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Abstract. The problem of free vibrations of the Timoshenko beam model is here addressed. A
careful analysis of the governing equations allows identifying that the vibration spectrum consists
of two parts, separated by a transition frequency, which, depending on the applied boundary con-
ditions, might be itself part of the spectrum. For both parts of the spectrum the values of natural
frequencies are computed and the expressions of eigenmodes are provided: this allows to acknowl-
edge that the nature of vibration modes changes when moving across the transition frequency.
Among all possible combination of end constraints which can be applied to single-span beams, the
case of a simply supported beam is considered. These theoretical results can be used as benchmarks
for assessing the correctness of the numerical values provided by several numerical techniques, e.g.
traditional Lagrangian-based finite element models, or the newly developed Isogeometric approach.
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1. Introduction1

A beam model which is able to take into account both shear stiffness and rotary inertia (in addition to2

bending stiffness and transversal inertia, which are typical of the Euler-Bernoulli model) for structural3

dynamics applications was first proposed by Timoshenko in 1921 [1] and further developed in 1922 [2]4

and since then it is associated to his name. A previous attempt to extend the Euler-Bernoulli [3] model5

by incorporating in it rotary inertia alone is ascribed to Rayleigh [4]. Together with the so called6

shear beam model, which descends from Timoshenko model by disregarding in it the rotary inertia7

contribution, these four beam models constitute the theoretical background for standard structural8

mechanics applications, when second- or higher-order effects can be neglected and hence there is no9

coupling between transversal and longitudinal vibrations. An interesting overview of these theories and10

a comparison of their applications in structural problems of engineering interest is presented in [5],11

while in [6] a comparison of Euler-Bernoulli and Timoshenko models with a 2-D elasticity solution12

is proposed. On the other hand, a variational formulation of the Timoshenko beam model has been13

proposed in [7] and in [8], while a study of nonlinear vibrations has been reported in [9].14

Despite the large number of papers which have appeared since 1921 on the dynamics of Timo-15

shenko beam, there are still some issues which deserve some attention, in particular a complete and16

precise definition of the vibration spectrum. There is indeed much confusion about it, and several17

contributions, instead of helping in clarifying the topic have instead added more incomplete pieces18

of information and misunderstandings. The most debated issue is the so-called second spectrum of19

Timoshenko beam theory, which was first described by Traill-Nash and Collar [10]. Following this20

paper many contributions on this issue appeared; for an updated but inevitably incomplete list, at21
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least the following works should be mentioned (in order of appearance): [11, 12, 13, 14, 15, 16, 17, 18,22

19, 20, 21, 22, 23, 24, 25].23

The idea of considering two spectra for the Timoshenko beam can be justified and acceptable in24

the framework of wave propagation, but, as long as structural vibrations are envisaged, can lead to25

serious misunderstandings. Indeed, looking carefully at the governing equations of motion, as it has26

been attempted in [26], it follows that there is a unique vibration spectrum, but with a transition27

between two different kinds of vibration modes. Disregarding one part of the spectrum, as some28

authors have claimed to do, with the motivation that it is physically unfeasible leads to contradictory29

conclusions. Indeed only mechanical experiments can be used to validate a theory and in the case that30

experimental results do not match with the theoretical model, the latter has to be changed. Instead31

numerical codes implementing the Timoshenko beam model produce results which are inherently32

coherent with the same theory and cannot be used to validate or reject the theory itself.33

As a matter of fact, most handbooks concerned with the definition of eigenmodes for the single-34

span Timoshenko beam model make reference only, regardless of the considered boundary conditions,35

to the first part of the spectrum: see, for instance, Pilkey [27, pp. 596–ff.] or Reddy [28, pp. 197–200].36

Disregarding the second part of the spectrum can still be acceptable for relatively slender beams if37

only the first few vibration modes (e.g. less than ten) are required, but for shorter beams this can38

be unacceptable, since the transition to the second part of the spectrum, when the depth-to-span39

ratio is less than 5, as Table 2 shows, may occur around the seventh mode. Even in the rare cases40

when the second part of the spectrum is accounted for, e.g. in Karnowsky and Lebed [29, pp. 331-41

ff.], the provided solution is given in terms of complex-valued functions, which is an unnecessary42

complication; moreover, for the simply supported beam, the presence of the eigenmode corresponding43

to the transition frequency has been overlooked.44

Hence this paper is devoted to carefully developing, using only real-valued variables, the complete45

solution, in terms of natural frequencies and corresponding vibration modes, for the Timoshenko beam46

in the most general case. Results are then specialized to some peculiar boundary conditions: for these47

cases, the numerical values of natural frequencies and eigenmodes are constructed. These theoretical48

results will then be used, in a forthcoming paper, [30] as suitable benchmarks to assess, from a49

quantitative point of view, the accuracy exhibited by some finite element models.50

The rest of the paper is organized as follows: in Section 2 the governing equations of the dynamics51

of a straight Timoshenko beam are presented: in particular the decoupled fourth-order differential52

equations for the two components of the generalized displacement are deduced and solved. Discussion53

is then focused on the eigensolutions: it is shown that their nature changes when passing through54

a transition frequency, so that the spectrum, composed of those particular frequency values such55

that vibration are possible, consists of two parts with, eventually, the addition of the special value56

corresponding to the transition frequency. It has to be remarked that the analysis of the eigensolutions57

is performed in order to deal only with real-valued functions.58

Then, in Section 3 modal analysis for the single-span Timoshenko beam model is presented for the59

simply supported beam. This is the simplest case, which has been extensively studied in the literature,60

and is characterized by a factorized form of the transcendental equation providing the wave-numbers61

associated to natural vibrations. This circumstance allows to obtain a closed-form expression for the62

vibration frequencies, and produces very simple vibration modes for both part of the spectrum, as well63

as for the transition frequency, which is indeed part of the spectrum itself. For the analysed case, the64

complete list of the first 50 natural frequencies is given for suitably chosen geometric and material data,65

as well as some representative plots of the eigenmodes in different portions of the spectrum; moreover66

a comparison between the spectrum of the Euler-Bernoulli model and that of the Timoshenko one is67

presented for the same geometric and material data.68

Finally in Section 4 some conclusions are drawn, and possible applications of the present research69

are exemplified. After this, some Appendices illustrate subtler details of the formulation, which have70

been omitted, for the sake of conciseness, from the main body of the paper.71

A complete list of symbols is here provided for the reader’s convenience.72

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
Timoshenko beams. Part I: a theoretical revisitation." ZAMP 67: 24 DOI 10.1007/s00033-015-0592-0
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Symbol Definition

A coefficient matrix for the homogenous system
X unknown column matrix for the homogenous system
0 right-hand side column matrix for homogeneous system

A cross section area
A1, A2, A3, A4 integration constants for V , first part of the spectrum
B cross section depth (and width)
B1, B2, B3, B4, integration constants for Φ, first part of the spectrum
C1, C2, C3, C4 integration constants for V , transition frequency
D constant factor (see Eq. (B.3))
D? differential operator d/dx
D1, D2, D3, D4 integration constants for Φ, transition frequency
E Young’s modulus
E1, E2, E3, E4 integration constants for V , second part of the spectrum
E1n, E2n, E3n, E4n integration constants for the n-th eigenmode
F1, F2, F3, F4 integration constants for Φ, second part of the spectrum
G shear modulus
H, K amplitude of eigenmodes for double eigenvalue
I cross section mass moment of inertia
L beam length
L̃ special value of beam length
M bending moment
T shear force
T ? differential operator d/dt
V vibration mode for transversal displacement
a shear stiffness
b transversal inertia
b̂, ĉ coefficients of biquadratic wave-numbers equation
b?, c? coefficients of biquadratic frequency equation
c bending stiffness
d rotary inertia
fλ space frequency associated to wave-number λ
fλn

space frequency associated to the n-th vibration mode
k, k1, k2 integer values corresponding to wave-numbers of vibration modes
t time variable
v transversal displacement
x space variable (beam abscissa)

∆̂ discriminant of wave-number equation
∆? discriminant of frequency equation
Φ vibration mode for section rotation
α̂1 coefficient of eigenmode for generalized wave-number
α1, α2 eigenmode coefficients for first/second wave-number
α̃2 eigenmode coefficient for second wave-number at transition frequency
κ shear correction factor
λ̂1 generalized wave-number (first part of the spectrum)
λ1 first wave-number (second part of the spectrum)
λ2 second wave-number (first and second part of the spectrum)
λ̃2 second wave-number at transition frequency

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
Timoshenko beams. Part I: a theoretical revisitation." ZAMP 67: 24 DOI 10.1007/s00033-015-0592-0
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λ?21 first root (squared) of wave-numbers equations
λ?22 second root (squared) of wave-numbers equations
ν Poisson’s ratio
ξ dimensionless space variable (dimensionless beam abscissa)
ρ beam density (mass per unit volume)
φ section rotation
ω angular frequency
ω̃ angular frequency at the transition value (cut-off frequency)
ω? limiting value (upper/lower bound) for angular frequency
ωn angular frequency (theoretical value) for n-th vibration mode

2. The governing equations of dynamics for Timoshenko beams73

For a uniform, straight Timoshenko beam, the Linear and Angular Momentum Balance equations are
respectively:

∂T

∂x
− ρA∂

2v

∂t2
= 0, (2.1)

∂M

∂x
− T − ρI ∂

2φ

∂t2
= 0, (2.2)

where T and M stand respectively for the transversal shear force and the bending moment; ρ is the74

density of the material constituting the beam; A and I are the area and the area moment of inertia75

of the beam cross-section, while v = v(x, t) and φ = φ(x, t) are the generalized displacement of the76

beam, i.e. the transversal displacement of the centroid and the cross-section rotation, which depend77

on both the abscissa, x, and time, t. It is remarkable that the last terms in the left-hand side of these78

Eqs. (2.1)–(2.2) take into account respectively the transversal inertia force and the rotary inertia79

torque.80

The adopted positive convention for internal forces and generalized displacement are shown in81

Figure 1.

