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Abstract

An ever increasing part of communication between persons involve the use of

pictures, thanks to the cheap availability of powerful cameras on smartphones,

and the cheap availability of storage space. The rising popularity of social

networking applications such as Facebook, Twitter, Instagram, and of instant

messaging applications, such as WhatsApp, WeChat, is the clear evidence of

this phenomenon, thanks to the opportunity of sharing in real-time a pictorial

representation of the context each individual is living in. The media rapidly

exploited this phenomenon, using the same channel, either to publish their re-

ports, or to gather additional information on an event through the community

of users. While the real-time use of images is managed through metadata as-

sociated with the image (i.e., the timestamp, the geolocation, tags, etc.), their

retrieval from an archive might be far from trivial, as an image bears a rich

semantic content that goes beyond the description provided by its metadata. It

turns out that after more than 20 years of research on Content-Based Image Re-

trieval (CBIR), the giant increase in the number and variety of images available

in digital format is challenging the research community. It is quite easy to see

that any approach aiming at facing such challenges must rely on different im-

age representations that need to be conveniently fused in order to adapt to the

subjectivity of image semantics. This paper offers a journey through the main

information fusion ingredients that a recipe for the design of a CBIR system
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should include to meet the demanding needs of users.
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1. Introduction

The availability of a large variety of personal devices, the prominent being

the smartphone, that allows capturing pictures, videos, and audio clips, and

uploading them on different social sharing services, fosters the steep rise of

the volume of digital data stored in many different archives [1]. To accurately5

extract information related to some specific topic from this vast amount of data,

retrieval tools and algorithms need to quickly discard irrelevant information, and

focus on the items of interests by evaluating a variety of multiple diverse features.

Whereas the performances of textual data search methods have reached a good

level of maturity, the same can not be said for visual search or multimedia data,10

due to the richness of content and the subjectivity of its interpretation [2].

So far, the most common method for retrieving multimedia content from

an archive consists of using meta-data associated to the images such as the

timestamp, the geolocation, keywords, tags, labels or short descriptions, and

perform the retrieval task through a text-based search. Manual cataloguing a15

large image archive, even though it requires expensive work, and a large amount

of time, often turns out not to be so effective, due to the subjectivity of the task

compared to the richness of its semantic content. In addition, it is necessary to

take into account that the use of a limited number of words for image labeling

and tagging does not always allow clearly and completely describing what an20

image represents, and is prone to confusion, as sometimes the same word can

have several meanings in different contexts.

Moreover, the manual annotation of images typically provides a general de-

scription that could be loosely connected to its specific visual content, as it

might contain the author, the main subject depicted, the place where the image25

was taken, etc., rather than the details, and, consequently, a textual query can

produce a multiplicity of results with different semantic meanings.

2



To overcome these drawbacks, several methods based on the automatic anal-

ysis of the image content from a computer perspective have been proposed over

the years. They are predicated on the approach of content-based indexing by30

leveraging on the use of low- and mid-level features such as color, texture, shape,

etc. a very active research field since more than 20 years [3, 4, 5, 6]. Retrieval

systems that are grounded on these approaches are called content-based image

retrieval (CBIR) systems.

Of course, the description of images through such low- and mid-level features35

is not always directly related to the common perception that the user has of an

image. For a human being, indeed, an image can be seen as the representation

of different concepts, either related to physical characteristics such as shapes,

colors, textures, etc., or related to emotions and memories. For a computer per-

spective, an image is simply a set of pixels with different “colors” and different40

intensities.

The early papers on CBIR are, by now, almost twenty-five years old [7], but

while the results attained so far allowed achieving some relevant milestones [5],

we are still facing issues for which an acceptable solution is far to be devised. One

of the most relevant issues is related to the type of features used to handle the45

“content” of an image, that is usually represented through low-level features that

represent colors, shapes, edges that can be found in an image with numerical

values. This means that, when two images are compared to find similarities,

actually the similarities with respect to the intrinsic features of the images, such

as the presence of objects with a given shape, and/or the dominance of a given50

color, etc., are computed. It can be easily seen however that the effectiveness

of the search in this case is limited to a small subsets of semantic concepts.

For example, when the similarity between an image of an orange and an

image of a lemon has to be measured, you might not always be satisfied by the

result [8, 9]. A retrieval system based on this level of description of an image55

content, may respond either with a very high or very low value of similarity. It

is not so difficult to see that a shape-based retrieval system would evaluate the

two images as being similar, while a retrieval system based on color does not.

3



These early findings, paved the way for exploring CBIR systems based on the

fusion of different features, either by employing weighted similarity measures,60

where different features are weighted according to their relevance to the task at

hand, or by combining different similarity functions, where image similarity is

first computed separately for each feature, and then their values are combined.

