-inverse solution to (20) has to be calculated. Its
expression is:

p̂(i) =
[
DH
Ŝh(i)

DŜh(i)

]−1
DH
Ŝh(i)

Wx (21)

and it should be remarked that only the reduced matrix
DŜh(i)

, composed of just (K+1)·i columns, is involved.
Computation of the inverse requires O([(K + 1) · i]3)
operations and the overall computation of the pseudoin-
verse solution requires a further O(N · [(K + 1) · i]2)
operations. It is assumed that matrix D is pre-computed
and stored in a dedicated memory area. Although this
may be somewhat expensive in terms of storage, it
allows to avoid the generation of a TF basis element
at each iteration;

• finally, the new signal reconstruction is calculated and
the current residual obtained by simple vector subtrac-
tion, corresponding to O(N · [(K + 1) · i]) operations.

Comparing CSTFM with other approaches, it is clear that
greater computational costs are incurred as a result of the
built-in adaptiveness. Additional effort is required to locate the
fundamental frequency on a finer grid and, more importantly,
iterations are carried out to discover and locate potential inter-
ferers that would impair measurement accuracy. Nevertheless,
complexity of each iteration is little more than linear in the
number of samples N .

One of the keys to algorithm sustainability is the choice
of a suitably simple TFM model, so that cardinality of the
support of p is kept low and, consequently, fewer iterations
are required. Of course, total computational cost increases

with the number of components modeled by (9), but so does
measurement accuracy. The process can be made adaptive, if
needed, by using an OMP termination criterion based on the
threshold ζ, rather than a pre-determined model order.

Computation requirements are not beyond the possibilities
of a well-designed implementation, and it can be noted that
steps discussed above would all benefit significantly from par-
allelized implementation on a field-programmable gate array
(FPGA). Even on a standard processor the number of OMP
iterations can be managed since, as a consequence of the
sparsity assumption and the use of a reduced TFM model,
support cardinality (that is, the column dimension of submatrix
DŜh(i)

) is limited and expected not to exceed iMAX � 10.
Any practical implementation would have to provide a

tradeoff between synchrophasor measurement accuracy and
reporting rate.

IV. TESTS AND RESULTS

In this section evaluation of the proposed algorithm per-
formance under different conditions is discussed and results
reported. Test signals for both M and P class PMUs, inspired
by those indicated in [1] for individual operating conditions at
the maximum reporting rate of 50 frames per second (fps), are
mixed to create test signals representative of harder conditions
in a changing environment.

Several configurations have been reproduced in the MatLab
programming environment. Specifically, in each test condition
the additional presence of interharmonics is considered. Care
is taken to ensure that spurious components do not fall on any
pre-determined point of the frequency grid and do not exhibit
any degree of regularity. Frequency separation between the
fundamental and the nearest interharmonic is assumed to be at
least equal to half the reporting rate [1]. Additive white noise at
a signal-to-noise ratio (SNR) of 60 dB is always superimposed
on test signals to reproduce the effect of uncertainty and,
in particular, sample quantization. A constant sampling rate
is assumed, equal to 5000 samples/s. in nominal conditions,
powerline frequency is f0 = 50 Hz and the CS interpolation
factor is P = 10.

Total vector error (TVE), which measures the relative devi-
ation between the theoretical phasor and the estimated one, is
the main accuracy index in the following. Results are provided
in terms of TVE average value and standard deviation.

In a preliminary test, an interharmonic disturbance at
fih = 76 Hz, whose amplitude is 10 % of that of the
fundamental, has been added to a sinusoidal signal at the
nominal frequency. Although frequency separation is slightly
greater than the specified minimum, with respect to the TFM
frequency grid defined by the parameters given above, inter-
harmonic location is in fact as close as possible to worst-case
for the CSTFM algorithm.

Table I compares results obtained for a single sinusoid plus
noise (first two columns) with those obtained for the test signal
(second two columns) and shows the impact of window length
on 50 Hz phasor TVE. Four window lengths, corresponding
to 2, 3, 5 and 7 nominal cycles, are used.

