Toward Automatic RDF Property
Tagging

Author: Andrea Dessi

Supervisor: Maurizio Atzori

Department of Mathematics and Computer Science
Ph.D. school in Computer Science

Ph.D. Coordinator: G. Michele Pinna

University of Cagliari
S.S.D. INF/01

A thesis submitted for the degree of
Doctor of Philosophy

Cycle XXVIII
Final examination academic year 2015/2016

“When ones expectations are reduced to zero,
one really appreciates everything one does have.”
(Stephen William Hawking)

Acknowledgements

First and foremost, I would like to thank my Ph.D. supervisor Maurizio
Atzori, who has been a model and an inspiration for providing me with
the opportunity to complete my Ph.D. thesis at the Penn State Univer-
sity as a research assistant and as a visiting student. I want to also thank
my on the spot supervisor Anna Cinzia Squicciarini and my colleagues
Emanuele and Andrea, who helped and supported me.

These last years have been intense and stimulating, both professionally
and humanly.

Finally, I would like to thank my family for all their strength and en-
couragement, who lived with me throughout this journey. For my parents
who raised me with a love of science and supported me in all my pursuits.
To all my friends, who encouraged me to take the Ph.D. challenge. And
most of all for my loving, supportive, encouraging, and patient girlfriend
Zuleica whose faithful support during this Ph.D. is so much appreciated.
Thank you.

Andrea Dessi gratefully acknowledges INPS for the financial support of
his PhD scholarship (Doctor J, Homo Sapiens Sapiens Operational Pro-
gramme 2012).

Andrea Dessi
University of Cagliari
February 2017

Publications

The research reported in this dissertation has been contributed by the

following publications:

e Andrea Dessi, Andrea Maxia, Maurizio Atzori, Carlo Zaniolo: Sup-
porting semantic web search and structured queries on mobile de-
vices. (SSWQVLDB 2013: 5:1-5:4).

e Maurizio Atzori, Andrea Dessi: Ranking DBpedia Properties. (Wet-
ice 2014: 441-446).

e Andrea Dessi, Maurizio Atzori: Computing On-the-Fly DBpedia
Property Ranking. (ICSC 2014: 260-261).

e Andrea Dessi, Andrea Maxia, Maurizio Atzori, Carlo Zaniolo: Sup-
porting Semantic Web Search and Structured Queries on Mobile De-
vices. (SEBD 2014: 361-368).

e Andrea Dessi and Maurizio Atzori: Schema-Agnostic Ranking of
RDF Properties. (SEBD 2015: 104-111).

e Andrea Dessi, Maurizio Atzori: A machine-learning approach to
ranking RDF properties. (Journal Elsevier, Future Generation Comp.
Syst. 54: 366-377 (2016))

RDF
RDF/S
XML
HTML
OWL
SBE
URI
SPARQL
SQL
URI
KR

KB
QBE

IR

IE

QA
MLR
NLP
QALD
LARQ

Acronyms

Resource Description Framework
Resource Description Framework/Schema
Extensible Markup Language

Hyper Text Markup Language

Web Ontology Languages

Search By Example

Uniform Resource Identifier

SPARQL Protocol and RDF Query Language
Structured Query Language

Uniform Resource Identifier

Knowledge Representation

Knowledge Base

Query By Example

Information Retrieval

Information Extraction

Query Answering

Machine Learning to Rank

Natural Language Processing

Question Answering over Linked Data

Lucene + ARQ

Abstract

This work investigates some problems about semantic properties (also
known as predicates) of Knowledge Bases, as part of the Semantic Web,
for querying and ranking them toward a new system to tag automatically
RDF Property over parts of free-text in Natural Language.

The main insights and contributions are:

e a contribution to develop a system called Qpedia, inspired by SWiPFE,
to make difficult query on schema-agnostic Knowledge Bases with a

simple and intuitive mobile-user interface;

e the creation of the first approach exploiting Machine-Learning to
rank RDF predicates;

e the creation of a possible approach to tagging free-text with RDF

predicates, with a case study of possible backend;

The proposed methods have been evaluated with the most popular Knowl-
edge Bases (DBpedia, WikiData, MusicBrainz and Freebase), obtaining
encouraging results. Thus, this work is a first step towards the RDF
Property Tagging of natural language, as reflected in Chapter [5], needed
to pave the way providing a resolution of sub-problems related to Ques-
tion Answering over RDF properties, which are not typically addressed in

literature through this way.

Keywords

Semantic Web, DBpedia, Ranking Algorithms, Graphical User Interface,
Human Computer Interaction, Fast Property Ranking, Tagging, User Ex-

perience.

Contents

[1__Introduction| 1
(L1 The Contextl. 1
(1.2 Semantic Web overview].o 0oL 2

(1.2.1 Knowledge Basesused| 2
M22 RDEo 3
(1.2.3 DBpedial 5
[1.2.4 Freebasel 5
(.25 Wikidatal oo 6
(.26 MusicBrainzlo oo 6
[[27 SPARQL|. 7
(.3 Contributionl. 7
(1.4 The Approach| oo 8
(1.4.1 Query By Example: Qpedia] 9
(1.4.2 RankProperties 10
(1.4.3 TagProp| 12
(Lo Thesis Structuref.o 13

[2__State of the Art] 14
[2.1 Search Systems| 14
[2.2 Ranking Systems: entities and properties| 16
2.3 Tagging and QA Systems|. 22

3 Qpedia: An user-Friendly Interface for RDF datal 24
[3.1 The engine behind Qpedial 24
[3.2 Implementation| Lo 27

.21 The Ul Modulef 27
[3.2.2 The Query Manager| 28
(3.2.3 Triplestore / Execution Manager| 28

[4 RankProperties: A possible solution for Ranking RDF properties| 30

4.1 MLR Algorithms| 30
4.2 Proposed Features| 31
(4.3 Training Set| 35
BEAModeld o o oo 37
1.b Feature Selectionlo 38
451 Time Performancel oL 38

4.5.2 Precision Performancelo 38

[4.5.3 Examples of Generated Models| 39

[> TagProp: An idea for tagging RDF Property| 44
[>.1 The TagProp algorithm|. 44
[>.1.1 Choice of correct RDF property and synonyms|. 47

[>.1.2 A practical example|o 0000 48

[>.2 Possible backend tor TagProp| 49

6 Experiments| 53
[6.1 RankProperties| oo 53
[6.1.1 Quantitative measures for the Evaluation|. 53
6.1.2 Test Dataset|. oo 55

[6.1.3 Time Performancel 56

[6.1.4 Quality of Ranking| 57

[6.1.5 Other important experiments for the Evaluation| 57

6.2 Qpedial 58
6.3 TagProp| 61
[6.3.1 Quality of Taggingl 68
[7_Conclusion And Outlookl 69
(.1 Thesis main contributions| 69
(.2 _Directions for further researchl 70

[A Technical Details on the RankProperties tools| 72
[A.1 Web Serverl 73
[A.2 Model Generator 76
(A3 PEwvaluation Toollo 80

i

[B Technical Details on the TagProp tools|

[B.2.2° Synonyms Extraction|.o
(B.2.3 TagProp GUI
[B.2.4 Qald Extended| oo

[C Technical Details on Qpedial

(D Jena Experiments|

(Bibliography|

il

85
85
38
88
88
89
89

90

91

110

List of Figures

(1.1 A RDF triple sample |.

[L2 Heart of Thesisl 9
(1.3 The QPedia System|. 10
(1.4 The Ranking RDF Properties framework |. 11
(1.5 TagProp System| oo 12
[2.1 Existing approaches rendered on a recent mobile browser| 16
[3.1 User interaction Qpedia| 26
[3.2 Searching and querying in Qpedialo 26
[3.3 Search By Example in QPedia) 27
4.1 Best performing MLR algorithms w.r.t. average and best Precision. |. 37
4.2 Best performing Training mode w.r.t. average and best Precision ob- |

tained by the trained models.| 37
1.3 Time of Execution (seconds) for each A-H Ranking Feature.| 38
[>.1 TagProp Grafical User Inteface] 45
[5.2 TagProp System| oo 47
bh.3 Backend Architecturelo oo 50
[>.4 Indexes organization in Lucene] 52
(6.1 Qpedia 1 step: Finding the subject (Entity) of question| 59
6.2 Qpedia 2 step: Selecting the appropriate subject between results| . . . 60
[6.3 Qpedia 3 step: Finding the desired property to answer the question| . 60

6.4

Qpedia 4 step: Reading the answer into the contents of selected property| 61

v

Chapter 1

Introduction

1.1 The Context

The World Wide Web is the greatest repository of information, with virtually
unlimited potential. It is made from millions of interlinked web pages and contains
resources concerning almost every imaginable topic, instantaneously available to any-
one with an Internet connection.

However, its size has also become one of big research problems. Due to the volume
of available information, it is becoming increasingly difficult to locate useful informa-
tion. Furthermore, users often want to use the Web to do more than just locate a
document, they want to perform some special purpose task. For example, a user
might want to find the best answer on a specific question.

The main obstacle results that the Web was not designed to be processed by
machines. Thus, to process a web page intelligently, a computer must understand the
text, but natural language understanding is known to be another extremely difficult
and unsolved research problem. Tim Berners-Lee, inventor of the Web, has coined
the term Semantic Web [10] to describe this approach.

The exact definition according to him of this concept, is

“The Semantic Web is an extension of the current Web in which information is
given well-defined meaning, better enabling computers and people to work in coopera-

tion.”

The Semantic Web is impacting on a number of fields, showing huge potential of
having the Web as a collaborative space for storing and querying structured data in

a decentralized way where everyone can access and contribute.

The Semantic Web consists primarily of three W3C technical standards:

e Resource Description Framework [39] (RDF), the data modeling language for
the Semantic Web, where the Semantic Web information is stored and repre-

sented in this format.

e Web Ontology Language [8] (OWL), the schema language of the Semantic Web,
which enables you to define concepts carefully defined, called Ontologies, so that

these concepts can be reused as much and as often as possible.

e SPARQL Protocol and RDF Query Language [51] (SPARQL), the query lan-
guage of the Semantic Web, which adds querying capabilities to RDF;

In this thesis I will examine some of the problems that directly regards it, in
particular searching, ranking and tagging over it, and I will try to solve them with
some original proposals in an efficient way. The following Section provides more

details about theoretical background of Semantic Web and its technologies.

1.2 Semantic Web overview

This section describes a brief introduction into the background technologies used.
As I said, these technologies are standards and W3C recommendations, the basic

building blocks of the approach presented in this thesis is based on.

1.2.1 Knowledge Bases used

A knowledge base (KB) is a machine-readable resource and in fact a centralized
repository used for the dissemination of information (knowledge) and management.
It contains a set of concepts, instances, and relationships. Over the past decade,
numerous KB have been built, and used to power a growing array of applications.
For example a public library, a database of related information about a particular
subject. Islands of RDF, technology described in the following subsection and
possibly related ontologies form a Knowledge base. Well-known examples of KB
include DBLP, Google Scholar, Internet Movie Database, YAGO, DBpedia, Wolfram
Alpha, MusicBrainz and Freebase. In recent years, numerous KBs have been built,
and the topic has received significant and growing attention, in both industry and

academic areas.

1.2.2 RDF

RDF is the data-model for representing metadata in the Semantic Web. RDF
triples representing facts, and made of entities, properties and values. In RDF is
possible to express the meaning of fact unambiguously. The RDF data-model is
based on subject, predicate and object triples, so called RDF statements, to formalize
meta-data. RDF' is domain independent in that no assumptions about a particular
domain of discourse are made. It is up to the users to define their own ontologies for
the users domain in an ontology definition language such as RDF/Schema (RDF/S),
which defines the vocabulary used in the RDF data-model. Ontology is the core of
the Semantic Web, which is used to explicitly represent our conceptualizations. In
the RDF data-model the statements are represented as nodes and arcs in a graph. In

this notation, a statement is defined as:
e a node for the subject (s)
e an arc for the predicate (p)
e a node for the object (0)

Thus, a triple can be graphically represented by two nodes (s and o) and a directed
edge (representing the p) from the subject to the object node. A collection of RDF
triples forms an RDF graph. Before we are able to express the fact above as RDF
statement we have to introduce the concept of a resource which is identified by a
Uniform Resource Identifier (URI). Most of these elements are represented as URIs
(U), forming a huge graph sometimes referred to as Linked Data. Each data publisher
provides a part of the Semantic Web graph, and through endpoints, these subgraphs
can be easily queried by means of an effective pattern-based query language, the
well-known SPARQL. Linked Data and the number of triples it is composed by is
experiencing a continuous growth in recent years. Semantic web is organized to form
a huge distributed knowledge based system. A knowledge base is a database used for
knowledge sharing and management. In this thesis the mainly work is based on four
Knowledge Bases well-known like DBpedia, Wikidata, Freebase and MusicBrainz,
which we will see after.

In a model, all components will be modelled in the following way. Given a set
of URIs U and a set of literals L, an RDF triple is defined whit the known short
notation as (s, p, 0), where s € U is the subject, p € U is the predicate (or property),
and o € (U € L) is the object. Exists the case in which s and o are blank nodes but
their usage is discouraged (Heath and Bizer 2011).

3

For instance, statements can be represented as a graph in RDF as we said. Con-
sider a simple example as “Barack Obama is the leader of the United States” using

DBpedia. This sentence has the following parts

e s: http://dbpedia.org/page/Barack_0Obama
e p: http://dbpedia.org/ontology/leader

e 0: http://dbpedia.org/resource/United_States
The same concept is possible to define as
e s: http://dbpedia.org/resource/United_States

e p: http://dbpedia.org/ontology/leader

e 0: http://dbpedia.org/page/Barack_0Obama

In this example, the ontology to express the fact above has to define the concept
of a “United States” and the relationship “leader” in its vocabulary. The figure [1.1

shows a possible representation with nodes and arcs.

?0:
http:/dbpedia.org/page/Barack_Obama

p: ’
26 ‘ http:/dbpedia.org/ontology/leader
http:/dbpedia.org/page/United_States ‘

Figure 1.1: A RDF triple sample

Another example would be “Barack Obama was born on 1961-08-04". In this case

the concept is defined as follow

e s: http://dbpedia.org/page/Barack_0Obama
e p: http://dbpedia.org/ontology/birthDate

e 0:[1961-08-04

where the object o is a constant.

http://dbpedia.org/page/Barack_Obama
http://dbpedia.org/ontology/leader
http://dbpedia.org/resource/United_States
http://dbpedia.org/resource/United_States
http://dbpedia.org/ontology/leader
http://dbpedia.org/page/Barack_Obama
http://dbpedia.org/page/Barack_Obama
http://dbpedia.org/ontology/birthDate
1961-08-04

1.2.3 DBpedia

DBpedia [7] is a well-known semantic web project focused on extracting structured
information from Wikipedia and making triples available as free datasets, had in the
last year a 7.5 edition, from 4.26 to 4.58 million. In the same period of time, properties
describing those entities increased of 8.2 passing from 51,736 to 55,986 raw properties.
Similar growth have been reported in other public Knowledge bases, such as Freebase
which now contains ten times the entities of DBpedia and a total of 2 billion triples.

Recapping the structure of an exampleE] about DBpedia Uri we have:

e the first part "dbpedia.org”

e an entity (i.e. Rho)

DBpedia is backed by the Virtuoso triplestord’] and it is available through W3C
standards for the Semantic Web and it stores its data as Resource Description Frame-
work Schema (RDF/S) triples [45]. The DBpedia dataset has been extracted from
Wikipedia and currently has more than 3.77 million “things” with 400 million facts.
It also features labels and short abstracts in 15 different languages, 588,000 links to
images and 3, 150, 000 links to external web pages.

1.2.4 Freebase

Freebase is a Web-based database that allows you to create and edit data entries
for any entity of general interest. We can also say, like a graph database, Freebase
uses several sources to provide broad coverage. Freebase contains about 22 million
entities and 390 million facts in more than 100 domains. It has two main advantages
compared to Wikipedia. First, it has rich types and well defined schemas for the
entities, thus is considered more as a structured database. Second, it contains a lot
more entities. According to the current statistics on each site, Freebase is several
times bigger than English Wikipedia. The structure of an exampld®] about Freebase
Uri is the following:

e the first part ”freebase.com”

e an id (i.e. /m/02mjmr which corresponds to entity Barack Obama)

'http://dbpedia.org/page/Rho
Zhttp://virtuoso.openlinksw.com/
3http://www.freebase.com/m/02mjmr

http://dbpedia.org/page/Rho
http://virtuoso.openlinksw.com/
http://www.freebase.com/m/02mjmr

1.2.5 Wikidata

Wikidata is the community-created knowledge base of Wikipedia, and the central
data management platform for Wikipedia. The goal of Wikidata is to overcome some
problems. For instance in Wikipedia, the same information often appears in articles in
many languages and on many articles within a single language. Population numbers
for Rome, for example, can be found in the English and Italian article about Rome,
but also in the English article Cities in Italy. All of these numbers are different. How
to solve these problem? By creating new ways for Wikipedia to manage its data on a
global scale. The result of these ongoing efforts can be seen at its sitelz_f]. The structure

of an exampld’] about Wikidata Uri is the following;

e the first part "wikidata.org”

e an id (i.e. Q1897 which corresponds to entity Cagliari)

Wikidata uses for its properties a string with an increasing number (i.e. Prop-
erty:P17 that corresponds to property country). A complete SQLite database was

carried out which contains all of mapping between property plus code and label.

1.2.6 MusicBrainz

MusicBrainz is an open source community-maintained database of music informa-
tion project that provides a wealth of crowd-sourced structured data about music. In
this knowledge base there are all of the various pieces of information collected about
music, from artists and their releases to works and their composers, and of course
much more. MusicBrainz was founded as an open system that allows registered users
to update and edit the database. The structure of an exampld’| about MusicBrainz
Uri is the following:

e the first part "musicbrainz.org”
e the category (i.e. artist)

e an id (i.e. 0de4d19f-05¢8-4562-a3c0-7abdc144f1d5 which corresponds to entity
Barack Obama)

4wikidata.org
Shttp://www.wikidata.org/wiki/Q1897
Shttps://musicbrainz.org/artist/0de4d19f-05c8-4562-a3c0-7abdc144f1d5

http://www.wikidata.org/wiki/Q1897
https://musicbrainz.org/artist/0de4d19f-05c8-4562-a3c0-7abdc144f1d5

Here it is possible to choose many different categories like Artist, Release Group,
Release, Recording, Work, Label, Area, Place, Annotation, CD Stub, Editor, FreeDB,

Tag, Instrument, Series, Event and Documentation.

1.2.7 SPARQL

SPARQL is the W3C language which allows to query for triples from an RDF
database (or triple store). It features a set of constructs very similar to those provided
by Structured Query Language (SQL). A triple store stores only triples, and it permits
to pile the triples while describing a thing. As mentioned above RDF uses URISs,
having the potential to link to any other data in any triple store. SPARQL uses
RDF graphs expressed in Turtle syntax as query patterns and can return as output
variable bindings (SELECT queries), RDF graphs (CONSTRUCT and DESCRIBE
queries) or yes/no answers (ASK queries). SPARQL has already been proved to be
as expressive as relational algebra.

Anatomy of a Query is composed to three parts:

° preﬁxesﬂ

e select dataset and the query patterns

e modifiers

An example of query SPARQL in DBpedia to find what is the birth date of Barack

Obama is the following:

select 70

where {dbpedia:Barack_Obama <http://dbpedia.org/ontology/birthDate> 7o}

1.3 Contribution

This thesis aims at facing challenges in the context of Question Answering, through
the instruments described above, starting from three parts of studies, being each part
of study devoted to cope with a specific part of solution proposed in line with recent

advances in this field.

The first part of study focuses on the task of unearthing and manipulating in-

formation from knowledge bases, each having its own organization, terminology and

"http://prefix.cc/

http://prefix.cc/

data formats in order to provide user-friendly mobile graphical interface for accessing
and querying the above resources and smartly exploring their content. The study
explores the potential of Search By Example paradigm as an enabling technology to
understand how to obtain new information from existing information. Specifically,
it presents Qpedia, which allows for searching information made available by public

open databases.

The second part of study regards RDF properties with special focus on Machine
Learning To Rank, where properties from the most famous open Knowledge Bases,
are ranked through features specially made to give them an useful order. The study
presents a service application called RankProp which deals with supporting users in

the choice of the semantic properties on the basis of context.

