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Abstract. In [1] Hencky proposed a discrete model for Elasticae by introducing rigid bars and rotational springs.
In [2] Hencky approach has been introduced to heuristically motivate the need of second gradient continua.
Here we present a novel numerical code implementing directly the discrete Hencky type model which is robust
enough to solve the problem of the determination of equilibrium configurations in the large deformation and
displacement regimes. We apply this model to study some potentially applicable problems and we compare its
performances with those of the second gradient continuum model. The numerical evidence presented supports
the conjecture that Hencky-type converges to second gradient model.
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1. Introduction1

In this paper we introduce ab initio a discrete model for planar pantographic structures and we correspondingly2

formulate, using MATLAB, an effective computation tool which overcomes some technical difficulties confronted3

in [3, 4] via heavier finite elements based computational schemes, formulated starting from second gradient4

continuum models. The developed computation tool, in particular, is better adapted for determining the deformed5

shapes of pantographic sheets when: i) large extensions are activated locally, ii) shear angles approach the6

value π
2 , iii) locking or "hourglass deformation effects" could arise due to the high heterogeneity of the material7

properties.8

To explicit its effectiveness we compare the newly developed computational tool with the one previously9

developed using, based on a second gradient continuum model, the FEM implemented in COMSOL Multiphysics10

(see [2]). The comparison presented considers some typical deformation problems including: i) standard exten-11

sion bias test; ii) shear/extension tests; iii) bending/extension tests, iv) deformations induced by displacements12

imposed to single fibers (extraction tests).13

The discrete model which we consider here include both pairwise and triple elastic interactions between14

material particles and generalizes Hencky discrete model for the Elastica ([2, 5, 6, 7, 8, 9]).15

The mechanical systems could be described by the introduced discrete model include those considered and16

studied in [2, 5, 4, 10, 11]. Indeed : i) the pivots interconnecting (see Fig. 1 for a 3D printing) the two arrays of17

beams are to be identified with the material particles which we introduce here; ii) the fact that these pivots may18

store elastic energy may be efficiently modelled introducing suitable "shearing" springs (that is the rotational19

springs called r3 in the following Figs. 3 and 4); iii) the bending phenomena occurring between the two closest20

pivots and the corresponding stored elastic energy are modelled by the rotational springs called r1 and r2 in the21

following Figs. 3 and 4; iv) the extensional phenomena occurring between two closer pivots are modelled by the22

extensional springs called r0.23

However we believe that the potential scope of the presented model is wider: it most likely may include24

the most relevant deformation phenomena in the woven fabrics described in ([12, 13, 14, 15, 16, 17, 18, 19]).25
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Figure 1. Pantographic structure.

Indeed the fibers constituting these fabrics intersects one with the others very similarly than in pantographic26

structures and in their deformation one can still distinguish extension, bending and shear: even if the hypothesis27

of elastic behavior in woven fabrics is applicable in a smaller range of deformation states the model presented28

here seems capable to catch some relevant aspects of its phenomenology. Similarly, some biological living29

tissues which are characterized by fibers embedded in a soft matrix can be described with the proposed model30

(see e.g. [20, 21, 22, 23, 24]).31

In conclusion we are sure that the synthetic discrete description given in this paper may supply some32

insight in all those phenomena where chains of forces may be activated by directional strain fields. A careful33

comparison with available experimental evidence will be the subject of some following papers.34

After the concise statement concerning the original results we complete this introduction by framing the35

presented results in the more general context of the mechanics of metamaterials and their continuum modelling.36

The dichotomy between discrete and continuum modelling will be shortly treated in a digression preceding the37

synthetic description of the structure of the paper.38

1.1. Metamaterials and their modeling with generalized continua39

The reader will find an increasing literature dealing with the class of materials which has been collectively40

gathered under the unifying concept of metamaterials. In this context, we have found particularly interesting41

the works by [25] and [26], where metamaterials are described as those materials which, while not existing in42

Nature, are conceived by means of a theoretical abstraction and then engineered to have "exotic" properties.43

Metamaterials are obtained by the "architectured" assemblage of multiple individual "microscopic"44

elements constituted by standard materials, usually arranged in (quasi-)periodic sub-structures [27]. It results45

that the macroscopic physical properties of metamaterials depend in a critical way on the topology of their46

microstructures and the nature of the interaction among constituting elements, while are less sensitive to47

