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We investigate the emergent laws of gravity when dark energy and the de Sitter space-time are modeled
as a critical Bose-Einstein condensate of a large number of soft gravitons NG. We argue that this scenario
requires the presence of various regimes of gravity in which NG scales in different ways. Moreover, the
local gravitational interaction affecting baryonic matter can be naturally described in terms of gravitons
pulled out from this dark energy condensate (DEC). We then explain the additional component of the
acceleration at galactic scales, commonly attributed to dark matter, as the reaction of the DEC to the
presence of baryonic matter. This additional dark force is also associated to gravitons pulled out from
the DEC and correctly reproduces the modified Newtonian dynamics (MOND) acceleration. It also allows
for an effective description in terms of general relativity sourced by an anisotropic fluid. We finally
calculate the mass ratio between the contribution of the apparent dark matter and the baryonic matter in a
region of size r at galactic scales and show that it is consistent with the ΛCDM predictions.
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I. INTRODUCTION

One of the major ideas triggering recent theoretical
progress about the gravitational interaction is that of
emergent gravity: the classical space-time structure and
gravity emerge together from an underlying microscopic
quantum theory [1–3]. The power of this emergent para-
digm is that it must depend loosely on the details of the
underlying microscopic theory and it is essentially deter-
mined by its fundamental quantum nature.
The notion of emergent gravity is quite general and it has

been used in several different contexts [1,2,4–10]. In this
paper wewant to focus on twomain realizations of this idea,
which have recently attracted a lot of attention. The first one
uses the entanglement of microscopic quantum states as the
origin of space-time geometry. This route historically starts
from the discovery of the Bekenstein-Hawking (BH)
entropy area law [11] and goes through the development
of the AdS/CFT correspondence [12] and the Ryu-
Takayanagi formula, where it clearly appears that the BH
formula is related to the quantum entanglement of the
vacuum [13]. Subsequently, it was also realized that quan-
tum entanglement could explain the connectivity of classical

space-time [14], and that the linearized Einstein equations
can be derived from quantum information principles [15].
The second main realization of the idea that gravity is
emergent uses the notions of quantum compositeness and
classicalization [6,7]. Gravitational systems, such as black
holes and cosmological spaces, can be described as a
composite quantum system of a large number NG of soft
gravitons. It has been shown that these gravitational systems
exhibit properties of a Bose-Einstein condensate (BEC) at
the quantum critical point. Moreover, the usual classical
space-time structure emerges in the limit NG → ∞ of this
picture [6,7]. This corpuscular realization of the paradigm of
emergent gravity has been also successfully used to describe
Hawking radiation [16,17] and inflation [7,18,19].
One common intrinsic feature of both the above real-

izations of emergent gravity is that of holography. The
intrinsic holographic nature of the quantum entanglement
approach is evident in the Ryu-Takayanagi derivation of the
entanglement entropy and, more in general, in the quantum
information picture of black holes and cosmological
horizons [3,13]. The same holographic nature is at
the heart of the corpuscular approach, which is based on
the fact that the numberNG of soft gravitons in a BEC at the
critical point scales, in terms of the size r of the system, as1
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1We shall use units with c ¼ 1 but display explicitly the Planck
constant ℏ ¼ lpmp and Newton constant GN ¼ lp/mp.
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NG ∼
r2

l2
p
; ð1:1Þ

where lp is the Planck length. The holographic char-
acter of this description is also very important for
understanding the quantum information counted by
the BH entropy (see the complementary, firewall and
ER ¼ EPR discussion [20,21]) and for the description of
black holes as the BEC of gravitons at the critical
point [6,7].
The emergent gravity scenario also provides a connec-

tion between the microscopic ultraviolet (UV) scale lp and
the infrared (IR) cosmological scale L ¼ H−1 of gravity
(hereH is the Hubble parameter and L the Hubble scale). In
the quantum entanglement setup, the entropy associated
to the de Sitter (dS) space-time can be explained, similarly
to the BH entropy, as a long range entanglement connecting
bulk excitations with the dS horizon [3]. In the corpuscular
setup, both black holes and our observable Universe are
“maximally classical” systems, i.e. BEC at the critical
point satisfying the relation (1.1) with r ¼ RH (the
Schwarzschild radius) and r ¼ L, respectively.
The success of emergent gravity in describing the

holographic regimes of gravity shown in Eq. (1.1), i.e.
black holes and the dS universe, gives a strong motivation
to use it also at intermediate scales, i.e. at galactic
scales. It is quite evident that the behavior of the gravita-
tional interaction at these scales cannot be simply
described by the maximally packing condition (1.1).
On the other hand, explaining the phenomenology of
gravity at galactic scales has been one of the main
motivations for introducing dark matter [22–24] and the
ΛCDM model [25–28]. One is therefore led to expect that
the application of the emergent gravity scenario at galactic
scales may hold the key to understanding the dark matter
mystery.
In a fully emergent gravity scenario, such as the one we

consider in this work, in which matter and space-time are
intimately related, the existence of a form of matter
different from the baryonic one is conceptually weird.
Moreover, we recall that the ΛCDM model is not com-
pletely satisfactory also from the observational point of
view, both at the level of galaxies and galaxy clusters [29–
32]. If one does not assume the existence of dark matter, a
crucial challenge for every model of emergent gravity is the
explanation of galaxy rotation curves [33,34] and the Tully-
Fisher relation [35] between the velocity of stars far away
from the galactic center and the total baryonic mass mB
contained in the galaxy.
In the framework of modified Newtonian dynamics

(MOND) [36,37], the Tully-Fisher relation is explained
assuming that, at distances outside the galaxy’s inner core,
the gravitational acceleration experienced by a test particle
is given by

aMONDðrÞ ¼
ffiffiffiffiffiffiffiffiffiffiffi
aBðrÞ
6L

r
; ð1:2Þ

where

aBðrÞ ¼
GNmBðrÞ

r2
ð1:3Þ

is (minus) the Newtonian radial acceleration that would
be caused by the baryonic mass mB ¼ mBðrÞ inside the
radius r.
A first step to explain Eq. (1.2) in the framework of

gravity emerging from quantum entanglement has been
undertaken in Ref. [3]. In that work, it was shown that,
when applied at galactic scales, the laws of emergent
gravity contain an additional dark gravitational force,
which may explain the phenomenology commonly attrib-
uted to dark matter and reproduce the MOND acceleration
(1.2). Following Verlinde [3], the long range entanglement
connecting bulk excitations with the dS horizon (i.e. the
positive dark energy) generates a (thermal) volume con-
tribution to the entanglement entropy and a subsequent
competition between area and volume laws. This can be
seen as an elastic response of the dark energy medium to
the presence of baryonic matter which, in turn, implies an
additional dark gravitational force correctly reproducing
the MOND acceleration [3].
The purpose of this paper is to explain the generation of