Finally, the third part of study concerns the tagging properties from sentence in
natural language. The study investigates a possible solution to tag text with RDF
properties, and not only. In particular, the study faces the problem of question

answering indirectly.

Almost all the approaches at the state of the art, used to tag and rank sentences,
are basically based on Entities, without taking into account any factor of Properties.
This thesis sets out to give two contributions summarized as follows. First, the po-
tential of SPARQL queries and ranking properties has been evaluated for developing
applications that support the access to knowledge bases and the easily to query them
by improving presentation of results and fostering users interaction to find new in-
formation.Second, the positive impact of tagging properties to identify the important
parts of sentences in natural language enriching them with the most probable prop-
erties through the ranking system. Experiments are presented and results are then

analyzed in order to draw guidelines about how to reduce the above contribution.

1.4 The Approach

The research performed in the Ranking and Tagging RDF properties, focuses
primarily on the fundamental QBE, MLR and NLP processes that allow the querying
and sorting of properties and the identification of them in natural language sentence.
The approach taken is generic, as it addresses the interplay of Mobile User Interfaces,
heterogeneous knowledge bases, and sentences in natural language (English), and

involves in addition, the use of advanced NLP tools. The results of this research are

even of immediate interest to many scientific areas. Figure[l.2|shows how interact the
parts of thesis between them. RankProperties is the core of system because is used
by TagProp and Qpedia. TagProp is the aim and Qpedia basically is an application
which exploits the above methods. The experience obtained in this research allows
researchers to advance new theories in semantic web scenarios, as well as in other
fields including Question Answering, in which there is at the base also interplay of
similar and/or analogous processes.

In the next three subsection is illustrated a summary of the major components of this

thesis.

RankProperties

(Ranking)

(Tagging)

Figure 1.2: Heart of Thesis

1.4.1 Query By Example: Qpedia

The first work proposed regards a novel cross-platform system called QPedia which
supports querying SPARQL endpoints dynamically without previous knowledge of
web semantics from a mobile device. The aim is to address for the first time the
problem of accessing and querying semantic web data coming from any endpoint (not
necessarily DBpedia, and no assumptions on the schema or the content), using the
search by example approach in [5] and adapting it to mobile devices. This work is

therefore motivated [60] by the need for an easier way of using semantic web resources,

such as DBpedia, for casual users accessing from a mobile device, therefore with a
small screen, no proper pointing device and without knowledge of the ontology behind
the Semantic Web. Such proposal and its related prototype QPedia described in the
next chapter introduce a novel approach to display, query and interact with the
Semantic Web from the mobile using well-known gestures, voice recognition, a simple

way of introducing constraints and enabling location-based queries based on the user

.\ T infobox 3 f

AJAX html L
—_— L ol I a —_—
-— ar -—

Local Triplestore with full-
text search indexes

position.

properties
position

3
Digadia Wena || 2> SWIPE

Figure 1.3: The QPedia System

1.4.2 RankProperties

RankProperties is the core of this thesis where it analyses the problem of comput-
ing the ranking of entity properties in a fast and effective way, where the ranking is
personalized depending on the entity viewed by the user. A general property ranking,
not conditioned by a given entity, is also feasible with this approach. In Chapter
I will propose a number of specifically designed numerical features that measure dif-
ferent aspects of each property, two of these are new compared to [4, [19]. Then, by
using a supervised machine-learning approach, an existing learning-to-rank (MLR)
algorithms to a number of classified properties has been applied, automatically con-
structing ranking models that reflect a given classification. The proposed features are
easily computable on the fly, allowing the application of a previously-learned ranking
model to any query result or to an entity. As thoroughly shown in the previously
chapter, the problem of ranking properties seems not specifically taken into account
by the large literature on RDF ranking, which focused on sorting entities and queries
instead. Figure illustrates RankProperties framework and the process of model-
ing, evaluating and ranking organized in three main tasks (denoted by {task}).

In order to run the experiments we accomplished the following steps:

I. It has been implemented implemented a service {3} that given an optional entity

automatically computes the feature metrics discussed in the previous section —

10

{1}

List of Entities chosen with their

ies ranked

ing to these Model training.

| l

5 CS Students 1 Expert User

DuckDuckGo

l
o

Typicality

I
R =

Suggest

6 Training Files, 6 Test Files and 6 V:Iiiy

—_—

Training Data, Test Data, Validate Data.

Machine-Learning Algorithms
1. Rankiet
2

= Models
RankLib.jar

‘SVM fle and class config.

List of
labels and frequencies
In order to use it, given and entity (e.g., Obama)
you can compute the ranking of the property for that entity.

2

{3}

@

RankProperties.py

Figure 1.4: The Ranking RDF Properties framework

including a tool in Python based on the Natural Language Toolkit (NLTK ﬂ

I1.

by using that service, features values have been computed for a number of

properties, created all necessary input files {1} (training, test, and validate set)
and generated a model for each MLR algorithm {2};

I1I.

els against real RDF properties.

Shttp://www.nltk.org/

11

MLR-based evaluation: it has been evaluated all machine-learned ranking mod-

http://www.nltk.org/

1.4.3 TagProp

TagProp is the last work of this thesis where it analyses the problem of computing
the tagging of entity properties, given a sentence in natural language, in a fast and
effective way. Previous works described and in particular RankProperties, is a key
part of the tagging result. This is because when performing a search of all properties,
it is possible to obtain them more than one, for this it is necessary to have a ranking
of them. In Chapter [§] I will propose a possible engine devised with a graphical user
interface that permit you to obtain the best results easily. Figure [5.2] illustrates an

example of how TagProp works.

How many people live in Cagliari?

'

TagProp

\

How many live in Cagliarni?

\

http://dbpedia.org/ontelogy/populationTota
http://dbpedis.org/property/populationTota

Figure 1.5: TagProp System

The proposed solution is novel and still performing work. Currently, a service
that given a natural language sentence automatically computes the possible relevant
properties has been implemented. In Appendix [B]it is possible to follow instructions
to install this system. The problem of tagging properties could be very interesting
to improve Question Answering systems. Then, starting from a sentence in natural
language, assuming to have its entities, and assuming to have its properties with
TagProp, it is possible by exploiting the structure and nature of RDF, to be able to

reply to the questions in a natural language.

12

1.5 Thesis Structure

After describing the current situation of the Semantic Web and discusses the com-
ponents, standards, and technologies used in this context with a summary description
of contributions, now on to the hearth of matter.

Chapter 2 presents a summary and the state of art of Querying, Tagging and Ranking
RDF Properties.

Chapter 3, 4, and 5 will show the chosen methodologies to these critical questions,
and Chapter 6 how they have been resolved them describing the main experiments.
Chapter 7 concludes the thesis and gives an outlook on future work.

Appendix [A] contains information about how to install and configure RankProperties
tools, providing interesting technical details and useful examples.
Appendix[B]describes technical details about TagProp tools, with a step by step guide
on how to install these tools.

Appendix [C] is useful to give definite indications to install Qpedia.

Finally, Appendix [D]| proposes a series of experiments were performed to determine

the mechanism and performance about Jena backend.

13

Chapter 2

State of the Art

This chapter overviews the background material of the thesis starting from the
studies and improvements on the topic of Semantic Web, than showing existing frame-
work and application for querying, ranking and tagging about it. The chapter is or-
ganized as follows: Section overviews the frameworks present in literature which
address the search systems for Knowledge Bases. Section gives and overview of
the most known systems for ranking problem and finally Section describes the
few frameworks present to problem about tagging Natural Language with Knowledge

Base components.

2.1 Search Systems

The state of the art of searching the web is defined largely by the capabilities and
shortcomings of the various available search engines. Currently the discussion of the
future of searching the web is dominated by the term semantic web. The concept
is based on annotated metadata (XML/RDF). For a general approach of searching
using semantics into the web search, new methods are emerging, but the mainly focus
of this section regards mobile world. The advent of smart phones and thus mobile
computing confirm that the future of the Web is to create more transparency and
simplicity, to allow an easy use though there exist problems such as low interoper-
ability with the devices, small screens and more. In parallel, the recent evolution of
the web, namely the Semantic Web, is growing rapidly, and contains a large amount
of data and knowledge. The challenge thus will be to join Semantic Web technol-
ogy and the mobile world to provide new additional supports for knowledge-based,
location and context-aware information. For all the work an excellent testing ground
it was DBpedia. There has been a number of useful web interfaces to navigate and

query DBpedia and they are discussed subsequently. Unfortunately they are based on

14

interfaces that require a standard monitor and mouse, handling specific user events
such as the mouseover event. Fig. shows how four existing interfaces are given
on a recent smartphone screen, drastically reducing the usability on such devices.
The existing proposals, such as SWiPE [0], Faceted Wikipedia Search [33] (Fig. [2.1p)
and Virtuoso Faceted Web Search (Fig. [2.1p), allow users to ask complex queries
only with a desktop user interface. In more detail SWiPE generates automatically
semantic queries for DBpedia using the Search by Example approach, helping people
who do not have knowledge about SPARQL to pose their desired query. The system
provides an interface like Wikipedia which has, on the infobox, editable fields to in-
put the query. The user can choose which fields to modify in order to start a new
query using shown information about the underlying related DBpedia page. Another
example of semantic web search engine is Hakia (see Fig. [2.1¢), that brings relevant
results based on concept match rather than keyword match or popularity ranking.
A few others try to address the problem of making web semantic data useful in a
mobile context, such as DBpedia Mobile [9] (Fig. [2.1d) , that provides a map view
annotated with DBpedia entities and information from other knowledge bases. This
application, based on geographic location, generates a map that contains information
of the surrounding locations contained in the DBpedia dataset. It works on desktop
browsers, while for mobile devices, the application is optimized for QVGA display
(320x240 pixels) therefore not specifically focused on current devices (featuring full
HD displays). Other than being designed for low-resolution screens, DBpedia mo-
bile is a system that tackles only a specific search need, by focusing on locations.
Therefore it is not addressed to the general problem of accessing and querying large
datastore of (possibly) unknown domains. In Chapter [3| will be described in detail
a solution, called Qpedia [20], to solve the problem of the state of art, which is an

important part of this thesis regards semantic system search.

15

(a) Faceted Wikipedia (b) Faceted Search
Search and Find service

(c) Hakia (d) DBpedia Mobile

Figure 2.1: Existing approaches rendered on a recent mobile browser

2.2 Ranking Systems: entities and properties

As mentioned above, the Semantic Web is impacting on a number of fields, showing
huge potential of having the Web as a collaborative space for storing and querying
structured data in a decentralized way where everyone can access and contribute.
Since many Semantic Web searches through SPARQL queries look for interesting en-
tities, much work has been done that deals with the problem of ranking entities, but
very few work faced the problem of ranking the properties of a given entity. While
many triples contains useful information for each entity, a large amount of them may
be insignificant for some applications, and users are therefore overwhelmed with ir-
relevant data. For instance, on DBpedia 2014 a user looking for the city Rome will
be in front of 601 RDF triples containing 164 distinct properties. Supposing she is
interested in the number of people living in the capital of Italy, she will find difficul-

ties reaching the appropriate populationTotal property, since the list also contains

16

many other unuseful attributes such as wgs84_pos#geometry or wikiPageID.

In such frequent scenarios, the user experience degrades and casual users are not
able to easily find the desired information. In many Semantic Web applications, in-
cluding the HTML pages of DBpedia’s entities and Qpedia, the user is shown with
all the triples of a predefined entity. The list of these applications included from
semantic browsers and faceted navigators, entity viewers such as the DBpedia and
DBpedia Live [41] HTML representations of each entity, semantic Knowledge base
aggregators such as IBKB [49] [50], mobile semantic querying tools such as Qpedia.
The user usually focuses on some particular information about a resource, but she
gets overwhelmed by plenty of results generated by those systems. For instance,
there are many results after querying those interfaces by only providing a common
keyword. Even when the set of resources is determined and small, the number of
attributes to deal with is still too large. In such frequent scenarios, the user expe-
rience degrades and casual users are not able to easily find the desired information.
With the notable exception of IBKB, the default is sorting attributes and values in
lexicographical order by the attribute name. Even the new advanced DBpedia in-
terfacd’] which allows instant keyword searches on property names, is of little help
considering that users usually are unaware of the exact attribute names. A feature
that highlights the most important attributes of the entity at hand is missing. An
original approach to evaluating importance, focusing on data quality, is the one de-
scribed in [56], where the system “WhoKnows?” exploits collaborative, crowd-sourced
reviews of RDF data through on a quiz game based on DBpedia data. The paper is
focused on data cleansing, that is, detecting inconsistencies and doubtful facts that
may arise because of misspelled human-provided data, faulty text parsing and other
buggy automated methods. Although quite different on purposes w.r.t. my work, the
paper contributes an evaluation of property relevance heuristics on DBpedia data,
provided by the game players. The ranking of properties may change depending on
the context (a DBpedia class), for instance the attribute keyPerson is ranked 2nd for
the DBpedia ontology class Company, but only 6th if related to the ontology class
Organisation. The approach is definitely interesting, although the methodology limits
its applicability since it requires a large community of players and an ad-hoc person-
alized game if used in other contexts different from DBpedia. Instead, a completely

automatic system has been developed that only requires some classified instances to

Lavailable, for instance, on http://live.dbpedia.org/page/Rome by clicking on the right yellow
corner

17

http://live.dbpedia.org/page/Rome

learn how to rank properties. It should be noted that the crowd-sourced classifica-
tion could be used as a useful feature in our framework, taking advantage of both
approaches.

The work in [2I] describes a novel navigation model, introduced in the Swoogle
Semantic Web search engine, that supports ranking based on the data quality of RDF
data. It proposes ranking ontologies at various levels of granularity to promote reusing
ontologies, and introduces a the OntoRank algorithm which is based on the rational
surfer model, emulating an agents navigation behavior at the document level. The
work appears to be mainly focused on classes and ontologies, while the last part defines
the TermRank, an approach to rank ontology classes based on the so-called class-
property bond, that is, relations between classes and predicates. In [36] an algorithm
inspired by the PageRank provides a scalable ranking scheme for RDF datasets. The
work takes advantage of property values to rank entities, each forming a subgraph with
properties and values. According to authors, the work did not conduct an extensive
evaluation of the quality of the ranking results, while providing a step towards a
unified RDF ranking scheme. With respect to our work, they do not focus on RDF
property ranking. Also work in [32] focuses on ranking entities, as well as [35], that
proposes a way to sort Semantic Web resources based on importance, relevance and
query length, and provides an overall ranking that considers all these three dimensions
together. Another approach that takes account of different dimensions for the ranking
is the DBpediaRanked in [48], where measures regards: the graph-based nature of the
underlying RDF structure, the context independent semantic relations in the graph
and the external information sources such as classical search engine results and social
tagging systems. It is an advanced system that exploits external Web sources such
as Google, Yahoo, Bing, Delicious and Wikipedia in order to reduce query results
based on entity ranking. Unfortunately, the methods do not seem to be applicable
to the problem addressed in our paper, namely the ranking of RDF properties. In
[65] authors focus on ranking very large number of entities exploiting the resulting
graph and entity relevance based on search engines. One of our features is also based
on exploiting search engine results, plus our novel prefix-count suggest feature, but
again, that’s being used these source of metrics to sort predicates.

In [23] authors focus on a research area that aims to avoid overwhelming users
by ranking the results of a SPARQL query. In particular, they develop a novel form
of language models that allows both structured and keyword search, extending rank-

ing measures, that are already well-defined for keywords search only. In order to

18

obtain RDF knowledge ranking the work proposes a generalization of entity Lan-
guage Models that considers relationships (RDF properties) as first-class citizens.
The use of properties is therefore instrumental to rank results of mixed structure and
keyword-based queries. The problem of ranking the very properties is not taken into
account. Also in [58] solutions to combine keyword search and structured querying
are provided. Ranking of results is a feature provided by their methods, in contrast
to database-oriented structured approaches such as those using only SPARQL.

In [12] an adaptation of the BM25F ranking function for RDF data is presented.
The work demonstrates that this adaptation outperforms existing methods in rank-
ing RDF resources. Their algorithmic contribution is based on novel indexes that
supports efficient retrieval of ranked RDF data. The BM25F scoring measure is used
within a method where it is possible to assign different weights to different predi-
cates. This contribution provides a very fast way to retrieve ordered (according to
the metrics) RDF results, under the assumption that the query language has some
weaker expressive w.r.t. SPARQL. Anyway, it is not clear how to extend those results
to rank properties only. In particular, in order to evaluate the effectiveness authors
rely on weights for properties (important, unimportant, neutral), but then they state
that “it is future work to look at how is it possible automatically learn these lists, i.e.
based on the likelihood of the fields matching in relevant documents or domains vs.
the likelihood of matching in irrelevant documents or domains”. Our work mainly
addresses this specific need, that is, the definition of property features automatically
computable from the data, therefore having an impact and helping the contribution
in [12] to be fully automatic.

Work in [1] applies previous work on inferring the information value given a graph.
In particular, they use RDF Graphs as the input graph, modeling and computing
impact and trust for any piece of information, with the purpose of improving web
ranking. Therefore, RDF data is an instrument to obtain information value with the
final aim of constructing a Web re-ranking system that personalizes the information
experience of Web users.

Authors of [I8] consider a learning to rank approach, as the one in this paper. The
features used in that work are anyway dependent on the different setting, since they
want to measure the relevance of entities: number of subjects, number of objects,
ingoing and outgoing predicates and their average frequencies, number of literals.
While using frequencies and counts, these features are defined on entity nodes only,

not on properties.

19

The work in [38] addresses the problem of providing more results to a query, by
relaxing its constraints with a novel RELAX clause. Results are sorted by close-
ness/exactness w.r.t. the original query. The ranking approach of this work seems to
be centered on the relaxed queries, therefore not applicable to our problem setting.
Also [22] proposes a non-exact approach to answering structured queries, proposing a
language-model-based approach to ranking the results of exact, relaxed and keyword-
augmented graph-pattern queries over RDF graphs such as entity-relationship graphs.
The ranking model is based on the Kullback-Leibler divergence between the query
language model and the result-graph language model. The work in [2] defines the
problem of querying for semantic associations. Here the ranking is provided by the
user as a soft constraint on which associations (between nodes) she is looking for [3].

In [29] three dimensional tensors (basically multiple adjacency matrices, one for
each attribute) are used together with HITS and PARAFAC tensor analysis, devel-
oping a 3-step offline system called TripleRank. 1t allows predicates to be grouped
together improving user experience, showing, e.g., that these predicates
http://dbpedia.org/property/genre and http://dbpedia.org/ontology/genre usu-
ally contain similar data. Experiments show the feasibility for faceted navigation,
although also similarity search can benefit from the tensor-based method. This can
be considered a clustering approach that can be used within our framework, for in-
stance by considering similar predicates as if they were the same, aggregating the
feature metrics accordingly. We plan to investigate how TripleRank and our learning
to rank approach can interact and enhance each other.

The work in [42] computes the RankScore values of resources by applying a top-
k dominating model. In [63] big data processing is studied, investigates a variety
of techniques and theories from different fields, including data mining and machine
learning, information retrieval and massive processing.

Authors of [37] propose a Citation Semantic Link Network (C-SLN) to describe
the semantic information over the literature citation networks. As in our proposal,
they use NLP methods and other techniques. However, the focus of the work is about
discovering opinion communities in a C-SLN and finding articles of high importance.

[34] proposes the ranking of web services, based on the exploitation of textual de-
scriptions. It defines service relevance and service importance, providing techniques
for ranking results, which are references to web services. The work does not specifi-

cally addresses semantic data and in particular static RDF triple datasets.

20

The work in [59] proposes an improved social-network based reputation ranking
algorithm, called Poisonedwater, to compute accurate reputation ranks of social net-
work related entities.

About Property Ranking, two works in literature specifically have addressed the
problem of ranking RDF properties, not only entities. Those recent work has been
done by the projects IBminer [50] and Typicality [40].