Please cite this document as: E. Turco, F. dell’Isola, A. Cazzani, N.L. Rizzi "Hencky-type discrete model for
pantographic structures: numerical comparison with second gradient continuum models" ZAMP 67: 85 DOI
10.1007/s00033-016-0681-8
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the standard properties of the micro-material constituting their microstructural elements. The macroscopic48

physical properties tailored in the design of metamaterial may be for instance optical, electromagnetic, thermal,49

mechanical and any combination (and coupling) of many of them. For instance: the particular shape, geometry,50

size, orientation and arrangement of the microstructural elements affect, in some particular metamaterials, the51

propagation of waves in a not-often-observed manner, e.g., not allowing the propagation in some band gaps (see52

e.g. [28, 29, 30, 31]) even if such a properties is not present in the material constituting the micro-structural53

elements (see also [32, 33, 34, 35] for others unusual wave propagation phenomena).54

1.1.1. Mechanical metamaterials. In literature, more recently, a particular class of metamaterials has attracted55

the attention of mechanicians: the so called mechanical metamaterials. The properties for which these architec-56

tured materials show unexpected or exotic features are purely mechanical. The newly synthesized metamaterial57

studied in [5] and considered here belongs to this class.58

To give a hint of the possible performance of newly designed metamaterials we list here some whose59

applications seem closer to those which we have in mind (for a more detailed discussion the reader is referred to60

[3, 36, 37]): i) it has been synthesized a (micro-)composite medium showing a negative effective bulk modulus,61

or a negative effective mass density, or both properties; ii) it is possible to design and fabricate metamaterials62

with negative Poisson’s ratio; iii) it is possible to tailor materials showing selective damping effects using special63

material microstructures (see e.g. [38, 39]).64

The main problem in the theory of metamaterials is actually an inverse problem: given a continuum/discrete65

model (i.e. a set of kinematical parameters, be this set finite or infinite dimensional, and a Lagrangian Action66

functional) one has to find if there actually exist mechanical systems which, at a specific length scale, behave as67

it is prescribed by the chosen (continuum or discrete) model.68

The problem actually consists in finding the microscopic properties and structure of such mechanical69

systems to be able to construct (or how sometimes is said with a word derived from Greek: synthesize) them,70

after having solved the corresponding technological problems.71

The metamaterial conceived in [2, 5, 9, 40], has been designed to be governed, when considering macro-72

scopic behavior, as a second gradient continuum and to have an enhanced extensional toughness: it has been73

actually synthesized exploiting the novel possibilities given by 3D printing technologies. This new class of74

bidimensional metamaterials, which have been also called extensible pantographic sheets, has been modeled75

using bidimensional continua which generalize those introduced in [41, 42, 43]: indeed they are conceived76

to account for the elastic energy in the extensional deformation and geodesic bending of constituting fibers77

simultaneously.78

1.1.2. Generalized continuum models. Continuum mechanics is a powerful mean for the design mechanical79

structures: indeed starting from the first half of XIX century this design has been based on the application of80

predictive mathematical models. Starting from the pioneering works by Navier and Piola (see the discussion in81

the following subsection), it was established that continuum models could be deduced from discrete microscopic82

ones: the underlying idea is that materials can be ultimately modeled at a micro-level as finite dimensional83

Lagrangian systems and that their effective properties can be all obtained via a suitable homogenization procedure.84

However the working assumptions put forward by Cauchy were later assumed to be of universal validity. The85

works of Piola on generalized continua (see [44]) and what has been later rediscovered and called peridynamics86

(see [45]) remained for a long time nearly unknown. The limiting assumptions accepted by Cauchy include87

the absence of length scale phenomena and of high contrast in microscopic properties. On the other hand the88

particular class of micro-structured mechanical systems which present high-contrast1 in microscopic properties89

once homogenized, have been shown to produce generalized continua in [46, 47, 48, 49, 50, 51, 52, 53].90

Actually the continuum model introduced by Cauchy is very accurate for a large class of phenomena but91

cannot be applied to all materials in every physical condition (and the contrary would be really surprising). When92

introducing generalized continua, the true conceptual frame settled by Cauchy and Navier is to be drastically93

modified. The concept of stress becomes secondary and the main role is played by deformation measures together94

