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Abstract

A system is said to be opaque if a given secret behavior remains opaque (uncertain) to an intruder who can partially observe

system activities. This work addresses the verification of state-based opacity in systems modeled with Petri nets. The secret

behavior of a system is defined as a set of states. More precisely, two state-based opacity properties are considered: current-state

opacity and initial-state opacity. We show that both current-state and initial-state opacity problems in bounded Petri nets can

be efficiently solved by using a compact representation of the reachability graph, called basis reachability graph (BRG). This

approach is practically efficient since the exhaustive enumeration of the reachability space can be avoided.
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I. INTRODUCTION

Security is one of the most important properties in cyberinfrastructures, ranging from Internet and mobile communication

networks to national defense and health service systems. In these systems some information should not be corrupted or acquired

by unauthorized people (called intruders). The notion of opacity introduced in [1] for transition systems and later developed

in [2], formalizes the absence of information flow, or more precisely, the impossibility for an intruder to infer the truth of a

predicate representing the secret information. In discrete event systems (DESs), the predicate can be a subset of the state space

or a language, therefore, opacity properties can be categorized into two main classes: state-based opacity and language-based

opacity.

In this work, we focus on the verification of two important state-based opacity properties: current-state opacity and initial-

state opacity in DESs modeled by bounded Petri nets. It is assumed that an intruder knows the structure and the initial marking

of the system, however, it can only partially observe the occurrence of events of the system. To present such an observation

structure, the system under consideration is modeled by a labeled Petri net (LPN), where the observation function is static and

the states are not observable [2], [3], [4]. Given a secret described by a subset of the reachability set, the system is said to be

current-state (resp., initial-state) opaque with respect to the secret if the intruder is never able to infer that the current (resp.,

initial) state of the system is within the secret.

Methods for verifying opacity have been proposed by many researchers in the area of DESs [5], [6], [7], [8], [9], [10],

[11]. In a system modeled by a nondeterministic finite automaton (NFA), the verification of both current-state opacity and

initial-state opacity is PSPACE-complete [8], [12], [13] with respect to the number n of states in the NFA. On one hand,

to verify current-state opacity one needs to convert the NFA into an equivalent deterministic finite automaton (DFA), which

has a complexity of O(2n) [6], [9]. On the other hand, initial-state opacity in NFA can be verified by the method proposed

by Saboori and Hadjicostis [8]. In their approach a DFA called the initial-state estimator is constructed with a complexity

of O(2n
2

). A state of the estimator reached from the initial state following a word w includes all pairs (initial state, current

state) of the NFA such that the current state may be reached from the corresponding initial state observing w. As long as an

initial-state estimator is built, there is no need to reconstruct it when the secret changes. In their improved method [8], verifiers

have been introduced to study initial-state opacity. The verifier does not precisely estimate the initial state but only records

the possible current states and if such states are reachable from secret/non-secret states, and hence the complexity is reduced

to O(4n). Furthermore, Wu and Lafortune [9] have shown that the observer of the corresponding reverse automaton can be

used to estimate the initial state, which further reduces the complexity of verifying initial-state opacity to O(2n).

Petri nets extend the modeling power of finite automata. Nevertheless, few works use this model to deal with state-based

opacity. The first contribution is proposed by Bryans et al. [2] who proved that the verification of state-based opacity for

bounded labeled Petri nets is decidable. Apart from our earlier work [14], [15], [16], so far no efficient opacity analysis

method has been reported yet. For bounded Petri nets we may construct its reachability graph (RG) that is an NFA, so that the

aforementioned approaches could be applied. Nevertheless, constructing the RG will inevitably suffer from the state explosion

that also characterizes automaton models. To overcome such a limitation, in this paper we use the notions of basis markings and

explanations. Such notions have been first introduced in [17], [18], [19], [20], [21] to solve the problems of state estimation,

fault diagnosis, diagnosability analysis and reachability analysis in LPNs. They allow one to avoid an exhaustive enumeration

of the reachability space. Only a subset of reachable markings, i.e., the basis markings, should be enumerated, while other

reachable markings are characterized by linear systems, one for each basis marking. Therefore, the RG can be compactly
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represented by the basis reachability graph (BRG), a graph describing the transition relation between basis markings.

In this paper we study current-state opacity and initial-state opacity problems in Petri nets. The main contributions of this

work can be summarized as follows:

1) Necessary and sufficient conditions for current-state opacity with respect to an arbitrary secret are provided. A novel

approach based on the BRG (with appropriate changes) is proposed that enables one to avoid RG analysis. Moreover, if

the secret is defined as the intersection of a series of generalized mutual exclusion constraints (GMECs), then current-

state opacity can be verified by solving a set of integer linear programming problems (ILPPs) instead of exhaustively

enumerating the unobservable reach of basis markings. Finally, if the incidence matrix is totally unimodular, then these

ILPPs can be relaxed to linear programming problems (LPPs).

2) We define exposable and weakly exposable markings. In particular, we prove that if no weakly exposable marking is

contained in the secret, then current-state opacity can be efficiently verified without solving ILPPs. Moreover, the proposed

approach is extended to the case where the intruder has uncertainties about the initial marking.

3) We provide necessary and sufficient conditions for initial-state opacity with respect to an arbitrary secret. We show that

if no weakly exposable marking belongs to the secret, initial-state opacity can be efficiently verified using the BRG.

Otherwise, we propose a modified BRG (MBRG) to verify initial-state opacity.

4) A MATLAB tool is developed to implement most of the proposed approaches. Numerical results are illustrated to

corroborate their effectiveness.

Note that preliminary results concerning item 1) have been presented in [14] without formal proofs. Furthermore, we already

investigated the problem of initial-state opacity in [15] but using a different approach based on language containment.

II. BACKGROUND ON AUTOMATA AND PETRI NETS

In this section we recall the formalisms used in the paper, namely automata and Petri nets. For more details we refer the

reader to [22] and [23].

A. Automata

A nondeterministic finite automaton (NFA) is a 4-tuple A = (X,E,∆, X0), where X is the finite set of states, E = {a, b, · · · }

is the alphabet of events, ∆ ⊆ X ×Eε ×X is the transition relation (here Eε = E ∪ {ε} and ε is the empty word associated

to unobservable events), and X0 ⊆ X is the set of initial states1. The transition relation specifies the dynamics of the NFA:

if (x, e, x′) ∈ ∆, then from state x the occurrence of event e ∈ Eε yields state x′. The transition relation can be extended to

∆∗ ⊆ X × E∗ ×X: (xj0, w, xjk) ∈ ∆∗ if there exists a sequence of events and states xj0ej1xj1 · · ·xjk−1ejkxjk such that

σ = ej1 . . . ejk generates the word w ∈ E∗, xji ∈ X for i = 0, 1, . . . , k, and eji ∈ Eε, (xji−1, eji, xji) ∈ ∆ for i = 1, 2, . . . , k.

Event e ∈ E is said to be defined at state xi if there exists a state xj ∈ X such (xi, e, xj) ∈ ∆.

The generated language of an automaton A = (X,E,∆, X0) from a state x ∈ X is defined as

L(A, x) = {w ∈ E∗|∃x′ ∈ X : (x,w, x′) ∈ ∆∗}.

Generally, given a set of states Y ⊆ X , we define

L(A, Y ) =
⋃
x∈Y
L(A, x)

1If the set of initial states only contains one state x0, then A = (X,E,∆, x0); if the initial states are not specified, then A = (X,E,∆).
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the language generated from the states in Y .

B. Petri Nets

A Petri net is a structure N = (P, T, Pre, Post), where P is a set of m places, graphically represented by circles; T is a

set of n transitions, graphically represented by bars; Pre : P ×T → N and Post : P ×T → N are the pre- and post-incidence

functions that specify the arcs directed from places to transitions, and vice versa2. The incidence matrix of a net is denoted

by C = Post− Pre.

The input and output sets of a node x ∈ P ∪ T are denoted by •x and x•, respectively. A Petri net N = (P, T, Pre, Post)

is a state machine (resp. marked graph) if ∀t ∈ T , |•t| = |t•| ≤ 1 (resp. ∀p ∈ P , |•p| = |p•| ≤ 1). A Petri net is said to be

acyclic if there are no oriented cycles.

A marking is a vector M : P → N that assigns to each place a non-negative integer number of tokens, graphically represented

by black dots. The marking of place p is denoted by M(p). A marking is also denoted as M =
∑

p∈P M(p) · p. A Petri net

system 〈N,M0〉 is a net N with initial marking M0.

A transition t is enabled at marking M if M ≥ Pre(·, t) and may fire yielding a new marking M ′ = M +C(·, t). We write

M [σ〉 to denote that the sequence of transitions σ = tj1 · · · tjk is enabled at M , and M [σ〉M ′ to denote that the firing of σ

yields M ′. Given a sequence σ ∈ T ∗, the function π : T ∗ → Nn associates with σ the Parikh vector y = π(σ) ∈ Nn, i.e.,

y(t) = k if transition t appears k times in σ.