O
x

v(x)

v(x)

T

T
M M

φ(x)

φ
γ

Figure 1. Timoshenko beam element showing the assumed conventions for general-
ized displacements (v, φ) and internal forces (T , M).

82

The Constitutive Equations at the beam level, taking into account that G and E are shear and83

Young’s moduli, and κ is the shear-correction factor, read:84

T = GκA

(
∂v

∂x
+ φ

)
, M = EI

∂φ

∂x
, (2.3)

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
Timoshenko beams. Part I: a theoretical revisitation." ZAMP 67: 24 DOI 10.1007/s00033-015-0592-0
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and allow, once they are substituted into Eqs. (2.1)–(2.2), to obtain the coupled equations of motion
written in terms of kinematic variables alone:

GκA

(
∂2v

∂x2
+
∂φ

∂x

)
− ρA∂

2v

∂t2
= 0, (2.4)

EI
∂2φ

∂x2
−GκA

(
∂v

∂x
+ φ

)
− ρI ∂

2φ

∂t2
= 0. (2.5)

2.1. Fully-decoupled equations of motion85

This system of two second-order Partial Differential Equations (PDEs) can be conveniently reduced86

to a unique fourth-order PDE. Towards this purpose, a symbolic form of Eqs. (2.4)–(2.5) which is87

suitable for operator calculus can be easily devised by defining the following short-hand notation:88

a = GκA, b = ρA, c = EI, d = ρI. (2.6)

Similarly, the following symbols are used to denote the differential operators:

D? =
∂(.)

∂x
, D?2 =

∂2(.)

∂x2
, . . . , D?4 =

∂4(.)

∂x4
, (2.7)

T ? =
∂(.)

∂t
, T ?2 =

∂2(.)

∂t2
, . . . , T ?4 =

∂2(.)

∂t4
. (2.8)

In Eqs. (2.6) a and c represent respectively shear and bending stiffness, while b and d are transversal89

and rotary inertia: the simultaneous presence of all these terms characterizes Timoshenko’s beam90

theory. When some of them are disregarded, other beam theories (e.g. those named from Rayleigh or91

from Euler-Bernoulli or the so-called shear-beam theory) are obtained. See, for details [5, 29, 27].92

By using the symbolic notation defined above, it results:

(aD?2 − bT ?2)v + aD?φ =0, (2.9)

−aD?v + (cD?2 − a− dT ?2)φ =0. (2.10)

By formal operator calculus procedures it follows from Eq. (2.9):93

aD?φ = −(aD?2 − bT ?2)v, (2.11)

which allows eliminating φ from Eq. (2.10), and yields the following decoupled fourth-order equation94

in v:95

acD?4v − (ad+ bc)D?2T ?2v + abT ?2v + bdT ?4v = 0. (2.12)
After some algebraic manipulations Eq. (2.12) can be written as follows:96

EI
∂4v

∂x4
− ρI

(
1 +

E

Gκ

)
∂4v

∂t2∂x2
+ ρA

∂2v

∂t2
+
ρ2I

Gκ

∂4v

∂t4
= 0, (2.13)

which is the equation first established by Timoshenko [1] in 1921 when developing a new beam theory97

able to deal with both shear strain and rotary inertia.98

Similarly, if Eq. (2.11) is used this time to eliminate v and the result is substituted again into99

Eq. (2.10), the following decoupled fourth-order equation in φ is obtained:100

acD?4φ− (ad+ bc)D?2T ?2φ+ abT ?2φ+ bdT ?4φ = 0, (2.14)

which is formally analogous to Eq. (2.12). Hence, with suitable algebraic simplifications, it comes out101

the fully-decoupled equation of motion in terms of φ:102

EI
∂4φ

∂x4
− ρI

(
1 +

E

Gκ

)
∂4φ

∂t2∂x2
+ ρA

∂2φ

∂t2
+
ρ2I

Gκ

∂4φ

∂t4
= 0. (2.15)

Remark 1. It has to be emphasized that, since Eqs. (2.13) and (2.15) are equal, as it has been already103

outlined by Stephen [22] — who used the same notation adopted here — also their solutions have the104

same form. For this reason in the sequel attention will be focused only on solving Eq. (2.13).105

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
Timoshenko beams. Part I: a theoretical revisitation." ZAMP 67: 24 DOI 10.1007/s00033-015-0592-0
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2.2. Solutions of the equations of motion106

Solutions to Eq. (2.13) — or Eq. (2.15) — are sought such that independent variables, viz. x and t,107

are separated. In particular it is assumed that time-dependence is of an harmonic kind, so that free108

vibrations are possible. Thus,109

v(x, t) = V (x) exp(iωt), φ(x, t) = Φ(x) exp(iωt), (2.16)

where i =
√
−1 is the imaginary unit; it follows, consequently, if primes are used to denote derivatives

with respect to x:

∂4v

∂x4
= V ′′′′(x) exp(iωt),

∂4v

∂t2∂x2
= −ω2V ′′(x) exp(iωt),

(2.17)

∂2v

∂t2
= −ω2V (x) exp(iωt),

∂4v

∂t4
= +ω4V (x) exp(iωt),

with analogous expressions for the derivatives of φ(x, t). If Eqs. (2.17) are substituted into Eq. (2.13),110

the common time factors are simplified and the coefficient of the highest derivative in the resulting111

Ordinary Differential Equation (ODE) is selected to have a unit value, it results:112

V ′′′′ +
ρω2

E

(
1 +

E

Gκ

)
V ′′ +

ρω2

E

(
ρω2

Gκ
− A

I

)
V = 0. (2.18)

This is a fourth-order ODE with constant coefficients, whose solutions are to be found in the form of113

exponential functions V (x) = exp(λ?x), where, in general, λ? ∈ C.114

Then V ′′ = λ?2 exp(λ?x) and V ′′′′ = λ?4 exp(λ?x): after substituting these values and performing115

some cancelations, this characteristic equation is arrived at:116

λ?4 + b̂λ?2 + ĉ = 0, (2.19)

i.e. a biquadratic algebraic equation, whose independent variable is λ?; for conciseness reasons the
following notation has been adopted:

b̂ =
ρω2

E

(
1 +

E

Gκ

)
= ω2 d

c

(
1 +

bc

ad

)
, (2.20)

ĉ =
ρω2

E

(
ρω2

Gκ
− A

I

)
= ω2 d

c

(
ω2 b

a
− b

d

)
. (2.21)

The squared roots of Eq. (2.19) are therefore:117

λ?1
2 =

1

2

(
−b̂+

√
b̂2 − 4ĉ

)
, λ?2

2 =
1

2

(
−b̂−

√
b̂2 − 4ĉ

)
. (2.22)

2.3. Analysis of the eigensolutions118

Based on the value of the transition frequency,119

ω̃2 =
GκA

ρI
=
a

d
, (2.23)

when solving Eq. (2.19) these three cases must be distinguished, as it is shown in details in Appendix A.120

Case 1. ω2 < ω̃2. From the analysis presented in Appendix A, for this angular frequency range it121

results: λ?1
2 > 0 and λ?2

2 < 0.122

As a consequence, Eq. (2.19), has two real roots, namely ±
√
λ?1

2, and two purely imaginary123

conjugate roots, viz. ±i
√
−λ?2

2.124

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
Timoshenko beams. Part I: a theoretical revisitation." ZAMP 67: 24 DOI 10.1007/s00033-015-0592-0
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Case 2. ω2 = ω̃2. In the present case, by the same analysis developed in Appendix A, it follows:125

λ?1
2 = 0 and λ?2

2 < 0. In particular,126

λ?2
2 = −b̂|ω2=ω̃2 = −

(
GκA

EI
+
A

I

)
= −

(
a

c
+
b

d

)
. (2.24)

Consequently there is a null real root, whose multiplicity is two, and one couple of imaginary conjugate127

roots, namely again ±i
√
−λ?2

2.128

Case 3. ω2 > ω̃2. This time it results λ?1
2 < 0 and λ?2

2 < 0.129

As a consequence, all four roots of Eq. (2.19) are purely imaginary. In particular, there are two130

couples of conjugate roots, i.e. ±i
√
−λ?1

2 and ±i
√
−λ?2

2.131

Remark 2. The value ω̃2 given by Eq. (2.23) represents, from the physical point of view, the ratio132

between shear stiffness and rotary inertia.133

Physical reasons show that GκA > 0, ρI > 0, so that ω̃ =
√
ω̃2 ∈ R+ and such value can be134

attained indeed: it is the value of the cutoff frequency of waves propagating in an infinite Timoshenko135

beam, as it is shown, for instance, in Graff [31, pp. 185–187].136

In the analysis presented here, such frequency represents a transition value between two different137

solutions of the ODE, Eq. (2.18); moreover this transition value might itself be or might be not part138

of the frequency spectrum, depending on the applied boundary conditions.139

2.4. The eigenmodes of Timoshenko beams140

The analysis developed in Section 2.3 allows identifying, in terms of real-valued quantities only, the141

complete solution to Eq. (2.18) and the corresponding equation which provides Φ(x).142

