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The objective of this computational study was to investigate to which extent
the availability and the way of use of historical maps may affect the quality of
the calibration process of Cellular Automata (CA) urban models. The numer-
ical experiments are based on a constrained CA applied to a case study. Since
the model depends on a large number of parameters, we optimize the CA using
Cooperative Coevolutionary Particle Swarms, which is an approach known for
its ability to operate effectively in search spaces with a high number of dimen-
sions. To cope with the relevant computational cost related to the high number
of CA simulations required by our study, we use a parallelized CA model that
takes advantage of the computing power of Graphics Processing Units. The
study has shown that the accuracy of simulations can be significantly influ-
enced by both the number and position in time of the historical maps involved
in the calibration.
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1. Introduction

A standing question haunts the application of Cellular Automata (CA) models for the
simulation of urban dynamics and evolution of land uses in cities. Their capability to
reproduce complex spatial patterns has long mesmerized urban scholars (White and En-
gelen 1993, Batty and Xie 1994, Clarke et al. 1997, Cecchini 1996) and fostered the
development of notable CA-based applications, tools for land-use planning support, pol-
icy evaluation and future scenarios analysis (White and Engelen 2000, Barredo et al.
2003, Geertman and Stillwell 2004, Engelen et al. 2005, Lavalle et al. 2011, Blecic et al.
2014a). We observe a constant interest for such applications in the vogue of sustainable
urban development, as tools providing decision-makers and urban planners information
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about the scenarios of evolution of cities and urban regions, including the types, location
and amount of change in land uses (Santé et al. 2010).

The question is though the one standing since the first steps of the pioneers of CA
urban modelling: that of their empirical validity. While only time can ultimately have
the last say if a model was effective (if perhaps not just lucky) to accurately predict the
future, we should at least demand it to be able to describe the past, that is to say, to fit
the known points in history. This in the operational use of CA models is the recurring
issue of their calibration, to which this article intends to provide a contribution.

In CA modelling, a calibration procedure adapts the parameter-dependent transition
rules in order to make the modelled urban phenomena fit the past data. Such estimation
procedure of model parameters, for the purpose of improving the agreement between
real and simulated phenomena, must be an essential phase of the model design process.
Nevertheless, CA calibration is often a challenging problem, whose complexity grows
remarkably with the number of parameters. It is well known that calibration through
trial-and-errors based only on expert knowledge is time consuming, usually leads to
unreliable results and is a hard-won wisdom. The current research trends instead suggest
the use of formal, structured and automated optimization procedures (Avolio et al. 2006,
Goldstein 2003, Feng et al. 2011, Rabbani et al. 2012, Li et al. 2013).

Such automatic calibrations crucially depend on the awvailability of historical maps of
the area under study, which are used, together with an appropriate metric of agreement,
to guide the search of the values of model parameters. Important questions, to which this
article tries to provide some answers, concern the relationship between the predictive
capability of the calibrated model and the historical maps used in the optimization
process. For example, for a CA modeller it is relevant to have an idea of the possible
calibration error, with the related loss of model accuracy, which may be expected when
very few historical maps are available to support the calibration process. On the other
hand, having a rich time-series of the past land-use patterns for the area under study
may not bring benefits in all circumstances due to possible model overfitting.

In spite of the importance of these issues, to our knowledge, in the literature there are
no systematic studies on the relation between the number and position in time of the
exploited historical maps and the resulting calibration error. As a contribution towards
overcoming this lack, the main objective of this study was to investigate, for a typical
urban CA, to which extent the availability and the way of use of past maps may affect
the calibration process and ultimately the predictive performance of the resulting model.
The article provides several insights about what is to be expected in terms of accuracy
of model calibration, under different usage scenarios of spatio-temporal data.

The discussion we present is grounded on a computational study of a constrained
CA for simulating urban dynamics. To perform an empirical investigation based on the
execution of several millions of CA simulations, we took advantage of a parallel variant
of the constrained CA model, using general-purpose computing on graphics processing
unit (GPGPU). In order to cope with the high number of parameters involved in the
calibration, we used a state-of-the-art metaheuristic, the Cooperative Coevolutionary
Particle Swarm optimization (CCPSO) (vandenBergh and Engelbrecht 2004), which is
a variation of the standard Particle Swarm Optimization (PSO) algorithm (Kennedy
and Eberhart 1995) specifically designed to deal with optimizations in high-dimensional
search spaces.

The article is organized as follows: in section 2 we outline the GPU-accelerated CA
model used in the numerical experiments. In section 3 we formalize the CA calibration
problem and in section 4 we describe the CCPSO algorithm adopted for optimization.
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Then, in section 5, we illustrate and discuss the numerical experiments. Finally, in section
6, we draw some conclusions and formulate some hypotheses for future work.

2. The Parallelized Constrained CA Urban Model

We use a CA, representing the geographical space of interest, which evolves through
discrete time steps in order to simulate a real land-use dynamics over time.

The relevant component of the state of each cell is its land-use class (such as residential,
industrial, commercial and agriculture). Cells may also hold other relevant information,
such as their distance from the main transportation networks, constraints related to zon-
ing regulations and cells’ physical features (slope, elevation, etc.). During the simulation,
each cell can change its land use depending on its neighbouring cells and its internal
state. However, the cell’s state transition also depends on global constraints on the land
of each land-use type to be assigned at each time step.

We define two main categories of land uses: dynamic, which can change during the
simulation, and static, which do not change, but may influence dynamic uses by exerting
attractive or repulsive effects on them (White and Engelen 2000, Engelen et al. 2005).
Typical static land uses may represent transportation network, public services and facil-
ities, and so on. The category of dynamic uses can be further split into active uses, for
which there is an explicit demand at each CA step, and passive uses, representing land
available to be transformed into active uses.

