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The theoretical results relevant to the vibration modes of Timoshenko beams are here used as benchmarks for assessing the
correctness of the numerical values provided by several finite element models, based on either the traditional Lagrangian
interpolation or on the recently developed isogeometric approach. Comparison of results is performed on both spectrum
error (in terms of the detected natural frequencies) and on the l2 relative error (in terms of the computed eigenmodes): this
double check allows detecting for each finite element model, and for a discretization based on the same number of degrees-
of-freedom, N , the frequency threshold above which some prescribed accuracy level is lost, and results become more and
more unreliable. Hence a quantitative way of measuring the finite element performance in modeling a Timoshenko beam
is proposed. The use of Fast Fourier Transform is finally employed, for a selected set of vibration modes, to explain the
reasons of the accuracy decay, mostly linked to a poor separation of the natural frequencies in the spectrum, which is
responsible of some aliasing of modes.
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1 Introduction1

Several structural models of beams have been proposed in the last two centuries. In particular, four theoretical models can2

be considered to be of paramount importance for standard structural mechanics applications, when there is no coupling be-3

tween transversal and longitudinal vibrations and second- or higher-order effects can be neglected. The Euler-Bernoulli [83]4

model takes into account bending stiffness and transversal inertia: it is very simple but effective in case of thin beam with5

large span/depth ratio. Bresse [16] and, separately, Lord Rayleigh [85] improved this model considering also rotary iner-6

tia, but not shear stiffness. The dual model, labeled shear beam, takes into account shear stiffness, but not rotary inertia.7

Finally the idea of a beam model capable of taking into account both shear stiffness and rotary inertia was introduced by8

Timoshenko in 1921 [86] and 1922 [87] and since then it is associated to his name. An interesting comparison among9

the dynamics behaviors of these models can be found in [50]; a clarifying spectral analysis of coupled Timoshenko and10

Euler-Bernoulli model is presented in [11]. A thorough critical review of these beam models has been recently proposed11

by Elishakoff and his coworkers [41].12

Often, it is not possible to obtain closed-form solutions for beam vibration problems; in such cases numerical approaches13

become very important. The development of these methods is still an active area of research, and interesting examples of14

new approaches are presented in [77].15

One of the most effective idea of the last ten years is the so-called isogeometric analysis (IGA). It was introduced16

by Hughes et al. in [53] and is an isoparametric finite element approach based on Non-Uniform Rational Basis Splines17

(NURBS) shape functions. Its main characteristic is the use of the same geometric description obtained by computer aided18

design (CAD) techniques; for this reason mesh refinement is possible without going back to the CAD model.19

In order to test the accuracy of the above mentioned numerical solution of free vibrations problems, the evaluation of20

the complete frequency spectrum corresponding to an N degrees-of-freedom finite element model is an effective idea.21

For finite element analysis, early examples have been proposed in [55] and [52]. Similar frequency spectra have been22
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constructed for the isogeometric finite element method in [31] and [78]. In these papers the free vibrations of elastic rods,23

Euler-Bernoulli beams, elastic membranes, Kirchhoff plates, thin circular plates and stiffened cylindrical shells have been24

investigated, with an interesting comparison between standard and isogeometric finite elements.25

Isogeometric models have produced interesting results for several problems of different kind. Ref. [57] presents a vibra-26

tion analysis of Timoshenko beams, with particular emphasis on refinement schemes. Thanks to their effective geometric27

description, IGA models have proven to be powerful in case of curved beam for both static ( [21], [20], [22], [27]) and28

dynamic problems (see [58] for the Timoshenko beam model, and [89] for the Euler-Bernoulli one).29

Free vibration analysis of composite beams is another trendy topic in computational mechanics: as meaningful examples,30

the review work [49], and the analysis presented in [48] should be considered. Isogeometric analysis has proven to be very31

accurate and convenient also in this case, see e.g. the work of Luu et al. [59].32

Control problems have become very popular nowadays, with particular reference to beam structures and related models.33

For example in [51] a FEM approach for an optimal control problem involving Timoshenko beams is presented, while the34

opportunities offered by piezoelectric materials are depicted in [65].35

As far as the authors know the complete frequency spectrum for free vibrations of Timoshenko beams has not been36

studied yet; in particular it seems that a thorough comparison between isogeometric and standard finite elements for this37

case has not been presented in the literature. For this reason this paper is devoted to this issue, with particular attention to38

new methods for evaluating the accuracy in eigenmodes estimation.39

The rest of the paper is organized as follows: in Section 2 the governing equations of the dynamics for a straight40

Timoshenko beam are presented (see for details [23], [24]). Discussion is then focused on the eigensolutions: it is shown41

that the spectrum is composed of two parts divided by a transition frequency which depends only on the ratio between42

shear stiffness and rotary inertia. Depending on the applied boundary conditions this frequency may be, or may be not,43

part of the spectrum. Then, in Section 3 modal analysis for the single-span Timoshenko beam model is presented for two44

representative boundary conditions cases, namely the simply-supported and the doubly clamped beam. In Section 4 the45

finite element models for Timoshenko beam, based on both the traditional Lagrangian formulation and the isogeometric46

one are presented in a quite general form. Next, in Section 5, the numerical frequency spectra produced by these finite47

element models are compared with those resulting from theoretical predictions; in this way a comparison in terms of the48

predicted and computed frequencies is presented and discussed, similarly to what has been already done, in the literature,49

for the Euler-Bernoulli beam model. In addition, the accuracy of approximating the eigenmodes is addressed by comparing50

the relative error between theoretical and computed vibration shapes in a suitable l2 discrete norm. A Fourier analysis has51

been also employed to investigate the accuracy of the eigenmodes produced by the discrete models. Finally in Section 652

some conclusions are drawn; future developments and possible applications of the present research are exemplified.53

2 The governing equations of dynamics for Timoshenko beams54

For a uniform, straight Timoshenko beam, the constitutive equations in terms of the generalized internal forces, T and M55

(which stand respectively for the transversal shear force and the bending moment), taking into account that G and E are56

shear and Young’s moduli, κ, A and I the shear-correction factor, the area and the area moment of inertia of the beam57

cross-section, read58

T = GκA

(
∂v

∂x
+ φ

)
, M = EI

∂φ

∂x
. (1)

In Eq. (1) the generalized components of beam displacement, v = v(x, t) and φ = φ(x, t), appear; they are respectively59

the transversal displacement of the centroid and the cross-section rotation, which depend (when dynamic problems are60

considered) on both the abscissa, x, and time, t. The adopted positive convention for internal forces and generalized61

displacement components are shown in Figure 1.62

Linear and angular momentum balance equations, written in terms of kinematic variables alone, yield these coupled63

equations of motion64

GκA

(
∂2v

∂x2
+
∂φ

∂x

)
− ρA∂

2v

∂t2
= 0, (2)

EI
∂2φ

∂x2
−GκA

(
∂v

∂x
+ φ

)
− ρI ∂

2φ

∂t2
= 0. (3)

In Eqs. (2)–(3) ρ is the density of the material constituting the beam.65
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Fig. 1 Timoshenko beam element showing the assumed conventions for generalized displacements (v, φ) and internal forces (T , M ).

