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13 ABSTRACT: Both linear- and nonlinear-optical proper-
14 ties of Bu4N[Pt(L1)(L2)] (1; L1 = [4′,5′:5,6][1,4]-
15 dithiino[2,3-b]quinoxaline-1′,3′dithiolato; L2 = (R)-α-
16 MBAdto dithiooxamidate, where (R)-α-MBA = (R)-
17 (+)-α-methylbenzyl) upon HCl addition at room temper-
18 ature change dramatically: the color turns from deep blue
19 to green; the luminescence switches from deep red to
20 green; the nonlinear-optical response (first hyperpolariz-
21 ability) increases by a factor of 12. Thus, 1 behaves as a
22 unique multiresponsive optical switch whose properties
23 can be followed by the naked eye.

24 Changes of the linear-optical (LO; absorption and emission
25 of light)1 as well nonlinear-optical (NLO)2 properties in
26 response to external stimuli are of current scientific interest and
27 for several applications in devices.3−5 Molecules suitable for
28 second-order NLO mostly consist of an electron-donor moiety
29 connected to an electron-acceptor moiety by a conjugated π
30 bridge.6 These chromophores show a typical donor−acceptor
31 (D−A) charge-transfer (CT) transition falling in the low-energy
32 region. The two moieties may be conveniently functionalized to
33 enable the on/off switching of a property.7 Both forms are
34 required to be stable and easily switchable with a fast response
35 time. Among the possible molecular switching in D−A-type
36 chromophores, we have applied our efforts to a molecule where
37 the acceptor moiety [(R)-α-MBAdto dithiooxamidate (L2),
38 where (R)-α-MBA = (R)-(+)-α-methylbenzyl] can easily
39 undergo proton exchange. The donor employed is [4′,5′:5,6]-
40 [1,4]dithiino[2,3-b]quinoxaline-1′,3′dithiolato (L1). This ligand
41 may provide the heteroleptic complex with an additional
42 functionality. In fact, the homoleptic platinum(II) complex
43 based on this ligand8 exhibits in solution at room-temperature a
44 proton-dependent emission at 572 nm well above the energy of
45 the lowest-energy absorption.9 The desired product was
46 prepared as summarized in Scheme S1 in the Supporting
47 Information (SI), where the characterization of 1 (Figures
48 S1−S3), as well as X-ray crystallographic measurements and

49refinements (Tables S1 and S2 and Figures S4−S6) are
50described.
51The molecular structure of 1 comprises the complex anion
52 f1[Pt(L1)(L2)]− and the Bu4N

+ cation (Figure 1).

53The metal exhibits a square-planar geometry, with the Pt−S
54bond distances derived from the quinoxaline ligand slightly
55shorter than those derived from the dithiooxamidate ligand. This
56is in agreement with the different charges of the two ligand
57systems, 2− for the quinoxalinedithiolato system and 1− for the
58dithiooxamidate system. Interestingly, the two SCN moieties of
59the dithiooxamidate system present bond distances that reflect
60monoprotonation of the N(12) atom. Accordingly, the C(22)−
61S(22) fragment exhibits a more pronounced thiolate feature,
62whereas the C(12)−S(12) fragment is characterized by a more
63pronounced thione nature. As far as the LO properties are
64concerned, 1 is characterized by a broad absorption in the visible
65region with medium molar absorption coefficients (ε = 5.5 × 103

66M−1 cm−1) centered at 595 nm in a CH3CN solution with a
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Figure 1.Molecular structure of 1with thermal ellipsoids depicted at the
30% probability level.
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67 shoulder at higher energy (∼500 nm) and a quite intense (ε =
68 10.3 × 103 M−1 cm−1) absorption band at 375 nm. Upon the
69 addition of HCl, the color of the solution changes from deep blue
70 to green. A related substantial change in the absorption profile is

f2 71 observed (Figure 2). In particular, the lowest absorption band

72 disappears, whereas a new one is formed at higher wavelengths
73 (800 nm). The presence of well-defined isosbestic points (at 486
74 and 652 nm) suggests that two absorbing species are involved in
75 the transformation process, which is complete for a 1:1 molar
76 ratio between HCl and 1. The absorption intensity of the formed
77 species (2) does not increase upon further HCl addition (see the
78 inset in Figure 2).
79 Previous studies by Campagna, Lanza, and co-workers.10