The local CA dynamics is determined by the so-called transition potentials P;, which
is a very common way to express a cell’s propensity to acquire the j-th type of use (Wu
1998, Cheng and Masser 2004, He et al. 2008, Blecic et al. 2004). At the beginning of
each CA step, the values P; are computed for each cell and each active land use through
the following equation:

Pj =1+ 8; Z; N; (1)
where:

e 7 is the current cell’s land use and I; > 0 represents an inertia due to the transition
costs from the use i to a different use;

e 7j = 1+(—1ne)%, where 9 is a random number between 0 and 1 and «; is a parameter
that defines the degree of randomness;

e S; € [0,1] is the so called suitability factor for the active land use j. The suitability
represents the propensity of a cell to sustain a particular activity or land use. In this
study, the values S; are expressed as a logistic function of ny local predictors x, (e.g.
the cell’s distance from the street network or the terrain slope) as follows:

_eap(SL bge)
1+ exp(>_3L, brjar)

where the parameters by; are estimated through the calibration process.

e Z; € [0,1] defines the degree of legal or planning permissibility of the j-th land use
(for example due to zoning regulations by the planning authority);

e Nj; is the so called neighbourhood effect, which represents the sum of all the attractive
and repulsive effects of land uses within the neighbourhood on the j-th use which the
cell under consideration may assume. In particular, the factor IV; is computed as:

Nj=v+>_ ¢i;(d) (3)

ceV

(2)

J
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Figure 1. The function ¢; ;(J) represents the influence of the 4-th land use at the distance § on
the potential land use j.

where the summation is extended over all the cells of the cell’s neighbourhood V and: i
denotes the current land use of the cell ¢ € V, §. is the distance from the neighbouring
cell ¢, and ¢; j(0) is a parameterized function expressing the influence of the i-th land-
use at the distance 4 on the potential land use j. The term v is a constant value
computed before the beginning of the simulation so that N; > 0.

As shown in Fig. 1, we assume that the ¢; ;(0) are piecewise linear functions depending
on four scalar parameters: a; ; and b; ; are defined in the interval [—o, o], where o € R
is a suitable positive constant; ¢;; and d;; are defined in the interval [0, dmax], Where
dmax € RT represents the maximum distance of influence of a land use onto another.
This choice allows to model a wide variety of relevant situations in which the influence
generated by an urban function depends on the distance.

As reported by (Santé et al. 2010), different types of neighbourhoods have been used in
the literature for simulating urban dynamics through CA, including square and circular
regions of different sizes. In the model adopted here, the CA neighbourhood V' is defined
as the square region having a sufficient size to allow local-scale spatial processes to be
captured by the CA transition rules. Compared with a circular neighbourhood, a square
region allows an easier management and a greater computational efficiency in our parallel
implementation on the GPU. Also, we verified that the issue of potential distortions, as
reported by (Ii and Yeh 2000), in our case is not significant. In fact, we use a rather
large neighbourhood (i.e. a square with the side of 40 cells) and the functions ¢; ; used
in practice are rapidly decreasing with distance.

Once the cells propensities P; to assume alternative land uses have been calculated, the
land use in the next step of the CA evolution must be computed for each cell. As in most
CA-based urban models (White and Engelen 1993, White et al. 1997, Wu 1998, Cheng
and Masser 2004, Blecic et al. 2004), the total land area that changes from its current
land use to a different use is determined by an external constraint. This implies that the
state-transition phase must take place on a non-local basis. Typically, this phase consists
in transforming each cell into the state with the highest potential, given the exogenous
constraint on the overall number of cells in each state imposed for that step (White and
Engelen 2000, Engelen et al. 2005).

2.1. GPGPU implementation

Following the GPGPU approach proposed in (Blecic et al. 2013), we developed a parallel
version of the CA model described above. In particular we used the GPUs provided by
nVidia, consisting of a group of Streaming Multiprocessors (SMs) capable to support
a significant number of co-resident concurrent threads. Each SM on its turn consists of
multiple Scalar Processor (SP) cores. To develop the model, we have adopted the popular
C-language Compute Unified Device Architecture (CUDA).
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In order to obtain high efficiency, we have formulated the parallelization to avoid
significant memory transfers between the CPU and GPU during the simulation.

In the model, the main phases of each CA step are: (i) the computation of the transition
potentials following Egs. (1) and (3); (4i) the constrained assignment of the future land
uses. The first phase can be carried out independently for each cell. Therefore, it is well
suited to be parallelized according to the computational model offered by GPUs, just
associating a thread to each cell of the CA. Instead, for the second phase we adopted
the ad-hoc algorithm of constrained state transitions proposed in (Blecic et al. 2013). In
fact, a very poor speedup would be achieved through the simple translation in CUDA of
the constrained procedure used in (White and Engelen 2000, Engelen et al. 2005), which
is inherently sequential.

Using the recent CUDA device nVidia Tesla K40, endowed with 2880 thread processors,
the adopted GPGPU approach leads to speedups that can easily exceed 100 times the
execution time of the corresponding sequential run on a standard workstation. This was a
key factor to allow our computational study. Obviously, in addition to the used hardware,
the actual acceleration depends on many other factors, including the number of cells of
the CA, the neighbourhood radius as well as the number of involved land uses. More
details on the GPU-accelerated CA model can be found in (Blecic et al. 2013).

3. Automatic Calibration

The dynamics of the CA model described above depends on many scalar parameters that
must be adapted to the specific application context. In particular, if the model includes
n; land uses, ng of which dynamic and n, actively modelled, it depends on:

e 1, parameters [} defining the inertial contribution to the transition potentials;

e nsn, parameters involved in the logistic suitability defined by Eq. (2);

e 4nyn, parameters a;;, b;j, ¢ij, dij involved in the piecewise functions ¢; ; of Eq. (3);
e 1, parameters a; defining the degree of randomness.

All the above parameters can be collected in a vector p belonging to a D-dimensional
search space A, with D = ng +nyng +4n;ng + ng.

With respect to p, the model can be optimized to maximize the fitting between the
simulated patterns and the real ones. To formalize the problem, let us suppose the exis-
tence of a spatio-temporal training set V collecting a sequence of land-use maps of the
area under study. In particular, let V be composed of a series of ¢ maps:

D:{@“);te{ﬁ,...,fq}} (4)

where the attribute 7; indicates the time step in which the configuration @® is known.
For example, assuming that a CA step corresponds to one year, w© would represent a
map of land uses of the area under study at the year ty and @® would be the known
land use configuration after t years.

