
Merging relations: a way to compact Petri nets’
behaviors uniformly?

Giovanni Casu and G. Michele Pinna

Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy
giovanni.casu@unica.it, gmpinna@unica.it

Abstract. Compacting Petri nets behaviors means to develop a more
succinct representation of all the possible executions of a net, still giving
the capability to reason on properties fulfilled by the computations of the
net. To do so suitable equivalences on alternative executions have to be
engineered. We introduce a general notion of merging relation covering
the existing approaches to compact behaviors and we discuss how to
enforce that the more succinct net is an unravel net, namely a net where
dependencies can be identified (almost) synctactically.

1 Introduction

The non sequential behavior of a Petri net [1, 2] can be described in many ways,
e.g using traces [3], but probably the most popular and used one is the notion of
unfolding [4, 5]. The unfolding of a net N is particularly relevant as it allows to
record conflicts and dependencies among the activities modeled with N , and the
possibility of finding a finite representation of it (the prefix), has given profitability
to the notion, otherwise confined to the purely theoretical modeling realm [6,
7]. However the size of a finite unfolding, even of the prefix, can be too large,
hence manageable only with big efforts. Several approaches to reduce it have
been proposed, based on the idea of identifying suitable conflicting conditions of
the unfolding. In the case of merged process [8] the criterion is that the conditions
must be equally labeled and have the same token occurrence (i.e. they represent
the same token, in the collective token philosophy of [9]) whereas in the case of
trellis processes [10] the criterion is the distance of the equally labeled conditions
from the initial condition of its component (measuring the time). Once conditions
have been identified, isomorphic futures are identified as well.

The identification of conflicting conditions seems to be a good starting point
for compacting nets’ behaviors. We pursue this idea further, casting it in a
general framework. We first define a notion of incompatibility among places of
the behavior that it is not based on the syntax, as in causal nets, but on the
semantics; and then we introduce an equivalence relation on places with some
minimal requirements: it should respect the notion of incompatibility and it
should respect the labeling (which is, in the case of the non sequential behavior
of a net, the folding morphism). The incompatibility relation should capture the

?
Work partially supported by Aut. Region of Sardinia P.I.A. 2013 “NOMAD”

2 G. Casu & G.M. Pinna

idea that, assuming that a place is identified with a resource, two resources are
never used together in a computation. This equivalence relation is the basis for
compacting behaviours that, following the classic motto, are nets [11, 12].

Some of the definable equivalences may give a rather compact net, where
executions have to be recovered with some efforts, and causality and conflicts may
be deduced only after all the executions have been exploited. To ease the task of
finding causality and conflict we propose the notion of unravel net which allows
to capture easily and syntactically dependencies in each computation, whereas
conflict is deduced in a semantic way. Indeed, unravel nets are such that each
execution gives an acyclic net, hence causality is easily traceable. Furthermore
we believe that this notion is robust enough for representing the non sequential
behaviors of nets as it is closely related to a brand of event structures, namely
bundle event structure [13]. Steps towards this direction have already been done
in [14], and here we present this attempt in the more general framework. Our
approach is rather flexible. The merging relation may be induced by a measure
on the places of the net to be compacted and, depending on the kind of measure
adopted, the result is an unravel net or there are ways to enrich the net in
such a way that the behaviors are preserved and reflected, and the result of
the compaction is still an unravel net. Thus the problem of finding the proper
merging relation is moved to the search of the useful measure on the places of
the net. Clearly a measure which is injective gives the trivial merging relation.

In Sec. 2 we introduce unravel nets and relate them to bundle event structures,
then, in Sec. 3, we propose our general framework, which we show adequate in
Sec. 4 by casting in it the classic approaches to behaviors compaction. In Sec. 5
we discuss how to ensure that the result of the compaction is still an unravel net.

2 Nets and Bundle Event Structures

With N we denote the set of natural numbers. Let A be a set, a multiset of A is
a function m : A → N. The set of multisets of A is denoted by µA. The usual
operations on multisets, like multiset union + or multiset difference −, are used.
We write m ⊆ m′ if m(a) ≤ m′(a) for all a ∈ A. If m ∈ µA, we denote with [[m]]
the multiset defined as [[m]](a) = 1 if m(a) > 0 and [[m]](a) = 0 otherwise; and
we use supp(m) as the denotation of the set {a ∈ A | m(a) ≥ 1}. Finally, when a
multiset m of A is a set, i.e. m = [[m]] (hence m = supp(m)), we write a ∈ m to
denote that m(a) 6= 0, and often confuse the multiset m with supp(m).

A Petri net is a 4-tuple N = 〈S, T, F,m〉, where S is a set of places and T is
a set of transitions (with S ∩ T = ∅), F ⊆ (S × T) ∪ (T × S) is the flow relation,
and m ∈ µS is called the initial marking. Petri nets are depicted as usual.