In the past years, there have been many attempts to bridge the gap between

the high level features, those perceived by human beings which identify the65

semantic information related to the images, and the low level ones that are used

in the searches. This difference in perception is widely known in the CBIR field

as the semantic gap. In order to capture such a subjectivity, image retrieval

tools may employ Relevance Feedback [10, 11] mechanisms. Relevance Feedback

(RF) techniques involve the user in the process of refining the search. In a CBIR70

task in which RF is employed, the user submits to the system a query image

which is an example of the pictures of interest. The system then assigns to

each image in the database a score according to a similarity measure between

each image and the query. The top k best scored images are returned to the

user that labels them as being relevant or not, so that the system can consider75

all relevant images as additional examples to better specify the query, and the

non-relevant ones as examples of images that the user is not interested in. With

the availability of this new additional information, the system can improve the

quality of the search results, by providing a larger number of relevant images in

the next iteration.80

It can be easily seen that this iterative and interactive procedure can benefit

from the availability of multiple image representations, as the retrieval system

can exploit the different similarity concepts embedded in the available repre-

sentations, and adapt the search towards the user’s interests. Consequently,

the fusion of multiple image representations for content-based image retrieval85

tasks has been mainly addressed within the relevance feedback paradigm, as it

provides a way to estimate the relevance of each feature and similarity measure

with respect to the task at hand. Moreover, the relevance feedback paradigm

can be employed to enable browse-to-search mechanisms, where the user has not
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a specific target in mind, and the feedback captures the most relevant features90

that drive the browsing experience towards the images of interest [12, 13].

In addition to the use of different sets of visual features, it can be easily seen

that the effectiveness of a visual retrieval system can be improved by combining

information from different modalities, i.e., from different types of content. For

example, if we consider Web pages, they usually contain both images and text.95

Even if the relationship between the surrounding text and images varies greatly,

with much of the text being redundant and/or unrelated to the visual content,

a large amount of information about an image can be found in the textual

context of the Web pages [14]. Several works indeed proved that such data can

be effectively combined within the traditional CBIR systems to improve the100

quality of the retrieval results [15, 16, 17].

This paper will introduce the reader to the major approaches proposed in

the literature for fusing information in visual retrieval tasks. Section 2 describes

the basic concepts behind the techniques proposed in the content based image

retrieval field. Section 3 summarizes the main categories in which fusion ap-105

proaches can be classified, each fusion approach being extensively addressed in

Sections 4, 5, 6, and 7. Conclusion and future research perspectives are drawn

in Section 9.

2. Architecture of a CBIR system

The design of a content-based image retrieval system requires a clear plan-110

ning of the goal of the system [5]. As much as the images in an archive are

of different types, are obtained by different acquisition techniques, and exhibit

different content, the search for specific concepts is definitely a hard task. It is

easy to see that as much as the scope of the archive is limited, and the content

to be searched is clearly defined, than the task can be more easily managed [3].115

On the other hand, the design of a general purpose multimedia retrieval engine

is a challenging task, as the system should be capable of adapting to different

semantic contents, and different intents of the users.
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A number of content-based retrieval systems tailored to specific applications,

usually referred to as narrow domain systems, have been proposed to date. Some120

of them are related to sport events, as the aspect of the scene is fixed, camera

positions are known in advance, and the movements of the players and other

objects (e.g., a ball) can be modeled [5]. Other applications are related to

medical analysis, as the type of images, and the objects to look for can be

precisely defined [18].125

The description of the content of a specific image can be provided in multiple

ways. First of all, an image can be described in term of its properties provided

in textual form (e.g., creator, content type, keywords, etc.). This is the model

used by Digital Libraries, where standard descriptors are defined, and guidelines

for defining appropriate values are proposed. However, apart from descriptor130

such as the file format, the size of the image, etc., other keywords are typically

provided by domain experts. In the case of very narrow-domain systems, it is

possible to agree on an ontology that helps describing standard scenarios. On

the other hand, when multimedia content is shared on the web, different users

may assign the same keyword to different contents, as well as assign different135

keywords to the same content [19]. Thus, more complex ontologies, and reason-

ing systems are required to correctly assess the similarity between images [20].

Low-level and medium-level content-based features [5, 9] have been proposed

in analogy with the possible way in which the human brain assesses the similarity

between visual contents. While at present this analogy is not deemed valid, these140

features may provide some hints about the concept represented by the pictorial

content. Currently, very sophisticated low-level features are defined that take

into account multiple image characteristics such as color, edge, texture, etc. [21].

Indeed, as soon as the domain of the archive is narrow, very specific features that

are directly linked with the semantic content are computed [22]. On the other145

hand, in a broad domain archive, these features may prove to be misleading, as

the basic assumptions do not hold [9].

A different way of thinking [23] has recently attracted researchers in the

computer vision community that dramatically advanced the state of the art in
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image classification tasks through the use of Deep Convolutional Neural Net-150

works (CNN) [24]. This approach has a long history [25], its basic concept

stemming from artificial neural network research, where many layers of inter-

connected information processing units are exploited for pattern classification,

or feature learning tasks [26, 27]. The more interesting characteristic of the

deep learning paradigm is that features need not to be extracted from the raw155

data beforehand, but the raw data themselves are processed by the network

that produces an internal feature representation of the data suited for the task

at hand. The seminal paper, where CNN have been used in an image classifica-

tion task [24], clearly showed that features emerging in the upper layers of the

CNN can also serve as good descriptors for image retrieval. Subsequent works160

[28, 29, 30, 31] further investigated this aspect, and showed that the features

learned for a given task, can be reused for other classification or retrieval tasks.

It is worth to note that Babenko et al. [32] recently showed that the features ex-

tracted from a CNN trained for a classification task have the same performances

when the retrieval dataset is quite different from the training dataset. Never-165

theless, this performance can be further improved when the CNN is retrained

by using images that have a stronger relationship with the retrieval dataset.

