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In this paper, we study the zero-flux chemotaxis-system{
ut = ∇ · ((u + 1)m−1∇u − u(u + 1)𝛼−1𝜒(v)∇v) + ku − 𝜇u2 x ∈ Ω, t > 0,
0 = Δv − v + u x ∈ Ω, t > 0,

where Ω is a bounded and smooth domain of Rn, n ≥ 1, and where m ∈ R,
k, 𝜇 > 0 and 𝛼 ≤ 1. For any v ≥ 0, the chemotactic sensitivity function is assumed
to behave as the prototype 𝜒(v) = 𝜒0∕(1 + av)2, with a ≥ 0 and 𝜒0 > 0. We
prove that for any nonnegative and sufficiently regular initial data u(x, 0), the
corresponding initial-boundary value problem admits a unique global bounded
classical solution if 𝛼 < 1; indeed, for 𝛼 = 1, the same conclusion is obtained
provided 𝜇 is large enough. Finally, we illustrate the range of dynamics present
within the chemotaxis system in 1, 2, and 3 dimensions by means of numerical
simulations.
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1 INTRODUCTION AND MOTIVATIONS

This paper is dedicated to the following problem

⎧⎪⎪⎨⎪⎪⎩
ut = ∇ · ((u + 1)m−1∇u − u(u + 1)𝛼−1𝜒(v)∇v) + ku − 𝜇u2 x ∈ Ω, t > 0,
0 = Δv − v + u x ∈ Ω, t > 0,
𝜕u
𝜕𝜈

= 𝜕v
𝜕𝜈

= 0 x ∈ 𝜕Ω, t > 0,
u(x, 0) = u0(x) ≥ 0 x ∈ Ω,

(1)

where for the unknown (u, v) = (u(x, t), v(x, t)), the component x belongs to a bounded and smooth domain Ω of Rn,
with n ≥ 1,t ≥ 0 and where m ∈ R and k, 𝜇 > 0. The function u0(x) = u(x, 0) is the initial value of u and it is taken
from W1,∞(Ω), while 𝜕∕𝜕𝜈 indicates the outward normal derivative on 𝜕Ω. Moreover, we assume that 𝛼 ≤ 1 and that the
function 𝜒 generalises the standard chemotactic sensitivity

𝜒(v) =
𝜒0

(1 + av)2 with some 𝜒0 > 0 and a ≥ 0.

The mathematical formulation of this problem describes phenomena tied to chemotaxis models, which indicate the move-
ment of a cell population at a point x of an environment, identified as Ω, and at an instant t (ie, u = u(x, t)) when
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stimulated by a chemical signal (ie, v = v(x, t)), which is also distributed in the space and produced by the cells. In addi-
tion, the zero-flux boundary conditions on both u and v (the homogeneous Neumann boundary conditions) express that
the interaction takes places in a totally insulated domain.1

Problem (1) is one of several generalisations of the following landmark model proposed by Keller and Segel in 1970 (see
Keller and Segel2 and the more recent reviews3,4),

⎧⎪⎨⎪⎩
ut = Δu − 𝜒∇(u · ∇v) x ∈ Ω, t > 0,
𝜏vt = Δv − v + u x ∈ Ω, t > 0,
𝜕u
𝜕𝜈

= 𝜕v
𝜕𝜈

= 0 x ∈ 𝜕Ω, t > 0,
u(x, 0) = u0(x) ≥ 0 and v(x, 0) = v0(x) ≥ 0 x ∈ Ω,

(2)

where𝜒 > 0, 𝜏 ≥ 0,Ω ⊂ Rn, with n ≥ 1, is a bounded domain with smooth boundary, and u0(x) = u(x, 0) and v0(x) = v(x, 0)
are the initial cell distributions and chemical concentration, respectively. This system and many of its variants have been
widely discussed by many authors, in terms of both the parabolic-elliptic (ie, 𝜏 = 0) and the parabolic-parabolic case (ie,
𝜏 = 1). All of these models may eventually lead to an uncontrolled gathering of cells in some localised spatial location;
such phenomenon, known as chemotactic collapse, mathematically implies that u becomes unbounded in one or more
points of its domain, in finite time (blow-up time). In the parabolic-parabolic case, it is known that solutions to (2), in one
spatial dimension, are global and uniformly bounded in time (see Osaki and Yagi5), while in the n-dimensional context,
with n ≥ 2, unbounded solutions have been detected in Horstmann and Wang6 and Winkler.7 Estimates for the blow-up
time of such unbounded solutions are explicitly derived in Payne and Song.8

Further, if 𝜏 = 0 in the second equation of system (2) then Jäger and Luckhaus9 and Nagai10 have shown that, under
suitable assumptions, bacteria concentrations blow up in finite time. This blow up occurs in both radial and nonradial
two-dimensional solutions.

Furthermore, it is worth mentioning that for the fully parabolic case important results concerning the existence of both
bounded or unbounded solutions to chemotaxis-systems have also been attained when the first equation of system (2)
is replaced by ut = ∇ · (𝜙(u)∇u) − ∇ · (𝜓(u)∇v). The occurrence of such different scenarios are studied in terms of the
asymptotic behaviours of the ratio between the diffusion 𝜙(u) and the sensitivity 𝜓(u), as well as the space dimension.
We refer, for instance, to Cieťslak and Morales-Rodrigo11 and Ciesťlak and Winkler12 for the parabolic-elliptic case and to
previous studies13-15 for the parabolic-parabolic one. Finally, for 𝜙(u) ≃ u−m and 𝜓(u) ≃ u𝛼 , with m ≥ 0 and 𝛼 ∈ R and
the second equation given by 0 = Δv − M + u, M being the spatial mean of u, it is known (see Winkler and Djie16) that
all the solutions of the corresponding zero-flux initial boundary problem are globally bounded if m+ 𝛼 < 2∕n, whereas if
m + 𝛼 > 2∕n and Ω is a ball then unbounded solutions can be detected; in particular the value 2∕n represents the critical
exponent for the quantity m + 𝛼.