1These systems are defined as quasi-periodical systems having some of the physical properties diverging when the size of the representative
elementary volume tends to zero, while simultaneously some others properties are vanishing in this limit. Pantographic structures verify this
definition: see [2].
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with action and dissipation functionals (see [54] or e.g. [55, 56, 57, 58]). The Euler-Lagrange equation obtained95

in this more encompassing modeling process cannot be anymore regarded to coincide with the balance of force96

unless one generalizes the concept of force. This can be done by introducing generalized actions as the dual97

quantities in the work of the gradients of displacements (see e.g. [59, 60, 61, 62] or [63, 64, 65] for 2D or 1D98

generalized continua characterized by a specific microstructure).99

All this difficulties are easily surmounted when discrete models are usable: what we prove is possible in100

the present paper. Moreover a further consideration is needed here: at the end a continuum model, for getting101

predictions, need to be discretized. In other words in any case a discrete model is used whose structure is rather102

out of the control of the modeler as it is mediated by many complex steps. In the case of pantographic structures103

they can be shortly listed as follows: i) to find the right class of generalized continua which is able to capture104

their behavior (and it seems that such class must be at least the class of second gradient Piola continua, if not the105

class of microstretch continua); ii) to find the correct FEM for getting algorithms converging to the physically106

meaningful shapes of introduced continua; iii) to establish the correct identification of constitutive parameters to107

get physically founded predictions.108

Here we control totally the modelling process by introducing a convincing discrete model, we formulate109

a Lagrangian equilibrium condition and we find with a robust code which we could formulate ourselves to110

determine all equilibrium configurations. The comparison with the previously obtained results found in [5, 3]111

is really comforting: there is a total correspondence of the predictions. When one of the two models fails to112

converge it is always the one obtained via the mediation of generalized continuum theories.113

1.2. A historical perspective114

The controversy about the prevalence of continuum models on discrete models (or vice versa, depending on the115

tastes and the schools) for mechanical (or more generally physical) systems is very old. Probably it started with116

the antithesis between Epicurean atomism and Heraclitean continuum approach: the more recent dispute between117

Mach and Boltzmann is an example of how bitter this contraposition may become. In this paper, we do not try118

the historical analysis of this contraposition and we do not dare to take position on aforementioned controversy.119

Actually we believe that one has to assume a pragmatic view on the question. In general a mathematical model120

to be used for describing physical systems has to have the following obvious features: i) it has to be formulated121

based on a clear minimal set of postulates which should be self-consistent, ii) it has to be predictive when applied122

to describe physical phenomena.123

In order to get predictions out of a set of postulates some exercises of mathematics need to be solved:124

the obtained solutions, when engineering applications are needed, must involve the performance of specific125

computations, which allow for the exact quantitative verification of considered models and for the precise design126

of novel devices.127

Before the advent of modern computing machines the most powerful computing tool has been given128

by mathematical analysis and its ancillary disciplines, i.e. the theories of analytical, elementary or special129

functions. In fact, once a model was postulated on the basis of a variational principle (see e.g. [66, 45, 44])130

then the corresponding Euler-Lagrange conditions were found in order to be able to apply for their solutions131

all the methods made available by mathematical analysis. We refer, for instance, to the approximate methods132

of solutions by series, by polynomial approximations, separation of variables, or to the so-called analytical133

or semi-analytical methods. Instead discrete mathematics, and in particular the theory of discrete difference134

equations, could not (as done, instead, very effectively by infinitesimal analysis) produce calculation methods135

based on closed form solutions. As a consequence, also those scientists who, being followers of Epicurean school,136

believed in the atomistic and discrete fundamental nature of matter did study continuum models. Piola [66],137

Navier [67], and later Boltzmann [68] (just to name few of them) started their postulation starting with a discrete138

finite dimensional model where Lagrangian coordinates consist of N-tuples of material particles coordinates and139

then, via suitable homogenization methods, deduced the governing equations of the continuum approximating140

one.141

Therefore, without the modern powerful tools of automatic computation, also the Epicureans needed to142

deduce continuum models to get applicable equations from which, via suitable analytical and simple numerical143

computations, they could get quantitative predictions.144
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A paradoxical situation was then created. Continuum models, which had been first created as auxiliary145

tools needed for performing calculations and obtained via a deductive process, were regarded subsequently146

as constituting the most fundamental ones, simply because they were considered the most effective way for147

describing macroscopic phenomena (see [69]). The basic postulates in these continuum models have been148

identified with a list of balance laws (see [44]) to which a (presumed) firmer physical meaning has been (more or149

less arbitrarily) attributed. Subsequently discrete models were introduced as an ancillary tool for getting effective150

calculation algorithms: variational principles for continuum models were therefore deduced as "theorems" (and151

it did not seem to many an oxymoron to talk about the theorem (sic!) of the principle of virtual work) to be used152

for introducing the continuum model discretization. Actually, as the historical circumstances were changed,153

discrete models had become the most suitable ones for supplying quantitative predictions, as von Neumann154

machines are able to calculate the solution of algebraic equations having millions of unknowns.155