Therefore, starting from the known configuration w©® and given a vector p of param-
eters, the CA can be executed for the computation of the ¢ automaton configurations:

V:{w(t)ZtG{Tl,...,Tq}} (5)

where each w(®) is given by the CA simulation. The agreement between the real spatio-
temporal sequence and the simulated one should be quantified through a suitable mea-
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Figure 2. Scheme of the procedure for computing the fitness © (]_/, V) associated to a vector of
parameters p.

sures of fitness © (]_/7 V), which is computed for each value of p as shown in Fig. 2.

Thus, the automatic calibration process consists of using a suitable search algorithm
to find a value of p € A that maximize © (]_), V). It is worth to point out that in general,
as already shown in (Straatman et al. 2004), CA calibration procedures do not, in the
line of principle, yield a unique solution. In other words, depending upon the structure
of both the CA and the fitness function, the same CA configuration could be obtained
using different parameter vectors.

In this study, we have based the fitness © (]_/, V) on the so called Kappa simulation K
(van Vliet et al. 2011), which is a modified version of the standard Kappa statistic (Cohen
1960). In this indicator, the agreement between a ‘real’ map @ and the corresponding
simulated map w is corrected to account for the amount of land-use transitions, which are
computed taking as a reference the initial map w(®). To explain in detail the computation
of K, in the following we indicate with p(io =i A w = i) the fraction of cells having the
same land use i in both maps @ and w. Also, we indicate with p(w(®) = i) the fraction
of cells having the land use i in the initial map w(® and with p(w =i | W@ = j) the
fraction of cells that changed from land use j in the initial map to land-use 7 in the map
w. According to (van Vliet et al. 2011), the value of Kj is defined as:

Do — Pe

K, = b=t (
where p, is the observed fraction of agreement:
Nd
p0:Zp((D:i/\w:i)
i=1

and p, is the expected fraction of agreement (i.e. the agreement by chance), given the
sizes of land-use class transitions:

o= p® =) 3 p@=i|w®=j) pw=ilu® =)
Jj=1 i=1
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Asin the standard Kappa, a K value greater than 0 indicates that there is more similarity
than random and a value of 1 indicates the perfect agreement between the two maps.

Using Eq. (6) and given a training set V and a simulated set V, the value of the fitness
C] (]_2, V) is computed as follows:

e first, we determine the agreements K ((D(t), w(t)) between all the couples of correspond-
ing maps w') € V and @) € V;
e then, we compute © (V, V) as the arithmetic mean of all the K (o®, w®).

For example, if the training set is composed of three historical maps corresponding to
the CA steps 5, 10 and 15:

V= {U—J@)’ 200), 5,<15>}

then: (i) we execute the CA for computing the simulated configurations w® w19 and
w19 (ii) using Eq. (6), we determine the agreements K (@®, w®), for t € {5, 10, 15};
(éi1) finally, we compute © (V, V) as:

O (1, V) = 2 [K.(6", u®) + K (@™, w9 + Ky (@9, u09)]

4. The Optimization Algorithm

Many optimization algorithms have been used for the automatic calibration of CAs
(Clarke et al. 1997, Goldstein 2003, Avolio et al. 2006, Feng et al. 2011, Rabbani et al.
2012, Li et al. 2013, Liao et al. 2014, Blecic et al. 2010), including techniques based on ex-
haustive search, ad-hoc designed search procedures, as well as more general optimization
metaheuristics.

For example, an exhaustive search in the parameter space has been used for SLEUTH
(Clarke et al. 1997), which depends on only five parameters belonging to small domains
of definition. Clearly, in case of models depending on a high number of real variables
exhaustive search is impractical.

In other cases discussed in the literature, ad-hoc calibration techniques have been de-
signed for specific urban models. For example, in (Straatman et al. 2004) the authors
have developed an automatic calibration procedure specifically designed for a constrained
CA. Their method involves an empirical search technique in which the erroneous neigh-
bourhoods are first identified and then the parameters are adjusted to reduce the error.
However, the method assumes that there exists a set of maps available on a year-by-year
basis, which is rarely the case in practice. In (Engelen and White 2008) a further de-
velopment of that method has been discussed to cope with the unavailability of maps
covering each step of the calibration interval.

Another typical approach to automatic calibration consists of using optimization meta-
heuristics, such as, for example, various kind of Evolutionary Algorithms (EAs) (Gold-
stein 2003, Avolio et al. 2006, Feng et al. 2011, Rabbani et al. 2012, Li et al. 2013, Blecic
et al. 2010). Compared to ad-hoc methods, the latter approach offers the potential ad-
vantage of being general and applicable to a larger class of models.

To tackle the optimization problem, in this study we use a variation of the standard
PSO algorithm (Kennedy and Eberhart 1995), which was specifically designed to deal
with optimizations in spaces with a high number of dimensions. The application of PSO
to the calibration of urban models is not new (Feng et al. 2011, Rabbani et al. 2012, Liao
et al. 2014). However, the examples discussed in the literature relate to cases with few
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parameters, tackled with the use of fairly standard PSO. Instead, in this study we face
the more challenging problem of calibrating a CA that depends on more than a hundred
parameters. In the following we explain in details the adopted optimization approach.

4.1. Cooperative Coevolutionary Particle Swarm Optimization

PSO is a stochastic optimization metaheuristic (Kennedy and Eberhart 1995) in which
a population (i.e. swarm) of particles is evolved step-by-step through the search space
following rules inspired by the behaviour of flocks of birds. In PSO, particles change
their position and velocity guided by the results obtained so far in terms of the fitness
function value. In particular, the movements of a particle are influenced by the best
position attained by that particle and by other current best-known positions in the
search space. A particle’s position and velocity at the step s of the search process is be
computed using the following equations:

v = v e [pl(,z;tl) - p(s_l)] +caro [p(beslt) (5_1)} (7)

p(®) = pl= | y() (8)

where v is the velocity of the particle, ¢c; and co are two positive constants, r; and ro
are two random numbers uniformly drawn between 0 and 1, w is the so-called inertia

(s=1) .

best
is the best-fitness point found so far by the

weight, p® is the position of the particle at step s, p is the best position reached

(s=1) &

by the particle up to step s — 1 and Pypest

whole swarm.