A marking M is reachable in 〈N,M0〉 if there exists a sequence σ such that M0[σ〉M . The set of all markings reachable

from M0 defines the reachability set of 〈N,M0〉, denoted by R(N,M0). A Petri net system is bounded if there exists a

non-negative integer k ∈ N such that for any place p ∈ P and any reachable marking M ∈ R(N,M0), M(p) ≤ k holds.

A labeled Petri net (LPN) is a 4-tuple G = (N,M0, E, `), where 〈N,M0〉 is a Petri net system, E is the alphabet (a set of

labels) and ` : T → E ∪{ε} is the labeling function that assigns to each transition t ∈ T either a symbol from E or the empty

word ε. Therefore, the set of transitions can be partitioned into two disjoint sets T = To ∪ Tu, where To = {t ∈ T |`(t) ∈ E}

is the set of observable transitions and Tu = T \ To = {t ∈ T |`(t) = ε} is the set of unobservable transitions. The labeling

function can be extended to firing sequences ` : T ∗ → E∗, i.e., `(σt) = `(σ)`(t) with σ ∈ T ∗ and t ∈ T .

Given an LPN G = (N,M0, E, `) and a marking M ∈ R(N,M0), we define the language generated from M as

L(N,M) = {w ∈ E∗|∃σ ∈ T ∗ : M [σ〉 and `(σ) = w}.

Furthermore, given a set of markings Y ⊆ R(N,M0) of G, we define

L(N,Y ) =
⋃

M∈Y
L(N,M)

the language generated from markings in Y .

A string belonging to L(N,M0) is called an observation. Let w be an observation of an LPN G = (N,M0, E, `). We define

C(w) = {M ∈ Nm|∃σ ∈ T ∗ : M0[σ〉M and `(σ) = w}

as the set of markings consistent with w. Note that since observation w is generated by the system, set C(w) must be non-empty.

2In this work, we use N, Z and R to denote the sets of non-negative integers, integers and real numbers, respectively.
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Fig. 1. An LPN whose unobservable subnet is acyclic.

Given an LPN G = (N,M0, E, `) and the set of unobservable transitions Tu, the unobservable subnet N ′ = (P, T ′,

P re′, Post′) of G, is the net resulting by removing all transitions in T \Tu from N , where Pre′ and Post′ are the restriction

of Pre, Post to Tu, respectively. The incidence matrix of the unobservable subnet is denoted by Cu = Post′ − Pre′.

III. BASIS REACHABILITY GRAPH

In [17], [18], a compact way to represent the reachability set of a Petri net was proposed to solve the fault diagnosis

problem. Under the assumption that the unobservable subnet is acyclic, only a subset of the reachable markings, called basis

markings, are computed, while, all non-basis markings are characterized by a set of linear equations associated with each basis

marking. Using the notion of basis markings, the basis reachability graph (BRG) is defined. It is an NFA in which each state

corresponds to a basis marking and all events are observable. The BRG as proposed in [17], [18] also includes some diagnosis

information, which are redundant for opacity verification. Herein we redefine it neglecting such information. Before providing

the algorithm for its construction, let us recall some key definitions from [18].

Definition 3.1: Given a marking M and an observable transition t ∈ To, we define

Σ(M, t) = {σ ∈ T ∗u |M [σ〉M ′,M ′ ≥ Pre(·, t)}

as the set of explanations of t at M and Y (M, t) = {yu ∈ Nnu |∃σ ∈ Σ(M, t) : yu = π(σ)} as the set of e-vectors. �

Thus Σ(M, t) is the set of unobservable sequences whose firing at M enables t and Y (M, t) is the set of firing vectors of

the explanations. Among all the explanations, we are interested in finding the minimal ones, i.e., those whose firing vector is

minimal.

Definition 3.2: Given a marking M and an observable transition t ∈ To, we define

Σmin(M, t) = {σ ∈ Σ(M, t)|@σ′ ∈ Σ(M, t) : π(σ′) � π(σ)}

as the set of minimal explanations of t at M and Ymin(M, t) = {yu ∈ Nnu |∃σ ∈ Σmin(M, t) : yu = π(σ)} as the

corresponding set of minimal e-vectors. �

Many approaches can be applied to compute Ymin(M, t). In particular, if the unobservable subnet is acyclic the approach

proposed by Cabasino et al., namely Algorithm 4.4 in [18], can be efficiently used. Note that since a given place may have

two or more unobservable input transitions, i.e., the unobservable subnet is not backward conflict free, the set of minimal

explanations is typically not a singleton.

Example 3.3: Let us consider the LPN in Fig. 1, where M0 = p1 + p2. Transitions t1 and t3 are observable. They are both

labeled a. We have Σ(M0, t1) = {ε, t2, t2t4}, Σmin(M0, t1) = {ε} and Ymin = {~0}. Let M = p2 + p4. Then Σ(M, t1) =
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Σmin(M, t1) = {t2t4, t5} and Ymin = {[1 1 0]T , [0 0 1]T }. �

Based on the notion of minimal explanations, the set of basis markings can be recursively defined.

Definition 3.4: Given an LPN G = (N,M0, E, `), its set of basis markings MB is a subset of R(N,M0) such that:

a) M0 ∈MB ;

b) ∀M ∈MB ,∀t ∈ To,∀yu ∈ Ymin(M, t), it holds M ′ ∈MB , where M ′ = M + C(·, t) + Cu · yu. �

In other words, the set of basis markings includes the initial marking and the set of all markings reachable by firing observable

transitions together with their minimal explanations. All other intermediate markings reachable by the firing of unobservable

transitions are disregarded.

Based on Definition 3.4, the following Algorithm 1 iteratively computes basis markings and constructs the BRG. We denote

the BRG as an NFA B = (MB , E,∆,M0), where MB is the set of basis markings of the LPN, all events are observable,

∆ ⊆MB × E ×MB is the transition relation between basis markings, and M0 is the initial state.

We now briefly explain how Algorithm 1 works. The setMB is initialized atMB = {M0}. For all markings M inMB that

have not been studied yet, i.e., with no tag, and for all observable transitions t, we check whether the set of minimal e-vectors

Ymin(M, t) is not empty. If not, we compute the resulting basis markings. This procedure runs iteratively until there is no

unchecked marking in MB . As Algorithm 1 shows, to construct the BRG one only needs to explore the minimal e-vectors

for each basis marking and observable transition. This prevents us from exhaustively exploring the RG.

Algorithm 1 Construction of the BRG
Input: A bounded labeled Petri net G = (N,M0, E, `) whose unobservable subnet is acyclic.
Output: The BRG B = (MB , E,∆,M0)

1: MB := {M0} and assign no tag to M0;
2: while states with no tag exist, do
3: select a state M ∈MB with no tag;
4: for all t ∈ To and Ymin(M, t) 6= ∅, do
5: for all yu ∈ Ymin(M, t), do
6: M ′ := M + Cu · yu + C(·, t);
7: if M ′ /∈MB , then
8: MB :=MB ∪ {M ′};
9: assign no tag to M ′;

10: end if
11: ∆ := ∆ ∪ {(M, `(t),M ′)};
12: end for
13: tag node M “old”;
14: end for
15: end while
16: Remove all tags.

Therefore, the complexity of constructing the BRG is lower than that of constructing the RG. It has been shown that in

practical cases the size of the BRG can be order of magnitude smaller than that of the RG [21]. Given a word w ∈ L(B,M0),

based on Algorithm 1, if (M0, w,M) ∈ ∆∗ then M is the basis marking reachable from M0 by firing an observable sequence

σo that produces w, eventually interleaved with some unobservable transitions whose firing is necessary to enable σo. We use

Mb(w) = C(w) ∩MB to denote the set of basis markings consistent with w.

Notice that to apply the BRG approach, two assumptions are made:

A1) the LPN G is bounded, and

A2) the unobservable subnet of G is acyclic.

Assumption A1 guarantees that the number of basis markings is finite thus Algorithm 1 can halt and the BRG can be constructed.
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Fig. 2. The RG of the LPN in Fig. 1.
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Fig. 3. The BRG of the LPN in Fig. 1.

Assumption A2 allows us to iteratively compute the basis markings and to use the state equation to characterize the set of

markings reachable from a basis marking by firing unobservable transitions (as shown in Theorem 3.7).

Example 3.5: Let us consider again the LPN in Fig. 1. It has 10 reachable markings and its RG is shown in Fig. 2. However,

there are only 5 basis markingsMB = {M0−M4}, and the corresponding BRG is shown in Fig. 3. For clarity of presentation,

transitions are added in parenthesis on arcs even if they are not provided by Algorithm 1. Note that they should not be taken

into account when establishing whether the BRG is either deterministic or not. �

Let us now introduce the following definition that is useful to formalize the main result in this subsection.

Definition 3.6: Given an LPN G = (N,M0, E, `) and a marking M ∈ R(N,M0), the unobservable reach of M is defined

as U(M) = {M ′ ∈ Nm|∃σu ∈ T ∗u : M [σu〉M ′}. �

In simple words, the unobservable reach of a marking M is the set of markings reachable from M by firing only unobservable

transitions. In [17], [18], it has been proved that the set of markings consistent with an observation w can be characterized by

the unobservable reaches of basis markings in Mb(w).