Given a net N = 〈S, T, F,m〉 and x ∈ S ∪T , we define the following multisets:
•x = F (−, x) and x• = F (x,−). If x ∈ S then •x (x•) is in µT and if x ∈ T
then •x (x•) is in µS A transition t ∈ T is enabled at a marking m ∈ µS,
denoted with m [t〉 , whenever •t ⊆ m. A transition t enabled at a marking m
can fire and its firing produces the marking m′ = m − •t + t•. The firing of
a transitions t at a marking m is denoted with m [t〉m′. We assume that each

Merging relations 3

transition t of a net N is such that •t 6= ∅ (which means that no transition may
fire spontaneously). Given a generic marking m (not necessarily equal to the
initial one), the firing sequence (fs) starting at m of the net N = 〈S, T, F,m〉,
is defined as usually: (a) m is a fs, and (b) if m [t1〉m1 · · · mn−1 [tn〉mn is a fs
and mn [t〉m′ then also m [t1〉m1 · · ·mn−1 [tn〉mn [t〉m′ is a fs. The set of firing
sequences of a net N starting at a marking m is denoted with ΣN

m and it is ranged
over by σ. Given fs σ = m [t1〉σ′ [tn〉mn, with start(σ) we denote the marking
m, with lead(σ) the marking mn and with tail(σ) the fs σ′ [tn〉mn. Given a net
N = 〈S, T, F,m〉, a marking m is reachable iff there exists a fs σ ∈ ΣN

m such that
lead(σ) is m; the set of reachable markings of N isMN =

⋃
σ∈ΣNm

lead(σ). Given

a fs σ = m [t1〉m1 · · ·mn−1 [tn〉m′, with Xσ =
∑n
i=1{ti} we denote the multiset

of transitions associated to this fs. We call this multiset a state of the net. The
set of states of a Petri net is then St(N) = {Xσ ∈ µT | σ ∈ ΣN

m }.
Given a set of markings M , with P(M) we denote the set of places that are

marked at some marking in M , namely {s ∈ S | ∃m ∈M. m(s) > 0}, and given
a fs σ, M(σ) are the markings associated to the fs σ, where M(σ) is M(σ) = {m}
if σ = m and M(σ) = {start(σ)} ∪M(tail(σ)) otherwise.

A net N = 〈S, T, F,m〉 is said safe if each marking m ∈ MN is such that
m = [[m]]. In this paper we consider safe nets N = 〈S, T, F,m〉 where each
transition can be fired, i.e. ∀t ∈ T ∃m ∈MN . m [t〉 , and each place is marked
in a computation, i.e. ∀s ∈ S ∃m ∈ MN . m(s) = 1. A subnet of a net is a
net obtained restricting places and transitions, and correspondingly also the
relation F and the initial marking. Let N = 〈S, T, F,m〉 be a Petri net and let
T ′ ⊆ T . Then the subnet generated by T ′ is the net N |T ′ = 〈S′, T ′, F ′,m′〉, where
S′ =

⋃
t∈T ′

(
[[•t]] ∪ [[t•]]

)
∪ supp(m), F ′ is the restriction of F to S′ and T ′, and

m′ is the obvious restriction of m to places in S′. Analogously we can restrict
to a subset of places. Let S′ ⊆ S, then the subnet generated by S′ is the net
N |S′ = 〈S′, T ′, F ′,m′〉, where T ′ =

⋃
s∈S′

(
[[•s]]∪ [[s•]]

)
, F ′ is the restriction of F

to S′ and T ′, and m′ is the restriction of m to places in S′.

A net N = 〈S, T, F,m〉 is said to be acyclic with respect to a subset of places
S′ whenever, given N |S′ = 〈S′, T ′, F ′,m′〉, the transitive and reflexive closure of
[[F]] is a partial order on S′ ∪ T ′.

An 1-occurrence net O = 〈S, T, F,m〉 is a Petri net where each state is a set,
i.e. ∀X ∈ St(O) it holds that X = [[X]]. The notion of occurrence net we use
here is the one called 1-occurrence net in [12] and the intuition behind it is the
following: regardless how tokens are produced or consumed, an occurrence net
guarantees that each transition can occur only once.