This system of two second-order partial differential equations (PDEs) can be conveniently reduced to a unique fourth-66

order PDE. The interested reader can find all relevant details in the companion paper [23]; here for conciseness’ sake only67

the essential results will be presented. Indeed from Eq. (2) it follows68

∂φ

∂x
=

ρ

Gκ

∂2v

∂t2
− ∂2v

∂x2
, (4)

and by proper use of multivariate differential calculus, φ can be eliminated in Eq. (3). The resulting fourth-order PDE in69

terms of v alone is70

EI
∂4v

∂x4
− ρI

(
1 +

E

Gκ

)
∂4v

∂t2∂x2
+ ρA

∂2v

∂t2
+
ρ2I

Gκ

∂4v

∂t4
= 0, (5)

which is the equation, first established by Timoshenko [86] in 1921, when he was developing a new beam theory able to71

deal with both shear strain and rotary inertia. Similarly, if v is eliminated in Eq. (3), a fully-decoupled fourth-order PDE in72

terms of φ alone is obtained73

EI
∂4φ

∂x4
− ρI

(
1 +

E

Gκ

)
∂4φ

∂t2∂x2
+ ρA

∂2φ

∂t2
+
ρ2I

Gκ

∂4φ

∂t4
= 0. (6)

2.1 Solutions of the equations of motion74

Solutions to Eqs. (5)–(6) are sought such that independent variables, viz. x and t, are separated. In particular it is assumed75

that time-dependence is of an harmonic kind, so that free vibrations are possible. Thus one finds76

v(x, t) = V (x) exp(iωt), φ(x, t) = Φ(x) exp(iωt), (7)

where i =
√
−1 is the imaginary unit; then, if primes are used to denote derivatives with respect to x, it follows from77

Eq. (5) (similar expressions follow from Eq. (6), too)78

V ′′′′ +
ρω2

E

(
1 +

E

Gκ

)
V ′′ +

ρω2

E

(
ρω2

Gκ
− A

I

)
V = 0. (8)

This is a fourth-order ODE with constant coefficients, whose solutions are to be found in the form of exponential functions79

V (x) = exp(λ?x), where, in general, λ? ∈ C.80

In particular, the characteristic equation associated to Eq. (8) is81

λ?4 +
ρω2

E

(
1 +

E

Gκ

)
λ?2 +

ρω2

E

(
ρω2

Gκ
− A

I

)
= 0, (9)

i.e. a biquadratic algebraic equation, whose independent variable is λ?. The squared roots of Eq. (9) are therefore82
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λ?1
2 =− ρω2

2E

(
1 +

E

Gκ

)
+

√
ρ2ω4

4E2

(
1− E

Gκ

)2

+
ρω2A

EI
, (10)

λ?2
2 =− ρω2

2E

(
1 +

E

Gκ

)
−

√
ρ2ω4

4E2

(
1− E

Gκ

)2

+
ρω2A

EI
. (11)

2.2 Analysis of the eigensolutions83

While in Eq. (11) it is always λ?2
2 < 0, the sign of the other root, λ?1

2, given by Eq. (10) depends on the value of ω2; there84

is a special value of ω2, which correspond to a transition frequency,85

ω̃2 =
GκA

ρI
, (12)

such that the value of λ?1
2 changes from positive to negative. As a consequence, when solving Eq. (9), the following three86

cases must be distinguished.87

Case 1. ω2 < ω̃2.88

For this range of angular frequency, it results: λ?1
2 > 0 and λ?2

2 < 0. Hence, Eq. (9), has two real roots, namely ±
√
λ?1

2,89

and two purely imaginary conjugate roots, viz. ±i
√
−λ?2

2.90

Case 2. ω2 = ω̃2.91

In the present case, it follows: λ?1
2 = 0 and λ?2

2 < 0. In particular,92

λ?2
2|ω2=ω̃2 = −λ̃22, (13)

with93

λ̃2 =

√
A

I

(
1 +

Gκ

E

)
> 0. (14)

Consequently there is a null real root, whose multiplicity is two, and one couple of imaginary conjugate roots, namely again94

±i
√
−λ?2

2.95

Case 3. ω2 > ω̃2.96

This time it results λ?1
2 < 0 and λ?2

2 < 0.97

As a consequence, all four roots of Eq. (9) are purely imaginary. In particular, there are two couples of conjugate roots,98

i.e. ±i
√
−λ?1

2 and ±i
√
−λ?2

2.99

2.3 The eigenmodes of Timoshenko beams100

The complete solution to Eq. (8) and the corresponding equation which provides Φ(x) can be computed in terms of real-101

valued quantities only; results will be presented separately for the three cases outlined above. The relevant details are still102

given in [23].103
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Case 1. ω2 < ω̃2.104

The eigenfunctions in terms of V (x) and Φ(x) are105

V (x) = A1 cosh λ̂1x+A2 sinh λ̂1x+A3 cosλ2x+A4 sinλ2x, (15)

Φ(x) = − α̂1

λ̂1
(A2 cosh λ̂1x+A1 sinh λ̂1x) +

α2

λ2
(A4 cosλ2x−A3 sinλ2x). (16)

where the following proper (λ2) and generalized (λ̂1) real-valued wave-numbers apply106

λ̂1 = +

√
λ?1

2 > 0, λ2 = +

√
−λ?2

2 > 0. (17)

In Eq. (16) the following short-hand notation has been adopted107

α̂1 =
ρω2

Gκ
+ λ̂21, α2 =

ρω2

Gκ
− λ22. (18)

Case 2. ω2 = ω̃2.108

The eigenfunctions have, in this case, these expressions109

V (x) = C1 + C3 cos λ̃2x+ C4 sin λ̃2x, (19)

Φ(x) = D1 − ω̃2 ρ

Gκ
C1x−

α̃2

λ̃2
(C3 sin λ̃2x− C4 cos λ̃2x), (20)

where, for the seek of a compact notation, the following definition has been adopted, see Eq. (14)110

α̃2 =
ρω̃2

Gκ
− λ̃22 = −GκA

EI
. (21)

Case 3. ω2 > ω̃2.111

In this last case the eigenfunctions are112

V (x) = E1 cosλ1x+ E2 sinλ1x+ E3 cosλ2x+ E4 sinλ2x, (22)

Φ(x) =
α1

λ1
(E2 cosλ1x− E1 sinλ1x) +

α2

λ2
(E4 cosλ2x− E3 sinλ2x), (23)

where the two independent, real-valued wave-numbers are given by113

λ1 = +

√
−λ?1

2, λ2 = +

√
−λ?2

2. (24)

and the following short-hand notation has been adopted114

α1 =
ρω2

Gκ
− λ21, (25)

while α2 is still defined by Eq. (18)2.115
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3 Modal analysis of Timoshenko beams116

The results of Section 2 show that the complete spectrum consists of two portions, none of which can be disregarded.117

In the first part of the spectrum, which is relevant to natural frequencies ωn < ω̃, the eigenmodes are given, in general,118

by a linear combination of hyperbolic and trigonometric functions, see Eqs. (15) and (16). Only for particular choices of119

boundary conditions (BCs) it is possible to annihilate the contribution of hyperbolic functions: this happens, for instance,120

in the case of a simply-supported beam.121

In the second part of the spectrum, corresponding to natural frequencies ωn > ω̃, modal shapes are instead given by a122

linear combination of trigonometric functions depending on two different wave-numbers, λ1 and λ2, as Eqs. (22) and (23)123

show. In general, each of these eigenmodes involves both λ1 and λ2, since wave-numbers are entwined (or even entangled);124

only for particular cases, e.g. the simply-supported beam, the contributions of wave-numbers become decoupled.125

Moreover, even the transition frequency, ω̃, might belong to the spectrum, and hence this condition has to be taken126

into account, too. If the transition frequency is part of the spectrum, modal shapes are given by a linear combination of127

trigonometric functions depending on just one wave-number, λ̃2 and of a constant function (for V ), see Eq. (19), or a linear128

combination of trigonometric functions and a complete linear polynomial (for Φ), as Eq. (20) shows.129

In any case, the particular blending of the above-mentioned functions, which provides the actual eigenmode, depends130

on the applied BCs.131

For a single span beam, as long as only transversal vibrations are envisaged, four basic end constraints might be encoun-132

tered: clamped (or fixed: V = 0 and Φ = 0), free (T = 0 and M = 0), guided (T = 0 and Φ = 0), supported (or hinged:133