However, in the same paper, the authors also point out that in some contexts

these features do not outperform other state-of-the-art features, such as Fisher

vectors [33, 34] or Triangulation embedding [35].170

The past decade has witnessed many scientific advances in the CBIR field,

mostly in vertical application areas [18] such as medical image retrieval1, cul-

tural heritage preservation [36], and a large variety of new class of applications

that use the camera phone to search information about objects that are in visual

proximity to the user [37], e.g., for identifying products, comparison shopping175

and so on [38]. Nevertheless, the use of content based image search engine in

large and non-specific database produces results that are far from being satisfac-

tory. In [39], for example, it easy to see how the recognition rate of the state-of-

1http://ganymed.imib.rwth-aachen.de/irma/

7



User	Feedback	

Color	 Texture	 …	 Tags	

fc1 fc2 … ft1 … 

fc2=[fc21, fc22, …, fc2L] 

Visual	 Textual	

fx1 … 

Annota9ons	 …	

feature	
vectors	

feature	
spaces	

feature	
modality	

Classifier	Level	

Retrieval	Level	
Ranked	List	

early	
fusion	

late	
fusion	 …	

Figure 1: Schema of the structure of a CBIR system.

the-art scene classifiers employing state-of-the-art features decrease from 88.1%

to 38.0% in two datasets with 15 and 397 categories respectively.180

Summing up, the design of a content-based image retrieval system requires:

i) the selection of a set of content-based features that are expected to capture

the semantics of the images; ii) the selection of the technique used to extract and

represent each feature; iii) the definition of suitable similarity measures in the

feature representation of images that capture their semantic similarity; iv) the185

use of tailored fusion mechanisms to weigh the importance of each component

in capturing the semantics.

3. Information Fusion in CBIR

Over the years, several techniques for combining and fusing different im-

age descriptors have been proposed in the literature [40], each technique being190

tailored to the selected descriptors, the strategy of combination, and the ap-

plication targeted. Fusion approaches are usually categorized into two classes,

namely early, and late fusion approaches [41, 42], which refers to their relative

position in the learning chain that goes from the feature extraction step up to

the classification/retrieval step (See Figure 1).195
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Early fusion usually refers to the combination of the features into a single

representation before the computation of similarity between images[41]. This

kind of approaches is very common in the image retrieval field, and the simplest

and well known solution is based on the concatenation of the feature vectors into

a single vector such as in [43], where the authors propose two ways of integrating200

the SIFT [44] and LBP [45] descriptors, and the HOG [46] and LBP descriptors,

respectively. Other approaches proposed for image retrieval are based on the

early fusion of different feature spaces (See Section 5), such as color and shape

[47], or texture and color [48].

Late fusion refers either to the combination of the outputs produced by205

different retrieval systems, or to the combination of the similarity rankings,

the outputs and the rankings referring to different feature representations [49].

In an image retrieval task, the goal is to aggregate multiple ranked outputs

to generate another ranked output. This kind of fusion can be implemented

either according to a score-based approach, where the different similarities or210

distances from the query are combined, or by following a ranked-based paradigm

that combines the different ranks obtained by the classifiers. The outputs to

combine are usually weighted to give more importance to particular descriptors

either using weights whose values are fixed a priori, or by learning them for a

given image content [50].215

In an image classification task, instead, late fusion usually involves a weighted

voting strategy for the outputs of the classifiers associated to the individual de-

scriptors [51, 52]. Over the years, more sophisticated strategies that take place

at different levels of the learning chain, such as multiple kernels, have been

proposed in the literature, so they are sometimes categorized as intermediate220

fusion strategies [53]. However, as kernels are employed to provide for a feature

transformation where patterns from different classes can be linearly separated,

these techniques can be regarded as a special case of early fusion strategies.

A quite different approach to use the available descriptors is to give each of

them a different role, so that some of them are used to filter out a subset of im-225

ages, while the rest of descriptors are used on the remaining subset of images, or
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Figure 2: Diagram of a Convolutional Neural Networks (CNN) architecture as proposed in

[24].

regions in the images. This kind of approaches could be categorized as sequential

fusion. This paradigm can be used for combining different feature modalities

[54], or simply different visual feature sets [55, 56]. In other approaches, global

and local image descriptors are used sequentially, the first ones performing a230

coarse similarity search, the latter ones, to refine the search [57, 58]. In this

light, deep learning approaches implicitly perform feature fusion. In fact, the

CNN model consists of several convolutional layers and pooling layers stacked up

with one on top of another, where the convolutional layer performs a weighted

combination of the input values, while the pooling layer reduces the output of235

the convolutional layer (See Figure 2). At each level the raw features of the

images are weighed and refined with respect to the previous level, to produce

a better representation of the images. The hierarchical architecture of CNNs

could be seen as a ‘natural’ way of combining more feature modalities taking

advantage of the training algorithms embedded in its hidden layers [59, 60].240

Unfortunately, despite the great attention paid by researchers in using deep

learning approaches for image classification and recognition, there is still a lim-

ited amount of works that specifically focus on CBIR applications [61, 32], where

the goal is not to retrieve the images of the most probable class(es), but to re-

trieve the most similar images. This perspective affects both the learning phase,245

and the output processing phase, as outlined by the few seminal works to date.
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In the next sections, the different fusion strategies will be extensively ad-