The notion of occurrence net is a semantical one, whereas the one of causal
net is more syntax oriented. Given a net N , we define x <N y iff (x, y) ∈ F ,
and ≤N is the transitive and reflexive closure of this relation. For denoting
places and transitions of a causal net we use B and E (see [4]) and call them
conditions and events respectively. A causal net is acyclic, when the whole set of
conditions is considered, and equipped with a conflict relation. Thus, a causal net
C = 〈B,E, F,m〉 is a safe net satisfying the following restrictions: (1) ∀b ∈ [[m]],
•b = ∅, (2) ∀b ∈ B. ∃b′ ∈ [[m]] such that b′ ≤C b, (3) ∀b ∈ B. •b is either empty

4 G. Casu & G.M. Pinna

or a singleton, (4) for all e ∈ E the set {e′ ∈ E | e′ ≤C e} is finite, and (5) # is
an irreflexive and symmetric relation defined as follows: (5.a) e#re

′ iff e, e′ ∈ E,
e 6= e′ and •e ∩ •e′ 6= ∅, (5.b) x#x′ iff ∃y, y′ ∈ E such that y#ry

′ and y ≤C x
and y′ ≤C x′. The intuition behind this notion is the following: each condition b
represents the occurrence of a token, which is produced by the unique event in
•b, unless b belongs to the initial marking, and it is used by only one transition
(hence if e, e′ ∈ b•, then e#e′). On causal nets it is natural to define a notion of
causality among elements of the net: we say that x is causally dependent from y
iff y ≤C x. Given a causal net C = 〈B,E, F,m〉, if ∀b ∈ B it holds that b• is at
most a singleton, we say that it is a conflict-free causal net (the relation # is
empty). Observe that each causal net C = 〈B,E, F,m〉 is also an 1-occurrence
net. Causal nets capture dependencies (and conflicts) whereas 1-occurrence nets
capture the unique occurrence property of each transition. We define a net which
will turn out to be, so to say, in between 1-occurrence and causal nets. Like in
1-occurrence nets we assure that each transition happens just once, and we are
still able to retrieve dependencies among the firings of transitions, though in a
more semantical way.

Definition 1. An unravel net R = 〈B,E, F,m〉 is a safe occurrence net such
that for each state X ∈ St(R) the net R|[[X]] is a conflict-free causal net.

(a) (b)

It is straightforward to observe that if
C = 〈B,E, F,m〉 is a causal net then it is an
unravel net as well. The contrary does not
hold (see the nets on the side). The net in (b)
is an unravel net which is not a causal net,
whereas the net (a) is a safe 1-occurrence
net which is not an unravel one. We state
some simple facts on unravel nets. First, as
we consider nets where each transition can be executed at some marking, if
s ∈ m then •s = ∅. Furthermore if two different transitions t and t′ are such that
•t ∩ •t′ 6= ∅ or t• ∩ t′• 6= ∅, then the two transitions cannot appear in the same
state of the net.

Unravel nets are closely related to bundle event structures [13]. In this brand
of event structure causality among events is represented by pairs (X, e), the
bundles, where X is a non empty set of events and e an event. The meaning of a
bundle (X, e) is that if e happens then one (and only one) event of X has to have
happened before (events in X are pairwise conflicting). An event e can be caused
by several bundles, and for each bundle an event in it should have happened.

Definition 2. A bundle event structure is a triple β = (E, 7→,#), where (a) E
is a set of events, (b) # is an irreflexive and symmetric binary relation on E (the
conflict relation), (c) 7→ ⊆ 2E

fin × E is the enabling relation such that if X 7→ e
then for all e1, e2 ∈ X. e1 6= e2 implies e1 # e2, and (d) for each e ∈ E the set
{X ⊆ E | X 7→ e} is finite.

The configurations of a bes are defined as usual. Let β = (E, 7→,#) be a bes
and X ⊆ E be a set of events. Then X is a configuration or β iff (a) it is conflict

Merging relations 5

free, i.e. ∀e, e′ ∈ X. ¬(e #e′), and (b) there exists a linearization {e1, . . . , en, . . . }
of the events in X such that ∀i ∈ N and for all bundles Xi 7→ ei it holds that
Xi ∩ {e1, . . . , ei−1} 6= ∅. The set of configurations of a bes β is denoted with
Conf(β).

Given an unravel net R = 〈B,E, F,m〉, the associated bes is the triple
Ebes(R) = (E, 7→,#) where 7→ is defined taking, for each b ∈ •e, the set of
events •b (thus •b 7→ e) and the conflict relation # is defined as e # e′ iff ∀X ∈
St(R). {e, e′} 6⊆ [[X]]. The configurations of the bes associated to an unravel net
are precisely the states of the unravel net: Conf(Ebes(R)) = St(R). Furthermore,
given a bes β = (E, 7→,#), we can associate an unravel net N (β) = 〈B,E,F,m〉
where B = {(e, i) | e ∈ E} ∪ {(e, e′) | e # e′} ∪ {(Y, e) | Y 7→ e}, (s, e) ∈ F if
s = (e, i) or s = (e, e′) or s = (e′, e) or s = (Y, e); and (e, s) ∈ F if (s = (Y, e′)
and e ∈ Y) or s = (e, o), and m = {(e, i) | e ∈ E} ∪ {{e, e′ | e # e′} and, as
before Conf(β) = St(N (β)). Thus among unravel nets and bes there is a similar
relationship as the one we have among causal nets and prime event structure.