In order to remove Dirac delta-type singularities, the introduction of absorptive sources seems totally natural. The
presence of the term ku − 𝜇u2 in our problem (1) arises from the well known model of population dynamics (originally
formulated by Pierre-François Verhulst in17) concerning the self-limiting growth of a biological population. We remark
that another commonly considered choice of the source, involving further zeros and replacing ku − 𝜇u2, is given by the
bistable expression u(B − u)(u − A), with 0 < A < B; the corresponding Keller-Segel-type systems are investigated, for
instance, in Funaki et al18 and Funaki and Tsujikawa,19 and shock-type movements or travelling fronts are detected (see
also Marras and Viglialoro and Viglialoro20,21 for other choices of the source).

Further, let us mention different studies dealing with some specific parabolic-parabolic versions of system (1), defined
in a convex smooth and bounded domain Ω of Rn, n ≥ 1, endowed with homogeneous Neumann boundary conditions,
and under the choice m = 𝛼 = 1. Specifically, it has been established that when 𝜒(v) = 1 system (1) admits global weak
solutions for k ∈ R and arbitrarily small values of 𝜇 > 0 (see Lankeit22). On the other hand, if g generalises the logistic
source (i.e. it verifies g(0) ≥ 0 and g(s) ≤ k − 𝜇s2, for s ≥ 0), 𝜒(v) = 𝜒 > 0 and 𝜇 is big enough then the system possesses
a unique bounded and global-in-time classical solution.23 Additionally, in the case 𝜒(v) = 𝜒 > 0, but with source term
g(s) ≃ k−𝜇sr, for s ≥ 0, and with some r > 1, global existence of very weak solutions, as well their boundedness properties
and long time behaviour are discussed in other works.24-26

Finally, in order to better define the purpose of this present investigation, let us frame model (1), in its parabolic-elliptic
representation, in the existent literature. For m = 𝛼 = 1 and 𝜒(v) = 𝜒 > 0, it is proved in Tello and Winkler27 that when
𝜇 > (n − 2)𝜒∕n the solutions are globally bounded, whilst for m ∈ R, 𝛼 = 1 and 𝜒(v) = 𝜒 > 0 the same result is achieved
in Cao and Zheng28 under the assumption 𝜇 > (1 − 2∕(n(2 − m)+))𝜒 . In Zheng,29 the author formulates problem (1)
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under the assumptions m ≥ 1, 𝛼 > 0 and 𝜒(v) = 𝜒 > 0, and with a more general expression for the logistic absorption:
ku − 𝜇ur, with r > 1. It is concluded that the coefficient 𝜇 does not take part for the boundedness of the solution when
𝛼 < max{r,m+2∕n}−1, whilst it does for 𝛼+1 = r. Even more, global-in-time existence and uniform-in-time boundedness
of classical and weak solutions to (1), with both non-degenerate and degenerate diffusions, have been studied in Wang
et al and Xie and Zhaoyin.30,31 Nevertheless, as far as we know, and in contrast to models without the logistic source, the
question about the existence of a critical exponent, involving the parameters defining the diffusion, the sensitivity and
the source capable of warranting, or excluding, the existence of unbounded solutions, is still open.

In accordance with these premises, this contribution aims to present global existence and boundedness of classical
solutions to problem (1) when the ranges for the parameters m and 𝛼 are different from those discussed above. In addition,
this report introduces the function 𝜒(v) in the cross diffusion term, which is not constant but a function from C2([0,∞))
and satisfies for any v ≥ 0 the growth condition

𝜒(v) ≤ 𝜒0

(1 + av)b
with some 𝜒0 > 0 and a ≥ 0 and b > 0. (3)

To be precise, under proper assumptions on the data our mains assertions are summarised in §4 and claim:

- for m ∈ R, k positive and 𝛼 < 1, problem (1) with 𝜒(v) obeying (3) admits a unique globally bounded solution for any
𝜇 > 0 and any nonnegative and sufficiently regular u0 (Theorem 4.3);

- for m ∈ R, k positive and 𝛼 = 1, problem (1) with 𝜒(v) obeying (3) admits a unique globally bounded solution for
𝜇 > 0 sufficiently large and any nonnegative and sufficiently regular u0 (Corollary 4.1).

The theoretical results presented here are investigated numerically in §5. Specifically, parameter sweeps of m, 𝛼, and n
are used to detect critical exponents which delineate the regions in which u is, and is not, bounded. Critically, although
the inequalities on 𝛼, herein derived, and from Zheng,29 ensure the boundedness of u, regardless the size of the dampening
term, 𝜇, in the logistic source, these inequalities are not tight. Explicitly, we are able to violate them and still produce
bounded simulations. Finally, we consider the influence of b on the solution through simulated parameter sweeps over
the interval b ∈ [0, 2].

2 FIXING SOME PARAMETERS

In the following Lemma, used throughout the paper to prove the main conclusions, we adjust some parameters, which
are necessary in our logical steps.

Lemma 2.1. For any q1 > n + 2, q2 > (n + 2)∕2 and m, 𝛼 ∈ R with 𝛼 ≤ 1 let

p̄ ∶= max

⎧⎪⎪⎪⎨⎪⎪⎪⎩

n
2
(1 − m)
1 − 𝛼

q1

1 − m (n+1)q1−(n+2)
q1−(n+2)

1 − m
1− n

n+2
q2

q2−1

⎫⎪⎪⎪⎬⎪⎪⎪⎭
. (4)

Then these relations hold:

p > n
2
(1 − m) for all p > p̄ and n ∈ N, (5)

0 <
n
2
(m + p − 1)

(
1 − 1

p

)
1 − n

2
+ n

2
(m + p − 1)

< 1 for all p > p̄ and n ∈ N, (6)

0 <
p + 𝛼
p + 1

< 1 for all p > p̄, 𝛼 ≠ 1 and n ∈ N, (7)
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p + 𝛼 − 1 > 0 for all p > p̄ and n ∈ N, (8)

p > q1 for all p > p̄ and n ∈ N, (9)

p > 1 − m
(n + 1)q1 − (n + 2)

q1 − (n + 2)
for all p > p̄ and n ∈ N, (10)

p > 1 − m
1 − n

n+2
q2

q2−1

for all p > p̄ and n ∈ N. (11)

Proof. From the expression of p̄, we have that

m + p̄ − 1
2

≥ m + p̄ − 1
2p̄

,
m + p̄ − 1

2p̄
>

n − 2
2n

and p̄ > n
2
(1 − m);

therefore,

1 − n
2
+ n

2
(m + p − 1) > 0

and, thus, (6) is attained. In addition, the remaining inequalities are clearly verified for any p > p̄ once p̄ is defined as
in (4).