V = 0 and M = 0). With these four basic constraints it is possible to devise ten different combinations of single-span134

constrained beams, provided that combinations where the constraints are simply reversed (e.g. C-F and F-G) are counted135

only once. These are: clamped-clamped (or doubly clamped, C-C), clamped-free (C-F), clamped-guided (C-G), clamped-136

supported (C-S); free-free (F-F), free-guided (F-G), free-supported (F-S); guided-guided (G-G), guided-supported (G-S);137

supported-supported (or simply-supported, S-S).138

For the sake of simplicity the spectrum has been explicitly computed only for two cases, namely the simply-supported139

(S-S) beam, and the doubly clamped one (C-C), which are somehow representative of all cases which can occur.140

3.1 Material and geometric data141

The case which has been analyzed is the following: a straight uniform and homogeneous beam, whose length is L = 2 m,142

having a square cross-section with side length (either depth or width) B = 0.1 m; as a consequence, the cross-section143

area and area moment of inertia are respectively A = B2 = 0.01 m2; I = B4/12 = 1/120, 000 m4. Moreover, the144

length-to-depth ratio (a rough measure of slenderness) is, in this case, L/B = 20.145

Material density is assumed to be ρ = 8000 kg/m3, Young’s modulus E = 260 GPa, Poisson’s ratio ν = 0.3 so that,146

under the hypothesis of elastic isotropy, the shear modulus is G = 100 GPa. Finally for the shear correction factor the147

standard value κ = 5/6 has been adopted, which is suitable for static analysis of a rectangular cross-section.148

3.2 The case of a simply-supported beam149

For such a beam, whose length is L, the boundary conditions require that150

@x = 0 : V = 0 and M = 0; @x = L : V = 0 and M = 0. (26)

By virtue of Eq. (1)2 the homogeneous condition M(x) = 0 is equivalent to imposing Φ′(x) = 0. It follows then151

1. for ω2 < ω̃2
152

Φ′(x) = −α̂1(A1 cosh λ̂1x+A2 sinh λ̂1x)− α2(A3 cosλ2x+A4 sinλ2x). (27)

2. for ω2 = ω̃2
153

Φ′(x) = −ω̃2 ρ

Gκ
C1 − α̃2(C3 cos λ̃2x+ C4 sin λ̃2x). (28)

Copyright line will be provided by the publisher



Pre-
Prin

t

ZAMM header will be provided by the publisher 7

3. for ω2 > ω̃2
154

Φ′(x) = −α1(E1 cosλ1x+ E2 sinλ1x)− α2(E3 cosλ2x+ E4 sinλ2x). (29)

In what follows, the two parts of the spectrum and the transition frequency will be treated separately.155

3.2.1 First part of the spectrum: ω2 < ω̃2.156

When BCs are substituted into Eqs. (15) and (27), the following homogeneous system of simultaneous linear algebraic157

equations is obtained158

AX = 0, (30)

where the square matrix A and the column vectors X and 0 have these expressions159

A =


1 0 1 0
α̂1 0 α2 0

cosh λ̂1L sinh λ̂1L cosλ2L sinλ2L

α̂1 cosh λ̂1L α̂1 sinh λ̂1L α2 cosλ2L α2 sinλ2L

 , X =


A1

A2

A3

A4

 , 0 =


0
0
0
0

 . (31)

Non-trivial solutions to this matrix problem exist, when the following transcendental equation is satisfied160

sinh λ̂1L sinλ2L = 0. (32)

Disregarding the value λ̂1L = 0 (the only one which annihilates sinh λ̂1L), it must be161

λ2L = k2π, (k2 ∈ N). (33)

This gives, for L 6= 0, λ2 = k2π/L, and yields, when k = k2, the following frequency equation for the simply-supported162

Timoshenko beam163

ω4 − Gκ

ρ

[
A

I
+

(
kπ

L

)2(
1 +

E

Gκ

)]
ω2 +

EGκ

ρ2

(
kπ

L

)4
= 0. (34)

This Eq. (34) was obtained for the first time in [86], and is again a biquadratic one, whose discriminant, ∆?, can be written164

as165

∆? =

(
Gκ

ρ

)2
[(

A

I

)2

+ 2
A

I

(
1 +

E

Gκ

)(
kπ

L

)2

+

(
1− E

Gκ

)2(
kπ

L

)4
]
. (35)

Then, the squared solutions to the frequency equation are166

ω2
1 =

1

2

{
Gκ

ρ

[
A

I
+

(
kπ

L

)2(
1 +

E

Gκ

)]
+
√

∆?

}
, (36)

ω2
2 =

1

2

{
Gκ

ρ

[
A

I
+

(
kπ

L

)2(
1 +

E

Gκ

)]
−
√

∆?

}
, (37)

In the first part of the spectrum, the frequency of vibration corresponding to the n-th mode, ωn, must also comply with167

these restrictions168
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ωn < ω̃ and ωn < ω?k2 , (38)

where the upper bound ω?k2 on the value of ωn, corresponding to a given value of index k = k2,169

ω?k2 =

√
2E

ρ

Gκ

Gκ+ E

(
kπ

L

)
, (39)

descends from the requirement that the root (37) of Eq. (34) is strictly positive. So, the only admissible solutions are of this170

kind171

ωn = ωk2 = +
√
ω2
2(k2), (k2 = 1, . . . , k?2), k?2 = max {k2 ∈ N |ωk2 < ω̃} . (40)

The meaning of Eq. (40) is that the k2-th frequency is given by the positive root of Eq. (37) once the value k2π/L has been172

plugged into Eq. (34).173

Thus the natural frequencies for the first part of the spectrum are completely identified; the corresponding eigenmodes,174

Vn(x) = Vk2(x), Φn(x) = Φk2(x) follow immediately; by assuming, for instance, A4n = 1, one finds175

Vk2(x) = sinλ2x; Φk2(x) =
α2

λ2
cosλ2x, (41)

where integer index k2 belongs to this range: k2 = 1, . . . , k?2 . In Eq. (41) λ2 = λ2(ωk2) and α2 = α2(ωk2) i.e. they assume176

the values corresponding to ωk2 .177

3.2.2 Transition frequency: ω2 = ω̃2.178

When BCs are substituted into Eqs. (19) and (28), a new homogeneous system of simultaneous linear algebraic equations179

similar to Eq. (30) is obtained, but in this case the square matrix A and the column matrix X are given by180

A =


1 1 0 0
ρω̃2

Gκ
α̃2 0 0

1 cos λ̃2L sin λ̃2L 0
ρω̃2

Gκ
α̃2 cos λ̃2L α̃2 sin λ̃2L 0

 , X =


C1

C3

C4

D1

 , (42)

where λ̃2 and α̃2 are given by Eqs. (14) and (21). The coefficient matrix A appearing in Eq. (42) has never rank(A) > 3:181

the homogeneous system of equations is defective, and this is clearly seen, since it does not depend on coefficient D1.182

Therefore, when sin λ̃2L 6= 0, the above-mentioned matrix has precisely rank(A) = 3, and the only non-trivial solutions183

are given by C1 = C3 = C4 = 0 and D1 = D1ω̃ 6= 0; in particular the eigenfunction can be normalized so that D1ω̃ = 1.184

The eigenfunctions at the transition frequency, i.e. when ω = ω̃, are hence185

Vω̃(x) = 0, Φω̃(x) = 1. (43)

The mode described by Eq. (43) consists of a pure-shear vibration mode, where transversal displacement is always zero,186

while section rotation assumes a constant value, which is the same for all cross-sections: this ensures that flexural effects187

do not enter into the play.188

3.2.3 Second part of the spectrum: ω2 > ω̃2.189

In this case, substitution of the BCs into Eqs. (22) and (29), gives a homogeneous system of simultaneous linear algebraic190

equations which is analogous to Eq. (30), but this time with A and X given by191
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A =