Theorem 3.7: [18] Let G = (N,M0, E, `) be an LPN whose unobservable subnet is acyclic. For all w ∈ L(N,M0), it holds
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TABLE I
UNOBSERVABLE REACHES OF BASIS MARKINGS IN FIG. 2

Basis Markings U(M)

M0 {M0,M5,M8}
M1 {M0,M1,M5,M6,M7,M8}
M2 {M2,M8}
M3 {M0,M2,M3,M5,M8,M9}
M4 {M2,M4,M8}

that
C(w) =

⋃
Mb∈Mb(w)

U(Mb)

=
⋃

Mb∈Mb(w)

{M ∈ Nm|∃yu ∈ Nnu : M = Mb + Cu · yu}.

In words, given an LPN whose unobservable subnet is acyclic, and an observation w, a marking M is consistent with w

if and only if it belongs to the unobservable reach of a basis marking Mb that is consistent with w. Since the unobservable

subnet is acyclic, marking M belonging to U(Mb) means that M = Mb + Cu · yu has a non-negative integer solution yu.

Example 3.8: Consider again the LPN in Fig. 1. Based on its RG in Fig. 2, the unobservable reaches of basis markings are

listed in Table I. One can also compute them by solving the equation in Theorem 3.7.

As discussed above, only markings M0 to M4 are basis markings. It can be easily observed that the union of the unobservable

reaches of basis markings equals the set of reachable markings. �

In the following sections we show how the above definitions and results (particularly Theorem 3.7) may be efficiently used

when verifying state-based opacity.

IV. CURRENT-STATE OPACITY

In the framework of LPNs, a secret S is defined as an arbitrary subset of reachable markings, called secret markings. It is

assumed that the intruder has a complete knowledge of the net system 〈N,M0〉 but only a partial observation of the event

occurrences. The current-state opacity property of a system is formally defined as follows.

Definition 4.1: An LPN G = (N,M0, E, `) is said to be current-state opaque wrt a secret S ∈ R(N,M0) if for all

observations w ∈ L(N,M0), C(w) * S holds. �

If an LPN is current-state opaque, it means that for all possible observations, the intruder cannot establish if the current

state belongs to the secret.

A. Verifying Current-State Opacity

According to Definition 4.1, to verify current-state opacity of an LPN, we need to check if C(w) * S holds for all

w ∈ L(N,M0), which means that all sets C(w) need to be computed first. In general, this requires to exhaustively enumerate

all sequences of transitions that may fire. For a bounded LPN, this can be done by constructing the DFA equivalent to its RG,

which is called observer. However, it is known that the complexity of computing a DFA equivalent to a given NFA with |X|

states is O(2|X|) [3], [12], [13], [22]. Therefore, if the RG is too large, it may be impossible to construct the observer. In

this section, based on the notion of basis markings and explanations, an efficient approach to verifying current-state opacity is

proposed. Let us first introduce the following definition.
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ex(S) wex(S)

Fig. 4. Inclusion relationships among exposable, weakly exposable, and reachable marking sets.
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Definition 4.2: Let G = (N,M0, E, `) be an LPN and S ∈ R(N,M0) be a secret. A reachable marking M is said to be

exposable if it does not belong to the secret, i.e., M ∈ R(N,M0)\S. The set of exposable markings is ex(S) = R(N,M0)\S.

A marking M is said to be weakly exposable if there exists a marking M ′ ∈ R(N,M0) such that M ′ ∈ U(M) ∩ ex(S). The

set of weakly exposable markings is denoted as wex(S). �

In simple words, a marking M is weakly exposable if there exists an exposable marking M ′ that is reachable from it by firing

unobservable transitions. Note that the firing sequence of unobservable transitions could be empty. Therefore, all exposable

markings are also weakly exposable. Their relations are depicted by the Venn diagram in Fig. 4.

Example 4.3: Consider again the LPN in Fig. 1. Given a secret S = {M2,M3,M6,M7,M8}. The set of exposable

markings is ex(S) = {M0,M1,M4,M5,M9}. Since U(M2) ⊆ S, U(M3) * S, U(M6) = {M0,M5 −M8} * S, U(M7) =

{M5,M7,M8} * S, and U(M8) = {M8} ⊆ S. Therefore, the set of weakly exposable markings is wex(S) = {M0,M1,M3−

M7,M9}. �

From Definitions 4.1 and 4.2, the following fact follows.

Fact 1: G is current-state opaque wrt S iff ∀w ∈ L(N,M0), C(w) ∩ ex(S) 6= ∅ holds.

Example 4.4: Consider the LPN in Fig. 1. The observer of its RG is shown in Fig. 5. Let S = {M1,M2,M5,M8}. The

LPN is current-state opaque wrt S since ∀w ∈ L(N,M0), C(w) ∩ ex(S) 6= ∅. �

Based on Theorem 3.7, we derive the following necessary and sufficient condition for current-state opacity.

Theorem 4.5: Let G = (N,M0, E, `) be an LPN whose unobservable subnet is acyclic and S ∈ R(N,M0) be a secret. G

is current-state opaque wrt S iff ∀w ∈ L(N,M0), Mb(w) ∩ wex(S) 6= ∅ holds.

Proof: (⇒) Given an arbitrary observation w ∈ L(N,M0), if there exists a basis marking Mb ∈ Mb(w) that is weakly

exposable, then there is a marking M ∈ U(Mb) such that M ∈ ex(S), and hence M ∈ C(w). This indicates that C(w)∩ex(S) 6=

∅. By Fact 1, the system is current-state opaque wrt S.

(⇐) Assume that there is an observation w ∈ L(N,M0) and none of the basis markings consistent with w are weakly

exposable, i.e., ∀Mb ∈Mb(w), U(Mb) ⊆ S. Based on Theorem 3.7, all markings consistent with observation w belong to the

secret, i.e., C(w) ∩ ex(S) = ∅. By Fact 1, the LPN is not current-state opaque.

As a result, instead of exhaustively computing the sets C(w) for all w ∈ L(N,M0), according to Theorem 4.5, to determine if

an LPN is current-state opaque, we only need to compute the set of basis markingsMb(w) for all observations w ∈ L(N,M0)

and to check if it contains a weakly exposable basis marking.
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Fig. 6. BRG Bc for current-state opacity.

p1 p2 p3 p4

t1(a) t2(ε) t3(b)

t5(ε)

t4(ε)

M0=p1+p2

M1=2p2 M2=p1+p4

M3=p2+p4

M4=2p4

t1(a) t3(b)t1(a)

t1(a)

t1(a)t3(b)

t1(a)t3(b)

M0,M1,M2,
M3,M4

M0,M1,M3

M1

a

a

a

b

bt1(a)

M0=p1+p2

M1=2p2 M5=p1+p3

M6=p2+p3

M3=p2+p4

t1(a) t2(ε)

t1(a)

t3(b)t2(ε)

M2=p1+p4

t1(a)

t3(b)

M7=2p3

M9=p3+p4

M4=2p4

M8=2p1

t3(b)

t3(b)

t4(ε)

t2(ε)

t5(ε)

t5(ε)

t4(ε)

t4(ε)

t1(a)

t2(ε)

t1(a
)

t5(ε)

t4(ε)

t5(ε)

p1 p2 p3 p4

t1(a) t2(ε) t3(a)

t5(ε)

t4(ε)

M0=p1+p2

M1=2p2 M2=p1+p4

M3=p2+p4

M4=2p4

t1(a) t3(a)t1(a)

t1(a)

t1(a)t3(a)

t1(a)t3(a)

t1(a)

M0=p1+p2

M1=2p2 M5=p1+p3

M6=p2+p3

M3=p2+p4

t1(a) t2(ε)

t1(a)

t3(a)t2(ε)

M2=p1+p4

t1(a)

t3(a)

M7=2p3

M9=p3+p4

M4=2p4

M8=2p1

t3(a)

t3(a)

t4(ε)

t2(ε)

t5(ε)

t5(ε)

t4(ε)

t4(ε)

t1(a)

t2(ε)

t1(a
)

t5(ε)

t4(ε)

t5(ε)

(M0,1)

(M1,1) (M2,0)

(M3,1)

(M4,1)

t1(a) t3(a)

t1(a)

t1(a)

t1(a)t3(a)

t1(a)t3(a)

t1(a)

LPN-ab

BRG-ab

IniEsti-ab

LPN-aa

BRG-aa BRG-C-aa

(M0,1)
(M1,1)
(M2,0)

(M1,1)
(M3,1)

(M1,1)
(M3,1)
(M4,1)

a a a

a

BRG-obs-aaFig. 7. Current-state basis observer of the BRG Bc in Fig.6.

B. BRG for Current-State Opacity

In this section, we propose a modified BRG that enables us to verify current-state opacity more efficiently.

Given a bounded LPN G and a secret S, with each node Mb ∈ MB of the BRG B = (MB , E,∆,M0) we associate a

binary scalar α(Mb) defined as follows:

α(Mb) =

 1 if Mb is weakly exposable;

0 otherwise.
(1)

The BRG for current-state opacity is denoted as Bc = (M̃B , E,∆, (M0, α(M0))), where M̃B ⊆MB × {0, 1}.