dressed, and, for each strategy, several approaches will be discussed in order to

provide an overview of the different techniques proposed in the past years for

fusing multiple information in image retrieval tasks.250

4. Feature weighting for early fusion

If the retrieval task is modelled as a classification task, where a pool of

images described by a set of low-level features are assigned to a set of labels,

so that images with the same labels are considered to be similar to each other,

then a new feature space that captures the semantic similarity can be extracted255

by techniques such as PCA. However, to attain reliable results, the number of

training images should be large, and labels should be reliable. This is hardly the

case in image retrieval from large datasets. Conversely, instead of formulating

the problem in terms of the transformation of the feature space to discover

the hidden relationship between relevant images, an alternative solution that260

has been widely investigated consists in using feature selection strategies, or

feature weighting approaches, that can be considered to perform a soft selection

strategy. In fact, by following this paradigm, non-discriminative features will

receive a weight close to zero. As above mentioned, the idea comes from the

observation that the effectiveness of CBIR techniques strongly depends on the265

choice of the set of visual features.

However, no matter how suitably for the task at hand the features have

been designed, the set of retrieved images often fits the users needs only partly.

This is because, in general, the exact intent of the user’s query cannot be fully

captured even when multiple images are used for querying the archive. As a270

consequence, it is not possible to choose “a priori” the subset of features that

is best suited to a user’s query. The basic idea behind weighting mechanisms

is that the exploitation of relevance feedback from the user implicitly defines

which images should be considered similar to each other. For example, in a

metric space, relevance feedback information can be exploited by modify the275
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similarity measure so that similar images are represented as neighbors of each

other (i.e., relevant images), and non-relevant images do not fall within the

neighborhood of relevant images.

More formally, feature weighting mechanisms can be formulated as follows.

An image I is represented as I = I(F ), where F is a set of low level feature280

spaces fi, such as color, texture, etc. Each feature space fi can be modeled

by several representations fij , e.g. color histogram, color moments, etc.. Each

representation fij is itself a vector with multiple components

fij = [fij1, . . . , fijh, . . . , fijk, . . . , fijL] , (1)

where L is the vector length. For each level fi, fij and fijk it is possible to

associate a set of weights denoted with wi, wij and wijk, aimed at representing285

the effectiveness of each feature to the query at hand. For example, for a given

feature representation fij , the similarity between the images can be computed

by the “weighted” Minkowski metric [10]:

S (fij) =

(
L∑

k=1

wijk|IA(fijk)− IB(fijk)|p
)1/p

(2)

with p ≥ 1. The majority of papers that addressed the problem of weight es-

timation, followed a “probabilistic” approach. In [62] the authors proposed to290

estimate the weights using the inverse of the standard deviation of the values of

a feature component computed over a “class” of relevant images. The rationale

behind this proposal is that if a certain component of the feature vector takes

similar values for all the relevant images, it means that the component is relevant

to the query; on the contrary, if all relevant images have different values for that295

component, then the component is not relevant. In [63], a “local” measure of

relevance has been proposed to estimate features’ weights (Probabilistic Feature

Relevance Learning, PFRL). The estimation followed a least-squares approach,

that is, a certain feature is more relevant to the query if it contributes more to

the reduction in terms of the prediction error. A different approach is used in300

[64], where the features with maximum balanced information gain obtained from
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the entropy of the set of labelled images have been selected. In [8], the weights

have been estimated with the goal of privileging those feature spaces where the

set of relevant images form a compact cluster or, in terms of probabilities, by

assigning more importance to features for which the relevant examples have a305

high likelihood, and less importance to features for which the non-relevant ex-

amples have a low likelihood. Finally, in [65] the authors proposed a dynamic

feature weighting approach by exploiting intra-cluster and inter-cluster informa-

tion for representing the descriptive and discriminative properties of the features

according to the labels given by the user.310

The same estimation procedure could be used to weigh not only the com-

ponents of each individual feature space, but also to estimate the weights to be

associated to subsets of components. The idea stems from the fact that the fea-

ture vectors can be decomposed into “sub-vectors”, each sub-vector describing

a different part of the image or a specific characteristic. Therefore, by assigning315

a greater or a lower weight to one of them, it is possible to better adapt the

search to the concept the user is looking for.

In [66] a different point of view with respect to the usual probabilistic ap-

proach has been proposed. The weights associated to a given feature have

estimated so that they reflect the capability of representing nearest-neighbor320

relationships according to the user’s choices. This method is tailor-made for

retrieval techniques based on the nearest neighbor paradigm, and the same al-

gorithm can be used either to weight each component of one feature space, or

to weigh different subsets of feature values within the same feature space, or to

weight different feature spaces.325

Another approach that exploits the feedback from the user to assign a larger

importance to features related to similar images, and less importance to other

features, has been proposed in [67]. The rationale behind this approach can

be explained by observing that, if the variance of the images relevant to the

query is large along a given axis of the feature space, any value on this axis330

could be acceptable by the user, i.e., the value of the corresponding feature

is irrelevant with respect to the user’s needs, and therefore this axis should
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be given a low weight, and vice-versa. In that paper, the authors formulated

the relevance feedback approach as a minimization problem whose solutions

are the optimal query and a weight matrix used to define the distance metric335

between images. In [68], Rui et al. improved the algorithm described in [67]