1 0 1 0
α1 0 α2 0

cosλ1L sinλ1L cosλ2L sinλ2L
α1 cosλ1L α1 sinλ1L α2 cosλ2L α2 sinλ2L

 , X =


E1

E2

E3

E4

 . (44)

Non-trivial solutions exist, when the following transcendental equation is satisfied192

sinλ1L sinλ2L = 0. (45)

In order to satisfy Eq.(45), it must be193

λ1L = k1π or λ2L = k2π, (k1, k2 ∈ N). (46)

The former occurrence implies194

λ1 = k1
π

L
,

which can be satisfied by an infinite sequence of integer indices, k1 ∈ N. When searching for admissible solutions for λ1,195

one is faced again with the frequency equation for the simply-supported beam, see Eq. (34). But in this second part of the196

spectrum, the frequency of vibration must comply with these restrictions197

ωn > ω̃ and ωn > ω?k1 , (47)

where the lower bound ω?k1 on the value of ωn (corresponding to a given value of index k = k1),198

ω?k1 =

√
2E

ρ

Gκ

Gκ+ E

(
kπ

L

)
, (48)

descends from the requirement that the root (36) of Eq. (34) is strictly positive. So only solutions of this kind are admissible199

ωn = ωk1 = +
√
ω2
1(k1). (49)

As in the previous case, the notation employed in Eq. (49) means that the solution in terms of frequency is given by the200

positive root of ω2
1 , once the value k1π/L has been plugged into it. In Eq. (49) the integer index k1 takes values inside this201

range202

k1 = 1, . . . ,∞. (50)

By virtue of (49) the natural frequency for this first contribution to the second part of the spectrum are completely identified;203

the corresponding eigenmodes, by assuming E2n = 1, are204

Vk1(x) = sinλ1x, Φk1(x) =
α1

λ1
cosλ1x, (51)

where index k1 takes the values defined by the range (50), while in Eq. (51) λ1 = λ1(ωk1) and α1 = α1(ωk1), i.e. they205

assume the values corresponding to ωk1 .206

The latter occurrence (see Eq. (46)) gives207

λ2 = k2
π

L
,
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and provides, see e.g. Eq. (37), the same solution already discussed in Section 3.2.1208

ωn = ωk2 = +
√
ω2
2(k2), (k2 = k?2 + 1, . . . ,∞), (52)

with the only remarkable difference that, being now ω > ω̃, index k2 must take values in a range which extends beyond the209

value k?2 which has been defined in Eq. (40)2. On the other hand, the same upper bound for ωk2 represented by Eq. (39)210

has still to be satisfied: indeed, if it is violated, the root given by Eq. (37) becomes negative.211

As a consequence, if the same normalization is assumed, e.g. E4n = 1, the relevant eigenmodes, provided that index k2212

is in the suitable range defined by Eq. (52), are213

Vk2(x) = sinλ2x, Φk2(x) =
α2

λ2
cosλ2x, (53)

which still coincide with Eq. (41), holding in the first part of the spectrum. This circumstance occurs only in case of a214

simply-supported beam: other combinations of BCs never produce eigenmodes having the same shape in the first and in215

the second part of the spectrum.216

3.3 The case of a doubly clamped beam217

When both ends of the beam, whose length is L, are built-in, there are only kinematic type BCs218

@x = 0 : V = 0 and Φ = 0; @x = L : V = 0 and Φ = 0. (54)

Again, the two parts of the spectrum must be treated separately.219

3.3.1 First part of the spectrum: ω2 < ω̃2.220

When BCs, Eqs. (54) are substituted into Eqs. (15) and (16), this homogeneous system of simultaneous linear algebraic221

equations, which is similar to Eq. (30) is obtained, where matrix A assumes now the expression222

A =


1 0 1 0

0
α̂1

λ̂1
0 −α2

λ2
cosh λ̂1L sinh λ̂1L cosλ2L sinλ2L
α̂1

λ̂1
sinh λ̂1L

α̂1

λ̂1
cosh λ̂1L

α2

λ2
sinλ2L −α2

λ2
cosλ2L

 . (55)

For the existence of non-trivial solutions, the following transcendental equation must be satisfied223

2(1− cosh λ̂1L cosλ2L) +
λ̂1λ2
α̂1α2

(
α2
2

λ22
− α̂2

1

λ̂21

)
sinh λ̂1L sinλ2L = 0. (56)

For the doubly clamped beam it is not possible to arrive at a closed-form solution: natural frequencies ωn have to be224

determined by solving Eq. (56) once the expressions of λ̂1(ω), λ2(ω), α̂1(ω), α2(ω) are plugged into it, producing a225

complicated implicit transcendental equation in ω.226

It is necessary, of course, to restrict the search for solutions to the range 0 < ωn < ω̃, since only in this range Eq. (56)227

is guaranteed to assume real values. If the roots of Eq. (56) are then denoted by ωn, (n = 1, . . . , ñ), with228

ñ = max {n ∈ N |ωn < ω̃} , (57)

the corresponding values of λ̂1, λ2, α̂1, α2 might be usefully denoted by229

λ̂1n = λ̂1(ωn), λ2n = λ2(ωn), α̂1n = α̂1(ωn), α2n = α2(ωn). (58)
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Then, once a solution ωn is found, the corresponding eigenfunctions can be determined. If, for normalizing purposes230

A4n = 1 is assumed, then it follows231

A1n = −σn, A2n = χ̂n, A3n = σn, σn =
χ̂n sinh λ̂1nL+ sinλ2nL

cosh λ̂1nL− cosλ2nL
, χ̂n =

α2nλ̂1n
α̂1nλ2n

. (59)

These values allow completing by Eqs (15) and (16) the construction of the eigenmodes. For a doubly clamped beam, the232

eigenmodes corresponding to the first part of the spectrum consist of all four functions cosh λ̂1nx, sinh λ̂1nx, cosλ2nx,233

sinλ2nx.234

3.3.2 Transition frequency: ω2 = ω̃2.235

When BCs are substituted into Eqs. (19) and (20), a homogeneous system of simultaneous linear algebraic equations similar236

to Eq. (30) is obtained, where237

A =


1 1 0 0

0 0
α̃2

λ̃2
1

1 cos λ̃2L sin λ̃2L 0

−ρω̃
2

Gκ
L − α̃2

λ̃2
sin λ̃2L

α̃2

λ̃2
cos λ̃2L 1

 , X =


C1

C3

C4

D1

 . (60)

The determinant of the coefficient matrix A might be simplified and becomes238

det(A) = (1− cos λ̃2L)− 1

2α̃2

ρω̃2

Gκ
λ̃2L sin λ̃2L (61)

For an assigned value of L, Eq. (61) is completely determined and, in general, it is det(A) 6= 0: this implies that the239

coefficient matrix is non-singular, so that the only solution to Eq. (30) is the trivial one, namely C1 = C3 = C4 = D1 = 0:240

as a consequence both V (x) = 0 and Φ(x) = 0, and it comes out that (in general) the transition frequency is not part of241

the spectrum for the doubly clamped beam, since at such frequency there are no vibrations.242

This situation corresponds to values of the beam length such that it is impossible to place a suitable number of sine/cosine243

waves along the beam span which can, at the same time, satisfy the BCs at both ends of the beam.244

3.3.3 Second part of the spectrum: ω2 > ω̃2.245

As in the already considered cases, substitution of the BCs into Eqs. (22) and (23), gives a homogeneous system of simul-246

taneous linear algebraic equations analogous to Eq. (30), where in the present case247