An observation interval of at least three cycles is required
to deal with the interharmonic component. This is also the
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TABLE I. CSTFM TOTAL VECTOR ERROR VS WINDOW LENGTH
SNR = 60 dB – WITHOUT/WITH INTERHARMONIC

f1 = 50 f1 = 50, fih = 76

Window length Avg TVE Std TVE Avg TVE Std TVE
[nominal cycles] [%] [%] [%] [%]

2 0.022 0.012 – –

3 0.013 0.006 0.088 0.121

5 0.010 0.005 0.011 0.005

7 0.008 0.004 0.008 0.005

minimum separation at which spectral interference can be con-
sidered negligible (in this case, 1.5·∆f = 25 Hz), although the
interharmonic localization is still slightly affected, on account
of its smaller magnitude and of the fact that the component
has purposely been located off-grid. The resulting inaccuracy
causes TVE to be larger than in the no-interharmonic case. It is
also clear that longer observation intervals give lower TVEs,
because of the enhanced frequency resolution and narrower
bandwidth, which also improve noise rejection.

In all the tests that follow, the observation interval will be
five nominal powerline cycles long, with N = 500 samples.
Accordingly, frequencies can be determined to within less than
±0.5 Hz and for the CSTFM algorithm interference among
spectral components is negligible up to a minimum frequency
separation of 15 Hz. In the static conditions of Table I, this
ensures that the effect of the interharmonic on the TVE is
negligible.

A. Tests under steady state conditions
Exhaustive comparison among all synchrophasor algorithms

is beyond the scope of this paper. In the discussion that follows,
results from three algorithms are considered:
• the classical TFF provided the basis for development

of CSTFM. For this reason, it is selected to provide
baseline results;

• in frequency-tracking algorithms, a harmonic model is
matched to the signal under analysis, improving accu-
racy when the fundamental frequency is off-nominal
and/or slowly varying. In this work, the CS frequency
estimate of the first component found was employed to
implement a TFF filter with adjustable center frequency,
similarly to [24] but without interharmonic rejection.
This algorithm is indicated as f-TFF;

• the third and final algorithm is CSTFM.
Table II reports TVE obtained, in a 2-s test with the same

signals considered above, for TFF, f-TFF and the proposed
CSTFM method. When only the 50 Hz component is present,
the three methods yield the same performance, which is not
surprising, as all stem from the basic Taylor-Fourier approach.
The TFM model allows rejection of interharmonic interference
and shows the best estimation performance in that case.
Although the fundamental frequency component is always
correctly identified, neither TFF nor f-TFF are designed to

Fig. 1. Example of instantaneous frequency response of CSTFM in the
presence of an interharmonic at 76 Hz, with K = 2 for each component.

explicitly account for the interharmonic component and their
accuracy suffers accordingly.

The frequency response of the CSTFM synchrophasor es-
timation filter for the test condition of Table II, at a specific
reporting instant, is plotted in Fig. 1. It clearly shows how
the inclusion of the estimated interharmonic frequency in the
model adds a zero (the multiplicity depends on the order of
the Taylor expansion) at such frequency.

Fig. 2 reports results of the out-of-band tests for the two
limiting off-nominal frequencies given by the standard at 50
fps (f1 = 47.5 Hz and f1 = 52.5 Hz) when the out-

TABLE II. TOTAL VECTOR ERROR ALGORITHM COMPARISON
SNR = 60 dB – WITHOUT/WITH INTERHARMONIC

f1 = 50 Hz, no interharmonic f1 = 50 Hz, fih = 76 Hz

Method Avg TVE [%] Std TVE [%] Avg TVE [%] Std TVE [%]

TFF 0.010 0.005 1.305 0.147

f-TFF 0.010 0.005 1.305 0.147

CSTFM 0.010 0.005 0.011 0.005

Fig. 2. TVE mask with different out-of-band interfering frequency and off-
nominal frequency. Interharmonic amplitude is 10% of the fundamental.
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of-band frequency varies in the ranges [10 Hz, 25 Hz] and
[75 Hz, 100 Hz]. Interharmonics, of the same level as in previ-
ous tests, are selected according to IEEE C37.242 guide for
PMU testing [34], noise level is the same as in previous tests.
It can be observed that TVE behaviour is quite flat, because,
if correctly identified, interfering frequencies are filtered out
in each case.

In the next test, a 10 % second or third order harmonic
(fh = 100 Hz or fh = 150 Hz, respectively) is superimposed
on a sinusoid at nominal frequency 50 Hz, in addition to the
interharmonic signal at fih = 76 Hz. Table III reports results
for f-TFF and CSTFM with a three-component TFM model.
TFF results were identical to those of f-TFF, as in Table II, so
they are not reported. While benefits of CSTFM are clear, it
can also be noticed that TVE for f-TFF in the third harmonic
case is nearly the same of Table II. This suggests that, at
that distance from the fundamental, attenuation introduced by
synchrophasor estimation filters is large enough.

