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Abstract—In this paper a Genetic Algorithm (GA) is used
to partition a distribution network with the aim to minimize
the energy exchange among the microgrids (i.e. maximize self-
consumption) in presence of distributed generation. The proposed
GA is tested on the IEEE prototypical network PG & E 69-bus.
The microgrid partitioning is tested over a period of one year
with hourly sampled data of real household consumption and
real distributed generation data. The proposed GA approach is
compared with a Tabu Search (TS) method already presented in
the scientific literature. Results show that both GA and TS lead
to the identification of equivalent microgrids. However, the GA
based approach achieves better convergence results allowing for
a reliable network partitioning with less CPU effort. Moreover,
the histograms of the power unbalances of the microgrids
show unimodal and skewed distributions offering an interesting
starting point for the appropriate deployment of storage and
control systems.

I. INTRODUCTION

The use of high shares of Renewable Energy Sources (RES)
for electricity production is widely considered as one of
the key topics to decarbonize the electricity infrastructure,
especially in cities (as also stated by the recent COP21 in
Paris, 2015). Under the infrastructural point of view, the
increasing adoption of RES poses a set of challenges to power
systems, that need to become more flexible and resilient in
order to manage intermittent energy sources like Photovoltaic
(PV) and wind. In recent years, the deployment of electronic
meters allowed for the progressive digitalization of the power
infrastructures, enabling interoperability, integration, and au-
tomatic control of High and Medium Voltage (HV and MV)
networks. Digital infrastructures also allow for the exploitation
of the full potential of the microgrid (MG) concept, i.e. “a
group of interconnected loads and distributed energy resources
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within clearly defined electrical boundaries that acts as a single
controllable entity with respect to the grid ” [1]. Microgrids
gained importance in the recent years because they allow for
a better urban resilience and energy/emissions savings. Also,
they constitute one of the emerging concepts for transforming
the power networks in order to manage services like distributed
generation and electric mobility [2].

In recent years different network partitioning methods have
been proposed with the aim to identify the optimal partition
of power grids in smaller microgrids. These include different
optimization methods using DC power flow [3], complex
networks [4]–[6], and intelligent systems [7]–[9].

Optimization problem can be also solved by means of
bottom-up methods mimicking the laws of evolution: the
Genetic Algorithms (GA). The concept of GA has been intro-
duced by Holland [10] in the 80s as a part of the computational
techniques developed in the field of Artificial Life [11]. The
foundational idea of GA is to generate high-quality solutions
for optimization and search problems by applying to an initial
population of solutions bio-inspired operators such as muta-
tion, crossover and selection. The key concept is to initialize a
population of randomly generated candidate solutions subject
to the evolutionary pressure represented by a fitness function,
i.e. a functional measuring the ability of each element of
the population to solve the problem. The optimal solution is
found by iterating the algorithm until the value of the fitness
function converges to the equilibrium (usually after 30-100
iterations). GA have been successfully applied to different
fields, ranging from bioinformatics, control engineering, neural
networks, and medicine [12]. GA also found applications in
power systems to find optimal Distributed Generation (DG)
placement [13], reconfigure networks to minimize losses [14],
and to reconfigure networks in case of failure [15].

In this paper a GA is developed for clustering a power net-
work in which DG is present together with household/service
users. The aim of the work is to find the optimal clusterization
that minimizes the energy exchanges between the microgrids,
or alternatively, the configuration maximizing the self con-
sumption of the identified clusters. To this aim the GA is
implemented to find microgrids partitioning in a prototypical



IEEE network used as benchmark by [9], [16]. In order to
validate the proposed approach the results have been compared
with [9], [16]–[18], who implemented a Tabu Search (TS)
method in presence of distributed generation. The analysis
have been performed using a dataset composed by actual
yearly profiles of load and RES, sampled hourly.

Results show that both GA and TS lead to similar outcomes,
but with different convergence probability, being the GA-based
algorithm better under this point of view, and allowing to
consider the GA partitioning methods highly reliable. This
paper is organized as follows: in section II are described data
and methods used to implement the GA and the network used
as benchmark, as well as the time series data used to compute
the load in each node of the network. Section III describes
the results, and in section IV conclusion and suggestions for
future research are discussed.

II. DESCRIPTION OF DATA AND METHODS

The aim of the proposed methodology is to compute the
best way to partition existing networks in microgrids. The
goal is to minimize power exchange between them. Since the
power time evolutions of loads and RES are intermittent, it
is very hard to identify a network partitioning which ensures
instantaneous balance among microgrids. For this reason, it
is important to identify the optimal static configuration which
minimizes the power exchanges between microgrids during
a specific period of time. The starting point of the proposed
methodology is an existing power grid, in which the position
of both generation and load is known. Consequently, the
topology of the network is used to identify the partitioning
which minimize the power flow through the transmitting lines
among the identified microgrids. In order to obtain this goal,
the Fitness Function (FF) proposed in [9] has been used. This
function is given in equation (1), where N is number of the
microgrids, and PB

i (t) and QB
i (t) are the active and reactive

power balance of microgrid i at each time t, as defined in
equations (2) and (3). The quantities PL

i (t), QL
i (t), PG

i (t)
and QG

i (t) used in (2) and (3) are, respectively, the active and
reactive consumption and production of each microgrid i at
time t.
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This implemented FF is the sum of mean squares of the
active and reactive power exchanges among the microgrids.
The minimization of this function is then made by means of
a GA. Description of this methodology is given in subsec.
II-A. In order to compare the results of the GA with [9],
the optimization of the FF has been performed with the TS
algorithm described in subsec. II-A.