This shift on the role given, in the passage from a cultural paradigm (in the sense of Kuhn [70]) to156

another paradigm, to the same concept is not new in the history of science. One concept may be considered157

as "fundamental" by a school and "ancillary" in another one and vice versa. We postpone a careful study of158

these cultural phenomena to further investigations as it seems that play a major role also in mechanical sciences.159

Simply we want to recall here (see e.g. [71]) that in Hellenistic science a predictive model describing the160

motion of planets seems to have been formulated. The main tool for calculating these motions were some161

mechanisms (like Antikythera Machine see [72]) whose functioning mechanism were epicyclic gears: Ptolemy,162

being a practical astronomer, instead of teaching the underlying astronomic theory decided to describe simply163

the theory needed for constructing the relative calculation ancillary tools. As a consequence, during Middle164

Age, the astronomers believed to the existence of several heavens around the Earth, the closer ones embedding165

the "moving planets" which were supported by moving structures and the most distant one being constituted166

by a fixed vault on which also fixed stars were blocked. The cultural shift was again of the same nature: those167

concepts which had been conceived as secondary ones needed for supplying calculating tools did eventually168

become the most fundamental ones, assumed as the basis of the whole theoretical speculation.169

1.3. Structure of the paper170

In Section 2 the Lagrangian finite dimensional model proposed and studied in this paper is introduced. The171

spirit of Piola, when he describes the molecular mechanical system which he places at the foundation of172

his presentation, is faithfully followed. A lattice of positions is defined which characterizes the reference173

configuration of all particles which constitute the system. Lagrangian mechanics formalism is then assumed: a174

deformation energy is associated to the set of interaction springs introduced and the problem of its minimization175

is presented.176

In Section 3 a solution strategy of the aforementioned minimization problem is presented, and all the177

details needed for its eventual reproduction are given.178

In Section 4 some numerical solution are shown of some equilibrium problems related to engineering ap-179

plications. In particular are presented the solutions relative to standard extension bias test with the correspondent180

reactive force distributions and resultants induced by imposed displacements on constraints.181

The reader will remark that in the dedicated literature the determination of reactive forces for bias test182

is considered somehow difficult. Moreover some equilibrium shapes are shown in presence of displacements183

imposed on single fibers and in the test of extraction of a fiber.184

In Section 5 the performances of the presented numerical model is confronted with those shown in [2].185

The here presented code needed an ad hoc programming activity while previously the code was obtained by186

using a standard FE integrator (COMSOL). As expected the convergence capacities (to solution having a correct187

physical interpretation) of the newly presented model are improved remarkably. Of course, with FE codes one188

can improve the results related to higher gradient continuum theories using newly developed numerical tools189

with an intrinsic high continuity as done e.g. in [73, 74, 75, 76, 77, 78, 79, 80, 74]; however herein we want to190

explore the potential of the proposed discrete model whose features is based on the microstructure properties of191

the system under study and compare its performances with models already tested and verified.192

In the conclusions the future immediate research perspectives are listed and some major possible modeling193

improvements are delineated.194
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2. Hencky-Piola-type model for planar pantographic sheets195

As discussed in the introduction, among the many modeling possibilities, we have chosen, in this paper, to196

introduce a finite dimensional Lagrangian model for describing pantographic planar sheets.197

This model is Piola-type as we consider a finite number of material particles occupying, in a reference198

configuration, the nodes of a rectangular square cell lattice having length ε (see Figure 2, where it was assumed199

that n f = 10 square cells constitute the shorter side of the rectangular lattice).200

The lattice is, roughly speaking, constituted by two arrays of fibers which are oriented at an angle π/4 and201

−π/4 with respect to x1 axis: we will call array 1 that at the angle π/4 and array 2 the other one.202

Each of introduced material particles model the pivots which in the 3D printed specimen interconnect the203

two considered arrays of beams, see Fig. 1.204

This model is Lagrangian because we introduce the reference position of the generic i-th material particle205

via the position Pi and we consider as Lagrangian kinematical parameter for each of them the actual position,206

denoted by pi.207

This model is Hencky-type because, as done in his pioneering work (see [1, 6, 7, 8]) for Elasticae, we208

model the elastic interactions among the particles by means of rotational and extensional springs such as those209

represented in Figure 3, so that we assume to need pairwise and triple particles interactions.210

Our conjecture is that it is formulated, in this way, a discrete mathematical model which is able to supply211

an accurate prediction of the structural response in the regime of (very) large displacements.

ℓ

3ℓ

ε

π/4 π/4

x1, u1

x2, u2

Figure 2. Pantographic lattice.