We introduce now labeled nets. Let Λ be a set of labels, a labeled net N is
the pair (N, l), where N = 〈S, T, F,m〉 is a Petri net and l : S ∪ T → Λ a total
mapping such that l(T) ∩ l(S) = ∅. Given a labeled net N = (N, l) and a fs
σ = m [t1〉m1 [t2〉m2 · · ·mn−1 [tn〉mn, with run(σ) we denote the word on l(T)∗

defined as l(t1t2 · · · tn), and we call it trace. To the fs σ = m the empty trace is
associated, i.e. run(σ) = ε. The length of a fs σ is the length of run(σ).

Let N = (N, l) be a labeled net where N = 〈S, T, F,m〉 and let t, t′ ∈ T be
two transitions. We say that t and t′ are identifiable whenever •t = •t′, t• = t′•

and l(t) = l(t′). Thus on T it is possible to define an equivalence relation ' such
that t ' t′ iff t and t′ are identifiable. The set of transitions can be quotiented
through this equivalence relation obtaining the set {[t]' | t ∈ T}. Observe that
the transitions in [t]' are pairwise conflicting.

Definition 3. Let (N, l) = (〈S, T, F,m〉, l) be a labeled net and let ' be the
equivalence relation induced by transitions identifiability. Then we can construct
the labeled net N̂ = (N̂ , l̂) where N̂ is the Petri net 〈S, T̂ , F̂ ,m〉 with T̂ = {[t]' |
t ∈ T}, F̂ (s, [t]') = F (s, t) and F̂ ([t]', s) = F (t, s), and l̂ is the mapping defined

as l̂(s) = l(s) and l̂([t]') = l(t).

Let σ ∈ ΣN
m , then σ̂ is constructed as follows: σ̂ = m if σ = m and σ̂ = σ̂′ [[t]'〉m

if σ = σ′ [t〉m. The firing sequences of N and of N̂ are clearly related, as the
following proposition shows. Observe that run(σ̂) = l([t1]'· · ·[tn]') = run(σ).

Proposition 1. Let (N, l) = (〈S, T, F,m〉, l) be a labeled net, and let ' be the
equivalence relation induced by transitions identifiability. Let σ ∈ ΣN

m be a fs,

then σ̂ ∈ ΣN̂
m .

3 Merging relation

In this section we propose a simple and general framework to compact labeled nets.
We first introduce a semantical notion of incompatibility on places, capturing the

6 G. Casu & G.M. Pinna

idea that, if a place is akin to a resource, two resources are incompatible if they
never appear in the same computation, even at different stages. Then we show
that, given a suitable equivalence relation, related to places incompatibility, a
more succinct version of the net we started with can be obtained, whose behaviors
are still related to the original one.

Given a net N = 〈S, T, F,m〉, we say that two different places s, s′ ∈ S are
incompatible iff for each firing sequence σ ∈ ΣN

m it holds that {s, s′} 6⊆ P(M(σ)),
and we denote it with s ./ s′ (observe that this notion is quite similar to the
one of conflict we introduced on unravel nets). Clearly ./ is a symmetric and
irreflexive relation and if s ∈ [[m]] and s ./ s′ then ∀σ ∈ ΣN

m. s
′ 6∈ P(M(σ)).

Example 1. Consider the labeled net N = (N, l) in Fig. 2(a), with initial marking
m = {c0}. The relation ./ contains the pairs (ci, cj) such that i, j > 0 and if i is
odd then j is even and vice versa as well. Thus c4 ./ c7 and c9 ./ c6 but c6 6./ c4.

We introduce now the notion of merging relation.

Definition 4. Let N = (N, l) be a labeled net where N = 〈S, T, F,m〉, let ~ ⊆ ./,
and let ∼ be an equivalence relation such that s ∼ s′ ⇔ (s ~ s′ ∨ s = s′) ∧ l(s) =
l(s′). Then ∼ is a merging relation for N.

A merging relation is any equivalence relation respecting labeling and incompati-
bility (better, a relation included into the one of incompatibility). Observe that
the identity on places is a trivial merging relation. Furthermore if s is initially
marked then [s]∼ = {s}.

The merging relation is used to compact the net. Similarly to what is done in
[8], we first merge places by identifying equivalent ones, thus the merged places
will be S′ = {[s]∼ | s ∈ S}. Then, when needed, we may identify also transitions.

