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Abstract 20 

This study aims to assess the reliability of satellite-precipitation products from the Global 21 

Precipitation Measurements (GPM) mission in regions with complex landscape morphology. Our 22 

analysis is carried out in the European mid-latitude area, namely on the two major islands of 23 

Mediterranean Sea, i.e. Sardinia and Sicily (Italy). Both islands experience precipitation originating 24 

from the interaction of steep orography on the coasts with winds carrying humid air masses from the 25 

Mediterranean Sea. The GPM post real-time IMERG (Integrated Multi-satellitE Retrievals from Global 26 

Precipitation Measurement) “Final” run product at 0.1° spatial resolution and half-hour temporal 27 

resolution have been selected for the two-year 2015-2016 period. Evaluation and comparison of the 28 

selected product, with reference to raingauge network data, are performed at hourly and daily time 29 

scales using statistical and graphical tools. The influences of morphology and land-sea coastal area 30 

transition on the reliability of the GPM product have been analyzed. 31 

Confirming previous studies, results showed that GPM satellite data slightly overestimate rainfall 32 

over the study areas, but they are well correlated with the interpolated raingauge data. Metrics based on 33 

occurrences above a given threshold and on total volume above the same threshold were applied and 34 

revealed better performances for the latter ones. Applying the same metrics we show how GPM 35 

performances improve as the temporal aggregation increases. Several drawbacks were detected in the 36 

coastal areas, which were characterized by worse performances than internal areas. Statistics are 37 

generally very similar for the two considered case studies (i.e., Sardinia and Sicily) except for 38 

correlation between topography and accuracy of GPM products, which was slightly higher for Sardinia. 39 

 40 
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1. Introduction 43 

Reliable and accurate precipitation measurement or estimation is crucial for water resource 44 

management, and disaster monitoring (Hou et al., 2014). However, obtaining accurate high-resolution 45 

precipitation fields is still a challenging task for scientists and practitioners, especially in the poorer 46 

regions of the world. Satellite sensing provides valuable global and regional precipitation estimates 47 

(Gourley et al., 2010; Seyyedi et al., 2015), although the biases and errors of satellite-precipitation 48 

estimates need further analysis and research. 49 

In recent years, a large number of quasi-global satellite precipitation products with various temporal 50 

and spatial resolutions have been developed and released to the public (Prakash et al., 2018; Sun et al., 51 

2018), such as the Tropical Rainfall Measurement Mission (TRMM) Multi-satellite Precipitation 52 

Analysis (TMPA) (Huffman et al., 2007; Maggioni et al., 2016), the Climate Prediction Center 53 

MORPHing technique (CMORPH) analysis (Joyce et al., 2004), the Precipitation Estimation from 54 

Remotely Sensed Information using Artificial Neural Networks (PERSIANN) (Hsu et al., 1997; 55 

Sorooshian et al., 2000), and the Global Satellite Mapping of Precipitation (GSMap) (Kubota et al., 56 

2007). These free and open access products have been validated through several regional (Ciabatta et 57 

al., 2017; Lo Conti et al., 2014; Sohn et al., 2010; Xue et al., 2013; Yong et al., 2012) and global (Long 58 

et al., 2015) studies.  59 

The most recent international mission is the Global Precipitation Measurement (GPM) mission 60 

(Huffman et al., 2014; Huffman et al., 2017a; NASA, 2017; Skofronick-Jackson et al., 2016) which 61 
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collects data from an international constellation of satellites, including the Core Observatory satellite 62 

and approximately ten partner satellites. The main purpose of the GPM mission is to establish the 63 

structure and magnitude of variations in precipitation in order to understand better the water and energy 64 

cycle (Hou et al., 2014). The measurements of the GPM Core Observatory satellite serve as a reference 65 

standard to combine precipitation measurements from all satellites that fly within a particular 66 

constellation. Additionally, the GPM precipitation measurements can be combined with other data to 67 

improve accuracy and reliability. As the successor of TRMM satellite, the GPM Core Observatory was 68 

deployed on February 28, 2014 by a joint effort of NASA and the Japan Aerospace Exploration Agency 69 

(JAXA). The GPM Core Observatory carries a dual-frequency precipitation radar, DPR (with the Ku-70 

band at 13.6 GHz and Ka-band at 35.5 GHz), and a conical-scanning multichannel GPM Microwave 71 

Imager (frequency channels ranging between 10 and 183 GHz). GPM extends the sensor package 72 

compared to TRMM instruments, and, therefore, the GPM sensors can detect light and solid 73 

precipitation more accurately than TRMM sensors. The Integrated Multi-satellitE Retrievals from 74 

Global Precipitation Measurement (IMERG) provides three kinds of products, including the near real-75 

time ‘‘Early” and ‘‘Late” run products, and the post real-time ‘‘Final” run product, the latter being the 76 

research level product (Huffman et al., 2015). The ‘‘Final” run product is calibrated by the Global 77 

Precipitation Climatology Centre (GPCC) monitoring data, whose source is the Global 78 

Telecommunications System (GTS) that collects data from about 7000 stations around the world 79 

(Schneider et al., 2014). The time delay between satellite observation and data release (i.e., latency) is 80 

equal to 6 hours, 18 hours, and 2.5 months for the “Early”, “Late”, and “Final” IMERG products, 81 

respectively. While “Early” and “Late” data are available starting from 1 of April 2015 and 7 of March 82 
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2015, respectively, the “Final” run data are available from the 12 of March 2014. Furthermore, the 83 

IMERG product is intended to intercalibrate, merge, and interpolate all microwave estimates of the 84 

GPM constellation, infrared estimates, gauge observations, and other data from potential sensors at 0.1° 85 

spatial resolution and half-hour temporal resolutions (Huffman et al., 2014). Therefore, the GPM 86 

products have a higher spatial and temporal resolution than TRMM products (whose resolutions were 87 

0.25° in space and 3 hours in time). 88 

Several studies examined whether the rainfall products from the GPM mission are able to accurately 89 

estimate global precipitation (Asong et al., 2017; Behrangi and Wen, 2017; Chen and Li, 2016; Guo et 90 

al., 2016; Houze Jr et al., 2017; Li et al., 2017; Liu, 2016; Ning et al., 2017; Ning et al., 2016; Prakash 91 

et al., 2016a; Prakash et al., 2016b; Sahlu et al., 2016; Sanò et al., 2016; Sharifi et al., 2016; Speirs et 92 

al., 2017; Tang et al., 2016b). Hereafter, a brief review of the most recent and comprehensive studies 93 

from global to local scale is proposed with the aim of providing the order of magnitude of 94 

discrepancies between observations and satellite products and highlighting the reasons for such 95 

problems.  96 

At global scale, Libertino et al. (2016) analysed the ability of GPM products to evaluate intense 97 

rainfall events. They compared the date of occurrence of the most severe daily rainfall events recorded 98 

each year by a global raingauge network with the ones estimated by GPM. The match rate between the 99 

two was found to approach 60%, indicating significant consistency between the two data sources. 100 

Behrangi and Wen (2017) analysed and quantified the errors at global scale resulting from temporal 101 

and spatial sampling of precipitation events using the V04 version of the IMERG product. Relative 102 

mean square error was calculated between the degraded (temporally and spatially) and original IMERG 103 
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products. The temporal and spatial degradation was performed by producing temporal degradation at 104 

three-hour (T3), six-hour (T6), while keeping the original spatial resolution and spatial degradation at 105 

0.5° (S5), and 1° (S10) with original temporal resolution. The results show generally larger errors over 106 

land than ocean, especially over mountainous regions. The relative error of T6 is almost 20% larger 107 

than T3 over tropical land, but is smaller in higher latitudes. Over land, relative error of T6 is larger 108 

than S5 across all latitudes, while T6 has larger relative error than S10 poleward of 20°S-20°N. 109 

Similarly, the relative error of T3 exceeds S5 poleward of 20°S-20°N, but does not exceed S10, except 110 

in very high latitudes. Similar results are also obtained over ocean, but the error ratios are generally less 111 

sensitive to seasonal changes; moreover the results show that the spatial and temporal relative errors 112 

are weakly correlated. 113 

At local scale, Tang et al. (2016a) evaluated the post-real time Final IMERG product over Mainland 114 