212

The modeling procedure is to be completed by defining the deformation energy of each spring element.213

The problem of determining equilibrium configurations is successively solved by imposing the stationarity of214

total potential energy following the algorithm described in Section 3.215

Our Ansatz concerning deformation energies energy can be summarized as follows:216

Deformation energy for axial springs. Each axial spring stores elastically an energy which depends quadrat-217

ically on its length variation:218

w0 =
1
2

r0

(
‖p j − pi‖ − ε

)2
, (1)

where pi and p j are the actual position, see Figures 3 and 4, of the nodes connected by the considered219

extensional spring whose rigidity is denoted r0.220

Deformation energy for bending springs. Three consecutive particles along array 1 or 2 interact via a221

rotational spring whose stored energy depends on the angle formed by the two consecutive segments222

connecting, in the actual configurations, the particles’ positions:223

w1,2 = r1,2
(
cos γ1,2 + 1

)
, (2)
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pantographic structures: numerical comparison with second gradient continuum models" ZAMP 67: 85 DOI
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Pre-
Prin

t
Hencky-type discrete model for pantographic structures: numerical comparison with second gradient continuum

models 7

r0 r0

r0

r0
r1

r2

r3

x1, u1

x2, u2
i1

j1 = j2

k1i2

k2

I

II

III

IV
ε

Figure 3. Discrete mechanical model.

x1, u1

x2, u2

ε
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P j

P j
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p j
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p j

‖p j − pi‖

Pk

pk

γ

Pk2

Pk1

γ3

pk2

pk1

Figure 4. Kinematics of extensional, bending and shear springs .

where224

cos γ1,2 =
‖p j1,2 − pi1,2‖

2 + ‖pk1,2 − p j1,2‖
2 − ‖pk1,2 − pi1,2‖

2

2‖p j1,2 − pi1,2‖ ‖pk1,2 − p j1,2‖
, (3)

and pi1,2 , p j1,2 and pk1,2 are the ordered actual position of the three aligned nodes along array 1 or 2 and r1,225

see Figures 3 and 4, and r2 denote the rigidities of the corresponding rotational springs.226

The deformation energies for springs at the nodes where displacement is imposed need the specifica-227

tion of suitable boundary conditions. In particular if the short sides of the lattice are constrained to be fixed228

on two rigid bodies and the bending springs are connected with material segments of these bodies then the229

previous formulas obviously supply the needed relations when setting (if the constrained node j has not230

the subsequent node k in the interior of the lattice)231

pk1,2 = Pk1,2 + Rk1,2 ,

or (if the constrained node j has not the preceding node i in the interior of the lattice)232

pi1,2 = Pi1,2 + Ri1,2 ,
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where Rk1,2 or Ri1,2 represent the corresponded rigid displacement.233

Deformation energy for shear springs. Via the interconnecting pivots the two arrays of fibers interact234

elastically: if the actual angle between the two arrays is γ3 we assume that the stored energy depends235

quadratically on the difference
(
γ3 −

π
2

)
236

w3 =
1
2

r3

(
γ3 −

π

2

)2
, (4)

where (see Figures 3 and 4)237

cos γ3 =
‖p j1 − pk2

‖2 + ‖pk1 − p j1‖
2 − ‖pk1 − pk2‖

2

2‖p j1 − pk2
‖ ‖pk1 − p j1‖

, (5)

if p j1 and pk1 , pk2
are the actual position of the nodes relative to the rotational spring of rigidity r3 connecting238

array 1 with array 2. Remark that we assume to have one of such shear springs also in the quadrants II, III239

and IV .240

The strain energy defined for each kind of introduced springs supply a Hencky-type model for the241

pantographic sheet and allows us to easily define the total strain energy by simply summing each contribution.242

In order to have a complete solution of the considered equilibrium problem, displacements and forces243

or couples exerted by each spring, a step-by-step procedure was implemented to reconstruct the complete244

equilibrium path of the pantographic sheet, as will be described in detail in the following Section 3.245

3. The solution algorithm246

We collect the nodal displacements in the lattice in the vector d in order to write the total energy of the247

pantographic structure in the form:248

W(d) =
∑

e

w0 + w1 + w2 + w3 − Lext , (6)

where e ranges on all the spring, extensional, bending and shear, and Lext is the work of the external loads and249

all quantities on the RHS depend on the variable d.250

The equilibrium problem which we want to consider is a mixed one: we assume that the displacements of251

some particles are imposed and that some externally conservative forces are applied to the remaining particles.252

Let us therefore decompose d into the pair composed by two vectors: the imposed displacements ua and the free253

displacements u. For notational aims, we will reorder d to get the decomposition254

d = (u,ua) .