Definition 5. Let N = (N, l) be a labeled unravel net where N = 〈S, T, F,m〉, and

let ∼ be a merging relation. Then we construct the labeled net Ñ = (Ñ , l̃), where

Ñ is the Petri net 〈S̃, T, F̃ , m̃〉 defined as S̃ = {[s]∼ | s ∈ S}, F̃ ([s]∼, t) = F (s, t),

F̃ (t, [s]∼) = F (t, s) and m̃([s]∼) =
∑
s∈[s]∼ m(s), and l̃ is the labeling mapping

defined as l̃([s]∼) = l(s) and l̃(t) = l(t).

s c0

1
q

c1

2

p

c2

2
p

c3

1

q

c4

3
q

c5

4

p

c6

4
p

c7

3

q

c8

e1
a

e2

b

e3
c

e4

d

e5

d

e6

c

e7
c

e8

d

(a)

s

2

p

1
q

3

q

4
p

e1
a

e2

b
e4 d

e3 c

e5

d

e6
c

e7 c

e8 d

(b)

Fig. 2: A labeled net N (a) and its compact representation (b).

Merging relations 7

The flow relation is well defined, as ∀t ∈ T. |[[•t]] ∩ [s]∼| ≤ 1 and ∀t ∈ T. |[[t•]] ∩
[s]∼| ≤ 1 as well, and the same for the initial marking, as the equivalence class
of each place in the initial marking contains just that place.

Example 2. Consider the net of the Ex. 1. A suitable merging relation can be
c1 ∼ c4, c2 ∼ c3, c6 ∼ c7 and c5 ∼ c8 and the result of the merging of these places
is the net in Fig. 2(b). Another merging relations could be c1 ∼′ c8, c2 ∼′ c3,
c6 ∼′ c7 and c5 ∼′ c4, or simply c1 ∼′′ c4.

The construction can be lifted to the reachable markings and firing sequence.
Let m ∈MN , then m̃ ∈ µS̃ is defined as m̃([s]∼) =

∑
s∈[s]∼ m(s). Observe that,

as places in [s]∼ are in conflict, at most one may contain tokens. Consider then
σ ∈ ΣN

m , then σ̃ is obtained as follows: if σ = m then σ̃ = m̃, if σ = σ′ [t〉m then

σ̃ = σ̃′ [t〉 m̃. The following proposition points out the obvious relation among
the firing sequences of both nets.

Proposition 2. Let N = (N, l) be a labeled net, let ∼ be a merging relation and

(Ñ , l̃) be the labeled net of Def. 5. Then ∀σ ∈ ΣN
m ∃σ′ ∈ ΣÑ

m̃ . σ̃ = σ′.

By merging places it may happen that two equally labeled transitions have
the same preset and the same postset. Hence the equivalence relation ' induced
by transition identifiability may be non trivial, i.e. different from the identity.
We can then apply the construction of Def. 3.

Proposition 3. Let N = (N, l) be a labeled net and let ∼ be a merging relation.
Let (N, l) be the labeled net obtained applying first the construction of Def. 5 and

then the one of Def. 3. Then ∀σ ∈ ΣN
m ∃σ′ ∈ ΣN

m . run(σ) = run(σ′).

By merging places and transitions we do not lose any behavior, but the
obtained net may have more behaviors with respect to the one we started with,
as the net in Fig. 2(b) shows.

4 Compacting causal behaviors of safe nets

The framework we have devised in the previous section can be applied to any
kind of labeled net representing the behavior of a Petri net. Here we test it by
focussing on the causal behaviors of safe nets, represented as branching processes.

Given a Petri net N = 〈S, T, F,m〉, a branching process of N (see [4] and [5])
is a labeled causal net C = (C, p) with C = 〈B,E, F,m0〉 and p : B ∪E → S ∪ T
is such that (a) p(B) = S, p(E) = T , (b) the initial markings m0 and m
are bijectively related and (c) there are bijections between p(•e) and •p(e),
and between p(e•) and p(e)•. Such kind of labeling mapping is called folding
morphism. We apply our framework to merged processes (see [8] for details). The
idea behind merged processes is the following: the conditions representing the
same occurrence of a token in the original net can be identified. The consequence
of this identification is that all the computations producing the same set of tokens

8 G. Casu & G.M. Pinna

can be considered as equivalent with respect to their possible futures, i.e. all
these computations share equivalent futures that can be identified. A conflict
relation is easily and structurally identifiable on causal nets, without resorting to
the semantics, thus we do need some more information to identify conditions in
the causal net. Let C = (C, p) be a branching process of N . Given a condition
b ∈ B, the occurrence depth of b is |{b′ ∈ B | b′ ≤C b and p(b) = p(b′)}| and it
is denoted with tok(b). We are now ready to introduce the merging relation for
merged processes: two conditions b and b′ are equivalent if (a) they are in conflict,
(b) they have the same labeling, and (c) they have the same occurrence depth.
The fact that our unifying framework covers the notion of merged process is
summarized by the following theorem.