an additional dark gravitational force at galactic scales and
derive the MOND acceleration (1.2) using the corpuscular
approach to emergent gravity. This will be done by
developing further and generalizing some ideas presented
in Ref. [38], where an effective fluid approach for the dark
energy condensate (DEC) of soft gravitons permeating the
universe has been used.
We shall begin with a critical discussion of various

regimes of gravity in the corpuscular scenario. In Sec. II,
we will start by arguing that describing dark energy as a
critical BEC of soft gravitons (the DEC) implies not only
the presence of a nonextensive regime of gravity satisfying
Eq. (1.1), but also of an extensive regime in which
NG ∼ r3/ðLl2

pÞ. The local gravitational interaction with
baryonic matter can then be naturally described in terms
of gravitons pulled out from the DEC. We will first
consider, in Sec. III, baryonic matter in the diluted
approximation, when the local reaction of the condensate
to the presence of baryonic matter can be (ideally)
neglected. We will then proceed by describing what
happens when we go beyond the diluted approximation
and baryonic matter begins to clump. We will show that, in
this regime, the reaction of the DEC to the presence of
baryonic matter is also associated to gravitons pulled out
from the DEC. They generate an additional gravitational
dark force on baryonic probe sources, which correctly
reproduces the MOND acceleration and allows for an
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effective description in terms of general relativity (GR)
sourced by an anisotropic fluid. In Sec. IV, we will also
compute the ratio between the apparent dark matter and the
baryonic component to the mass density and show that it is
consistent with the ΛCDM result for the present abundance
of different kinds of matter. We finally conclude with some
considerations about future developments in Sec. V.

II. QUANTUM COMPOSITENESS AND THE
SCALING OF GRAVITON NUMBER

Our starting point is that the true quantum nature of
gravity cannot be fully neglected in our present universe,
even at astrophysical and cosmological scales, and the
geometric description given by Einstein gravity (or mod-
ifications thereof) should only emerge in suitable regimes
and for specific observables. In particular, it has been
conjectured that the quantum state of our Universe could be
thought of as a BEC [7] containing a certain number NG of
(very soft and virtual) gravitons with typical energy εG,
very much like the gravitational field of a black hole [6].
The presence of baryonic matter must affect the quantum
state of this BEC of gravitons and, at least in some crude
approximation, one can then expect that an energy balance,
akin to the Hamiltonian constraint of GR, holds in the form

HB þHG ¼ 0; ð2:1Þ

where HB is the matter energy and HG the analogue
quantity for the graviton state.
It is now crucial that our present Universe appears to be

mostly driven by dark energy, and as such it is characterized
by the Hubble radius,

L ¼ H−1; ð2:2Þ

of the visible portion. Furthermore, the presence of bar-
yonic matter (stars and planets) defines a typical size RB,
around which gravity is well approximated by Newtonian
physics. These two length scales satisfy the hierarchy

RH ≪ RB ≪ L; ð2:3Þ

where RH ¼ 2GNmB is the Schwarzschild radius of a
source of baryonic mass mB. The quantum state of gravity
should entail such scales. In particular, we expect to
identify different regimes of gravity for each scale from
the way both the number of gravitons NG and their typical
energy εG scale with the mass m ¼ mðrÞ and the size r of
the region we are considering.
In the corpuscular description, one is mainly concerned

with self-gravitating systems, i.e. compact sources of
typical size RB. To this class belong both marginally bound
systems, which are described by BEC at the critical point
(black holes) and nonmarginally bound systems (compact
stars, horizonless objects) which are described by BEC

away from the critical point. In terms of the graviton
coupling α ≃ l2

p/r2 the two regimes respectively corre-
spond to α ¼ 1/NG and α < 1/NG [6].
In terms of the Hamiltonian constraint (2.1) the margin-

ally bound condition corresponds to systems for which the
mass is equal to the graviton interaction energy [39]. At
small scales, i.e. for r of the order of the size of compact
sources, the number of gravitons NG affected by the
presence of matter sources can be obtained by describing
the Newtonian (and first post-Newtonian [39,40]) potential
by means of a quantum coherent state, for which one
generically finds a quadratic scaling of NG with the
mass [6],

NG ∼
m2

B

m2
p
; ð2:4Þ

where mB is the mass of the localized baryonic source.
Since the (negative) Newtonian energy is given by

UN ≃ NGεG ≃ −
GNm2

B

r
; ð2:5Þ

the typical energy of the individual (virtual) quanta is again
given by the Compton relation

εG ≃ −
lpmp

r
; ð2:6Þ

and, using the mass/radius relation for black holes,
mB ≃ r ¼ RH, Eq. (2.5) implies a holographic scaling with
r, namely

NG ∼
r2

l2
p
∼ −

1

ρH
; ð2:7Þ

where ρH is the (negative) graviton energy density around a
black hole.
Notice that, for nonmarginally bound gravitational sys-

tems, the scaling relation (2.4) still holds [39,40], but the
holographic (2.7) does in general not. The corpuscular
description can be generalized to cosmological space-times
[7] in the absence of baryonic matter. In this framework, the
dS universe of size L, sourced by a constant dark energy
density ρΛ, can be described, similarly to a black hole, as a
critical BEC [41]. In fact, the main feature of the dark
energy sourcing the dS space-time, namely that it satisfies
the vacuum equation of state p ¼ −ρΛ, is naturally realized
in a BEC, as was shown in Refs. [42–45].
An ideal universe of size L solely containing self-

coupled gravitons as a description of vacuum (dark) energy
should behave like the de Sitter space-time. In GR, one then
needs a cosmological constant term, or constant vacuum
energy density ρΛ, so that the Friedman equation reads
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H2 ≡
�
ȧ
a

�
2

≃GNρΛ: ð2:8Þ

Upon integrating on the volume inside the Hubble radius
(2.2), we obtain

L ≃GNL3ρΛ ≃GNmΛ: ð2:9Þ

This relation looks like the expression of the horizon radius
for a black hole of ADM mass mΛ, which has led to the
conjecture that the dS space-time could likewise be
described as a condensate of gravitons [7,41]. One can
in fact introduce a corpuscular description on assuming that
the (soft virtual) graviton self-interaction gives rise to a
condensate of NΛ gravitons of typical Compton length
equal to L [7], so that the total (positive dark) energy

mΛ ≃ NΛεΛ ≃ NΛ
lpmp

L
; ð2:10Þ

and, from Eq. (2.9), it follows immediately that

NΛ ∼
m2

Λ
m2

p
¼ L2

l2
p
; ð2:11Þ

which shows that one needs a huge NΛ ≫ 1 for a macro-
scopic universe. Note also that we have