Because of our assumption we have that Lext depends only on u.255

The nonlinear system of equilibrium equations is obtained by imposing that the first variation of W vanish:256

s(u) − p(u) = 0 , (7)

where p(u) is the vector which collects the Lagrangian components of external forces (which may be assumed to257

be dead loads, for instance, so that p becomes independent of u) and s(u) is the vector of the internal forces258

(called also, in the context of structural mechanics, structural reaction), as defined by:259

s(u) =
dW
du

, p(u) =
dLe

du
. (8)

The tangent stiffness matrix is defined as the derivative of the structural reaction s(u) with respect to the260

displacements vector u, in formulas:261

KT (u) =
ds(u)

du
=

d2W
du2 , (9)

If the external load potential depends on a parameter µ and the imposed displacements depend on a262

parameter λ (as in the case of quasi-static loading and imposed displacements) then the equation (7) becomes:263

r(u, λ, µ) := s(u,ua(λ)) − p(u, µ) = 0 .

Please cite this document as: E. Turco, F. dell’Isola, A. Cazzani, N.L. Rizzi "Hencky-type discrete model for
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An equilibrium manifold is defined as a surface u(λ, µ) such that264

r(u(λ,µ), λ,µ) = 0 . (10)

For example, in the case of an external dead load, we will have that p is independent of u, so that if265

assuming a linear dependence on µ, we can set:266

p(µ) = p0 + µp̂ , (11)

Moreover when the equilibrium equation (7) can be linearized in the neigborhood of the solution u0 relative267

to the dead load p0 then, as s(u0) − p0 = 0 and setting (u − u0) =: ∆u we have268

0 = s(u (µ)) − p0 − µp̂ ' s(u0) − p0 + KT (u0)∆u−µp̂ = KT (u0)∆u−µp̂ ,

from which we deduce269

∆u =µ (KT (u0))−1 p̂ , (12)

which will be of use in the sequel.270

The solution of the nonlinear equilibrium system of equations (10) can be found by means of an incremental-271

iterative procedure based on the Newton–Raphson scheme.272

As we will limit ourselves to the case of equilibrium paths depending only imposed displacements we273

introduce here only the parameter λ. Starting from an estimated point of the equilibrium path (λ j,u j) verifying274

the condition275 ∥∥∥r(u j, λ j)
∥∥∥≤ η , (13)

i.e. with a pair being an η−approximate solution of the equilibrium condition (7), the iterative scheme, once the276

step ∆λ is fixed, is obtained by constructing the η−approximate solution (u j+1 =: u j + ∆u j , λ j+1 := λ j + ∆λ) by277

using a sub-iteration scheme for calculating ∆u j.278

This sub-iteration is specified by the following steps279

1. We calculate so-called residual nodal forces relative to the initial tentative value ∆u j,0

(
u j, λ j

)
= 0280

r(u j, λ j + ∆λ) =: p j,0 .

2. Once calculated the h-th approximation
∑h

l=0 ∆u j,l

(
u j, λ j

)
of the increment ∆u j we calculate the corre-281

sponding residual282

r(u j +

h∑
l=0

∆u j,l

(
u j, λ j

)
, λ j + ∆λ) =: p j,h .

3. If the inequality283 ∥∥∥p j,h

∥∥∥ > η ,
is verified we set, on the basis of (12) and assuming µ = −1 (this is equivalent to try to find the solution by284

"imposing" fictitious external dead loads being opposed to the calculated residuals)285

∆u j,h+1 = −

∂r(u j +
∑h

l=0 ∆u j,l

(
u j, λ j

)
, λ j + ∆λ)

∂u


−1

p j,h ,

and continue the sub-iteration.286

4. If the inequality287 ∥∥∥p j,h

∥∥∥ ≤ η ,
is verified, then we set288

∆u j :=
h∑

l=0

∆u j,l

(
u j, λ j

)
.

and we stop the iteration.289
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4. Some numerical results290

The geometrical parameters considered to model the pantographic structure are:

` = 70 mm ,

ε =

√
2

2
`

n f
,

where n f is the number of fibers which intercept the smaller side of the lattice, e.g. in Figure 2 n f = 10 and291

consequently ε ≈ 4.95 mm.292

The mechanical parameters of the lattice are the rigidities of the springs for which the following values are
used:

r0 = 134 N/mm ,

r1 = r2 = 19.2 Nmm ,

r3 = k̄3ε
2 =

3.90
4

Nmm .