Theorem 1. Let C = (C, p) be branching process of N , and let ∼tok be the
merging relation defined as follows: b ∼tok b

′ iff b] b′, p(b) = p(b′) and tok(b) =
tok(b′), where] is the reflexive closure of the conflict relation # of the causal net
C restricted to conditions only. Then C = (C, p) is a merged process of N .

Example 3. Consider the net N in Fig. 3 (a). A branching process for N is
the labeled net C = (C, p) in Fig. 3 (b) and the merging relation is c4 ∼ c7
(both conditions have token occurrence equal to 1 and they are labeled with
p4) and c5 ∼ c6 (both conditions have token occurrence equal to 1 and they are
labeled with p5). The result of the identification of these conditions gives the net
C = (C, p) (c), depicted in Fig. 3. Observe that the last step is irrelevant in this
case as no transitions have to be identified. The net C is acyclic whereas the C
is not. Furthermore C is not an unravel net.

Instead of the token occurrence, the time can be taken into account. We
identify conditions when they have been produced at the same time, still provided
that they bear the same label. To formalize this idea, on which the notion of trellis
process is based (see [10]), we do need to guarantee that the proper time can be
identified for each condition. To do so we resort to multi-clock nets. A multi-clock
net is a safe net N = 〈S, T, F,m〉 equipped with a partition mapping ν : S → [[m]]
such that ν([[m]]) is the identity and ∀s, s′ ∈ [[m]] ν−1(s) ∩ ν−1(s′) 6= ∅ ⇒ s = s′.
Thus a net can be partitioned in a number of components (which are identified

p4 p5

p3

p2

p1

t3 t4

t1 t2

(a)

c8
p4

c9

p5
c7

p4

c6
p5

c4
p4

c5

p5

c3 p3

c2 p2

c1 p1

e5

t4

e6

t3
e4

t4

e3

t3

e1

t1

e2

t2

(b)

p14 p15 p13

p12

p11

p24p25

t3 t4t3 t4

t1 t2

(c)

Fig. 3: A labeled net N (a), its branching process (b) and its merged process (c).

Merging relations 9

using the partition mapping) which synchronize on some common transitions,
and each component is a finite state automata which has just a place initially
marked. A trellis process of the multi-clock net N = 〈S, T, F,m〉 with ν as
partition mapping, is a labeled net R = (R, p), where (a) R = 〈B,E, F ′,m′〉 is an
unravel net, (b) p is a folding morphism, and (c) R is a multi-clock net under the
partition mapping νR defined as νR(b) = ν(p(b)); furthermore for each s ∈ [[m]]
any subnet R|[p−1(s)]ν is acyclic, where [p−1(s)]νR = {b ∈ B | νR(b) = ν(s)}. For
further details on trellises and multi-clock nets we refer to [10].

Let C = (C, p) be a branching process of the multi-clock N , with ν as partition
mapping. Given a condition b of C, the height of b, denoted with height(b), is
|{b′ ∈ B | b′ ≤C b and ν(p(b)) = ν(p(b′))}|, where B are the conditions of C. The
height of a condition is well defined in a casual net which is a multi-clock as well,
as in the case of branching processes arising from multi-clock nets.

Theorem 2. Let C = (C, p) be branching process of N , and let ∼tr be the
merging relation defined as follows: b ∼tr b

′ iff b] b′, p(b) = p(b′) and height(b) =
height(b′), where] is the reflexive closure of the conflict relation # of the causal
net C restricted to conditions only. Then C = (C, p) is a trellis process of N .

Example 4. Consider the net N in Fig. 4(a). It is a multi-clock net considering
ν(p3) = p1 and ν(p4) = p2. The equivalence induced by the height of the
conditions in the branching process in Fig. 4(b) is b7 ∼ b8 and b9 ∼ b10, whereas
b5 6∼ b8 as they have a different height though they have the same label. The
merging can be applied and the result, which is depicted in Fig. 4(c), is the trellis
process associated to this specific branching process. This is an unravel net.

We conclude this section observing that the merging relation is induced
assigning to each place a measure, and stipulating that two equally labeled and
incompatible places are equivalent whenever they have the same measure.

5 Enriching to obtain unravel nets

When compacting behaviors we usually start from a labeled unravel net, but the
produced net is not necessarily an unravel one, and in the compaction we may

p3 p4

p1 p2

t1

t2t3 t4

(a)

b3

p4

b4

p3

b8

p1

b9

p1

b5

p1

b10

p1

b7

p1

b1

p1

b2

p2

e1 t1

e3

t3

e4

t1

e5

t1

e6

t1

e7t2

(b)

b3

p4

b4

p3
b8

p1

b9

p1
b5

p1

b1

p1

b2

p2

e1 t1

e3

t3

e4

t1

e5

t1

e7t2

(c)

Fig. 4: A multi-clock net (a) one of its branching processes (b) and the corresponding
trellis process (c).