In this article we use CCPSO, which is a multipopulation PSO variant. In (Blecic et al.
2014Db) it is shown that CCPSO can be much more effective than the standard PSO in
optimizing a CA urban model with a high number of parameters.

In the CCPSO approach (Potter and De Jong 1994, vandenBergh and Engelbrecht
2004, Trunfio 2014) the original D-dimensional search space A is decomposed into K
subspaces A of the same dimension Di = D/K:

A=AD « A® .. A (9)

Subsequently, each subspace A is assigned to a different sub-population of nx particles
which operate as in the standard PSO. However, each individual carries only a portion
of the candidate solution (i.e. some components of the solution vector). Its evaluation
must hence be done obtaining the missing components from the proper sub-populations.

The approach proposed in (Potter and De Jong 1994), and adopted in this study,
consists of combining the contributions of each sub-population in the so-called context
vector b. The latter collects the best individuals of each sub-population, providing in
that way the missing vector components for evaluating the objective function.

In particular, let y(i) be the Dg-dimensional vector representing the contribution of
the i-th sub-population (i.e., its current best position in the subspace A(i)):

y @ =y 9T

Then, the context vector is defined as:

1 ) (2 2 K K
(yi), ..,ygi,yi),...,ygi ..,y§ ),...,yEDK))T

y® y @ y (K)
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Given the j-th particle p(+9) € A@ of the i-th sub-population:

p(i,j) _ (pgi’j)7pgi’j)7 o vp%i))T
its fitness value is obtained by running the CA with the vector of parameters y(»/) € A
defined as:

i i,j 1] K K
y( ,J) :(y](_1)7"'7y(Dl})(7“‘7p§ ])77p(D}]()77y](_ )7"'7y(DK))T

y@ p(:d) y (K)

In other words, in order to evaluate the fitness of p(»/) we construct the vector obtained
from y by substituting the components provided by the i-th sub-population with the
corresponding components of p(id).

Except for this way of evaluating the individuals, the algorithm proceeds as the stan-
dard PSO in each subspace. However, when the i-th sub-population finds a new optimal
point y@ in its subspace A® the context vector is updated accordingly.

Since most CA parameters are interdependent (i.e. their influence on the fitness de-
pends on the value of other parameters), a problem may arise with the simple decompo-
sition approach described above. In particular, when two interdependent CA parameters
are assigned to different sub-populations the CCPSO algorithm exhibits a low search
efficiency (Potter and De Jong 1994). For this reason, instead of using the static decom-
position described above, in which the i-th sub-population operates on the subspace A®)
including all the directions in the interval [(i — 1) x D + 1, ..., i x Dk, we adopted
the so-called random grouping (RG) strategy (Yang et al. 2008). In the latter, the sub-
spaces A are rebuilt at each iteration of the algorithm by assigning to each dj, = D /K
directions randomly selected without replacement from the set {1,2, ..., D}. Such an
approach increases the probability of having two interacting CA parameters in the same
sub-population at least for some iteration of the search algorithm (Yang et al. 2008,
Omidvar et al. 2010).

5. A Computational Study on CA Calibration

In this section we use the CA modelling approach and the computational techniques
described above to empirically investigate different uses of historical data for model cal-
ibration. We first illustrate the adopted experimental setup, including the area under
study, the detailed specifications of the model, the assumptions behind the numerical
investigation and the used hardware. Then we present and discuss several computational
experiments, highlighting some insights that may be derived for improving current cali-
bration practices.

5.1. FEzxperimental set-up

We applied the model to the area of the city of Heraklion, Crete. The CA representing
the urban area was composed of 277 x 151 cells each with the side of 50 meters. We have
used the urbanization map of the year 1980 shown in Fig. 3 to initialize the configuration
w©, Furthermore, we have assumed a time horizon of 50 years for the simulations of
urban dynamics.

In the model we included n; = 10 land-use types, n, = 4 of which actively modelled:
residential dense, residential sparse, industrial areas, and commercial areas. Passive land
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uses are: undeveloped land (representing agricultural and natural land cover classes), and
the abandoned state. Finally, static land uses are: green urban areas and facilities, port
area, airport area, water bodies.

Moreover, we used the ny = 6 driving factors mapped in Fig. 4 to determine the
suitabilities given by Eq. (2), namely: distance from highway, distance from main roads,
terrain slope, altitude, distance from the sea and distance from the city center. As sug-
gested in (Liao et al. 2014) we normalized in the interval [0, 1] the driving factors as
follows:

. __ ,min
L - (10)

enax ,-min
Ty L

where Z; is the value used in Eq. (2) for the i-th factor, z; is the original value, :L’;nin and
z;"* are the minimum and maximum values, respectively.

To determine the influence of neighbouring land uses on the current cell during the
simulations according to Eq. (3), we used for the square neighbourhood the side of 40
cells (i.e. 20 cells from the central cell).

One of the relevant design choices in urban CA is the number of discrete time step to
simulate a given interval of time. As discussed in (Yeh and Li 2006), too few time steps
cannot allow spatial interactions to generate suitable dynamics. On the other hand, too
many time steps may imply high computational costs. In general, the optimal number
of time steps is strictly related to the size of the CA cell and to the model parameters.
However, within certain limits, when the choice of the number of steps is followed by a

calibration of parameters, the latter are adapted accordingly. In this study, after some

Figure 3. The initial and final CA configurations used for the calibration test. Note that Airport
and Port areas were not included among the modelled land uses.
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Figure 4. The maps of driving factors included in the model.

preliminary calibration experiments, we have chosen to use 25 CA steps for the adopted
time horizon of 50 years.