by proposing a hierarchical model in which each image is represented by a set

of different features. In that work, in addition to estimating weights related to

each feature representation (inter-feature weighting), the different components

of each feature representation are also weighted (intra-feature weighting).340

Recently, the relevance feedback paradigm has been also exploited to improve

the retrieval capabilities of CNNs by modifying the weights of the convolutional

layers according to the feedback of the user, by following an early fusion ap-

proach, where the internal layers of the networks are seen as implicit feature

representations of the input images [69].345

5. Representation by multi-feature spaces for late fusion

The previous section showed that the combination of multiple image rep-

resentations (colors, shapes, textures, etc.) by early fusion approaches can

effectively cope with the reduced inter-class variation that is experienced by

resorting to just one type of features. As a drawback, the use of multiple image350

representations with a high number of components increases the computational

cost of retrieval techniques. As a consequence, the response time of the system

might become an issue for interactive applications (e.g., web searching). Over

the years, the pattern recognition community proposed a number of solutions

for fusing the information from different feature spaces through the combination355

of the output of different pattern classifiers [70]. The most popular and effective

techniques for output combination are based on late fusion techniques, such as

the mean rule, the maximum rule, the minimum rule, and weighted means.

In the field of content-based image retrieval, similar approaches can be em-

ployed by considering the value of similarity between images as the output of360

a classifier. In particular, combination approaches have been proposed for fus-
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ing different feature representations, where the appropriate similarity metric is

computed in each feature space, and then all the similarities are fused through

a weighted sum [10].

In the same spirit, in [71], a large set of highly selective visual features has365

been used, where each feature was highly selective for a small percentage of

images, and, at the same time, only a few features were selective for the set

of relevant images. In this way, after the choice of the most selective features

for a given query, each image in the archive can be evaluated very rapidly, by

discarding all other features.370

Artificial neural networks have been used in [72], where self-organizing maps

(SOMs) are employed to measure the similarity between images. This approach

aims at mapping the sequence of the queries based on the user’s responses during

the retrieval process. A separate SOM is trained for each feature vector type,

then the system adapts to the user’s preferences by returning more images from375

those SOMs where the responses of the user have been most densely mapped.

More recently, [73] proposed a different probabilistic strategy to combine

similarity measures. The authors considered a subjective similarity judgement

given by users on a fixed set of image and related it to a measure of similarity,

then combined the different values of similarity evaluated in different feature380

spaces. The different feature representations can be combined by fusing all the

similarity metrics through a weighted sum [10, 66]. The main issue for this kind

of approach is to increase the performances in terms of Precision, Recall, and

Average Precision [74], by limiting the increase of the processing time.

The issue of combining different feature representations is also relevant when385

relevance feedback mechanisms are used. In this case, at each iteration, simi-

larities have to be computed by exploiting relevance feedback information, for

example by resorting to Nearest-Neighbor or Support Vector Machine [75] tech-

niques.

In this view, an approach that has been proposed in the pattern recognition390

field to classify patterns represented by a set of similarity measures is the so

called “dissimilarity space”. This approach is based on the creation of a new
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feature space where patterns are represented in terms of their (dis)similarities

to some reference prototypes. The dimension of this space does not depend on

the dimensions of the low-level features employed, but it depends on the number395

of reference prototypes used to compute the dissimilarities, and on the number

of dissimilarity measures employed. If we denote with P = {p1, . . . ,pP } the

set of prototypes, and the dissimilarity measure between an image Ii and one

of the prototypes pj as d (Ii,pj), then the image Ii can be represented in the

dissimilarity space as follows:400

IPi = [d (Ii,p1) , . . . , d (Ii,pP )] . (3)

This representation can be easily extended to take into account multiple dis-

similarity measures by stacking the corresponding dissimilarity vectors.

This technique has been employed to exploit relevance feedback in content-

based image retrieval field [76, 77], where the set of relevant images plays the

role of reference prototypes. In addition, dissimilarity spaces have been also405

proposed for image retrieval to exploit information from different multi-modal

characteristic [78].

In addition, [56] propose another use of the dissimilarity representation for

improving the performances of relevance feedback approaches based on the

Nearest-Neighbor approach [79]. Instead of computing (dis)similarities by using410

different prototypes (e.g., the relevant images) and a single feature space, the

authors propose to compute similarities by using just one prototype, and multi-

ple feature representations. Each image is thus represented by a very compact

vector that summarizes different low-level characteristics, and allows images

that are relevant to the user’s goals to be represented as near points.415

In the past years, the combination of multi-feature spaces for image retrieval

tasks, has been proposed through the use of CNN [80] to learn both the metrics

for each feature space, and the combination function for the different feature

representations.
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6. Fusing different relevance feedback approaches420

The relevance feedback paradigm has been introduced to refine retrieval

results, both to overcome inaccuracies in textual information, and to bridge the

semantic gap between the low level image descriptors and the user semantics.

The user is actively involved in the retrieval process as she is asked to label a set

of retrieved images as being relevant or not [81] with respect to her interests. In425

general, the approaches proposed in the literature to exploit the RF paradigm

can be divided into two groups. One group of techniques exploit relevance

feedback by modifying some parameters of the search, either by computing a new

query vector in the feature space [62], or by choosing a more suitable similarity

measure, or by using a weighted distance [82, 66]. Another group of approaches430

are based on the formulation of RF in terms of a pattern classification task,

by using popular learning algorithms such as SVMs [83], neural networks and

self-organizing maps [75, 84, 72], and using the relevant and non-relevant image

sets for training purposes.