For all observations w, Mb(w) can be computed by converting the obtained BRG into its equivalent DFA by a standard

determinization procedure [22]: we do not present it here for the sake of brevity but illustrate it via Example 4.6. In the

resulting DFA, called current-state basis observer, each state is a subset of M̃B consistent with an observation. According to

Theorem 4.5, if all states of the observer have at least a pair (M,α(M)) with α(M) = 1, the LPN is current-state opaque wrt

S; otherwise, the LPN is not current-state opaque.

The number of states of the current-state basis observer in the worst case is 2|MB | − 1. Therefore, the space complexity

of the proposed approach is O(2|MB |). However, since the RG-based approach has a space complexity of O(2|R(N,M0)|),

and |MB | is typically greatly smaller than |R(N,M0)|, we conclude that the BRG-based method is practically much more

efficient. Some numerical results that validate this are given in Section VI. Moreover, once the current-state basis observer is

constructed, there is no need to reconstruct it when the secret S changes. If S is changed to S′, all we need is to update the

value of α(M) in the current-basis observer for each basis marking M .

Example 4.6: Consider the LPN in Fig. 1 and the same secret S = {M2,M3,M6,M7,M8} in Exmaple 4.3. By Eq. (1),

the BRG for current-state opacity is illustrated in Fig. 6 and the corresponding observer is shown in Fig. 7. Since all nodes of

the observer have at least a pair (M,α(M)) with α(M) = 1, then by Theorem 4.5, the LPN is current-state opaque wrt S. �

The following proposition provides a sufficient but not necessary condition for verifying current-state opacity without

constructing the observer of the BRG.
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Proposition 4.7: Let G = (N,M0, E, `) be an LPN whose unobservable subnet is acyclic and S ∈ R(N,M0) be a secret.

If all basis markings Mb ∈MB of G are weakly exposable, i.e., MB ⊆ wex(S), the system is current-state opaque wrt S.

Proof: Since all basis markings are weakly exposable, namely, for all observations w ∈ L(N,M0), there is an exposable

marking in C(w), according to Theorem 4.5, the LPN is current-state opaque.

If all states of the BRG have α(·) = 1, the LPN is current-state opaque; otherwise, current-state opacity requires further

analysis. The result of Example 4.6 shows that the condition in Proposition 4.7 is not necessary for current-state opacity: even

though in the BRG there is basis markings M2 ∈ Mb(a) that is not weakly exposable, the LPN is current-state opaque wrt

S. When w = a is observed, consistent markings reached from basis marking M2 belong to the secret. The intruder, however,

still does not know for sure if the current state is in the secret, since the current state could be the one that is reachable from

M1 ∈Mb(a) and that does not belong to the secret. For example, the current state could be M5.

C. Secrets Described by GMECs

Let us now discuss some special cases for which the computation of the scalars α(M) could be simplified. To verify if

a marking M is weakly exposable requires to test if there exists a nonsecret marking M ′ that belongs to its unobservable

reach. This can be done exhaustively by solving the reachability problem in its unobservable subnet. If the unobservable subnet

is acyclic, this can be done by checking if M ′ = M + Cu · yu has a nonnegative integer solution. However, under special

assumptions on the secret and/or the net structure, there may exist a more efficient way to do that. In this subsection we show

that such is the case when the secret S is described by a set of generalized exclusion mutual constraints (GMECs) [24]. It is

well-known that GMECs describe interesting subsets of the state space of a net and many interesting state-based specifications

can be represented by GMECs. Furthermore, they allow one to solve analysis and control problems by means of simple linear

algebraic tools [25], [26], [27], [28]. We show that in such a case determining if a basis marking is weakly exposable does not

require constructing the reachability set of the unobservable subnet, but only finding if a given set of linear integer constraints

admits a feasible solution.

Definition 4.8: [24] Given a net N , a single GMEC is a pair (w, k), where w ∈ Zm, k ∈ N, defining a set of legal markings

M(w,k) = {M ∈ Nm | wT ·M ≤ k}. A conjunctive GMEC is a pair (W,K) where W ∈ Zr×m,K ∈ Nr defining a set of

legal markings M(W,K) = {M ∈ Nm | WT ·M ≤ K}. Given a conjunctive GMEC (W,K), we use (wi, ki) to denote the

single GMEC (W (i, ·),K(i)). �

In this subsection we assume that the secret is described by a conjunctive GMEC, i.e.,

S = {M ∈ Nm |WT ·M ≤ K}.

Definition 4.9: Let M ∈ R(N,M0) be a marking of an LPN G = (N,M0, E, `), S = {M ∈ Nm|W ·M ≤ K} be a secret

and (wi, ki) be the i-th GMEC of the secret. The (i,M)-constraint set is defined as

Yi(M) =



M ′ = M + Cu · yu

wT
i ·M ′ > ki

yu ∈ Nnu

M ′ ∈ Nm

�
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Proposition 4.10: Let G = (N,M0, E, `) be an LPN whose unobservable subnet is acyclic and S = {M ∈ Nm|W ·M ≤ K}

be a secret. A reachable marking M ∈ R(N,M0) is weakly exposable iff there exists a GMEC (wi, ki) of the secret such that

the corresponding (i,M)-constraint set is feasible.

Proof: (⇒) Given a marking M ∈ R(N,M0), if there exists a GMEC whose (i,M)-constraint set is feasible, then there

exists a marking M ′ that is reachable from M by firing unobservable transitions and that does not belong to the secret, i.e.,

M is weakly exposable.

(⇐) If M is weakly exposable, then there exists a marking M ′ /∈ S with M [σ〉M ′, σ ∈ T ∗u . Therefore, there exists a GMEC

(wj , kj) such that M ′ and vector y = π(σ) is a solution to the (j,M)-constraint set.

In other words, when the secret is described by GMECs, verifying if a marking is weakly exposable can be done by solving

ILPPs. Therefore, the construction of BRG for current-state opacity requires solving r · z ILPPs, where r is the number of

GMECs and z is the number of basis markings. Moreover, for some net structures the complexity of constructing the BRG

can be further reduced by relaxing an ILPP into a linear programming problem (LPP).

Lemma 4.11: [29] If A is a totaly unimodular matrix3 and b is a vector of integers, then a linear programming problem of

the form min {c · x | A · x ≥ b, x ≥ 0} or max {c · x | A · x ≤ b} has an integer optimal solution, for any c.

Proposition 4.12: Let G = (N,M0, E, `) be an LPN whose unobservable subnet is acyclic, the corresponding incidence

matrix Cu be a totally unimodular matrix, and S = {M ∈ Nm|W ·M ≤ K} be a secret. A reachable marking M ∈ R(N,M0) is

weakly exposable iff there exists a GMEC (wi, ki) whose (i,M)-constraint set Yi(M) is feasible for y ∈ Rnu

≥0 and M ′ ∈ Rm
≥0.

Proof: Trivially follows from Proposition 4.10 and Lemma 4.11.

Note that there exist many interesting classes of nets whose incidence matrix is totally unimodular: examples are marked

graphs and state machines [30].

Example 4.13: Consider again the LPN in Fig. 1 whose unobservable subnet is a state machine. Let the secret be S = {M ∈

N4|M(p1) +M(p4) ≥ 2}, i.e., W = [ −1 0 0 −1 ] and K = −2. Since the observer of the BRG has been constructed

in Example 4.6, only the value α(·) of each basis marking needs to be updated. By solving the LPP, we obtain α(M0) = 1,

α(M1) = 1, α(M2) = 0, α(M3) = 1, and α(M4) = 0. According to Theorem 4.5, the LPN is current-state opaque wrt the

secret S. �

Notice that the observer of the BRG still needs to be constructed first. Providing a necessary but not sufficient condition for

current-state opacity, Proposition 4.14 can be applied without constructing the observer and only requires solving LPPs.

Proposition 4.14: Let G = (N,M0, E, `) be an LPN whose unobservable subnet is acyclic and S = {M ∈ Nm|W ·M ≤ K}

be a secret. The LPN is not current-state opaque if for all basis markings Mb ∈ MB and all GMECs (wi, ki), the (i,Mb)-

constraint sets Yi(Mb) are not feasible for y ∈ Rnu

≥0 and M ∈ Rm
≥0.

Proof: Given a basis marking Mb, if for all GMECs (wi, ki) the (i,Mb)-constraint sets Yi(Mb) is not feasible for y ∈ Rnu

≥0

and M ∈ Rm
≥0, they are not feasible for y ∈ Nnu

≥0 and M ∈ Nm
≥0 either. According to Proposition 4.10, basis marking Mb is

not weakly exposable. Since none of the basis markings is weakly exposable, by Theorem 4.5, the LPN is not current-state

opaque.

D. Secrets with No Weakly Exposable Markings

In this subsection we focus on a special class of secrets. More precisely, given an LPN, we assume that the secret satisfies

the following additional assumption:

3A matrix A is totally unimodular if each subdeterminant of A is 0, 1, or −1.
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A3) none of the secret markings is weakly exposable, i.e., M ∈ S ⇒ ∀M ′ ∈ U(M) : M ′ ∈ S holds.

This means that if M is a secret marking, all markings in the unobservable reach of M are secret markings as well. This

assumption allows to simplify the verification of current-state opacity (as shown by Theorem 4.15). Moreover, it is useful when

studying the case of initial-state opacity in Section V-B.