3 EXISTENCE OF LOCAL-IN-TIME SOLUTIONS AND THEIR PROPERTIES

Our first result concerns local-in-time existence of classical solutions to system (1). The proof of the result is obtained
by well-established methods involving standard parabolic-elliptic regularity theory and an appropriate fixed point
framework.13,16,32

Lemma 3.1. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For given m, 𝛼 ∈ R, and k, 𝜇 positive, let us
assume that 𝜒 ∈ C2([0,∞)) satisfies relation (3). Then for any nonnegative function u0 ∈ W1,∞(Ω), problem (1) admits
a unique local-in-time classical solution

(u, v) ∈ (C([0,Tmax);W 1,∞(Ω)) ∩ C2,1(Ω̄ × (0,Tmax)))2,

where Tmax denotes the maximal existence time. Moreover, we have

u ≥ 0 and v ≥ 0 in Ω × (0,Tmax),

and if Tmax <∞ then

limsup
t↗Tmax

||u(·, t)||L∞(Ω) = ∞. (12)

Proof. Uniqueness. By absurdity let (u1, v1) and (u2, v2) be 2 nonnegative different solutions of (1) in Ω×(0,Tmax) with
the same initial data, that is u1(·, 0) = u2(·, 0) and v1(·, 0) = v2(·, 0). In such circumstances v1 − v2 solves

−Δ(v1 − v2) + (v1 − v2) = u1 − u2. (13)

Differentiating Equation 13 with respect to t, multiplying by a factor v1 − v2 and integrating over space, yield, for all
t ∈ (0,T0) with T0 < Tmax,
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1
2

d
dt∫Ω

|∇(v1 − v2)|2 + 1
2

d
dt∫Ω

(v1 − v2)2

= ∫Ω
(u1 − u2)t(v1 − v2) − ∫Ω

Δ(v1 − v2)t(v1 − v2) + (v1 − v2)(v1 − v2)t,

= ∫Ω
(u1 − u2)t(v1 − v2),

= −∫Ω
∇
(
(u1 + 1)m

m
− (u2 + 1)m

m

)
· ∇(v1 − v2)

+ ∫Ω
(𝜒(v1)u1(u1 + 1)𝛼−1∇v1 − 𝜒(v2)u2(u2 + 1)𝛼−1∇v2) · ∇(v1 − v2)

+ ∫Ω
(ku1 − 𝜇u2

1 − ku2 + 𝜇u2
2)(v1 − v2).

(14)

Let us set

s1 ∶= min{||u1||L∞(Ω×(0,T0)), ||u2||L∞(Ω×(0,T0))},
s2 ∶= max{||u1||L∞(Ω×(0,T0)), ||u2||L∞(Ω×(0,T0))}.

The Mean Value Theorem applied to the function s → (s + 1)m∕m in the interval [s1, s2] infers for some s̄ ∈ (s1, s2)

(s1 + 1)m

m
− (s2 + 1)m

m
= (s̄ + 1)m−1(s1 − s2),

so that (s1 + 1)m−1 ≤ (s̄ + 1)m−1 ≤ (s2 + 1)m−1. In light of this, by virtue of the Young inequality, an integration by parts
and relation (13), there exists some positive C1 depending on T0 and belonging to the interval [(s1 + 1)m−1, (s2 + 1)m−1]
such that

I1 ∶= −∫Ω
∇
(
(u1 + 1)m

m
− (u2 + 1)m

m

)
· ∇(v1 − v2)

= ∫Ω

(
(u1 + 1)m

m
− (u2 + 1)m

m

)
Δ(v1 − v2)

= ∫Ω

(
(u1 + 1)m

m
− (u2 + 1)m

m

)
(v1 − v2)

− ∫Ω

(
(u1 + 1)m

m
− (u2 + 1)m

m

)
(u1 − u2)

= C1∫Ω
(u1 − u2)(v1 − v2) − C1∫Ω

(u1 − u2)2

≤ C1

2 ∫Ω
(v1 − v2)2 − C1

2 ∫Ω
(u1 − u2)2.

(15)

Next, we define

I2 ∶= ∫Ω
(𝜒(v1)u1(u1 + 1)𝛼−1∇v1 − 𝜒(v2)u2(u2 + 1)𝛼−1∇v2) · ∇(v1 − v2).

In view of the regularity of the function 𝜉 → 𝜉(𝜉 + 1)𝛼−1, with 𝜉 ≥ 0, and also well-known elliptic theory results, we
have that for some C2 = C2(T0)

⎧⎪⎨⎪⎩
|u1(u1 + 1)𝛼−1 − u2(u2 + 1)𝛼−1| ≤ C2|u1 − u2| in Ω × (0,T0),
u2(u2 + 1)𝛼−1 ≤ C2 in Ω × (0,T0),|∇v1| ≤ C2 in Ω × (0,T0).

Subsequently, these relations, in conjunction with the Hölder inequality and the bound for 𝜒(v), infer
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I2
2 ≤ 𝜒2

0∫Ω
(|u1(u1 + 1)𝛼−1∇v1 − u2(u2 + 1)𝛼−1∇v2|2)∫Ω

|∇(v1 − v2)|2,
≤ 𝜒2

0∫Ω
|u1(u1 + 1)𝛼−1 − u2(u2 + 1)𝛼−1|2|∇v1|2∫Ω

|∇(v1 − v2)|2
+ 𝜒2

0∫Ω
|u2(u2 + 1)𝛼−1∇(v1 − v2)|2∫Ω

|∇(v1 − v2)|2,
≤ 𝜒2

0 C4
2∫Ω

(u1 − u2)2∫Ω
|∇(v1 − v2)|2 + 𝜒2

0 C2
2

(
∫Ω

|∇(v1 − v2)|2)2

.