80 showed that platinum homoleptic complexes coordinated to
81 N,N′-dialkyldithiooxamidate ligands formed tight-contact ion
82 pairs with HX (X =Cl, Br, I), where theN··H··X interactions play
83 a role in stabilizing the ion-pair species. Also in the present case,
84 HCl addition to 1 solutions results in protonation of the N atom
85 on L2, and the N−H··Cl interactions significantly affect the
86 properties of the formed complex anion, 2 (X = Cl), as supported
87 by DFT calculations (vide infra and Figures S7−S10). The trend
88 observed in the spectra of 1 upon the addition of different halo
89 acids is reported in Figure S11. Density functional theory (DFT)
90 and time-dependent DFT (TD-DFT)11−17 calculations in
91 CH3CN allow one to relate the low-frequency peaks mainly to
92 a highest occupied molecular orbital (HOMO)−lowest un-

f3 93 occupied molecular orbital (LUMO) transition (Figures 3 and
94 S9 and S10). A predominant contribution to the HOMO is
95 provided by a mixture of π-dithiolate and metal orbitals, while a
96 π*-dithiooxamidate orbital gives a predominant contribution to
97 the LUMO (LL′CT = ligand-to-ligand charge transfer with some
98 metal contribution). When 1 interacts with HCl, the HOMO
99 energy is not affected while the LUMO is stabilized in agreement
100 with the observed shift to longer wavelength of the CT band. It is
101 worth noting that the LUMO+1, a π orbital of the quinoxaline
102 moiety, is raised in energy.
103 Upon irradiation in the visible region at 450 nm, the complex

f4 104 shows switchable proton-dependent photoluminescence in

105 f4solution at room temperature (Figure 4). The emission color
106can be tuned from deep red (715 nm) to bright green (570 nm)

107upon the addition of 1 equiv of HCl, while the subsequent
108addition of NH3 totally quenches the green band and restores the
109initial conditions (see Figure S12). Interestingly, both of these
110emissions are dependent on the excitation wavelength (see the
111inset in Figure 4), and no photoluminescence is detected upon
112excitation of the lowest absorption band corresponding to the
113HOMO−LUMO transition as well as in the UV part of the
114absorption spectrum. These results may suggest an unusual anti-
115Kasha−Vavilov behavior18−20 for 1 in the both unprotonated and
116protonated forms21 (see also Figure S13).
117A similar behavior was recently found for the homoleptic
118platinum complex with ligand L1, [Pt(L1)2]

−.8 In this last case,

Figure 2. Variation of the absorption upon successive additions of HCl
(10 μL, 10−3 M) and NH3 (10 μL, 10

−3 M) to a solution of 1 in CH3CN
(1 mL, 1 × 10−4 M). In the inset, plots of the absorbance values at 588
nm (blue) and 795 nm (green) against [HCl]/[1] are reported.

Figure 3. Frontier molecular orbitals of 1 (left) and 2 (right).
Calculations were performed with the PCM method in acetonitrile,
B3LYP/6-31+G(d)-SDD.11

Figure 4. Emission change upon successive additions of HCl (10 μL,
10−2 M) to a solution of 1 in CH3CN (1.5 mL, 5× 10−4 M).Molar ratios
[HCl]/[1] are indicated. The excitation wavelength was 450 nm. In the
inset, the excitation spectra (dashed lines) are compared to the
absorption spectra (solid lines) in a CH3CN solution of 1 (black) and 2
(red).
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119 irradiation at 420 nm under neutral conditions in a solution at
120 room temperature yields an emission peak at 572 nm, which is
121 well above the energy to the lowest absorption peak at 1085 nm
122 associated with the HOMO−1 → SOMO transition. Emission
123 was attributed to the HOMO−1← LUMO transition, involving
124 orbitals localized on the quinoxaline moiety. On the other hand,
125 the homoleptic [Pt(HL2)2] complex is nonluminescent in the
126 neutral form. This complex becomes emissive at 700 nm upon
127 HCl addition as a contact ion pair formulated as [Pt(H2-R2-
128 dto)2