Theorem 4.15: Let G = (N,M0, E, `) be an LPN whose unobservable subnet is acyclic and S be a secret satisfying

Assumption A3. The LPN G is current-state opaque wrt S iff ∀w ∈ L(N,M0),Mb(w)∩ex(SB) 6= ∅ holds, where ex(SB) =

MB ∩ ex(S).

Proof: (⇒) Let Mb ∈ Mb(w) ∩ ex(SB). Therefore, Mb ∈ C(w) and C(w) ∩ ex(S) 6= ∅, i.e., G is current-state opaque

wrt S.

(⇐) Assume G is opaque. Then ∀w ∈ L(N,M0), C(w) ∩ ex(S) 6= ∅, i.e., ∃M ∈ C(w) : M ∈ ex(S). According to

Theorem 3.7, ∃Mb ∈MB∩ex(S) : M ∈ U(Mb), otherwise, Assumption A3 would be violated. Therefore,Mb(w)∩ex(SB) 6=

∅.

Example 4.16: Consider again the LPN in Fig. 1. Consider a secret S = {M0,M2,M5,M8,M9} that satisfies Assump-

tion A3. Then we have SB = {M0,M2} and ex(SB) = {M1,M3,M4}. Based on the observer of the BRG in Fig. 7,

∀w ∈ L(N,M0),Mb(w) ∩ ex(SB) 6= ∅, and therefore, the LPN is current-state opaque wrt S.

In other words, if Assumption A3 is satisfied, then current-state opacity can be verified by simply checking if each state of

the current-state basis observer contains at least one basis marking which is exposable (rather than weakly exposable). This

can be easily done by checking if Mb(w) ∩ (R(N,M0) \ S) = ∅.

We finally point out that Theorem 4.15 could also be useful when the secret does not satisfy Assumption A3. Indeed, given

an arbitrary system G and a secret S, the following proposition shows that we can always find another secret S′′ which satisfies

Assumption A3 and G has the same current-state opacity property wrt both S and S′′, and hence Theorem 4.15 can be applied.

Proposition 4.17: Let G = (N,M0, E, `) be an LPN whose unobservable subnet is acyclic, and S ∈ R(N,M0) be a secret.

G is current-state opaque wrt S iff G is current-state opaque wrt S′′, where S′′ = S \ S′ and S′ = wex(S) ∩ S.

Proof: Assume that G is current-state opaque wrt S′′. Therefore, ∀w ∈ L(N,M0), C(w) ∩ ex(S′′) 6= ∅. Suppose that

G is not current-state opaque wrt S, i.e., ∃w ∈ L(N,M0) : C(w) ∩ ex(S) = ∅. Since ex(S′′) = ex(S) ∪ S′, we have

C(w) ∩ ex(S′′) = (C(w) ∩ ex(S)) ∪ (C(w) ∩ S′) = C(w) ∩ S′ 6= ∅. Let M ∈ C(w) ∩ S′. Therefore, there exists a marking

M ′ ∈ U(M) : M ′ ∈ ex(S), and thus M ′ ∈ C(w) ∩ ex(S), i.e., G is opaque wrt S.

It is clear that ex(S) ⊆ ex(S′) and ex(S) ⊆ ex(S′′), since S′ ⊆ S and S′′ ⊆ S. Furthermore, since G is current-state

opaque wrt S, i.e., C(w) ∩ ex(S) 6= ∅, it holds C(w) ∩ ex(S′) 6= ∅ and C(w) ∩ ex(S′′) 6= ∅. Thus G is current-state opaque

wrt both S′ and S′′, respectively.

Proposition 4.17 indicates that given a system G and a secret S, to verify if G is current-state opaque wrt S we can pretreat

the secret S by simply removing all weakly exposable markings in S to get S′′ that satisfies Assumption A3, and then verify

if G is current-state opaque wrt S′′ using Theorem 4.15.

Example 4.18: Consider again the LPN in Fig.1. Let S = {M1,M2,M5,M8}. The secret does not satisfy Assumption A3

since M1 is weakly exposable. The secret can be partitioned into S = S′ ∪ S′′, where S′ = {M1} and S′′ = {M2,M5,M8}.

Therefore, S′′B = {M2} and ex(S′′B) = {M0,M1,M3,M4}. Since ∀w ∈ L(N,M0), Mb(w) ∩ ex(S′′B) 6= ∅ holds, the LPN is

current-state opaque wrt S′′, or equivalently, by Proposition 4.17, the LPN is current-state opaque wrt S. �
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E. Uncertainty on the Initial Marking

In this section we focus on the problem of verifying current-state opacity under the more general assumption that the intruder

has only partial knowledge of the initial marking of the net. In more detail, we assume that the intruder simply knows that the

initial marking M0 belongs to a set M0 ⊆MB , i.e., M0 ∈M0. Clearly, this is equivalent to assume that the set of possible

initial markings for the intruder is M̂0 =
⋃

Mb∈M0
U(Mb). Obviously, if a Petri net system is current-state opaque wrt a

secret when the intruder knows the initial marking M0, a fortiori it is current-state opaque when the intruder simply knows

that the initial marking belongs to set M̂0. In this subsection, we show that current-state opacity with the above ambiguity on

the initial marking can be verified by simply modifying the current-state basis observer.

Given an observation w, we have defined C(w) (in Sec. II.B) as the set of markings consistent with w, assuming that M0

is known. Now, we generalize this notion to a given set of initial markings M̂0, and define

Ĉ(w) = {M ∈ Nm|∃M ′ ∈ M̂0,∃σ ∈ T ∗ :

M ′[σ〉M and `(σ) = w},

i.e., Ĉ(w) is the set of possible current markings estimated by the intruder when observing w. Clearly, if M0 ∈ M0 it holds

Ĉ(w) ⊇ C(w), hence the condition in Theorem 4.5 is no longer necessary. Namely, the system could be current-state opaque

even if there exists w ∈ L(N,M0) such that Mb(w) ∩ wex(S) = ∅. If the initial state of the current-state basis observer is

initialized at M0 directly, words that would never be generated by the LPN, i.e., words in L(N,M̂0) \ L(N,M0), will be

generated by the observer. Note that L(N,M̂0) = L(N,M0). As a result, current-state opacity cannot be verified looking at

the current-state basis observer. To restrict the language of the current-basis observer to the language of the LPN and separately

denote estimations made on the basis of false initial markingsM0 \{M0} and estimations made on the basis of the real initial

marking M0, as formalized in the following definition, we introduce an extended observer which is the synthesis of two BRG

observers, initialized at M0 \M0 and M0, respectively.

Definition 4.19: Let G = (N,M0, E, `) be a bounded LPN whose unobservable subnet is acyclic, S ∈ R(N,M0) be a secret,

Bc = (M̃B , E,∆, (M0, α(M0))) be the corresponding BRG for current-state opacity and M0 be the intruder’s knowledge

about the initial marking. The extended observer of the BRG is a DFA V = (Q,E, δ, q0), where Q ⊆ 2M̃B × 2M̃B and

q0 = (X̂0,X0) with X̂0 = {(M,α(M))|M ∈ M0 \ {M0}} and X0 = {(M0, α(M0))}. The transition function δ is defined

as follows: for e ∈ E and (X̂i,Xi) ∈ Q, if ∃(M,α(M)) ∈ Xi : e is defined at (M,α(M)), then ((X̂i,Xi), e, (X̂j ,Xj)) ∈ δ,

where X̂j = {x′ ∈ M̃B |∃x ∈ X̂i : ∆(x, e) = x′} and Xj = {x′ ∈ M̃B |∃x ∈ Xi : ∆(x, e) = x′}. �

In plain words, the extended observer characterizes the possible current markings estimated by the intruder. It is first initialized

with the uncertainty of the initial marking. To verify current-state opacity we only need to consider the language L(N,M0)

generated by the LPN, since a word w which can only be generated by some false initial marking will not occur in the actual

evolution of the system. The set X denotes the intruder’s estimation with knowledge of the initial marking M0, while the set X̂

denotes additional estimated markings introduced by uncertainties about the initial marking M0 \ {M0}. Therefore, given an

observation w ∈ L(N,M0), the intruder’s estimation of the current state is X̂ ∪X , where (q0, w, (X̂ ,X )) ∈ δ. As a particular

case, if M0 = {M0}, then the intruder knows exactly the initial marking and all the states of the corresponding extended

observer have X̂ = ∅. Therefore, the complexity of constructing the extended observer is O(4|MB |).

Theorem 4.20: Let G = (N,M0, E, `) be a bounded LPN whose unobservable subnet is acyclic, S ∈ R(N,M0) be a

secret and V = (Q,E, δ, q0) be the corresponding extended observer. The LPN is current-state opaque wrt S iff for all states
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Fig. 8. An LPN whose initial marking is not exactly known by the intruder.
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Fig. 9. BRG of the LPN in Example 4.21.

(X̂ ,X ) ∈ Q, ∃(M,α(M)) ∈ X̂ ∪ X : α(M) = 1.