Hence, using the inequality (A + B)
1
2 ≤ A

1
2 + B

1
2 , which is valid for any A,B ≥ 0, and then the Young inequality, we

have for some 𝜌1 > 0

I2 ≤ 𝜒0C2
2𝜌1

2 ∫Ω
(u1 − u2)2 +

(
𝜒0C2

2

2𝜌1
+ C2𝜒0

)
∫Ω

|∇(v1 − v2)|2. (16)

Additionally, application of the Mean Value Theorem, the Young inequality and the boundedness of u1 and u2 in
Ω × (0,T0) provide some C3 = C3(T0) > 0

∫Ω
(ku1 − 𝜇u2

1 − ku2 + 𝜇u2
2)(v1 − v2) ≤ C3𝜌2

2 ∫Ω
(u1 − u2)2 + C3

2𝜌2 ∫Ω
(v1 − v2)2, (17)

with some 𝜌2 > 0.
Choosing 𝜌1 = C1∕(2𝜒0C2

2) and 𝜌2 = C1∕(2C3), and successively inserting into Equation 14 relations (15), (16), and
(17), we arrive for some computable constant C4(T0) > 0 at the initial problem

d
dt
 ≤ C4 t ∈ (0,T0),  (0) = 0, (18)

where  (t) ∶= ∫Ω|∇(v1 − v2)|2 + ∫Ω(v1 − v2)2. Since Equation 18 admits the unique solution  ≡ 0 on (0,T0), due to
the arbitrary of T0, we attain v1 = v2 on (0,Tmax) and hence u1 = u2.

Existence.
For any T ∈ (0, 1) and R ∶= ||u0||L∞(Ω) +1, let us consider the Banach space X ∶= C0(Ω̄× [0,T]) and its closed subset

S ∶= {u ∈ X | u ≥ 0 in Ω̄ × [0,T] and ||u(·, t)||L∞(Ω) ≤ R for all t ∈ (0,T)}.

For ū ∈ S, let v be the solution of { 0 = Δv − v + ū Ω × (0,T),
𝜕v
𝜕𝜈

= 0 𝜕Ω × (0,T), (19)

and, in turn, let u be the solution of

⎧⎪⎨⎪⎩
ut − ∇ · (ū + 1)m−1∇u = ∇ · u(ū + 1)𝛼−1𝜒(v)∇v + ku − 𝜇u2 Ω × (0,T),
𝜕u
𝜕𝜈

= 0 𝜕Ω × (0,T),
u(x, 0) = u0(x) ≥ 0 Ω.

(20)

In agreement with these statements, we shall show that for appropriate small T, Φ ∶ S → S defined by Φ(ū) = u
is a compact map such that Φ(S) ⊂ S. Subsequently, due to the topological properties of S, the Schauder fixed point
theorem shows that there exists u ∈ S such that Φ(u) = u.

First, we observe that for some 𝛿 ∈ (0, 1) the elliptic regularity theory (theorem 8.34 of Gilbarg and Trudinger33)
ensures the existence of a unique solution v(·, t) of problem (19) which belongs to C1+𝛿(Ω). Moreover, for some positive
constant c (which until the end of this proof might change line by line), we have from elliptic regularity results that
for all t ∈ (0,T)
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||v(·, t)||W2,p(Ω) ≤ c||ū(·, t)||Lp(Ω);

in particular, ∇v ∈ W1,p(Ω) for all t ∈ (0,T) and subsequently the Sobolev embedding theorem with p > n ensures that
∇v ∈ L∞(Ω) for all t ∈ (0,T). Additionally, since ū ∈ S, for any m ∈ R and t ∈ (0,T), we have that ||(ū + 1)m−1||L∞(Ω) ≤
c, so that the classical parabolic regularity (theorem V.1.1. of Ladyženskaja et al34) applied to problem (20) implies that
u ∈ C𝛿1,

𝛿1
2 (Ω × (0,T)), for some 𝛿1 ∈ (0, 1). Hence,

u(·, t) ≤ u0 + ct
𝛿1
2 for all t ∈ (0,T),

and thereafter

max
t∈[0,T]

||u(·, t)||L∞(Ω) ≤ ||u0||L∞(Ω) + cT
𝛿1
2 .

Subsequently, for T < c
−𝛿1

2 , we also deduce that

max
t∈[0,T]

||u(·, t)||L∞(Ω) ≤ ||u0||L∞(Ω) + 1 = R.

On the other hand, ku − 𝜇u2 is 0 for u = 0, so that the parabolic comparison principle ensures that u is nonnegative;
hence, Φ maps S into itself, compactly since C𝛿1,

𝛿1
2 (Ω × (0,T)) → X . Let u be the fix point of Φ; by using the elliptic

regularity theory to problem (19) and the parabolic one to problem (20) (explicitly Theorem V.6.1. of Ladyženskaja
et al34), we have that u, v ∈ C2+𝛿1,1+

𝛿1
2 (Ω × [𝜏,T]), for any 𝜏 ∈ (0,T). Further, with u being nonnegative the elliptic

comparison principle applied to (19) implies that v is nonnegative as well. Moreover, by standard arguments the
solution may be prolonged in the interval [0,Tmax), with Tmax ≤ ∞, Tmax being finite if and only if (12) holds.

Lemma 3.2. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For any nonnegative function u0 ∈ W1,∞(Ω),
let (u, v) be the local-in-time classical solution of problem (1) provided by Lemma 3.1. Then we have

∫Ω
u(·, t) ≤ M for all t ∈ (0,Tmax), (21)

where M = max{k|Ω|∕𝜇, ∫Ωu0}.

Proof. Taking into consideration the no-flux boundary conditions for problem (1), an integration of its first equation
over Ω and an application of the Hölder inequality provide

d
dt∫Ω

u = k∫Ω
u − 𝜇∫Ω

u2 ≤ k∫Ω
u − 𝜇|Ω|

(
∫Ω

u
)2

for all t ∈ (0,Tmax),

so that (21) is a consequence of a comparison argument.