One of the first techniques to be employed for RF in CBIR tasks, that is still435

used in a number of image retrieval applications, is based on the so-called query

shifting paradigm [62]. This technique has been developed in the text retrieval

field, and it is represented by the Rocchio formula [85]:

Qopt = 1
NR

∑
i∈DR

Di − 1
NT−NR

∑
i∈DN

Di (4)

where DR and DN are the sets of relevant and non relevant images respectively,

NR is the number of images in DR, NT the number of the total documents,440

and Di is the representation of an image in the feature space. This approach is

motivated by the assumption that the query may lie in a region of the feature

space that is in some way “far” from the images that are relevant to the user.

On the contrary, according to Eq.(4), the optimal query should lie near to the

euclidean center of the relevant images and ‘far” from the non relevant images.445

Relevance feedback has been also formulated in terms of a pattern classifica-

tion task using neural networks, self-organizing maps (SOMs) [72], or approaches
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based on SVM. The latter have been widely used to model the concepts behind

the set of relevant images, and adjust the search accordingly [75, 84]. However,

it is worth noting that in many practical CBIR settings it is usually difficult450

to produce a high-level generalization of a “class” of objects, as the number of

available relevant and non-relevant samples cases may be too small, and the

concept of “class” is variable, due to the subjectivity of the definition of similar-

ity between images. This kind of problems has been partially mitigated thanks

to the use of the active learning paradigm [86], where the system is trained455

not only with the most relevant images according to the user judgement, but

also with the most informative images that allows driving the search into more

promising regions of the feature space [87, 88].

For a given image database, and for different users, the best performances

might be provided by different relevance feedback approaches. This behaviour460

can be easily seen if we model the set formed by each query image and the

associated positive feedback samples as a “class” of a classification problem.

For each “class” of query images, one relevance feedback technique might be

better other RF approaches.

According to this behaviour, [89] proposed a combination of multiple rele-465

vance feedback strategies. The proposed combination integrates three relevance

feedback techniques, namely Query Vector Modification [85], Feature Relevance

Estimation [62, 63], and Bayesian Inference [90], and dynamically selects the

most appropriate technique for a particular query, or even for a particular iter-

ation, by evaluating the retrieval precision of each approach.470

In [91], a different approach is followed. The authors proposed to employ

the Support Vector Machine ensembles technique to construct a group-based

relevance feedback algorithm, by assuming the data as coming from multiple

positive classes and one negative class, i.e. the problem was modeled as a (x+1)-

class classification problem. An SVM ensemble was also proposed in [92, 93] to475

address the unbalanced learning issue, whereas the authors of [94] suggested to

use a set of one-class classifiers based on the Information Bottleneck framework

[95].
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Apart from the above mentioned papers, there have not been other signif-

icant investigations on the potentialities of combining different relevance feed-480

back approaches. The vast majority of papers that propose the use of classifier

ensembles for content based image retrieval tasks, are based on a single approach

for relevance feedback, where different instances are created either by training

on different “classes” of images, or on different bags of relevant/non relevant

images in order to improve the performance of that particular approach.485

7. Multimodal retrieval

While it has been more than 20 years since the first proposal of a system

that allowed the user to combine the textual information contained in a HTML

document along with the attached image, with the information in image meta-

data (i.e., its width, height, the file size, type, etc.), and with the number of490

faces in the image [96, 97], nevertheless the paradigm to combine multimodal

feature has never ceased to arouse interest in researchers [98, 42, 99]. The roots

of this approach lie in the fact that the performance of a content-based image

retrieval (CBIR) system is inherently constrained by low-level features, and it

cannot give satisfactory retrieval results when users’ high-level concepts are not495

easily expressed by low-level features [100]. Keywords have been used to assist

content-based image retrieval tasks according to two main approaches: their use

as additional features, or their use to seed a text-based query [101].

The first approach combines keywords with low level features of the images

in order to use a combined input space. Many works followed this path as [100],500

where the authors proposed an algorithm for learning the keyword similarity

matrix during user interaction, namely word association via relevance feedback

(WARF). They assume that the images in the database have textual annotations

in terms of short phrases or keywords that can come from keywords spotting

from surrounding HTML text on Web pages, manual annotation, and so forth.505

To combine the use of low-level visual features with keywords, they convert

keyword annotations for each image into a vector, where each component is
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related to the presence or to the probability of a certain keyword in a specific

image.

Several other researchers have addressed this problem from different points510

of view. [102] proposed to combine textual and visual statistics in a single index

vector, where textual statistics are captured in vector form using a latent seman-

tic approach based on the text in the containing HTML document, while visual

features are captured in vector form using color and orientation histograms.

Barnard and Forsyth [103] proposed a method that organizes image databases515

using both image features and associated text by integrating the two types of

information during model construction. The system learns the relationships be-

tween the image features and semantics by modelling the statistics of word and

feature occurrence and co-occurrence. In [104], the authors proposed an ap-

proach based on associating a fuzzy membership function with the distribution520

of the features’ distances, and assigning a degree of worthiness to each feature

based on its relative average performance. The memberships and the feature

weights are then aggregated to produce a confidence value that could be used

to rank the retrieved images. The basic idea is to assign high membership val-

ues to distances that are relatively low and low membership values to relatively525

large distances. The membership functions is designed according to the distri-

bution of the distances within each feature for a small set of training images. In

particular, the features’ memberships values and their relevance weights have

been combined according to two distinct approaches: the first one is linear and

is based on a simple weighted combination, the second one is non-linear and is530

based on the discrete Choquet integral [105].