10 G. Casu & G.M. Pinna

lose the tight correspondence among nets and event structures. In fact cycles
may be introduced when merging places and transitions, and in some case the
cycles may be executable (thus the associated event structure would have a
configuration where dependencies are not a partial order).

The possibility of obtaining an unravel net is connected with the measure,
associated to places, the merging relation is based upon. Consider a labeled unravel
net R = (R, l), with R = 〈S, T, F,m〉, and a locality mapping loc : S → Loc,
where Loc is a finite set of localities, and take any measure δ : S → N such
that δ(s) = δ(s′) implies s ./ s′. We say that δ is strictly increasing if for each
state X ∈ St(R), and each pair of places s, s′ of the net R|[[X]], it holds that
s ≤ s′ ∧ loc(s) = loc(s′) ⇒ δ(s) < δ(s′).

We can prove the following theorem, stating that the property of being an
unravel net is preserved when strictly increasing measure are considered.

Theorem 3. Let R = (R, l) where R = 〈S, T, F,m〉 be a labeled unravel net and
loc : S → Loc a locality mapping, let δ : S → N be strictly increasing and let ∼ be
the equivalence relation induced by δ, i.e. s ∼ s′ iff (δ(s) = δ(s′) and l(s) = l(s′))
or s = s′. Then the resulting compact labeled net R = (R, l) is a labeled unravel
net.

The measure defined for trellis processes is a strictly increasing one, the
locality mapping being the one induced by the partition mapping. Hence we
can consider Th. 2 as a special case of the Th. 3 above. When the measure is
not of this kind we may still obtain an unravel net, but sometimes at the price
of enriching it in order to forbid certain unwanted executions in the compact
version.

Given a labeled unravel net R = (R, l) with R = 〈S, T, F,m〉, we say that a
measure δ : S → N is homogeneous iff for each X ∈ St(R) and each subset of
places Ŝ of R|[[X]] = 〈S′, [[X]], F ′,m〉 such that there exists a label a such that

l−1(a)∩S′ = Ŝ, it holds that Ŝ′ can be totally ordered with respect to the reflexive
and transitive closure of F ′, δ(Ŝ′) = {1, . . . , |Ŝ′|} and s ≤ s′ ⇒ δ(s) ≤ δ(s′).
An homogeneous measure on causal nets is the token count of merged process.
Again, as done before, we may introduce an equivalence relation which is based
on an homogeneous measure δ by stipulating that s ∼ s′ iff either s = s′ or
(l(s) = l(s′) ∧ δ(s) = δ(s′)). As the measure is an homogenous one, we do
not have to require that the two places are incompatible as it is implied by the
definition of the measure itself. When compacting using this merging relation
the result may be not an unravel net. However this net may be turned into an
unravel one without losing behaviors of the original net by adding some places
which solely purpose is to forbid unwanted executions.

Take an unravel net R = (〈S, T, F,m〉, l) and an homogeneous measure δ on
S. We can add to the net R = 〈S, T, F,m〉 a set of places Sng = {(l(s), δ(s),ng) |
s ∈ S} ∪ {(l(s), 0,ng) | s ∈ S \ [[m]]}, and connect them to the transitions in T as
follows: Fng((l(s), n,ng), t) = 1 whenever ∃s′ ∈ t•. l(s) = l(s′) and δ(s′) = n+ 1,
and Fng(t, (l(s), n,ng)) = 1 whenever ∃s′ ∈ t•. l(s) = l(s′) and δ(s′) = n; finally
the places (l(s), 0,ng) are initially marked as well as (l(s), 1,ng) if b ∈ m (and
are the multiset mng). We call these places no-gap as in the case that the δ is

Merging relations 11

q p

s

c d

a b

(a)

s c0

1
q

c1

1

p

c2

1
p

c3

1

q

c4

2
q

c5

2

p

c6

2
p

c7

2

q

c8

p
ng
0

q
ng
0

q
ng
1p

ng
1 p

ng
2 q

ng
2

e1
a

e2

b

e3
c

e4

d

e5

d

e6

c

e7
c

e8

d

(b)

Fig. 5: A labeled net N (a) and one of its enriched branching process Ng(C) (b).

precisely the token count and R = (R, l) is a branching process of a safe net N ,
they assure that the tokens in a place of the original net N are produced in the
proper sequence.

s

1

p

1
q

2

q

2
p

p
ng
0

q
ng
0

q
ng
1

p
ng
1

p
ng
2

q
ng
2

a

b

d

d

c

c

c

d

Fig. 6: The resulting unravel net of
the compaction of Ng(C) in Fig. 5.