4 A PRIORI ESTIMATES AND PROOF OF THE MAIN RESULTS

In this section, we shall gain some uniform bound for u, by bounding ||u||Lp(Ω), for p sufficiently large and on the whole
interval (0,Tmax) with a suitable positive and time independent constant. This constant is attained by establishing an
absorptive differential inequality for Φ(t) = ∫Ω(u + 1)p and using comparison principles.

Lemma 4.1. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For 𝛼 < 1 and any nonnegative function
u0 ∈ W1,∞(Ω), let (u, v) be the local-in-time classical solution of problem (1) provided by Lemma 3.1. Then, for any p > p̄,
p̄ being the constant given in (4), and 𝜀 positive real number, we have

1
p

d
dt∫Ω

(u + 1)p +
4(p − 1)

(m + p − 1)2 ∫Ω
|∇(u + 1)

m+p−1
2 |2 ≤

+
(
𝜀

p
𝜒0 − 𝜇

)
∫Ω

(u + 1)p+1 + c0,

(22)
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where

⎧⎪⎪⎨⎪⎪⎩
C1(𝜀) = 1−𝛼

p+1

(
𝜀(p+1)

2p(p+𝛼)
p+𝛼−1

p−1

) p+𝛼
𝛼−1
,

C2(𝜀) = 1
p+1

(
𝜀(p+1)𝜒0

2(2𝜇+k)p2

)−p
,

c0 = p−1
p+𝛼−1

𝜒0C1(𝜀)|Ω| + (2𝜇 + k)C2(𝜀)|Ω|.
Proof. For p̄ as in (4), let p > p̄; testing the first equation of problem (1) by p(u + 1)p−1, using its boundary conditions
and relation (3) provide

1
p

d
dt∫Ω

(u + 1)p = ∫Ω
(u + 1)p−1ut ≤ −(p − 1)∫Ω

(u + 1)p+m−3|∇u|2
+ (p − 1)𝜒0∫Ω

(u + 1)p+𝛼−2∇u · ∇v

+ k∫Ω
u(u + 1)p−1 − 𝜇∫Ω

u2(u + 1)p−1,

(23)

on (0,Tmax). Now, taking into consideration that from the second equation of (1), we have that

−(u + 1)p+𝛼−1Δv = −(u + 1)p+𝛼−1(v − u) ≤ (u + 1)p+𝛼 t ∈ (0,Tmax),

through an integration by parts we infer that, in view of the fact that p + 𝛼 − 1 > 0 for all p > p̄ (see relation (8)

(p − 1)𝜒0∫Ω
(u + 1)p+𝛼−2∇u · ∇v =

(p − 1)𝜒0

p + 𝛼 − 1∫Ω
∇(u + 1)p+𝛼−1 · ∇v,

= −
(p − 1)𝜒0

p + 𝛼 − 1∫Ω
(u + 1)p+𝛼−1Δv,

≤ (p − 1)𝜒0

p + 𝛼 − 1∫Ω
(u + 1)p+𝛼,

(24)

for all t ∈ (0,Tmax). Since from (7), we have that 0 < (p + 𝛼)∕(p + 1) < 1, an application of the Young inequality gives
for any 𝜀 on (0,Tmax)

∫Ω
(u + 1)p+𝛼 ≤ p + 𝛼 − 1

p − 1
𝜀

2p∫Ω
(u + 1)p+1 + C1(𝜀)|Ω|. (25)

As to the contribution from the logistic source, for all t ∈ (0,Tmax) we can write

k∫Ω
u(u + 1)p−1 − 𝜇∫Ω

u2(u + 1)p−1 ≤ k∫Ω
(u + 1)p − 𝜇∫Ω

(u + 1)p+1 + 2𝜇∫Ω
(u + 1)p, (26)

where we have used the inequality −u2 ≤ −(u+1)2 +2(u+1). Successively, the Young inequality enables us to deduce
that on (0,Tmax)

(2𝜇 + k)∫Ω
(u + 1)p ≤ 𝜀𝜒0

2p ∫Ω
(u + 1)p+1 + (2𝜇 + k)C2(𝜀)|Ω|. (27)

Taking into account that

(p − 1)∫Ω
(u + 1)p+m−3|∇u|2 =

4(p − 1)
(m + p − 1)2 ∫Ω

|∇(u + 1)
m+p−1

2 |2, (28)

our thesis is justified once Equations 23 to 28 are collected together.
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Lemma 4.2. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For 𝛼 < 1 and any nonnegative function
u0 ∈ W1,∞(Ω), let (u, v) be the local-in-time classical solution of problem (1) provided by Lemma 3.1. Then there exists a
positive constant L1 such that for any p > p̄

∫Ω
(u + 1)p ≤ L1 for all t ∈ (0,Tmax). (29)

Proof. For any p > p̄, let us set Φ(t) = 1
p
∫Ω(u + 1)p. By choosing the constant 𝜀 introduced above in the interval

(0, 𝜇p∕𝜒0], relation (22) is reduced to

Φ′(t) +
4(p − 1)

(m + p − 1)2 ∫Ω
|∇(u + 1)

m+p−1
2 |2 ≤ c0. (30)

Now, the Gagliardo-Nirenberg inequality, in conjunction with

(A + B)k ≤ 2k(Ak + Bk), (31)

valid for any A,B ≥ 0 and k > 0, infer that for

0 < 𝜃1 =
n m+p−1

2

(
1 − 1

p

)
1 − n

2
+ n m+p−1

2

< 1 (recall (6) of Lemma 2.1),

the relation

∫Ω
(u + 1)p = ||(u + 1)

m+p−1
2 || 2p

m+p−1

L
2p

m+p−1 (Ω)

≤ c1||∇(u + 1)
m+p−1

2 || 2p
m+p−1

𝜃1

L2(Ω) ||(u + 1)
m+p−1

2 ||(1−𝜃1)
2p

m+p−1

L
2

m+p−1 (Ω)