ρΛ ∼
mΛ

L3
∼

1

NΛ
; ð2:12Þ

so that the number of gravitons in the vacuum increases for
smaller vacuum energy, and

L ∼mΛ ∼
1ffiffiffiffiffi
ρΛ

p : ð2:13Þ

A. Holographic regimes of gravity

We have shown that black holes and the dS universe can
be described by a critical BEC of gravitons that we dubbed
DEC. We have also seen that criticality for the BEC implies
the holographic scalings (2.7) and (2.11) for NG. Given that
all the gravitons are packed in the ground state, the entropy
of the DEC is given by NG, implying that Eqs. (2.7) and
(2.11) are equivalent to the BH area law.2

Equations (2.4) and (2.11) define the holographic
regimes of gravity: for volumes of both cosmological (in
absence of baryonic matter) and Newtonian size, one
can argue that the relevant number of gravitons scales
holographically, that is

NA
GðrÞ∼

m2ðrÞ
m2

p
∼
r2

l2
p
; for r≃L and r≃RB; ð2:14Þ

where m ¼ mðrÞ is an appropriate mass function inside the
volume. More precisely, NGðLÞ can be viewed as the total
number of gravitons inside the visible universe, whereas
NGðRBÞ is the number of gravitons that respond locally to
the presence of the baryonic sources of mass mB, by
changing their energy from εGðLÞ to some εGðRBÞ < εGðLÞ
in order to enforce the Newtonian dynamics. The holo-
graphic scaling (2.14) therefore applies to two very differ-
ent, albeit equally nonextensive, regimes of gravity.
The holographic scaling relations (2.7) and (2.4) were

first found for black holes [7], and only Eq. (2.4) was then
shown to hold for general compact sources in Refs. [39,40].
From Eq. (2.4), it follows that we get the BH area law
(2.14) in the regime where the relevant mass m ¼ mðrÞ of
the condensate scales linearly with the size r of the source.
The holographic regime of gravity holds for sure in the

case of black holes and the de Sitter space, and we assume
that Eq. (2.14) also remains a very good approximation at
all typical scales r for which gravity is well described by
GR. This assumption is based on the fact that the holo-
graphic nature of gravity is a generic consequence of the
Einstein-Hilbert action. Note, however, the change in sign
of the graviton energy from the positive cosmological mass
(2.10) to the negative Newtonian energy (2.5): this is a clear
signal that the two holographic regimes, at small and very
large scales, respectively, are indeed different, which
suggests that at intermediate scales the behavior of gravity
deviates from the holographic description, as we will see in
the next section.
Before we proceed, a word of caution is in order: since

the gravitons in the condensate are considered as virtual
(nonpropagating) modes, their number NG is not directly
observable, nor is their individual energy εG. In fact, one
can think of these quantities as convenient intermediate
variables which will not appear in our final expression for
the matter dynamics. These gravitons could however
become observable if they are scattered off the coherent
state, for instance by their self-interaction, which leads to
the depletion of the DEC. This effect produces the Hawking
radiation around black holes [6] and primordial perturba-
tions during inflation [7,46], but will be totally neglected in
this work.

B. Extensive regime of gravity

There are several reasons, coming both from the micro-
scopic and from the emergent space-time description, for
arguing that the holographic regime (2.14) of gravity
cannot hold throughout the whole range of scales (2.3).
In particular, this implies the existence of a new infrared
scale RH < r0 < L, where the behavior of gravity deviates
from the holographic description.2Factors of order 1 will be usually neglected unless necessary.
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The first indication comes from the fact that the two
holographic regimes at small and very large scales,
although satisfying the same scaling relation (2.14), are
indeed different. We recalled above that the graviton energy
changes in sign going from the positive cosmological mass
(2.10) to the negative Newtonian energy (2.5). This implies
that the two holographic regimes must be connected by a
mesoscopic phase, in which gravity may deviate from the
holographic behavior (2.14).
The second indication comes from Verlinde’s argument

about the pattern of entanglement entropy in dS space [3].
Unlike black holes, the dS space-time must contain a
thermal volume contribution to the entanglement entropy,
coming from very low energy modes. In our description of
the dS space-time, this implies an extensive term for the
graviton number associated with the DEC.
The third and strongest indication comes from the fact

that, locally, without baryonic matter, the DEC of the dS
space-time has a constant energy density characterized by
an extensive behavior. In fact, at galactic scales, we cannot
consider the cosmic condensate as a whole, but just as a
medium with (positive) constant energy density ρG equal to
the cosmological value (2.12), that is

ρG ≃ ρΛ ∼
mp

L2lp
: ð2:15Þ

The total graviton energy inside a region of size r is
therefore given by

mGðrÞ ≃
4π

3
ρΛr3 ∼

mpr3

L2lp
¼ NGðrÞεΛ: ð2:16Þ

The number of gravitons contained in this spherical region
is therefore an extensive quantity, scaling as the volume,

NG ≃
r3

Ll2
p
∼
mGðrÞ
mp

; ð2:17Þ

where we again assumed the Compton relation εΛ ∼
lpmp/L from Eq. (2.10). A crucial check for the validity
of the scaling relation (2.17) is that it correctly reproduces
the cosmological relation (2.11) precisely for r ¼ L.
We are therefore led to assume that, if baryonic matter is

totally neglected, at the intermediate scales RB ≪ r ≪ L,
the graviton state is approximately described by the
extensive regime (2.17); i.e. it is ruled by the extensive
regime of gravity:

NV
GðrÞ ∼

m
mp

∼
r3

Ll2
p
; for RB ≪ r ≪ L: ð2:18Þ

This behavior will be argued to interpolate somehow
between the two (different) holographic regimes (2.14)
at r ≃ L and r ≃ RB. One of the main results we will present

here is that it is the tension between the two scalings (2.14)
and (2.18) that leads to deviations from the local Newtonian
dynamics [3]: the response of the graviton condensate to
the presence of baryonic matter makes both the holographic
and the extensive regimes important at galactic scales.
The physical picture behind this corpuscular description

is again similar to Verlinde’s [3]. For compact sources of
size RB ≃ RH and at cosmological scales L, gravity allows
for a corpuscular description in which it is described by a
critical BEC of gravitons. The effective theory in these two
regimes is GR,3 whose peculiar nonextensive, holographic
character is encoded by the relations (2.7) and (2.11).
Notice that these two regimes correspond to length scales
differing by several orders of magnitude (about 60 if we
take r ¼ lp and r ¼ L), and the same holds for the graviton
wavelengths in the two regimes.
A specific merit of the corpuscular picture that we started

to build is however that these two holographic regimes are
truly different, as the relation (2.14) refers to the total
number of gravitons in the cosmological condensate for
r ≃ L, whereas it only counts the number of gravitons
affected by the local matter sources for r ≃ RB ≳ RH. We
recall once more that the difference is clearly signaled by
the opposite signs of εΛ > 0 and εB < 0.
At intermediate scales the condensate has the intrinsic

extensive behavior (2.17), which is a peculiar feature of
thermalization processes (corresponding to the slow
dynamics of glassy systems in Verlinde’s description).
Strictly speaking the graviton number NV

G inside a spherical
region is not physically measurable. In fact NV

G is not
conserved and, for a small region, it is expected to have
large relative fluctuations. For regions of galactic or
cosmological size, the relative fluctuations are small but
we can hardly conceive of a physical process apt to measure
NV

G. On the other hand, our final results are independent
from NV

G and we do not need to be concerned about its
measurability.
In principle, there could be concerns about the impact

that an extensive, volume-scaling term for NG can have on
the cosmological evolution, in particular for late-time
cosmology. At late times, the cosmological dynamics is
described by the holographic regime characteristic of the
dS space-time as discussed above. Actually, it has been
recently shown by Carroll et al. [47] that this is a quite
general result. Assuming the validity of a generalized
second law of thermodynamics and that the entropy
increases up to a finite maximum value, any Robertson-
Walker space-time must approach a dS space-time in the
future, independently of the gravitational dynamics and
matter content of the universe. In their argument, Carroll
et al. assume the presence of a constant density term in the

3Since the universe is expanding, one might argue that the
cosmological description is in fact closer to a modified fðRÞ ≃ R2

theory of gravity [40].
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generalized entropy, which has the same form of our
extensive term (2.17). However, they show that at late
times, i.e. for large values of the scale factor, this term is
subleading with respect to the holographic one, the latter
approaching a constant value and scaling like the area of the
dS horizon. Translated in our corpuscular description, this
means that our extensive term (2.17) plays a role at
intermediate galactic scales, but becomes completely irrel-
evant for the late-time cosmological evolution.

C. Baryonic matter and the emergence of a dark force

So far we have considered the cosmological condensate
without baryonic matter. One could just consider baryonic
matter always existed inside the DEC, initially in a very
diluted form, so that its effect on the gravitons of the
cosmological BEC was initially negligible. In time, the
baryonic matter clumped and started affecting the DEC
locally, which is the situation we find in the universe today.
In particular, the presence of local baryonic sources pulls
out gravitons from the DEC, which give rise to the local
gravitational forces. Alternatively, the simplest way to
introduce baryonic matter in our scenario is to assume
that it arises as bound states in the DEC, i.e. to consider it as
produced by gravitons pulled out from the cosmological
condensate at the typical matter scales Rμ, where μ denotes
the mass of single pointlike matter sources. This may occur
owing to density perturbations in the BEC. A uniform,
spherically symmetric overdensity region of the BEC is
isotropically compressed, because pressure gradients act
only on the surface of the sphere, generating a compact
source of baryonic matter, which can itself be described by
a noncritical BEC or by critical BEC if the critical density is
reached and a black hole is formed.
In the next sections, we will first discuss the behavior of

the condensate with baryonic matter in the diluted approxi-
mation, when we can neglect the local reaction of the
condensate. When we go beyond this approximation, we
have to take into account the reaction of the cosmic
condensate to the presence of the baryonic matter. We will
see that this can be described as a dark force, mediated by
gravitons pulled out from the cosmic BEC at galactic
scales, which can explain the phenomenology at galactic
scales commonly attributed to dark matter.
An important point to be stressed is that the dark force is

a local effect. The cosmological BEC at horizon scales L
remains largely unaffected. This means that deviations
from Eq. (2.11) for the cosmological BEC remain negli-
gible at present, albeit they are crucial in order to describe
the local dynamics properly, as we are going to start
showing next. Our description is consistent as long as
we are only concerned with the gravitational dynamics at
galactic scales and we do not use our model to describe the
whole cosmological history of our Universe. In order to do
this, it is likely that more input is needed.

III. BARYONIC MATTER IN THE DILUTED
APPROXIMATION

We now want to see in more detail what happens when
very diluted baryonic matter is formed on top of the
condensate of gravitons. In this approximation, matter
can be considered as being made of, say, Nμ almost
pointlike sources of mass μ, at rest and equally distanced
very far apart. We can therefore neglect the local reaction of
the condensate to their presence, which also means that the
gravitational interactions among matter sources are negli-
gible. Since sources are homogeneously distributed, our
results should also be a good approximation for baryonic
matter with homogeneous density. We will see that the
leading-order effect of baryonic matter is to subtract
gravitons from the condensate.

A. Diluted matter in the de Sitter universe

Let us first see what happens when we introduce
baryonic matter into the de Sitter universe, whose metric
takes the form

ds2 ¼ −fðrÞdt2 þ f−1ðrÞdr2 þ r2dΩ2: ð3:1Þ

Since in the diluted approximation the cumulative effect of
many sources is just the sum of the single contributions, we
start by considering the case of a single pointlike source of
mass μ. In the weak field regime, the metric function in
Eq. (3.1) is given by the Schwarzschild-dS form

fðrÞ ¼ 1 −
r2

L2
þ 2ϕðrÞ; ð3:2Þ

where

ϕðrÞ ¼ −
GNμ

r
ð3:3Þ

is the Newtonian potential generated by the source of mass
μ. The size LH of the cosmological horizon can be found by
solving the condition fðrÞ ¼ 0 for small departures from L
(i.e. for jϕj ≪ 1), which yields

LH ¼ L½1þ ϕðLÞ� þ oðϕ2Þ ∼ L − lpμ/mp: ð3:4Þ

Adding Nμ similar matter sources would reduce the Hubble
radius to

LH ∼ L −
1

2
NμRH; ð3:5Þ

where here RH ¼ 2GNμ is the typical gravitational radius of
each source. The effect of the presence of diluted matter is
thus to reduce the size of the cosmological horizon, which
in turn implies a number of gravitons in the cosmological
condensate NG < NΛ according to Eq. (2.11). Let us note,
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however, that such a change is relatively minuscule because
of the hierarchy (2.3), and the fact that baryonic matter
accounts for at most 5% of the total energy in the universe.
We can therefore safely neglect the difference between LH
and L in the following.

