
Optim Lett
DOI 10.1007/s11590-017-1168-z

ORIGINAL PAPER

Dynamic smoothness parameter for fast gradient
methods

Antonio Frangioni1 · Bernard Gendron2,3 ·
Enrico Gorgone4,5

Received: 6 March 2017 / Accepted: 14 July 2017
© Springer-Verlag GmbH Germany 2017

Abstract We present and computationally evaluate a variant of the fast gradient
method by Nesterov that is capable of exploiting information, even if approximate,
about the optimal value of the problem. This information is available in some appli-
cations, among which the computation of bounds for hard integer programs. We show
that dynamically changing the smoothness parameter of the algorithm using this infor-
mation results in a better convergence profile of the algorithm in practice.

Keywords Fast gradient method · Lagrangian relaxation · Convex optimization

B Enrico Gorgone
egorgone@unica.it

Antonio Frangioni
frangio@di.unipi.it

Bernard Gendron
Bernard.Gendron@cirrelt.ca

1 Dipartimento di Informatica, Università di Pisa, Pisa, Italy

2 Centre Interuniversitaire de Recherche sur les Réseaux d’Entreprise, la Logistique et le Transport
(CIRRELT), Montreal, Canada

3 Department of Computer Science and Operations Research, Université de Montréal, Montreal,
Canada

4 Indian Institute of Management Bangalore (IIMB), Bangalore, India

5 Dipartimento di Matematica e Informatica, Università di Cagliari, Cagliari, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s11590-017-1168-z&domain=pdf

A. Frangioni et al.

1 Introduction

One of the crucial components of solution algorithms for mixed integer linear pro-
grams (MILP) is the computation of tight bounds upon the optimal value of the
problem. Although the solution of the continuous relaxation (CR) of theMILP, usually
strengthened by valid inequalities, is often themethod of choice, forming a Lagrangian
relaxation (LR) and (approximately) solving the corresponding Lagrangian dual (LD)
can be preferable in some cases. This is true in particular when the LR decomposes
into several smaller subproblems (e.g., [8,9] and the references therein). The LD is
typically a non-smooth problem, and it is usually solved by algorithms of two different
families: subgradient methods (SM) [6,9,14] and bundle methods (BM) [7,8,10]. The
former are easier to implement and their iteration cost is dominated by the function
computation, whereas the latter are more complex and require the solution of a (poten-
tially, costly) subproblem at each iteration; however, they have better convergence in
practice. The right trade-off depends on many factors, among which the required (rel-
ative or absolute) accuracy; the numerical experiments of [9] show that SM can be
competitive, in a prototypical application, provided that a substantial amount of tuning
is performed to choose the many algorithmic parameters. Among SM, the primal-dual
variants (PDSM) [12] are particularly attractive because they have much fewer param-
eters to tune. However, their practical performance might be worse than that of other
variants. The analysis in [9] seems to indicate that one of the factors at play is that
most SM, but not PDSM, can incorporate external information about the optimal value
of the problem (in particular, for the selection of the stepsize). Hence, exploiting this
information might be useful computationally.

This work provides an initial step towards that goal by analyzing a different, but
related, family of non-smooth optimization algorithms, that of fast gradient methods
(FG) [1–3,11,13], that have efficiency estimates of the order O(1/ε)—with ε the
required absolute accuracy—whereas the complexity of any black-box non-smooth
method is at best O(1/ε2). The downside is that FG require an explicit modification
of the oracle, which might negatively impact the total running time. In the standard
version, FG do not exploit any knowledge on the optimal value. However they have
one crucial smoothness parameter that is naturally related with the current distance
(on the value axis) from the optimum.We propose a simple scheme, in two variants, for
dynamicallymanaging the smoothness parameter to exploit (approximate) information
on the optimal value, showing that this leads to a significant improvement of the
convergence profile of the approach. We test the variant on two different LD of a hard
MILP. The approach could be useful in several other applications particularly suited
to FG, such as imaging [1,4].