Results will be presented separately for the three cases outlined above.143

Case 1. ω2 < ω̃2. The eigenfunctions in terms of V (x) and Φ(x) are:

V (x) = A1 cosh λ̂1x+A2 sinh λ̂1x+A3 cosλ2x+A4 sinλ2x, (2.25)

Φ(x) = B1 cosh λ̂1x+B2 sinh λ̂1x+B3 cosλ2x+B4 sinλ2x, (2.26)

where the following proper (λ2) and generalized (λ̂1) wave-numbers apply:144

λ̂1 = +

√
λ?1

2, λ2 = +

√
−λ?2

2. (2.27)

Indeed, λ2, which appears in the argument of a trigonometric function is a true wave-number: it gives145

the measure of the portion, measured in radians, of sine/cosine waves which appear in a unit length146

of the beam. By analogy, λ̂1, which is part of the argument of an hyperbolic function (which reduces147

to a trigonometric function for imaginary values of its argument) will be defined a generalized wave-148

number. On the other hand, the number of complete sine/cosine waves which appear in a unit length149

of the beam define the space frequency, fλ = λ/(2π), as a complete wave has a length equal to 2π.150

Looking at Eq. (2.26), it is clear that coefficients B1, . . . , B4 depend on A1, . . . , A4 because of
Eq. (2.11), so that after some lengthy algebra it results:

Φ(x) =− α̂1

λ̂1

(A2 cosh λ̂1x+A1 sinh λ̂1x)+

+
α2

λ2
(A4 cosλ2x−A3 sinλ2x). (2.28)

In Eq. (2.28) the following short-hand notation has been adopted:151

α̂1 = ω2 b

a
+ λ̂2

1, α2 = ω2 b

a
− λ2

2. (2.29)

Please cite this document as: A. Cazzani, F. Stochino, and E. Turco "On the whole spectrum of
Timoshenko beams. Part I: a theoretical revisitation." ZAMP 67: 24 DOI 10.1007/s00033-015-0592-0
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Case 2. ω2 = ω̃2. Since in this case λ?1
2 = 0, λ?2

2 = −λ̃2
2 it follows that, see Eqs. (2.6) and (2.24):152

λ̃2 =

√(
GκA

EI
+
A

I

)
=

√(
a

c
+
b

d

)
. (2.30)

Then the eigenfunctions have these expressions:

V (x) = C1 + C2
x

L
+ C3 cos λ̃2x+ C4 sin λ̃2x, (2.31)

Φ(x) = D1 + C2
x

L
+D3 cos λ̃2x+D4 sin λ̃2x, (2.32)

where L is the beam length: in this way all coefficients C1, . . . , C4 (and, similarly, D1, . . . , D4) are153

dimensionally homogeneous, as in the previous case, see Eqs. (2.25)–(2.26). However, in the present154

case, there is only one wave-number, namely λ̃2.155

Again, the coefficients appearing in Eqs. (2.31)–(2.32) are not independent, since Eqs. (2.9)–
(2.10) hold. By making again use of Eq. (2.11) it is possible to identify those terms having the same
functional dependence on x. In particular, it results:

1

L
D2 + ω̃2 b

a
C1 = 0, ω̃2 b

a

1

L
C2 = 0,

λ̃2(D4 − λ̃2C3) + ω̃2 b

a
C3 = 0, λ̃2(D3 + λ̃2C4)− ω̃2 b

a
C4 = 0.

Therefore, these are the explicit links between the two sets of coefficients:156

D2 = −ω̃2 b

a
C1L, C2 = 0, D3 =

α̃2

λ̃2

C4, D4 = − α̃2

λ̃2

C3, (2.33)

where, for the seek of a compact notation, the following definition has been adopted — see also157

Eqs. (2.23), (2.30):158

α̃2 = ω̃2 b

a
− λ̃2

2 = −a
c
. (2.34)

Therefore, in the present case, the complete solution in terms of eigenmodes is:

V (x) = C1 + C3 cos λ̃2x+ C4 sin λ̃2x, (2.35)

Φ(x) = D1 − ω̃2 b

a
C1x−

α̃2

λ̃2

(C3 sin λ̃2x− C4 cos λ̃2x). (2.36)

Remark 3. The complete solution of the ODEs which define V (x) and Φ(x) must depend only on159

four independent coefficients, since these equations descend from a system of two second-order PDEs,160

Eqs.(2.4)–(2.5). This, however, does not require that both V and Φ have to depend on four coefficients161

each, as it is clearly shown in Eqs. (2.35)–(2.36). In particular, the circumstance that C2 = 0 follows162

directly from the kinematic condition expressed by Eq. (2.11).163

On the other hand, if Eq. (2.10) is used instead of Eq. (2.9), it can be easily checked that while the164

same conditions given by Eqs. (2.33) are recovered for C2, D3, D4, the value of D2 remains undefined,165

since V (x) appears in Eq. (2.10) only with its first derivative with respect to x and, consequently,166

coefficient C1 does not appear explicitly.167

Case 3. ω2 > ω̃2. In this last case the eigenfunctions are:

V (x) = E1 cosλ1x+ E2 sinλ1x+ E3 cosλ2x+ E4 sinλ2x, (2.37)
Φ(x) = F1 cosλ1x+ F2 sinλ1x+ F3 cosλ2x+ F4 sinλ2x, (2.38)

where the two independent, real-valued wave-numbers are given by:168

λ1 = +

√
−λ?1

2, λ2 = +

√
−λ?2

2. (2.39)
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Again, coefficients F1, . . . , F4 depend on E1, . . . , E4 because of Eq. (2.11), so that, after some algebraic169

manipulations one gets:170

Φ(x) =
α1

λ1
(E2 cosλ1x− E1 sinλ1x) +

α2

λ2
(E4 cosλ2x− E3 sinλ2x), (2.40)

where the following short-hand notation has been adopted:171

α1 = ω2 b

a
− λ2

1, (2.41)

while α2 is still defined by Eq. (2.29)2.172

3. Modal analysis of Timoshenko beams173

In this Section, modal analysis of a Timoshenko beam is developed, in order to devise its complete174

spectrum.175

The results of Section 2 clearly show that the complete spectrum, regardless of the boundary176

conditions, must be constructed by taking into account that it consists of two portions, none of which177

can be disregarded.178

In the first part of the spectrum, which is relevant to natural frequencies ωn < ω̃ the eigenmodes179

are given, in general, by a linear combination of hyperbolic and trigonometric functions, see Eqs. (2.25)180

and (2.28). Only for particular choices of Boundary Conditions (BCs) it is possible to annihilate the181

contribution of hyperbolic functions: this happens, for instance, in the case of a simply supported182

beam.183

In the second part of the spectrum, corresponding to natural frequencies ωn > ω̃ modal shapes are184

instead given by a linear combination of trigonometric functions having two different wave-numbers,185

λ1 and λ2, as Eqs. (2.37) and (2.40) show. Again, in general, these eigenmodes involve both λ1 and186

λ2, since wave-numbers are entwined (or even entangled); only for particular cases, e.g. the simply187

supported beam, the contributions of wave-numbers become decoupled.188

Moreover, even the transition frequency, ω̃ might belong to the spectrum, and hence this condition189

has to be taken into account, too. If the transition frequency is part of the spectrum, modal shapes190

are given by a linear combination of trigonometric functions depending on just one wave-number, λ̃2191

and of a constant function (for V ), see Eq. (2.35), or a linear combination of trigonometric functions192

and a complete linear polynomial (for Φ), as Eq. (2.36) shows.193

In any case, the particular blending of the above-mentioned functions which provides the actual194

eigenmode depends on the applied BCs.195

For a single span beam, as long as transversal vibrations only are envisaged, four basic end196

constraints might be encountered: clamped (or fixed), free, guided, supported (or hinged). The corre-197

sponding constrained variables in the homogeneous case (perfect constraints) as well as the equivalent198

kinematic constraints are listed in Table 1.199

Table 1. Basic end constraints for a single-span Timoshenko beam. A prime indi-
cates a derivative with respect to x: Φ′ = dΦ/dx; V ′ = dV/dx.