IBminer [50] is a text-mined RDF dataset where properties of each entity can
be sorted by accuracy, significance and relevance. Their approach is based on hard
coded weights assigned to the source of the data. Users may modify these weights
providing a rating. It was developed to generate and verify structured information,
and to reconcile terminologies across different knowledge bases. In particular it is
interesting the tool designed to support the integration process in close collaboration
with IBminer, called InfoBox Knowledge-Base Browser (IBKB)P| In this tool users can
easily provide feedback on significance, correctness, or relevance of each summary item
(RDF property), in their knowledge base. Thus users, through their feedback, provide
the correct ranking of facts (that can be modeled as RDF triples), and therefore their
properties. This approach has good performances in terms of precision, since ranking
is provided by users. However, many properties may not be classified, leading to
possible low recall, and in general it may not be applied to different KB, since ranking
is provided for the facts and properties in the IBKB repository, without a way to
generalize this information to other data, as it will be displayed in RankProperties.
A different approach has been investigated by the work on Typicality. Its name is
given by the fact that authors measure how typical each property is for a concept
(such as an RDF class). They provide different kinds of typicality, that will be used
in experiments later in Chapter 7. In particular the work focused on P(c|a) which
denotes how typical concept (ontology) ¢ is, given property a. Then, they compute
for each property typicality score and they use this for ranking the same properties.
Internally, Typicality employ Probase [62], a probabilistic knowledge base, as also
[Bminer does. This approach has the advantage of providing a plausible ranking in
an automatic way, without user intervention. This is usable in some applications,
such as automatic information extraction (the context typicality has been developed
for), while others may require user personalization, such as in IBminer. In the fourth
chapter will be explained the approach adopted which concerns the best of both

previously approaches: a correct classification is exploited, that can be provided

Zhttp://semscape.cs.ucla.edu/mapper/ibminer.html

21

http://semscape.cs.ucla.edu/mapper/ibminer.html

by users or automatically and will be part of the training set, and then a machine-
learning to rank algorithms to learn proper ranking from the given instances is applied,

provided some automatically-computed features.

2.3 Tagging and QA Systems

First and foremost, there’s been a particular interest in Tagging System, because
is a good intermediate step to get to Question Answering over Linked Data. Ques-
tion Answering (QA) is a fast-growing research area that brings together research
from Information Retrieval (IR), Information Extraction (IE) and Natural Language
Processing (NLP). The Question Answering system takes questions from natural lan-
guages as input and searches matching answer in set of documents and extracts the
precise answer to natural language questions. It is different from information retrieval
(IR) or information extraction (IE). IR system present the users with a set of docu-
ments that related to user questions, but do not exactly indicate the correct answers.
The functioning of Tagging Systems could even be that of facilitate QA processing.

In [53] is described Ephyra, an open-source question answering system and its
extension with factoid and list questions via semantic technologies. Using Wordnet
as well as a answer type classifier to combine statistical, fuzzy models and previously
developed, manually refined rules. The disadvantage of this system lies in the hand-
coded answer type hierarchy which prohibits its multi-lingual use. In [I7] is being
developed ORAKEL to work on structured knowledge bases. The system is capable
of adjusting its natural language interface using a refinement process on unanswered
questions. GINO [I1], allows users to edit and query ontologies in a language akin
to English. It uses a small static grammar, which it dynamically extends with el-
ements from the loaded ontologies. In [44] is introduced PowerAqua, another open
source system, which is agnostic of the underlying yet heterogeneous sets of knowledge
bases. It detects on-the-fly the needed ontologies to answer a certain question, maps
the users query to Semantic Web vocabulary and composes the retrieved (fragment-
)information to an answer. However, PANTO [57] accepts generic natural language
queries and outputs SPARQL queries. Based on a special consideration on nominal
phrases, it adopts a triple-based data model to interpret the parse trees output by an
off-the-shelf parser.

In [I5] is presented a demo of QAKIS, an agnostic QA system grounded in
ontology-relation matches. The relation matches are based on surface forms extracted

from Wikipedia to enforce a wide variety of context matches. Several industry-driven

22

QA-related projects have emerged over the last years. For example, DeepQA of IBM
Watson [27], which was able to win the Jeopardy! challenge against human experts.

Just to go back to Tagging Systems, some important Semantic Web applications
are related to tagging text with semantic URIs. While the vast majority of those tools
find entities references, performing entity annotations (e.g., TagMe [25], 26] and Spot-
Light [46]), some other applications such as Question Answering on Linked Data [55]
and By-Ezample Structured Queries featured by the SWiPE System [5] [6] perform
tagging by linking text to property’s URIs, instead of entity’s. DBpedia Spotlight is a
tool for automatically annotating mentions of DBpedia resources in text, providing a
solution for linking unstructured information sources to the Linked Open Data cloud
through DBpedia. DBpedia Spotlight recognizes that names of concepts or entities
have been mentioned (e.g. “Michael Jordan”), and subsequently matches these names
to unique identifiers (e.g. dbpedia:Michael I._Jordan, the machine learning professor
or dbpedia:Michael_Jordan the basketball player). It can also be used for building
your solution for Named Entity Recognition, Keyphrase Extraction, Tagging, etc.
amongst other information extraction tasks. TagMe is a powerful tool that is able
to identify on-the-fly meaningful substrings (called “spots”) in an unstructured text
and link them to a pertinent Wikipedia page in a fast and effective way. It is possible
to perform automatic tests of this tool by using simple RESTful APIs exploited in
TagProp. TagMe results one of the best topic-annotators in scientific community and
its main strengths are that it can annotate also very short texts (namely composed by
few tens of terms) and it is very fast. The response of TagMe includes all annotations
found in the input text. An attribute to each annotation is associated , called (rho),
which estimates the “goodness” of the annotation with respect to the topics of the
input text. You can deploy to discard annotations that are below a given threshold.
The threshold should be chosen in the interval [0, 1] and on our datasets it resulted
that the best value is 0.1. Anyway there are few works in literature related to se-
mantic web and tagging, especially inherent to RDF properties and tagging. There is
special interest in tagging system as there is the purpose of producing improvements
and new point of views for Question Answering. In the five chapter will be explained

the chosen ideas to implement the TagProp system.

23

Chapter 3

Qpedia: An user-Friendly Interface
for RDF data

There has been much recent interest in user-friendly interfaces that support queries
and searching the Semantic Web, without requiring knowledge of SPARQL and the
internal structure used by DBpedia or other knowledge bases.

This chapter examines the problem of querying and searching the Semantic Web
from mobile devices, by taking full advantage of their small touch-enabled screens,

by exploiting an adaptation of the recently proposed concept of SBE query system.

3.1 The engine behind Qpedia

Qpedia allows users to show DBpedia facts and search among them in an intuitive
way from smartphones and other mobile devices. Searches can be done by providing
keywords, values or ranges for properties (either through a keyboard or by voice),
and/or location constraints, optionally based on the user location (through GPS if
available).

The way constraints can be provided by the user leverages the achievements of the
Search By Example approach in [5], where the constraint is associated to a specific
RDF property without requiring the user to know the name of the property (e.g.,
dbpedia-owl:birthplace or dbpedia:placeofbirth).

Qpedia can be accessed by a mobile phone’s web browser, using as a development
framework jQuery Mobile [28] which is compatible with all mobile browsers. The
application can be used on any smartphone operating system and desktop, with an
interface able to adapt to any resolution and method of interaction.

Qpedia’s initial view contains a free text search and a search button. The way

it works is very simple and intuitive: when the user enters some search terms (also

24

by voice through speech recognition), and press enter or the search button, then
the application will try to match those terms against DBpedia entities. In case the
provided terms are too short or anyway no result is found, a dialog box will pop
up warning the user inviting her to change the keywords. Otherwise, the matching
results are shown.

Before starting a search, the user can flick (i.e., swiping with the finger) the page
on the left, showing an map area that indicates the user position and allowing to
select a location range constraint about the entities looked for. The map view can
be unzoomed (and therefore the location range will update) through pinch-to-zoom,
i.e., by touching screen’s surface with two fingers bringing them closer together, or
zoomed if moved them apart, in order to respectively increase or decrease the location
range constraint. Location constraint can be easily switched off by a slide button.
Figure [3.1] shows the various QPedia interface views under a recent Android web
browser.

After launching the search, a new view will appear showing matched entities in
DBpedia. By clicking on a result, its corresponding entity will be chosen, and its
infobox (as in Wikipedia) will be shown. This is done to introduce entity data to the
user in a familiar way. The user can then choose, flicking the view on the left or on
the right, between the current infobox view, the advanced search view and the map
view.

The advanced search view shows all the properties of the current resource, using
an expandable listview instead of the infobox. In this view, by a long press on a
property, it’s possible to introduce a new constraint on the selected property. By
further flicking, the map view is shown. If spatial information is available (such as
latitude and longitude), the map will be centered on that point, also allowing to input
a location constraint. Interactions among views are shown in Fig. [3.2]

By pressing the search button, it will be started a background SPARQL query
generated by QPedia. Fig. shows the raw SPARQL query, available to experienced
users, for the corresponding query “all Sardinian cities with population between 15,000
and 25,000 inhabitants”. In order to write such query the user will just specify the
constraints for each property of interest, by and editing dialog, such as changing
Sardinia for the property “region” or the range 15000<> 25000 for the property
“population total”; after pressing the search button in the action bar dialog, Qpedia

will list all Sardinian cities with a population total between 15,000 and 25, 000.

25

Cerca Abou Cerca Abou

I

% = N =
FHpedia - pedia

U Cagliari 0

Cerca

=

Opzioni

Utilizza GPS per la ricerca

Guida rapida

About

nnnnn

Figure 3.1: User interaction Qpedia

(3%

@2 cagliari

P2

Figure 3.2: Searching and querying in Qpedia

26

(
& L. ’

.‘é: Cagliari i;. p 2val}

g {?data ?p ?val.FILTER
(langMatches(lang(?val) , "+")}
)

(a) Background (b) Property Change
SPARQL Query

Figure 3.3: Search By Example in QPedia

3.2 Implementation

So far the user interface of Qpedia is described. In order to achieve such user-
friendly experience, Qpedia is made of a number of modules that we review in the

following. In Appendix [C]it is possible to follow the instruction to install Qpedia.

3.2.1 The UI Module

This module is responsible for showing the user interface described in the previous
Section. In order to be portable and available on the majority of the devices, this
part has been developed using HTML and JavaScript, therefore accessible through
any mobile browser. Most of the interface has been developed with jQuery Mobile [28§],
compatible with almost all browsers in use. Qpedia should therefore be available on
any smartphone operating system and desktop, with an interface self adapting to any
resolution and method of interaction. The use of jQuery Mobile allows skins to be
personalized depending on the device/OS used, enhancing the UX.

The UI module is also in charge of communicating with the Qpedia backend server
through AJAX calls (see Fig. , sending user inputs and obtaining the elements to
be shown in the interface. In particular, constraints provided by the user in the query
are sent to the server, which in turn will answer with the query results. Results are

graphically elaborated by the Ul module before showing them to the user.

27

3.2.2 The Query Manager

This module is responsible to generate the SPARQL queries to be sent to the triple-
store described next. The Query Manager is in charge of interpreting the conditions
entered by the user through the user interface. These conditions can correspond to a
text-based keyword search on some RDF properties (e.g., dbpedia-owl:abstract),
a constraint on a location property (e.g., geo:long and geo:lat) of RDF entities
expressed using the map view of Qpedia Ul, or a constraint on other RDF properties
(currently any available in DBpedia).

Other than a query translation function, the query manager also provides alias for
the items shown by the interface, i.e., instead of showing raw RDF attributes, the QM
sends more explicative strings such as the ones obtained querying the rdfs:label
property of the entity at hand.

Most of the features and solutions regarding this module are part of the Search by
Example approach used in SWiPE [5]. One big difference in Qpedia is that in SWiPE
the user inputs the constraints within the HTML of the original infobox, which is a
non trivial problem to solve given the fact that there is no markup to recognize the
property position within the HI'ML, and RDF values do not necessarily match strings
in the infobox. In our case, Qpedia shows a structured list of properties that allows
the user to input a constraint, therefore it is straight-forward to know which property
the user was meaning to edit. On the other side, the properties should be shown
where the user will expect to be, that is, in the same order as shown in the original
infobox (which is one flick away from the advanced search view).

Finding the order in which properties appears within the infobox HTML is a new
non-trivial problem to solve. Fortunately is possible to leverage the tools developed
in [5] to find property positions and therefore, by inspecting the top CSS attribute,

it is possible easily recover how properties are vertically sorted in the infobox HTML.

3.2.3 Triplestore / Execution Manager

This module is responsible for executing the SPARQL query and returning the
results to the users. In order to ensure fast response and execution times some
experiments has been made with alternative query execution engines. In particular,
the Virtuoso system used in DBpedia proved too slow on some keyword-based queries
where multiple attributes where involved. Further, the online service freely provided
by DBpedia (either standard and “live” endpoints) showed low service availability

when accessed programmatically. To solve theses performance problems it has been

28

developed a version of Qpedia backend server that uses full-text Lucene indexes on a
local server, based on a modified version of the Apache Jena triplestore. Qpedia also
features a mechanism that dynamically tries different endpoints whenever a service

availability issue might occur.

3.2.4 Native Android Client

Generally a web application has limits and missing features, avoidable only through
a native client. The restrictions primarily affect some performances, for example, us-
ing for a long time a web application the browser cache can get saturated and the UX
will decrease. Other opportunities coming from a native app are the social aspects,
integration with other mobile apps, sharing customized searches or new features like
to save favorited searches. Therefore it also developed an Android application based
on a simple webview, optimizing performance and implementing other features such
as a bookmark of favorited searches. The main screen is a Fragment Activityff] with
a PagerAdapter that contains two sections, module search and favorites list, where
it’s possible to save each favorited search on smartphone physical memory. To over-
come possible cache problems, every search runs on a different webview using a new
javascript interface. This solution, after a number of tests has shown a significant

improvement in device performance.

ldeveloper.android.com/reference/android/support/v4/app/FragmentActivity.html

29

developer.android.com/reference/android/support/v4/app/FragmentActivity.html

Chapter 4

RankProperties: A possible
solution for Ranking RDF
properties

This chapter is the heart of my thesis and illustrates the main scientific contribu-
tion made. The proposed solution is novel and according to our empirical evaluation
is effective, thanks to the leveraging of well-known results in the MLR field, which
will be discussed below in the following section. Instead the features proposed in the

second Section have been used as input data for learning to rank algorithms [43].

4.1 MLR Algorithms

Machine-learned ranking (MLR) is the application of machine learning, typically
supervised, semi-supervised or reinforcement learning, in the construction of ranking
models for information retrieval systems. Training data consists of lists of items (in
our case property) with some partial order specified between items in each list. This
order is typically induced by giving a numerical or ordinal score or a binary judgment
(e.g. “relevant” or “not relevant”) for each item. The ranking model’s purpose is
to rank, i.e. produce a permutation of items in new, unseen lists in a way which is
“similar” to rankings in the training data in some sense.Various systems for learning
to rank have been proposed in the literature such as LibSVM[] Sofia-mi?|or Ranklitf)]
To make ranking we preferred to use RankLib, a library of learning to rank algorithms,

which also supports a simplest convenient interface to employ MLR algorithms. The

‘http://www.csie.ntu.edu.tw/~cjlin/libsvm/
Zhttps://code.google.com/p/sofia-ml/
3http://lemurproject.org/ranklib.php

30

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://code.google.com/p/sofia-ml/
http://lemurproject.org/ranklib.php

file format used by RankLib of the training, test and validate files is the follow{’] In

RankLib currently eight popular algorithms have been implemented:

1.

RankNet [14] is based on a simple probabilistic cost function implementation

using a neural network to model the underlying ranking function;

RankBoost [30] is another ranking algorithm that is trained on pairs, and it
attempts to solve the preference learning dbpem directly, rather than solving

an ordinal regression problem,;

AdaRank [64] can be viewed as a machine learning method for direct opti-

mization of performance measures, based on a different approach;

. Coordinate Ascent [47] is a commonly used optimization technique for un-

constrained optimization problems. The algorithm iteratively optimizes a mul-

tivariate objective function by solving a series of one dimensional searches;

LambdaMART [61] is a learning to rank algorithm based on Multiple Additive
Regression Tree (MART);

MART (gradient boosted regression tree) [31] is an implementation of
the gradient tree boosting methods for predictive data mining (regression and

classification);

. ListNet [16] is a learning method for optimizing the listwise loss function based

on top k probability, with Neural Network as model and Gradient Descent as

optimization algorithm;

Random Forests [I3] are an ensemble learning method for classification (and
regression) that operate by constructing a multitude of decision trees at training
time and outputting the class that is the mode of the classes output by individual

trees.

4.2 Proposed Features

In this Section we describe the features we associate to each RDF property. They

provide a numerical or categorical value that can be exploited by the MLR algorithm

in order to predict the correct ranking.

4

www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

31

www.cs.cornell.edu/people/tj/svm_light/svm_rank.html

In our work, we ignore schema/ontology properties specific to each RDF dataset
by design, therefore allowing our approach to work seamlessly on any RDF dataset.
The only information (provided by all popular RDF KBs) that we consider of great
importance is the property label. These KBs use the Resource Description Framework
(RDF) as a flexible data model for representing the information and our opinion is
that not only Entities on the Web of Data need to have labels in order to be exposable
to humans in a meaningful way [24] but also the properties This allows us to compute
any feature on property belonging to any knowledge base. We designed 9 features, on
the last part of Uri (or the label) about property, with computational performances
and generality in mind, some specifically addressed to the most relevant DBpedia RDF
dataset. Here we describe all of them, and later in Section we empirically study
them and operate feature selection based on time performance and their contribution

to the trained model.

A. Frequency: Frequency is generally the most used feature for ranking. We notice
that the frequency of a property, say dbpedia-owl:populationTotal in DBpedia,
can be obtained by computing statistics offline, or even online by running the
following SPARQL query against a DBpedia endpoint:

SELECT COUNT (*)

WHERE { _:a dbpedia-owl:populationTotal _:b }
and obtaining the number of triples in which such property is used. Another
variation would be:

SELECT COUNT(DISTINCT 7entity)

WHERE { 7entity dbpedia-owl:populationTotal _:b }
that is, the number of entities that have at least one triple using such property.
The last frequency number can be more appropriate in some circumstances, for
instance when the same property may occur several times on certain entities. It
is the case of the property abstract, that may appear several times on DBpedia
entities translated in different languages. The same also applies to the common

label property.

High frequency usually implies that the property is very common, and therefore
related to the importance of the property. Frequencies are also used by the
Typicality approach in order to estimate conditional probabilities of classes and

properties.

32

. NumberOfWords: Some information about properties can be obtained very fast,
even without querying the SPARQL endpoint or dataset. One of such features,
that we defined to help the ranking, is the count of the words contained in the
property’s name. For instance, populationTotal contains two words, “popula-
tion” and “total”. This information can be obtained by the URI itself or by the
label property of each property. In the latter case (also applicable to mean-
ingless URISs such as those used by DBpediaLite and Wikidata), a simple query
must be run against DBpedia, possibly filtering non-english labels. The ratio-
nale is that only one or two words are necessary for important characteristics

of an entity, while multiple terms may regard an over-specific attribute.

. ContainsNumber: Similar to the previous feature, also the presence of numbers
in the URI can give insights about the quality of the property. For instance,
properties sourcelRegion, planelOrigin and plane20rigin are difficult to be
interpreted by users that are not very knowledgeable of the underlying schema.
Therefore, the presence of numbers in the URI may be associated to a penalty

in the ranking score, depending on the training model.

. IsEnglish: Following the same argument used in the ContainsNumber feature,
property names (or labels) can be more or less meaningful. In order to measure
it, we check against an English dictionary (by using stemming capabilities of
the NLTK library) and verify that the property name in the URI (or its label)

has a meaning in English.

. OntOrRaw: This DBpedia specific binary feature determines whether the fea-
ture is in the DBpedia ontology (prefix dbpedia-owl) or not. Properties belong-
ing to the DBpedia ontology are defined by experts and through expert-defined
mappings from the so-called “raw properties” extracted from Wikipedia infobox

templates.

. AnswlsLink: Another discriminant is given by the range of the property. Specif-
ically, we verify the values for the property and check whether they are literals
or links. Although it may depend on each entity, sometimes this feature can be
decisive to sort properties. In some applications, only literal are useful, while in
others, such as for join queries, links are of fundamental importance. Therefore,

knowing the type of property values may be decisive in some contexts.