Linear combination models have been widely used in multimedia information

retrieval for combining textual and visual features, even if obtaining an effective

system is not straightforward due to the difficulty to estimate the weights of

the different modalities. In [106] the authors proposed an approach based on535

Fisher Linear Discriminant Analysis, aimed to learn the weights for multimedia

documents composed of text and images. In particular, the authors reformulate

the task of learning the combination parameters as a dimensionality reduction
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problem in a binary classification context, i.e., to find the linear combination

which best separate relevant and non-relevant documents.540

More recently, it has been also proposed an alternative way to combine

different modalities. In [54] the authors use the Balanced Iterative Reducing

and Clustering (BIRCH) algorithm [107] on textual and visual descriptors to

diversify the results obtained by the search. In order to combine textual and

visual information together, they first build a clustering tree based on textual545

information, and then the resulting tree is refined by replacing the text features

with the visual ones. In particular, for each node of the tree, its center and

radius are recomputed based on the visual feature vectors instead of the former

textual feature vectors.

In [108], a novel scheme for online multi-modal distance metric learning550

(OMDML) is investigated, which learns distance metrics from multi-modal data

or multiple types of features via an online learning scheme. The key idea of

OMDML is to learn to optimize a separate distance metric for each individual

modality, and to find an optimal combination of diverse distance metrics on

multiple modalities.555

Another kind of approach is based on the use of keywords to seed a query, and

then employs both keywords and visual features to conduct query refinement

[109, 110]. In [111] the authors proposed a framework that performed relevance

feedback both on keywords representing the images’ semantic contents through

a semantic network, and the low-level feature vectors such as color, texture, and560

shape. In [101] the authors proposed a multimodal learning approach that uses

images’ semantic labels to guide a concept-dependent, active-learning process.

The system is based on the definition of complexity of a concept, and then it

proposed making adjustments to the sampling strategy from which images are

to be selected and labeled, to improve the capability of the concept learning.565

The idea behind this Concept Dependent Active Learning approach (CDAL) is

to address the scarcity problem by using keywords to seed a query. According to

this approach the user can use a keyword to describe the target concept and the

images that are annotated with that keyword are added to the initial pool. If
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the number of images with matching keywords is small, the system can perform570

query expansion using a thesaurus to obtain related words that have matching

images in the dataset.

Some approaches propose to perform separate visual/textual queries in par-

allel, and then take the union/intersection of the two retrieved lists as in [112],

where the results are combined using a weighted sum of the scores given by each575

retrieval system. A linear weighted combination is also used in [113], where a

relevance feedback system that refines its results after each iteration, using late

fusion methods is proposed. It allows also the user to dynamically tune the

amount of textual and visual information to be used for retrieving similar im-

ages. Other systems perform the two queries sequentially and use one modality580

to filter the search space for the other modality as in [114]. In that paper, the

authors proposed an asymmetric multimedia fusion strategy, which exploits the

complementarity of the text and the visual features. The schema consists in

a prefiltering textual step, which reduces the collection for the visual retrieval

step.585

In [115], the authors presented iLike, an image search engine that integrates

both textual and visual features to improve the retrieval performance. The

system claims to bridge the semantic gap by capturing the meaning of each

text term in the visual feature space, and re-weight visual features according

to their significance to the query terms. The system is able to infer the “visual590

meanings” behind the textual queries and provide a visual thesaurus, which is

generated from the statistical similarity between the visual space representation

of textual terms.

The paper by Ngiam et al. [59] can be considered one of the first attempts to

learn and combine features over multiple modalities exploiting the deep learning595

paradigm. That paper presents a series of tasks for multimodal learning, and

shows how to train deep networks that learn features to address each of the

proposed tasks. For the sake of clarity, it is worth noting that the authors did not

focus their proposal on the multimodal domain, properly speaking, but rather on

the so-called cross-modal domain. In the multimodal fusion setting, data from600
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all modalities is available at feature learning, for training the system, and for

each test pattern. In the cross-modality setting, data from multiple modalities

is available only during feature learning, while, during the training and test

phases, only data from a single modality is provided [59]. Accordingly, cross-

modal retrieval refers to the search paradigm where information in one modality605

can be retrieved using the other available modalities, such as searching images

using text and vice-versa [116]. In [60], the authors propose a Deep Boltzmann

Machine (DBM) [117] model for learning multimodal data representations where

the key idea is to learn a joint density model over the space of multimodal inputs.

More recently Wang et al. [118] proposed a 5-layer neural network to learn a joint610

model for semantically correlating multiple features from different modalities,

where deep learning feature as image representation, and topic feature as text

representation are fused.