2 The method

We study approaches for the numerical solution of the problem
f∗ = min

{
f (λ) = f̂ (λ) + max{〈Bλ, z〉 − φ(z) : z ∈ Z} : λ ∈ Λ

}
(1)

where Λ ⊆ R
n is closed and convex, and f : Rn → R is a proper convex nondiffer-

entiable function due to the inner maximization (being φ continuous and convex on

123

Dynamic smoothness parameter for fast gradient methods

the bounded closed convex set Z and B a linear operator), while f̂ ∈ C1,1. The idea
of FG methods is to make (1) smooth by defining

fμ(λ) = f̂ (λ) + max{〈Bλ, z〉 − φ(z) − μr2(z) : z ∈ Z}, (2)

which is a smooth lower approximation of f if the prox-function r2(z) ≥ 0 is continu-
ous and strongly convex on Z . The smoothness parameter μ > 0 connects the minima
of f and fμ, so appropriately managing μ one can apply a fast gradient approach to
fμ and obtain an approximate solution to (1). This approach has been successfully
applied in machine learning, data mining, inverse problems, and imaging [1,4], and
has inspired further research [2,3,11].

The FG is based on two prox-functions, that for simplicity we take as r1(λ) =
‖λ − λ̄‖2/2 and r2(z) = ‖z − z̄‖2/2, λ̄ and z̄ being the centers. Since Z is bounded,
max{r2(z) : z ∈ Z} ≤ R2 < ∞; therefore, fμ(λ) ≤ f (λ) ≤ fμ(λ) + μR2, which
implies that any method minimizing fμ over Λ leads to an approximate solution
of (1) if μ ↘ 0. Given the (unique) optimal solution z∗μ(λ) of (2), ∇ fμ(λk) =
∇ f̂ (λk) + z∗μ(λk)B; it can be seen [13, Theorem 1] that ∇ fμ is Lipschitz continuous

with constant Lμ = M + ‖B‖2/μ, where M is the Lipschitz constant of ∇ f̂ . For any
μ, the FG approach to minimizing fμ is based on arbitrarily selecting a sequence of
weights υk such that υ0 ∈ (0, 1] and υ2

k ≤ Δk = ∑k
i=0 υi for k ≥ 1, and solving the

two problems

πk = argmin
{〈∇ fμ(λk), λ − λk〉 + Lμ‖λ − λk‖2/2 : λ ∈ Λ

}
(3)

ζk = argmin

{
Lμr1(λ) +

k∑

i=0
υi

[
fμ(λi) + 〈∇ fμ(λi), λ − λi 〉

] : λ ∈ Λ

}
(4)

Then, with ιk+1 = υk+1/Δk+1, the next iterate is computed as λk+1 = ιk+1ζk +
(1 − ιk+1)πk (with λ0 = λ̄). We now reproduce the convergence analysis of [13]
replacing the requirement that Λ is bounded, which does not hold in our application,
with f∗ = f (λ∗) > −∞, so that R1 = r1(λ∗) < ∞. As in the original development
we take υk = (k + 1)/2, so that Δk = (k + 1)(k + 2)/4.

Proposition 1 Under the assumptions (i) f∗ = f (λ∗) > −∞, (ii) R1 < ∞ and (iii)
M = 0, for any ε > 0 by setting μ = ε/(2R2) the inequality f (πk) − f∗ ≤ ε is
satisfied in at most k + 1 = 4‖B‖√R1R2/ε iterations.

Proof By [13, Theorem 2], for any k ≥ 0 we have

Δk fμ(πk) ≤ min

{
Lμr1(λ) +

k∑

i=0
υi [fμ(λi) + 〈∇ fμ(λi), λ − λi 〉] : λ ∈ Λ

}
,

and from both convexity and Δk = ∑k
i=0 υi it follows that

Δk fμ(πk) ≤ min

{
Lμr1(λ) +

k∑

i=0
υi fμ(λ) : λ ∈ Λ

}
≤ LμR1 + Δk fμ(λ∗).

Using Lμ = M + ‖B‖2/μ we get Δk fμ(πk) ≤ (M + ‖B‖2/μ)R1 + Δk fμ(λ∗), and
therefore fμ(πk)− fμ(λ∗) ≤ (1/Δk)

(
M+‖B‖2/μ)

R1. The fact that fμ ≤ f implies

123

A. Frangioni et al.

that fμ(λ∗) ≤ f∗. In addition, f (λ) ≤ fμ(λ) + μR2 holds for any λ and, hence, in
particular for πk , yielding

f (πk) − f∗ ≤ (1/Δk)
(
M + ‖B‖2/μ

)
R1 + μR2.