B. Diluted matter in the corpuscular model

Before we introduce the diluted baryonic matter in the
DEC, let us refine the corpuscular description of the dS
universe. In Refs. [39,40], it was shown that the maximal
packing condition which yields the scaling relations (2.14)
for a black hole actually follows from the energy balance
(2.1) when matter becomes totally negligible. In the present
case, matter is absent a priori and HB ¼ 0, so that one is
left with

Hð0Þ
G ¼ Uð0Þ

N þUð0Þ
PN ¼ 0; ð3:6Þ

with the negative Newtonian energy

Uð0Þ
N ≃ NΛεΛ ¼ −NΛ

lpmp

L
; ð3:7Þ

and the positive “post-Newtonian” contribution

Uð0Þ
PN ¼ NΛ

ffiffiffiffiffiffiffi
NΛ

p
l2
pmp

L2
: ð3:8Þ

One therefore recovers the scaling relation (2.11) from
Eq. (3.6) with no extra “vacuum energy” [40].
The same result (3.5) can now be obtained using the

Hamiltonian constraint (2.1) in which we include the
contribution of Nμ diluted baryonic sources of mass μ,

Hð1Þ
B ¼ Nμμ: ð3:9Þ

Since matter is very diluted and cold, μ again just equals the
proper mass, and local gravitational energy is negligible.
We can therefore write

Hð1Þ
G ¼ Uð1Þ

N þUð1Þ
PN; ð3:10Þ

where the Newtonian and post-Newtonian terms have the
forms given in Eqs. (3.7) and (3.8). The energy balance
(2.1) then tells us that the condensate must respond to the
presence of this homogeneous matter by changing the
graviton number NΛ, that is

NΛ
lpmp

L
≃ Nμμþ N3/2

Λ
l2
pmp

L2
; ð3:11Þ

which yields

L ¼ lpmpNΛ

2Nμμ

�
1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

4Nμμffiffiffiffiffiffiffi
NΛ

p
mp

s �

≃
ffiffiffiffiffiffiffi
NΛ

p
lp þ Nμlpμ/mp þOðN−1

Λ Þ; ð3:12Þ

where we used Nμμ ≪ NΛmp for our dark energy domi-
nated universe. Using now the scaling (2.11), i.e.
NΛ ∼ L2

H/l
2
p, one easily recovers Eq. (3.5).

The fact that the two estimates, respectively based on the
form of the Schwarzschild-dS metric and on the corpus-
cular model, give the same result for the change of the
Hubble horizon due to the presence of baryonic matter is a
highly nontrivial check of the validity of our BEC descrip-
tion of the dS universe, and in particular of the validity of
the energy balance (3.10) and of the form of the post-
Newtonian term UPN.

C. Diluted matter and scalings of the graviton number

The change in the dS horizon size (3.5) induced by the
baryonic matter will result in a reduction of the number of
gravitons NΛ with energy εΛ according to Eq. (2.11), that is

δNΛ ≃ −
2μL
mplp

; ð3:13Þ

whereNΛ is given in (2.11). The same result holds also for a
black hole of mass μ, with L replaced with the black hole
radius RH [3]. Actually, this result is a quite generic
consequence of the holographic scaling (2.14) for the
graviton number. In fact, let us take a sphere of radius
r ≪ L, for which the number of gravitons in the condensate
inside this sphere is given by Eq. (2.14), and compare the
change of the graviton number as a function of the radial
distance from the center of the sphere with and without
matter. Without the mass, the radial distance s is equal to r,
whereas a baryonic pointlike mass μ at the center of the
sphere changes the radial distance of a quantity equal to
ds ≃ ½1 − ϕðrÞ�dr, according to the weak field limit of the
Schwarzschild metric. Thus, the number of gravitons in
Eq. (2.14) changes due to the presence ofmatter according to

dðδNΛÞ
ds

¼ d
ds

ðNΛjμ≠0 − NΛjμ¼0Þ ≃ ϕðrÞ dNΛ

dr
≃ −

2μ

mplp
:

ð3:14Þ

On the other hand, in the diluted approximation jϕðrÞj ≪ 1
and dr ≃ ds. We can thus write the previous equation as

dðδNΛÞ
dr

≃ −
2μ

mplp
: ð3:15Þ

For future convenience, we will define NB ¼ −δNΛ as the
number of gravitons subtracted from the cosmological
condensate (the DEC) inside a sphere of radius r by the
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presence of the baryonic source ofmass μ. By integrating the
above equation, one finds

NB ≃ −
2μr
mplp

: ð3:16Þ

Extending the validity of Eq. (3.5) from the cosmological
horizon to a region of radius r as given in Eq. (3.14) is a quite
strong and highly nontrivial assumption. In the corpuscular
description of gravity, this implies that we are assuming not
only that the whole dS space filled with dark energy can be
considered as a graviton condensatewith Compton lengthL,
but that this description also holds for regions of any size r,
and for those gravitons with Compton length of order r. The
rationale behind this assumption is the fact that at solar
system scales we know that gravity is well described by GR,
whose action is directly related with the holographic scaling
(2.14). It should be stressed that this holds only in the
holographic regime of gravity (2.14) but not in the extensive
regime (2.18). This means that our Universe looks like a
critical graviton condensate at small (solar system) scales
and very large (Hubble radius) scales, whereas at inter-
mediate (galactic) scales we see an extensive behavior. In
order to give a precise meaning for the transition from
cosmological to intermediate scales, we can use arguments
similar to those used by Verlinde in Ref. [3].
We suppose that, as shown in [3], the “dark matter”

effects arise from the competition between the “area-law”
(2.14) and volume behavior (2.18) for the graviton number.
This implies the existence of two regimes: the baryonic
matter dominated regime in which NBðrÞ > NV

GðrÞ and a
dark energy dominated regime NBðrÞ < NV

GðrÞ. In particu-
lar, we expect the dark force effects to be negligible for
NBðrÞ ≫ NV

GðrÞ. Let us now look for the transition
between these two regimes, when the corresponding
graviton numbers become comparable, that is jNBðrÞj≃
NV