Proof: Let (X̂ ,X ) be the state reachable by firing a sequence w, i.e., (q0, w, (X̂ ,X )) ∈ δ. According to Definition 4.19,

the set X̂ ∪X corresponding to (X̂ ,X ) is a subset ofMB×{0, 1} whose markings belong to C(w). If ∃(M,α(M)) ∈ X̂ ∪X :

M is weakly exposable, for observation w there exists a marking M ′ ∈ U(M) such that M ′ ∈ ex(S), i.e., C(w)∩ ex(S) 6= ∅.

Since this is true for all states of Q, i.e., for all observations w ∈ L(N,M0), the LPN is current-state opaque. Assume there

is a state (X̂ ,X ) of Q reachable by w and ∀(M,α(M)) ∈ X̂ ∪ X : M is not weakly exposable. Therefore, by Theorem 3.7,

we have C(w) ∩ ex(S) = ∅. We conclude that the LPN is not current-state opaque.

Example 4.21: Let us consider the LPN in Fig. 8. The BRG of the LPN wrt secret S = {M ∈ N6|M(p3) + M(p5) ≤ 0}

is shown in Fig.9. Assume that the uncertainty about the initial marking is M0 = {M0,M2}. The extended observer, as in

Definition 4.19, is shown in Fig.10. There are states (∅; {(M3, 0), (M4, 0), (M5, 0)}) and (∅; {(M4, 0), (M5, 0)}) where all

basis markings in X̂ ∪ X satisfy α(·) = 0, and therefore, the LPN is not current-state opaque wrt S under M0. �
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Fig. 10. The extended observer of the BRG in Fig.9.



16

0 1

2

3

a

a

b

ε

ε

b
0 1

2

3

a

a

b

ε

ε

b

0,1,
2,3

0,2 1,3

0 1

a

a

b

b

b

b
aaa

b

Fig. 11. An automaton A.

V. INITIAL-STATE OPACITY

In this section another important state-based opacity problem is addressed: initial-state opacity. A system is said to be initial-

state opaque if the intruder is never able to establish if the initial state belongs to a given secret based on its observation of

the system’s evolution. Assuming that the intruder knows the net system 〈N,M0〉, we extend the notion of initial-state opacity

in [8] to Petri nets. It is assumed that originating from M0, the net system could have reached any marking M ∈ R(N,M0)

before the observation starts. In this sense, M is the initial state of the observed evolution, not M0. Thus the definition of

observations can be extended to strings w ∈ L(N,R(N,M0)). Given an observation w, we define

I(w) = {M ∈ R(N,M0)|∃σ ∈ T ∗ : M [σ〉 and `(σ) = w}

as the set of markings generating w. Initial-state opacity in Petri nets is formally defined as follows.

Definition 5.1: Let G = (N,M0, E, `) be an LPN and S ⊆ R(N,M0) be a secret. G is said to be initial-state opaque wrt

S if ∀w ∈ L(N,R(N,M0)), I(w) * S holds. �

In simple words, an LPN is initial-state opaque if for any observation w, the set of markings generating w is not included

in the secret. Note that Definition 5.1 could be applied to either bounded or unbounded Petri net systems.

We also point out that since for w ∈ L(N,R(N,M0)) \ L(N,S), I(w) * S holds, there is no difference in considering all

observations w ∈ L(N,R(N,M0)) or only w ∈ L(N,S) in Definition 5.1.

A. Initial State Estimation

Given an observation w, the problem of reconstructing the set of possible initial states that can generate w is called

initial-state estimation [8], [9]. Namely, in the framework of Petri nets the problem is to compute I(w) for an observed

w ∈ L(N,R(N,M0)). From Definition 5.1, we have the following fact.

Fact 2: G is initial-state opaque wrt S iff ∀w ∈ L(N,R(N,M0)), I(w) ∩ ex(S) 6= ∅ holds.

In this section we first briefly recall a technique that is used to estimate the set of initial states in automata. In [9] a DFA

called an initial-state estimator is proposed based on the notion of reverse automaton. Given a NFA A = (X,E,∆) where no

initial state is specified, the corresponding initial-state estimator Ae = (X̃ , E,∆e, X̂0) is the observer of its reverse automaton

Ar, i.e., the automaton obtained by reversing all arcs in A, where X̃ ⊆ 2X and X̂0 = X . In Ae, the state reached by a word

w′ is the set of states from which the word w can be generated in A, where w′ is the reverse of w.

Theorem 5.2: [9] Let A = (X,E,∆) be a NFA, Ae = (X̃ , E,∆e, X̂0) be its initial-state estimator, and w ∈ L(A, X) be a

word in A. There exist x, x′ ∈ X : (x,w, x′) ∈ ∆ iff ∃X̂, X̂ ′ ∈ X̃ : x ∈ X̂, x′ ∈ X̂ ′ and (X̂ ′, w′, X̂) ∈ ∆e, where w′ is the

reverse of w.

Since building a reverse automaton has polynomial complexity, the complexity of constructing the initial-state estimator is

O(2|X|).
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Fig. 12. (a) The reverse automata Ar and (b) the initial-state estimator Ae.p1
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Fig. 13. (a) An LPN where t3 is labeled by b and (b) The initial-state estimator of the RG.

Example 5.3: Let us consider the automaton A in Fig. 11 presented in [8]. The set of initial states is unknown. Its reverse

automatonAr and the corresponding observerAe, i.e., the initial-state estimator, are shown in Figs. 12(a) and 12(b), respectively.

Consider a word w = ab. The state reached in the estimator by the reverse word w′ = ba is {0, 2}, which indicates that the

state that can generate w = ab in A is either State 0 or State 2. �

B. Verification of Initial-State Opacity

Since the RG of a bounded LPN is finite, the technique applied to automata can also be used to verify initial-state opacity

of bounded Petri nets. Let Ae = (X̃ , E,∆e, X̂0) be the initial-state estimator of the RG. If ∃w′ ∈ E∗ and X̂ ∈ X̃ such that

(X̂0, w
′, X̂) ∈ ∆e, then in the LPN we have I(w) = X̂ , where w is the reverse of w′.

Corollary 5.4: Given a bounded LPN G = (N,M0, E, `) and a secret S ⊆ R(N,M0), let Ae = (X̃ , E,∆e, X̂0) be the

initial-state estimator of the RG. G is initial-state opaque wrt S iff ∀X̂ ∈ X̃ , X̂ ∩ ex(S) 6= ∅ holds.

Proof: Trivially follows from Definition 5.1 and Theorem 5.2.

Therefore, by constructing the initial-state estimator of the RG, the complexity of verifying initial-state opacity in bounded

Petri nets is O(2|R(N,M0)|).

Example 5.5: Consider the LPN in Fig. 13(a) whose only difference wrt Fig. 1 is the label assigned to transition t3 (b

rather than a). The initial-state estimator of its RG is shown in Fig. 13(b). Consider a secret S1 = {M1,M5,M6,M7,M9}

and an observation w = bbaa. The state reached by w′ = aabb, the reverse of w, in the estimator is {M1,M6,M7}, i.e.,

I(bbaa) = {M1,M6,M7}. Since I(bbaa) ∩ ex(S1) = ∅, the LPN is not initial-state opaque wrt S1.

Consider another secret S2 = {M1,M7}. Then the LPN is initial-state opaque wrt S2, since ∀w ∈ L(N,R(N,M0)),

I(w) ∩ ex(S2) 6= ∅. �

In the rest of this section an efficient approach to verifying initial-state opacity is proposed based on BRG analysis. Given

an LPN G = (N,M0, E, `) and an observation w ∈ L(N,R(N,M0)), we denote by Ib(w) = I(w) ∩MB the set of basis
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Fig. 14. The initial-state estimator of the BRG in Fig. 3.

markings generating w.

Proposition 5.6: Let G = (N,M0, E, `) be an LPN whose unobservable subnet is acyclic and S ∈ R(N,M0) be a secret. If

G is initial-state opaque wrt S, then ∀w ∈ L(N,R(N,M0)), Ib(w) ∩ wex(S) 6= ∅ holds, where wex(S) is the set of weakly

exposable markings (Def. 4.2).

Proof: Since G is initial-state opaque wrt S, ∀w ∈ L(N,S), there exists an exposable marking M ∈ ex(S) such that

w ∈ L(N,M). Moreover, according to Theorem 3.7, ∃Mb ∈MB : M ∈ U(Mb). Therefore, w ∈ L(N,Mb) and Mb ∈ wex(S),

i.e., Mb ∈ Ib(w).

The following example shows that Proposition 5.6 provides a necessary but not sufficient condition for initial-state opacity.

Example 5.7: Consider the LPN and the secret S1 in Example 5.5. According to Table I (it applies to both the nets in

Figs. 1 and 13(a)), we have that ∀Mb ∈ MB , α(Mb) = 1, i.e., all basis markings are weakly exposable. Clearly, ∀w ∈

L(N,R(N,M0)), Ib(w) ∩ wex(S) 6= ∅ holds. However, according to the result in Example 5.5, the LPN is not initial-state

opaque wrt S1. �

The reason why Proposition 5.6 is not a sufficient condition is that for an observation w, the possible initial markings that

could generate w is generally not the union of all unobservable reach of the possible initial basis markings, i.e., I(w) ⊆⋃
Mb∈Ib(w) U(Mb). Therefore I(w) ⊆ S does not imply that

⋃
Mb∈Ib(w) U(Mb) ⊆ S. This is different from the case of

the current-state opacity problem since C(w) =
⋃

Mb∈Mb(w) U(Mb). However, we show that if Assumption A3 is satisfied,

initial-state opacity can be necessarily and sufficiently verified by checking if each Ib(w) contains at least one basis marking

that does not belong to the secret.