One can then use Δk = (k + 1)(k + 2)/4 and find the value of μ minimizing the
right-hand side above; this gives μ = (2‖B‖√R1/R2)/(k + 1), whence

0 ≤ f (πk) − f∗ ≤ 4
(
MR1/(k + 1) + ‖B‖√R1R2

)/
(k + 1) ≤ ε

from which the desired result immediately follows. ��
The minimization problems (3)–(4) actually reduce to closed-form formulæ when

eitherΛ = R
n orΛ = R

n+. Indeed, in the first case πk = π̄k = λk −∇ fμ(λk)/Lμ and
ζk = ζ̄k = λ̄ − ∑k−1

i=0 υi∇ fμ(λi)/Lμ, while in the second case πk = max{0, π̄k} and
ζk = max{0, ζ̄k}. Furthermore, the simple recursive formula dk = ιk∇ fμ(λk) + (1 −
ιk)dk−1 = (1/Δk)

∑k
i=0 υi∇ fμ(λi), whose correctness is easily verified by induction,

can be used to avoid keeping all the gradients to compute ζk , thereby making each
iteration inexpensive.

The analysis therefore suggests to keep μ fixed to a value directly proportional to
the desired absolute error ε. Because typically one wants to specify relative tolerances
εr instead, the practical implementation must be akin to

μ = εr | fre f |/(2R2) (5)

where fre f is some reference value providing an estimate of f∗. In some applications
a lower bound flb ≤ f∗ is available that can be used as fre f . However, knowledge of
flb could be put to even better use. Indeed, μ is proportional to ε, and the algorithm
basically performs steps of 1/Lμ = μ/‖B‖2 (if M = 0) along the direction dk , as
recalled above. Therefore, a small value ofμ, necessary to attain a high accuracy, leads
to small steps when one if “far” from f∗. It would therefore be intuitively attractive to
have larger values of μ early on and reduce it as the algorithm proceeds. Availability
of flb suggests the rule

μk = max
{
f bestk − flb, εr | flb|

} /
(2R2), (6)

where f bestk = min{ f (λi) : i ≤ k}. It is clear that such a modification still yields
a convergent algorithms. Indeed, one could choose a finite sequence {εi } → ε and
iteratively run the algorithm with fixed εi until that accuracy is attained, then move
to the next value; this is obviously still convergent. Knowledge of flb just allows to
change εi at every iteration rather thanwaiting for the number of iterations estimated by
Proposition 1. In the next section we show that (6) actually improves the convergence
rate of the algorithm when flb is accurate, and can be modified to handle the case
when it is not.

123

Dynamic smoothness parameter for fast gradient methods

3 Application to multicommodity network design

The fixed-charge multicommodity capacitated network design problem (FC-MCND)
is a general network design problem with many applications (see [5,8,9] and the
references therein). Efficiently computing tight lower bounds on its optimal value is
crucial for solution approaches, and Lagrangian techniques have been shown to be
competitive. In [9], gradient-like approaches have been thoroughly analysed, showing
how the availability of lower bounds on the optimal value improves the efficiency
of solution approaches that can make use of this information. We aim at verifying if
an analogous phenomenon occurs for FG, that can also be applied to FC-MCND as
briefly described here. The data of FC-MCND is a directed graph G = (N , A), where
Fi and Bi respectively denote the set of outbound and inbound arcs of node i ∈ N , and
a set of commodities K . Each k ∈ K has a deficit vector bk = [bki]i∈N that denotes
the net amount of flow asked at each node. Each arc (a+, a−) = a ∈ A can only be
used if the corresponding fixed cost fa > 0 is paid, in which case the mutual capacity
ua > 0 bounds the total amount of flow on a, while individual capacities uka bound the
flow of commodity k. The routing cost cka has to be paid for each unit of commodity
k moving through a. A formulation is

min
∑

k∈K
∑

a∈A
ckax

k
a + ∑

a∈A
fa ya (7)

∑

a∈Fi
xka − ∑

a∈Bi
xka = bki i ∈ N , k ∈ K (8)

∑

k∈K
xka ≤ ua ya a ∈ A (9)

xka ≤ uka ya a ∈ A, k ∈ K (10)

0 ≤ xka ≤ uka a ∈ A, k ∈ K (11)

ya ∈ {0, 1} a ∈ A (12)