33

G. SuggestChars: This feature that we are describing is the most novel, and some-
what tricky. As in other approaches in literature (e.g., [48]), we also decided
to use external sources, but without relying on the non-deterministic behaviour
of most Web Search engines that personalize rankings based on previous key-
word searches. Instead, we developed a novel measure that is based on the
DuckDuckGd’| autocomplete functionality: as the user types in the search box,
DuckDuckGo suggests longer words or sentences whose prefixes match the string
typed by the user. The measure that we compute by using DuckDuckGo auto-
complete is obtained as in the following. To compute its value for the property
of a given entity, we simulate the typing of an entity name (using the label),
followed by a space, and then we see whether DuckDuckGo suggests the name
of the property for which we want to compute the DuckDuckGoSuggestChars
feature value. If so, we know that zero extra characters are needed in order
to get the property in the list of suggestions. Otherwise, we simulate the typ-
ing of another character, the first letter of the property. For instance, if we
want to compute the value of this feature for the property areaCode given the
entity New York, we first check whether the string “area code” is suggested
after “New York” is provided. Since DuckDuckGo does not suggest it, we pro-
vide “New York a”, again without having the desired suggestion. Finally, by
providing “New York ar” DuckDuckGo suggests “New York area codes”, and
therefore we conclude that 2 extra characters must be typed (namely “a” fol-
lowed by “r”) in order to get the name of the property suggested by the service.
We also use lowercase and stemming to avoid singular/plural differences and
other linguistic-related issues. This value measures how popular is the name of
the property w.r.t. the provided entity, according to DuckDuckGo suggestions
(which in turn are based on real user preferences). Notice that the same feature
can be computed without any predetermined entity. For the example at hand,
in this scenario (without providing “New York”) at least 3 letters (not 2 as
in the previous example) must be typed before getting a suggestion of “area

codes”, in our experimental setting.

Thanks to this novel feature computed through DuckDuckGo, the value (num-
ber of chars) does not decrease if the same query is posed multiple times (since
results are not personalized per user). The feature allows to take into account

conditional relevance (such as relevance of a property given an entity) without

Shttps://duckduckgo.com/

34

https://duckduckgo.com/

expensive computations. The value may also change over time depending on
the relevance changes in the DuckDuckGo user base, or cached for additional

speed-up in some applications.

H. SWiPE: The last feature that we are describing is inspired by the SWiPE Sys-
tem [0, 49]. As mentioned earlier, in order to simplify the process of generating
SPARQL queries over DBpedia, SWiPE recognizes fields within the infoboxes,
making them searchable and introducing therefore a user-friendly query inter-

face.

For this work, we implemented an API that provides a list of the most impor-
tant properties used in SWiPE, ranked according to their appearance in the
infoboxes. We set every property listed in the infobox as relevant for the entity
at hand, therefore assigning a value of 1, while properties not showing in the

list are assigned a value of 0.

4.3 Training Set

In order to create our training set for RankLib we devised different approaches.
Operatively, this will impact the values in the first column of a SVM file, specifying
the correct classes to RankLib. Values depend on the relevance of a property w.r.t.
an instance in the training set, where the score is induced by the order in the ranked
training set.

The following are the approaches that we developed, some of which are completely
automatic to compute, not requiring any user intervention. Hybrid methods would

also be possible, merging training sets obtained with different methods.

[. Expert-based Training

This training model is based on a judgement from a semantic web expert that
evaluates all properties contained in a number of chosen entities. Features pro-
vide a numerical value, a dimension exploitable to split the property space into
different categories, such as: very important, important, possibly important,
relevant but not important, unuseful. A larger or smaller number of categories
is also possible. These classes, provided by an expert on a sample of proper-
ties, are used to teach MLR algorithms how to rank each property based on its
features After manual scoring, the properties are sorted in a descending order.

Their sorting position is taken and placed like class to our training set. Each

35

II.

I1I.

IV.

VL

of the training set row represents one property and contains the class and the

feature’s results.

Questionnaire-based Training

This training system is similar to the previous. We administered a questionnaire
on 5 CS graduate students unfamiliar with DBpedia and semantic web, and
they were asked to assign a score to a number of properties, depending on
their relevance w.r.t. a given concept (a DBpedia entity). We computed the
average of such evaluations and sorted them in a descending order. Their sorting
position is taken and placed like class to our training set. More details on the
questionnaire administration mode can be found on a report available on the

project website at http://atzori.webofcode.org/projects/rankProperties.

Frequency-based Training

This training mode exploits the feature (A), without user intervention. We
computed this feature for each property and sorted them in a descending order.

Their sorting position is taken and placed as its score to our training set.

Suggest Training

This training mode exploits the feature (G), without user intervention. We
computed this feature for each property and created a list of properties sorted
by this value, in a descending order. The score is computed based on the

position in the list, as in the Frequency-based Training.

Typicality-based Training

Typicality approach is very interesting and for this we use it to create a training
set. We computed this approach for each property and with the score sorted
them in a descending order. Their sorting position is taken and placed like
class to our training set. Each of the training lines represents one properties
and contains, the class just obtained and the feature’s results which complete

its content.

SWiPE-based Training

Finally, we propose to create a training set based on our novel feature (H). This
training mode was implemented in two versions: ordinal score and numerical
score. For the first one, we sorted the properties by computing this feature for

each property, then sorting them in a descending order and using the position

36

http://atzori.webofcode.org/projects/rankProperties

as the ranking score value. In the second one, we used the a binary approach,
marking all properties recognized by SWiPE as relevant, and all the other as

not relevant.

COUNT

M Frequency Top-10
Averages Precision

Frequency Top-10
Maximum Value of
Precision

Figure 4.1: Best performing MLR algorithms w.r.t. average and best Precision.

40
35
30 ~
—
525 -
8 M Frequency Top-10
20 - Averages Precision
15 +
Frequency Top-10
10 4 Maximum Value of
5 - Precision
O -
o " 4
& & & o8 e
& & SINCIARNC & &
& 5+) € N 3 N
& e S & & o bb‘)

Figure 4.2: Best performing Training mode w.r.t. average and best Precision ob-
tained by the trained models.

4.4 Models

In this Section we describe the application of our approach, discussing the model
we computed varying the three dimensions (features, algorithms and training sets).
In order to manually classify the learning set and then carefully check the outcomes,
we experimented on a small set of entities picked up at random from those belonging
to these different categories: Flowers, Fruits, Singers, Cities and Colors. In order
to prepare the input dataset we have been assigning to each input property a class
obtained from our training modes. We have split our classified properties and features

into three files, respectively training set, test set and validate set.

37

property entity A A var B C D E F G H

dbp:familia Rose (flower) 0.461 | 0.840 | <0.001 | <0.001 | 0.012 | <0.001 | 0.460 | 1.869 | 0.749
dbo:populationPlace | California (place) 0.830 | 0.570 | <0.001 | <0.001 | 0.090 | <0.001 | 0.451 | 0.951 | 0.593
dbo:birthPlace Obama (office holder) | 0.480 | 1.295 | <0.001 | <0.001 | 0.090 [<0.001 | 0.630 | 0.330 | 0.700
dbp:engine Computer (thing) 0.616 | 0.500 | <0.001 | <0.001 | 0.090 | <0.001 | 0.732 | 0.470 | 0.703
dbp:colourHexCode | Red (colour) 0.550 | 0.710 | <0.001 | <0.001 | 0.090 | <0.001 | 0.520 | 1.850 | 0.981

Figure 4.3: Time of Execution (seconds) for each A-H Ranking Feature.

Therefore, we eventually ended up with a search space of 8-9 -6 = 432 models (8
algorithms, 2° feature combinations, and 6 training sets), that we explored in large
part. In order to reduce the number of feature combinations, we first analyze the
set of features and operate a feature selection based on average time and precision
performance. Then, we describe how we obtained good generated models, selecting

them by using Spearman’s rank correlation[54].

4.5 Feature Selection

We ran a set of test to measure feature performance in terms of time and f-
measure. Results can be useful to operate feature selection based on the required

time and precision performance.

4.5.1 Time Performance

We developed a script to compute the average time required to evaluate a prop-
erty feature, as summarized in Table [£.3] Experiments show that features B-E are
extremely fast to compute, while A, Avar, F-H may introduce some delay due to the
network connection required to query the DBpedia endpoint and the DuckDuckGo
Suggest service and SWiPE API, respectively. In this test we disabled any cache,

used a clean system and we did not use the prefetching optimizations for any feature.

4.5.2 Precision Performance

Our set of experiments based on DBpedia, WikiData, FreeBase and MusicBrainz
shows that the best performing features are: NumberOfWords (B), isEnglish (D) and
DuckDuckGoSuggest (G). This result is based on the evidence that various perfor-
mance indices such as Frequency, Recall, f-measure and Spearman’s rho seem not
to decrease by removing the other features. In fact sometimes performance improve
by removing some features, showing that they may inappropriately overfit the data.

Table [4.1] shows an optimal configuration using only the three mentioned features

38

System Configuration F-Measure
RankProperties quest_algl B.D_G 67%
RankProperties | quest_algl_All_Features 58%

Typicality 3 P(c|a) 55%
Typicality 1 P(i|a) 55%

IBminer default 53%
Typicality 2 P(ali) 41%

Table 4.1: Best performing configurations according to f-measure, compared against
Typicality and IBminer (assessment of 50 entities, totalling 1346 properties).

Position Property
1 name
area
country
disambiguation
id
type
aliases
ipis
sort-name
label-code
11 life-span

O 0| || T x| W[N

—_
)

Table 4.2: RankProperties on MusicBrainz’s properties of “The Guardian” entity

(B, D, and G), getting better results in terms of f-measure than the Typicality and
[Bminer approaches. Typicality presents three configurations where P(c|a) denotes
how typical concept (ontology) c is, given attribute a, P(a|i) denotes how typical at-
tribute a is, given instance (entity) 7 and finally P(i|a) denotes how typical instance

1 is, given attribute a.

4.5.3 Examples of Generated Models

Here we qualitatively examine an example of generated models. As we also quan-
titatively see in the Experiment Section, we tested, by varying the three dimensions
features, algorithms and training systems, all possible combinations on many entities.
This was done in order to find the best feature/algorithm /training mode combina-
tion, also comparing our models against the other existing approaches. Thanks to
this, we observed a number of optimal combinations that requires only few features,
as done mentioned above for feature selection. Histogram in Fig. shows how

many times each algorithm is in the Top-10 best performing list in terms of average

39

Position | Property Label
1 P357 title
2 P112 founder
3 P17 country
4 P98 editor
5 P407 language
20 P214 VIAF identifier
21 P227 GND identifier
22 P243 OCLC control number
23 P966 MusicBrainz label ID
24 P1438 | Jewish Encyclopedia ID (Russian)

Table 4.3: RankProperties on Wikidata’s properties of “The Guardian (Q11148)”
entity

Position Property
1 issues
2 publisher
3 language
4 country
) contents
6 quotations
7 subjects
8 properties
9 alias
10 headquarters
21 type
22 price
23 city
24 notable types
25 final issue date
26 webpage
27 weblink
28 official website
29 ISSN
30 also known as
31 frequency or issues per year

Table 4.4: RankProperties on Freebase’s properties of “The Guardian” entity

40

and maximum value of Precision, Recall and Spearman’s Rho (label COUNT on y-
axis). Algorithms [30], [I4] are the best in both terms. MART and Coordinate Ascent
produced the worst results, where the output was homogeneous and uninteresting
ranking. Instead, RankNet and RankBoost have been able to learn the user-assigned
classes, ranking other unclassified properties accordingly. Histogram in Fig. shows
how many times each Model Training is in Top-10’s in terms of Average and Max-
imum value of Precision (label COUNT on y-axis). That is, while Fig. shows
a comparison of MLR algorithms in similar conditions, Fig. compares instead
the performance of different training modes. In particular, we realize that models
obtained by using Frequency and Questionnaire Training modes produce the best
results in terms of precision. Also SWiPE-based training set has good average and
maximum precision performance according to our experimental setting, with the ad-
vantage of being completely automatic and fast to compute with on fast networks or
by using bulk requests (i.e., a single HTTP connection for many requests).

We can also assess the level of the various ranking approaches by qualitatively
analysing their outputs, as shown Table [£.5] The table presents the rankings for the
UK newspaper entity “The Guardian” as computed by each system. In bold the
correct property classification according to values in the first column (provided by
the expert and not part of the training set). We see that our method sorting is the
best to set high-quality attributes on the first ten positions. In this example, our
method is able to correctly identify six important properties in the first ten, more
than typicality and even more than IBminer, which is specifically trained by humans.

We can also observe the effect in the tail of the ranked list of properties, where also
many insignificant properties are recognized as not important. To obtain this ranking
we used the following configuration: the best performing features NumberOfWords
(B), isEnglishe(D) and DuckDuckGoSuggest (G), Suggest Mode as training mode and
RankBoost as MLR algorithm. This is just a randomly picked up example, and there
are of course some different configurations which can obtain even better performance
using other Model Training and MLR algorithms.

An important result of our work is the ability to use trained model to sort a
given set of properties never seen before. That is, a set for which no ontology or
frequency data is given. We implemented a python tool®| which checks the URL
of an endpoint and automatically compute RDF property ranking, applying pre-
computed models on-the-fly (see installation instruction in Appendix . To test this

feature, other than DBpedia, we used MusicBrainz, Wikidata and Freebase, using

6An online APT is available at http://atzori.webofcode.org/projects/rankProperties/

41

http://atzori.webofcode.org/projects/rankProperties/

again entity The Guardian. It is important to note that the set of feature may be
completely different on another knowledge base, and therefore user-defined scoring
such as IBminer cannot be used. Further, frequencies are not available or very long
to compute (order of minutes), and therefore typicality is not feasible in this context,
while RankProperties with fast-to-compute selected features is effective. Table
shows the output (sorted list of properties) for the MusicBrainz KB. Table show
the ranking of properties found on Wikidata. To better understand this result, we
associated each Wikidata property with its label according to the sitdﬂ Therefore the
second column contains original properties (which are meaningless for humans) while
the third column contains the translation useful to sort them and to understand the
result. Finally, Table|d.4)contains the ranking results for properties found on Freebase.
Interestingly, while models where not specifically trained on those data, rankings
appear to be meaningful. Less important properties, such as those containing IDs,

codes or other apparently less useful data, are correctly put low in the sorted lists.

"http://www.wikidata.org/wiki/Wikidata:List_of_properties/all

42

http://www.wikidata.org/wiki/Wikidata:List_of_properties/all

Ezxpertise/Questionn. | RankProperties | Typicality IBminer
dbp:editor dbp:circulation dbp:sisterNewspapers | dbp:editor
dbp:format dbp:editor dbp:opeditor dbp:website

dbp:foundation

dbp:foundation

dbo:circulation

dbp:publisher

dbp:owners

dbp:language

dbp:political

dbp:owners

dbp:publisher

dbp:publisher

dbp:issn

dbo:sisterNewspaper

dbp:website

dbp:website

dbp:circulation

dbp:name

dbp:political

dbo:editor

dbo:sisterNewspaper

dbp:circulation

dbo:editor

dbo:owner

dbo:editor

dbp:foundation

dbo:owner

dbo:circulation

dbp:editor

dbp:language

dbp:caption

dbp:abstract

dbp:owners

dbp:format

dbp:language

dbp:caption

dbp:cost

dbp:name dbp:format dbp:caption -
dbo:wikiPageExt.. dbp:issn dbo:abstract -
dbp:oclc dbp:oclc dbp:name -
dbo:wikiPageWiki.. dbp:owners dbo:wikiPageWiki.. -
dbo:wikiPageLength dbp:opeditor dbo:wikiPageLength | -
dbo:wikiPageOutD.. dbo:format dbo:wikiPageOutD.. | -
dbo:wikiPageRev.. dbo:wikiPageRev.. | dbo:wikiPageRev.. -
dbo:wikiPagelD dbo:wikiPagelD dbo:wikiPagelD -

Table 4.5: Rankings for newspaper entity “The Guardian” as computed by each
the first three, 18 properties for the last column about
[Bminer [All orders]). In bold the correct property classification according to values
in the first column (provided by the expert and not part of the training set). dbpprop
is renamed to dbp and dbpedia-owl is renamed to dbo

system (32 properties to

43

Chapter 5

TagProp: An idea for tagging RDF
Property

This chapter contains an experimental part of my thesis, where I have been con-
cepts and techniques also described about the previous chapters.

TagProp, an idea to automatic assignment of the appropriate RDF properties on
some words in a free-text, could be right a specialised instance of the general problem
of QA, even if it is not typically addressed in literature through this way. This kind
of tagging can be carried out effectively by combining several simple, independent,
methods and this Chapter includes the explanation and design of such tagger. A pro-
totype of this system has been implemented, correctly tagging some of the sentences,
listed in Section [6.3], thus providing evidence that this hypothesis presents promising
results. However, there’s still plenty to do in terms of execution time, and this point
needs to be taken fully into account. At present, there were no publications for this

part of work.

5.1 The TagProp algorithm

The TagProp tool allows users to tag DBpedia RDF properties into sentence in
natural language in a fast way. In the image is represented a Graphical User
Interface. The technologies incorporated in the design and construction are HTML,

Javascript and Python.

44

TagProperties system: Tagging sentence with DBpedia Properties

Test the system by typing into fields below.
Sentence:

Type your sentence
How many people live in Cagliari?

s
TagProperties
Result area:

How many peaople in Cagliar?

Figure 5.1: TagProp Grafical User Inteface

By analysing the current structure and the usage patterns of semantic RDF prop-
erty tagging in free-text, there aren’t many systems and aspects that still need to
be improved. Problems related to synonyms, polysemy, heterogeneous lexical forms,
typos, different levels of precision and different kinds of tag-to-exactly RDF property
association cause inconsistencies and reduce the efficiency and the effectiveness to-
wards Question Answering. They are mainly caused by the multiple significances of
natural language sentence in the tagging process. The idea is to provide a new way
to augment free-text through the semantic tagging. It allows user to identify seman-
tic assertions and then a possible answer, if it is a question: each part of sentence
expresses one or more properties of a resource (entity) associating it with concepts
and properties.

The tool TagProp, a semantic tagging system, exploiting RankProperties to select
the best adequate properties and to select the perfect entities it is a perfect solution
TagMe or the NLTK tools. We explore the adequacy of the support offered by the
entities and properties of Wikipedia and WordNet in order to access to and reference
concepts.

Starting from the image of tagging systems and introducing the semantic tagging,
a new way to augment free-text, it has been developed TagProp, a semantic tagging
system. The following lines describe its architecture and its main organizational
features, giving also some practical example of functioning. In particular, it is possible
to identify the following main causes of weakness related to different ways of using

words in natural language sentences:

45

e Polysemy : the same word can refer to different concepts (the word ‘live’ can

refer to verb or adjective);

e Synonyms : the same concept can be pointed out using different words (‘people’,
‘population’, ‘citizen’ are three different words that refer to the same concept:

a group of humans);

e Heterogeneous lexical form : the same concept can be referred to by different
noun forms, for instance plural nouns (‘year’/‘years’), different verb conjuga-
tion (‘do’/ ‘did’), name-adjective couples (‘energy’/‘energetic’), multiple words

(‘pc’/‘personal computer’) and so on;

e Typos : typing errors that occurs when we write a word (‘popluation’ in place

of ‘population’) or different possible spelling of the same word (‘color’/‘colour’);

e Term Precision : the specificity of the word chosen to tag a resource (‘party’ is

more specific than ‘group’);

Many of the problems described can be related to natural language sentences in the
process of assigning RDF properties. Every natural language could provide multiple
concepts. In order to identify a specific concept, we must process the sentence using
NLTK. As a consequence we need to exploit some resource that should support the

following tasks:
e given a natural language sentence it should identify all its possible entities;

e it should allow to find all properties, starting from entities and looking possible

matching between the part of sentence and the same properties.

Considering these fundamental requirements, we have identified three different

and may be complementary kinds of resource currently available over the Web:

e WordNet: a lexical database which is based on the concept of set of synonym
words, called synset, which defines a particular concept; it is sufficiently struc-
tured and includes a lot of lexical and semantic relations between words and
synsets. Wordnet is updated by a group of lexicon experts and presents quite a
complex net of internal relations, in fact it has been developed in order to sup-
port text mining and information extraction. WordNet has a broad coverage of

all common parts of speech (nouns, verbs, adverbs and adjectives). At present,
WordNet is inside NLTK tool for python.

46

e TagMe: a ‘topic annotator’ as described above (API). Alternatively, NLTK
tools or a guided query in natural language using for example capital letter for

topics, can be used.

e UMBC Semantic Similarity Service: a tool which compute semantic similarity
between words/phrases (API). This tool is used to compare each terms about

natural language sentence with RDF properties.

Figurel5.2]illustrates an overview of TagProp framework and the process of identify

possible entities and relative properties, checking synonyms and ranking them.