Constraint Symbol Constrained variables Equivalent kinematic constraints

Clamped (or fixed) C V = 0 and Φ = 0 V = 0 and Φ = 0
Free F T = 0 and M = 0 V ′ + Φ = 0 and Φ′ = 0
Guided G T = 0 and Φ = 0 V ′ = 0 and Φ = 0
Supported (or hinged) S V = 0 and M = 0 V = 0 and Φ′ = 0

With these 4 basic constraints it is possible to devise ten different combinations of single-span con-200

strained beams, provided that combinations where the constraints are simply reversed (e.g. C-F and F-201

G) are counted only once. These are: clamped-clamped (or doubly clamped, C-C), clamped-free (C-F),202
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clamped-guided (C-G), clamped-supported (C-S); free-free (F-F), free-guided (F-G), free-supported203

(F-S); guided-guided (G-G), guided-supported (G-S); supported-supported (or simply supported, S-S).204

For the sake of simplicity the spectrum will be explicitly computed here only for the simply205

supported beam, while in a companion paper [32] the doubly clamped (C-C) beam will be considered:206

that is somehow representative of all other cases which can occur.207

However only in the case of a simply supported beam the wave-number transcendental equation208

can be written in a factorized form and, as a consequence, the frequency equation becomes a simple209

algebraic equation, e.g. Eq.(3.13), and allows for the evaluation of natural frequencies ωn by a direct210

method. Moreover, the simply supported beam is the only case where the transition frequency is211

always part of the spectrum.212

Instead, in all the remaining cases, since the wave-number transcendental equation cannot be213

written as a product, there is a complete coupling: indeed, in the first part of the spectrum hyperbolic214

functions appear in the eigenmodes, while, in the second part of the spectrum, each eigenmode is215

represented by a combination of trigonometric functions which depend on both wave-numbers. Then,216

the computation of natural frequencies ωn must be performed by solving a complicated implicit tran-217

scendental equation.218

The transcendental equation corresponding to several other BCs can be found, for instance,219

in [14], where only those which are valid for ωn < ω̃ are reported, and in [5], where the complete220

expressions are given, although they are written in an unnecessarily involved way.221

3.1. Material and geometric data222

Since it is not possible to provide the spectrum of a generic Timoshenko beam, attention has been223

focused on a particular beam, which from the physical point of view has reasonable (i.e. not patho-224

logical) geometric and mechanical data. On the other hand, once theoretical details are clear, it is a225

simple exercise changing the data to build the spectrum for other simply-supported beams made of226

different materials or having different length and/or cross-section shapes.227

The case which has been analyzed is the following: a straight uniform and homogeneous beam,228

whose length is L = 2 m, having a square cross-section with side length (either depth or width)229

B = 0.1 m; as a consequence, the cross-section area and area moment of inertia are respectively230

A = B2 = 0.01 m2; I = B4/12 = 1/120, 000 m4. Moreover, the length-to-depth ratio (a rough231

measure of slenderness) is in this case: L/B = 20.232

Material density is assumed to be ρ = 8000 kg/m3, Young’s modulus E = 260 GPa, (i.e.233

E = 260 · 103N/mm2), Poisson’s ratio ν = 0.3 so that, under the hypothesis of elastic isotropy, the234

shear modulus is G = 100 GPa.235

The last parameter, namely the shear correction factor, has been chosen according to the standard236

value (first adopted by Goens in 1931 [33], and based on results obtained by Föppl (1897) [34] with237

an elementary strain energy method), given for static analysis of a rectangular cross-section:238

κ = 5/6. (3.1)

In the literature (see, for further references [35], [36], [37], [38], [39]) for dynamic analyses, a value239

depending also on Poisson’s ratio has been suggested: in particular for a rectangular cross-section one240

should choose either:241

κ =
10(1 + ν)

(12 + 11ν)
, (3.2)

which was proposed by Cowper (1966) [40], or242

κ =
5(1 + ν)

(6 + 5ν)
. (3.3)

This was originally proposed in 1957 by Higuchi et al. [41] and later endorsed by Hutchinson [42];243

according to [43], [44], and [45] it provides a better agreement with 2-D elasticity solutions in the244

dynamic range.245
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It is patent that for a vanishing value of the Poisson’s ratio, all the above equation provide the246

same value, coinciding with Eq. (3.1). Moreover, as a matter of fact, when computing the value of247

the transition frequency for the considered beam by adopting κ = 5/6, the value given by Eq. (3.1),248

the result is ω̃ = 111803.39887 rad/s; for κ = 130/153, i.e. the value provided by Eq. (3.2), the result249

becomes ω̃ = 112894.18957 rad/s (almost 1% more than the previous one); finally by the last Eq. (3.2),250

it is κ = 13/15 and the result changes to ω̃ = 114017.54251 rad/s, i.e. less than 2% of the first one:251

the influence of the choice of κ is really small.252

For this reason, and since the interest is that of comparing for one and the same problem253

the theoretical frequency values with those coming out from suitable numerical methods, e.g. the254

traditional displacement-based Finite Element Method (FEM) and the new spline-based Isogeometric255

Analysis (IGA), without the need of matching experimental results (as it has been done by Rosinger256

and Ritchie, [46]), there are no particular reasons for preferring for κ the values given by Eqs. (3.2)–257

(3.3), instead of the simpler one, Eq. (3.1).258

3.2. The case of a simply supported beam259

For such a beam, whose length is L, the boundary conditions require that (see Table 1):260

@x = 0 : V = 0 andM = 0; @x = L : V = 0 andM = 0. (3.4)

By virtue of Eq. (2.3)2 the homogeneous condition M(x) = 0 is equivalent to imposing Φ′(x) = 0. It261

follows then:262

1. for ω2 < ω̃2:263

Φ′(x) = −α̂1(A1 cosh λ̂1x+A2 sinh λ̂1x)− α2(A3 cosλ2x+A4 sinλ2x). (3.5)

2. for ω2 = ω̃2:264

Φ′(x) = −ω̃2 b

a
C1 − α̃2(C3 cos λ̃2x+ C4 sin λ̃2x). (3.6)

3. for ω2 > ω̃2:265

Φ′(x) = −α1(E1 cosλ1x+ E2 sinλ1x)− α2(E3 cosλ2x+ E4 sinλ2x). (3.7)

In what follows, the two parts of the spectrum and the transition frequency will be treated separately.266

3.2.1. First part of the spectrum: ω2 < ω̃2. When BCs are substituted into Eqs. (2.25) and (3.5), the267

following homogeneous system of simultaneous linear algebraic equations is obtained:268

AX = 0, (3.8)

where the square matrix A and the column vectors X and 0 have these expressions:269

A =


1 0 1 0
α̂1 0 α2 0

cosh λ̂1L sinh λ̂1L cosλ2L sinλ2L

α̂1 cosh λ̂1L α̂1 sinh λ̂1L α2 cosλ2L α2 sinλ2L

 , X =


A1

A2

A3

A4

 , 0 =


0
0
0
0

 . (3.9)

Since, as a simple check confirms, α̂1 − α2 = λ̂2
1 + λ2

2 > 0, it follows A1 = 0; A3 = 0 and this reduced270

system of equations is obtained:271 [
sinh λ̂1L sinλ2L

α̂1 sinh λ̂1L α2 sinλ2L

]{
A2

A4

}
=

{
0
0

}
. (3.10)

Non-trivial solutions to this reduced matrix problem exist provided that (α2−α̂1) sinh λ̂1L sinλ2L = 0,272

i.e. being α̂1 − α2 6= 0, when the following transcendental equation is satisfied:273

sinh λ̂1L sinλ2L = 0. (3.11)

By the rule which ensures the vanishing of a product, it must be:274

λ̂1L = 0 or λ2L = k2π, (k2 ∈ N). (3.12)
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The former occurrence has to be disregarded since it implies, for L 6= 0 (the alternative L = 0 being275

unfeasible for physical reasons), by Eq. (2.27)1 that λ?1
2 = 0 and this only occurs when the natural276

frequency is precisely equal to the transition frequency ω = ω̃, but then solution is ruled by Case 2,277

which is treated below, in Section 3.2.2.278

The latter occurrence gives, for L 6= 0, λ2 = k2π/L, and yields (details are given in Appendix B)279

the following frequency equation for the simply-supported Timoshenko beam:280

ω4 + b?ω2 + c? = 0. (3.13)

This Eq. (3.13), which was obtained for the first time in [1], can also be found in [14]: there, however281

it has been deduced without a complete discussion like that presented here, and led the authors to282

some misleading comments about the second part of the spectrum.283

Eq. (3.13) is again a biquadratic one, whose squared solutions are:284

ω2
1 =

1

2
(−b? +

√
b?2 − 4c?), ω2

2 =
1

2
(−b? −

√
b?2 − 4c?). (3.14)

The analysis of the solutions to Eq. (3.13) proceeds with the same procedure presented in Section 2.3;285

the details are given in Appendix C.286

Synthetically, these conclusions can be drawn:287

1. since the discriminant ∆? = b?2 − 4c? > 0, it results that the squared solutions of biquadratic288

equation (3.13), see Eqs. (3.14), are such that ω2
1 ∈ R, ω2

2 ∈ R; moreover, both of them turn out289

to be positive;290

2. hence Eq. (3.13) admits four real roots, namely ±
√
ω2

1 , ±
√
ω2

2 ; since negative values of frequency291

are physically meaningless, possible vibration modes are identified by either ωn =
√
ω2

1 or ωn =292 √
ω2

2 ;293

3. however, in the first part of the spectrum, the frequency of vibration must also comply with294

these restrictions:295

ωn < ω̃ and ωn < ω?k2 , (3.15)

which descends immediately from (B.4), so that the only admissible solutions are of the kind:296

ωn = ωk2 = +
√
ω2

2(k2), (k2 = 1, . . . , k?2), (3.16)

with297

k?2 = max {k2 ∈ N |ωk2 < ω̃} . (3.17)