As for the land use constraints, we adopted the scenario illustrated in Fig. 5. In practice,
for the simulation step 15 we assumed the actual amount of land uses derived from a
2010 map of the area, with a linear variation between steps 0 and 15. Between steps 15
and 25 we assumed a hypothetical scenario of linear increment in demand for the active
land uses.

In order to reduce the number of unknown model parameters, we neglected the influ-
ence exerted by port area, airport area and abandoned areas on their neighbouring cells.
In addition, we adopted the value of 0.01 for all the «; that define the simulation ran-
domness. During the optimization we used a deterministic version of the model based on
the same random seed for each simulation for the purpose of investigating the character-
istics of calibrated models avoiding unessential complications related to the presence of a
noisy objective function. Given the above specifications, the model depends on D = 140
unknown parameters.

Our computational study aims to investigate the impact of the used training set on
the calibration error and, ultimately, on the accuracy of simulations. To this end, we
use artificial training sets composed of maps generated through the CA itself. This, in
comparison with the use of real historical land-use maps, has two advantages. First, the
artificial training sets can be of the desired size (in the following, we use training sets
extracted from a set V of 25 maps that would be difficult to obtain in the reality). Second,
this allows to exclude both the model error and errors related to data uncertainties, thus
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Figure 5. The scenario of land demand for the four actively modelled uses in the calibration
tests.

Table 1. The drawn random parameters by; (see Eq. (2)) defining the influence of the following driving
factors: distance from highway (T1), distance from main roads (Tz), terrain slope (Z3), altitude (ZT4),
distance from the sea (Zs) and distance from the city center (Zs). The actively modelled land uses are:
residential dense (RD), residential sparse (RS), commercial area (C), industrial area (I).

T ) T3 T4 Ts Te
RD -0.726 0.343 —4.980 -0.021 —0.012 1.620
RS 0.121 0.338 —2.310 —0.033 0.712 0.234
I 0.426 0.643 —5.210 -—-0.043 —-0.132 —0.237
C 0.335 0.214 —-5.870 —-0.032 —-0.212 —0.228

Table 2. The drawn random parameters a, b, ¢, d (see Fig. 1) defining the mutual influence between the
following land uses: residential dense (RD), residential sparse (RS), commercial area (C), industrial area
(I). In bold are the influencing land uses.

RD RS I C RD RS I C
2024 -10.3 127 179

a a 984 —-104.7 —-182 134
RD b 30.6 8.8 —2.6 252 RS b 11.9 984 3.3 187
c 360.3 812.3 800.2 512.7 c 489.0 504.3  798.2 612.5
d 5983 187.2 167.3 4754 d 498.7 491.2 1942 3754
RD RS I C RD RS I C
41.2 24.3 2.1 310.2 -32.6 —42.2 3027 —6.2
C 66.7 36.7 1.2 50.2 I —41.9 7.8 4.3 153

237.1 834.0 810.1 783.2
726.4 102.0 183.2 211.7

Lo oL

a
b
¢ 436.0 610.2 520.7 465.0
d 562.6 3853 4773 521.2

showing more clearly the effects of calibration error.

To produce the artificial training sets, we randomly generated the 140 unknown param-
eters of the model within suitable ranges, trying to achieve a plausible land-use dynamics.
Some of the drawn random parameters are listed in Tables 1 and 2.

Using such vector of random parameters and starting from the 1980 configuration, the
CA simulation was then performed for 25 steps obtaining the corresponding set V of 25
maps, partly shown in Fig. 6. The computational experiments discussed in the following
essentially consist of using training sets Vj, C V with the aim of reproducing, with the
best possible fit, all the configurations of V after model calibration.

As for the CCPSO setup, we partitioned the search space into K = 14 groups of 10
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Figure 6. Some CA configurations produced through the randomly drawn model parameters and
used in the calibration study.

parameters, applying random grouping every 4 iterations of the algorithm. To each group
we assigned a swarm of 10 particles. For the PSO parameters, we adopted the following
values suggested in (Kennedy and Clerc 2006): w = 0.729844 and ¢; = ¢2 = 1.49618.

In order to ensure convergence, we assigned to each calibration a budget of 20000 CA
evaluations, which proved sufficient according to the results.

In addition, it is well known that in optimizations based on probabilistic procedures
the result might depend on the particular initialization of the population. Therefore, we
carried out 20 independent runs for each training set Vj, averaging the results in terms
of achieved fitness. Note that, in order to investigate the effect of different training sets,
the i-th calibrations, one for each V, are initialized by the same seed while i-th and j-th
(i # j) calibrations have different initial seeds.

We ran the optimization algorithms on a workstation based on a Intel Xeon X5660
(2.80 GHz) and equipped with two different GPUs: the nVidia Tesla K40 and a nVidia
Geforce GTX 680 graphic card. Both GPUs belong to the recent nVidia’s Kepler GPU
architecture. In order to exploit both GPUs, we developed a multi-GPU program using
the C++/CUDA languages and a multi-threads approach. In particular, we organized the
optimization process according to a master-slaves paradigm, in which the CPU executes
the CCPSO algorithm while the two GPUs simultaneously carry out the CA simulations
required for evaluating the particles.
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5.2. Results and discussion

We organized the analysis of experiments in four parts. First, we investigate the achieved
fitness through calibrations based on different training sets. Then, we use a statistical
test to compare the accuracies of the simulations based on the previous calibrations.
Subsequently, using the best set of parameters we analyse how the accuracy varies during
the simulations. Finally, we compare the results in a forecasting perspective, that is,
with the objective of predicting the correct final CA configuration, we investigate which
combination of historical maps led to the best result.

5.2.1. Calibrations

We considered 15 different training sets composed of one or more maps taken from
the set V. In the following, we indicate with V; a training set including only the map
o@ with I_Ji,j a training set including the maps @@, @) and so forth. The statistics on
the attained fitness are shown in Table 3. Also, in Fig. 7 we show some of the averaged
convergence plots.