TagProp | <= [TAGZL'
sentence NLTK
— e —

|| DBeda || T A

tags

OPENLINK

#_VIRTUOSO

\?t\ list of properties .
Jenal | ——* RankProperties

list of properties
ranked

Figure 5.2: TagProp System

5.1.1 Choice of correct RDF property and synonyms

As mentioned above, another important tool is Ranking RDF properties can im-
prove disambiguation, as more than a property can match, and a ranking is therefore
mandatory to choose; it can also reduce time delays experienced by the users, as the
most relevant are considered first, immediately, an then the rest.

The technical options for improving the searching of synonyms chosen is to create a
file which contains all of synonyms, hypernyms and hyponyms about RDF properties
of a Knowledge Base (i.e. DBpedia) using caching, the process of storing data in a
cache.

This file is a tab-separated values file, a simple text format for storing data in a
tabular structure, where in each row there is a label of RDF property and a list of
synonyms. Each record in the table is one line of the text file. Each field value of
a record is separated from the next by a tab stop character. Also this file includes

information gathered from multiple sources like these sites [[|[?] and WordNet.

"http://www.synonyms.net/
Zhttp://www.thesaurus.com/

47

http://www.synonyms.net/
http://www.thesaurus.com/

5.1.2 A practical example

The goal of this section is to introduce the algorithm describing how the back-
ground works and it is used in tagging text. The algorithm will be presented in a

number of steps in which we will elaborate one simple example:
How many people live in New York?

The first step is to analyze the ‘type’ of sentence. Information about type shall be
provided for each RDF property. There are various types of RDF properties, which

have been transcribed below:

e int - an integer number, namely is a number that can be written without a

fractional component.

e double - a double number is a computer number format that represents a wide,

dynamic range of values by using a floating point.

e text - traditionally a sequence of characters, either as a literal constant or as

some kind of variable.
e date - a date in american format

e boolean - a boolean value (true or false)

Thanks to ‘Five Ws rules plus one H’, for simplicity 5Ws&H [and these types, it
is possible to make rapid links between natural language and RDF properties. To do
that, each 5Ws&H can be associated with a type.

This will be:

e what — > text

when — > date

who — > person
e why — > text
e where — > place

e how many/how much — > numbers (int,double)

Shttps://en.wikipedia.org/wiki/Five_Ws

48

https://en.wikipedia.org/wiki/Five_Ws

In the example above, there is ‘How many’ then the type is ‘int’. The second step
is to remove the part of unneeded sentence. To do that, NLTK tools are used. In this
case the preposition ‘in’ has been removed.

In the third step, one or more entities are identified. Thanks to TagMe or NLTK,
or simply in this case because there is a capital letter before the word ‘New Tork’.
Once we find them, it is possible to have all of possible RDF properties about them
through a SPARQL query. This step is optional because we can match all of RDF
properties without particular list of entities.

The fourth step involves in finding a large file synonyms of RDF properties, and
the remaining terms as ‘people’ and ‘live’. To do that a list of properties are obtained
and it is possible to rank these properties using RankProperties tool to improve the

final results.

5.2 Possible backend for TagProp

In order to obtain the list of possible properties to be used for tagging free-text in
natural language or to make the query SPARQL after tagging, it is necessary to have
an excellent backend. During the experiments we have used mainly local endpoint
including Virtuoso [[] and Apache Jena [] According to a very interesting bench-
mark [52], the best backend is Virtuoso, intensively used in this thesis, but because
it is commercial system, it has been tested Jena, which it is however open-source and

totally customizable.

Virtuoso is the most advanced and native RDF triple store on the market, available
in both open source and commercial licenses. It provides command line loaders, a
connection API, support for SPARQL and web server to perform SPARQL queries and
uploading of data over HTTP.

Jena is a Java framework which is useful for building semantic web applications. It
is an open source work. The Jena framework includes a SPARQL query engine, which
interprets SPARQL queries against RDF data present in a back-end RDF store. SDB
is a component of Jena. It provides for scalable storage and query of RDF datasets
using conventional SQL databases for use in standalone applications, J2EE and
other application frameworks. Jena recently introduced a non-transactional native
store called TDB, a part marked in red. For our current evaluation we have Jena
TDB backed with SPARQL.

“https://virtuoso.openlinksw.com/
Shttps://jena.apache.org/

49

https://virtuoso.openlinksw.com/
https://jena.apache.org/

The illustration below shows an overview of Jena used to do the test:

application code

parsers Ontology APl | SPARQL API

N-triples and
ROFa writers

RDF API

Inference API
— built-in rule external
reasoner reasoner
in-memory SDB TDB custom
| i }

==

= | =

Figure 5.3: Backend Architecture

Another part marked with red marker is Turtle (Terse RDF Triple Language), a

format for expressing data in the RDF data model with a syntax similar to SPARQL.
And as we saw in the introduction, RDF represents information using triples, each
of which consists of a subject, a predicate, and an object. Each of those items is
expressed as a Web URI. Turtle provides a way to group three URIs to make a

triple, and provides ways to abbreviate such information, for example by factoring

out common portions of URIs. For example:

<http://example.org/person/Mark_Twain>
<http://example.org/relation/author>
<http://example.org/books/Huckleberry_Finn>

20

All the described parts were installed to perform those tests in the following hard-

ware:

e Notebook OLIBOOK S1530 32 bits i3-2310M

Intel Core 3 Dual core processor 2310M (2.10 GHz)

4 GB DDR2 RAM

3524236 kB Hard drive

Apache Jena Fuseki + LARQ(2) [Lucene + Arq]

Something else that is very important is the presence of Apache Lucene into the

Backend as one of its fundamental components.

Apache Lucene is a free open-source high-performance information retrieval engine
written in the Java Programming language. It offers full-featured text search, based
on indexing mechanisms. It is a technology suitable for nearly any application that
requires full-text search, especially cross-platform. Apache Lucene is an open source

project available for free download. Lucene offers powerful features through a simple
API:

e multiple-index searching with merged results
e incremental indexing as fast as batch indexing

e many powerful query types: phrase queries, wildcard queries, proximity

queries, range queries and more

o1

Example of indexes organization used in Lucene is drawn below:

Index

Document

—a Documeni

Document

Document

Figure 5.4: Indexes organization in Lucene

So to achieve a “Free Text Indexing for SPARQL” has been tested LARQ[] a
combination of ARQ and Lucene ﬂ It gives ARQ the ability to perform free text
searches. Lucene indexes are additional information for accessing the RDF graph,

not storage for the graph itself.

To evaluate Apache Jena Fuseki + LARQ), have been made a series of SPARQL
Query that may be consulted in Appendix [D] These queries contain an useful variant
to understand the index function and also to obtain a fast customizable backend. The
results show that Jena is customizable and potentially efficient but Virtuoso remains

faster than Jena, and this will mean more research in this concept.

Shttps://jena.apache.org/documentation/larq/
"http://lucene.apache.org/core/

52

https://jena.apache.org/documentation/larq/
http://lucene.apache.org/core/

Chapter 6

Experiments

This chapter describes the different experiments exploited in this dissertation, and

in particular RankProperties have been covered in depth.

6.1 RankProperties

Now I shall give the experiments of the proposed technique about RankProperties.
To compare the results obtained with this approach against other systems’ ranking
were used some terms of comparison presented next in the following sections. The ex-
periments have been conducted to verify the feasibility of the proposed framework and
evaluate it, both in terms of time performance and quality of ranking. In particular,
it has been focused on a personalizable ranking approach that could be run on the fly,
that is, at query or visualization time to solve the problem of ranking RDF proper-
ties. This supervised machine-learning framework leverages existing learning-to-rank
(MLR) algorithms which are applied to a number of (almost) instantly computable
property features that were described previously. Some tools have been created which
are available on-line at our project website E], in order to compute and evaluate many
ranking types. The following sections first show the measures used for the evaluation
and how it has been set up the testing dataset, and to discuss the outcome of the

experiments.

6.1.1 Quantitative measures for the Evaluation

The measures chosen to quantitatively evaluate the quality of the rankings are
four: Precision, Recall, F-Measure and Spearman’s rho correlation. They are suit-

able to compare a sorted list of properties against a provided sorting, called Pivot

'http://atzori.webofcode.org/projects/rankProperties

93

http://atzori.webofcode.org/projects/rankProperties

(generally made by humans annotator), and other existing rankings. Precision, Recall
and F-Measure are the basic measures used in information retrieval and evaluating
search strategies.

Precision is the ratio of the number of relevant properties retrieved to the total
number of irrelevant and relevant properties retrieved. Recall is the ratio of the
number of relevant properties retrieved to the total number of relevant properties.
These examples are based on Top-N properties [40] for the selected concepts, using

the following definition for Precision:

Zi]\il reli

Precision =
N

where rel(i) is the relevance score of the i-th attribute. Regarding recall Recall:

retrieved very typical propintop N

Recall =
ced min(# very typical prop, N')

Finally, a measure that combines Precision and Recall is the harmonic mean of Pre-

cision and Recall, which is usually called F1 score or F-measure:

preciston X recall

F-measure = 2 x —
precision + recall

In these examples N = 10 have been used, a value chosen because generally the
number of attributes are considered to be very important or typical, for a singular
entity, are usually around this value. This is an empirical consideration that comes
from a qualitative evaluation of many instances in our experiments.

Regarding the pivot ranking, it has been realized by 5 human annotators. They
assigned relevance score organized to four groups as 4 (very typical), 3 (typical),
2 (related), and 1 (unrelated), respectively. After that, using relevance score, the
pivot properties were sorted. In the experiments, before computing precision, recall
and f-measure, the score was normalized to [0,1]. Finally, I used a technique to
evaluate if two rankings were related to each other called Spearman’s Rank Correlation

Coefficient or Spearman’s rho. The formula is the following:

o4

where d? is the difference between ranks, namely the position of a specific property
between two different result of ranking. This framework generates four CSV files that
contain therefore precision, recall, f-measure and Spearman’s rho between the Pivot
ranking and each ranking output (including those of existing approaches) that were

assessed.

6.1.2 Test Dataset

In this section I describe how were generated the test datasets used as testbed for
our experimentation. First of all, 18 entities were chosen, with their respective 18
ontologies, 6 for each training files (training, test and validate set of the MLR frame-
work). To create training set Russelia, Parma, Microsoft, Dog, Enrico Berlinguer,
Sandra Bullock were chosen and then as ontologies there are Species, Settlement,
Public company, Animal, Politician, Agent respectively. The same operation to create
validate set with Rose, Cagliari, Facebook, Cat, Aldo Moro, Angelina Jolie together
with ontologies as Species, Settlement, Public company, Animal, Politician, Agent.
Finally, to create test set I choose these entities Pablo Picasso, Monaco, Conus, Born
to Love, The Freddie Mercury Album, Jean de Quen with Artist, Place, Work, Ani-
mal, Work and Agent respectively. Choice is not random but is based on a selection
of different types (ontologies) which enclose the best known cases. To be more clear,
the choice fell on a small set of entities picked up from those belonging to these dif-
ferent categories about Flowers, Fruits, People or Singers, Things, Cities, Animals
and Colors. Therefore there are a total of 1015 properties (as shown in the table

below the allocation of each Entity’s properties).

Training set | Validate set | Test set
| # Properties 314 352 349

Table 6.1: Size of the Datasets used in the experiment

Then, the models were computed for every possible combinations of MLR algo-
rithm, feature set and training mode (ranking assignment). In order to evaluate the
results, Hallway testing was applied, this is a common evaluation technique in usabil-
ity. After pulling out 50 entities collected randomly by APIs wiki?] five students were
involved to evaluate these entities, and in particular their properties, assigning a score
from 1 (unrelated) to 4 (very typical). This has served to compare the performance

of various ranking systems with the opinion of users, in terms of the measures are

Zhttp://www.mediawiki.org/wiki/API:Random

95

http://www.mediawiki.org/wiki/API:Random

indicated above in the section. Finally, have been performed RankProperties tool
to create all possible comparisons, producing large tables in order to find the best

configuration or system according to the measures were used.

6.1.3 Time Performance

For time performance comparison, have been disabled all the cache. In particular,
it is assumed frequencies and other dataset statistics are not stored, as they may
change over time. Although in DBpedia case it is possible to save the frequencies,
such as to speed up the Typicality approach or my A and Avar features, in this
comparison it is assumed that were computed rankings on a new, unseen entity or
dataset. In particular, this presented approach does not assume the existence of a
known ontology. During models creation phase, were used each MLR algorithm and
were cycled the other dimensions, that is, the features view in Chapter [fhnd models
training view in the same section Chapter [Bto cover all possible cases for use. Time
required to compare all various ranking systems with the users ranking in the hallway
testing was about 8-10 hours. This value may change depending on both CPU and
network speed. For DBpedia frequencies, It’s been used a instance of Virtuoso with
the last DBpedia 2014 dump, on a 50Gb RAM linux cluster.

The results are displayed on Table [6.2], that gathers the time required by MLR-~
based RankProperties system to carry out an entity evaluation compared to Typical-
ity. It may be observed from this table that without enabling cache optimizations for
both systems, this approach with all features is slightly slower than typicality, since
frequencies were used, a time-consuming feature, among the other features. By using
only features B, D and G, as per this feature selection outcome, a major speed up
was obtained, without loosing precision. This configuration is one order of magnitude

faster than Typicality. These are the times required to rank all the entity’s properties,

on average.
System Configuration Time (sec.)
RankProperties All features 442
RankProperties | Features B, D and G 46
Typicality P(c|a) 397

Table 6.2: Time of execution without any cache. All features and frequencies com-
puted from scratch (assessment of entity “The Guardian”, totalling 31 properties).

o6

6.1.4 Quality of Ranking

This section presents the experimental results in term of quality of ranking pro-
posed. Once the average values of the results about measures described in Section
has been obtained, are compare them with this approaches through IBminer and
Typicality systems. A fragment of results in Table is presented where, “quest”
and “freq” stand for Questionnaire-based Training and Frequency-based Training re-
spectively, “algh” stands for LambdaMart and “alg2” stands for RankBoost. It also
compared RankProperties system against Random Sort to empathize different results
obtained. It can be observed from the same table that there are different configura-
tions about our system which obtain better performance than other existing systems.
Therefore, our framework obtains better performance w.r.t. existing work, with im-
provements in the range of 5% to 10%. It is possible to draw two conclusions from
these results. First, it is possible to use only 3 features, selected in Chapter Plwith
two of these Algorithms and Training Models, without variation of quality. This sug-
gests that the use of these configurations for RankProperties is effective on ranking.
Second, the criterion for configuration choosing selection can be based on choices in
training phase, looking at the number of times which they obtain high results and

better than competitors.

System Configuration | Prec | Rec | Rho
RankProperties | quest_algh B.D_G | 75% | 64% | 29%
RankProperties | freq_alg2. B.D_.G | 72% | 58% | 62%

IBminer default 70% | 50% | 58%

Random - 58% | 47% | 4%

Typicality 3 P(c|a) 65% | 48% | 46%
Typicality 2 P(ali) 65% | 43% | -36%
Typicality 1 P(i]a) 41% | 48% | 39%

Table 6.3: Two optimals configurations against Typicality and [Bminer (assessment
of 50 entities, totalling 1346 properties).

6.1.5 Other important experiments for the Evaluation

Also, regarding this work, other considerable experiments has been made, on dif-
ferent machine learning-to-rank algorithms, comparing them against user data using

Spearman’s rank correlation coefficient.

o7

6.2 Qpedia

Qpedia was evaluated in over 20 English questions of QALD-4 [55] (Task 1). The
QALD-4 competition provides an RDF dataset, training and testing questions, and
ground truth answers to the questions. It has been loaded the data into a Virtuoso

triple store E] A subset of that questions have been solved by Qpedia and they are

listed as follows:

How often did Jane Fonda marry?

What is the official website of Tom Cruise?

Who created Wikipedia?

What is the founding year of the brewery that produces Pilsner Urquell?
Which river does the Brooklyn Bridge cross?

How tall is Claudia Schiffer?

In which U.S. state is Mount McKinley located?

When was the Statue of Liberty built?

Which books by Kerouac were published by Viking Press?

Which U.S. state has the highest population density?

How many films did Hal Roach produce?

Give me all federal chancellors of Germany.

Which states of Germany are governed by the Social Democratic Party?
Which television shows were created by Walt Disney?

Give me the websites of companies with more than 500000 employees.
Give me all cities in New Jersey with more than 100000 inhabitants.
Which actors were born in Germany?

Give me all people that were born in Vienna and died in Berlin.

3http://db.webofcode.org/sparql

o8

http://db.webofcode.org/sparql

The remaining two questions haven’t been solved because there are some limits
on Qpedia system. They are:

e In which country does the Nile start?

e Which countries have more than two official languages?

The overall results are shown in the following Table [6.4}

Processed Questions | 90%
Precision 0.90
Recall 0.87
F-measure 0.88

Table 6.4: Qpedia Results

Here is step-by-step method that shows the first question “How often did Jane
Fonda marry?”:

<« € | [127.0.0.1:8080/qpedia/en/resul

ondatresultOf_Jane_Fonda0 % O

Universita degli studi di Cagiiari - a.a. 2013 2013 - powered by [QueryMobile 1.3.0

‘owners of data and informations are Wikipedia and DEpedia

Figure 6.1: Qpedia 1 step: Finding the subject (Entity) of question

29

€ - € [[127.0.0.1:8080/qpedia/en/resulthtmi?term=Jane%20Fonda#resultOf_Jane_Fonda0

s,
{g Jane Fonda

— Jane Fonda

@ Jane Fonda

+ Jane Fonda filmography

Universita degl studi di Cagiiari - 2.2 2013 2013 - powered by jQueryMobile
‘owners of data and informations are Wikipedia and DEped

Figure 6.2: Qpedia 2 step: Selecting the appropriate subject between results

€« - C | [)127.0.0.1:8080/qpedia/en/resource.htmi?res=Jane%20Fonda#pageAdvancedd

mple Advanced

fq: Jane Fonda
t

has abstract

active years start year

birth date

birth name

birth place

birth year

child

Figure 6.3: Qpedia 3 step: Finding the desired property to answer the question

60

& C' | [) 127.0.0.1:8080/qpedia/en/resource.html?res=

620Fonda#pageAdvancedl Q%

|

L]

x
—m

+ hitp:iidbpedia.org/propertylwordnet.ype:

+ years active

+ hitp:lipurlorgldclelementsi i description

+ itp:iiwwend.orgl1999102122 Tdf-syntax-nsétype

Figure 6.4: Qpedia 4 step: Reading the answer into the contents of selected property

6.3 TagProp

As there was no evidence of any other systems like TagProp, it has been evaluated
in over 20 English questions from different QALD, to show how this system functions.
TagProp is not a real QA system, so its goal is to find the properties about text sent
in input. There are a subset of questions that have been solved simply by TagProp

and they are listed as follows:

e Q1: Who created Wikipedia?

e (Q2: What is the religion of Tom Cruise?
e (Q3: How many people live in Barcelona?
e Q4: Where was Barack Obama born?

e Q5: When did Abraham Lincoln die?

61

An example of output in detail about the first question:

Q1: Who created Wikipedia?

test 0 type request text
[[("Who™, "WP"),

(’ created ’ ’VBN’) :

(’ W1k1ped1a 'NNP’)]]

test 1 words filtered

[u’creator ', *Wikipedia ’]

test 2 entity:Wikipedia

test 3 properties ok — n.58

test 4 label ok — n.58

test 5 word in properties ok — n.0

test 6 syn in properties ok — n.3

test 7 swoogle tool in properties ok — n.3

Time elapsed in seconds: 7.203

Results in Json:

[{"word": "creator", "prop": "http://dbpedia.org/property/author"},
{"word": "creator", "prop": "http://dbpedia.org/property/widthUnits"},
{"word": "creator", "prop": "http://dbpedia.org/ontology/author"}]

Now consider the following simple SPARQL query:

SELECT 7o
WHERE {
dbr:Wikipedia <http://dbpedia.org/property/author> 7o

this query yields as result the answer of Q1 on[]

“http://dbpedia.org/sparql

62

http://dbpedia.org/sparql

About the second question:

Q2: What is the religion of Tom Cruise?

test 0 type request text
[[("is 7, 'VBZ'), (’the’, 'DT"),
(’religion ’, 'NN’"), (’of’, "IN’), (’tom’, 'NN’),

(’cruise ’, 'NN’)]]

test 1 words filtered

["religion 7]

test 2 entity:Tom Cruise

test 3 properties ok — n.60

test 4 label ok — n.31

test 5 word in properties ok — n.l1

test 6 syn in properties ok — n.1

test 7 swoogle tool in properties ok — n.l1

Time elapsed in seconds: 7.806

Results in Json:

[{"word": "religion", "prop": "http://dbpedia.orqg/property/religion"}]

Now consider the following simple SPARQL query:

SELECT 7o
WHERE {

dbr:Tom_Cruise <http://dbpedia.org/property/religion> 7o
}

this query yields as result the answer of Q2.