Two classical approaches for deriving lower bounds on its optimal value are the flow
relaxation (FR) and the knapsack relaxation (KR). In the former one relaxes constraints
(9)–(10) withmultipliers λ = [α, β] = [αa, β

k
a]a∈A,k∈K ≥ 0. This yields the objective

function

min
∑

k∈K
∑

a∈A

(
cka + αi j + βk

a

)
xka + ∑

a∈A

(
fa − αaua − ∑

k∈K
ukaβ

k
a

)
ya

whose minimization subject to the remaining (8), (11)–(12) reduce to |K | single-
commodity linear minimum cost network (MCF) problems plus |A| trivial single-
variable integer problems. Applying FG means adding to (7) the term

μ
∑

a∈A

[
(ya − ȳa)2 + ∑

k∈K
(xka − x̄ ka)

2
] /

2 (13)

with arbitrary x̄ and ȳ, yielding fμ(λ) = f 0 + ∑
k∈K f kμ(λ) + ∑

a∈A f aμ(λ) with

123

A. Frangioni et al.

f 0 = − ∑

a∈A
μ

[
(ȳa)2 + ∑

k∈K
(x̄ ka)

2
]/

2

f kμ(λ) = − min

{
∑

a∈A

[
c̄kax

k
a + μ(xka)

2/2
] : (8), (11)

}
(14)

f aμ(λ) = − min
{
f̄a ya + μy2a/2 : (12)

}
(15)

where c̄ka = cka+αa+βk
a −μx̄ ka and f̄a = fa−αaua−∑

k∈K ukaβ
k
a −μȳa ; (14) is now

a (convex, separable) quadraticMCFproblem, which is still efficiently solvable, albeit
less so in practice than the linear version. In order to apply FG the R2 constant has to
be computed by maximizing (13) over (8), (11)–(12), which is a hard problem. Yet
it decomposes in |K | + |A| independent subproblems, the latter being single-variable
ones. For the remaining part we use the linear upper approximation of (xka − x̄ ka)

2 given
by the gradient computed at xa = uka/2, i.e., R2 ≤ (

∑
k∈K Rk

2 + ∑
a∈A max{ȳ2a , (1−

ȳa)2})/2 with

Rk
2 = ∑

a∈A
(x̄ ka)

2 + max

{
∑

a∈A

(
uka/2 − x̄ ka

)
xka : (8), (11)

}
.

In the KR, one rather dualizes the flow conservation constraints (8) with multipliers
λ = [λki]i∈N ,k∈K ; this yields the objective function

min
∑

a∈A

[
∑

k∈K

(
cka + λka+ − λka−

)
xka + fa ya

]
+ ∑

i∈N
∑

k∈K
λki b

k
i

whose minimization subject to (9)–(12) reduce to |A| independent continuous knap-
sack problems (KP). Applying FG corresponds again to adding (13), leading to
fμ(λ) = f 0 + ∑

a∈A f aμ(λ) with

f 0 = − ∑

i∈N
∑

k∈K
λki b

k
i − μ

∑

a∈A

(
ȳ2a + ∑

k∈K
(x̄ ka)

2
) /

2

f aμ(λ) = − min {(ga(λ) + fa − μȳa) ya : (12)}
ga(λ) =min

{
∑

k∈K
[
c̄kax

k
a + μ(xka)

2/2
] : ∑

k∈K
xka ≤ ua, 11

}
(16)

being c̄ka = cka+λka+ −λka− −μx̄ ka . Now the crucial part is the quadraticKP (16), which
is still easy to solve. Again, estimating the constant R2, i.e., maximising the convex
(13) over the feasible region, is not so. However, by the same token we maximise a
linear upper approximation by solving the continuous KP

ḡa(λ) = max

{
∑

k∈K
(
uka/2 − x̄ ka

) : ∑

k∈K
xka ≤ ua, (11)

}

and using ḡa(λ) similarly to ga(λ) to provide an upper estimate to R2.