A =


1 0 1 0

0
α1

λ1
0

α2

λ2
cosλ1L sinλ1L cosλ2L sinλ2L

−α1

λ1
sinλ1L

α1

λ1
cosλ1L −α2

λ2
sinλ2L

α2

λ2
cosλ2L

 , X =


E1

E2

E3

E4

 . (62)

Non-trivial solutions might be shown to exist, provided that the following transcendental equation is satisfied248

2(1− cosλ1L cosλ2L)− λ1λ2
α1α2

(
α2
1

λ21
+
α2
2

λ22

)
sinλ1L sinλ2L = 0. (63)

Again, for the doubly clamped beam it is not possible to arrive at a closed form solution: natural frequencies ωn have to249

be determined by solving Eq. (63) once the expressions of λ1(ω), λ2(ω), α1(ω), α2(ω) are plugged into it, producing a250

complicated implicit transcendental equation in ω.251

Copyright line will be provided by the publisher



Pre-
Prin

t

12 A. Cazzani, F. Stochino, and E. Turco: An analytical assessment of FE and IGA of the whole spectrum of Timoshenko beams

It is necessary, of course, to restrict the search for solutions to the range ωn > ω̃, since only in this range Eq. (63)252

is guaranteed to assume real values. If the roots of Eq. (63) are denoted by ωn, (n = ñ + 1, . . . ,∞), with ñ defined by253

Eq. (57), the corresponding values of λ1, λ2, α1, α2 might be usefully denoted by254

λ1n = λ1(ωn), λ2n = λ2(ωn), α1n = α1(ωn), α2n = α2(ωn). (64)

Once a solution ωn is found, the corresponding eigenfunctions can be determined. If, for normalizing purposes E4n = 1 is255

assumed, then it follows256

E1n = −τn, E2n = χn E3n = τn, τn =
χn sinλ1nL+ sinλ2nL

cosλ1nL− cosλ2nL
, χn = −α2nλ1n

α1nλ2n
. (65)

This allows completing by Eqs. (22) and (23) the construction of the eigenmodes. For a doubly clamped beam all four257

functions cosλ1nx, sinλ1nx, cosλ2nx, sinλ2nx appear in the eigenmodes which are relevant to the second part of the258

spectrum.259

4 Finite element models of Timoshenko beam260

In order to verify the accuracy of the numerical solution in terms of both natural frequencies (the eigenvalues of the dynamic261

problem) and of the vibration modes (the corresponding eigenvectors) the complete frequency spectrum has been computed262

for different finite element models. Considering a given number N of DOFs, the complete discretized frequency spectrum263

consists of N components.264

The approach of studying the complete discretized spectrum has been proposed by Hughes [52][pp. 429–455] for the265

longitudinal vibration of rods and the transversal vibrations of Euler-Bernoulli beams by means of standard Lagrangian266

finite elements. For these classes of structures, the same study has been performed by Reali [78] using an isogeometric267

analysis (IGA) approach. As far as the authors know, the complete frequency spectrum for the Timoshenko beam model268

has not been developed, yet, using finite elements. For this reason, in this paper, four different meshes have been adopted269

with a Non Uniform Rational Basis Spline (NURBS) approximation, and two other models were built using standard Finite270

Elements (FEM) with Lagrangian shape function. The nodal variables are in both cases the transversal displacement and271

the rotation at each control point (for IGA), or at each node, for the standard FEM.272

For the Lagrangian finite element models a commercial code has been chosen (see [33]), by adopting linear and quadratic273

shape functions. In particular the linear (p = 1) model was built by means of 2-noded, elements, labeled B21 in the code274

manual, which take into account both shear strain and rotary inertia. Their shape functions, L11 and L21, (the first index275

denotes the node, the second the polynomial order) are the usual linear functions, defined in the parameter space spanned276

by ξ ∈ [−1, 1] and depicted in Figure 2(a). The mass matrix associated to them is a lumped one.277
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Fig. 2 Lagrangian shape functions for Timoshenko beam finite elements: linear shape functions (a); parabolic shape functions (b).

Copyright line will be provided by the publisher



Pre-
Prin

t

ZAMM header will be provided by the publisher 13

The quadratic (p = 2) model was obtained by means of 3-noded elements, which are also known as B22. In this case,278

shear strain and rotary inertia have been considered, too. Variables are described by means of standard quadratic shape279

functions (L12, L22, L32) which are depicted in Figures 2(b); for this model, however, the mass matrix is a consistent one.280

Stiffness and mass matrices for these elements (B21 and B22) are built by numerical integration adopting 2 Gauss281

points. The eigenvalue extraction algorithm for these models is the well known Lanczos algorithm [56].282

For the IGA models, an in house home-made developed code has been adopted, which is based on a popular computer283

algebra system with extended numerical facilities (viz. [61]) and is built above the GeoPDEs package [34]. The same code284

has been already applied to static problems for curved beams in [20–22, 27].285

For the sake of conciseness only the basic ingredient of isogeometric analysis are provided here: the interested reader286

who needs a more detailed description of B-splines and NURBS approximation is referred to Piegl & Tiller’s book, [70],287

while a general introduction to IGA can be found in [30].288

It can be stated that a curve x = x(ξ) has a p-degree NURBS representation when there exist n ∈ N, control points Pj ∈289

R2, with associated weights gj ∈ R, j = 0 . . . n, and a knot vector, i.e. a set Ξ = {0 = ξ1 ≤ ξ2 ≤ . . . ≤ ξn+p+1 = 1}290

such that, for any ξ ∈ [0, 1] (the standard parameter space for NURBS and B-splines)291

x(ξ) =

n∑
j=0

Rj,p(ξ) Pj , (66)

where the NURBS basis functions {Rj,p(ξ)} are expressed by292

Rj,p(ξ) =
Bj,p(ξ)gj
n∑
j=0

Bj,p(ξ)gj

. (67)

The most effective analytical expression for these kinds of functions is the Cox-De Boor recursive formula. It defines the293

B-splines basis {Bj,p(ξ)} of order p, which is required to build the NURBS basis function as follows294

Bj,0(ξ) =

{
1
0

if ξj ≤ ξ < ξj+1

otherwise , (68)

Bj,p(ξ) =
ξ − ξj

ξj+p − ξj
Bj,p−1(ξ) +

ξj+p+1 − ξ
ξj+p+1 − ξj+1

Bj+1,p−1(ξ). (69)

A partition of the parameter space [0, 1] is defined by the knot vector Ξ, which is a non-decreasing set of coordinates. It295

is possible to have uniform and non uniform knot-vectors. The latter case corresponds to a set of unequally spaced knots,296

which allow representing a larger number of shapes. Also the multiplicities of knot values have important effects on the297

properties of the basis. It is possible, indeed, to modify the continuity of the NURBS by varying this parameter: repeated298

knots would reduce it.299

In this paper four isogeometric finite element models were developed for each case. They have different NURBS degree:300

quadratic (p = 2); cubic (p = 3); quartic (p = 4); and quintic (p = 5). These models are characterized by a uniform knot301

vector and produce a consistent mass matrix. For matrix integration the number of Gauss points is always assumed equal302

to the NURBS degree. For example, for cubic elements, (p = 3), three Gauss points were used. In Figure 3 the B-spline303

shape functions, which are the building blocks for constructing the NURBS ones, see Eqs. (67)–(69), are plotted for several304

different values of the degree p. It is useful noticing that these basis functions, similarly to the Lagrangian basis functions,305

constitute a partition of unity, in the sense that for any ξ it results306

p∑
k=0

Bj,k(ξ) = 1.

However, differently from Lagrangian basis functions of order p > 1, the B-splines basis functions (and the NURBS ones,307

too) are always positive, as a careful check of Figures 2–3 confirms.308

The generalized eigenvalue problem has been solved for the IGA elements by means of the native function eig, which309

is based on the QZ algorithm [63].310
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Fig. 3 B-splines basis function Bj,p for Timoshenko beam finite elements and several polynomial order. (a) refers to p = 2; (b) to
p = 3; (c) to p = 4; (d) to p = 5. The first index refers to the j-th control point.