China from April to December 2014, at the hourly timescale, against ground-based observations 115 

interpolated with inverse distance weighting and spline methods. The product was evaluated at gridded, 116 

regional, and national scales. IMERG performed well at the mid- and high-latitudes, as well as in 117 

relatively dry climate regions, and it reproduced the probability density function of 3-hour and daily 118 

rainfall with good accuracy in the low ranges. Khodadoust Siuki et al. (2017) compared the half-hourly 119 

IMERG data with the 3-hourly raingauge data in northwest Iran for the period March-December 2014, 120 

using different evaluation indices for validation purposes. Results showed that correlation between 121 

IMERG and raingauge rainfall data is higher than that of TRMM and raingauge data, while bias 122 

confirmed that IMERG underestimated rainfall over the study area. 123 
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Two important aspects that were deemed crucial in determining the performances of the GPM 124 

product in reproducing observed rainfall, although not fully explored, regard the effects of morphology 125 

and the land-sea coastal area transition. One of the few works dealing with these topics was carried out 126 

by Kazamias et al. (2017), which evaluated GPM daily precipitation products over Greece and found 127 

reasonable agreement against raingauge observations, with the exception of coastal areas in which low 128 

correlations were observed. The GPM daily precipitation product overestimated rainfall, especially in 129 

complex terrain areas with high annual precipitation. In particular, rainfall estimates in western Greece 130 

had a strong positive bias. Another important contribution is from Kim et al. (2017), which assessed 131 

precipitation products from GPM using gauge-based precipitation data from Far-East Asia during the 132 

pre-monsoon and monsoon seasons. In both mountainous and coastal regions, the GPM showed 133 

uncertainties attributable to the presence of orographic convection and land-ocean transition.  134 

Given these premises, the interest in testing GPM products in complex domains and in investigating 135 

the role of morphology in driving performances is clear. Following this research question, we selected 136 

the two major islands of the Mediterranean Sea, i.e. Sardinia and Sicily, to test satellite-precipitation 137 

GPM-IMERG products against data provided by dense raingauges over the two islands. Indeed, the 138 

particular combination of geographic position, climate, shape and morphology of both islands offers an 139 

interesting opportunity for the validation of satellite-precipitation data in the European mid-latitude 140 

area and in complex domains. The two islands are characterized by a complex morphology and by 141 

small spatial scale and long sea-land transition borders. Moreover, they experience precipitation 142 

originating from the interaction of steep orography on the coasts with winds carrying humid air masses 143 

from the Mediterranean Sea. The GPM-IMERG post real-time “Final” run product (version V04 144 
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released in spring 2017) at 0.1° spatial resolution and half-hour temporal resolution has been selected 145 

for the two-year period 2015-2016. Evaluation and comparison of the selected product are performed 146 

with reference to data provided by the raingauge network of the two islands. Both GPM and raingauge 147 

data have been aggregated at hourly and greater time scales, then the raingauge data have been spatially 148 

interpolated and resampled at the GPM grid resolution. In order to obtain general information about the 149 

performances of estimates related to the entire two islands, features of rainfall spatial distribution and 150 

the influence of the aggregation time scale have been investigated using statistical and graphical tools. 151 

The influences of landscape morphology and land-sea costal area transition on the correct estimation of 152 

rainfall through the GPM product have been analysed. 153 

This work is organized as follows: description of the case study and details on raingauges and GPM 154 

datasets are provided in the sections 2.1, 2.2 and 2.3, respectively, while the evaluation indices used to 155 

compare the GPM and the interpolated raingauge grids are described in section 3. Results are 156 

summarized in section 4: the agreements of rainfall spatial distribution at annual, hourly and daily time 157 

scales is discussed in sections 4.1 and 4.2, and the influence of the orography on GPM performances is 158 

investigated in section 4.3; an analysis on the overall performances at different time scale aggregations 159 

is illustrated in section 4.4. Conclusions are drawn in section 5. 160 

 161 

2. Datasets  162 

2.1. Description of the study area 163 

The study investigates the performances of the GPM-IMERG “Final” product in reproducing 164 

precipitation fields observed on the two largest islands of the Mediterranean Sea, Sardinia and Sicily 165 
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(Italy). Sardinia has an area of about 24,000 km2 and it is located between the 38.8°N and 41.4°N 166 

latitudes, about 400 km western the Italian peninsula, while the area of Sicily is about 25,700 km2 and 167 

it is located between the 36°N and 39°N latitudes (see Figure 1). The waterfront length of the two 168 

islands is similar, namely it is 1,849 km for Sardinia and 1,639 km for Sicily. Both islands are 169 

characterized by complex orography as shown in Figure 1. 170 

In Sardinia the elevation ranges between 0 and 1,820 m a.s.l.. Almost all the island is quite flat, 171 

except for a long mountain range, called Sardinian-Corse Mountain System, which is located in the 172 

eastern part of the island, running from north to south, and a smaller isolated mountain range located in 173 

the southwest. The climate of Sardinia shows a typical Mediterranean behaviour with strong 174 

seasonality characterized by hot and dry summers (June-August), rainfall mainly concentrated during 175 

autumn and winter, and a significant interannual variability often characterized by dry multi-year 176 

periods, leading to prolonged droughts. The mean annual precipitation ranges between 500 mm in 177 

lower elevation areas and 1,160 mm in the highest mountains (with a mean equal to about 650 mm) 178 

(Caracciolo et al., 2017b; Mascaro et al., 2013). 179 

The morphology of Sicily is characterized by a mountain range along the longitudinal direction on 180 

the northern side and the Etna volcano on the eastern side, and the elevation ranges between 0 and 181 

3,323 m a.s.l.. The mean annual precipitation over Sicily is about 715 mm with the largest rainfall 182 

amount falling during the winter months (Viola et al., 2017). The July-August months are usually 183 

characterized by little or no rainfall (Caracciolo et al., 2017a). A marked spatial variability of 184 

precipitation is observed, ranging from an average of 400 mm in the south-eastern region to an average 185 
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of 1,300 mm in the north-eastern region (Cannarozzo et al., 2006; Di Piazza et al., 2011) which is also 186 

the region characterized by the most intense rainfall at the hourly scale (Forestieri et al., 2018). 187 

 188 

2.2. Reference raingauges networks 189 

 Sardinia’s raingauge dataset is provided by the Regional Environmental Protection Agency (ARPAS) 190 

service that collects meteo-climatic information and provides a quality-controlled dataset. The dataset 191 

is comprised of 105 tipping-bucket raingauges, with an average density equal to about 228 km2/gauge, 192 

as shown in Figure 1. Data are retrieved with high-temporal resolution (1 minute).  193 

Sicily’s raingauge dataset is provided by the Osservatorio delle Acque - Agenzia Regionale per i 194 

Rifiuti e le Acque (OA-ARRA) (http://www.osservatorioacque.it/). The dataset includes 195 tipping-195 

bucket raingauges with a rather homogeneous spatial distribution, and an average density equal to 196 

about 130 km2/gauge (see again Figure 1). Data are retrieved with hourly resolution. 197 

For both islands the data collected in the period 2015-2016 (i.e. two years) were aggregated at 198 

hourly and longer time scales and then used as reference to evaluate the performance of the GPM 199 

satellite data. For sake of notation, hereafter, observed precipitation will be referred to as Pobs, while 200 