The meaning of Eq. (3.16) is that the k2-th frequency is given by the positive root of Eq. (3.14)2 once298

the value k2π/L has been plugged into (3.13).299

Thus, by virtue of (3.16) the natural frequency for the first part of the spectrum are completely300

identified; the definition of the corresponding eigenmodes, Vn(x) = Vk2(x), Φn(x) = Φk2(x) follow301

immediately from Eqs. (3.8)–(3.10), taking into account that A1n = 0; A3n = 0 and considering that,302

when λ2L = k2π it follows from Eqs. (3.12) sinh λ̂1L 6= 0, which implies A2n = 0.303

Then, by assuming that the eigenfunctions are normalized so that Vn(x) = Vk2(x) has a unit304

value when it reaches its absolute maximum, which means A4n = 1, one finds:305

Vk2(x) = sinλ2x; Φk2(x) =
α2

λ2
cosλ2x, (3.18)

where integer index k2 belongs to this range:306

k2 = 1, . . . , k?2 . (3.19)

It has to be emphasized that in Eq. (3.18) λ2 = λ2(ωk2) and α2 = α2(ωk2) i.e. they assume the values307

corresponding to ωk2 . The plots of the first eigenmodes which are relevant to the first part of the308

spectrum are shown in Figure 2.309
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Figure 2. Vibration shapes corresponding to modes 1–5 for a simply supported
Timoshenko beam, first part of the spectrum. (a): transversal displacement, V ; (b):
section rotation, Φ. Geometric and material data are given in Section 3.1

3.2.2. Transition frequency: ω2 = ω̃2. When BCs are substituted into Eqs. (2.35) and (3.6), a new310

homogeneous system of simultaneous linear algebraic equations similar to Eq. (3.8) is obtained; how-311

ever, since in this case λ?1
2 = 0, the square matrix A and the column matrix X are now given by:312

313

A =


1 1 0 0

ω̃2 b

a
α̃2 0 0

1 cos λ̃2L sin λ̃2L 0

ω̃2 b

a
α̃2 cos λ̃2L α̃2 sin λ̃2L 0

 , X =


C1

C3

C4

D1

 , (3.20)

where, by Eq. (2.30) λ̃2 =
√
−λ?2

2|ω=ω̃, and by Eq. (2.34)

α̃2 = ω̃2 b

a
− λ̃2

2 = −a
c
.

The coefficient matrix A appearing in Eq. (3.20) has never rank(A) > 3. This implies that the314

homogeneous system of equations is defective, and this is clearly seen, since it does not depend on315

coefficient D1.316

Therefore if the above-mentioned matrix has precisely rank(A) = 3, i.e., taking advantage of317

Eq. (2.34) to simplify the resulting expression:318 (
α̃2 − ω̃2 b

a

)
sin λ̃2L = −λ̃2

2 sin λ̃2L 6= 0, (3.21)

then the only non-trivial solutions to problem (3.8) (when Eq. (3.20) holds) are given by C1 = C1ω̃ = 0,319

C3 = C3ω̃ = 0, C4 = C4ω̃ = 0 and D1 = D1ω̃ 6= 0; in particular the eigenfunction can be normalized320

so that D1ω̃ = 1.321

The eigenfunction for ω2 = ω̃2 and sin λ̃2L 6= 0 is hence:322

Vω̃(x) = 0, Φω̃(x) = 1. (3.22)
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The mode described by Eq. (3.22) consists of a pure-shear vibration mode (see Figure 3, solid line323

plots), where transversal displacement is always zero, while section rotation assumes a constant value,324

which is the same for all cross-sections: this ensures that flexural effects do not enter into the play.325

Vibrations of Timoshenko beams for this transition frequency, resulting in no transverse deflection,326

have been first studied by Downs, [11].
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Figure 3. Vibration shapes corresponding to the transition frequency (mode 26) for
a simply supported Timoshenko beam. Transversal displacement, V is shown in (a);
section rotation, Φ in (b). The vibration modes for the case of a double eigenmode
(which corresponds to a length L̃ = 2.0519240731 m) are marked by dashed lines.
Geometric and material data are given in Section 3.1.

327

Instead, when the coefficient matrix A of Eq.(3.20) has rank(A) < 3, i.e. when328

λ̃2
2 sin λ̃2L = 0, (3.23)

this implies that the beam length L has a particular value:329

L = L̃ =
k̃π

λ̃2

, k̃ ∈ N, (3.24)

such that sin λ̃2L̃ = 0. Then for ω = ω̃ there is a double eigenvalue. This condition corresponds to a330

length L̃ such that an integer number of sine waves can fit within the beam length, thus satisfying all331

BCs; then the space frequency fλ = fλ̃2
= λ̃2L̃/(2π) = k̃/2 turns out to be an integer number (when k̃332

is even) or a half-integer one (when k̃ is odd). As a consequence, non-trivial solutions to problem (3.8)333

(when Eq. (3.20) holds) are given by C1 = C1ω̃ = 0, C3 = C3ω̃ = 0 while C4 = C4ω̃ 6= 0 and334

D1 = D1ω̃ 6= 0; in particular the eigenfunction corresponding to the transition frequency depends on335

two arbitrarily chosen amplitudes D1ω̃ = H, C4ω̃ = K, which correspond to two different eigenmodes.336

Hence, for the case rank(A) < 3 (which occurs when ω2 = ω̃2 and sin λ̃2L = 0), the two337

eigenfunctions can be written synthetically as:338

Vω̃(x) = K sin λ̃2x, Φω̃(x) = H +
α̃2

λ̃2

K cos λ̃2x. (3.25)
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This is shown again in Figure 3, where the eigenfunctions corresponding to the repeated eigenvalue339

are plotted (for the particular choice K = λ̃2/(5α̃2), to improve legibility) with a dashed line.340

Remark 4. The eigenmode corresponding to Eq.(3.22) is not a rigid-body mode, since it corresponds341

to a frequency value ω = ω̃ 6= 0 and this shows that to produce a constant cross-section rotation it is342

indeed required to have shear strain.343

On the other hand, the appearance of this pure-shear vibration mode can be prevented by BCs:344

so, if both ends of the beam are clamped and not simply-supported this eigenmode does not appear,345

and the transition frequency ω̃ is not, in general, part of the spectrum, unless the beam has a specific346

length L̃. This point will be addressed in [32].347

3.2.3. Second part of the spectrum: ω2 > ω̃2. In this case, substitution of the BCs into Eqs. (2.37)348

and (3.7), gives a homogeneous system of simultaneous linear algebraic equations which is analogous349

to Eq. (3.8), but with these definition of the square matrix A and of the column matrix X:350

A =


1 0 1 0
α1 0 α2 0

cosλ1L sinλ1L cosλ2L sinλ2L
α1 cosλ1L α1 sinλ1L α2 cosλ2L α2 sinλ2L

 , X =


E1

E2

E3

E4

 . (3.26)

By taking into account Eqs. (2.22), (2.29)2 and (2.41), it is an easy task checking that α2 − α1 =351

λ1
2 − λ2

2 = λ?2
2 − λ?1

2 = −
√

∆̂ < 0. It follows from here E1 = 0; E3 = 0 and Eq.(3.8) can be reduced352

to:353 [
sinλ1L sinλ2L
α1 sinλ1L α2 sinλ2L

]{
E2

E4

}
=

{
0
0

}
. (3.27)

Non-trivial solutions exist provided that (α2 − α1) sinλ1L sinλ2L = 0, i.e., being α1 − α2 6= 0, when354

the following transcendental equation is satisfied:355

sinλ1L sinλ2L = 0. (3.28)

In order to satisfy Eq.(3.28), it must be:356

λ1L = k1π or λ2L = k2π, (k1, k2 ∈ N). (3.29)

The former occurrence implies in this case, for L 6= 0, the condition

λ1 = k1
π

L
,

which can be satisfied by an infinite sequence of integer indices, k1 ∈ N. Again, k1 = 0 has to be357

discarded since it would give λ1 = 0, and that brings back to the transition frequency case, see358

Section 3.2.2.359

In order to find the admissible solutions for λ1, it is possible to obtain again the frequency360

equation for the simply supported beam, see Eq. (3.13). Details are given in Appendix D.361

The same discussion of Eq. (3.13) presented in Section 3.2.1 and the findings reported in Appen-362

dix C apply here, too, with suitable changes. In particular, these conclusions are outlined:363

1. Eq. (3.13) admits in this case four real roots, namely ±
√
ω2

1 , ±
√
ω2

2 ; if negative values of fre-364

quency are disregarded as physically meaningless, possible vibration modes are identified by365

either ωn =
√
ω2

1 or ωn =
√
ω2

2 ;366

2. however, in this second part of the spectrum, the frequency of vibration must also comply with367

these restrictions:368

ωn > ω̃ and ωn
2 > ω?k1

2, (3.30)
so that only solutions of this kind are admissible:369

ωn = ωk1 = +
√
ω2

1(k1), (3.31)

where the lower bound ω?k1
2 is defined by Eq. (D.3).370
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The notation employed in Eq. (3.31) means that the solution in terms of frequency is given by the371

positive root of ω2
1 , once the value k1π/L has been plugged into it. It has to be noticed that in372

Eq. (3.31) the integer index k1 takes values inside this range:373

k1 = 1, . . . ,∞. (3.32)

By virtue of (3.31) the natural frequency for this first contribution to the second part of the spectrum374

are completely identified; the definition of the corresponding eigenmodes, Vn(x) = Vk1(x), Φn(x) =375

Φk1(x) follows immediately from Eq. (3.8) (when Eq. (3.26) holds), taking into account that E1n = 0;376

E3n = 0 and considering that, when λ1L = k1π it follows from Eq. (3.27) E4n = 0, since sinλ2L 6= 0.377

Then, by assuming a suitable normalization for the eigenfunction, namely E2n = 1, one finds:378

Vk1(x) = sinλ1x, Φk1(x) =
α1

λ1
cosλ1x, (3.33)

where index k1 takes the values defined by the range (3.32), while in Eq. (3.33) λ1 = λ1(ωk1) and379

α1 = α1(ωk1), i.e. they assume the values corresponding to ωk1 .380

Some illustrative examples of these eigenmodes are presented in Figure 4; differently from what381

happens in Figure 5, here low wave-numbers are encountered, as in the first part of the spectrum: for382

comparison purposes, and to outline significant differences, the reader should also look over Figure 2.383
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Figure 4. Vibration shapes corresponding to λ1 wave-numbers: modes 27, 28, 30, 31
for a simply supported Timoshenko beam, second part of the spectrum. Transversal
displacement, V is shown in (a); section rotation, Φ in (b). Geometric and material
data are given in Section 3.1.