GðrÞ, or

2μr
mplp

≃
r3

l2
pL

: ð3:17Þ

When this equality holds, most of the dark energy gravitons
in the cosmological condensate contained inside the vol-
ume of size r are affected by the presence of the source of
mass μ, and we obtain

r≡ r0 ≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μ

mp
Llp

s
¼

ffiffiffiffiffiffiffiffiffi
RHL

p
; ð3:18Þ

where r0 is the mesoscopic scale introduced in Sec. II B.
For a given (spherical) region with a certain amount of mass
μ localized about its center, r0 sets the scale at which dark
matter phenomena are not negligible. Using for μ the value
for the mass of a galaxy in Eq. (3.17), one finds the

observationally correct order of magnitude for deviations
from the Newtonian dynamics. For instance, for a typical
spiral galaxy with mB ¼ 1011 solar masses, we have
r0 ¼ 6 kpc, whereas for a typical dwarf galaxy with mB ¼
107 solar masses, we have r0 ¼ 80 pc.
To describe the transition between the holographic and

the extensive regimes, it is convenient to introduce the local
(size-dependent) parameter

γ ¼ NB

NV
G
: ð3:19Þ

For γ > 1, we are in the area-scaling regime (2.14), where
baryonic matter dominates, gravity is well described by
GR, and most of the gravitons in the fluid belong to the
condensate. Conversely, for γ < 1, we are in the volume-
scaling regime (2.14) and dark energy dominates. In this
regime, the effects of the dark energy gravitons on baryonic
matter are not negligible and give rise to the dark matter
phenomena.
Let us conclude with some comments about the physical

meaning of the diluted approximation and on the meaning
of Eq. (3.19). Within this approximation, baryonic matter
has no local gravitational interactions with the condensate.
On the other hand, it also has no effects at cosmological
scales. Rephrased in terms of the graviton number, the
diluted regime applies in the region where γ > 1, i.e. when
most gravitons inside a sphere of radius r belong to the
local condensate (we are considering the sphere of radius r
as a condensate of gravitons of Compton length r).

IV. CLUMPED MATTER AND EMERGENCE
OF THE DARK FORCE

Let us now describe what happens when we go beyond
the diluted approximation and baryonic matter begins to
clump. The Nμ pointlike sources of mass μ form clusters of
baryonic matter with typical mass mBðrÞ ¼ Nμμ. For
simplicity, we consider a mass distribution with spherical
symmetry. Now the DEC will react to the presence of
matter, and we will interpret this reaction as a dark force
responsible for the phenomenology commonly attributed
to dark matter which reproduces correctly the MOND
acceleration.
We first assume that only a fraction of the gravitons in

the DEC are affected by the local matter, so that the
condensate reacts not at the full cosmological scale L, but at
a local scale of size r. In particular, since we are considering
spherically symmetric sources, the baryonic matter of mass
mB will pull the gravitons out of the DEC from inside the
sphere of radius r with a dark energy mass given by
M ¼ MðrÞ. Therefore we now have three scales in our
problem: the typical size of the matter lumps RB, the range
of the condensate reaction r and L, which satisfy the
hierarchy
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RH ≪ RB ≲ r ≪ L: ð4:1Þ

In the following we will consider the dynamics of test
particles at distances r ≫ RB, so that the baryonic source of
mass mBðrÞ can be well approximated by a pointlike
source. Physically, this means that we are considering
the dynamics of galaxies at distances far away from the
galactic core. We will first briefly review the results of
Ref. [38] based on a balance between the number of
gravitons, we will then give the description based on the
Hamiltonian constraint, and finally we will proceed by
using the competition between the area and volume regimes
to derive the “dark acceleration.”

A. Matter clumping and graviton number balance

The starting point of the analysis in Ref. [38] is that, in a
corpuscular description of gravity, the gravitational accel-
eration felt by the test particle is the macroscopic mani-
festation of the self-interaction of gravitons in the
condensate. It can therefore be expressed in terms of their
Compton energy ε and specific number Neff of gravitons
involved in the process as

aðrÞ ≃ ε2ðrÞ
m2

plp

ffiffiffiffiffiffiffiffi
Neff

p
: ð4:2Þ

Moreover, this corpuscular acceleration formula holds for
both condensed and noncondensed gravitons. Consider
now the reaction of the cosmological BEC of total mass
mΛ to the presence of the baryonic matter source of mass
mBðrÞ. Since mB ≪ mΛ, most of the gravitons will remain
in the condensed phase and their number is given, accord-
ing to Eq. (2.14), by

NDE ∼
ðmΛ −mBÞ2

m2
p

: ð4:3Þ

On the other hand, the total number of gravitons in the
system is given by NΛ ∼m2

Λ/m
2
p. This implies that there are

NΛ − NDE gravitons which are not in the condensed phase
and, therefore, behave differently from the condensate.
Since the number of gravitons which give rise to the local
gravitational potential generated by the baryonic mass is
NB ¼ m2

B/m
2
p and, from Eqs. (4.3), we have

NΛ − NDE ∼
LmB

lpmp
−
m2

B

m2
p
; ð4:4Þ

it follows that there are NDF ∼ LmB/lpmp gravitons which
mediate the interaction between the baryonic matter and
the DEC.
The effective number of noncondensed gravitons NDFðrÞ

that contribute to the acceleration of a test particle at the
radius r can be guessed by requiring that its overall scaling

is again holographic and must depend on the baryonic mass
mB. This yields

NDFðrÞ ∼
r2mBðrÞ
lpmpL

: ð4:5Þ

From Eqs. (4.2) and (4.5) with Neff ¼ NDFðrÞ, we obtain

jaDFðrÞj ∼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
GNmBðrÞ

Lr2

r
∼

ffiffiffiffiffiffiffiffiffiffiffi
aBðrÞ
L

r
; ð4:6Þ

which is the MOND acceleration (1.2) up to a numerical
factor.

B. Matter clumping and energy balance

In this section we will alternatively derive the MOND
acceleration (1.2) using the Hamiltonian constraint (2.1).
Once the regular matter starts clumping, the matter

energy changes to

HB ¼ mB þ EB; ð4:7Þ

where mB ≃ Nμμ and EB accounts for the total kinetic
energy of matter and nongravitational interactions. Some
gravitons will acquire a new Compton length in response to
the local lumps of matter, and the gravitational Hamiltonian
in the constraint Eq. (2.1) takes the form

HG ¼ HΛ þHBG þHDF; ð4:8Þ

where HΛ is the energy of the DEC, whose specific form is
not essential for the present derivation; HBG is the
Newtonian gravitational energy of the localized matter
sources,

HBG ¼ −
GNm2

B

RB
¼ −NB

lpmp

RB
; ð4:9Þ

with NB the number of soft gravitons whose Compton
length equals the typical size RB of matter lumps4 finally,
the “dark force” term is given by the gravitational inter-
action energy between baryonic matter and dark energy of
mass MðrÞ inside the sphere of radius r, that is