GPM estimated precipitation as Pest.  201 

A direct quantitative comparison between satellite-product and raingauge data (i.e., a grid-to-point 202 

evaluation) can be problematic mainly because the first product provides an estimation of mean 203 

precipitation in each grid cell, while the latter relies on point observation. In order to overcome this 204 

issue, the Thiessen polygon method was adopted to interpolate the raingauge records over a regular 205 

grid structure. In order to reproduce the mentioned method, a high-resolution (0.01º, i.e., approximately 206 

http://www.osservatorioacque.it/
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equal to 1 km) grid covering the islands was defined, and the rainfall value in each high-resolution grid 207 

cell was assumed equal to the value observed in the nearest raingauge. The resulting rainfall field was 208 

then resampled at the same resolution of the satellite product grid (i.e., 0.1º resolution) by simply 209 

averaging the values of the high-resolution grid. 210 

 211 

2.3. GPM satellite data 212 

In this study, we used precipitation estimates from the version V04 of the IMERG “Final” product, 213 

released in spring 2017 (ftp://arthurhou.pps.eosdis.nasa.gov/gpmallversions/V04/) (Huffman et al., 214 

2017a; Huffman et al., 2017b). IMERG provides timely observation of precipitation at 0.1° resolution 215 

every 30 minutes. Overlapping raingauge locations in Sardinia and Sicily with the GPM grid, we found 216 

that in Sardinia about 40% of GPM pixels contain at least one raingauge, while in Sicily this number 217 

rises to about 60%. 218 

As anticipated in the Introduction, the “Final” product is calibrated by the GPCC monitoring 219 

product whose data source is from the GTS with about 7000 stations around the world (Schneider et al., 220 

2014). It is important to underline that there are only 14 GPCC stations in Sardinia, and 24 in Sicily 221 

and these stations are scarcely representative of the elevation distribution. Since the few stations of the 222 

global raingauge network do not allow for an optimal calibration of the product (Lo Conti et al., 2012; 223 

Lo Conti et al., 2014), the comparison of the “Final” GPM product with the data measured by the two 224 

regional raingauge networks, described in section 2.2, is meaningful. 225 

 226 

3. Evaluation indices 227 

ftp://arthurhou.pps.eosdis.nasa.gov/gpmallversions/V04/
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The following set of indices has been chosen to describe satellite-precipitation performances in 228 

reproducing interpolated maps, in turn obtained from the raingauge network datasets. Performance 229 

metrics have been classified as continuous (section 3.1), categorical (section 3.2), and volumetric 230 

(section 3.3) indices, which take into account precipitation values and precipitation and volumetric 231 

occurrences, respectively. 232 

 233 

3.1. Continuous evaluation indices 234 

The continuous indices used in this work are: the correlation coefficient (CC), the Standardized Root 235 

Mean Square Error (S RMSE), and the Standardized Mean Bias Error (S MBE). Moreover, the 236 

normalized Taylor diagram (Taylor, 2001) has been used to graphically analyze the results. 237 

The Correlation Coefficient (CC) is equal to: 238 

  (1) 239 

where Pest and Pobs are the precipitation estimation provided by the satellite product for a single pixel 240 

and the resampled precipitation value provided by raingauges, respectively, while cov(X,Y) is the 241 

empirical covariance between X and Y variables, and σ(X) is the empirical standard deviation of X. 242 

The Standardized Root Mean Square Error, S RMSE, can be written as: 243 
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The Standardized Mean Bias Error, S MBE, can be defined as: 246 
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(3) 247 

Besides numerical indices, we decided to use also the normalized Taylor diagram (Taylor, 2001), 248 

that is based on the geometrical relationship between correlation coefficient, standard deviation and 249 

centered mean square error. This diagram has been used to summarize error statistical performances 250 

with reference to spatial averaged time series. 251 

 252 

3.2. Categorical indices 253 

The categorical indices used in this work are: the Probability of Detection (POD), the False Alarm 254 

Ratio (FAR), the Miss Index (MISS), and the Critical Success Index (CSI) (Wilks, 2011). We used a 255 

slightly modified version of these indices, which take into account a precipitation depth threshold. 256 

The Probability of Detection, POD, sometimes referred to as Hit Score, has been estimated as: 257 

  (4) 258 

where t is a threshold on precipitation depth above which the precipitation occurrences are considered 259 

for POD computation, and I(a|b) is a function counting the number of occurrences when conditions a 260 

and b are both satisfied. For t=0 equation (4) provides the common and widely used POD estimate. A 261 

higher threshold can be used to evaluate the performances in reproducing the occurrences of the higher 262 

precipitation quantiles. In this study, the threshold value for categorical indices is set equal to the 5th 263 
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and 50th percentiles of non-zero rainfall records in each pixel, considering only rainfall values higher 264 

than 1 mm. POD provides the relative number of rainfall occurrences above the threshold t that are 265 

correctly detected by the considered estimation product. POD is equal to 1 if the analysed dataset is 266 

able to represent all occurrences and 0 if no occurrences are detected. The categorical Miss Index 267 

(MISS) is equal to 1-POD. 268 

The False Alarm Ratio, FAR, can be defined as follows: 269 

 

  (5) 270 

FAR indicates the relative number of rainfall occurrences above a threshold t detected by the satellite 271 

product when the reference dataset is lower than t. FAR is equal to 0 if estimates do not reproduce any 272 

false occurrence and 1 if all estimated occurrences do not correspond to observed threshold 273 

exceedances. 274 

The Critical Success Index (CSI), also known as the Threat Score, combines different aspects of the 275 

POD and FAR, describing the overall skill of the estimation relative to reference observation:  276 

     

(6) 277 

The CSI ranges from 0 to 1, where 0 indicates no skill and 1 indicates perfect skill. 278 
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The volumetric measures, defined by AghaKouchak and Mehran (2013), provide additional 281 

information that cannot be achieved from the above categorical metrics. For most climate variables one 282 

may need to go beyond the POD and estimate the volume of the variable of interest detected correctly. 283 

For this reason, the Volumetric Hit Index (VPOD) is defined as the volume of correctly detected 284 

estimations relative to the volume of the correctly detected estimations and missed observations: 285 

       (7) 286 

The VPOD ranges from 0 to 1, with 1 being the perfect score.  287 

The Volumetric False Alarm Ratio (VFAR) can be expressed as the volume of false Pest above the 288 

threshold t relative to the sum of rainfall volume on all estimated occurrences: 289 

     

 (8)  290 

The VFAR ranges from 0 to 1, with 0 being the perfect score.  291 

The fraction of the volume of missed Pest relative to Pobs can be expressed using the Volumetric 292 

Miss Index (VMISS): 293 

     

(9) 294 

The VMISS ranges from 0 to 1, with 0 being the perfect score.  295 
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Finally, following the original CSI concept, the Volumetric Critical Success Index (VCSI) is defined 296 

as an overall measure of volumetric performance: 297 

 (10) 298 

The VCSI ranges from 0 to 1, with 1 being the perfect score.  299 

 300 

4. Results 301 

In this section we show first the results of a preliminary analysis aimed at the evaluation of the 302 

capability of GPM products in reproducing the long-term spatial pattern and the temporal evolution of 303 

cumulated mean areal precipitation (MAP) over the whole islands of Sardinia and Sicily (section 4.1). 304 

The analysis is then aimed to evaluate the reproduction of spatial patterns at hourly and daily scale 305 

using a wide range of statistical indices (section 4.2), to reveal morphology effects (section 4.3) and 306 

finally to investigate the spatially averaged regional performances at different time scale aggregations 307 

(section 4.4). 308 
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distribution of precipitation retrieved by the GPM satellite product (Figure 2a,b) with that obtained by 312 
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(1017) mm/yr, with a spatial mean of 689 (616) mm/yr, for Sicily the GPM (rainfall interpolated) map 315 

in Figure 2b (2d) shows values ranging between 562 (323) mm/yr and 1009 (1596) mm/yr, with a 316 

spatial mean value equal to 766 (726) mm/yr. It can be observed that, for both Sardinia and Sicily, 317 

while the precipitation range provided by gauge data is greater than that estimated by GPM, the mean 318 

spatial value of the GPM map is greater than that derived by observations in accordance with the 319 

results obtained by Kazamias et al. (2017) in the Mediterranean area of Greece. 320 

Another preliminary analysis aimed to evaluate the capability of the GPM product to reproduce the 321 

temporal evolution of observed MAP over the whole of Sardinia and Sicily. The cumulative MAP from 322 