63

The result output about third question:

Q3: How many people live in Barcelona?

test 0 type request

[(’people’, 'NNS’),

[
("live ', 'VBP'),
(

(7in "’

"barcelona’, 'NN’)]]

test 1 words filtered
["people’, ’live 7]

test
test
test
test
test
test

N O Ot W N

Time elapsed in seconds:

Results in Json:

[

{"word": "people"”, "prop":

entity: Barcelona
properties ok — n.318
label ok — n.58
word in properties ok — n.0

syn in properties ok — n.5

swoogle tool in properties ok — n.b5

int

"IN

25.161

"hitp://dbpedia.org/property/populationDensityKkm"},

{"word": "people",
{"word": "people”,
{"word": "people”,
{"word": "people”,
]

"prop":
"prop":
"prop":
"prop":

"http://dbpedia.org/property/populationMetro”},
"http://dbpedia.org/property/populationTotal "},
"http://dbpedia.org/property/populationUrban”’,
"http://dbpedia.org/ontology/populationTotal "},

Now consider the following simple SPARQL query:

SELECT 7o
WHERE {
dbr:Barcelona

<http://dbpedia.org/property/populationTotal> 7o

this query yields as result the answer of Q3.

64

The output about fourth question:

Q4: Where was Barack Obama born?

test 0 type request place

[[("where’, "WRB), (’was’, 'VBD’), (’barack’, ’JJ’),
(’obama’, 'NN’), (’born’, 'NN’)]]

test 1 words filtered

["born 7]

test 2 entity:Barack Obama

test 3 properties ok — n.163

test 4 label ok — n.3

test 5 word in properties ok — n.0

test 6 syn in properties ok — n.0

test 7 swoogle tool in properties ok — n.l1

Time elapsed in seconds: 23.612

Results in Json:

[{"word": "born", "prop": "http://dbpedia.org/ontology/birthPlace"}]

Now consider the following simple SPARQL query:

SELECT 7o

WHERE {
dbr:Barack_QObama
<http://dbpedia.org/ontology/birthPlace> 7o

this query yields as result the answer of Q4.

65

And finally, the output about the last question:

Q5: When did Abraham Lincoln die?

test 0 type request date

[[("did’, ’VBD’), (’abraham’, ’'NN’),
(’lincoln ’, 'NN"), (’die’, 'VB’)]]

test 1 words filtered

[die 7]

test 2 entity:Abraham Lincoln

test 3 properties ok — n.156

test 4 label ok — n.156

test 5 word in properties ok — n.0

test 6 syn in properties ok — n.0

test 7 swoogle tool in properties ok — n.5

Time elapsed in seconds: 20.695

Results in Json:

[{"word": "die", "prop": "http://dbpedia.orqg/property/deathDate"},
{"word": "die", "prop": "http://dbpedia.org/ontology/deathDate"},
{"word": "die", "prop": "http://dbpedia.org/ontology/deathYear"?}]

Now consider the following simple SPARQL query:

SELECT %o

WHERE {
dbr:Abraham_Lincoln
<http://dbpedia.org/ontology/deathDate> 7o

this query yields as result the answer of Q5.

66

Thus, TagProp Algorithm can be summed up as follows:

e The first step through NLTK the sentence in input is analysed.
e The second step the type of request (Five Ws and one H) is identified.

e In the third optional step, the main entity is identified. Thanks to this mecha-
nism the number of eligible properties can be reduced, otherwise the process is

different and we consider all of properties about KB (DBpedia in this case).

e In the last step Swoogle has been used because can be not found a match with

the term of sentence and the label of properties.

e The result is provided to JSON format for external uses. In many experiments
it happens that the numbers of returned properties are many and between these
there are not interesting properties. In cases where there are more properties
will be interesting to use RankProperties, to select number one property and

answer the initial question.

67

6.3.1 Quality of Tagging

This section presents the experimental results in term of accuracy of tagging pro-
posed. The Table shows some experiment about accuracy on the previously ques-
tions. It can be observed from the table that the time execution is not exceptional

but the accuracy, for analyzed examples, is always greater than 50%.

The general formula for calculating the accuracy is the following:

TP +TN
TP+TN+ FN + FP

Accuracy =
where abbreviations stand for:

e TP = True Positive
e FN = False Negative
e TN = True Negative

o 'P = False Positive

And more specifically TP and FN regard relevant elements (properties), TN and
FP regard irrelevant elements and TP and FP regard found elements, while FN and

TN regard not found elements.

Questions | Time in sec | Accuracy
Q1 7.203 66%
Q2 7.806 100%
Q3 25.161 40%
Q4 23.612 100%
Q5 20.695 100%

Table 6.5: TagProp Accuracy output

68

Chapter 7

Conclusion And Outlook

This chapter summarizes the main contributions of the thesis and discusses pos-

sible directions for further research.

7.1 Thesis main contributions

The work in this thesis focuses on some aspects providing a contribution in respect

of three fundamental parts.

The first contribution was a new graphical user interface which combines the ad-
vantages of both mobile devices and Semantic Web. We have seen how the application
works with different search modalities. This proposal and its related prototype Qpedia
introduce a novel approach to display, query and interact with the Semantic Web from
the mobile using well-known gestures, voice recognition, a simple way of introducing

constraints and enabling location-based queries based on the user position.

As we have seen, we can leverage the second contribution of this thesis, a ranking
property tool developed to sort property positions visualized on Qpedia. Different
rankings for Knowledge Based properties has been investigated about the second
spinneret of this dissertation where different strategies have been presented to rank-
ing RDF properties, based on an MLR framework. Through supervised learning,
this proposal provides personalization while allowing automatization once models are
trained. Even the training set can be automatically computed for some learning
strategies, such as the one based on SWiPFE. In order to create appropriate models,
a set of features has been proposed and evaluated for their efficacy, operating fea-
ture selection. Compared with existing approaches, there are improvements in the
F-measure and Spearman’s rho using the rankings proposed. The experimental re-

sults showed that the models created will be able to do better than other systems

69

in literature. For the second problem about ranking it has been planned to explore
positive outcomes of appropriate RDF ranking in different applications. Between
these, beyond the aforementioned @pedia, it is a possible improvement for Question

Answering and disambiguation.

The third and last contribution covered about property tagging with the TagProp
tool aims at giving a contribution in that direction. This is because thanks to Qpedia
it is possible to find an engine to navigate with extraordinary precision into knowledge
bases, thanks to Rankproperties it is possible to sort properties and select them with
more precision, and finally thanks by TagProp with the last two, it is possible to give

a contribution toward Question Answering.

In summary, as demonstrated above there is a clear synergy between Q@pedia,
TagProp and Rankproperties. The investigation into links between those three con-

tributions will lead to great benefits for Question Answering area.

7.2 Directions for further research

Considering the novelty of the arguments covered in this thesis, the work done con-
stitutes only the starting point of a wider research line. Indeed, many improvements

and open points need to be solved.

Chapter |3|described a new graphical user interface which combines the advantages
of both mobile devices and Semantic Web, detailing how this application functions
with different search modalities. Future work will be devoted to extending this ap-
plication with new features, such as graph search through constraints on multiple

infoboxes, query composition, and query templates.

Chapter [illustrated different strategies to ranking RDF properties, and for the
next future, it will be interesting to explore positive outcomes of appropriate RDF
ranking in different applications and areas. It will, of course, be necessary to modify

the training set, test set, and maybe the choice to prioritize to a number of features.

In Chapter 5| TagProp is used as an approach to demonstrate how we can develop
a possible system for tagging RDF properties in a natural sentence. Wanting to con-
tinue toward a complete Question Answering system, we should apply the method of
TagProp more quickly and more effectively, if we want to make real progress in this

direction. To do this, it is necessary to increment search of synonyms in fastest way

70

with a backend getting faster and an entity recognition always more accurate. Espe-
cially, not considering only tagging but also the concept of property ranking, because
in the near future it could be interesting to explore positive outcomes of appropriate
RDF ranking in other different applications in addition to Question Answering and

disambiguation in the context of property tagging.

It is also necessary to look at the limitations of current approaches in order to see
how we can improve in the future.
In Qpedia, we cannot express queries that are based on more complex pattern match-
ing based, (unions, difference, optional matching, etc.).
Next, always in @pedia we cannot express queries that contain properties not showing
up in the list (property/field missing). The same applies to TagProp if there is no
correct synonym/property for a certain word in a sentence.
Incomplete or incorrect entries in KBs is attributable to a general and frequent prob-
lem of incompleteness and inaccuracy that can be imputed to human errors or omis-
sions, when information is generated by crowdsourcing on less-known entities and
concepts. Fortunately, for these problems are being addressed by various approaches

including text-mining systems such as [IBminer, and massive crowdsourcing initiatives
such as WikiData.

71

Appendix A

Technical Details on the
RankProperties tools

The following appendixes describe the installation and basic configuration of
‘RankProperties’ and ‘TagProp’ systems. It covers information on installing these
systems with a binary package such as an APT in Ubuntu Linux or a Windows exe-
cutable. Topics covered here include configuration of the web servers, installation of
additional Python modules and tools for other interesting experiments. Follow the
detailed steps in this appendix to install RankProperties on your server or computer,
and on the following to install ‘TagProp’. After that you can then use our tools by
localhost or online.

Here are some tools for ranking RDF properties, evaluation systems and creation
models of the Knowldege Bases have already seen in the previously chapters (DB-
pedia, Wikidata, Freebase and Musicbrainz). RDF RankProperties architecture is

composed of the following tools:

e Web Server, to evaluate and to make ranking RDF properties.
e Model Generator, to create models for our ranker systems using RankLib.

e Evaluation Tool, to evaluate results and different configurations.

72

A.1 Web Server

It is possible to install Web Server within Linux using the ‘apt’ and ‘pip’ systems
installer in a bash. First install ‘pip’, a package manager, and ‘virtualenv’, a tool to
create isolated Python environments.

To do this digit:

sudo apt-get install python-setuptools

sudo apt-get install python-dev

sudo apt-get install python-devel

sudo apt-get install sqlite3 libsqlite3-dev
sudo apt-get install git

sudo easy_install pip

sudo easy_install virtualenv
Create a virtual environment:
virtualenv venv

This creates a copy of Python in whichever directory you ran the command in,
placing it in a folder named ‘venv’.

To begin using the virtual environment, it needs to be activated:
source venv/bin/activate
After this, follow these instructions to install RankProperties dependencies:

pip install SPARQLWrapper

pip install numpy

pip install requests

pip install pyyaml nltk

python -m nltk.downloader all

pip install pyenchant (or sudo apt-get install libenchantlc2a)

You can then begin installing any new modules without affecting the system de-
fault Python or other virtual environments.
If you have concluded working in the virtual environment for the moment, you

can deactivate it:

deactivate

73

This puts you back to the system’s default Python interpreter with all its installed
libraries. To delete a virtual environment, just delete its folder. After a while, though,
you might end up with a lot of virtual environments littered across your system, and
its possible youll forget their names or where they were placed.

If you want to use RankProperties from Python Shell follow these instructions.

The RankProperties command line interface is available via the Python Shell. See
the next example to see how to discover all of the functionality.

To run three quickstart examples you'll need to make:

e Download all source code in your virtual environment directory from bitbucket
repository[]

e Open a shell, go into “web_server” folder.

If you want to test this tool, create a python simple script looks like the following
scripts.

First script:

from rankProperties import rankProp

prop = "http://dbpedia.org/property/populationTotal”

entity = ""

print rankProp(prop,entity)

Second script:

from rankProperties import rankProp

prop = "http://dbpedia.org/property/populationTotal”

entity = "Cagliari”

print rankProp(prop,entity)

'https://andrea_dessi@bitbucket.org/semanticweb/rankproperties.git

74

https://andrea_dessi@bitbucket.org/semanticweb/rankproperties.git

Third script:

from rankProperties import rankAllDBpediaPropByJSON

entity = "Rose"
frequencyTF = True
frequencyEntTF = True
numOfWTF = True
nitTF = True

isEnTF = True

cOPTF = True
isLinkTF = True
goog2TF = True
isInSwipeTF = False
evalAll = True

print rankA11DBpediaPropByJSON(entity,frequencyTF,frequencyEntTF,
num0OfWTF ,nitTF, isEnTF, cOPTF,
isLinkTF,goog2TF,isInSwipeTF,evalAll)

where the method’s parameters are:

e entity: an entity of DBpedia
e property: a property about entity or a single property
e name_featureTF: enable (True) or not (False) a choosen features

After that, save the script, i.e., ‘script.py’, and executes it with python ‘script.py’.
For example if you want to obtain all properties about a particular knowledge

base, create a python script which contains:

from rankProperties import rankPropByUrl
url = "http://www.wikidata.org/wiki/Q1897"

print rankPropByUrl(url)

5

where the method’s parameters are:

e url: an url between four Knowledge Bases like wikidata, dbpedia, freebase and

musicbrainz

save the script, i.e., ‘script.py’, and executes it with python script.py
Otherwise, if you want to obtain all properties about a particular knowledge base

ranked, create a python script which contains:

from rankProperties import rankAllPropByUrl

url = "http://www.wikidata.org/wiki/Q1897"
modal = 3
algo = 8

print rankAl1PropByUrl(url,modal,algo)
where the method’s parameters are:

e url: an url between four Knowledge Bases like wikidata, dbpedia, freebase and

musicbrainz
e modal: modality about model generator

e algo: a MLR algorithm number (see under)

save the script, i.e., ‘script.py’, and executes it with python script.py

A.2 Model Generator

Model Generator is a tool to create models for RankProperties. If it has been
installed the web server it can jump these rows up to where there is how to use from
Python Shell.

It is possible to install Web Server within Linux using the ‘apt’ and ‘pip’ systems
installer in a bash. First install ‘pip’, a package manager, and ‘virtualenv’, a tool to
create isolated Python environments.

To do this digit:

76

sudo apt-get install python-setuptools

sudo apt-get install python-dev

sudo apt-get install python-devel

sudo apt-get install sqlite3 libsqlite3-dev
sudo apt-get install git

sudo easy_install pip

sudo easy_install virtualenv
Create a virtual environment:
virtualenv venv

This creates a copy of Python in whichever directory you ran the command in,
placing it in a folder named ‘venv’.

To begin using the virtual environment, it needs to be activated:
source venv/bin/activate
After this, follow these instructions to install RankProperties dependencies:

pip install SPARQLWrapper

pip install numpy

pip install requests

pip install pyyaml nltk

python -m nltk.downloader all

pip install pyenchant (or sudo apt-get install libenchantlc2a)

You can then begin installing any new modules without affecting the system de-
fault Python or other virtual environments.
If you have concluded working in the virtual environment for the moment, you

can deactivate it:
deactivate

This puts you back to the system’s default Python interpreter with all its installed
libraries. To delete a virtual environment, just delete its folder. After a while, though,
you might end up with a lot of virtual environments littered across your system, and
its possible youll forget their names or where they were placed.

Now it is possible to see how to use from Python Shell.

The ‘Model Generator’ command line interface is available via the Python Shell.
See the next example to see how to discover all of the functionality.

To run a quickstart example you’ll need to make:

7

A. Download all source code in your virtual environment directory.

git clone https://atzori@bitbucket.org/semanticweb/rankproperties.git

or

git clone https://andrea_dessi@bitbucket.org/semanticweb/rankproperties.git
B. Open a shell, go into ‘model_generator’ and digit ‘python’
C. Create a python script which contains:

from rankProperties import testBedAJournal

entities_train = {1 : "Russelia”, 2 : "Parma", 3 : "Microsoft",
4 : "Dog" , 5 : "Emrico_Berlinguer", 6 : "Sandra_Bullock"}
entities_vali = {1 : "Rose”, 2 : "Cagliari", 3 : "Facebook",

4 : "Cat" , 5 : "Aldo_Moro", 6 : "Angelina_Jolie"}

different entities possibly of different types

entities_test = {1 : "Pablo_Picasso", 2 : "Monaco",

3 : "Born_to_Love", 4 : "Conus" |,

5 : "The_Freddie_Mercury_Album", 6 : "Jean_de_Quen"}

ontologies_train = {1 : "Species”, 2 : "Settlement",
3 : "Public_company"”", 4 : "Animal" ,
5 : "Politictan", 6 : "Agent"}

ontologies_vali = {1 : "Species”, 2 : "Settlement",
3 : "Public_company"”", 4 : "Animal” , 5 : "Politician",
6 : "Agent"}

ontologies_test = {1 : "Artist”, 2 : "Place", 3 : "Work",
4 : "Animal" , 5 : "Work", 6 : "Agent"}

method = 3 # frequency

pos = True

testBedAJournal (method,entities_train,entities_vali,entities_test,

ontologies_train,ontologies_vali,ontologies_test,pos)

where the method’s parameters are:

78

https://atzori@bitbucket.org/semanticweb/rankproperties.git
https://andrea_dessi@bitbucket.org/semanticweb/rankproperties.git

e cntities_train, entities_vali and entities_test: three lists which contain a list

of entities that we want to use to create training files.

e ontologies_train, ontologies_vali, ontologies_test: three lists which contain
respectively a list of ontologies of entities chosen on previously lists (Sort

elements depending on entity lists).

e method: an integer which setting method between 1.expert (expert), 2.ques-
tionnaire (quest), 3.frequency (freq), 4.ddgsuggest (ddg), 5.typicality (scor)

and 6.swipe.

e pos: a boolean value which addresses how we want setting class value on
training file (True sets positions, False sets values obtained with method

choosen).

save the script, i.e., ‘script.py’, and executes it with ‘python script.py’

If you want to try this example directly without parameters create a python

script which contains:

from rankProperties import runTestBedAJournal()

runTestBedAJournal ()

In output we obtain three file txt called dtrain_‘method’.txt, dvali_‘method’.txt
and dtest_‘method’.txt which contain files for RankLib tool (more information

on E[) to create our models in SVM format:

<line> .=. <target> qid:<qid> <feature>:<value> <feature>:<value> ...

<feature>:<value> # <info>

<target> .=. <positive integer>
<gid> .=. <positive integer>
<feature> .=. <positive integer>
<value> .=. <float>

<info> .=. <string>

The target column is obtained by ‘pos’ parameter.

Zhttp://sourceforge.net/p/lemur/wiki/RankLib/

79

http://sourceforge.net/p/lemur/wiki/RankLib/

D. Finally create last python script which contains:

from rankProperties import testBedABJournal ()

suffix = "freq" #for example

testBedABJournal (suffix)

N.B. If you want to use method 1.expert (expert) or 2.questionnaire (quest) is

necessary to modify methods appropriated.

Eight models, based on previously training files (dtest, dtrain, and dvali) into

experiments folder, one for each learning to rank algorithms:

e RankNet (1st)

e RankBoost (2nd)

e AdaRank (3rd)

e Coordinate Ascent (4th)
e LambdaMART (5th)

e MART (Multiple Additive Regression Trees, a.k.a. Gradient boosted re-
gression tree) (6th)

o ListNet (7th)
e Random Forests (8th)

A.3 Evaluation Tool

Evaluation Tool is a tool to compare ranking by using Spearman’s rank correlation
rho, Precision and Recall of Top-10 Attributes

It is possible to install Web Server within Linux using the ‘apt’ and ‘pip’ systems
installer in a bash. First install ‘pip’, a package manager, and ‘virtualenv’, a tool to
create isolated Python environments.

To do this digit:

sudo apt-get install python-setuptools

sudo apt-get install python-dev

sudo apt-get install python-devel

sudo apt-get install sqlite3 libsqlite3-dev

80

sudo apt-get install git
sudo easy_install pip

sudo easy_install virtualenv
Create a virtual environment:
virtualenv venv

This creates a copy of Python in whichever directory you ran the command in,
placing it in a folder named ‘venv’.

To begin using the virtual environment, it needs to be activated:
source venv/bin/activate
After this, follow these instructions to install RankProperties dependencies:

pip install SPARQLWrapper

pip install numpy

pip install requests

pip install pyyaml nltk

python -m nltk.downloader all

pip install pyenchant (or sudo apt-get install libenchantlc2a)

You can then begin installing any new modules without affecting the system de-
fault Python or other virtual environments.
If you have concluded working in the virtual environment for the moment, you

can deactivate it:
deactivate

This puts you back to the system’s default Python interpreter with all its installed
libraries. To delete a virtual environment, just delete its folder. After a while, though,
you might end up with a lot of virtual environments littered across your system, and
its possible youll forget their names or where they were placed.