HDF ¼ −
GNmBMðrÞ

r
: ð4:10Þ

We can rewrite HDF in terms of an effective dark force
mass mDF as

4There would also be a (positive) post-Newtonian energy but
we shall neglect that as it is much smaller than HBG for compact
sources far from becoming black holes.
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GNmBMðrÞ
r

≃
GNm2

DF

r
; ð4:11Þ

which implies the simple relation between masses

m2
DF ¼ mBMðrÞ: ð4:12Þ

Because the dark matter term arises from the interaction of
the baryonic source with the gravitons in the DEC inside
the volume of size r, the energy of the gravitons will change
to ε ≃mplp/r. From the extensive scaling (2.18), it follows
that

MðrÞ ≃mpr2

lpL
: ð4:13Þ

We can now evaluate the gravitational acceleration
associated to the dark force component (4.11) of the
condensate. Using the estimate (4.13) in Eq. (4.12), we
obtain the dark acceleration

aDF ∼
GNmDM

r2
≃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

L
GNmB

r2

r
¼

ffiffiffiffiffiffiffiffiffiffiffi
aBðrÞ
L

r
; ð4:14Þ

where aBðrÞ is the Newtonian baryonic acceleration (1.3) at
distances r. Again, this result indeed matches the MOND
formula (1.2) up to a factor of 1/6.
We can further show that the above derivation, based on

the energy balance (4.8), is perfectly compatible and
consistent with the derivation in Sec. IVA, which is instead
based on the graviton numbers. In fact, we can associate to
the dark energy mass MðrÞ interacting with the baryonic
mass a number of gravitons equal to the number of
gravitons NDFðrÞ pulled out from the DEC. This number
scales holographically as

NDFðrÞ ¼
m2

DF

m2
p
: ð4:15Þ

By combining Eqs. (4.12) and (4.15), we find

MðrÞ ¼ NDFðrÞ
m2

p

mB
; ð4:16Þ

and Eq. (4.13) finally yields the total number of gravitons
associated to the dark force

NDFðrÞ ¼
mBr2

lpmpL
; ð4:17Þ

which exactly matches Eq. (4.5) obtained in Sec. IVA.
We further note that the dark acceleration can also be

written as a function of the number of dark gravitons, thus
obtaining the same expression (4.2) found in Sec. IVA. In
fact, by combining Eqs. (4.16) and (4.12), we find

aDF ¼
GNmDF

r2
¼ lp

r2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDFðrÞ

p
; ð4:18Þ

or, equivalently, using the Compton energy of the dark
gravitons ε ¼ mplp/r,

aDF ¼
ε2ðrÞ
m2

plp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
NDFðrÞ

p
; ð4:19Þ

which is exactly the corpuscular acceleration (4.2) first
introduced in Ref. [38] for Neff ¼ NDFðrÞ.

C. Area/volume competition and heuristic
derivation of MOND

In this section, we present a heuristic derivation of the
MOND acceleration (1.2), which uses the Hamiltonian
constraint (4.8) and the competition between the holo-
graphic and extensive regimes described in Sec. II. The
novelty is that we will be able to reproduce correctly also
the numerical factors of Eq. (1.2) in this scenario. The key
observation is that, owing to the fact that the DEC responds
only locally to the presence of baryonic matter, we can
simply write the contribution HDF in Eq. (4.8) in terms of
the energy subtracted from dark energy gravitons to
generate the local Newtonian gravity.
For simplicity, we consider baryonic matter in the form

of a single pointlike source of mass mB, but the results can
be easily generalized to the case of an extended but
localized source inside a volume of size RB. By analogy
with the electromagnetic force, the energy density ρG
associated with a gravitational (acceleration) field (1.3),
that is

aB ¼ −
GNmB

r2
; ð4:20Þ

inside a sphere of radius r, and volume VðrÞ ¼ 4πr3/3, is
given by

ρG ¼ a2B
8πGN

; ð4:21Þ

wheremB is the source of the gravitational field. It is easy to
find that the energy subtracted from dark energy gravitons
in order to clump the amount of matter mB inside the
spherical region is, therefore,

EG ¼ −ρGV ¼ −
GNm2

B

6r
; ð4:22Þ

where mB now denotes the baryonic mass contained
inside VðrÞ.
Consistently with Eq. (4.12), we can view this energy as

due to the existence of a dark force, whose effective source
is a “dark mass” mDF, which does work on the system. In
analogy to what happens at cosmological scales, we can
think that the effect of the mass mB, centered inside a
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spherical region of volume VðrÞ, is to deform the sphere by
an amount given by Eq. (3.5) with L replaced by r. The
deformation is therefore

uðrÞ ¼ ϕBðrÞL; ð4:23Þ
where ϕB is the gravitational potential generated by the
mass mB and L is still the dS radius. The work done by the
dark force on the system will be given by

W ¼ FDFuðrÞ ¼
G2

Nm
2
DFmB

r3
L: ð4:24Þ

It should be stressed that this contribution is of a holo-
graphic nature: it is the work done by the dark force to
deform the surface of the sphere. For energy conservation,
it must equal the energy EG contained in the volume VðrÞ.
By equating Eqs. (4.22) and (4.24), we easily obtain

GNm2
DF

r2
¼ −

mB

6L
: ð4:25Þ

If we now use the form for the “dark gravitational
acceleration” used in (4.14),

aDF ¼ −
GNmDF

r2
ð4:26Þ

and the Newtonian acceleration (4.20), Eq. (4.25) can be
written as

aDFðrÞ ¼
ffiffiffiffiffiffi
aB
6L

r
; ð4:27Þ

which exactly matches the MOND acceleration (1.2).
Let us stress that Eq. (1.2) is precisely obtained by
identifying the volume (extensive) subtraction (4.22) from
the condensate with the dark area (holographic) contribu-
tion (4.24).