As expected, a calibration point just after the first CA step (i.e. training set V;) gave
rise to a relatively easy optimization problem. This is due to the very small differences
between the two configurations w©® and @M. Indeed, as can be seen in Fig. 7 the speed

Table 3. Statistics on the achieved fitness © over 20 independent runs in the calibration tests. The Table
also shows the average time required by a single optimization.

Training set Average Best Worst Std. Dev. Average time [s]

V1 0.993 0.996 0.990 0.002 452

Vs 0.976 0.983 0.967 0.006 1121

Vio 0.968 0.977 0.959 0.006 2012

Vis 0.957  0.961 0.951 0.005 2987

Vao 0.951 0963 0.934  0.011 4111

Vos 0.957 0.975 0.948 0.010 4627

1_)175 0.987 0.993 0.980 0.004 1156

171,10 0.976  0.988 0.970 0.006 1917

171,15 0.978  0.989 0.962 0.008 2912

1_)5710 0.972 0.977 0.956 0.007 2098

1_)5715 0.971 0.984 0.961 0.008 2813

1710,15 0.966  0.977 0.942 0.010 3288

V15,10 0980 0985 0974  0.004 2132

Vs.10.15 0975 0984 0952  0.010 2987

17175710715 0.978 0.981 0.971 0.003 2985
00— 1.00 ; ; . 1.00

e |
0:23 calibration point 0.957
é 090] » 1 Zoesd _ . o R _
= [IJ CA steps EIS = Lll CA stcvp!: E‘IS & 0 CA steps 25
0.854 1 0.851 1 0.854
Vi ={a"} Vis={a"} Viss ={a® o)}
0.80 0.80 r - T 0.80
0 5000 10000 15000 20000 0 5000 10000 15000 20000 0 5000 10000 15000 20000
CA simulations CA simulations CA simulations

Figure 7. Some convergence plots of the average fitness © and its standard deviation for the
calibration tests. The statistics were computed over 20 independent runs on each test.
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of convergence was very high and the CCPSO algorithm was able to achieve the average
fitness © = 0.993 with a standard deviation of 0.002 among the different optimization
runs (i.e. 0.993 + 0.002 in the following).

Usually, a lower standard deviation indicates a simpler optimization problem. Because
of the probabilistic nature of the CCPSO algorithm, this also implies that a lower number
of optimization runs is needed to obtain a reliable calibration.

The other calibrations based on a single map corresponded to more complex opti-
mizations. For example, for V5 Fig. 7 shows a decreased speed of convergence (i.e. the
initial slope of the plot). Correspondingly, as shown in Table 3, there was a decrease of
the average and maximum achieved fitness and a slightly increase in the standard de-
viation. However, using training sets composed of a single map between @9 and ©(25)
the complexity of the optimization problem, as detected by the CCPSO algorithm, re-
mained essentially stable. In fact, the Welch’s t-tests (Welch 1947) with a significance of
0.05 which we carried out between the achieved fitnesses showed that the results were
on average equivalent. It is worth noting that such an equivalence only refers to the
achieved fitness considered as a casual variable given by a probabilistic calibration pro-
cess. As shown later, the used training sets can indeed lead to very different simulation
accuracies.

The summary graph in Fig. 8 helps to quantify the effect described above in the
case of training sets composed of a single map: up to a certain point, moving forward
the calibration point determines a greater difficulty in convergence. In particular, the
minimum average fitness of 0.951 was achieved when calibrating using V.

According to Table 3, increasing the size of the training set helped in some cases
to achieve a better fitness during the calibration phase. For example, Vi5 led to an
average fitness of 0.957 + 0005 while ]75715 led to the fitness of 0.971 £ 0.008. Likely,
the positive effect of replacing Vis with ]_25,15 is due to the different and more favourable
fitness landscape associated with the second training set. However, 175,15 and ]_/5,10,15 gave
statistically equivalent results according to the t-test.

Table 3 also shows the average computation time which was necessary for an optimiza-
tion. The differences between the elapsed times depend in large part on the different
number of CA steps that were necessary for the fitness evaluation. According to Table
3, the average time took by a 25-steps CA simulation was 0.2 s.

s e
“"~
hY
bl
Y
4 ¥ e
2 095
B 2 P
: L
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Average
0.90 4 . T ! y
01 5 10 5 & .

Calibration CA step

Figure 8. Achieved fitness © in the calibration tests based on training sets V; composed of a single
map as a function of the CA step i. The statistics are computed among the 20 optimization runs
for each training configuration.
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5.2.2.  Validations

The main objective of our study was to investigate to what extent the calibration error
is affected by the composition of the training set. We measured the accuracy of each
calibration as follows: first, using the parameter vector obtained with the calibration, we
ran the corresponding CA simulation to calculate the set V of the configurations at each
step (i.e. 25 maps of the area under study); then, we defined the accuracy as the value
of function © (]_/, V) described in Section 3, where V is the reference simulation (i.e that
obtained using the parameters in Tables 1 and 2).

For each training set, in Table 4 we show the statistics on the accuracy of the corre-
sponding simulations, computed on the 20 independent calibrations. According to the
results, the average accuracy varied between 0.909 and 0.974. In this regard, it is impor-
tant to note that in the literature even small variations of the Kappa index are considered
significant in terms of simulation quality (e.g. see Liao et al. (2014), Garcia et al. (2012),
Li et al. (2012)).

A first analysis was aimed to establish whether there was a statistically significant
difference in the average accuracy obtained with the used training sets. The comparison
was conducted trough a rank-based statistical approach, using the R software package
(R Core Team 2013) and following the indications given in (Demsar 2006, Garcia et al.
2010, Derrac et al. 2011). To this purpose, the simulation accuracies obtained using each
training set were converted to ranks as follows: first, for each of the 20 initialization
seeds, the results obtained through the training sets were ranked from 1 (best result) to
15 (worst result); then, the ranks obtained by each training set were averaged. The mean
ranks are shown in Table 4.