The combination of microgrids minimizing the FF is then
chosen as optimal one, and the distribution of active and
reactive power balances during the year {PB

i (t)} and {QB
i (t)}

are obtained for each microgrid i. The result of optimal
microgrid clustering and the obtained distributions of {PB

i (t)}
and {QB

i (t)} are given in sec. III.

A. Optimization algorithms

The flowchart of the GA is presented in Fig. 1. Initial
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Fig. 1. The GA flowchart.

population is obtained by randomly creating a population of
possible microgrid clusterings. The GA starts with population
of S possible configurations, considering a maximum of 6
microgrids. The maximum number of iterations is set to 100.
The crossover probability is set to C = 0.8, while mutation
probability is set to M = 0.2.

In order to validate the GA optimization, the results have
been compared with the TS used in the original work of
Arefifar et al. [9]. TS is an AI-based heuristic optimization
procedure introduced by Glover [19] implementing an itera-
tive, random search of the solution space, visually described
in Fig. 2. The name Tabu comes from the use of the so-called
Tabu-List, in which the previously tested solutions are placed
for a certain set of iterations Atabu. The algorithm is designed
in a way that if it finds a previously evaluated solution during
the random process, it skips it and considers another one
unless it meets some conditions, called aspiration condition. In
this case, the aspiration condition is achieved if the estimated
solution gives a lower cost than the previous reference one,
and the considered Atabu has been set to 5 iterations.



B. Case study
To test the proposed methodology on a benchmark case

study, the standard PG & E 69-bus radial distribution network
is used [20]. This dataset has been chosen in order to compare
the obtained results with the original paper of Arefifar et al.
[9]. For this reason, the position of DGs and their rated power
has been chosen accordingly to their paper. Since the power
profiles used in [9] are not given, real yearly profiles for load
and DG are used. The load data has been obtained by using
the methodology described in [21], where the consumption
profiles of Medium Voltage nodes is aggregated randomly,
starting from a set of consumption time series of single
households obtained from [21]. Following that procedure, it
has been possible to create the yearly load profile of each
node of the network, sampled hourly. The DG production
considered in this study has been taken from the website of
IESO, the Power System Operator based in Ontario (Canada)
[22]. In this website, the hourly production data is given for
each generator of the grid, from 2010 on. The dataset used
in this paper covers the period from April 2016 to March
2017. From that, the production of wind and PV generators
of comparable size with the ones used in this paper has been
taken. Output power of biomass DGs is kept constant and
equal to their rated power.

III. RESULTS

Fig. 4 and 5 show the clustering results for GA and TS,
respectively. Results show that the node number 5 is located
in different clusters in GA and TS. In particular, it has been
moved from cluster no. 1 by GA to the no. 2 by TS. This
is an unforeseen result, since node 5 has 0 production and
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Fig. 2. The TS flowchart.

Fig. 3. The figure shows the IEEE 69 nodes network.

consumption, having no impact on the cost function. Because
of this, every different clustering involving the change of node
5 position should be considered equivalent.

Fig. 6 shows the histograms representing the occurrence
of different active power balances PB

i (t) in the obtained
microgrids, during the entire year of the simulation. Negative
results are associated to a net production, whereas positive are
associated to net consumption. All the clusters show unimodal
distributions, which can ease the implementation of control
systems and techniques.

Given the problem-specific performances of heuristic opti-
mization algorithms, a comparison between the convergence
properties of TS and GA has been performed. The results are
shown in fig. 7. The two algorithms have been run 100 times
with values of sample size S between 100 and 1000, in steps
of 100. The aim is to estimate the probability pbest(S) for
both algorithms to find the optimal solution. The relative error
associated to each probability has been calculated as the square
root of the number of trials. In general, the best cost function
calculated by TS and GA has exactly the same value, but the
pbest(S) values differ for the two algorithms. In particular,
Fig. 7 clearly shows how the GA ensures in general the best
convergence properties reaching the 100% value starting from
a population size of 400, leading to more stable results. In
this case, the better performance of the GA may be due to a
better spanning of the solution space with respect to the TS
implementation.

IV. DISCUSSION AND CONCLUSIONS

In this paper Genetic Algorithms are used for the identifi-
cation of the optimal positioning of microgrids in an existing
power grid with DG. The aim is to obtain a partition minimiz-
ing the power exchange between the microgrids in time (i.e.
maximizing self consumption). The GA has been tested on
the PG&E 69 bus network, in which the load and generation
profiles are derived by real consumption and production time
series hourly sampled and measured for a period of one
year. As a first result, the GA algorithm shows the ability
to identify the optimal partitioning of the network. The results
are consistent with those obtained by the TS algorithm already



Fig. 4. Optimal clustering obtained with the GA algorithm.

Fig. 5. Optimal clustering obtained with the TS algorithm.
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(a) Micro grid 1
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(b) Micro grid 2
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(c) Micro grid 3
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(d) Micro grid 4
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(e) Micro grid 5
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(f) Micro grid 6

Fig. 6. Histograms showing the distribution of active balances PB(t) of the
obtained microgrids.

Fig. 7. Probability of convergence vs population size for Tabu Search (blue)
and Genetic Algorithm (orange).

used in literature. However, the GA shows better convergence
properties with respect to TS. The proposed approach leads to
more stable solutions and to less CPU effort.

Furthermore, the shapes of the distribution of the power
unbalances of each microgrid have been computed. Results
show unimodal, skewed distributions, suggesting an interesting
starting point for the appropriate deployment of storage and

control systems.
Future works will be devoted to include storage systems

in the network and to a better characterization of the power
unbalances fluctuations.
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