123

Dynamic smoothness parameter for fast gradient methods

4 Numerical experiments

The FG method has been developed in C++, compiled with GNU g++ 4.4.5 (with
-O3 optimization option) and ran on anOpteron 6174 processor (2.2GHz)with 32GB
of RAM, under a i686 GNU/Linux operating system. The solvers for quadraticMCF
(14) and KP (16) are available thanks to the MCFClass and CQKnPClass projects,
respectively, available at http://www.di.unipi.it/optimize/Software/MCF.html, http://
www.di.unipi.it/optimize/Software/CQKnP.html.

The numerical experiments have been performed on 80 randomly generated
instances already used in several papers [8,9], and available at http://www.di.unipi.it/
optimize/Data/MMCF.html#Canad.

The purpose of the testing is to compare the static rule (5) proposed in [13] with
the dynamic rule (6) making use of flb. To compare different algorithms we report
convergence charts plotting the obtained relative gap, (f bestk − f∗)/| f∗|, against both
iteration and time. As in [9], the time charts for different instances become almost
indistinguishable when the horizontal axis represents the normalized time, i.e., the
running time divided by the product |A| · |K |. This is illustrated in the right part of
Fig. 1 (in the left one, the horizontal axis represents iterations) where convergence
charts are separately reported, averaged on small instances (|A| ≤ 300), medium
ones (300 < |A| ≤ 600) and large ones (|A| > 600): the individual lines are barely
distinguishable among them and with the total average. The normalized time plots
are a bit more apart from each other, which is reasonable because (14) and (16) are
“complex” subproblems that cannot be expected to scale linearly with size, but still
the difference is not large. As this consistently happens in all cases, in the following,
we only report the global average.
We start by discussing the KR. In Figs. 2 and 3 we report the (average) convergence
plots for the static rule (5) and the dynamic rule (6)when the lower bound is “accurate”,
i.e., flb = f∗ and, respectively, εr = 1e−4 and εr = 1e−6.As before, on the left sidewe
plot the gap against the number of iterations, and on the right side against normalised
time. To better put the results in perspective we also report results for two highly
tuned version of the subgradient algorithm applied to the standard (non-smoothed)
Lagrangian dual, using volume deflection and, respectively, FumeroTV (SVF) and
colorTV (SVC) stepsize rules, with the best algorithmic parameters found in [9].

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A
P

1e-08 1e-06 1e-04 1e-02 1e+00

avg
small
med.
large

Fig. 1 Partly disaggregated results for dynamic μ with flb = f∗

123

http://www.di.unipi.it/optimize/Software/MCF.html
http://www.di.unipi.it/optimize/Software/CQKnP.html
http://www.di.unipi.it/optimize/Software/CQKnP.html
http://www.di.unipi.it/optimize/Data/MMCF.html#Canad
http://www.di.unipi.it/optimize/Data/MMCF.html#Canad

A. Frangioni et al.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A
P

1e-08 1e-06 1e-04 1e-02 1e+00

(6)
(17)
SVF
SVC
(5)

Fig. 2 Results for the KR with flb = f∗ and εr = 1e−4

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A
P

1e-08 1e-06 1e-04 1e-02 1e+00

(5)
(17)
SVF
SVC
(6)

Fig. 3 Results for the KR with flb = f∗ and εr = 1e−6

Because we know a (tight) bound on the optimal value, we can stop all variants as
soon as an accurate enough solution has been found, i.e., f bestk − f∗ ≤ εr | f∗|.

The figures clearly show that the dynamic rule (6) significantly outperforms the
static one (5). In particular, the convergence plots show a first “flat” leg where progress
is slow; comparing Figs. 2 and 3 (purposely plotted in identical horizontal scale) shows
that the flat leg for (5) with εr = 1e−6 is much longer than with εr = 1e−4. This
is somewhat unsettling, in that the final desired accuracy should not, in principle,
influence the convergence speed at the beginning; yet it does for the static rule. The
dynamic one attains, after a shorter flat leg, a remarkably linear convergence rate
which is (correctly) not influenced by the value of εr . The FG with dynamic rule is
roughly competitive with the subgradient variants (which also exploit knowledge of
f∗ for computing the stepsize) for εr = 1e−4, despite having to solve a more complex
Lagrangian problem. The convergence profile of subgradient methods is considerably
more erratic than that of the FG. Furthermore, they are basically incapable of attaining
accuracy greater than εr = 1e−4 (and not even that for SVF), whereas the FG has no
issues to get to εr = 1e−6, and likely beyond.
However, the picture is different when flb � f∗, as Figs. 4 and 5 show. There we
use the significantly worse estimate for flb = f∗ − 0.1| f∗| (denoted as “10% f∗” for
short). The result is that the dynamic rule “flattens out” far from the required accuracy,
basically ceasing to converge. This is due to the fact that in (6)μk only becomes small
if f bestk approaches flb, which cannot happen because flb � f∗. Hence, μ is never
set to the value required for attaining an accurate solution, and the FG basically stalls.
Note that in the figures we plot two different versions of the static rule (5): (5’) uses