+ c1||(u + 1)
m+p−1

2 || 2p
m+p−1

L
2

m+p−1 (Ω)
,

(32)

is verified with c1 = (2CGN)
2p

m+p−1 . Considering the bound from inequality (21) and introducing c2 =
c1 max{(M + |Ω|)(1−𝜃1)p, (M + |Ω|)p}, we observe that inequality (32) can be written as

∫Ω
(u + 1)p ≤ c2

(
∫Ω

|∇(u + 1)
m+p−1

2 |2) p𝜃1
m+p−1

+ c2 t ∈ (0,Tmax). (33)

As a consequence of all of the above, by making first use of inequality (31) in (33) and then inserting the result into
(30), we obtain that Φ verifies this initial problem{

Φ′(t) ≤ c3 − c4Φ
m+p−1

p𝜃1 (t) t ∈ (0,Tmax),
Φ(0) = ∫Ω(u0 + 1)p,

with

c3 = c0 +
4(p − 1)

(m + p − 1)2 and c4 =
4(p − 1)

(m + p − 1)2

(
2c2

p

)− m+p−1
p𝜃1

.

Consequently, an application of a comparison principle implies that

Φ(t) ≤ max

{
Φ(0),

(
c3

c4

) p𝜃1
m+p−1

}
∶= L1 for all t ∈ (0,Tmax),

concluding the proof.

After these preparations, we can prove the first of our two results.



1818 VIGLIALORO AND WOOLLEY

Theorem 4.3. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For given m ∈ R, k, 𝜇 positive and 𝛼 < 1,
let us assume that 𝜒 ∈ C2([0,∞)) satisfies relation (3). Then for any nonnegative function u0 ∈ W1,∞(Ω), problem (1)
admits a unique global classical solution (u, v). Moreover, both u and v are bounded in Ω × (0,∞).

Proof. Let (u, v) be the local-in-time classical solution of system (1) emanating from any nonnegative function u0 ∈
W1,∞(Ω) and provided by Lemma 3.1. Hereafter, coherent with the nomenclature used by Tao and Winkler, u also
classically solves the problem (A.1) of appendix A of Tao and Winkler35 in Ω × (0,Tmax) with

D(x, t,u) = (u + 1)m−1, f (x, t) = −u(u + 1)𝛼−1𝜒(v)∇v, g(x, t) = k2

4𝜇
.

For p̄ defined in (4) of Lemma 2, Lemma 4.2 directly applies to warrant that for any p > p̄ holds that

u ∈ L∞((0,Tmax);Lp(Ω)). (34)

In particular, we deduce that (A.2) to (A.5), the second inclusion of (A.6) for any choice of q2 and (A.7) with p0 = p,
are verified on (0,Tmax). From relation (34), elliptic regularity results applied to the equation −Δv + v = u imply
v ∈ L∞((0,Tmax);W2,p(Ω)) and, hence, ∇v ∈ L∞((0,Tmax);W1,p(Ω)). In particular, due to the Sobolev embeddings, we
infer ∇v ∈ L∞((0,Tmax);L∞(Ω)), since from the definition of p̄, we also have p > n (recall (9). Consequently, as to the
first condition of (A.6), bounds (3) and (29), and the fact that 𝛼q1 < q1 < p, show, through the Hölder inequality with
exponents 𝛼q1∕p and 1 − 𝛼q1∕p that this bound holds on (0,Tmax):

∫Ω
|f |q1 ≤ ∫Ω

(u + 1)𝛼q1 |𝜒(v)|q1 |∇v|q1

≤ 𝜒
q1
0 ||∇v(·, t)||q1

L∞(Ω)|Ω| p−𝛼q1
p

(
∫Ω

(u + 1)p
) 𝛼q1

p

.

Hence, we also attain that for any n ≥ 1

f ∈ L∞((0,Tmax);Lq1(Ω)), with q1 > n + 2.

Moreover, by virtue of expressions (10), (11), and (5), relations (A.8), (A.9) for q2 > (n + 2)∕2, and (A.10) of Lemma
A.1. of Tao and Winkler35 are also valid, so we get that for some L2 > 0

||u(·, t)||L∞(Ω) ≤ L2 for all t ∈ (0,Tmax).

In turn, the extensibility criterion (12) of Lemma 3.1 shows that Tmax = ∞. Finally, the independence of the obtained
estimate with respect to t ∈ (0,Tmax) = (0,∞), justified by the main uniform-in-time bound (29), establishes that u is
bounded in (0,∞) and through the second equation of (1) also the uniform bound of v is achieved.

By retracing the proof of Lemma 4.1, we observe that the condition 𝛼 < 1 is exactly required in relation (25) to make the
Young inequality applicable. For 𝛼 = 1, the Young inequality is senseless and the machinery used in the proof above is no
longer valid. Nevertheless, obstacles can be circumvented. To be more precise, as a by product of the previous reasoning
and through rearranging and manipulating some statements, we can also prove

Corollary 4.1. Let Ω be a smooth and bounded domain of Rn, with n ≥ 1. For given m ∈ R, k, 𝜇 positive and 𝛼 = 1,
let us assume that 𝜒 ∈ C2([0,∞)) satisfies relation (3). Then for any nonnegative function u0 ∈ W1,∞(Ω), it is possible to
find a positive constant K = K(n,m) such that if

𝜇 > K(n,m)𝜒0, (35)

problem (1) admits a unique global classical solution (u, v). Moreover, both u and v are bounded in Ω × (0,∞).

Proof. Let (u, v) be the local-in-time classical solution of problem (1) emanating from any nonnegative function u0 ∈
W1,∞(Ω); estimate (24) becomes
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(p − 1)𝜒0∫Ω
(u + 1)p+𝛼−2∇u · ∇v =

(p − 1)𝜒0

p ∫Ω
∇(u + 1)p · ∇v,

= −
(p − 1)𝜒0

p ∫Ω
(u + 1)pΔv,

≤ (p − 1)𝜒0

p ∫Ω
(u + 1)p+1.