TABLE III. TOTAL VECTOR ERROR ALGORITHM COMPARISON
SNR = 60 dB – INTERHARMONIC PLUS 2ND/3RD HARMONIC

fh = 100 Hz, fih = 76 Hz fh = 150 Hz, fih = 76 Hz

Method Avg TVE [%] Std TVE [%] Avg TVE [%] Std TVE [%]

f-TFF 1.325 0.260 1.307 0.158

CSTFM 0.011 0.006 0.011 0.005

To verify the effectiveness of a reduced-order TFM model,
a test signal including harmonics up to 5-th order with
decreasing magnitudes (respectively, 6.5%, 2.5%, 1% and
0.5% of the fundamental component), together with a 76-Hz
interharmonic and 60-dB SNR was considered. Total root-
mean-square (rms) harmonic and interharmonic distortion is
12% of the fundamental rms value.

The CSTFM algorithm was applied considering first a single
phasor (fundamental only), then a two-phasor (fundamen-
tal plus interharmonic), a three-phasor and, finally, a four-
phasor model (fundamental, interharmonic second and third
harmonic). In the latter case rms distortion due to unmodelled
components is just 1.1% of the fundamental rms value, but still
affects TVE to some extent. As shown in Table IV, modelling
three components at least is essential in this case.

In the final set of static tests a severely off-nominal sinu-
soidal signal at either 45 Hz or 55 Hz (maximum deviations
for M-class PMU off-nominal frequency tests [1]) is com-
bined with a single interharmonic interfering signal at either

TABLE IV. TVE FOR REDUCED-ORDER TFM MODEL
SNR = 60 dB – INTERHARMONIC PLUS HARMONICS UP TO 5TH ORDER

Modelled phasors Avg TVE [%] Std TVE [%]

f1 1.315 0.203

f1 and fih 0.749 0.221

f1, 2f1 and fih 0.272 0.075

f1, 2f1 3f1 and fih 0.072 0.021

TABLE V. TVE FOR OFF-NOMINAL FUNDAMENTAL FREQUENCY
SNR = 60 dB – INTERHARMONIC

Test Method Avg TVE [%] Std TVE [%]

f1 = 45 Hz, TFF 2.101 0.771

fih = 21.5 Hz f-TFF 2.377 0.530

CSTFM 0.013 0.007

f1 = 55 Hz, TFF 2.092 0.632

fih = 21.5 Hz f-TFF 1.593 0.417

CSTFM 0.010 0.005

f1 = 45 Hz, TFF 2.331 1.106

fih = 76 Hz f-TFF 1.184 0.196

CSTFM 0.011 0.005

f1 = 55 Hz, TFF 2.341 0.950

fih = 76 Hz f-TFF 2.252 0.197

CSTFM 0.013 0.006

fih = 76 Hz or fih = 21.5 Hz with amplitude 10 % of the
fundamental component. Of the selected interharmonic fre-
quencies, both in the out-of-band frequency region suggested
by [1], the former is off the standard N -point frequency grid,
the latter lies even off the finer grid.

Table V compares test outcomes for the same three algo-
rithms of Table II. Strong interference from the interharmonic
is the dominant issue and, as already noted, neither f-TFF nor
TFF are designed to deal with it. However, it can be noticed
that, for the test frequencies given in the first row of Table V,
TFF outperforms f-TFF. In this case, tuning the f-TFF filter
at the correct frequency brings it closer to the interharmonic
and actually reduces attenuation of the out-of-band component.
This emphasizes the importance of including the identified
interharmonic in the TFM model.

The super-resolution afforded by the CSTFM approach
allows frequency tuning also for the interharmonic, that leads
to TVE under off-nominal conditions being comparable to that
at nominal frequency.

Another important issue in out-of-band tests is frequency
error (FE), for which stringent requirements are set in [1]. As
an example, the values reported in Table VI refer to CSTFM
algorithm performance in the test conditions of Tables III and
V. The results only consider a direct frequency estimation
obtained by means of the phasor first derivative.