2015 and 2016 obtained by spatially averaging the rainfall values of the GPM and gauge-interpolated 323 

pixels covering Sardinia and Sicily is shown in Figure 3a and 3b, respectively. We can observe that, for 324 

both Sardinia and Sicily, the two time series in each subplot of Figure 3 (i.e., GPM and interpolated 325 

raingauge values) evolve in time with a very similar behaviour. While the GPM time series slightly 326 

overestimates the precipitation measured by the raingauges on both islands, GPM cumulated values are 327 

closer to observations in Sicily than in Sardinia. A first general consideration is that the GPM measures 328 

are able to correctly detect the rainfall timing over the two years on both the islands, with a good 329 

agreement in the total cumulated rainfall during the analysed period. 330 

 331 

4.2. Spatial analysis 332 

In order to obtain a quantitative comparison of satellite product performances, the continuous 333 

evaluation indices, described in section 3.1, have been calculated for each grid cell at hourly and daily 334 

scale for Sardinia and Sicily.  335 
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Figure 4 shows the spatial distribution of the correlation coefficient (CC, defined by Eq. 1), the 336 

standardized root mean square error (S-RMSE, defined by Eq. 2), and the standardized mean bias error 337 

(S-MBE, defined by Eq. 3), obtained by comparing hourly time series in each grid cell for Sardinia 338 

(Panels a, c, e) and Sicily (Panels b, d, f). Table 1 reports minimum, mean and maximum values of 339 

each index at hourly and daily time scale for both islands. Looking in detail at Figure 4a we can 340 

observe the largest values of the CC mainly in the northern part of Sardinia, while for Sicily (Figure 341 

4b) the largest values of the CC are located in the southwestern part. The lowest values of S-RMSE are 342 

in the eastern part of Sardinia, while the largest values are in the north-west (Figure 4c). In Sicily, S-343 

RMSE ranges from lowest values in the north-east and north-west to largest values in the south-east and 344 

north-west (Figure 4d). The S-MBE reaches the best performance (green pixels in Figure 4e,f) in the 345 

centre of the two islands. This could be due to an issue arising from coastal treatments because retrieval 346 

algorithms can suffer from some weaknesses due to different radiative properties of hydrometeors over 347 

the land and the ocean respectively (Lo Conti et al., 2014). From Table 1 it can be observed that GPM 348 

performances at hourly time scale are slightly better in Sardinia than in Sicily. 349 

At daily time scale, in general, the performances increase, as demonstrated by the largest values of 350 

CC (Table 1), which are equal to 0.82 in the centre of Sardinia (Figure 5a), while for Sicily (Figure 5b) 351 

the largest values of CC are equal to 0.85 in the south-centre of the island. Looking at the spatial 352 

distribution of S-RMSE in Sardinia (Figure 5c) the lowest value can be observed in the central part, 353 

while the largest values can be found in the northwestern part. The spatial distribution in Sicily (Figure 354 

5d) shows maximum values in the south-east and north (as at the hourly time scale) and minimum 355 

values in the western-central part of the island. The S-RMSE values are comparable to those obtained 356 
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by Xu et al. (2017) and Li et al. (2017). S-MBE is identical to the hourly case because of its 357 

mathematical definition and thus it is not shown in Figure 5. At daily time scale, the GPM 358 

performances in reproducing observations are slightly better in Sicily than in Sardinia (Table 1). 359 

Comparing these results with that obtained by Lo Conti et al. (2014) in Sicily using the PERSIANN and 360 

TMPA data, an increase of the performances of the new satellite products can be highlighted. 361 

Results arising from the analysis of categorical and volumetric indices described in section 3.2 and 362 

3.3, respectively, have been summarized in Table 1 and depicted in Figures 6-9 which display sample 363 

POD, VPOD, FAR, VFAR, MISS, VMISS, CSI, and VCSI values for Sardinia and Sicily, for hourly 364 

(Figures 6-7) and daily (Figures 8-9) time scales, respectively. Threshold values adopted for categorical 365 

and volumetric indices are set in each grid cell equal to 5th and 50th percentiles of the empirical 366 

distribution of the resampled observed non-zero precipitation in the selected grid cell, considering only 367 

rainfall values higher than 1 mm. For the sake of simplicity, we will use the notation tα to refer to 368 

thresholds t corresponding to αth percentile. POD, FAR, MISS and CSI maps allow the comparison of 369 

product capability of reproducing precipitation occurrences for each location at different probability 370 

levels, while the volumetric indices (i.e., VPOD, VFAR, VMISS, VCSI) provide additional information 371 

beyond the classical 2x2 contingency table. An overall survey of Figures 6-9 reveals a systematic 372 

worsening of GPM performances as the threshold rises from t5 (left subplots) to t50 (right subplots), i.e. 373 

POD, VPOD, CSI, VCSI indices decrease, while FAR, VFAR, MISS, VMISS indices increase. 374 

In Figure 6, the POD and VPOD values of the hourly data in Sardinia decrease when the thresholds t 375 

increase for α equal to 5% and 50%. The POD values range between 0.83 (0.52) and 1 (0.87) using 376 

thresholds t5 (t50), (Table 1). The VPOD values indicate that GPM detects between 87% (57%) and 377 
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100% (95%) of the volume of observed precipitation exceeding the 5th (50th) percentile, showing a 378 

good performance of GPM satellite data in detecting the volume of observed precipitation in almost all 379 

of the island of Sardinia. Using thresholds t5 (t50), the FAR and VFAR values over Sardinia show that 380 

the false precipitation is below 10% (51%) with highest values clusterized in the northeastern and 381 

southwestern parts. Similarly, the MISS index values are lower than 0.17 (0.48) using thresholds t5 (t50), 382 

showing a good capability of the GPM to detect a large fraction of precipitation. Based on VMISS, for 383 

t5 and t50, the fraction of precipitation amount that GPM does not detect is very close to zero. 384 

Considering the CSI index, the overall performance is between 0.78 (0.37) and 1 (0.68) for thresholds t5 385 

(t50), whereas taking into account the volume of precipitation the VCSI indicates a higher performance 386 

score. It is worth noting that the volumetric indices (i.e., VPOD, VFAR, VMISS, VCSI) often provide 387 

better results than those obtained by the categorical indices (i.e., POD, FAR, MISS, CSI) highlighting 388 

that, in terms of total volume, the agreement between GPM and measured values is better than a simple 389 

counting of threshold exceeding. 390 

Looking at results for hourly data in Sicily in Figure 7 and Table 1, we found similar indices values 391 

to those obtained for Sardinia (Figure 6), although with different spatial patterns. The POD values 392 

range between 0.73 (0.30) and 1 (0.91), while VPOD values range between 0.80 (0.39) and 1 (0.96) for 393 

thresholds t5 (t50) showing a good performance of GPM data in detecting volume of observed 394 

precipitation on almost all the island. The FAR values are between 0 (0.19) and 0.12 (0.59), while 395 

VFAR values range between 0 (0.13) and 0.15 (0.67) for thresholds t5 (t50) with lowest values in the 396 

southwestern part of Sicily. The MISS values are lower than 0.27 (0.67) using thresholds t5 (t50), 397 

showing good GPM performances. Focusing attention on VMISS and using thresholds t5 and t50, the 398 
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fraction of precipitation that GPM does not detect is relatively small. Moving to the last two indices, 399 

the CSI values are between 0.72 (0.26) and 1 (0.72) for thresholds t5 (t50), whereas the VCSI indicates a 400 

higher performance score between 0.80 (0.24) and 1 (0.77) for thresholds t5 (t50), testifying good 401 

overall performances of GPM. These results are in accordance with those obtained in Mediterranean 402 

areas and in Sicily by Panegrossi et al. (2016). 403 

The same performance metrics were computed also for rainfall fields aggregated at daily scales. 404 

Results are shown in Figures 8 and 9 for Sardinia and Sicily, respectively. Comparing these maps with 405 

those in previous Figures 6 and 7, a general improvement can be observed, as expected, together with a 406 

very similar pattern (see also Table 1).  407 

In order to investigate better the existence of possible spatial patterns of categorical and volumetric 408 

indices for daily and hourly precipitation, we calculated the probabilistic metric Global Moran’s I 409 