The net obtained adding these new
places Sng , namely Ng(R) = 〈S ∪
Sng , T, F ∪ Fng ,m + mng〉, is an unravel
net such that to each fs σ of Ng(R) a fs
σ′ of R corresponds and they are such
that run(σ) = run(σ′) but also the vice
versa holds, thus to each fs σ̂ ∈ ΣR

m a

fs σ̂′ ∈ Σ
Ng(R)
m+mng

corresponds such that
run(σ̂) = run(σ)′, hence both unravel nets
have exactly the same states, which means
that this enriching does not change the
behaviors of the net.

Theorem 4. Let R = (R, l) be a labeled
unravel net, where R = 〈S, T, F,m〉. Let
Ng(R) = (Ng(R),Ng(l)) where Ng(l)(s) =
l(s) if s ∈ S and l((s, n,ng)) = l(n) ob-
tained with respect to an homogeneous measure δ. Let ∼ be the equivalence relation
induced by this measure on the places in S. Then Ng(R) = (Ng(R),Ng(l)) is an
unravel net.

As a corollary of this theorem we have the following.

Corollary 1. Let C = (C, p) be a branching process of the safe net N , where
C = 〈B,E, F,m〉. Let Ng(C) = (Ng(C),Ng(p)) be the unravel net obtained
applying Ng to C and p and consider the equivalence relation ∼ induced by ∼tok ,
where ∼tok is defined on conditions in B. Ng(C) = (Ng(C),Ng(p)) in a labeled
unravel net and furthermore Ng(C)|B∼tok

is a merging process of N , where B∼tok

are the merged resource conditions.

12 G. Casu & G.M. Pinna

Example 5. The causal net in Fig. 2(a), with the appropriate labeling, is a
branching process of the net in Fig. 5(a). The net in Fig. 5(b) is the result of
enriching this causal net with no-gap conditions (the black ones). For instance,
the no-gap condition png1 is (p, 1,ng) and the transitions (events) putting a token
in it are e2 and e3, whereas the events e6 and e7 consume the token in it. Clearly
e2 # e3 and e6 # e7 The conditions with the same color have the same token
count (the number depicted in the conditions) and are equally labeled. The result
of its compaction is the unravel net in Fig. 6.

References

1. Desel, J., Reisig, W.: The concepts of Petri nets. Software and System Modeling
14(2) (2015) 669–683

2. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Methods,
Case Studies. Springer (2013)

3. Mazurkiewicz, A.W.: Basic notions of trace theory. In de Bakker, J.W., de Roever,
W.P., Rozenberg, G., eds.: REX Workshop 1988. Volume 354 of LNCS., Springer
(1988) 285–363

4. Winskel, G.: Event Structures. In: Petri Nets: Central Models and Their Properties.
LNCS 255 (1987) 325–392

5. Engelfriet, J.: Branching processes of Petri nets. Acta Informatica 28(6) (1991)
575–591

6. McMillan, K.L.: Using unfoldings to avoid the state explosion problem in the
verification of asynchronous circuits. In: CAV ’92. LNCS 663 (1993) 164–177

7. Esparza, J., Römer, S., Vogler, W.: An Improvement of McMillan’s Unfolding
Algorithm. Formal Methods in System Design 20(3) (2002) 285–310

8. Khomenko, V., Kondratyev, A., Koutny, M., Vogler, W.: Merged Processes: a new
condensed representation of Petri net behaviour. Acta Informatica 43(5) (2006)
307–330

9. van Glabbeek, R.J.: The individual and collective token interpretation of Petri
nets. In: CONCUR 2005. LNCS 3653 (2005) 323–337

10. Fabre, E.: Trellis processes : A compact representation for runs of concurrent
systems. Discrete Event Dynamic Systems 17(3) (2007) 267–306

11. Smith, E., Reisig, W.: The semantics of a net is a net: an exercise in general net
theory. In Voss, K., Genrich, H.J., Rozenberg, G., eds.: Concurrency and Nets:
Advances in Petri Nets. Springer Verlag (1987) 461–479

12. van Glabbeek, R.J., Plotkin, G.D.: Configuration structures, event structures and
Petri nets. Theoretical Computer Science 410(41) (2009) 4111–4159

13. Langerak, R.: Bundle event structures: A non-interleaving semantics for LOTOS.
In Diaz, M., Groz, R., eds.: FORTE ’92. Volume C-10 of IFIP Transactions.,
North-Holland (1993) 331–346

14. Casu, G., Pinna, G.M.: Flow unfolding of multi-clock nets. In: PETRI NETS 2014.
LNCS 8489 (2014) 170–189