Subsequently, we used the Friedman test (Friedman 1937, 1940) to check whether,
among the average ranks under comparison, at least two of them represented populations
with different median values. Under the null hypothesis, which states equality of all
medians between the populations, according to the Friedman statistic we computed the
corresponding p-value (i.e. the probabilities of obtaining the sample of average ranks
shown in Table 4) which was lower than 0.0001. Thus, assuming a significance level of
0.05, the null hypothesis was rejected.

Then, the average ranks of the considered training sets were compared using the
Nemenyi test (Nemenyi 1963, Demsar 2006) with significance of 0.05. For this purpose,
the so-called critical difference CD was calculated, obtaining the value of 4.80. By defi-
nition, two training sets are considered to be statistically equivalent when their average
ranks differ by less than the CD value.

According to the results in terms of average ranks, depicted in Fig. 9, the simulation
accuracy significantly depended on the training set used for calibration.

Among the training sets based on a single map, Vi led to the highest average simula-
tion accuracy of 0.963. However, the result provided by Vis was equivalent according to
the performed statistical test. Instead, the remaining training sets composed of a single
map performed significantly worse. For example, the casiest calibration based on Vi, in
spite of the high value of the achieved average fitness (i.e. © = 0.993), led to the low aver-
age accuracy of 0.910 (see Table 4). This is not surprising, given that the map produced
by a single CA step does not contain enough information on the system’s dynamics.
Also, the average qualities of the simulations based on Vs, Voo and Vo5 were all inferior
to that of Vig. It is worth noting that, for Vig and Vi5 the average accuracy was quite
close to that obtained in the calibration phase. This can also be seen on the graph in Fig.
10, which shows, for the training sets composed of a single map, the average simulation
accuracy and achieved fitness as a function of the calibration CA step.
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Table 4. Validation statistics in terms of simulation accuracy for the calibration tests. For each train-
ing set, the statistics were computed on the 20 set of parameters obtained through the independent

calibrations.

Training set Average Best Worst Std. Dev. Mean rank
Vi 0.910 0.936 0.862 0.020 14.6
Vs 0.929  0.958 0.910 0.015 12.8
V1o 0.963  0.971 0.956 0.005 6.3
Vis 0.958  0.960 0.953 0.004 8.3
Vao 0.935  0.957 0.910 0.015 11.7
Vo5 0.928  0.957 0.907 0.015 13.4
Vs 0.946  0.964 0.918 0.016 10.7
Vi 10 0.950 0.963 0.934 0.008 10.3
V115 0.962  0.975 0.936 0.010 5.8
Vs 10 0.962  0.970 0.954 0.005 6.8
Vs 15 0.975  0.983 0.968 0.005 1.9
V1015 0.965  0.972 0.946 0.007 5.3
V1510 0.959 0.971 0.946 0.008 6.9
V510,15 0974  0.983 0.967 0.005 2.4
V1 51015 0970 0974 0.963 0.003 3.0
20 | CD=4.80
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Figure 9. Comparison between the mean ranks achieved by the considered training sets. A lower
rank corresponds to a higher simulation accuracy. The vertical bars represent the critical difference
CD = 4.80 calculated using the Nemenyi test with significance of 0.05. The filled circles below
the horizontal line represent training sets leading to simulations that on average are equivalent
to those of best training set (i.e. Vs 15).

According to Table 4, among the training sets composed of two maps, ]_/5,15 provided
simulations with the highest average accuracy of 0.975, which is also the best result
among all the considered training sets. Compared to 175715, the training sets ]_/10715 and
]_21715 were equivalent according to the Nemenyi test.

Also, as shown in Fig. 9, using ]_/5,10,15 produced simulations that were equivalent to
those obtained using the smaller training set 175,15. Therefore, increasing the latter with
an intermediate map proved essentially useless. Even the largest training set ]7175710715
did not help to improve the quality of the optimized CA model.

Interestingly, the comparisons also showed that incrementing through an additional
map Vo, which is the best training set composed of a single map, did not result in sig-
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Figure 10. Average simulation accuracy and achieved fitness for the different calibrations based
on a single map (the statistics were computed on the 20 independent calibrations).

nificant improvements in the simulations. In fact, Vi 10, V5,10, and V19,15 were equivalent
to Vio.

5.2.3.  Analysis of accuracy during the simulations

The above comparisons are based on a measure of accuracy concerning the entire CA
simulation of 25 steps. However, it may also be interesting to examine how the accuracy
varies during the simulation. To this end, a further analysis of the calibration outcomes
was conducted using the best-parameter vectors obtained with the different training
sets. This makes sense because the typical calibration procedure based on a probabilistic
search consists of running several independent optimization processes to choose the best
result in terms of fitness. In particular, for each best-parameter vector we ran the CA
simulations to calculate, at each step, the measure of agreement K between the simulated
and the reference configurations.

The values of K along the simulation for the different training sets are depicted in Fig.
11. According to the latter, the calibration based on V; exhibits a rapid fall in accuracy
immediately after the calibration point. The same behaviour, although less pronounced,
was found using Vs. Instead, for Vig and V;5 the evolution of accuracy during the simula-
tion showed a low variability and quite high values. Moving farther the calibration point
led to a worsening of the accuracy curve. In particular, Vo5 produced a good agreement
only in the immediate vicinity of the initial and final configurations. By analysing Fig. 11
we recognize that even a single calibration point can produce simulations of reasonable
quality, provided it is not too close to the beginning or the end of simulation.

A similar behaviour can be observed in the cases of larger training sets. For example,
using ]_/1,5 and ]_/1,10 a relatively high agreement with the validation set was limited to
about the first 10 of the 25 steps of simulation. Slightly better results were obtained
using ]71715.

Looking at the cases of training sets composed of two maps, it appears that when
different calibration points are well spaced and not too close to the beginning of the
simulation, the accuracy is quite high and steady until the final step. In fact, the best
results were obtained for ]_25715 and, to a lesser extent, for ]_25710 and ]710715.