Now it is possible to see how to use from Python Shell.

The CompareAllRanking command line interface is available via the Python Shell.

See the next example to see how to discover all of the functionality.

81

To run a quickstart example you’ll need to make:
e Download all source code in your virtual environment directory.

git clone https://atzori@bitbucket.org/semanticweb/rankproperties.git

or
git clone https://andrea_dessi@bitbucket.org/semanticweb/rankproperties.git

e Open a shell, go into ”evaluation_tool” folder and digit *python*

e Create a python script which contains:

from rankProperties import CompareAllRanking

[{ #The_Guardian
‘http://dbpedia.

post =
org/ontology/wikiPageExrternallink’ : 1,

*http://dbpedia.
’http://dbpedia.
’hitp://dbpedia.
‘http://dbpedia.
’http://dbpedia.
’http://dbpedia.
‘http://dbpedia.
‘http://dbpedia.
’http://dbpedia.
’hitp://dbpedia.
*http://dbpedia.
’http://dbpedia.
’http://dbpedia.
‘http://dbpedia.
*http://dbpedia.
’http://dbpedia.
’hitp://dbpedia.
‘http://dbpedia.
’http://dbpedia.
’http://dbpedia.
’hitp://dbpedia.

org/property/caption’: 3,
org/property/circulation’: 3,
org/property/cost’: 2,
org/property/editor’: 4,
org/property/format’ : 4,
org/property/foundation’: 4,
org/property/headquarters’: 3,
org/property/issn’: 2,
org/property/language’ : 2,
org/property/name’ : 2,
org/property/oclc’: 1,
org/property/owners’: 4,
org/property/publisher’ : 4,
org/property/type’: 3,
org/property/website’ : 4,
org/property/opeditor’ : 3,
org/property/political’: 4,

org/property/sisterNewspapers”’ :

org/ontology/editor’: 4,
org/ontology/format’ : 3,
org/ontology/headquarter’ : 3,

82

https://atzori@bitbucket.org/semanticweb/rankproperties.git
https://andrea_dessi@bitbucket.org/semanticweb/rankproperties.git

’http://dbpedia.org/ontology/ouner’ : 4,
’http://dbpedia.org/ontology/wikiPageWikilink’ : 1,
’http://dbpedia.org/ontology/circulation’: 3,
’http://dbpedia.org/ontology/abstract’: 3,
’http://dbpedia.org/ontology/wikiPageLength’ : 1,
’http://dbpedia.org/ontology/wikiPageOutDegree’ : 1,
’http://dbpedia.org/ontology/wikiPageRevisionID’ : 1,
’http://dbpedia.org/ontology/sisterNewspaper’: 3,
’http://dbpedia.org/ontology/wikiPageID’ : 1}]

entities_scoring = [’The_Guardian’]
ontologies_scoring = [’Pertodicalliterature’]

CompareAllRanking(entities_scoring,ontologies_scoring,post)
where the method’s parameters are:

- entities_scoring: an array which contains a list of entities that we want to

analyze them.

- ontologies_scoring: an array which contains a list of ontologies of enti-
ties chosen on array entities_scoring (Sort elements depending on enti-

ties_scoring).

- post: an array which contains a list of properties belonging to entities_scoring
items and ordered as you want (to create post vector use createVector-
CompareAllRanking(vect), where vect is the vector which contains a list

of entity chosen).
save the script, i.e., ‘script.py’, and executes it with ‘python script.py’

If you want to try this example directly without parameters create a python

script which contains:

from rankProperties import testCompareAllRanking

testCompareAllRanking()

83

In output we obtain four files csv called *experiments_spearman.csv*, *experi-
ments_precision.csv*, *experiments_recall.csv* and *experiments_fmeasure.csv*

which contain a table into experiments_journal directory made as follows:

| entity | Tyl | Ty2 | Ty3 | Random | Lexicographic
| Lexicographic Rev | Swipe | Swipe2
| **xRP_modality_NumberOfAlgorithm_NumberOfFeatures**xx

- entity: contains the list of entities chosen

- Tyl: Typicality P(i]a)

- Ty2: Typicality P(alc)

- Ty3: Typicality P(c|a)

- Random: Random sort

- Lexicographic: Lexicographical sort

- Lexicographic Rev: Lexicographical sort reverse
- Swipe: Swipe sort

- Swipe 2: Swipe sort with different classification

**The last column is a summary of 40 columns because the name is composed
of:

- RP :: RankProperties

- modality :: [‘expert mode’, ‘frequency mode’, ‘quest mode’, ‘google sug-
gest mode’, ‘scoring typicality mode’, ‘duckduckgo suggest mode’, 'swipe

mode’]
- NumberOfAlgorithm :: [1-8] algorithms of RankLib

- NumberOfFeatures :: [1-9] features of RankProperties (for more details see

Ranking DBpedia Properties)

In each column we will find the corresponding rho, precision, recall and f-measure
respectively, than sorting chosen on the variable *post® (the third parameter of the
method).

84

Appendix B

Technical Details on the TagProp
tools

TagProp is a powerful tool that is able to identify parts of free-text and link them
to a pertinent RDF Properties (only DBpedia now) in a fast and effective way. This
annotation process has implications which go far beyond the enrichment of the text
with explanatory links because it concerns a way to answer questions inside of the
input typed text. Currently TagProp is available in English and it is based on last
Wikipedia snapshots.

TagProp architecture is composed of the following parts:

e Web Server, to make tagging RDF properties with a GUI.

e Tools and Utilities.

B.1 Web Server

You can install Web Server within Linux using the apt and pip systems installer in
a bash. First install pip, a package manager, and virtualenv, a tool to create isolated
Python environments.

To do this digit:

sudo apt-get install python-setuptools

sudo apt-get install python-dev

sudo apt-get install python-devel

sudo apt-get install sqlite3 libsqlite3-dev
sudo apt-get install git

sudo easy_install pip

sudo easy_install virtualenv

85

Create a virtual environment:
virtualenv venv

This creates a copy of Python in whichever directory you ran the command in,
placing it in a folder named venv.

To begin using the virtual environment, it needs to be activated:
source venv/bin/activate
After this, follow these instruction to install tagProp dependencies:

pip install SPARQLWrapper

pip install numpy

pip install requests

pip install pyyaml nltk

sudo pip install requests beautifulsoup4 inflect
python -m nltk.downloader all

pip install pyenchant

You can then begin installing any new modules without affecting the system de-
fault Python or other virtual environments.
If you are done working in the virtual environment for the moment, you can

deactivate it:
deactivate

This puts you back to the systems default Python interpreter with all its installed
libraries. To delete a virtual environment, just delete its folder. After a while, though,
you might end up with a lot of virtual environments littered across your system, and
its possible youll forget their names or where they were placed.

If you want to use TagProp from Python Shell follow these instructions.

The tagProp command line interface is available via the Python Shell. See the

next example to see how to discover all of the functionality.

86

To run three quickstart examples you'll need to make:

e Download all source code in your virtual environment directory from bitbucket

repository[]
e Open a shell, go into tagProp folder.

e if you want to test this tool, create a python simple script looks like the following.

from tagProp import tagClassesNewCaching

print tagClassesNewCaching("How many people live in Cagliari?")

After that, save the script, i.e., ‘script.py’, and executes it with python ‘script.py’.
The tool to compute property tagging is also available as a Web API.
If you want to test this tool, open a shell, go into tagProp folder and execute a

python script:
python httpServer.py

In order to use it, given a sentence (e.g., How many people in Cagliari?”), you can
compute the tagging of the sentence by using our GUI which elaborates the following

exemplificatory url (localhost):
http://127.0.0.1:9999/7sentence=[your_typed_sentence]

The result is provided in JSON format and visualized in our GUI, such that it
can be even used within other projects online.

An example of JSON output about tagProp:

[{"prop": "http://dbpedia.org/property/populationTotal ",
"word": "people"},

{"prop": "http://dbpedia.org/ontology/populationTotal ",
"word": "people”}]

'https://andrea_dessi@bitbucket.org/semanticweb/tagproperties.git

87

https://andrea_dessi@bitbucket.org/semanticweb/tagproperties.git

B.2 Tools and Utilities

e Label Extraction.

e Synonyms Extraction.

tagProp GUIL.

Qald Extended.

Eval TagProp over QALD.

B.2.1 Label Extraction

Download RDF properties and their English labels:
python labelExtraction.py > labels.tsv
The content of labels.tsv will be like the following;:

http://dbpedia.org/property/populationTotal population total
another_property_uri labell 1label2

That is, a property URI followed by its label (or labels), if any.

B.2.2 Synonyms Extraction

Creates a file with English synonyms
python synonymsExtraction.py > synonyms.tsv
The content of synonyms.tsv will be like the following:

people<tab>population citizens inhabitants<tab>...

another_property_uri labell label2

That is, every row contains a list of words with same or correlated meaning.

88

B.2.3 TagProp GUI

A Graphical User Interface for tagProp tool. After, install LAMP, copy GUI
directory into the directory of apache server, enter in this folder and modify row
number 10 on process.php file setting with the chosen address (ip and port) i.e. like

this in localhost

$json = file_get_contents(‘http://localhost:9999/tagprop/
7sentence=%22’ .$input_for_url. ‘%22°);

Now, open a browser and digit:
http://localhost/tagprop/

You will see a graphical user interface where you write on text-area your sentence.
E.g. For the sentence "How many people live in Cagliari?”, clicking over ”tagProp”

button, our web service produces a JSON output like this:

[{"prop": "http://dbpedia.org/property/populationTotal” ,"word": "people"},
{"prop": "http://dbpedia.org/ontology/populationTotal” ,"word": ”people”}]@

and you’ll see a sentence above with one or more links about the previously prop-

erties. If you want, you see video explication on wiki home

B.2.4 Qald Extended

Return a JSON file from Qald file with all important component of SPARQL
query. If you want to change the QALD file which it will be analyzed, go to line 19

of this script and change that code-line whenever you want. To start digit on a shell
python re-elaborateQald.py
A fragment of JSON result about this tool:

[{"entities": ["res:Jane_Fonda"],

"properties": ["dbo:spouse”],

"types": [],

"queries": "PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX res: <http://dbpedia.org/resource/>

SELECT COUNT(DISTINCT ?uri) \nWHERE {

res:Jane_Fonda dbo:spouse ?uri .}"}, {”entities":[:]

89

Appendix C

Technical Details on Qpedia

The following appendixes describe the installation and basic configuration of Qpe-
dia. It covers information on installing these systems with a binary package such as
an APT in Ubuntu Linux or a Windows executable. After that you can then use our
tools by localhost or online. Under most circumstances, installing Qpedia is a very
simple process and takes less than five minutes to complete. Only Apache server is
required and a browser with javascript support. Many web hosts now offer tools to
automatically install Apache for you. It is possible to install Apache with Windows
using i.e. [[| or with Linux using the ‘apt’ and ‘pip’ systems installer in a bash. First
install ‘git’, a version control system, to download the source code and second install
Apache. To do this digit:

sudo apt-get install git
sudo apt-get install apache2

Once installed them, it is possible to download the directory using git. To run

Qpedia you’ll need to make:

e Download all source code in your virtual environment directory from bitbucket

repository [

e Open a browser and typing Qpedia (or the folder name chosen) in the location

bar.

"http://www.easyphp.org/
’https://andrea_dessi@bitbucket.org/andrea_dessi/qpedia.git

90

http://www.easyphp.org/
https://andrea_dessi@bitbucket.org/andrea_dessi/qpedia.git

Appendix D

Jena Experiments

This section contains a set of experiments about SPARQL Query optimezed over
Apache Jena.
Let’s start with a SPARQL query (A):

PREFIX dbpprop: <http://dbpedia.org/property/>
PREFIX text: <http://jena.apache.org/text#>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?res

WHERE {

?res dbpedia-owl:country 7country .

FILTER (REGEX(STR(?country), "Italy"”, "i")).
?res dbpprop:mayor 7mayor .

FILTER (REGEX(STR(?mayor), "Renzi", "i"))

i

The estimated time is 10,541 seconds and trying to execute indexes individually

take the same time.

91

But instead, launching the query (B) similar to query (A) with “text:query”:

PREFIX dbpprop: <http://dbpedia.org/property/>
PREFIX text: <http://jena.apache.org/text#>
PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

SELECT DISTINCT ?res

WHERE {

7res text:query(dbpedia-owl:country "Italy”).
?res dbpprop:mayor 7mayor .

FILTER (REGEX(STR(?mayor), "Remzi", "i"))}

The estimated time is more long than before with his 139,803 seconds.

Other experiments performed, launching queries to estimate time, are:

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT DISTINCT 7res

WHERE

{

{?res text:query (dbpprop:type ’Daily newspaper’)

?res dbpprop:type 7var_1

FILTER (REGEX(STR(?var_1), "Daily newspaper” , "<"))}
UNION

{?res dbpprop:type ?var_1X.

?var_1X text:query (foaf:name ’Daily newspaper’).
?var_1X foaf:name 7var_1Y.

FILTER (REGEX(STR(?var_1Y), "Daily mewspaper"” , "i"))}
+

OFFSET O LIMIT 10

17:28:16 INFQ ;¢ |[2]] lexec/select
17:28:16 INFQ :: [[21] 200 K| (15,266 [8)

92

Same previously query with UNION inverted:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?res
WHERE {
{
?res dbpprop:type ?var_1X.
7var_1X text:query (foaf:name ’Daily newspaper’).

?var_1X foaf:name 7var_1Y.

FILTER (REGEX(STR(?var_1Y), "Daily newspaper” , "i"))
+
UNION
{

7res text:query (dbpprop:type ’Daily newspaper’)

?res dbpprop:type 7var_1

FILTER (REGEX(STR(?var_1), "Daily newspaper" , "4"))
+
+

OFFSET O LIMIT 10

19:21:20 IN s 1 /select
19:24:02 IN x 1 200 (227,686 @)

93

Only first part of previously query (above part of UNION):

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?res

WHERE {

{

?res dbpprop:type ?var_1X.

?var_1X text:query (foaf:name ’Daily newspaper’).
?var_1X foaf:name 7var_1Y.

FILTER (REGEX(STR(?var_1Y), "Daily newspaper” , "i"))
+

+

OFFSET O LIMIT 10

16:24:39 IN s 4 /select
16:27:17 IN x 4 200 (223,883)

(without filter)

17:05:35 IN i 1 /select
17:05:38 INFQ ;¢ |[1]] 200 (15,862 |s))

94

Second part ot the second query (below part of UNION):

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT DISTINCT 7res

WHERE {

{

7res text:query (dbpprop:type ’Datily newspaper’)

?res dbpprop:type 7var_1 .

FILTER (REGEX(STR(?var_1), "Daily newspaper"” , "4"))
+

+

OFFSET O LIMIT 10

16:30:58 INFOQ 2o [[10] [exec/select
16:30:59 INFOQ :: [010] 200 oK (12,444 |s)

(without filter)

17:02:21 INFQ :: |[1]] lexec/select
17:02:21 INFO :: [[1]] 200 0K (11,706 s

(‘without‘ ‘fulltext‘ a‘rch‘)

17:03:45 IN e 1 /select
17:03:45 INFQ :: [010] 200 K (5,753)

95

Previously query with ORDER BY:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?res

WHERE {

{

7res text:query (dbpprop:type ’Datily newspaper’)
?res dbpprop:type 7var_1

FILTER (REGEX(STR(?var_1), "Daily newspaper"” , "4"))
+

?res dbpprop:editor 7editor.

+

ORDER BY ASC/(?editor)

OFFSET O LIMIT 10

15:19:02 IN s 2 /select
15:19:02 IN x 2 200 (193,994)

96

Other queries similar to previously with ORDER BY:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?res

WHERE {

{

?res dbpprop:type ?var_1X.

7var_1X text:query (foaf:name ’Daily newspaper’).
?var_1X foaf:name “var_1Y.

FILTER (REGEX(STR(?var_1Y), "Daily newspaper” , "i"))
+

?res dbpprop:editor 7editor.

+

ORDER BY AS((7editor)

OFFSET O LIMIT 10

1200

97

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT DISTINCT ?res

WHERE {

{

?res dbpprop:type ?var_1X.
?7var_1X text:query (foaf:name ’Daily newspaper’).
?var_1X foaf:name 7var_1Y.

FILTER (REGEX(STR(?var_1Y), "Daily newspaper” , "i"))
+

UNION

{

7res text:query (dbpprop:type ’Datily newspaper’)

?res dbpprop:type 7var_1

FILTER (REGEX(STR(?var_1), "Daily newspaper” , "i"))

+

?res dbpprop:editor 7editor.

+

ORDER BY ASC|(7editor)

OFFSET O LIMIT 10

1200 3

98

In the following query using "REGEX":

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT DISTINCT 7res 7editor

WHERE {

{

7res text:query (dbpprop:type ’Datily newspaper’)

?res dbpprop:type 7var_1

FILTER (REGEX(STR(?var_1), "Daily newspaper” , "i")).
?res dbpprop:editor 7editor.

+

UNION

{

?res dbpprop:type ?var_1X.

?var_1X text:query (foaf:name ’Daily newspaper’).
?var_1X foaf:name 7var_1Y.

FILTER (REGEX(STR(?var_1Y), "Daily newspaper” , "i")).
?res dbpprop:editor 7editor.

+

+

#ORDER BY ASC(Z?editor)

OFFSET 0 LIMIT 10

16:10:48 IN e 1 /select
16:10:49 INFQ :+ [01] 200 (14,174 |8

Withl "ORDER BY" - 1200

99

In following using "REGEX":

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT DISTINCT 7res 7editor

WHERE {

7res text:query (dbpprop:type ’Datily newspaper’)

?res dbpprop:type 7var_1

FILTER (REGEX(STR(?var_1), "Daily newspaper” , "i")).

?res dbpprop:editor 7editor.

}

16:31:17 INFQ :: |[1]] lexec/select
16:34:33 INFO :: [[1]] 200 [0K (208,239)

100

An other experiment trying to find the “dbprop UNION foaf:name” which contains
“Daily newspaper”. In this case the filter is always for “Daily newspaper” with
ORDER BY

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

SELECT DISTINCT 7res

WHERE {{

7res text:query (dbpprop:type ’Datily newspaper’)

?res dbpprop:type 7var_1 .

FILTER (REGEX(STR(?var_1), "Daily newspaper"” , "4"))
+

UNION {

?res dbpprop:type 7var_1X.

?var_1X text:query (foaf:name ’Daily newspaper’).
?var_1X foaf:name 7var_1Y.

FILTER (REGEX(STR(?var_1Y), "Daily newspaper" , "i"))
}

?res dbpprop:editor 7editor.

+

ORDER BY ASC/(?editor)

OFFSET 0 LIMIT 10

1200

All of analyzed queries in this scenario with ORDER BY and without OFFSET
present an execution time undefined (Time more than 1200 s). Using "ORDER BY”
and executing it without clean the cache, the time is equal to 2 seconds.

Instead cleaning the cache:

16:40:15 INFQ ;¢ |[1]] lexec/select
16:40:17 INFO :: [[1]] 200 [0K (222,466)

101

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

SELECT DISTINCT “res 7editor 7image 7comment 7page 7label
WHERE {
{
?res text:query (dbpprop:type ’Daily newspaper’)
?res dbpprop:type ?var_1
FILTER (REGEX(STR(?var_1), "Datily newspaper” , "4"))}
UNION{
?res dbpprop:type ?var_1X.
?var_1X text:query (foaf:name ’Daily newspaper’).
?var_1X foaf:name 7var_1Y.
FILTER (REGEX(STR(?var_1Y), "Datly newspaper” , "i")).}
?res dbpprop:editor 7editor.
?res dbpprop:editor 7editor.
OPTIONAL { ?res foaf:page 7page 7}
OPTIONAL { {?res dbpedia-owl:thumbnail ?7image} }
OPTIONAL {
?res rdfs:comment 7comment.
FILTER (LANG(?comment) = "en").}
OPTIONAL{
?res rdfs:label 7label.
FILTER (LANG(7label) = "en") .}
+
OFFSET O LIMIT 10

16:53:43 IN s 1 /select
16:53:45 IN x 1 200 (18,398)

102

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

PREFIX dbpprop:<http://dbpedia.org/property/>

PREFIX foaf:<http://xmlns.com/foaf/0.1/>

PREFIX dbpedia-owl: <http://dbpedia.org/ontology/>

SELECT DISTINCT “res 7editor 7image 7comment 7page 7label
WHERE {

{ 7res text:query (dbpprop:type ’Datily newspaper’)
?res dbpprop:type ?var_1

FILTER (REGEX(STR(?var_1), "Daily newspaper" , "i"))

}

UNION

{ ?res dbpprop:type “var_1X.