5 Computational assessment of Timoshenko beam dynamics311

The numerical results presented in this Section aim at assessing the computational performance of the Timoshenko beam312

model in the simplest dynamic range, corresponding to free vibrations. From the finite element point of view, this corre-313

sponds to assembling the mass and stiffness matrices, denoted by M and K respectively, and in solving the Generalized314

(symmetric) Eigenvalue Problem (GEP)315

(K− ω2M)Ψ = 0, (70)

where Ψ denotes the eigenvector (i.e. the discretized vibration mode) associated to the natural frequency ω, which holds316

the place of the eigenvalue.317

Once eigenvalues and corresponding eigenvectors are computed for the discretized system, the results are checked318

against the theoretically exact values provided by the solution of the continuum problem which has been presented in319

Section 3.320

In particular, several aspects of the numerical solution have to be addressed: the accuracy of the computed spectrum321

for the simply-supported and for the doubly clamped beam, the accuracy by which the (discrete) eigenvector reproduces322

the corresponding eigenmode of the continuous system, and the detection of the last pair (natural frequency ωn, vibration323

mode Ψn) which, for a given number of DOFs, is still sufficiently correct for reproducing the continuous system. These324

issues are considered separately in the next Sections.325
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5.1 Numerical spectrum for a simply-supported Timoshenko beam326

The whole frequency spectrum of a simply-supported Timoshenko beam, with the geometric and mechanical characteristics327

already defined in Section 3.1 has been computed by means of the above mentioned numerical models. The frequency328

spectra, which are relevant to a total number of DOFs equal to N = 100, N = 500 and N = 1000 have been considered,329

and are plotted in Figures 4–6.330

In each plot, the ratio between the numerical eigenfrequency ωhn and the corresponding analytical one ωn is reported331

on the vertical axis, while the horizontal axis lists natural frequencies in increasing order. Each spectrum is plotted with a332

different pattern to distinguish the polynomial degree p. Moreover, label FEM refers to the Lagrangian models while IGA333

represents the isogeometric ones. The vertical arrow highlights the position of the cut-off frequency, ω̃, see Eq. (12).334
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Fig. 4 Numerical errors of the frequency spectra for a simply-supported Timoshenko beam discretized withN = 100 DOFs. The dotted
vertical arrow represents the position within the spectrum of the cut-off frequency.
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Fig. 5 Numerical errors of the frequency spectra for a simply-supported Timoshenko beam discretized withN = 500 DOFs. The dotted
vertical arrow represents the position within the spectrum of the cut-off frequency.

The general trend of these spectra is very similar in all three cases, though, as the number of DOFs increases, curves335

assume a smoother trend. Roughly speaking, IGA models produce very accurate results for almost 80% of the whole spec-336

trum and exhibit better performances (which, of course, depend on the NURBS degree p and increase with it) in comparison337
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Fig. 6 Numerical errors of the frequency spectra for a simply-supported Timoshenko beam discretized with N = 1000 DOFs.The
dotted vertical arrow represents the position within the spectrum of the cut-off frequency.

with the FEM ones, in almost all the spectrum, excluding the very last part of it. Indeed there some outlier frequencies ap-338

pear, which are due to the truncation error produced by the discretization of a continuum problem: these highest frequency339

samples correspond to highly localized vibration modes (see Figure 7), which show a behavior comparable to a boundary340

layer.341
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Fig. 7 Eigenmodes corresponding to outlier frequencies, which are typical of IGA elements at the end of the discretized spectrum. In
the present case modes 499 and 500 are shown, with reference only to the transversal displacement, V (x). NURBS order: p = 2 (a);
p = 5 (b).

The results of the Lagrangian (FEM) models are quite different in comparison with what happens in the Euler-Bernoulli342

beam case, whose results can be found in [52], [54]). In that case, indeed, a quite important discontinuity can be detected343

in the middle of the spectrum, while for the Timoshenko beam the behavior is less jumpy and globally smoother.344

5.2 Numerical spectrum for a doubly clamped Timoshenko beam345

The same analysis has been performed for a doubly clamped Timoshenko beam with the same geometric and mechanical346

data, too. Only the case N = 100 DOFs has been studied, due to the difficulties in computing the exact frequencies, as it347

has already outlined in Section 3.3.348
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Fig. 8 Numerical errors of the frequency spectra for a doubly clamped Timoshenko beam discretized with N = 100 DOFs. The dotted
vertical line represents the boundary between the first and the second part of the spectrum. In this case, the transition frequency ω̃ does
not belong to the spectrum.

The eigenfrequency errors are reported in Figure 8: the trend is similar to the simply-supported beam case. Again IGA349

models produce more accurate results than the standard Lagrangian FEM models.350

It is important to highlight that this circumstance proves the reliability and the robustness of the proposed approach,351

independently of the applied boundary conditions.352

5.3 Numerical assessment of the quality of the discrete eigenmodes for the Timoshenko beam353

The accuracy of the GEP cannot be ascertained by looking only at vibration frequencies, as it has been done, up to now, for354

the Euler-Bernoulli beam (see [52], [78]). For this reason, an evaluation of the numerically obtained eigenmodes has been355

performed, for the simply-supported beam only, since in this case the exact eigenmodes are easily computed by Eqs. (41),356

(43), (51), (53), and, except for the transition frequency, they turn out to be pure sinusoidal functions.357

Thus, with the aim of assessing the accuracy of the numerical results, for the simply-supported Timoshenko beam358

discretized with N = 500 DOFs, the whole set of 500 eigenvectors has been developed: each eigenmode has been recon-359

structed by evaluating it in Np = 5001 equally spaced points along the beam span; the exact solution has been similarly360

computed by evaluating in the same points the corresponding theoretical eigenmode.361

For the sake of conciseness, and to avoid problems related to different normalization criteria, only the transversal dis-362

placement component, V (x), has been taken into consideration, but conclusions easily extend to section rotation, Φ, too.363

As an accuracy check the l2 discrete relative error (i.e. the relative error in the discrete l2 norm) has been computed for364

each mode: if V ?(x) denotes the exact eigenmode and Ṽ (x) the numerically computed one, it follows365

l2 =

√√√√ 1

Np

Np∑
j=1

[
V?(xj)− Ṽ (xj)

]2
√√√√ 1

Np

Np∑
j=1

[V?(xj)]
2

. (71)

Results are plotted in Figures 9–14, separately the two Lagrangian FEM meshes and the four NURBS-based ones.366

In order to explain the somehow weird behavior of the l2 error plots, it is useful recalling that, in the continuum case,367

the L2 norm of sin jπx and of (sin jπx− sin kπx) (for k 6= j) in the [0, 1] interval are respectively given by368
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Fig. 9 l2 norm of the error for the eigenmodes of a simply-supported Timoshenko beam discretized with N = 500 DOFs and B21
linear elements. Each eigenmode has been represented by Np = 5001 equally spaced points along the beam span. The number within
the frame represents the first mode affected by non-negligible errors.

0 50 100 150 200 250 300 350 400 450 500

n 

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l2
 re

la
ti
v
e

 e
rr

o
r

FEM, p=2

63

Fig. 10 l2 norm of the error for the eigenmodes of a simply-supported Timoshenko beam discretized with N = 500 DOFs and B22
quadratic elements. Each eigenmode has been represented by Np = 5001 equally spaced points along the beam span. The number
within the frame represents the first mode affected by non-negligible errors.

‖ sin jπx‖L2 =

[∫ 1

0

(sin jπx)2dx

]1/2
=

1√
2
,

‖(sin jπx− sin kπx)‖L2 =

[∫ 1

0

(sin jπx− sin kπx)2dx

]1/2
= 1.