5.2.4. A forecasting exercise

As a final analysis, we examined the above results from a land-use-change forecasting
perspective: assuming that the current time corresponds to the 15th CA step and that
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we had to predict the configuration @5 at the 25th CA step, which of the above
training sets would be better? Given the assumption on the constraints, the considered
test problem corresponds to a prediction of the spatial scenario after 20 years. Obviously,
we assumed that the current configuration is available for the training set.

The results, expressed in terms of K, at the 25th CA step, are shown in Fig. 12.
Also, in Table 5 for the best and the worst training sets, we show: value of Ky, number
of hits (land-use changes in the reference configuration @25 which were correctly pre-
dicted), number of misses (land-use changes in ©(35) incorrectly predicted as persistence
or different change), false alarms (land-use persistence in @) incorrectly predicted as

1.00 T T T T 1.00 T T T T 1.00 r T T T
K : K 5 K
0.954 4 0954 R 0.95 .|
0.90 + T 0.90 + T T T T 0.90 4+ T T T T
01 5 10 15 20 25 (] 5 10 15 20 25 01 5 10 15 20 25
CA step CA step CA step
1.00 T T T T 1.00 T T T T 1.00 r T T T
K K calibration point K
| 5 5
0.95+ y 0.95 4 0.95 4
0.90 4 r T T T 0.90 4~ T r T r 0.90 4 T r T r
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Figure 11. Value of K during the simulation for the different calibrations. For each training set,
we used the vector of parameters corresponding to the best achieved fitness.
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change) and percentage of hits (computed as hits over the total change in the reference
configuration).

As can be seen, the best forecasting ability was achieved through a model calibrated
using two configurations (i.e. ©®) and <Z)<15)). However, the calibration with 175710715 was
essentially equivalent. The poor performance of the training set ]_/1,5,10,15 is due to the
inclusion of configuration @) which proves to worsen the predictive abilities of the
model. In this case, we can recognize a kind of overfitting that creates a bias in the
calibration towards the initial part of the simulation.

For the best (i.e. V515) and the worst (i.e. Vi5) forecasting ability of the model, in

Visiors | |

V1015 ‘ |

Vsis | |

T T ¥ T T T T ¥ T T T
090 091 092 093 094 095 096 097 098 099 1.00
K, at the 25th CA step

Figure 12. Comparison between different calibration options tested in the forecasting exercise.
For each training set we used the vector of parameters corresponding to the best achieved fitness
during the calibration process.

Figure 13. Forecasting exercise: maps of the differences between the final simulated configuration
(i.e. w) and the final reference configuration (i.e. @2)). The calibration points are highlighted.
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Figure 13 we show the maps of the differences between the final simulated configuration
(i.e. w)) and the final reference configuration (i.e. @2). This with the aim of helping
to visualize the effect of calibration errors in the case under study.

According to Table 5, adding the map @®) to the training set Vi5 increased by 6.1%
the percentage of hits.

6. Conclusions and Future Work

The automatic calibration of urban CA models is a crucial phase in ensuring the reliability
and accuracy of simulations. However, calibration can be a challenging problem, since it
requires availability of data, efficient and effective optimization algorithms and significant
computational resources.

In this article, using a suitable experimental setup and some advanced computational
techniques, we investigated the influence of the composition of the training set on the
quality of the resulting calibration. In particular, in spite of the substantial equivalence
of most of the fitness values obtained during the calibrations, a suitable statistical test
revealed several significant differences in the quality of the corresponding simulations.

A first group of indications that can be drawn from the above results concerns the use
of a single historical map for calibration. In this respect, the experiments showed that:

e training sets including only calibration points very close to the beginning of the sim-
ulation (i.e. Vi and Vs) led to easy optimization problems (i.e. high achieved fitness).
However, the corresponding accuracy of simulations was poor.

e training sets composed of a single calibration point quite far from the beginning of the
simulation (i.e. Voo and Va5) led to more difficult optimization problems and again to
poor accuracy of simulations;

e in contrast, a reasonable quality of the calibrated model was obtained using a single
historical map referring to a point which is not too close nor too far from the beginning
of the simulation (i.e. V1o or Vi3).

Other insights that can be derived from the results discussed above concern the use of
multiple maps in the calibration phase. In this regard, the computational experiments
showed that:

e in most cases, incrementing the training set through additional maps did not produce
significant improvements in the simulation accuracy; this was observed when the added
map was not able to bring additional informational content (e.g. w5 added to Vi or
w10 added to ]75,15);

e increasing the size of the training set to more than two maps has never led to significant
improvements in simulation accuracy;

e the best training set was composed of two calibration points (i.e. at the CA steps 5
and 15), which were well spaced and not too close to the beginning of the simulation.

It is important to highlight that the insights that can be drawn from the experiments
described above refer to a case in which the rules that determine the urban dynamics
(i.e. the parameters) are constant over time. This can be, at least approximately, the

Table 5. Forecasting exercise: accuracy in simulating the final configuration through the best and the
worst training sets.

Training set K,  Hit [cells] Missed [cells] False positive [cells] Hit [%)]

1:)15 0.959 9610 1157 63 89.3
Vs 15 0.982 10274 493 79 95.4
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case for many historical periods and urban areas in the world. Nevertheless, if the mu-
tual influences between the different land uses or those exerted by the driving factors
slightly vary over time, we could still apply the CA described in section 2, as well as the
calibration procedure, accepting a certain model error. In this case, in contrast to the
experiments discussed above, more likely an additional map in the training set would
bring a significant contribution of information on the dynamics of the system, favouring
the convergence towards a better vector of parameters.

Our computational study has some more limitations, which we plan to overcome in
the future. A first step would be to repeat the investigation for a significant number
of random urban dynamics, rather than just for one. Obviously, this would increase
considerably the number of required CA simulations.

There are also other aspects that deserve to be investigated. For example, to what
extent a different fitness function could positively influence the quality of calibration.
In fact, there are many alternatives to the agreement measure between maps that we
used, including multi-objective fitness functions based on various landscape metrics (Li
et al. 2013). In conclusion, on the issue of calibrating CAs for the simulation of urban
dynamics, there is still room for useful research.
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