123

Dynamic smoothness parameter for fast gradient methods

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06

G
A
P

1e-08 1e-06 1e-04 1e-02 1e+00

(6)
(17)
(5’)
(5”)
SVF
SVC

Fig. 4 Results for the KR with flb = 10% f∗ and εr = 1e−4

1e-06

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

G
A
P

(6)
(17)
(5’)
(5”)
SVF
SVC

1e+00 1e+01 1e+02 1e+03 1e+04 1e+05 1e+06 1e-0 8 1e-0 6 1e-0 4 1e-0 2 1e+00

Fig. 5 Results for the KR with flb = 10% f∗ and εr = 1e−6

fre f = flb, while (5”) uses fre f = f bestk . The first option turns out to be preferable, but
both versions show the “flat leg” that grows longer as the required accuracy increases.
A possible approach to remedy this drawback of the dynamic rule is to observe that,
when flb− f∗, the convergence rate becomesverynearly linear on adoubly-logarithmic
scale from a certain iteration ı̂ onwards. In other words, experimentally

[
log

(
(f (λi) − f∗)/ f∗) − log

(
(f (λı̂) − f∗)/ f∗)

]
/[log(i) − log(ı̂)] = −α

holds with quite good accuracy for all i larger than a properly chosen ı̂ . This immedi-
ately suggests the empiric formula

μk = max{min{ (fı̂ − flb)(ı̂/k)
α , (f bestk − flb) } , εr | flb| }/(2R2) (17)

for dynamically adjusting μ when flb might not be an accurate estimate of f∗. The
parameters α = 1.2 and ı̂ = 10 are easily derived from the (average) convergence
plot for flb = f ∗, and used uniformly for all instances (being the convergence plots
almost identical). Figures 2 and 3 show that the new dynamic strategy (17), albeit
not as efficient as (6) with the accurate estimate of f∗, is still consistently superior to
the static strategy (5). Furthermore, it is resilient to rather inaccurate estimates of f∗;
indeed, it is by far the preferable option in Figs. 4 and 5.

The results for theFRare analogous,with a fewdifferences. First of all, the quadratic
MCF solvers had numerical issues with small values of μ, preventing us to reliably
obtain runs for εr = 1e−6, which is why we only report results for εr = 1e−4.
Second, according to [9], the best subgradient variant for this problem rather uses a

123

A. Frangioni et al.

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+011e+02 1e+031e+04 1e+05 1e+06

G
A
P

1e-06 1e-04 1e-02 1e+00

(6)
(17)
SVP
(5)
(6)

Fig. 6 Results for the FR with flb = f∗ and εr = 1e−4

1e-05

1e-04

1e-03

1e-02

1e-01

1e+00

1e+00 1e+01 1e+021e+03 1e+04 1e+05 1e+06

G
A
P

1e-06 1e-04 1e-02 1e+00

(6)
(17)
(5)
(5)
SVP

Fig. 7 Results for the FR with flb = 10% f∗ and εr = 1e−4

Polyak stepsize rule (SVP). Finally, using the actual value of ‖B‖ corresponding to
(14)–(15) actually led to a surprisingly slow convergence. We (basically, by chance)
discovered that using ‖B‖ = 1 instead recovered a much faster convergence. While
this suggests that the FG may benefit from some tuning, exploring this issue is out
of the scope of the present paper. Therefore, in Figs. 6 and 7, we mainly report the
results of the three rules when using ‖B‖ = 1, denoted by (5), (6) and (17), while
only plotting in Fig. 6, the results of the original rule (6) to show how much worse the
performances are (those of the other rules are similarly degraded).
All in all, the results closely mirror those of the KR. The subgradient method is
considerably faster than FG, more so than in the KR, which is not surprising because
quadratic MCFs now have to be solved; however, it struggles to reach εr = 1e−4

accuracy. The dynamic rule (6) is preferable when flb = f∗, but it stalls far from the
required accuracy when the lower bound is not accurate, in which case the dynamic
rule (6) is preferable. In general, the static rule (5), in both variants, is less effective
than the dynamic ones. The exception is at the end of the convergence plot in Fig.
7; however, this corresponds to the case where the desired accuracy has already been
attained, but the FG is not capable of stopping (quickly) because the lower bound is not
accurate enough. Only in that final phase the static strategy outperforms the dynamic
one.