D. Emergent metric theory

A key issue for every model of emergent gravity is the
existence of an effective description reproducing Einstein’s
GR or at least a metric theory of gravity. One must envisage
the way in which the metric space-time structure of gravity
encoded in GR emerges out of the microscopic description.
This is a quite stringent requirement and it is not enough to
predict an infrared modification of the laws of gravity, such
as the MOND relation (1.2). This relation must be
embedded in the framework of GR or, at least, in a metric
theory of gravity describing a modification thereof. This is
for instance a drawback of Verlinde’s original proposal [3].
The proposed modification of the laws of gravity at galactic
scales reproduces the MOND relation (1.2), but a metric
covariant description of the model has not been proposed
yet (see, however, Refs. [48–50]).
The description of the emergent laws of gravity at

galactic scales based on the BEC of gravitons proposed

in this paper allows for an effective covariant metric
description, which has the form of GR sourced by an
anisotropic fluid. This can be done along the lines of
Refs. [38,51]. We know that a dark energy dominated
universe, i.e. the DEC of gravitons, can be described in a
metric framework as GR sourced by a perfect fluid with
constant energy density ρ and equation of state p ¼ −ρ.
The generation of baryonic matter and the reaction of the
condensate allows for an effective description in which the
fluid becomes anisotropic. In this effective fluid descrip-
tion, the dark acceleration aDF is completely due to the
pressure of the anisotropic fluid pkDFðrÞ. The (modulus
of the) total acceleration experienced by a test particle is
given by [38]

aB þ aDF ≃
GNmBðrÞ

r2
þ 4πGNrpkDFðrÞ: ð4:28Þ

Solving Einstein equations sourced by the anisotropic fluid,
one finds the space-time metric in the form

ds2 ¼ −fðrÞeγðrÞdt2 þ dr2

fðrÞ þ r2dΩ2; ð4:29Þ

with

fðrÞ ¼ 1 −
2GNmðrÞ

r
; ð4:30Þ

and the metric function γ determined by the distribution of
baryonic matter mB,

γ0 ¼ 2

rfðrÞ ½GNm0
BðrÞ þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0GNmBðrÞ

p
�: ð4:31Þ

It has also been shown that, when we can approximate the
baryonic mass distribution with a constant profile mBðrÞ ¼
mB (this holds when we consider a galaxy at distances
much bigger than its bulk), we recover the typical loga-
rithmic behavior of the MOND gravitational potential [38]
and Tully-Fisher relation.

E. Cosmic balance

If one puts together the argument based on the graviton
number of Sec. IVA and the energy balance of Sec. IV B,
the ratio between an apparent dark matter mass distribu-
tion and baryonic matter can be estimated and shown to be
consistent with the predictions of the ΛCDM model.
Let us denote with UDF the energy associated with the

dark gravitons. This energy can be written in terms of the
number NDF of dark force gravitons inside a sphere of
radius r and their Compton energy ε ¼ −mplp/r as

UDF ¼ NDFε ¼ −NDF
mplp

r
: ð4:32Þ

In the ΛCDM description, UDF must be seen as originating
from the interaction of an apparent dark matter massMDM
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with the baryonic matter of mass mB and its self-
interaction, that is

UDF ¼ −
GNmDMmB

r
−
GNm2

DM

r
: ð4:33Þ

Equating the above two expressions for UDF, we get

NDF ¼
m2

DM

m2
p

þmDMmB

m2
p

: ð4:34Þ

Let us stress that the apparent dark matter mass mDM must
not be confused with the effective dark force mass mDF of
Eq. (4.12). In fact, consistency of Eq. (4.34) with Eq. (4.15)
requires m2

DF ¼ m2
DM þmDMmB.

On using Eq. (4.3), NDF ∼ NΛ − NDE, and recalling that
NΛ ∼ L2/l2

p and mΛ ¼ mpL/lp, we obtain

mDMmB þm2
DM ¼ 2mΛmB −m2

B; ð4:35Þ
which can be written as

x2 þ xþ 1 ¼ 2mΛ

mB
; ð4:36Þ

where we defined the ratio x ¼ mDM/mB. In particular, the
latter equation is solved by

mDM

mB
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8ðmΛ/mBÞ − 3

p
− 1

2
: ð4:37Þ

If we now recall that observations yield mB ≃ 0.05mΛ, we
finally obtain

mDM

mB
≃ 5.77; ð4:38Þ

which is in the right ballpark of the ΛCDM prediction for
the present relative abundance of dark and baryonic matter.

V. CONCLUSIONS

In this work, we have investigated the emergent laws of
gravity by modeling our dark energy dominated universe as
a critical BEC with a large numberNG of soft gravitons. We
have shown that the local behavior of this DEC requires,
besides the usual holographic regime, an extensive regime
of gravity in which the graviton number scales with the
volume of space. Baryonic matter fits naturally in this
description as gravitons pulled out from the DEC at the
matter clumping scale give rise to the local (Newtonian)
gravitational forces. We have then shown that, in this
framework, the galaxy rotation curves far away from the
galactic center [i.e. the MOND formula (1.2)] can likewise
be derived from the reaction of the DEC to the presence of
baryonic matter, without assuming the existence of any sort
of dark matter. We have also evaluated the mass ratio of the
apparent dark matter and baryonic component and found it
to be in agreement with the prediction of theΛCDMmodel.

Moreover, our microscopic description can be easily
used to produce an emergent theory of gravity in the form
of GR sourced by an anisotropic fluid, the latter being the
macroscopic manifestation of the DEC and of its inter-
action with baryonic matter. This can be done along the
lines of Refs. [38,51], in which the dark force explaining
galactic dynamics furthermore takes the form of a pure
pressure term [38].
We would like to conclude by remarking that two

important points have not yet been addressed, but deserve
further investigation. The first one concerns the microscopic
origin of the cosmological evolution. Our model applies
solely to the present dark energy dominated universe. We did
not tackle the problem of giving a description of the history
of the universe using a critical BEC of soft gravitons.
Although this is a quite involved problem, there are several
indications that it may indeed be possible. The results of
Refs. [7,18,46] about the description of inflation and general
cosmological space-times [41] represent promising steps
along this direction. Moreover, the results of Ref. [47] not
only assert that the dS space-time necessarily appears at late
times in any cosmological evolution consistent with the
generalized second law of thermodynamics, but also imply
that the presence of an extensive, volume-scaling term for
the graviton number is perfectly consistent with this late-time
cosmological evolution. Last but not least, the fact that our
model predicts the correct present relative abundance of the
various forms of matter gives us a further hint that we are
going in the right direction.
The second point concerns the microscopic origin of

horizons. Most of the scenarios for emergent gravity assume
in an explicit or implicit way the presence of event, cosmo-
logical or accelerationhorizons (see, e.g.,Ref. [52]).Horizons
are a key ingredient for explaining the holographic regimes of
gravity and play, therefore, a crucial role also in our BEC
description of black holes in the dS space-time. At the level of
the BEC, one may easily generate acoustic horizons [53].
However, it is not clear if acoustic horizons in a BEC can be
directly linked to space-time horizons in the emergent gravity
scenario. In fact, acoustic horizons in BEC are mainly of
kinematic origin, whereas in an emergent gravity theory
containing black holes and the dS space-time, their origin
should be dynamical.
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