4.1. Standard extension bias test293

This test is characterized by assuming, see again Figure 2:

u1(0, x2) = u2(0, x2) = u2(3`, x2) = 0 ,
u1(3`, x2) = 0.8 ` = 56 mm .

In Figure 5 the deformation of the lattice, compared with its reference position (in grey), belong with294

the color-bar which indicates the level of the internal forces on the extensional springs for the case n f = 10295

is reported. For the same test, Figure 6(a) shows the global reaction of constraints on the side x1 = 3`, more296

precisely the x1-component in blue and the x2-component in red, as function of the parameter λ ∈ (0, 1) which297

guides the imposed displacements from 0 to u1(3`, x2). Figure 6(b) shows the discrete density r(x2) of the global298

reaction on x1 = 0 when λ = 1 (the x1-component in blue and the x2-component in red) and Figure 6(c) shows299

the axial Ea(λ), bending Eb(λ) and shear Es(λ) energies. Figure 7 reports, always for the case n f = 10, a plot300

which shows the elongations of the extensional springs which lie on the line x2 =
√

2ε + x1.301

The same test was performed by using a second gradient model, see Figure 8, 9 and 10 which show the302

good agreement between the discrete and the continuum models. This is more evident when the numerical results303

of the Hencky–type model for a pantographic structure with n f = 20 are considered, see Figures 11 and 12.304

4.2. Bending-extension test305

In this case, the imposed displacements are:

u1(0, x2) = u2(0, x2) = u2(3`, x2) = 0 ,

u1(3`, x2)) = 80 −
5
7

x2 mm ,

which produce, for the case n f = 10, the deformation plot reported in Figure 13 along with the color-bar of the306

internal forces on extensional springs. Figure 14, as for the previous numerical test, reports the global reaction307

R(λ), its density r(x2) and the strain energies subdivided in the extensional, bending and shear parts.308

Figures 15 and 16 show, for the same test, the results obtained from a second gradient model confirming309

the reliability of the discrete model results.310

4.3. Shear-extension test311

Shear-extension test is defined by the following displacements:

u1(0, x2) = u2(0, x2) = 0 ,
u1(3`, x2)) = 0.4 ` = 28 mm ,

u2(3`, x2) = ` = 70 mm ,
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Figure 5. Bias test for n f = 10: reference configuration (grey), deformation and color-bar of
the internal forces on extensional springs.

which produce, for the case n f = 10, the deformation plot reported in Figure 17 along with the color-bar of the312

internal forces on extensional springs. Analogously, Figure 18 reports the global reaction R(λ), its density r(x2)313

and the strain energies subdivided in the extensional, bending and shear parts.314

4.4. Extraction test315

The last numerical test is characterized by the following imposed displacements:

u1(0, 0) = u2(0, 0) = u1(0, `) = u2(0, `) = 0.0
u1(3`, 0)) = −u2(3`, 0)) = 0.8` = 56 mm ,

u1(3`, `)) = u2(3`, ell)) = 0.8` = 56 mm ,

which produce, for the case n f = 10, the deformation plot reported in Figure 19 along with the color-bar of the316

internal forces on extensional springs. Finally, Figure 20, reports the global reaction R(λ), its density r(x2) and317

the strain energies subdivided in the extensional, bending and shear parts.318

5. Conclusions and future perspectives319

This paper is intended to supply the designing tool for an extensive campaign of measurements to be performed320

on pantographic structures, in planar deformations.321

The features of the code which is elaborated and described here are promising:322
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1. it is robust: its applications to fiber extraction test show that it can be applied in limit cases; the reader323

will remark that in this case first gradient continuum mechanics cannot be applied and that higher gradient324

continua require more complex FEM tools;325

2. the constitutive parameters characterizing the model are only five: two extensional, two bending moduli to326

which one has to add a single shear modulus;327

3. it allows for a rather intuitive micro-macro identification procedure, so that it is possible to easily identify328

the aforementioned moduli in terms of the material properties constituting the pantographic sheet and in329

terms of the geometric properties of the beam lattice constituting them.330

The results presented here open interesting perspectives in different contexts:331

i) first of all the supply a strong motivation to the study of several complex mathematical problems, especially332

in homogenization theory; indeed the methods presented in [81] need to be applied to the present context333

to prove that the correct homogenized model is indeed the second gradient model presented in [2]; this334

results will be of use when, in perspective, the pantographic structure will be constituted by nanofibers, so335

that at the smaller scale the considered system will have several millions of degrees of freedom, making336

the presented discrete approach not applicable;337

ii) secondly we have obtained an efficient predictive and designing tool, when the pantographic microstructure338