Consequently, when two different sinusoidal waves are considered, the L2 error is equal to 1, while when the difference369

between a sinusoidal wave and an almost vanishing function (as it happens for the eigenmodes corresponding to an outlier370

frequency), then the L2 error becomes equal to 1/
√

2. Hence, the error in the L2 norm is higher in the former case than it371

is in the latter, and this justifies why the observed l2 error tends to reduce at the end of the spectrum.372

On the other hand, the very high error values which are found at the beginning of the spectrum correspond to computed373

eigenmodes which have an incorrect wave-number, as a result of some drift (or aliasing) of the corresponding natural374

frequencies. This issue will be better illustrated in Section 5.4.375
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However, looking at Figures 9–14, a faster decay of the quality of solution in terms of eigenmodes is detected in376

comparison with the accuracy reduction in the frequency range. Indeed Lagrangian elements (see Figures 9–10) exhibit a377

significant decay after only 38 (linear elements, B21) or 63 (quadratic elements, B22) modes out of 500. Instead, as long378

as frequencies are concerned, reasonably good results (with error below 20%) were obtained up to mode 300, see Figure 5.379

If IGA models are considered, their performances are superior even in terms of eigenmode reconstruction: for the quadratic380

NURBS (p = 2), Figure 11, significant decay corresponds to mode 114, while, for the more refined quintic NURBS (p = 5,381

see Figure 14), results are excellent up to mode 271.382

In any way, the obtained results clearly show that the quality of approximation of eigenmodes is a crucial points for the383

Timoshenko beam model, and these plots should be carefully considered before choosing the number, N , of DOFs which384

is necessary to adopt for reproducing, to within a given accuracy, the eigenmode corresponding to a fixed natural mode, say385

the n-th.386
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Fig. 11 l2 norm of the error for the eigenmodes of a simply-supported Timoshenko beam discretized with N = 500 DOFs and IGA
elements with p = 2. Each eigenmode has been represented by Np = 5001 equally spaced points along the beam span. The number
within the frame represents the first mode affected by non-negligible errors.
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Fig. 12 l2 norm of the error for the eigenmodes of a simply-supported Timoshenko beam discretized with N = 500 DOFs and IGA
elements with p = 3. Each eigenmode has been represented by Np = 5001 equally spaced points along the beam span. The number
within the frame represents the first mode affected by non-negligible errors.

Copyright line will be provided by the publisher



Pre-
Prin

t

20 A. Cazzani, F. Stochino, and E. Turco: An analytical assessment of FE and IGA of the whole spectrum of Timoshenko beams

0 50 100 150 200 250 300 350 400 450 500

n 

0.00

0.25

0.50

0.75

1.00

1.25

1.50

l2
 re

la
ti
v
e

 e
rr

o
r

IGA, p=4

230

Fig. 13 l2 norm of the error for the eigenmodes of a simply-supported Timoshenko beam discretized with N = 500 DOFs and IGA
elements with p = 4. Each eigenmode has been represented by Np = 5001 equally spaced points along the beam span. The number
within the frame represents the first mode affected by non-negligible errors.
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Fig. 14 l2 norm of the error for the eigenmodes of a simply-supported Timoshenko beam discretized with N = 500 DOFs and IGA
elements with p = 5. Each eigenmode has been represented by Np = 5001 equally spaced points along the beam span. The number
within the frame represents the first mode affected by non-negligible errors.

5.4 Automatic check of the quality of the discrete eigenmodes for the Timoshenko beam387

In order to check the accuracy of a numerically computed eigenmode, a simple method would consist in visually inspecting388

and comparing it against the theoretically exact one. This task, however, is time consuming and becomes more and more389

inconvenient, when the mode number increases (and the corresponding eigenmode becomes more and more complicated).390

For the simply-supported Timoshenko beam, the component V (x) of the eigenmodes, except for that corresponding to391

the transition frequency, are pure sinusoidal functions, each one depending on a particular wave-number, λn, which de-392

scends from either λ1 or λ2. Therefore, for the n-th natural frequency, the relevant eigenmode is given by this monocromatic393

wave394

Vn(x) = sinλnx = sin
knπ

L
x, (kn = k1 or kn = k2). (72)
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In Eq. (72) the wave-number λn = knπ/L can be thought of as the counterpart of the angular frequency ω in the time395

response; analogously, the counterpart of the time frequency f = ω/(2π) in the space domain is the so-called space-396

frequency, fλn397

fλn =
λn
2π

=
kn
2L
. (73)

This space-frequency (which corresponds to the number of complete sinusoidal waves included in the full span L of the398

beam), completely characterizes the sinusoidal wave: indeed in the space-frequency domain, a function like that given by399

Eq. (72) is completely identified by the frequency value kn/(2L).400

This suggests the idea of measuring the accuracy of the numerical eigenmodes by evaluating the corresponding Fourier401

transform and analyzing the corresponding space-frequency domain. If there were no errors a single peak (theoretically,402

a Dirac δ function) corresponding to the exact value fλn should be obtained in the space-frequency domain. Instead if403

the numerical eigenvector presents some errors, the corresponding Fourier transform will produce either a shifted peak, or404

some other peaks in addition to the principal one.405

Effective algorithms for performing discrete Fourier transform are available: for instance, the fast Fourier trasform406

(FFT), see [28]. The sampling space-interval ∆x = L/Np = 0.0004 m determines the maximum space-frequency, the407

well-known Nyquist frequency, which can be correctly resolved: fλ,Nyquist = 1/(2∆x). In this case, fλ,Nyquist = 1250 m−1.408

On the other hand, the interval between transformed points in the space-frequency domain, ∆fλ, depends on the number409

Np of space samples and on the sampling space interval: ∆fλ = 1/(Np ∆x). For a given ∆x, the accuracy which can410

be achieved, i.e. the space-frequency resolution, increases with Np because ∆fλ becomes smaller; as a consequence, since411

for numerical efficiency, FFT algorithms are based on transforming a number of points Ns which must be an exact power412

of 2, a simple way to increase the frequency resolution is found by choosing Ns large enough, and padding with zeros the413

sampled signal: therefore it is possible to achieve a spacing of points in the space-frequency domain ∆f = 1/(Ns ∆x).414

Here Np = 5001, and with the selection Ns = 215 = 32768, the addition of Ns −Np zeros at the end of the sequence415

of the signal points allows to achieve ∆fλ = 0.076 m−1. The sampling interval in the space-frequency domain results416

therefore rather small, with more than 13 samples in each 1 m−1-wide range. So, the space-frequency resolution of the417

space spectrum is high. FFT has been performed with subroutine DFOUR1, extracted from [73].418

For the sake of conciseness, only the 500 DOFs case was considered for the simply-supported beam, and, again, only419

the V (x) component of the eigenmode has been taken into consideration: the corresponding eigenvectors were calculated,420

using both FEM and IGA models, and their values were taken on a set of Np = 5001 equally spaced points along the beam421

span. Results are expressed as plots of the square root of the normalized power spectrum (denoted in the Figures by the422

symbol (NPS)1/2) vs. the space-frequency, fλ.423

The numerical models produce good results for the first modes; of course, the higher the number of considered modes,424

the larger the error becomes. This happens first, when a shift on the frequency domain can be detected.425

Analyses were performed adopting a number of modes almost equally spaced in the natural frequency space: mode 85426

(corresponding to theoretical values k2 = 57 and fλ = 14.25 m−1); mode 168 (k1 = 59 and fλ = 14.75 m−1); mode 251427