(Moran, 1950). The Moran’s I, which ranges from −1 to +1, provides information about the spatial 410 

autocorrelation of a feature on the basis of feature locations and feature values simultaneously. It is 411 

able to evaluate whether the pattern expressed by a feature is clustered (positive values), dispersed 412 

(negative values), or random (values close to zero). 413 

Results of Moran’s I obtained for all of the categorical and volumetric indices previously calculated 414 

for thresholds t5 and t50 are provided in Table 2. A statistical test with 1% significance revealed that 415 

only in four cases (relative to Sardinia) the null hypothesis of random fields cannot be rejected (italic 416 

bold font in Table 2), while for all the other cases the spatial distribution can be considered clusterized. 417 

No cases of dispersed pattern were found. 418 

 419 
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4.3. Elevation effects and coastal influence 420 

In order to analyse landscape morphology effects on the accuracy of GPM products, we investigated 421 

the dependence of S-RMSE at hourly time scale on the DEM elevations of grid cells at 0.1° resolution. 422 

With this aim, the values of S-RMSE have been plotted versus DEM elevations in Figure 10a, b. The 423 

dependence was analysed by linear regressions characterized by a coefficient of determination R2 equal 424 

to 0.33 for Sardinia (Figure 10a) and 0.13 for Sicily (Figure 10b) and negative slopes, suggesting an 425 

improvement in GPM accuracy with elevation which is in disagreement with the results found by Xu et 426 

al. (2017) (i.e., improvement of GPM accuracy reducing the elevation). This disagreement could be 427 

related to the fact that our results may be influenced by the unfair distribution of the elevations; in fact 428 

there are few high-elevation pixels where we found higher accuracy, and many low-elevation pixels 429 

where performances are highly variable, due also to the proximity of coastal line.  430 

To exclude that results can be influenced by the interpolation methods, the analysis was repeated by 431 

calculating the S-RMSE between the GPM pixel values and the hourly rainfall values observed at the 432 

gauge inside the GPM pixel. Results are shown in Figure 10c,d where we can observe a slightly 433 

stronger dependence: while for Sicily R2 is low and equal to 0.16 (Figure 10d), a slightly higher 434 

correlation has been found in Sardinia, where the R2 is equal to 0.48 (Figure 10c). Nevertheless, this 435 

kind of analysis would require more data to assess a robust estimate of the relation between GPM 436 

accuracy and terrain morphology.  437 

As mentioned in the introduction, some authors highlighted several drawbacks of GPM products in 438 

coastal regions, because the GPM algorithm uses a combined process for ocean and land that contains 439 

problematic ambiguity in discerning between rain and no-rain (Wolff and Fisher, 2009). This issue has 440 
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been investigated also with our case studies. Specifically, an analysis has been carried out to verify if 441 

GPM performances are statistically different in coastal or internal pixels. This kind of analysis has been 442 

performed focusing on the CC, S-RMSE and S-MBE at hourly time scale. Namely, we have divided all 443 

the considered pixels into two subsets, one including only the internal pixels and the other considering 444 

only the coastal ones, and we calculated the values of CC, S-RMSE and S-MBE at hourly time scale for 445 

each subset. Results are reported in Table 3 where we can observe, in general, better performances (i.e., 446 

higher CC and smaller S-RMSE and S-MBE) when only the internal pixels are considered, while the 447 

worst results have been detected in the coastline pixels, in accordance with the result obtained by 448 

Kazamias et al. (2017) and Kim et al. (2017). Finally, in order to verify if performances are statistically 449 

different between coastal and internal pixels, we performed the two-sample t-test comparing the two 450 

vectors (i.e., internal and coastal) and testing if they come from independent normal distributions with 451 

equal means and equal but unknown variances. The test has been rejected with significance level equal 452 

to 0.05 for all the three considered indices and for both the regions, confirming the worst performances 453 

detected along the coastal line. 454 

 455 

4.4. Analysis of spatially averaged precipitation values  456 

To further investigate how GPM product performances vary with different temporal aggregation 457 

scales, CC, S-RMSE, POD, and FAR indices have been computed considering precipitation depths at 1, 458 

3, 6, 12 hours, and from 1 to 60 days. Results of such analysis have been summarized in Figure 11, 459 

where spatially averaged indices for each time aggregation scale are plotted for Sardinia (Figure 11a, c, 460 

e, g) and Sicily (Figure 11b, d, f, h). Figure 11 describes an improvement of performances as time 461 
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aggregation increases, showing about the same behaviour for both islands and also confirming similar 462 

results obtained by Lo Conti et al. (2014), Sohn et al. (2010) and Behrangi and Wen (2017). In Figure 463 

11a,b the black solid line represents the regional mean of the CC obtained at pixel scale, while the 464 

black dashed line represents the CC between regional aggregated MAP time series. The CC values 465 

increase as the time resolution decreases, while the S-RMSE decreases as the time-aggregation interval 466 

increases (Figure 11c,d). POD (Figure 11e,f) and FAR (Figure 11g,h) values have been calculated 467 

considering thresholds t5 and t50 for each pixel: POD (FAR) increases (decreases) as the time-468 

aggregation scale increases. Almost all the plotted indices improve in the first time scales (i.e., from 469 

hourly to 5-day) and then tend to become constant for time aggregation larger than 10 days. The S-470 

MBE levels do not change with the temporal aggregation because it does not affect the ratio between 471 

mean bias and mean precipitation and, for this reason, the S-MBE plot has not been shown. 472 

The normalized Taylor diagram has been used finally to compare the time series of MAP values as 473 

obtained from observation and from GPM outputs, both spatially averaged over the whole of the 474 

islands. The comparison has been carried out at hourly and daily time scale for both Sardinia and Sicily 475 

and it is displayed in Figure 12. The normalized Taylor diagram summarizes the distance between 476 

testing and reference series in terms of normalized standard deviation, correlation coefficient (the same 477 

of Figure 11a,b, dashed black line), and normalized RMSD (root mean square difference). The black 478 

star refers to the observed value for which the normalized standard deviation is equal to 1, the radial 479 

distance from the black star quantifies the centered RSMD normalized by the standard deviation of 480 

observed MAP, the azimuth and the radial distance from the origin quantify CC and normalized 481 

standard deviation, respectively. The observed standard deviations are 0.285 and 4.421 mm (0.285 and 482 
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4.427 mm) for hourly and daily MAP time series in Sardinia (Sicily), respectively. Hourly data (circles 483 

in Figure 12) characterized by a normalized standard deviation close to 1.6 for both Sardinia and Sicily, 484 

have a correlation coefficient of about 0.68 and normalized RMSD lower than 1.3. Looking at daily 485 

data (squares in Figure 12), the normalized standard deviation is about 1.4 and the correlation 486 

coefficient improves up to 0.85, while the normalized RMSD is lower than 0.8. Interestingly, hourly 487 

and daily statistics are very similar for the two considered cases (i.e., Sardinia and Sicily). This 488 

suggests that the influence of temporal aggregation on GPM performances is greater than the effects of 489 

geographic context.  490 

 491 

5. Conclusions 492 

In this study, GPM-IMERG post real-time “Final” product data (version V04 released in spring 493 

2017) were evaluated against measured rainfall over the two largest islands of the Mediterranean Sea 494 

(Sardinia and Sicily) during a two-year window (2015-2016) at hourly and longer time scales. 495 