has not a too small characteristic length scale; it has been proven that with several thousands material339

particles the code is producing reliable results in very limited times; as a consequence we plan to use it to340

direct the 3D printing of many specimen and use the presented code for predicting their behavior;341

iii) finally we have the motivation to optimize the presented code and generalize it to the study of pantographic342

structures more general than those considered here; in particular we will generalize it to 2D pantographic343

structures moving in the space, or to more general 3D pantographic materials.344

Some future developments concern contact problem between fibres, see for instance [82, 83, 84]; although345

stability problem are not explicitly considered in this paper the extension to these cases could be based on346

the following papers [85, 86, 87, 88, 89, 90]; pantographic structures with initially curved beams can take the347

advantages of the theory of the symmetry group treated in [91, 92]348

A final remark is needed: we do not manage to take a clear position in the "atomistic" (or discrete) versus349

"continuum" (or infinite dimensional) eternal contraposition. Also when renouncing to discuss about the ultimate350

nature of matter and willing to limit one-self to the more utilitarian perspective of the choice of the most effective351

calculation tool. Indeed, while in the presented context discrete models simply seem more suitable, we have352

presented in the previous point i) a perspective in which the synthetic approach given by continuum higher353

gradient models maybe more fruitful. Actually when the set of material particles is very large, also rotational and354

extensional spring correspondingly increase in number, and the intermediate step represented by the introduction355

of a continuum model may represent a clever tool for capturing in a synthetic way "global" behavior of large356

subgroups of particles and springs.357
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Figure 6. Bias test for n f = 10: global reaction of constraints R(λ) (a), its density r(x2) when
λ = 1 (b) and strain energies (c).
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Figure 7. Bias test for n f = 10: spring elongation along x2 =
√

2ε + x1.
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Figure 8. Bias test performed by using a second gradient model: reference configuration
(grey), deformation and color-bar of the strain energy.
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Figure 9. Bias test performed by using a second gradient model: global reaction of constraints
R(λ) (a), its density r(x2) when λ = 1 (b) and strain energies (c).
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Figure 11. Bias test for n f = 20: reference configuration (grey), deformation and color-bar of
the internal forces on extensional springs.
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Figure 12. Bias test for n f = 20: global reaction of constraints R(λ) (a), its density r(x2) when
λ = 1 (b) and strain energies (c).
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Figure 13. Bending-extension test for n f = 10: reference configuration (grey), deformation
and color-bar of the internal forces on extensional springs.

Please cite this document as: E. Turco, F. dell’Isola, A. Cazzani, N.L. Rizzi "Hencky-type discrete model for
pantographic structures: numerical comparison with second gradient continuum models" ZAMP 67: 85 DOI
10.1007/s00033-016-0681-8



Pre-
Prin

t
E. Turco, F. dell’Isola, A. Cazzani, N.L. Rizzi 24

0 0.2 0.4 0.6 0.8 1

λ

-50

0

50

100

150

200

R
(λ

)

(a) x1-component in blue and x2-component in red.

0 7 14 21 28 35 42 49 56 63 70

x
2

-80

-60

-40

-20

0

20

40

60

80

r(
x

2
)

(b) x1-component in blue and x2-component in red.

0 0.2 0.4 0.6 0.8 1

λ

0

200

400

600

800

1000

1200

1400

E
(λ

)

E
a

E
b

E
s

(c) axial, Ea (blue), bending, Eb (red), and shear, Es (green), strain
energy vs. λ = ū/ūmax.

Figure 14. Bending-extension test for n f = 10: global reaction of constraints R(λ) vs. λ =

ū/ūmax (a) and its density r(x2) when λ = 1 (b) and strain energies (c).
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Figure 15. Bending-extension test by using a second gradient model: reference configuration
(grey), deformation and color-bar of the strain energy.
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Figure 16. Bending-extension test by using a second gradient model: global reaction of
constraints R(λ) (a), its density r(x2) when λ = 1 (b) and strain energies (c).
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Figure 17. Shear-extension test: reference configuration (grey), deformation and color-bar of
the internal forces on extensional springs for n f = 10.
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Figure 18. Shear-extension: global reaction of constraints R(λ) vs. λ = ū/ūmax (a), its density
r(x2) when λ = 1 (b) and strain energies for n f = 10 (c).
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Figure 19. Extraction test for n f = 10: reference configuration (grey), deformation and
color-bar of the internal forces on extensional springs.
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Figure 20. Extraction test for n f = 10: global reaction of constraints R(λ) vs. λ = ū/ūmax (a),
its density r(x2) when λ = 1 (b) and strain energies (c).
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