Proposition 5.8: Let G = (N,M0, E, `) be an LPN whose unobservable subnet is acyclic and S be a secret satisfying

Assumption A3. G is initial-state opaque wrt S iff ∀w ∈ L(N,R(N,M0)), Ib(w) ∩ ex(SB) 6= ∅ holds.

Proof: (⇒) Assume that ∀w ∈ L(N,R(N,M0)), Ib(w) ∩ ex(SB) 6= ∅ holds. By Ib(w) ⊆ I(w) and ex(SB) ⊆ ex(S),

I(w) ∩ ex(S) 6= ∅, and Definition 5.1, G is initial-state opaque wrt S.

(⇐) Now assume that G is initial-state opaque wrt S. By Definition 5.1, ∀w ∈ L(N,R(N,M0)), we have I(w)∩ex(S) 6= ∅.

Let M ∈ I(w)∩ ex(S). Under Assumption A3, there exists Mb ∈MB : M ∈ U(Mb) and Mb ∈ ex(SB) (otherwise it would

contradict M ∈ ex(S)). Therefore, w ∈ L(N,Mb) and Mb ∈ I(w) ∩ ex(SB), i.e., Ib(w) ∩ ex(SB) 6= ∅.

As a result, initial-state opacity of G can be verified by constructing the initial-state estimator of its BRG B = (MB , E,∆)

whose complexity is O(2|MB |). Since the size of the BRG will never be larger than the RG and it may be much smaller

especially when unobservable transitions exist, the proposed approach is practically more efficient.

Example 5.9: Consider again the LPN in Example 5.5. The initial-state estimator of its BRG is shown in Fig. 14. Let

S = {M0,M2,M5,M8,M9} be the secret that satisfies Assumption A3. Then SB = {M0,M2} and ex(SB) = {M1,M3,M4}.
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According to Proposition 5.8, G is initial-state opaque wrt S since no state of the estimator either coincides with SB or is

strictly contained in it. �

Note that Assumption A3 is only necessary for the only if part of Proposition 5.8 as clarified by the following example.

Example 5.10: Consider the LPN and secret S2 in Example 5.5. All markings in S2 are weakly exposable. We have

S2B = {M1} and ex(S2B) = {M0,M2 −M4}. Based on the initial-state estimator of the BRG shown in Fig. 14, we have

Ib(bb) = {M1}, i.e., ∃w : Ib(w) ∩ ex(SB) = ∅. However, according to the result in Example 5.5, the LPN is initial-state

opaque wrt S2. �

C. Relaxation of Assumption A3

Different from the case discussed in Section IV-D, Assumption A3 cannot be relaxed in Proposition 5.8 by simply removing

the weakly exposable markings from the secret. In this subsection, we propose a method to relax Assumption A3 by

appropriately modifying the BRG definition. The new BRG is called modified basis reachability graph (MBRG).

Let us consider the case where Assumption A3 does not hold. Then S can be partitioned into S′ ∪ S′′, where S′ =

wex(S)∩S 6= ∅ and S′′ = S \S′ (Clearly, if Assumption A3 is satisfied, S′ = ∅). The system may be initial-state opaque wrt

S even if Ib(w) ⊆ S, since there may exist some marking M ∈ (I(w)\Ib(w))∩ex(S). We write Q =
⋃

M∈S′ U(M)∩ex(S)

to denote the unobservable reach of all markings in S′. The following proposition shows that to decide if the system is

initial-state opaque, we need to check if I(w) ∩Q 6= ∅ holds

Proposition 5.11: Let w be an observation in an LPN G whose unobservable subnet is acyclic, S ∈ R(N,M0) be a secret,

and Ib(w) ⊆ S. I(w) * S iff I(w) ∩Q 6= ∅.

Proof: (⇒) Assume I(w) ∩Q 6= ∅. Since Q ⊆ ex(S), I(w) ∩ ex(S) 6= ∅, i.e., I(w) * S.

(⇐) Assume I(w) * S. Since Ib(w) ⊆ S, there exists a marking M ∈ (I(w) \ Ib(w)) ∩ ex(S). Let Mb ∈ MB be the

basis marking such that M ∈ U(Mb). Since Ib(w) ⊆ S, we have Mb ∈ S′ and M ∈ Q, i.e., I(w) ∩Q 6= ∅.

In simple words, when Assumption A3 is not satisfied, by checking if either Ib(w) ∩ ex(S) 6= ∅ or I(w) ∩ Q 6= ∅ hold,

initial-state opacity can be verified. Let Qmin ⊆ Q be the subset of Q with the minimal cardinality satisfying the following

property: for any M ′ ∈ Q, there exists M ∈ Qmin such that M ′ ∈ U(M). Obviously Qmin is unique.

Proposition 5.12: Let w be an observation in a bounded LPN G whose unobservable subnet is acyclic and S ∈ R(N,M0)

be a secret. I(w) ∩Q 6= ∅ iff I(w) ∩Qmin 6= ∅.

Proof: (⇒) Assume I(w) ∩Qmin 6= ∅. Since Qmin ⊆ Q, I(w) ∩Q 6= ∅.

(⇐) Assume I(w) ∩ Q 6= ∅. Let M ′ ∈ I(w) ∩ Q. There exists M ∈ Qmin such that M ′ ∈ U(M). Therefore, M ∈ I(w),

i.e., I(w) ∩Qmin 6= ∅.

Proposition 5.12 shows that we do not need to consider all markings in Q but only a minimal subset of them. Given a

bounded LPN whose unobservable subnet is acyclic, we propose Algorithm 2 to compute Qmin. Once Qmin is obtained, a

method to verify initial-state opacity by using the MBRG is proposed.

In Algorithm 2, Qmin is initialized at the empty set. Given a marking M ∈ S′, the reachability graph of 〈N ′,M〉 is denoted

as an automaton R(N ′,M) = (U(M), Tu,∆,M): the state space of R(N ′,M) is the unobservable reach of M , the initial

state is M , and the event set is the set of the unobservable transitions Tu. Since N ′ is acyclic, the reachable markings can be

computed by solving the state equation M ′ = M + Cu · y, where y ∈ Nnu , and there is no cycle in the reachability graph

R(N ′,M). We compute the set of exposable markings that are initial vertices of paths in R(N ′,M) (Steps 7-11). Finally,
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Algorithm 2 Computation of Qmin

Input: A bounded LPN G = (N,M0, E, `) whose unobservable subnet N ′ is acyclic, and a secret S.
Output: Qmin

1: Qmin := ∅;
2: Compute S′, the set of weakly exposable markings in S;
3: while S′ 6= ∅, do
4: select a marking M ∈ S′;
5: construct the reachability graph of 〈N ′,M〉, denoted as R(N ′,M) = (U(M), Tu,∆,M);
6: Qtemp := U(M) ∩ ex(S).
7: for all Mj ∈ Qtemp, do
8: if @Mi ∈ Qtemp : (Mi, σu,Mj) ∈ ∆, where σu ∈ T ∗u , then
9: Qmin := Qmin ∪ {Mj};

10: end if
11: end for
12: S′ := S′ \ U(M);
13: end while
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Fig. 15. Reachability Graph R(N ′,M1).

since some markings in S′ can be reached from some existing markings in Qmin, they are removed from S′ to further reduce

the computation load in forthcoming iterations.

Example 5.13: Consider again the LPN in Example 5.5 and S = {M1,M7}. The reachability graph of 〈N ′,M1〉 is shown

in Fig. 15, and secret markings are in shadowed boxes. We have S′ = {M1,M7}. By Algorithm 2, after the first iteration,

Qtemp = {M0,M5,M6,M8} and Qmin = {M6} since one can readily verify that all nonsecret markings M0, M5, and M8

in U(M1) can be reached from M6 by firing unobservable transitions. Furthermore, M7 is removed from S′ by Step 12 since

M7 ∈ U(M1) and it is not necessary to check the unobservable reach of M7. Then Algorithm 2 outputs Qmin = {M6}. �

In the following, Algorithm 3 is presented to construct the modified BRG (MBRG) B′ = (MB′ , E,∆′) of a given bounded

LPN whose unobservable subnet is acyclic. The method to construct the MBRG is analogous to the method to construct BRG,

however, the nodes are initialized by markings in {M0} ∪ Qmin. Although the MBRG is larger than the BRG, the MBRG is

still much smaller than RG. We use MB′ to denote the extended basis markings that appear in the MBRG. Correspondingly,

we denote by Ib′(w) = I(w)∩MB′ the set of markings in MB′ generating w, SB′ = S ∩MB′ the set of markings in MB′

that belong to the secret, and ex(SB′) = ex(S) ∩MB′ the set of markings in MB′ that do not belong to the secret.