2+(Cl)2].
22,23 Reversibility of this property is also observed

129 upon NH3 addition. Therefore, a comparison of the emissive
130 properties of 1 with respect to the corresponding homoleptic
131 complexes as well as the sequence of molecular orbitals (Figures
132 3 and S10) suggests that the process originates mainly from
133 intraligand charge-transfer (ILCT) transitions involving L1
134 orbitals of the dithiolate moiety, with some metal contribution,
135 and the ligand periphery localized on the quinoxaline moiety
136 (LUMO+1) in both 1 and 2, similarly to [Pt(L1)2]

−. In the
137 present case, L2 acts as a reversible proton acceptor, and the
138 synergistic combination of the two ligands L1 and L2 allows
139 tuning of the emission color of L1 through the proton-switchable
140 properties of L2. The rather low quantum yields evaluated
141 through the relative method (6.4 × 10−5 for 1 and 1.4 × 10−4 for
142 2) and the room temperature decay times estimated from
143 spectral data falling in the picosecond range (14 ps for 1 and 4 ps
144 for 2; see the SI and Table S3) point out that the radiative decay
145 channel in both 1 and 2 is strongly quenched by other
146 deactivation pathways. Therefore, it must be underlined that
147 the term “anti-Kasha” emission is herein used with caution to
148 describe an apparent phenomenon related to the observed
149 spectral features. Transient absorption experiments currently
150 underway will help to clarify the peculiar photocycle leading to
151 the apparent anti-Kasha emission in this complex.
152 In addition to these LO properties, 1 exhibits also proton-
153 switchable NLO properties. Protonation−deprotonation NLO
154 switches in solution are commonly studied by the hyper-
155 Rayleigh-scattering (HRS) technique working at 1064 nm
156 incident wavelength, which, however, suffers the limitation of
157 possible overestimation of the value of the quadratic hyper-
158 polarizability due to resonance.24−26 To achieve more reliable
159 data, the electric-field-induced second-harmonic-generation
160 (EFISH) technique was employed to determine the second-
161 order NLO response of the molecular chromophore 1 in CHCl3
162 solutions, working at a nonresonant 1907 nm incident
163 wavelength, from which μβλ can be obtained,27 (see the SI for
164 experimental details).28 More recently, a second-order NLO
165 response by the EFISH technique has been reported for
166 protonation−deprotonation NLO switches applied to organic29

167 and organometallic30 compounds. A remarkable μβ1907 value
168 increase for 1 by a factor of 4 (from −735 × 10−48 esu for 1 to
169 −2980 × 10−48 esu for 2) is obtained. By taking into
170 consideration the calculated μ value for 1 and 2 (12.6 and 3.9
171 D, respectively), the obtained β values show an increase by a
172 factor of 12 (60 and 735 × 10−30 esu for 1 and 2, respectively). It
173 is worth noting that the μβλ value determined on the 1·HCl
174 solution after NH3 addition suggests that the NLO-phore 1 is
175 restored. The negative sign of μβλ values is in agreement with a
176 decrease of the dipolar moments in the excited states, as reflected
177 by the negative solvatochromism observed for the involved CT
178 peaks (Figure S14). Similar behavior was observed for
179 M(diimine)(dithiolate) complexes,31 that have been largely
180 investigated by Eisenberg’s group and others for their NLO32−34

181 and luminescent properties32 and as sensitizers or photocatalysts

182for light-to-chemical energy conversion.35−37 Several organ-
183ic24−26,38−41 and organometallic30,42−47 molecules based on
184D−π-A moieties have been shown to undergo a variation of
185hyperpolarizability upon variation of the D−A strength or of the
186π bridge induced by external stimuli, including protonation.
187Similarly, proton-switchable emission has been found.18,48,49

188Remarkably, in the case under discussion, color, second-order
189NLO response, and emission all undergo switching upon
190protonation.
191In conclusion, 1 behaves as a versatile multiresponsive optical
192switch. Coordination to the metal ion of L1 and L2, each of them
193a carrier of functionality, in a square-planar geometry allows one
194to reach a favorable arrangement for second-order NLO and for
195reversible interactions with HCl through L2. These interactions
196affect both the LO and NLO properties. This peculiarity is
197accompanied by an uncommon behavior of the emission
198properties of 1. Thus, 1 represents a unique candidate that
199should stimulate interest in deepening its remarkable properties
200both for pure scientific reasons and for potential applications as a
201multiresponsive optical switch whose changes, accompanied by
202color tuning, can be followed by the naked eye.
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