The latter occurrence (see Eq. (3.29)) gives, for L 6= 0:

λ2 = k2
π

L
,

and provides, see e.g. Eq. (B.1) the same solution already discussed in Section 3.2.1:384

ωn = ωk2 = +
√
ω2

2(k2), k2 = k?2 + 1, . . . ,∞, (3.34)
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with the only remarkable difference that, being now ω > ω̃, index k2 must take values in a range385

which extends beyond the value k?2 which has been defined in Eq. (3.17). On the other hand, the386

upper bound for ω2
k2

represented by Eq. (B.4) has still to be satisfied: indeed, if it is violated, no valid387

solutions are found to Eq. (3.14)2.388

As a consequence, since for sinλ2L the solution to problem (3.8) (when Eq. (3.26) holds) is given389

by E2n = 0 and E4n 6= 0, if the same normalization is assumed, e.g. E4n = 1, the relevant eigenmodes,390

provided that index k2 is in the suitable range defined by Eq. (3.34)2, are:391

Vk2(x) = sinλ2x, Φk2(x) =
α2

λ2
cosλ2x, (3.35)

which still coincide with Eq. (3.18), holding in the first part of the spectrum. It can be checked that392

this circumstance occurs only in case of a simply supported beam: other combinations of BCs never393

produce eigenmodes having the same shape in the first and in the second part of the spectrum. Some394

illustrative examples of these eigenmodes are presented in Figure 5: it should be remarked that they395

are always associated to higher wave-numbers than the corresponding eigenmodes, which are relevant396

to the first part of the spectrum, see Figure 2.397
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Figure 5. Vibration shapes corresponding to λ2 wave-numbers: modes 29 and 32
for a simply supported Timoshenko beam, second part of the spectrum. Transversal
displacement, V is shown in (a); section rotation, Φ in (b). Geometric and material
data are given in Section 3.1.

3.3. Construction of the spectrum for the simply-supported beam398

Having performed the complete analysis for free vibrations of a simply supported Timoshenko beam,
it has been acknowledged that the frequency spectrum consists of two parts, separated by a transition
frequency,

ω̃ =
√
GκA/(ρI),

coinciding, as already pointed out in Remark 2, with the cutoff frequency for wave propagation in an399

infinite Timoshenko beam.400

In the first part of the spectrum, frequencies are given by Eq. (3.16), and the corresponding401

eigenmodes by Eq. (3.18).402
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In correspondence to the transition frequency, ωn = ω̃, which for a simply-supported beam403

happens to be part of the spectrum, the eigenmode is described by Eq. (3.22) (or by Eq. (3.25), for404

those particular values of the beam length such that there is a double eigenvalue corresponding to ω̃).405

Finally in the second part of the spectrum there are two sets of frequencies, namely:406

1. the extension of the previous one, see Eq. (3.34), depending on the λ2 wave-number, whose407

eigenmodes are still given by Eq. (3.18);408

2. a brand new one, depending on the λ1 wave-number, which is peculiar of this part of the spectrum,409

where frequencies are determined by Eq. (3.31) and eigenmodes by Eq. (3.33).410

The two sets of frequencies are in this case decoupled, differently from what happens for other com-411

binations of BCs, in the sense that either an eigenmode depends exclusively on the λ1 wave-number,412

or it depends solely on the λ2 one.413

In order to proceed to the construction of the spectrum, it is necessary to provide explicitly the414

material and geometric data of the beam.415

Differently from the dynamics of Euler-Bernoulli beam, where the natural frequencies ωk,EB (and416

the corresponding eigenmodes V (x)k,EB) have very simple expressions for a simply-supported beam:417

ωk,EB = (kπ)2ω?, ω? =

√
EI

ρA
, V (x)k,EB = sin

(
kπ

L
x

)
, (3.36)

and this property allows to build directly the spectrum for the most general case (and in a very general418

way) as a function of one dimensionless parameter alone, ω?, here such a method cannot be adopted419

since there are several independent parameters.420

It is however possible to realize that the transition frequency ω̃, which allows splitting the spec-421

trum in two parts, depends only on the ratio a/d between shear stiffness and rotary inertia and is422

independent of the beam length. Once these parameters are known, it is possible to evaluate it once423

for all: if the beam length L changes, it is possible to show that ω̃ remains fixed, while the spectrum424

moves to the right (when L increases) or to the left (if L decreases). For very short beams, it comes425

out that the transition frequency might correspond to the first mode and the first part of the spectrum426

vanishes; on the other hand, the longer the beam, the more extended the first part of the spectrum427

becomes. The second part of the spectrum, however, never vanishes.428

Some quantitative results of the transition mode as a function of the length-to-depth ratio L/B429

for a uniform beam having a square cross-section (having a side length B) at a fixed value of the430

a/d ratio, see Eq. (2.6), are presented in Table 2 below. In particular, the position of the transition431

frequency ω̃ and of the eigenmode corresponding to k1 = 1, Eq. (3.29), within the spectrum, as well432

as the number of modes (denoted respectively by N(k1) and N(k2) corresponding to the λ1 and the433

λ2 wave-numbers are listed there.434

Remark 5. A change of vibration modes is peculiar, as it has been shown, of Timoshenko beam theory;435

however even for the simpler Euler-Bernoulli beam theory a transition between different eigenmodes436

can occur, for instance, when the beam is partly supported by an elastic foundation. This phenomenon437

has been thoroughly studied in [47], [48], [49]. Other, more complicated transitions (involving more438

than one frequency) occur when dealing with modal analysis of plates, either treated by a 2-D elasticity439

theory [50] or by Reissner-Mindlin theory [51].440

3.3.1. Comments on the vibration frequency spectrum. With the above-mentioned data it has been441

possible to compute the spectrum of natural frequencies for the simply-supported Timoshenko beam442

up to the first N = 10, 000 modes; the first N = 50 of them have been extracted and are reported in443

Tables 3–4. The transition frequency occurs in this case for ω̃ = 111803.3989 rad/s, and it happens to444

be the 26th mode. The interested readers may require to the authors the computer code for computing445

the natural frequencies for any value of N and for any other geometric and material data.446

Looking at the complete list of natural frequencies and at the reduced one (see Tables 3–4), it is447

interesting to outline these issues:448
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Table 2. Position within the spectrum (corresponding to N = 10000 DOFs) of
the transition frequency, n(ω̃), of the first k1-eigenmode, n(k1 = 1), number of k1-
and k2-eigenmodes, for a simply-supported Timoshenko beam having a square cross-
section as a function of the length-to-depth ratio L/B for a fixed value of a/d =
12.5 · 109 (rad/s)2; geometric and material parameters are given in Section 3.1.

L/B n(ω̃) n(k1 = 1) N(k1) N(k2)

1 2 4 3614 6385

2 3 5 3614 6385
5 7 8 3614 6385

10 13 14 3614 6385

20 26 27 3614 6385
50 64 65 3614 6385

100 127 128 3614 6385

200 254 255 3612 6387
500 634 635 3598 6401

1000 1268 1269 3549 6450

Table 3. Computed natural frequencies, wave-numbers and vibration amplitudes of
a simply-supported Timoshenko beam for the first N = 50 vibration modes: first
part of the spectrum and transition frequency. Circular frequency, ωn is expressed
in rad/s, wave-number, λn, in rad/m, space frequency, fλn

= λn/(2π) in m−1; all
other parameters are dimensionless.

n k1 k2 ωn λn fλn A4n (C1n) B3n (D1n)

1 — 1 404.3540829 1.570796327 0.25 1. −1.560803807

2 — 2 1597.560957 3.141592654 0.50 1. −3.063603135
3 — 3 3524.348082 4.712388980 0.75 1. −4.459349847

4 — 4 6104.920320 6.283185307 1.00 1. −5.713740857
5 — 5 9247.993743 7.853981634 1.25 1. −6.808596292

6 — 6 1286.193645 9.424777961 1.50 1. −7.739727835

7 — 7 16862.12383 10.99557429 1.75 1. −8.513139409
8 — 8 21174.58318 12.56637061 2.00 1. −9.141129809