Proposition 5.14: Let G be an LPN whose unobservable subnet is acyclic, and S be a secret. G is initial-state opaque wrt

S iff ∀w ∈ L(N,R(N,M0)), Ib′(w) ∩ ex(SB′) 6= ∅ holds.

Proof: (⇒) Assume that ∀w ∈ L(N,R(N,M0)), Ib′(w) ∩ ex(SB′) 6= ∅. Since Ib′(w) ⊆ I(w) and ex(SB′) ⊆ ex(S),

I(w) ∩ ex(S) 6= ∅ holds and, by Definition 5.1, G is initial-state opaque wrt S.

(⇐) Now assume that G is initial-state opaque wrt S. According to Definition 5.1, ∀w ∈ L(N,R(N,M0)), we have

I(w) ∩ ex(S) 6= ∅, i.e., ∃M ∈ I(w) ∩ ex(S). Since M must be in the unobservable reach of a basis marking Mb. If

Mb ∈ ex(S) then the proof is concluded. If Mb ∈ S, then Mb is weakly exposable, i.e., Mb ∈ S′. By Algorithm 2 there
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Algorithm 3 Construction of the MBRG
Input: A bounded labeled Petri net G = (N,M0, E, `) whose unobservable subnet N ′ is acyclic, and a secret S.
Output: The modified BRG B′ = (MB′ , E,∆′).

1: Construct the BRG B = (MB , E,∆,M0) by using Algorithm 1.
2: Compute set Qmin by using Algorithm 2.
3: MB′ :=MB ∪Qmin, ∆′ := ∆.
4: Tag all M ∈MB “old”.
5: while states in MB′ with no tag exist, do
6: select a state M ∈MB′ with no tag;
7: for all t s.t. `(t) ∈ E and Ymin(M, t) 6= ∅, do
8: for all yu ∈ Ymin(M, t), do
9: M ′ := M + Cu · yu + C(·, t);

10: if M ′ /∈MB , then
11: MB′ :=MB′ ∪ {M ′};
12: assign no tag to M ′;
13: end if
14: ∆′ := ∆ ∪ {(M, `(t),M ′)};
15: end for
16: tag node M “old”;
17: end for
18: end while
19: Remove all tags.
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Fig. 16. The MBRG in Example 5.15.

must exist a marking M ′ ∈ Qmin ⊆ MB′ such that M is reachable from M ′ by firing only unobservable transitions, which

indicates that M ′ ∈ Ib′(w) ∩ ex(SB′).

Proposition 5.14 shows that if Assumption A3 is not satisfied, by constructing the initial-state estimator of the MBRG,

initial-state opacity of G can be verified. In this case, the complexity increases to O(2|MB′ |).

Example 5.15: Since secret S = {M1,M7} does not satisfy Assumption A3, we construct its MBRG by Algorithm 3 which
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Fig. 17. The initial-state estimator of the MBRG in Fig. 16.
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TABLE II
NUMBER OF (BASIS) MARKINGS AND TIME COST

k |R(N,M0)| T-r |MB | T-b
8 220 7.2× 10−1 19 4.1× 10−2

10 364 2.1× 100 23 5.0× 10−2

20 2024 6.3× 101 43 8.0× 10−2

40 13244 1.1× 103 83 1.1× 10−1

60 o.t. o.t. 123 3.6× 10−1

80 o.t. o.t. 163 5.3× 10−1

100 o.t. o.t. 203 7.6× 10−1

120 o.t. o.t. 243 9.7× 10−1

is shown in Fig. 16. We haveMB′ = {M0−M4,M6}, SB′ = {M1} and ex(SB′) = {M0,M2−M4,M6}. The corresponding

initial-state estimator is shown in Fig. 17. Since, ∀w ∈ L(N,R(N,M0)), Ib′(w)∩ ex(SB′) 6= ∅ holds, the LPN is initial-state

opaque wrt S. �

VI. NUMERICAL EXAMPLES

To compare the approaches of using BRG and RG to verify the state-based opacity properties, a series of numerical examples

are presented. Based on the proposed approaches in this work, we developed a MATLAB tool [31] to compute the BRG, the

current-state basis observer, the initial-state estimator, and to determine current-state opacity of a bounded LPN. In the following,

numerical results are obtained by using the tool.

We still consider the simple LPN G in Fig. 1 but the initial marking in place p2 is a parameter k ∈ {1, 2, · · · }. Therefore,

here we consider not a single LPN but a family of nets parameterized by the initial marking. Based on the structure of the

LPN, the number of its reachable markings is

|R(N,M0)| = 1

6
(k + 4)(k + 3)(k + 2). (2)

We still let t1 and t3 be the observable transitions. Then the number of basis markings is

|MB | = 2k + 3. (3)

Based on Eqs. (2) and (3), Fig. 18 shows the variation of |R(N,M0)| and |MB | with respect to k. The numerical values

for some specific k’s together with the computational times are reported in Table II, where Columns 2 and 4 illustrate the

number of reachable markings |R(N,M0)| and basis markings |MB |, respectively. The corresponding time costs are presented

in Columns 3 and 5, respectively. The table shows that when the initial marking of p2 is larger than or equal to 60, the RG

cannot be computed within 8 hours and we use “o.t.” to denote the computation is out of time. On the contrary, the BRG can

still be constructed in a short time.

For the verification of current-state opacity, let `(t1) = a, `(t3) = a, and S = {M ∈ N4|M(p1) + M(p4) ≥ 2}, i.e.,

W = [ −1 0 0 −1 ] and K = −2. For the verification of initial-state opacity, let `(t1) = a, `(t3) = b. Results are

summarized in Tables III and IV, respectively. Columns 2 and 4 present the numbers of states |Xor| and |Xob| (resp. |Xer| and

|Xeb|) corresponding to the observers (resp. estimators) of the RG and the BRG. The computation time T-or and T-ob (resp.

T-er and T-eb) are shown in Columns 3 and 5, respectively. Note that the computational time for the observer and estimator

does not increase fast with respect to k. However, the observer and the estimator of the RG cannot be constructed since the

RG is not obtained for k ≥ 60.
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Fig. 18. The sizes of |R(N,M0)| and |MB | changing with k.

TABLE III
NUMBER OF STATES OF THE OBSERVERS AND THE TIME COST

k |Xor| T-or |Xob| T-ob CSO
8 11 2.0× 100 11 1.6× 10−2 Y

10 13 4.2× 100 13 2.2× 10−2 Y
20 23 5.5× 101 23 6.8× 10−2 Y
40 43 3.5× 103 43 2.1× 10−1 Y
60 o.t. o.t. 63 4.5× 10−1 Y
80 o.t. o.t. 83 7.7× 10−1 Y

100 o.t. o.t. 103 8.7× 10−1 Y
120 o.t. o.t. 123 1.7× 100 Y

From Table III, we notice that the number of states of the observer computed using RG, when computable, is identical to

the number of states of the observer relative to the BRG. It can be easily proved that this is a general result validating the

effectiveness of the proposed result. Same conclusions can be drawn with regard to the estimator. As a result, we conclude

that the proposed approaches are practically efficient especially for large-size Petri nets. The reader can use the MATLAB tool

we have developed, which is available on the web [31] to test the proposed approach on other nets.

Two remarks should be done concerning the above numerical examples. The first one relates to initial-state opacity verifica-

tion, and the other is about the MBRG. When the initial marking (i.e., the value of k) changes, a given secret may not satisfy

Assumption A3. Therefore, for initial-state opacity we cannot provide results as a function of parameter k while keeping the

secret constant. In simple words, a column analogous to the last column of Table III cannot be obtained. It would be also

interesting to compare the size of the MBRG and the RG for different values of k as we did for the BRG. However, this

TABLE IV
NUMBER OF STATES OF THE ESTIMATORS AND THE TIME COST

k |Xer| T-er |Xeb| T-eb
8 10 1.8× 100 10 1.1× 10−1

10 12 3.6× 100 12 1.1× 10−1

20 22 6.0× 101 22 2.8× 10−1

40 42 3.7× 103 42 1.7× 100

60 o.t. o.t. 62 3.7× 100

80 o.t. o.t. 82 6.5× 100

100 o.t. o.t. 102 9.8× 100

120 o.t. o.t. 122 1.4× 101
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cannot be done since the structure of MBRG depends not only on the initial marking but also on the secret.

VII. CONCLUSIONS AND FUTURE WORK

This paper addresses current-state and initial-state opacity properties in labeled Petri nets. In the first part of the paper

we show that the notion of BRG can be used to verify current-state opacity by constructing the observer of the BRG. This

approach has several advantages in terms of computational and space complexity. When the intruder has uncertainty about the

initial marking, an extended observer can be used whose initial marking is a subset of the reachability set and the generated

language is identical to the language generated by the system. In the second part of the paper we show that under certain

assumptions, initial-state opacity can be verified by constructing the initial-state estimator of the BRG. The modified basis

reachability graph is introduced to verify initial-state opacity in the general case.

Our future research in this framework will focus on language-based opacity. We plan to first formalize the notion of language

opacity in the framework of Petri nets. Second, we plan to study the verification of language opacity using BRG.
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