B. Tests under dynamic conditions
According to IEEE Standard C37.118.1a-2014 [2], syn-

chrophasor measurement bandwidth is determined by tests
with amplitude modulation (AM) and phase modulation (PM)
of the sinusoidal signal at nominal frequency. Two modulated
signals are adopted for the tests, keeping the same configura-
tion of noise and interharmonic disturbances:
• AM with modulation level kx = 0.1 and modulation

frequency fm = 5 Hz;
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TABLE VI. CSTFM FREQUENCY ERRORS – SNR = 60 dB

Test conditions

f1 [Hz] 45 55 45 55 50 50
fih [Hz] 21.5 21.5 76 76 76 76
fh [Hz] - - - - 100 150

Avg FE [mHz] 0.36 0.20 0.28 0.25 0.26 0.26

Std FE [mHz] 0.29 0.16 0.19 0.19 0.17 0.17

TABLE VII. TVE WITH AMPLITUDE AND PHASE MODULATIONS
SNR = 60 dB – INTERHARMONIC

Test Method Avg TVE [%] Std TVE [%]

AM kx = 0.1, fm = 5 Hz, f-TFF 1.326 0.208

fih = 76 Hz CSTFM 0.119 0.046

PM ka = 0.1, fm = 5 Hz, f-TFF 1.299 0.273

fih = 76 Hz CSTFM 0.124 0.039

• PM with modulation level ka = 0.1 and modulation
frequency fm = 5 Hz (corresponding to the maximum
values indicated by [2] for M-class).

Table VII shows TVE results for both f-TFF and the proposed
method. It is clear that rejection of the interharmonic, by
its estimation and inclusion in the model, leads to lower
measurement errors also under dynamic conditions. Residual
error is higher than in Table II, due to the passband of the
estimation filters affecting the modulated signals.

CSTFM algorithm performance has been characterized also
during a linear ramp of the fundamental frequency. The ramp
ROCOF has been set to 1 Hz/s, as indicated by the standard,
and a 10-s test has been performed, thus letting the frequency
change in the range [45, 55] Hz.

Fig. 3 shows a plot of percent TVE when noise and a 76-

Fig. 3. TVE trends during ramp frequency test (with interharmonic and
noise). In the zoomed inset box a logscale vertical axis is used.

Fig. 4. TVE trends in the presence of step changes (with interharmonic and
noise): a) +10 % amplitude step; b) +10◦ phase-angle step.

Fig. 5. TVE in the presence of a frequency step change from 50 Hz to 49 Hz.

Hz interhamonic are present during the whole ramp duration.
With CSTFM an average TVE of about 0.01 % (with a standard
deviation of 0.016 %) is reached during the ramp and similar
results can be obtained changing the interharmonic frequency.
To help evidence the CSTFM trace, the inset box shows the
first half of the full plot with a logarithmic vertical scale.

Tracking of the fundamental frequency by f-TFF yields
better results in the first part of the ramp. As the fundamental
shifts towards higher frequencies, getting closer to the inter-
harmonic, the same phenomenon mentioned above occurs and
TFF actually outperforms it.

The step response of the CSTFM algorithm has been verified
with both amplitude (±10 %) and phase-angle (±10◦) steps
applied to a sinusoidal signal at nominal frequency [1]. Plots
in Fig. 4 show that algorithm response time, defined as the
time required to bring TVE back to ≤ 1%, is about 32 ms for
amplitude and 88 ms for phase-angle steps, respectively. The
parameter cannot be defined for f-TFF, as TVE is always larger
than 1 % even in the pre- and post-step steady-state conditions.
Delay time of CSTFM in such tests is < 0.4 ms, because of
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the practically centered reference time and symmetric nature
of the method with respect to the sample window. Algorithm
behavior in the presence of events that may often occur in
power systems, such as voltage dips and swells, can be inferred
from amplitude step results, assuming they can be seen as a
close succession of step variations.

Finally, it may also be of interest to consider the case of
a frequency step. The plot of Fig. 5 shows the TVE during
a 1-Hz step (as in [12]), e.g. from 50 Hz to 49 Hz, when an
interharmonic at 76 Hz is also present as in previous tests.
Response time is even shorter (about 20 ms) than for the
amplitude step. The frequency estimate transitions smoothly
between the two values.

V. CONCLUSION

In this paper a novel approach for synchrophasor estimation,
based on compressive sensing super-resolution for a Taylor-
Fourier multifrequency model (CSTFM) has been introduced.
Its performance has been characterized under different static
and dynamic conditions, using composite test signals that in-
clude various disturbances, such as interharmonics, harmonics
and additive noise, in an attempt to represent a severe operating
environment.

CSTFM allows to detect with a good resolution the rele-
vant spectral components of the signal, even when they are
changing with time, while keeping the observation interval
reasonably low. The algorithm is promising in its ability to
cope with severe operating conditions, like the concurrent
effect of dynamic conditions and interharmonic interference,
with remarkable performance in terms of estimation accuracy.
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