For an accurate evaluation, a pool of statistical indices, including continuous, categorical, and 496 

volumetric indices, were applied to evaluate the performances of satellite products. The results of this 497 

study showed that correlation among GPM satellite data and interpolated gauge rainfall reaches values 498 

of CC equal to 0.8 at daily scale. The values of bias confirmed that GPM satellite data slightly 499 

overestimates rainfall over the study areas. The volumetric indices (i.e., VPOD, VFAR, VMISS, VCSI) 500 

often provided better results than categorical ones (i.e., POD, FAR, MISS, CSI), meaning that the 501 

agreement between GPM and measures is better in terms of total volume above a given threshold rather 502 

than in terms of occurrences above the same threshold. 503 
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Interestingly, hourly and daily statistics are very similar for the two considered cases (i.e., Sardinia 504 

and Sicily). This suggests that GPM satellite data performances are driven by temporal aggregation 505 

more than the geographic context. This behaviour has been investigated better by analysing how GPM 506 

performances improve as the temporal aggregation increases and it was found that a stable performance 507 

is reached at approximately 10 days. The GPM products showed some weaknesses in reproducing 508 

observed rainfall in proximity of land-sea transition: indeed the worst results for all the considered 509 

indices have been obtained for the coastline pixels in both islands. Finally, we searched for a relation 510 

between accuracy of GPM products and landscape morphology. This kind of connection has not been 511 

found in Sicily, while in Sardinia a weak correlation indicates increasing accuracy with elevation. 512 

In conclusion, although we found promising results indicating the potential of GPM estimates for 513 

hydrological applications, there is still room for improvement under technological and scientifical 514 

perspectives. While the first involves the long-term continuous instrumentation update and innovation, 515 

scientific efforts can certainly contribute to improve retrieval algorithms to account for coastal and 516 

morphological effects, even including bias-correction procedures. 517 

 518 

Acknowledgments 519 

This work was partially supported by the Sardinian Region with law 7/2007, funding call 2013, 520 

project CRP 78576: “Anthropogenic and climatic impacts on the hydrological cycle at basin and 521 

hillslope scale” (Impatti antropogenici e climatici sul ciclo idrologico a scala di bacino e di versante). 522 

This work was partially supported by the Fondazione di Sardegna, funding call 2017, project: 523 

Impacts of climate change on water resources and floods, CUP: F71I17000270002. 524 



27 

 

  525 



28 

 

References 526 

 527 

AghaKouchak, A., Mehran, A., Extended contingency table: Performance metrics for satellite 528 

observations and climate model simulations, Water Resources Research 49(2013), pp. 7144-529 

7149. 530 

Asong, Z., Razavi, S., Wheater, H., Wong, J., Evaluation of Integrated Multisatellite Retrievals for 531 

GPM (IMERG) over Southern Canada against Ground Precipitation Observations: A 532 

Preliminary Assessment, Journal of Hydrometeorology 18(2017), pp. 1033-1050. 533 

Behrangi, A., Wen, Y., On the Spatial and Temporal Sampling Errors of Remotely Sensed Precipitation 534 

Products, Remote Sensing 9(2017), p. 1127. 535 

Cannarozzo, M., Noto, L., Viola, F., Spatial distribution of rainfall trends in Sicily (1921–2000), 536 

Physics and Chemistry of the Earth, Parts A/B/C 31(2006), pp. 1201-1211. 537 

Caracciolo, D., Arnone, E., Conti, F.L., Noto, L.V., Exploiting historical rainfall and landslide data in a 538 

spatial database for the derivation of critical rainfall thresholds, Environmental Earth Sciences 539 

76(2017a), p. 222. 540 

Caracciolo, D., Deidda, R., Viola, F., Analytical estimation of annual runoff distribution in ungauged 541 

seasonally dry basins based on a first order Taylor expansion of the Fu's equation, Advances in 542 

Water Resources 109(2017b), pp. 320-332. 543 

Chen, F., Li, X., Evaluation of IMERG and TRMM 3B43 monthly precipitation products over 544 

mainland China, Remote Sensing 8(2016), p. 472. 545 

Ciabatta, L. et al., Daily precipitation estimation through different microwave sensors: Verification 546 

study over Italy, Journal of Hydrology(2017). 547 

Di Piazza, A., Conti, F.L., Noto, L., Viola, F., La Loggia, G., Comparative analysis of different 548 

techniques for spatial interpolation of rainfall data to create a serially complete monthly time 549 

series of precipitation for Sicily, Italy, International Journal of Applied Earth Observation and 550 

Geoinformation 13(2011), pp. 396-408. 551 

Forestieri, A., Lo Conti, F., Blenkinsop, S., Fowler, H.J., Noto, L.V., Regional frequency analysis of 552 

extreme rainfall in Sicily (Italy), International Journal of Climatology(2018). 553 

Gourley, J.J., Hong, Y., Flamig, Z.L., Li, L., Wang, J., Intercomparison of rainfall estimates from 554 

radar, satellite, gauge, and combinations for a season of record rainfall, Journal of Applied 555 

Meteorology and Climatology 49(2010), pp. 437-452. 556 

Guo, H. et al., Early assessment of integrated multi-satellite retrievals for global precipitation 557 

measurement over China, Atmospheric Research 176(2016), pp. 121-133. 558 

Hou, A.Y. et al., The global precipitation measurement mission, Bulletin of the American 559 

Meteorological Society 95(2014), pp. 701-722. 560 

Houze Jr, R.A. et al., The Olympic Mountains Experiment (OLYMPEX), Bulletin of the American 561 

Meteorological Society 98 (2017), pp. 2167-2188. 562 

Hsu, K.-l., Gao, X., Sorooshian, S., Gupta, H.V., Precipitation estimation from remotely sensed 563 

information using artificial neural networks, Journal of Applied Meteorology 36(1997), pp. 564 

1176-1190. 565 

Huffman, G. et al., GPM Integrated Multi-Satellite Retrievals for GPM (IMERG) Algorithm 566 

Theoretical Basis Document (ATBD) Version 4.4. PPS, NASA/GSFC, 30 pp.  (2014). 567 



29 

 

Huffman, G.J., Bolvin, D.T., Braithwaite, D., Hsu, K., Joyce, R., et al., Algorithm Theoretical Basis 568 

Document (ATBD) Version 4.6 NASA Global Precipitation Measurement (GPM) Integrated 569 

Multi-satellitE Retrievals for GPM (IMERG), NASA 1-25.< 570 

https://pmm.nasa.gov/index.php?q=data-access/downloads/gpm>(2017a). 571 

Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Integrated Multi-satellitE Retrievals for GPM (IMERG) 572 

technical documentation, NASA/GSFC Code 612(2015), p. 47. 573 

Huffman, G.J., Bolvin, D.T., Nelkin, E.J., Stocher, E.F., V04 IMERG Final Run Release Notes, NASA 574 

1-2.< https://pmm.nasa.gov/data-access/downloads/gpm/ V04 IMERG Final Run Release Notes 575 

>(2017b). 576 

Huffman, G.J. et al., The TRMM multisatellite precipitation analysis (TMPA): Quasi-global, multiyear, 577 

combined-sensor precipitation estimates at fine scales, Journal of Hydrometeorology 8(2007), 578 

pp. 38-55. 579 

Joyce, R.J., Janowiak, J.E., Arkin, P.A., Xie, P., CMORPH: A method that produces global 580 

precipitation estimates from passive microwave and infrared data at high spatial and temporal 581 

resolution, Journal of Hydrometeorology 5(2004), pp. 487-503. 582 

Kazamias, A., Sapountzis, M., Lagouvardos, K., Evaluation and intercomparison of GPM-IMERG and 583 

TRMM 3B42 daily precipitation products over Greece. Fifth International Conference on 584 

Remote Sensing and Geoinformation of the Environment (RSCy2017), International Society for 585 

Optics and Photonics (2017), p. 1044413. 586 

Khodadoust Siuki, S., Saghafian, B., Moazami, S., Comprehensive evaluation of 3-hourly TRMM and 587 

half-hourly GPM-IMERG satellite precipitation products, International Journal of Remote 588 

Sensing 38(2017), pp. 558-571. 589 

Kim, K., Park, J., Baik, J., Choi, M., Evaluation of topographical and seasonal feature using GPM 590 

IMERG and TRMM 3B42 over Far-East Asia, Atmospheric Research 187(2017), pp. 95-105. 591 

Kubota, T. et al., Global precipitation map using satellite-borne microwave radiometers by the GSMaP 592 

project: Production and validation, IEEE Transactions on Geoscience and Remote Sensing 593 