In view of this, for all p > p̄, p̄ given by (4), inequality (22) now reads

1
p

d
dt∫Ω

(u + 1)p +
4(p − 1)

(m + p − 1)2 ∫Ω
|∇(u + 1)

m+p−1
2 |2 ≤

+
(
𝜀̃𝜒0

2p
+

p − 1
p

𝜒0 − 𝜇
)
∫Ω

(u + 1)p+1 + c̃0,

(36)

where c̃0 = (2𝜇 + k)C2(𝜀̃), with C2 = C2(·) defined in Lemma 4.1 and 𝜀̃ > 0. Now, for any p > p̄, if 𝜇 satisfies the
following relation

𝜇 > k(p)𝜒0, (37)

where

k(p) = 1 − 1
p
, (38)

we can choose 𝜀̃ > 0 such that 0 < 𝜀̃ < 2p(𝜇 − k(p)𝜒0) so that

𝜀̃𝜒0

2p
+

p − 1
p

𝜒0 − 𝜇 < 0

and inequality (36) is equivalent to

Φ′(t) +
4(p − 1)

(m + p − 1)2 ∫Ω
|∇(u + 1)

m+p−1
2 |2 ≤ c̃0.

The same remaining steps of Lemma 4.1 show that there exists a positive constant L1 such that for any p > p̄

∫Ω
(u + 1)p ≤ L1 for all t ∈ (0,Tmax).

Now, let us set K(n,m) = k(p̄), where k(p) has been introduced in (38). Since relation (35) is satisfied, we have, by
continuity reasons, that there exists p > p̄ such that 𝜇 > k(p)𝜒0. Subsequently, assumption (37) holds so that bound
(29) implies that

u ∈ L∞((0,Tmax);Lp(Ω)),

and we conclude as in the proof of Theorem 4.3.

Remark 1. By taking m = 1 in (1) and b = 0 in (3), for the limit case 𝛼 = 1 it is seen by its expression in Lemma
2 that p̄ = q1. In this sense, since assumption (38) has to hold for all p > p̄ > n + 2, the optimal condition for the
boundedness established in (37) corresponds to the infimum of k(p) and it is hence rewritten as

𝜇 >
n + 1
n + 2

𝜒0.

We observe that even though the criterion herein used does not coincide with that used in Tello and Winkler,27 ie,
𝜇 > (n − 2)𝜒0∕n which is manifestly sharper, it is indeed consistent with the previous result. This difference is not
surprising and justified by the fact that the technique herein used is not a direct adaptation of that used in Tello and
Winkler27 (and also in Cao and Zheng28). More exactly, unlike the linear case corresponding to m = 1 (and 𝛼 = 1)
in problem (1), the nonlinearity for the diffusion does not allow us to express u through an explicit representation
formula; in particular, its boundedness properties are not promptly addressed by the Neumann heat semigroup theory,
so that it is necessary to use Lemma A.1. of Tao and Winkler35 to investigate them.
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5 NUMERICAL SIMULATIONS

In this section, we test the presented theoretical results by numerically simulating system (1) in 1, 2, and 3 dimensions.
Specifically, we investigate whether the solutions are globally bounded, or whether they blow-up in finite time.

The solution algorithm is based on an adaptive, implicit Runge-Kutta finite element method.36 Since we are looking
for regions where solutions are unstable, if such a solution is found, the discretisation must be increased to ensure that
this outcome is the true numerical solution, rather than a numerical artefact. Here, whenever a solution was observed
to be unstable, the grid was refined to have ten times as many elements as previously simulated, to ensure the outcome.
Critically, the complexity of the simulation grows rapidly as the dimension of the domain of the problem is increased to 2
or 3. Specifically, in higher spatial dimensions, larger numbers of finite elements are required to provide the same level of
discretisation as simulations in lower spatial dimensions. However, increasing grid refinement dramatically increases the
scale of the problem and slows down the solution production speed. Alternatively, we can shrink the spatial scale of the
domain over which are solving. This allows us to refine smaller and smaller pieces of Euclidean space, without increasing
the grid refinement. However, by shrinking the solution domain, we may miss out interesting spatial behaviour, since it is
well known that the domain size is often a critical bifurcation parameter for the production of heterogeneous solutions.37-39

Thus, if a solution is presented as tending to a spatially homogeneous state this is only true for the domain size presented
in the figure. Simulating the solution on larger domains would require much higher spatial refinement than our current
computing abilities can provide.

We, first, investigate the influence of m and 𝛼 on the solution, in accordance to the ranges chosen in this investigation.
Critically, m and 𝛼 control the diffusion and cross diffusion components, respectively, in system (1). Figure 1A presents
a simulated parameter sweep over multiple values of m ∈ R and 𝛼 ≤ 1. We immediately observe that parameter m has a

(A)

(B)

FIGURE 1 Simulating system (1) in one dimension. Parameters are a = 1, b = 2, 𝜒0 = 1, k = 1, and 𝜇 = 0.2. Other parameters noted on
the figures. The initial condition is 1 + exp(−(x − 2)2) in each case. In (A) we consider the effect of varying parameters m and 𝛼. The black
line is the initial condition and the blue line is the solution at t = 1. In (B) we fix the value of 𝛼 = −0.1 and vary m. Using a space-time plot,
we demonstrate that the simulation tends to the homogeneous steady state, as defined by the logistic contribution to system (1). The colour
bar on the right specifies the size of u [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 2 Simulating system (1) in one dimension with different values of 𝛼. Parameters are b = 0, 𝜒0 = 1, k = 1, m = 0 and 𝜇 = 0.2, with
𝛼 specified beneath each figure. The initial condition is 1 + exp(−(x − 2)2) in each case. In (A) and (B) the simulations tend to a bounded,
heterogeneous concentrations of u. The colour bar of u is given on the right of each (A) and (B). If 𝛼 is increased too far, as in (C), we observe
that u becomes spatially unstable and grows without bound as time increases. the simulation time increases left to right and the plots are
illustrated at times t = 0, 7.3 × 10−6, 8.3 × 10−6, 9 × 10−6, and 9.0714 × 10−6 [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 3 Simulating system (1) on a 2-dimensional disk, with different values of 𝛼. Parameters are b = 0, 𝜒0 = 2, k = 1, m = 0.1, and
𝜇 = 0.05. The initial condition is 100(1 + exp(−x2 − y2)) in each case. The values of 𝛼 are denoted beneath each subfigure. (A) and (B)
illustrate that if 𝛼 is small enough then the simulation is bounded for all time, even for a very weak dampening coefficient 𝜇. The simulations
in (A) and (B) have been run for 100 time units and have reached their, respective, stationary states. As 𝛼 is increased, we see in (C) that the
simulations begin to demonstrate the same instability seen in Figure 2C, namely, as the time increases (plots are illustrated at t = 2.2 × 10−5,
2.3 × 10−5 and 2.3214 × 10−5, left to right, respectively) u becomes spatially unstable and grows without bound [Colour figure can be viewed
at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
http://wileyonlinelibrary.com
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bigger influence on the simulation than 𝛼. Namely, as m decreases it takes longer for spatial heterogeneities to disappear.
This, of course, makes sense as the diffusion rate is (u + 1)m−1 and, thus, for m < 1 the diffusion rate is smaller at local
maxima of u.