9 — 9 25736.94981 14.13716694 2.25 1. −9.639130208

10 — 10 30497.85749 15.70796327 2.50 1. −10.02349276
11 — 11 35415.60971 17.27875959 2.75 1. −10.31011820
12 — 12 40456.65009 18.84955592 3.00 1. −10.51370482

13 — 13 45594.10054 20.42035225 3.25 1. −10.64741053
14 — 14 50806.48035 21.99114858 3.50 1. −10.72276712
15 — 15 56076.63514 23.56194490 3.75 1. −10.74973665

16 — 16 61390.86478 25.13274123 4.00 1. −10.73683943
17 — 17 66738.22381 26.70353756 4.25 1. −10.69131113
18 — 18 72109.96465 28.27433388 4.50 1. −10.61926501

19 — 19 77499.09604 29.84513021 4.75 1. −10.52584612
20 — 20 82900.03304 31.41592654 5.00 1. −10.41537176

21 — 21 88308.31933 32.98672286 5.25 1. −10.29145567
22 — 22 93720.40640 34.55751919 5.50 1. −10.15711606

23 — 23 99133.47750 36.12831552 5.75 1. −10.01486857
24 — 24 104545.3068 37.69911184 6.00 1. −9.866805432
25 — 25 109954.1463 39.26990817 6.25 1. −9.714662773
26 — — 111803.3989 — — 0. 1.000000000

1. For the chosen beam length, the first part of the spectrum encompasses the first 25 natural modes,449

all of them corresponding to the λ2 wave-number (k2-eigenmodes) defined by Eq. (3.18). Above450

the transition frequencies, where the ω̃-eigenmode is given by Eq. (3.22), there appear, irregularly451
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Table 4. Computed natural frequencies, wave-numbers and vibration amplitudes of
a simply-supported Timoshenko beam for the first N = 50 vibration modes, second
part of the spectrum frequency. Circular frequency, ωn is expressed in rad/s, wave-
number, λn, in rad/m, space frequency, fλn

= λn/(2π) in m−1; all other parameters
are dimensionless.

n k1 k2 ωn λn fλn E2n or E4n F1n or F3n

27 1 — 112275.2383 1.570796327 0.25 1. 768.8346189

28 2 — 113670.6573 3.141592654 0.50 1. 391.6956430

29 — 26 115358.6353 40.84070450 6.50 1. −9.559877425
30 3 — 115933.6562 4.712388980 0.75 1. 269.0975234

31 4 — 118983.2427 6.283185307 1.00 1. 210.0200254
32 — 27 120757.7263 42.41150082 6.75 1. −9.403634895

33 5 — 122726.4860 7.853981634 1.25 1. 176.2477827

34 — 28 126150.6263 43.98229715 7.00 1. −9.246909765
35 6 — 127069.6867 9.424777961 1.50 1. 155.0442116

36 — 29 131536.7480 45.55309348 7.25 1. −9.090499676

37 7 — 131925.7658 10.99557429 1.75 1. 140.9585750
38 — 30 136915.6711 47.12388980 7.50 1. −8.935053917

39 8 — 137217.9485 12.56637061 2.00 1. 131.2748014

40 — 31 142287.1097 48.69468613 7.75 1. −8.781097464
41 9 — 142880.7632 14.13716694 2.25 1. 124.4925604

42 — 32 147650.8870 50.26548246 8.00 1. −8.629051189

43 10 — 148859.4765 15.70796327 2.50 1. 119.7187476
44 — 33 153006.9133 51.83627878 8.25 1. −8.479248853

45 11 — 155108.8098 17.27875959 2.75 1. 116.3905182

46 — 34 158355.1690 53.40707511 8.50 1. −8.331951400
47 12 — 161591.4548 18.84955592 3.00 1. 114.1367406

48 — 35 163695.6901 54.97787144 8.75 1. −8.187358974
49 13 — 168276.6548 20.42035225 3.25 1. 112.7034594

50 — 36 169028.5563 56.54866776 9.00 1. −8.045621043

interspersed with the k2-eigenmodes, the natural modes corresponding to the λ1 wave-number:452

the k1-eigenmodes, which are defined by Eq. (3.33). The first two of them, corresponding to453

k1 = 1, k1 = 2 occupy positions 27th and 28th in the above-mentioned list.454

2. For the same values of the k1 and k2 indices, the corresponding wave-numbers are equal: this455

is due to the same form of Eqs. (3.29); however the corresponding natural frequencies ωk1 and456

ωk2 descend from different solutions of Eq. (3.13) and are therefore different: in particular ωk1 is457

given by Eq. (3.31), while ωk2 comes out from either Eq. (3.16) or (3.34).458

3. Looking at the coefficients of the components Φk1(x) and Φk2(x) of the eigenmodes, it results459

that in all cases α1/λ1 > 0, while α2/λ2 < 0.460

This means that in the former case, namely the k1-eigenmodes, the section rotation Φ(x) and461

the slope of the transversal displacement, dV (x)/dx have the same sign, i.e. their contributions to462

the total shear strain, see Eq. (2.3)1, simply sum up, while in the latter case, that corresponding463

to the k2-eigenmodes, section rotation and slope of the transversal displacement have opposite464

sign, so that the relevant contributions to the total shear strain partly cancel each other.465

Such property had been already detected by Stephen [22, pp. 378–379], even though the466

explanation which was given there appears rather obscure and unnecessarily complicated.467

4. For the chosen mechanical and geometric data, when a total number N of natural frequencies468

is fixed, the composition of the spectrum in terms of k1-eigenmodes and k2-eigenmodes presents469

a fairly constant ratio. For instance if N = 100 is chosen (i.e. the first one hundred natural470

frequencies are considered), there are 33 k1-eigenmodes and 66 k2-eigenmodes (plus, of course,471

the mode corresponding to the transition frequency ω̃); for N = 500 the same numbers become472
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180 and 319; similarly, for N = 1000 one gets 361 and 638; for N = 5000, 1807 and 3192; for473

N = 10000, 3614 and 6385.474

For comparison purpose the full spectrum relevant to the first 100 vibration modes for both Euler-475

Bernoulli’s and the Timoshenko’s beam is shown in Figure 6: it is apparent that in the latter case the476

vibration frequencies are much less separated than in the former one. This is due to the appearance, in477

the spectrum of Timoshenko beam, of two independent wave-numbers, which are somehow entwined.
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Figure 6. Full frequency spectrum, i.e. ωn vs. n plot (for N=100 modes) for the
simply supported Euler-Bernoulli beam model (denoted by crosses) and for the Tim-
oshenko one. For the latter, modes corresponding to λ2 wave-numbers are marked by
solid dots, modes corresponding to λ1 wave-numbers are denoted by hollow diamonds,
while the transition frequency is shown by a solid square: a vertical arrow indicates
its position.

478

4. Conclusion479

A complete analysis of the equations of motion for the Timoshenko beam model has been presented in480

the case of free vibrations. This has brought to some important results in understanding the nature of481

the vibration spectrum, which has often been overlooked in the past. A careful analysis reveals indeed482

that there is a transition frequency such that eigenmodes corresponding to natural frequencies lying483

below or above it exhibit a rather different shape; moreover, the transition frequency itself might be484

part of the spectrum, producing a peculiar vibration mode. As a consequence, the vibration spectrum485

of a Timoshenko beam has to be acknowledged to be unique, but consisting of two parts, none of486

which can be, in principle, disregarded.487
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Specific attention has been devoted to the special case of a simply supported beam: the transcen-488

dental equation which provides the wave-numbers corresponding to natural frequencies is factorized,489

and this property produces vibration modes which have in both part of the spectrum (excluding490

the transition frequency, whose eigenmode is characterized by a constant function) a simple shape,491

consisting of an integer number of sine/cosine half-waves.492

For the given mechanical and geometric data, (which are representative of a beam model where493

shear strain effects are expected to be non-negligible) a complete list of the first 50 natural frequencies494

is provided, along with the parameters which are necessary to completely identify the corresponding495

vibration modes, for both kinematic variables, transversal displacement, V , and cross-section rotation,496

Φ. The plots of some representative modes are also given, to better illustrate the Timoshenko beam497

response in terms of free vibrations.498

Finally, it is useful to point out that this work provides some useful guidelines to study more499

complex problems. A first interesting example is the case of curved Timoshenko beams which have500

been tackled by using the isogeometric approach: in particular, for 1D structures some works have been501

recently published [52, 53, 54, 55, 56, 57, 58]. Also the use of mixed and hybrid methods and of highly-502

efficient discretization techniques, such as those reported in [59, 60, 61] are promising. All of them503

provide more accurate stress description and therefore may improve the relevant numerical results.504

Geometric nonlinear phenomena and dynamic effects can be explored, too, by using respectively the505

tools reported in [62, 63, 64, 65, 66, 67, 68] and [69, 70, 71]; for wave propagation problems in second506

gradient continua and micromorphic materials see also [72, 73, 74, 75, 76] .507

Furthermore, the Timoshenko beam model, being a particularly simple micro-mechanical model,508

is able to furnish fruitful clues about developing new and refined mathematical models of continua,509

see for instance the current research trend on generalized continua and their applications [77, 78, 79,510

80, 81, 82, 83, 84, 85, 86, 87, 88, 89], taking also into account the suggestions presented in [90, 91, 92].511

Finally, an accurate evaluation of the spectrum is fundamental in problems which consider dam-512

age detection, see [93, 94, 95, 96], or which drive the response of smart structures, see [97, 98].513
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Appendix A. Analysis of the wave-number equation518