45(2007), pp. 2259-2275. 594 

Li, N. et al., Statistical assessment and hydrological utility of the latest multi-satellite precipitation 595 

analysis IMERG in Ganjiang River basin, Atmospheric Research 183(2017), pp. 212-223. 596 

Libertino, A., Sharma, A., Lakshmi, V., Claps, P., A global assessment of the timing of extreme rainfall 597 

from TRMM and GPM for improving hydrologic design, Environmental Research Letters 598 

11(2016), p. 054003. 599 

Liu, Z., Comparison of integrated multisatellite retrievals for GPM (IMERG) and TRMM multisatellite 600 

precipitation analysis (TMPA) monthly precipitation products: initial results, Journal of 601 

Hydrometeorology 17(2016), pp. 777-790. 602 

Lo Conti, F., Caracciolo, D., Pumo, D., Viola, F., Noto, L., Analisi della affidabilità dei database 603 

pluviometrici globali a scala locale.  Applicazione al territorio siciliano, XXXIII Convegno 604 

Nazionale di Idraulica e Costruzioni Idrauliche(2012), pp. 1-11. 605 

Lo Conti, F., Hsu, K.-L., Noto, L.V., Sorooshian, S., Evaluation and comparison of satellite 606 

precipitation estimates with reference to a local area in the Mediterranean Sea, Atmospheric 607 

Research 138(2014), pp. 189-204. 608 



30 

 

Long, D., Longuevergne, L., Scanlon, B.R., Global analysis of approaches for deriving total water 609 

storage changes from GRACE satellites, Water Resources Research 51(2015), pp. 2574-2594. 610 

Maggioni, V., Meyers, P.C., Robinson, M.D., A review of merged high-resolution satellite 611 

precipitation product accuracy during the Tropical Rainfall Measuring Mission (TRMM) era, 612 

Journal of Hydrometeorology 17(2016), pp. 1101-1117. 613 

Mascaro, G., Deidda, R., Hellies, M., On the nature of rainfall intermittency as revealed by different 614 

metrics and sampling approaches, Hydrology and Earth System Sciences 17(2013), p. 355. 615 

Moran, P.A., Notes on continuous stochastic phenomena, Biometrika 37(1950), pp. 17-23. 616 

NASA, Algorithm Theoretical Basis Document GLOBAL PRECIPITATION MEASUREMENT 617 

(GPM) 714 MISSION, < 618 

http://rain.atmos.colostate.edu/ATBD/ATBD_GPM_June1_2017.pdf>(2017). 619 

Ning, S. et al., Error Analysis and Evaluation of the Latest GSMap and IMERG Precipitation Products 620 

over Eastern China, Advances in Meteorology 2017(2017). 621 

Ning, S., Wang, J., Jin, J., Ishidaira, H., Assessment of the Latest GPM-Era High-Resolution Satellite 622 

Precipitation Products by Comparison with Observation Gauge Data over the Chinese 623 

Mainland, Water 8(2016), p. 481. 624 

Panegrossi, G. et al., Use of the GPM constellation for monitoring heavy precipitation events over the 625 

Mediterranean region, IEEE Journal of Selected Topics in Applied Earth Observations and 626 

Remote Sensing 9(2016), pp. 2733-2753. 627 

Prakash, S. et al., A preliminary assessment of GPM-based multi-satellite precipitation estimates over a 628 

monsoon dominated region, Journal of Hydrology(2016a). 629 

Prakash, S., Mitra, A.K., Gairola, R.M., Norouzi, H., Pai, D.S., Status of High-Resolution Multisatellite 630 

Precipitation Products Across India. Remote Sensing of Aerosols, Clouds, and Precipitation, 631 

Elsevier (2018), pp. 301-314. 632 

Prakash, S., Mitra, A.K., Pai, D., AghaKouchak, A., From TRMM to GPM: How well can heavy 633 

rainfall be detected from space?, Advances in Water Resources 88(2016b), pp. 1-7. 634 

Sahlu, D., Nikolopoulos, E.I., Moges, S.A., Anagnostou, E.N., Hailu, D., First evaluation of the Day-1 635 

IMERG over the upper Blue Nile Basin, Journal of Hydrometeorology 17(2016), pp. 2875-636 

2882. 637 

Sanò, P. et al., The new Passive microwave Neural network Precipitation Retrieval (PNPR) algorithm 638 

for the cross-track scanning ATMS radiometer: description and verification study over Europe 639 

and Africa using GPM and TRMM spaceborne radars, Atmospheric Measurement Techniques 640 

9(2016), p. 5441. 641 

Schneider, U. et al., GPCC's new land surface precipitation climatology based on quality-controlled in 642 

situ data and its role in quantifying the global water cycle, Theoretical and Applied Climatology 643 

115(2014), pp. 15-40. 644 

Seyyedi, H., Anagnostou, E.N., Beighley, E., McCollum, J., Hydrologic evaluation of satellite and 645 

reanalysis precipitation datasets over a mid-latitude basin, Atmospheric Research 164(2015), 646 

pp. 37-48. 647 

Sharifi, E., Steinacker, R., Saghafian, B., Assessment of GPM-IMERG and other precipitation products 648 

against gauge data under different topographic and climatic conditions in Iran: preliminary 649 

results, Remote Sensing 8(2016), p. 135. 650 

http://rain.atmos.colostate.edu/ATBD/ATBD_GPM_June1_2017.pdf%3e(2017)


31 

 

Skofronick-Jackson, G. et al., The global precipitation measurement (GPM) mission for science and 651 

society, Bulletin of the American Meteorological Society(2016). 652 

Sohn, B., Han, H.-J., Seo, E.-K., Validation of satellite-based high-resolution rainfall products over the 653 

Korean Peninsula using data from a dense rain gauge network, Journal of Applied Meteorology 654 

and Climatology 49(2010), pp. 701-714. 655 

Sorooshian, S. et al., Evaluation of PERSIANN system satellite–based estimates of tropical rainfall, 656 

Bulletin of the American Meteorological Society 81(2000), pp. 2035-2046. 657 

Speirs, P., Gabella, M., Berne, A., A Comparison between the GPM Dual-Frequency Precipitation 658 

Radar and Ground-Based Radar Precipitation Rate Estimates in the Swiss Alps and Plateau, 659 

Journal of Hydrometeorology 18(2017), pp. 1247-1269. 660 

Sun, Q. et al., A Review of Global Precipitation Data Sets: Data Sources, Estimation, and 661 

Intercomparisons, Reviews of Geophysics(2018). 662 

Tang, G., Ma, Y., Long, D., Zhong, L., Hong, Y., Evaluation of GPM Day-1 IMERG and TMPA 663 

Version-7 legacy products over Mainland China at multiple spatiotemporal scales, Journal of 664 

Hydrology 533(2016a), pp. 152-167. 665 

Tang, G. et al., Statistical and hydrological comparisons between TRMM and GPM level-3 products 666 

over a midlatitude basin: Is day-1 IMERG a good successor for TMPA 3B42V7?, Journal of 667 

Hydrometeorology 17(2016b), pp. 121-137. 668 

Taylor, K.E., Summarizing multiple aspects of model performance in a single diagram, Journal of 669 

Geophysical Research: Atmospheres 106(2001), pp. 7183-7192. 670 

Viola, F., Caracciolo, D., Forestieri, A., Pumo, D., Noto, L., Annual runoff assessment in arid and 671 

semiarid Mediterranean watersheds under the Budyko's framework, Hydrological Processes 672 

31(2017), pp. 1876-1888. 673 

Wilks, D.S., Statistical methods in the atmospheric sciences. Academic press (2011). 674 

Xu, R. et al., Ground validation of GPM IMERG and TRMM 3B42V7 rainfall products over southern 675 

Tibetan Plateau based on a high-density rain gauge network, Journal of Geophysical Research: 676 

Atmospheres 122(2017), pp. 910-924. 677 

Xue, X. et al., Statistical and hydrological evaluation of TRMM-based Multi-satellite Precipitation 678 

Analysis over the Wangchu Basin of Bhutan: Are the latest satellite precipitation products 679 

3B42V7 ready for use in ungauged basins?, Journal of Hydrology 499(2013), pp. 91-99. 680 