8. Discussion

The above sections clearly showed that for image retrieval tasks, the use615

of different representations is essential for capturing the multiple concepts that

each image can be associated to by different persons. How to model the fu-

sion of multiple representations according to the context in which the retrieval

system is expected to be used is a hard task, as the increase in the number of

parameters controlling the fusion mechanisms goes along with the availability620

of large training datasets, and with solid assumptions on their ranges and rela-

tionships, to ensure that robust estimations are produced. While nowadays a

large quantity of data is available for training purposes, still the way in which

they are processed to produce personalized results, and avoid biases, requires

a careful design of the learning architecture and algorithm [23]. So, while the625

deep learning paradigm is now regarded as an effective solution for many classi-

fication and similarity retrieval tasks, previous works on information fusion for

image retrieval provide a set of guidelines on the design of the learning architec-

ture and the learning function to fully exploit the potentialities of this popular
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paradigm.630

• early fusion by Feature weighting. Feature weighting allows building re-

trieval systems where the designer has a full control of the processing steps,

and the reasons behind the output of the system can be traced back to the

importance given to different image representations. Moreover, relevance

feedback mechanisms can be implemented to modify the weights according635

to the users’ needs. The algorithm to estimate the weights should be as

simple as possible, as the choice of the objective function, and the related

estimation procedure could drive the system to produce biased and unex-

pected results. On the other hand, for narrow domain applications, this

mechanism could prove to be winning, as the weights can be tailored to640

the domain of the images at hand. If no automatic estimation algorithm

is used, then for the casual users it could be a difficult task to understand

the effect of the weight values on the final results.

• Late fusion by multi-feature spaces. From a conceptual point of view, this

is one of the more promising approaches, as it avoids dealing directly with645

the fusion of different image representations, as fusion is performed at a

later stage, where the outputs of different systems can be regarded as new

features to be combined. This approach is actually taken as a paradigm to

implement multi-modal and cross-modal retrieval system employing deep

learning architectures [116, 118], as different independent retrieval systems650

are seen as feature transformation functions, producing a new feature

space for a second layer retrieval function. Again, the main research issues

in the implementation of such an approach is the training of different

systems, and how changes in one level propagates to the next levels and

the output.655

• Fusing different relevance feedback approaches. The exploitation of rele-

vance feedback information can be carried out according to different ap-

proaches, in terms of the assumptions on the underlying distribution of

relevant images. As the different relevance feedback approaches proposed
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in the literature reflect the richness in the way the similarity between660

images can be modelled, their fusion might provide the system with an

additional level of flexibility in capturing the user’s needs, Again, the esti-

mation of the parameters of the fusion mechanism should be kept as simple

as possible, as the amount of information produced during the feedback

iterations is quite limited, and, consequently, the number of parameters665

to be estimated should be small.

9. Conclusion

The cheap availability of cameras embedded in portable devices, and the

availability of almost unlimited storage space, unleashed the natural ten-

dency of people to communicate through images, for the richness of se-670

mantic content, and the immediacy of the message conveyed. This vast

amount of visual information can be searched through textual queries re-

lated to the geolocation, timestamp, tags and labels provided by the users,

with the shortcoming that these textual descriptors capture the semantics

of images only partly, due to the richness of the semantic content of an675

image compared to the subjectivity of image tagging and labeling. To this

end, the query-by-content paradigm allows searching for images beyond

the purpose of their first use, by leveraging on the extraction of multiple

descriptors to allow associating each image to different semantic concepts.

This paper aimed at providing an overview of the techniques that could680

be used to fuse different descriptors, both in terms of the components in

the processing pipeline in which the fusion takes place, and in terms of

the techniques that can be used to estimate the parameters of the query

mechanism to adapt to the needs and goals of the target application, and

to the interests of the users involved. While the past 20+ years of research685

in the field allowed to reach a number of milestones, so that image clas-

sification and retrieval functions are now available in consumer products,

the steep increase in the number of images stored, and the consequent
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requests for more advanced functionalities by different categories of users,

are making the old challenges even harder:690

– Labeled data is needed in order to design the system, and estimate the

parameters. However, the reliability of the labeling process clearly

affects the quality of the performance of the system. For this rea-

son benchmarks that help researchers to develop new approaches and

evaluate the related performances are, now more than ever, crucial.695

In this line of reasoning it is worth to note that evaluation cam-

paigns such as ImageCLEF2 and ImageNET3, since 2003 and 2010

respectively, created a number of publicly-accessible evaluation re-

sources. Anyway, the creation of public datasets suited to test the

performances of CBIR system in real settings still remains one of the700

main issues in this field. How can labeling be improved, and how

can unlabeled data as well as partially labeled data being exploited

to incrementally improve the system performances?

– How can the implicit feedback provided by the user be exploited when

browsing the private archive, or searching through the media content705

shared within his/her social network?

– How to design easy-to-use interfaces that allows users to interact

with the system in an intuitive way so that labels and feedbacks are

provided in non ambiguous way?

– How to design fusion approaches tailored to vertical applications or710

scenarios, e.g., the media industry, fashion, design, forensics, etc.?

– More in general, principled approaches providing design guidelines

are still needed, as the vast majority of papers support the proposal

of new techniques and algorithms through experimental evaluation,

and trial and error procedures.715

2http://imageclef.org/2016
3http://image-net.org/challenges/LSVRC/2016/
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The availability of more computing power, especially through the ‘cloud

computing’ paradigm, the large popularity of deep learning approaches, as

well as the interest from a variety of actors, both from the research com-

munity, and from an increasing number of companies, will allow addressing

the above issues with novel approaches that will leverage on cooperation720

and knowledge sharing.
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