Having discovered the insensitivity to 𝛼, we present space-time simulations of u, varying just m, in Figure 1B.Here,
we are able to visualise the removal of spatial heterogeneities over time. Combining the insights from Figure 1A,B, we
observe that in general the population size tends to be dominated by the logistic kinetics (compare the black and blue lines
of Figure 1A), whereas it is the time to homogeneity that is controlled by the diffusive and cross diffusion parameters.
Specifically, we see that, even in the case slow diffusion (m < 1), there is a rapid global convergence from the initial
condition to the spatially homogeneous solution of the logistic kinetics, k∕𝜇 = 5, whereas local heterogeneities take
longer to smooth out (see Figure 1B).

In the case of one dimension, n = 1, the theory presented here suggests that for m ∈ R, the simulations converge for all
𝛼 < 1 regardless the size of 𝜇. In Figure 2A, we see that this holds true as u tends to a stationary, spatially heterogeneous,
bounded solution. Moreover, Figure 2B demonstrates that the inequality is not tight because u still converges to a station-
ary, spatially heterogeneous, bounded solution even though the inequality is violated. However, if 𝛼 is increased too far
(Figure 2C) we see that the population becomes unstable. Namely, the peak of the initial heterogeneity becomes sharper
and high frequency spatial oscillations begin to appear, rapidly spreading out from this localised peak. Eventually, the
breakdown in convergence leads to a solution blowing up to a value over 1036.

When we simulate system (1) in 2 dimensions, we see a similar trend when increasing 𝛼. Namely, when 𝛼 < 1, u
remains bounded for all time and converges to a stationary state. Moreover, if the 2-dimensional space is large enough
then spatial heterogeneity can be supported (compare Figure 3A,B). However, if 𝛼 is increased too far (see Figure 3C), we
observe that high frequency oscillations begin to rapidly grow (compare with Figure 2C) and the solution grows to over
109 in less than 10−4 time units.

Next, we simulate system (1) in 3 dimensions, for b = 0 and m ≥ 1. We note that in this case, the theory establishes
that when 𝛼 + 1 < max{2,m + 2∕n} = max{2,m + 2∕3}, the solutions are all bounded, regardless the size of 𝜇. Once
again, we see that the boundedness of u depends critically on 𝛼. However, the previously mentioned bound is not optimal.
Specifically, as seen in Figure 4A, the population of u is bounded even though the inequality is violated. Although not
explicitly shown, the 𝛼 = 10 case rapidly converges to the homogeneous steady state defined by the logistic kinetics,
k∕𝜇 = 20.

Critically, the dynamics of the unbounded u solutions in 3 dimensions seem to be subtler than those seen in Figures 2
and 3. Specifically, although for large 𝛼 the solution u does grow without bound exponentially fast (see Figure 4C), the
solution does not rapidly explode when 𝛼 = 20. Instead, as is seen in Figure 4B, the maximum of u grows linearly over time.

Finally, we simulate the effect of varying b on the solution in 3 dimensions. Here, we assume that 𝛼 is smaller than 1 to
ensure that the solution is always bounded, for any m ∈ R and regardless 𝜇. When b = 0, we are able to support stable,
stationary, heterogeneous solutions of u (see Figure 5A). Whereas when 0 < b ≤ 2 the solution rapidly homogenises and
tends to the stable stationary state defined by the logistic kinetics, k∕𝜇 = 20.

In summary, these simulations illustrate the veracity of the results contained within this paper. Specifically, global
boundedness of system (1) depends on the spatial dimension we are considering, as well as the diffusive and cross-diffusive
parameters of the system.

FIGURE 4 Simulating system (1) within a 3-dimensional sphere, with different values of 𝛼. Here, we only plot the maximum value of u
throughout the simulation. Parameters are b = 0, 𝜒0 = 2, k = 1, m = 1.5 and 𝜇 = 0.05. The values of 𝛼 are denoted beneath each subfigure.
Critically, in (A), the simulation is bounded for all time. However, as 𝛼 is increased max(u) appears to grow without bound. Specifically, the
growth is linear in time in (B) and exponentially fast (C) (note the logarithmic axes) [Colour figure can be viewed at wileyonlinelibrary.com]

http://wileyonlinelibrary.com
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FIGURE 5 Illustrating the influence of b. Parameters are a = 1𝛼 = 0.1, 𝜒0 = 2, k = 1, m = 0.1 and 𝜇 = 0.05. The value for b is 0 in (A) and
noted in the legend of (B). The initial condition is 100(1 + exp(−x2 − y2 − z2)) in each case. (A) illustrates that u can support bounded and
stationary heterogeneous concentrations when b = 0. Here, we are visualising the isosurfaces u = 20 (yellow), 30 (green), 40 (blue), 50 (red),
and 60 (black) inside the sphere of unit radius (grey). The simulation was run for 100 time units and did not significantly change for the last
50 time units. In (B), we illustrate the influence of increasing b on the value of max(u). In each case, we see that the simulation is always
bounded [Colour figure can be viewed at wileyonlinelibrary.com]
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