Yong, B. et al., Assessment of evolving TRMM‐based multisatellite real‐time precipitation estimation 681 

methods and their impacts on hydrologic prediction in a high latitude basin, Journal of 682 

Geophysical Research: Atmospheres 117(2012). 683 

 684 

  685 



32 

 

Tables  686 

Indices 

Hourly Daily 

Sardinia Sicily Sardinia Sicily 

min mean  max min mean  max min mean  max min mean  max 

CC 0.17 0.32  0.54 0.02  0.26 0.44 0.45  0.67 0.81 0.11  0.64 0.85 

S-RMSE 6.46 11.80  16.88 7.29 12.07  38.83 2.09 3.44  4.91 2.15  3.39 9.30 

S-MBE -0.70 -0.17  0.34 -1.21 -0.12  0.48 -0.70 -0.17  0.34 -1.21 -0.12  0.48 

POD α=5% 0.83 0.97 1 0.73 0.96 1 0.86 0.96 1 0.85 0.95 1 

POD α=50% 0.52 0.69 0.87 0.30 0.65 0.91 0.46 0.67 0.89 0.45 0.70 0.95 

VPOD α=5% 0.87 0.98 1 0.80 0.98 1 0.94 0.98 1 0.89 0.98 1 

VPOD α=50% 0.57 0.79 0.95 0.39 0.75 0.96 0.60 0.80 0.96 0.60 0.83 0.98 

FAR α=5% 0 0.03 0.10 0 0.03 0.12 0 0.02 0.06 0 0.02 0.08 

FAR α=50% 0.17 0.35 0.51 0.19 0.36 0.59 0.11 0.23 0.37 0.11 0.25 0.45 

VFAR α=5% 0 0.02 0.10 0 0.02 0.15 0 0.01 0.05 0 0.01 0.08 

VFAR α=50% 0.11 0.30 0.51 0.13 0.75 0.67 0.05 0.15 0.30 0.05 0.16 0.44 

MISS α=5% 0 0.03 0.17 0 0.04 0.27 0 0.04 0.14 0 0.05 0.15 

MISS α=50% 0.12 0.31 0.48 0.09 0.35 0.67 0.11 0.33 0.54 0.05 0.30 0.55 

VMISS α=5% 0 0.02 0.13 0 0.03 0.20 0 0.02 0.06 0 0.02 0.11 

VMISS α=50% 0.05 0.21 0.43 0.034 0.25 0.61 0.04 0.20 0.40 0.02 0.17 0.41 

CSI α=5% 0.78 0.94 1 0.72 0.94 1 0.84 0.94 1 0.83 0.93 1 

CSI α=50% 0.37 0.51 0.68 0.26 0.48 0.72 0.42 0.56 0.73 0.39 0.56 0.73 

VCSI α=5% 0.85 0.96 1 0.80 0.95 1 0.91 0.97 1 0.88 0.97 1 

VCSI α=50% 0.42 0.59 0.77 0.24 0.57 0.77 0.55 0.70 0.86 0.47 0.71 0.85 

 687 

Table 1. Spatial minimum (min), mean and maximum (max) values of each index at hourly and daily 688 

time scale for both islands.  689 
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 691 

Moran’s 

Index 

Hourly Daily 

Sardinia Sicily Sardinia Sicily 

 5% 50% 5% 50% 5% 50% 5% 50% 

POD 0.090 0.354 0.091 0.347 0.046 0.677 0.254 0.552 

VPOD 0.102 0.402 0.168 0.389 0.116 0.605 0.244 0.582 

FAR 0.052 0.432 0.115 0.297 0.173 0.418 0.265 0.351 

VFAR 0.101 0.489 0.102 0.342 0.121 0.561 0.182 0.300 

MISS 0.090 0.354 0.092 0.347 0.046 0.677 0.254 0.552 

VMISS 0.102 0.402 0.168 0.389 0.116 0.605 0.244 0.582 

CSI 0.071 0.365 0.150 0.340 0.104 0.532 0.134 0.489 

VCSI 0.093 0.490 0.149 0.409 0.150 0.475 0.171 0.506 

 692 

Table 2. Values of Moran’s I for categorical and volumetric indices at hourly and daily time scales 693 

for Sardinia and Sicily. α is the percentile of the threshold value, t, above which the precipitation 694 

occurrences are considered. Number format indicates whether the spatial distribution of the feature is 695 

to be considered random (italic bold), or clustered (serif). 696 
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Indices 
Sardinia Sicily 

Coastal Internal Coastal Internal 

CC 0.29 0.35 0.22 0.27 

S-RMSE 12.60 10.83 13.46 11.77 

S-MBE -0.20 -0.13 -0.17 -0.11 

 698 

Table 3. GPM performance in coastal and internal pixels. The values of mean CC, S-RMSE and S-MBE 699 

refer to hourly time scale.  700 
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Figures 701 

 702 

Figure 1. Digital elevation model of the study areas (i.e., Sicily and Sardinia islands) and raingauge 703 

locations (red dots). 704 
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 706 

Figure 2. Maps of the mean annual rainfall (2015 and 2016 period) measured with GPM (a,b) or 707 

obtained spatially interpolating the raingauge data (c,d) for Sardinia (a,c) and Sicily (b,d). 708 
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 710 

Figure 3. Comparison of cumulative depths of MAP from GPM (continuous line) and raingauges 711 

(dashed line) over the whole of Sardinia (a) and Sicily (b) for the two-year period 2015-2016. 712 

 713 
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 715 

Figure 4. Comparison of hourly GPM satellite precipitation and interpolated-raingauge data for 716 

Sardinia (a,c,e) and Sicily (b,d,f) by continuous indices: CC, correlation coefficient (a,b); S-RMSE, 717 

standardized root mean square error (c,d); S-MBE, standardized mean bias error (e,f). 718 
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 719 

 720 

Figure 5. Same as Figure 4, but for daily time scale. S-MBE is identical to the hourly case because of 721 

its mathematical definition and thus it is not represented. 722 
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 724 

Figure 6. Comparison of hourly GPM satellite precipitation and interpolated-raingauge data for 725 

Sardinia by categorical and volumetric indices: POD, VPOD, FAR, VFAR, MISS, VMISS, CSI, and 726 

VCSI (see text for acronym definitions). Results using thresholds tα with α equal to 5% and 50% are 727 

reported in the left and right plots, respectively.   728 
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 729 

 730 

Figure 7. Same as Figure 8, but for hourly precipitation in Sicily.  731 
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 732 

Figure 8. Same as Figure 8, but for daily precipitation in Sardinia. 733 
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 735 

Figure 9. Same as Figure 8, but for daily precipitation in Sicily. 736 
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 738 

Figure 10. Relation between elevation and S-RMSE at hourly time scale for each pixel (a,b) and for 739 

each raingauge (c,d), for Sardinia (a,c) and Sicily (b,d).  740 
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 741 

Figure 11. GPM product performances for different aggregation time scales (i.e., 1, 3, 6, 12 hours, 1, 2, 742 

3, 4, 5, 10, 15, 20, 30, 60 days) in Sardinia (a,c,e,g) and Sicily (b,d,f,h): CC, correlation coefficient 743 

(a,b); S-RMSE, standardized root mean square error (c,d); POD, probability of detection (e,f); FAR, 744 

false alarm ratio (g,h). Last two indices are computed for thresholds tα with α equal to 5% and 50%. In 745 

subplots a) and b) the black solid line represents the regional mean of the correlation coefficient 746 

obtained at pixel scale, while the black dashed line represents the correlation coefficient between 747 

regional aggregated time series. 748 
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 750 

 751 

Figure 12. Normalized Taylor diagram obtained from MAP time series at hourly (circles) and daily 752 

(squares) scales in Sicily and Sardinia. The black star refers to the observed value where the 753 

normalized standard deviation is equal to 1, the radial distance from the black star quantifies the 754 

centered RSMD normalized by the standard deviation of observed MAP, the azimuth and the radial 755 

distance from the origin quantify instead CC and normalized standard deviation, respectively.  756 
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