To investigate the nature of the eigensolutions, it is essential to check whether the roots of the bi-519

quadratic Eq. (2.19) are either real or complex conjugates. In particular, the following steps have to520

be performed.521

1. identifying the sign of the discriminant ∆̂ = b̂2 − 4ĉ;522

2. verifying whether λ?2
2 > 0 or λ?2

2 = 0 or λ?2
2 < 0;523

3. verifying whether λ?1
2 > 0 or λ?1

2 = 0 or λ?1
2 < 0.524

Preliminarily, it can be stated that all material properties, as well as cross-section data, have to be525

positive for physical reasons. Now the above-mentioned tasks will be accomplished in the afore-listed526

order.527

1. First, attention is concentrated on the sign of the discriminant. Then, account taken of528

Eqs. (2.20)–(2.21), it is possible to show that:529

∆̂ =
ρ2ω4

E2

(
1 +

E

Gκ

)2

− 4
ρ2ω4

E2

E

Gκ
+ 4

ρω2A

EI
=
ρ2ω4

E2

(
1− E

Gκ

)2

+ 4
ρω2A

EI
> 0. (A.1)

So the discriminant ∆̂, being the sum of positive quantities, never becomes negative.530
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Moreover ∆̂ = 0 implies either ω2 = 0 or531

ω2 = −

4EA

ρI(
1− E

Gκ

)2 < 0. (A.2)

Hence ∆̂ vanishes only for one value of ω ∈ R, namely ω = 0.532

It follows from here that the two roots λ?1
2, λ?2

2 defined by Eq. (2.22) do coincide only when533

ω = 0. For such value, it is simply:534

λ?1
2 = λ?2

2 = − b̂
2
|ω=0 = 0. (A.3)

2. As a consequence, since the sum of two negative quantities cannot be positive, it follows that535

λ?2
2 ≤ 0, and λ?2

2 = 0 only when ω = 0; in all other instances it is strictly λ?2
2 < 0.536

3. Finally, it is required investigating the sign of λ?1
2. By substitution, it can be written in this537

equivalent form:538

λ?1
2 = −ρω

2

2E

(
1 +

E

Gκ

)
+

√
ρ2ω4

4E2

(
1− E

Gκ

)2

+
ρω2A

EI
. (A.4)

It is now an easy task checking that:539

λ?1
2 > 0⇒

√
ρ2ω4

4E2

(
1− E

Gκ

)2

+
ρω2A

EI
>
ρω2

2E

(
1 +

E

Gκ

)
, (A.5)

and since both the r.h.s. and the l.h.s. of expression (A.5) are strictly positive, inequality is preserved
if they are squared. Thus, after canceling common terms on both sides of the inequality it follows
that:

A

I
>
ρω2

Gκ
⇒ ω2 <

GκA

ρI
= ω̃2.

Hence the conclusion for item 3. above is:

λ?1
2 > 0 if ω2 < ω̃2,

λ?1
2 = 0 if ω2 = ω̃2, (A.6)

λ?1
2 < 0 if ω2 > ω̃2.

In conclusion, according to the value assumed by ω2 with reference to ω̃2, three different cases have540

to be distinguished.541

Appendix B. Deduction of the frequency equation for the simply supported beam542

By Eqs. (2.20), (2.21), (2.22)2 and (3.12)2 this equivalent expression for ω is obtained:543 √
ρ2ω4

4E2

(
1− E

Gκ

)2

+
ρω2A

EI
=

(
k2π

L

)2

− ρω2

2E

(
1 +

E

Gκ

)
. (B.1)

The right- and left-hand sides of this equation can be squared, giving an equivalent expression, only
if they have the same sign, i.e. provided that:(

k2π

L

)2

− ρω2

E

(
1 +

E

Gκ

)
> 0,

and the result is:544

ρ

2E

(
1 +

E

Gκ

)
ω2 <

(
k2π

L

)2

. (B.2)
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Since, by Eq. (2.6), the factor multiplying ω2 in Eq. (B.2) can be given this form:545

D =
1

2

ρ

E

(
1 +

E

Gκ

)
=

1

2

(
d

c
+
b

a

)
, (B.3)

where D > 0 is a constant, independent of k2, it follows that Eq. (B.2) is equivalent to imposing this546

upper bound on the value of ω2 corresponding to a given value of index k2:547

ω2 <
1

D

(
k2π

L

)2

= ω?k2
2. (B.4)

In particular, Eq. (B.4) requires eliminating k2 = 0 from the set of admissible values, since it would548

give a negative value for ω2.549

By squaring both sides of Eq. (B.1) and after some rearrangements, the following result is ob-550

tained:551

ω4 − Gκ

ρ

[
A

I
+

(
k2π

L

)2(
1 +

E

Gκ

)]
ω2 +

EGκ

ρ2

(
k2π

L

)4
= 0. (B.5)

A final compact form of Eq. (B.5) is arrived at, if the following short-hand notation is adopted:552

b? = −Gκ
ρ

[
A

I
+

(
k2π

L

)2(
1 +

E

Gκ

)]
, c? =

EGκ

ρ2

(
k2π

L

)4
, (B.6)

producing as a result the biquadratic equation:

ω4 + b?ω2 + c? = 0.

Appendix C. Analysis of the frequency equation553

The same procedure presented in Appendix A is here used for investigating the solutions, Eq. (3.14),554

of the frequency equation for the simply-supported beam, Eq. (3.13):555

1. The sign of the discriminant ∆? = b?2 − 4c?;556

2. For which values of the parameters ω2
1 > 0 and satisfies the requirement expressed by Eq. (B.2);557

3. For which values of the parameters ω2
2 > 0 and satisfies the requirement expressed by Eq. (B.2).558

The analysis proceeds as follows:559

1. It can be easily verified that ∆? might be written equivalently as:

∆? =

(
Gκ

ρ

)2
[(

A

I

)2

+ 2
A

I

(
1 +

E

Gκ

)(
kπ

L

)2

+

(
1− E

Gκ

)2(
kπ

L

)4
]
.

Now, ∆? > 0, since it comes out to be the sum of positive values only.560

2. Since ∆? > 0 it is also true, by virtue of Eq. (3.14)1, (B.6), that ω2
1 > 0 for all possible values561

of the parameters.562

However, with reference to the requirement expressed by Eq. (B.2) it can be shown, after some
lengthy computations, that it is equivalent to imposing:

Gκ

4E

[(
1 +

E

Gκ

)
A

I
+

(
1− E

Gκ

)2(
k2π

L

)2
]

+
ρ

4E

(
1 +

E

Gκ

)√
∆? < 0,

which is impossible, since the sum of addends which are always positive never produces a negative563

number. Hence the value ω2
1 > 0 is not admissible in the present case.564

3. The condition ω2
2 > 0 requires that −b? > ∆? and can be stated in this equivalent form:[

A

I
+

(
1 +

E

Gκ

)(
k2π

L

)2
]
>

√√√√[(A
I

)2

+ 2
A

I

(
1 +

E

Gκ

)(
k2π

L

)2

+

(
1− E

Gκ

)2(
k2π

L

)4
]
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and after some algebraic manipulation it can be reduced to the condition:(
1 +

E

Gκ

)2

>

(
1− E

Gκ

)2

,

which is always satisfied.565

Moreover, the frequency value given by ω2
2 is fully admissible, since it can be shown to satisfy

also the requirement given by Eq. (B.2). Indeed, after some cumbersome algebra it turns out:[
2
A

I

(
k2π

L

)2(
1 +

E

Gκ

)2

+

(
k2π

L

)4(
1− E

Gκ

)2
][(

1− E

Gκ

)2

−
(

1 +
E

Gκ

)2
]
< 0,

which is always satisfied, since the last term within square brackets is always negative.566

Appendix D. The frequency equation for the simply supported beam in the second567

part of the spectrum568

It is necessary to recall that, by substituting (2.20), (2.21), (2.22)1 and (3.29)1 this equivalent expres-569

sion for ω is found:570 √
ρ2ω4

4E2

(
1− E

Gκ

)2

+
ρω2A

EI
=
ρω2

2E

(
1 +

E

Gκ

)
−
(
k1π

L

)2

. (D.1)

The r.h.s. and l.h.s of this equation can be squared, as usual, only if they have the same sign:

ρω2

E

(
1 +

E

Gκ

)
−
(
k1π

L

)2

> 0,

and the result is:571

ρ

2E

(
1 +

E

Gκ

)
ω2 >

(
k1π

L

)2

. (D.2)

If Eq. (B.3) is recalled, the following lower bound for ω2 as a function of index k1 is established:572

ω2 >
1

D

(
k1π

L

)2

= ω?k1
2. (D.3)

By squaring both sides of Eq. (D.1) and after performing some rearrangements, the same fre-573

quency equation for the simply-supported Timoshenko beam is obtained:574

ω4 − Gκ

ρ

[
A

I
+

(
k1π

L

)2(
1 +

E

Gκ

)]
ω2 +

EGκ

ρ2

(
k1π

L

)4
= 0, (D.4)

see Eq. (B.5), with the simple substitution of k1 in the position previously hold by k2. Clearly, in this575

case, admissible solutions for ω2
1 must comply with the requirement expressed by Eq. (D.3).576
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