5 Conclusion

Wehave devised a simple rule for dynamically adjusting the crucial smoothness param-
eter μ in the fast gradient approach. The rule exploits information about the optimal

123

Dynamic smoothness parameter for fast gradient methods

value of the problem to significantly improve the convergence properties of themethod,
at least in practice on our test instances. The rule is very effective when the estimate is
tight, but it can also be adapted toworkwhen the estimate is loose. This requires tuning
two parameters, which in our experience seems to be easy. The proposed modification
is therefore interesting for all the applications where bounds on the optimal value are
readily available, as it happens, e.g., in integer optimization. Besides possibly proving
useful for various applications that can benefit from FG approaches, we hope that our
result stimulates research into finding ways for exploiting information about the opti-
mal function value in the related, although different, primal-dual subgradient methods
(PDSM) [12] that do not require modifying the function computation to work. The
inability to exploit this information has been identified as a potential weakness in
PDSM [9], which limits the applicability of this otherwise interesting—both for its
performances and for being almost parameter-free—class of subgradient algorithms.
Our results on FG seem to indicate that this line of research could bear interesting
fruits.

References

1. Ahookhosh, M., Neumaier, A.: Optimal subgradient algorithms for large-scale convex optimization in
simple domains. Numer. Algorithms (2017). doi:10.1007/s11075-017-0297-x

2. Beck, A., Teboulle, M.: Smoothing and first order methods: a unified framework. SIAM J. Optim.
22(2), 557–580 (2012)

3. Bot, R., Hendrich, C.: A variable smoothing algorithm for solving convex optimization problems. TOP
23(1), 124–150 (2015)

4. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to
imaging. J. Math. Imaging Vis. 40(1), 120–145 (2011)

5. Chouman, M., Crainic, T., Gendron, B.: Commodity representations and cut-set-based inequalities for
multicommodity capacitated fixed-charge network design. Transp. Sci. 51(2), 650–667 (2017)

6. d’Antonio, G., Frangioni, A.: Convergence analysis of deflected conditional approximate subgradient
methods. SIAM J. Optim. 20(1), 357–386 (2009)

7. Frangioni, A.: Generalized bundle methods. SIAM J. Optim. 13(1), 117–156 (2002)
8. Frangioni, A., Gorgone, E.: Generalized bundle methods for sum-functions with “easy” components:

applications to multicommodity network design. Math. Program. 145(1), 133–161 (2014)
9. Frangioni, A., Gorgone, E., Gendron, B.: On the computational efficiency of subgradient methods: a

case study with lagrangian bounds. Math. Program. Comput. (2017). doi:10.1007/s12532-017-0120-7
10. Hiriart-Urruty, J.B., Lemaréchal, C.: Convex Analysis and Minimization Algorithms II—Advanced

Theory and Bundle Methods. Grundlehren der mathematischen Wissenschaften, vol. 306. Springer,
New York (1993)

11. Lan, G., Zhou, Y.: Approximation accuracy, gradient methods, and error bound for structured convex
optimization. Technical report, University of Florida (2014)

12. Nesterov, Y.: Primal-dual subgradient methods for convex optimization. SIAM J. Optim. 12, 109–138
(2001)

13. Nesterov, Y.: Smooth minimization of non-smooth functions. Math. Program. 103, 127–152 (2005)
14. Shor, N.: Minimization Methods for Nondifferentiable Functions. Springer, Berlin (1985)

123

http://dx.doi.org/10.1007/s11075-017-0297-x
http://dx.doi.org/10.1007/s12532-017-0120-7

	Dynamic smoothness parameter for fast gradient methods
	Abstract
	1 Introduction
	2 The method
	3 Application to multicommodity network design
	4 Numerical experiments
	5 Conclusion
	References