(k2 = 161 and fλ = 40.25 m−1); mode 334 (k2 = 214 and fλ = 53.50 m−1); mode 417 (k1 = 150 and fλ = 37.50 m−1)428

and mode 499 (k2 = 319 and fλ = 79.75 m−1).429

For example, Figure 15 (a) represents the FFT results corresponding to mode 85, and was obtained by applying the430

transformation to the eigenvectors built with quadratic (p = 2) FEM and IGA models with p = 2 and p = 5.431

The analytical peak, labeled by a grey arrow (or a purple one, in the color reproduction), is clearly represented, as well432

as a shift of the FEM space-frequency peak which is a measure of the numerical error of this model. Instead, both IGA433

models perform very well and their peaks match the theoretical one.434

Figure 15 (b) is referred to mode 168; in this case both IGA with p = 2 and quadratic FEM models produce a significant435

shift of the space-frequency peak fλ; in addition, the FEM model shows some other peaks, too. These represent other436

frequency components associated to that vibration mode, which can be thought of as numerical noise, since no physical437

meaning can be assigned to them. On the other hand, the IGA model with p = 5 still produces excellent results.438

Looking at a higher mode, for example mode 251, FFT analysis, shown in Figure 16 (a), highlights a good performance439

of higher degree (p = 5) IGA model, while both quadratic FEM and IGA with p = 2 present several peaks in addition to440

the principal one.441

Higher errors are presented in Figure 16 (b), mode 334, where only the IGA with p = 5 can detect the exact principal442

peak, but even in this case there are other peaks due to numerical errors. The performance of FEM and IGA with p = 2 is443

worse, and this shows that the corresponding eigenmodes are meaningless.444

If the last part of the spectrum is considered, e.g. mode 414, which is plotted in Figure 17 (a), the numerical errors445

become higher and all models cannot detect the exact theoretical peak and present other small peaks, too. Finally, in446
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Fig. 15 FFT of some eigenmodes almost equally spaced within the spectrum and numerically computed for the B22 Lagrangian finite
element and IGA elements with order p = 2 and p = 5. (a) refers to mode 85: k2 = 57 and fλ = 14.25 m−1; (b) to mode 168: k1 = 59
and fλ = 14.75 m−1.
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Fig. 16 FFT of some eigenmodes almost equally spaced within the spectrum and numerically computed for the B22 Lagrangian finite
element and IGA elements with order p = 2 and p = 5. (a) refers to mode 251: k2 = 161 and fλ = 40.25 m−1; (b) to mode 334:
k2 = 214 and fλ = 53.50 m−1.

Figure 17 (b) the FFT of the outlier mode 499 is presented: both IGA models produce severe errors and any peak can be447

hardly found. The FEM model still presents both a shifted principal peak and other two peaks without physical meaning,448

but its performance is poor. Hence, no model can predict even a rough approximation of the real eigenmode.449
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Fig. 17 FFT of some eigenmodes almost equally spaced within the spectrum and numerically computed for the B22 Lagrangian finite
element and IGA elements with order p = 2 and p = 5. (a) refers to mode 417: k1 = 150 and fλ = 37.50 m−1; (b) to mode 499:
k2 = 319 and fλ = 79.75 m−1.

6 Conclusion450

A complete review of the equations of motion for the Timoshenko beam model has been presented, at the beginning of451

this paper, in the case of free vibrations. The fundamental result is that the vibration spectrum of a Timoshenko beam is452

unique, but consists of two parts, none of which can be, in principle, disregarded. Specific attention has been devoted to453

the special cases of a simply-supported and of a doubly clamped beam: they provide a rather simple but exhaustive enough454

representative view of the different independent combinations which can be formed with the four elementary constraints455

for a single span beam.456

In the former case, the transcendental equation which provides the wave-numbers corresponding to natural frequencies457

is factorized, and this property produces vibration modes (excluding the transition frequency, whose eigenmode is charac-458

terized by a constant function) which have, in both part of the spectrum, a simple shape, consisting of an integer number of459

sine/cosine half-waves.460

In the latter case, instead, the transcendental equation does not factorize, and this produces much more complicated461

vibration modes: in the first part of the spectrum, both circular and hyperbolic sine/cosine functions are combined in each462

eigenmode, while in the second part of it, there appears a combination of sine/cosine functions depending, however, on two463

different wave-numbers. Moreover the transition frequency is not, in general, part of the spectrum, for this and for all other464

combination of constraints, excluding the simply-supported case.465

In the body of the paper, these theoretical results have been used to validate the eigenvalues and eigenvectors obtained by466

several finite element models: two of them are based on a standard implementation of Lagrangian-interpolated displacement467

(both linear and quadratic), while the remaining four are based on the isogeometric approach, with an approximation order468

ranging from quadratic (p = 2) to quintic (p = 5). The analysis has been performed, similarly to what had been already469

done in the literature for the Euler-Bernoulli beam model, by considering the whole spectrum generated by a given number470

of DOFs. In particular, for the simply-supported case, the spectra corresponding to 100, 500 and 1000 DOFs (and hence to471

100, 500 and 1000 natural modes) have been considered, and this has allowed to confirm that also for this structural model472

the isogeometric approach provides more accurate results. For the doubly clamped beam, the difficulties in computing the473

theoretical natural frequencies have limited the analysis to the spectrum generated by 100 natural modes; however, with474

reference to the simply-supported case, the fundamental trends have been confirmed.475

A further step, which had not been considered yet, for the Euler-Bernoulli beam model (where, however, natural fre-476

quencies are much better separated than in the Timoshenko one) has been tried here, in order to assess the quality of the477

computed eigenmodes. For this purpose, and limiting, for simplicity, attention to the simply-supported case and to the478

transversal displacement component only, the l2 discrete relative error has allowed to detect for the different finite element479
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model the threshold (in terms of natural modes) above which the accuracy of the computed eigenmode deteriorates. By480

combining this piece of information with the already computed error in the constructed spectrum, the conscious user of the481

finite element method is given a method for globally assessing the quality of his/her models. Some useful clues about the482

resolution, in terms of the number N of DOFs, which is necessary to use if results must be accurate up to the n-th vibration483

mode, are provided, too.484

The results presented in this work could be used for an in-depth analysis of some current and more actual problems.485

For instance, the case of curved Timoshenko beams might be interesting and useful for technical applications, particularly486

the extension to the computational framework, by adopting the isogeometric approach; for 1D problems some recent487

contributions appeared [20–22, 27, 32, 45, 46]. Again, the use of highly-efficient discretisation techniques, such as those488

reported in [12,19,88] is promising: they provide more refined stress description and might therefore improve the accuracy489

of numerical results.490

Geometric nonlinearities have to be considered, as well, viz. by using the suggestions presented in [42, 44, 74, 79, 80],491

while a complete dynamic approach for the generalized beam theory has been addressed in [39, 66–69, 72, 82] and in the492

references cited therein.493

The Timoshenko beam model is a particularly simple model from the point of view of micro-mechanical analysis.494

Therefore, it can be thought of as a simple prototype for providing fruitful clues in view of the development of new495

and more refined mathematical models of continua. The interested readers will find many insight, looking at the current496

research trend on generalized continua and their applications, for example in [8, 9] where modeling of bones is addressed;497

in [6, 7, 18, 36, 40, 64, 90] for gradient models; in [29, 71] for 2nd gradient models; in [47, 60, 62] for multi-constituent498

materials and in [26] for some hints on non-local problems.499

Pantographic problems, see [2,3,37,38,43,75,76] represent a link between higher-order continua and beam models which500

might suggest fruitful ideas; in particular the review paper [35] considers the dynamic case. Homogenization theories are501

treated in [25], graded materials in [4, 15] and micropolar continua in [5].502

Finally, it has to be pointed out that an accurate evaluation of the spectrum is fundamental in problems which consider503

damage detection, see for example [1, 13, 14, 81] and references provided therein, or try to optimize the structural response504

of smart structures such as the large one described in [10, 17, 84].505
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