?var_1X text:query (foaf:name ’Daily newspaper’).
?var_1X foaf:name 7var_1Y.

FILTER (REGEX(STR(?var_1Y), "Daily newspaper” , "i")).
b

UNION

{

?res dbpprop:language 7var_2X.

?var_2X text:query (foaf:name ’Italian language’).
?var_2X foaf:name 7var_2Y.

FILTER (REGEX(STR(?var_2Y), "Italian language” , "2"))
b

UNION

{

?res dbpprop:language 7var_2X.

?var_2X text:query (rdfs:label ’Italian language’).
?var_2X rdfs:label 7var_2Y.

FILTER (REGEX(STR(?var_2Y), "Italian language” , "i"))
b

?res dbpprop:editor 7editor.

OPTIONAL { ?res foaf:page 7page }

OPTIONAL { {?res dbpedia-owl:thumbnail ?7image} }

103

OPTIONAL { ?res rdfs:comment 7comment.
FILTER (LANG(?comment) = "en"). }

OPTIONAL { ?res rdfs:label 7label.
FILTER (LANG(7label) = "en") .}

}

#UORDER BY Zeditor

OFFSET 0 LIMIT 10

17:06:16 INFQ :: |[1]] lexec/select
17:06:18 INFO :: [[1]] 200 0K (25,375 &)

In the next experiment can figure out what’s up searching the label which contains

“ca” with wildcard (*):

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

select distinct 7p str(?7val) 7?data where

{
7data text:query(rdfs:label ’cax*’).

?data 7p 7val

+
LIMIT 10

16:09:28 IN s 1 /select
16:09:28 INFQ :: [01] 200 (3,111 g

104

And with sort:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

select distinct 7p str(?val) 7?data where
{

7data text:query(rdfs:label ’cax*’).
?data 7p 7val

}

order by 7p

LIMIT 10

16:21:20 IN s 1 /select
16:21:20 IN x 1 200 (642,267 @)

Experiments with sort over ?lab and filter over language always on ?lab:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

SELECT DISTINCT 7s 7lab

WHERE{

7s text:query(rdfs:label ’cax*’).
?s rdfs:label 7lab.

FILTER (lang(?lab) = "en”).

}

ORDER BY 7lab

LIMIT 10

16:55:50 INFQ ;¢ |[2]] lexec/select
16:55:50 INFO :: [[2]] 200 [0K (164,488)

105

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

SELECT DISTINCT 7s 7lab

WHERE{

7s text:query(rdfs:label ’cax*’).
?s rdfs:label 7lab.

FILTER (lang(?lab) = "en").

}

LIMIT 10

16:54:44 INFQ :: |[4]] lexec/select
16:54:45 INFQ :: [[4]] 200 0K (559 ms))

The instruction ORDER BY is expensive, so this is something which we also have
to take into account.

Using the previously query adding the condition data j 1950-01-01:

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

SELECT DISTINCT 7s 7lab 7birthDate

WHERE{ 7?s text:query(rdfs:label ’ca*’).

?s rdfs:label 7lab.

?s <http://dbpedia.org/ontology/birthDate> TbirthDate .
FILTER (lang(?lab) = "en").

FILTER(?birthDate H "1950-01-01") .

}

LIMIT 10

19:28:20 INFQ :: |[1]] lexec/select
19:28:20 INFO :: [[1]] 200 [0K (239,544)

106

Sorting by 7lab:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX text: <http://jena.apache.org/text#>

SELECT DISTINCT 7s 7lab 7birthDate
WHERE{

7s text:query(rdfs:label ’cax*’).
?s rdfs:label 7lab.

?s <http://dbpedia.org/ontology/birthDate> 7birthDate .
FILTER (lang(?lab) = "en").
}

ORDER BY 7lab

LIMIT 10

19:37:38 INFQ ;¢ |[1]] lexec/select
19:37:38 INFOQ :: [01] 200 (244,624 8

107

In the following experiment were used other datasets:

PREFIX imdb: <http://data.linkedmdb.org/resource/movie/>
PREFIX dbpedia: <http://dbpedia.org/ontology/>
PREFIX dcterms: <http://purl.org/dc/terms/>

PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT *

from <http://xmlns.com/foaf/0.1/>

{

SERVICE <http://data.linkedmdb.org/sparql>

{

?actorl imdb:actor_name "“Tom Hanks".

?movie imdb:actor 7actorl ;

dcterms:title 7movieTitle .

+

SERVICE <http://dbpedia.org/sparql>

{

7actor rdfs:label "Tom Hanks'"Qen ;
dbpedia:birthDate 7birth_date .

+

}

$Xecution‘ﬁime‘(8,634 @)

108

In the following query looks like the instruction FILTER flows all of indexes even

if italian language “@QIT” were not loaded.

PREFIX rdfs: <http://www.w3.o0rg/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *

WHERE {

7subject rdf:type <http://dbpedia.org/ontology/City>.
?subject rdfs:label 7label.

FILTER (lang(?label) = ’4t”’)

}

LIMIT 10

(56,032 s))

Instead in this query were exist english language en and therefore was fastest:

PREFIX rdfs: <http://www.w3.0rg/2000/01/rdf-schema#>
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX foaf: <http://xmlns.com/foaf/0.1/>

SELECT *

WHERE {

7?subject rdf:type <http://dbpedia.org/ontology/City>.
?subject rdfs:label 7label.

FILTER (lang(?7label) = ’en’)

}

LIMIT 10

Tine (&)

109

Bibliography

1]

Sinan Al-Saffar and Gregory L. Heileman. Computing information value from rdf
graph properties. In Gabriele Kotsis, David Taniar, Eric Pardede, Imad Saleh,
and Ismail Khalil, editors, s WAS, pages 349-356. ACM, 2010.

Kemafor Anyanwu, Angela Maduko, and Amit P. Sheth. Semrank: ranking
complex relationship search results on the semantic web. In Allan Ellis and
Tatsuya Hagino, editors, WWW, pages 117-127. ACM, 2005.

Kemafor Anyanwu and Amit P. Sheth. The p operator: Discovering and ranking
associations on the semantic web. SIGMOD Record, 31(4):42-47, 2002.

Maurizio Atzori and Andrea Dessi. Ranking dbpedia properties. In 23rd IEEE
WETICE Conference, Web2Touch Track, 2014.

Maurizio Atzori and Carlo Zaniolo. Swipe: searching wikipedia by example. In
Alain Mille, Fabien L. Gandon, Jacques Misselis, Michael Rabinovich, and Steffen
Staab, editors, WWW (Companion Volume), pages 309-312. ACM, 2012.

Maurizio Atzori and Carlo Zaniolo. Expressivity and accuracy of by-example
structure queries on wikipedia. CSD Technical Report #140017, UCLA, 2014.

Soren Auer, Christian Bizer, Georgi Kobilarov, Jens Lehmann, Richard Cyga-
niak, and Zachary G. Ives. Dbpedia: A nucleus for a web of open data. In Karl
Aberer, Key-Sun Choi, Natasha Fridman Noy, Dean Allemang, Kyung-Il Lee,
Lyndon J. B. Nixon, Jennifer Golbeck, Peter Mika, Diana Maynard, Riichiro Mi-
zoguchi, Guus Schreiber, and Philippe Cudré-Mauroux, editors, ISWC/ASWC,
volume 4825 of Lecture Notes in Computer Science, pages 722—735. Springer,
2007.

Sean Bechhofer, Frank van Harmelen, Jim Hendler, Tan Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, and Lynn Andrea Stein.

110

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

OWL Web Ontology Language Reference. Technical report, W3C,
http://www.w3.org/ TR /owl-ref/, February 2004.

Christian Becker and Christian Bizer. Dbpedia mobile: A location-enabled
linked data browser. In Christian Bizer, Tom Heath, Kingsley Idehen, and
Tim Berners-Lee, editors, LDOW, volume 369 of CEUR Workshop Proceedings.
CEUR-~-WS.org, 2008.

T. Berners-Lee, J. Hendler, and O. Lassila. The semantic web. Scientific Amer-
tcan, May 2001.

Abraham Bernstein and Esther Kaufmann. Gino - a guided input natural lan-
guage ontology editor. In Proceedings of the 5th International Semantic Web
Conference (ISWC 2006), Athens, Georgia (US), November 2006.

Roi Blanco, Peter Mika, and Sebastiano Vigna. Effective and efficient entity
search in rdf data. In International Semantic Web Conference (1), pages 83-97,
2011.

Leo Breiman. Random forests. Mach. Learn., 45(1):5-32, October 2001.

Chris Burges, Tal Shaked, Erin Renshaw, Ari Lazier, Matt Deeds, Nicole Hamil-
ton, and Greg Hullender. Learning to rank using gradient descent. In ICML 05,
ICML ’05, pages 89-96, New York, NY, USA, 2005. ACM.

Elena Cabrio, Julien Cojan, Fabien Gandon, and Amine Hallili. Querying mul-
tilingual dbpedia with qakis. In Philipp Cimiano, Miriam Fernndez, Vanessa
Lopez, Stefan Schlobach, and Johanna Vlker, editors, ESWC' (Satellite Events),
volume 7955 of Lecture Notes in Computer Science, pages 194-198. Springer,
2013.

Zhe Cao, Tao Qin, Tie-Yan Liu, Ming-Feng Tsai, and Hang Li. Learning to
rank: From pairwise approach to listwise approach. In Proceedings of the 24th
International Conference on Machine Learning, ICML 07, pages 129-136, New
York, NY, USA, 2007. ACM.

Philipp Cimiano, Peter Haase, Jorg Heizmann, Matthias Mantel, and Rudi
Studer. Towards portable natural language interfaces to knowledge bases - the
case of the ORAKEL system. Data Knowl. Eng., 65(2):325-354, 2008.

111

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

Lorand Dali, Blaz Fortuna, Duc Thanh Tran, and Dunja Mladenic. Query-
independent learning to rank for rdf entity search. In Elena Simperl, Philipp
Cimiano, Axel Polleres, Oscar Corcho, and Valentina Presutti, editors, ESWC,
volume 7295 of Lecture Notes in Computer Science, pages 484-498. Springer,
2012.

A. Dessi and M. Atzori. Computing on-the-fly dbpedia property ranking. In
Semantic Computing (ICSC), 2014 IEEE International Conference on, pages
260-261, June 2014.

Andrea Dessi, Andrea Maxia, Maurizio Atzori, and Carlo Zaniolo. Supporting
semantic web search and structured queries on mobile devices. In Roberto De Vir-
gilio, James Geller, Paolo Cappellari, and Mark Roantree, editors, SSW@VLDB,
page 5. ACM, 2013.

Li Ding, Rong Pan, Timothy W. Finin, Anupam Joshi, Yun Peng, and Pranam
Kolari. Finding and ranking knowledge on the semantic web. In Yolanda Gil,
Enrico Motta, V. Richard Benjamins, and Mark A. Musen, editors, International
Semantic Web Conference, volume 3729 of Lecture Notes in Computer Science,
pages 156-170. Springer, 2005.

Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, Marcin Sydow, and Gerhard
Weikum. Language-model-based ranking for queries on rdf-graphs. In David
Wai-Lok Cheung, I1-Yeol Song, Wesley W. Chu, Xiaohua Hu, and Jimmy J. Lin,
editors, CIKM, pages 977-986. ACM, 2009.

Shady Elbassuoni, Maya Ramanath, Ralf Schenkel, and Gerhard Weikum.
Searching rdf graphs with SPARQL and keywords. [EEE Data Eng. Bull.,
33(1):16-24, 2010.

Basil Ell, Denny Vrandecic, and Elena Paslaru Bontas Simperl. Labels in the
web of data. In International Semantic Web Conference (ISWC) 2011, 2011.

Paolo Ferragina and Ugo Scaiella. TAGME: on-the-fly annotation of short text
fragments (by wikipedia entities). In Jimmy Huang, Nick Koudas, Gareth J. F.
Jones, Xindong Wu, Kevyn Collins-Thompson, and Aijun An, editors, Proceed-
ings of the 19th ACM Conference on Information and Knowledge Management,
CIKM 2010, Toronto, Ontario, Canada, October 26-30, 2010, pages 1625-1628.
ACM, 2010.

112

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[34]

Paolo Ferragina and Ugo Scaiella. Fast and accurate annotation of short texts
with wikipedia pages. IEEE Software, 29(1):70-75, 2012.

David A. Ferrucci, Eric W. Brown, Jennifer Chu-Carroll, James Fan, David
Gondek, Aditya Kalyanpur, Adam Lally, J. William Murdock, Eric Nyberg,
John M. Prager, Nico Schlaefer, and Christopher A. Welty. Building watson: An
overview of the deepqa project. Al Magazine, 31(3):59-79, 2010.

Maximiliano Firtman. jQuery Mobile - Up and Running: Using HTMLS to
Design Web Apps for Tablets and Smartphones. O’Reilly, 2012.

Thomas Franz, Antje Schultz, Sergej Sizov, and Steffen Staab. Triplerank: Rank-
ing semantic web data by tensor decomposition. In Abraham Bernstein, David R.
Karger, Tom Heath, Lee Feigenbaum, Diana Maynard, Enrico Motta, and Kr-
ishnaprasad Thirunarayan, editors, International Semantic Web Conference, vol-

ume 5823 of Lecture Notes in Computer Science, pages 213-228. Springer, 2009.

Yoav Freund, Raj Iyer, Robert E. Schapire, and Yoram Singer. An efficient
boosting algorithm for combining preferences. J. Mach. Learn. Res., 4:933-969,
December 2003.

Jerome H. Friedman. Greedy function approximation: A gradient boosting ma-
chine. Annals of Statistics, 29:1189-1232, 2000.

Alvaro Graves, Sibel Adali, and Jim Hendler. A method to rank nodes in an rdf
graph. In Christian Bizer and Anupam Joshi, editors, International Semantic
Web Conference (Posters & Demos), volume 401 of CEUR Workshop Proceed-
ings. CEUR-WS.org, 2008.

Rasmus Hahn, Christian Bizer, Christopher Sahnwaldt, Christian Herta, Scott
Robinson, Michaela Biirgle, Holger Dtuwiger, and Ulrich Scheel. Faceted
wikipedia search. In Witold Abramowicz and Robert Tolksdorf, editors, BIS,
volume 47 of Lecture Notes in Business Information Processing, pages 1-11.

Springer, 2010.

Yanan Hao, Yanchun Zhang, and Jinli Cao. Web services discovery and rank:
An information retrieval approach. Future Generation Comp. Syst., pages 1053—
1062, 2010.

113

[35]

[36]

[41]

[42]

Xin He and Mark Baker. xhrank: Ranking entities on the semantic web. In
Axel Polleres and Huajun Chen, editors, ISWC PostersédDemos, volume 658 of
CEUR Workshop Proceedings. CEUR-WS.org, 2010.

Aidan Hogan, Andreas Harth, and Stefan Decker. Reconrank: A scalable ranking
method for semantic web data with context. In In 2nd Workshop on Scalable
Semantic Web Knowledge Base Systems, 2006.

Zhixing Huang and Yuhui Qiu. A multiple-perspective approach to constructing
and aggregating citation semantic link network. Future Generation Comp. Syst.,
26(3):400-407, 2010.

Carlos A. Hurtado, Alexandra Poulovassilis, and Peter T. Wood. A relaxed
approach to rdf querying. In Isabel F. Cruz, Stefan Decker, Dean Allemang,
Chris Preist, Daniel Schwabe, Peter Mika, Michael Uschold, and Lora Aroyo,
editors, International Semantic Web Conference, volume 4273 of Lecture Notes

in Computer Science, pages 314-328. Springer, 2006.

Ora Lassila and Ralph R. Swick. Resource Description Framework (RDF) Model
and Syntax Specification. W3c recommendation, W3C, February 1999.

Taesung Lee, Zhongyuan Wang, Haixun Wang, and Seung-won Hwang. At-
tribute extraction and scoring: A probabilistic approach. In Christian S. Jensen,
Christopher M. Jermaine, and Xiaofang Zhou, editors, 29th IEEE ICDE 20183.
IEEE Computer Society, 2013.

Jens Lehmann, Robert Isele, Max Jakob, Anja Jentzsch, Dimitris Kontokostas,
Pablo N. Mendes, Sebastian Hellmann, Mohamed Morsey, Patrick van Kleef,
Soren Auer, and Christian Bizer. DBpedia - a large-scale, multilingual knowledge

base extracted from wikipedia. Semantic Web Journal, 2014.

Xiaoling Li, Huaimin Wang, Bo Ding, Xiaoyong Li, and Dawei Feng. Resource
allocation with multi-factor node ranking in data center networks. Future Gen-
eration Comp. Syst., 32:1-12, 2014.

Tie-Yan Liu. Learning to Rank for Information Retrieval. Springer, 2011.

Vanessa Lopez, Miriam Fernandez, Enrico Motta, and Nico Stieler. Poweraqua:
Supporting users in querying and exploring the semantic web. Semantic Web,

3(3):249-265, 2012.

114

[45]

[46]

[49]

[50]

[51]

[52]

Brian McBride. The resource description framework (rdf) and its vocabulary
description language rdfs. In Steffen Staab and Rudi Studer, editors, Handbook
on Ontologies, International Handbooks on Information Systems, pages 51-66.
Springer, 2004.

Pablo N. Mendes, Max Jakob, Andrés Garcia-Silva, and Christian Bizer. Db-
pedia spotlight: shedding light on the web of documents. In Chiara Ghidini,
Axel-Cyrille Ngonga Ngomo, Stefanie N. Lindstaedt, and Tassilo Pellegrini, ed-
itors, Proceedings the 7th International Conference on Semantic Systems, I-
SEMANTICS 2011, Graz, Austria, September 7-9, 2011, ACM International
Conference Proceeding Series, pages 1-8. ACM, 2011.

Donald Metzler and W. Bruce Croft. Linear feature-based models for information
retrieval. Inf. Retr., 10(3):257-274, June 2007.

Roberto Mirizzi, Azzurra Ragone, Tommaso Di Noia, and Eugenio Di Sciascio.
Ranking the linked data: The case of dbpedia. In Boualem Benatallah, Fabio
Casati, Gerti Kappel, and Gustavo Rossi, editors, I[CWE, volume 6189 of Lecture
Notes in Computer Science, pages 337-354. Springer, 2010.

Hamid Mousavi, Maurizio Atzori, Shi Gao, and Carlo Zaniolo. Text-mining,

structured queries, and knowledge management on web document corpora. SIG-
MOD Record, 43(3):48-54, 2014.

Hamid Mousavi, Shi Gao, and Carlo Zaniolo. Ibminer: A text mining tool for
constructing and populating infobox databases and knowledge bases. PVLDB,
6(12):1330-1333, 2013.

Eric Prud’hommeaux and Andy Seaborne. SPARQL query language for RDF,
W3C recommendation. Technical report, World Wide Web Consortium, January
2008.

Muhammad Saleem, Qaiser Mehmood, and Axel-Cyrille Ngonga Ngomo. Feasi-
ble: A feature-based sparql benchmark generation framework. In International
Semantic Web Conference (ISWC), 2015.

Nico Schlaefer, Jeongwoo Ko, Justin Betteridge, Manas A. Pathak, Eric Ny-
berg, and Guido Sautter. Semantic extensions of the ephyra QA system for
TREC 2007. In Ellen M. Voorhees and Lori P. Buckland, editors, Proceedings

115

[56]

[57]

[58]

[59]

[60]

[61]

[62]

of The Sixteenth Text REtrieval Conference, TREC 2007, Gaithersburg, Mary-
land, USA, November 5-9, 2007, volume Special Publication 500-274. National
Institute of Standards and Technology (NIST), 2007.

C. Spearman. The proof and measurement of association between two things.
American Journal of Psychology, 15:88-103, 1904.

Christina Unger, Corina Forascu, Vanessa Lopez, Axel-Cyrille Ngonga Ngomo,
Elena Cabrio, Philipp Cimiano, and Sebastian Walter. Question answering over
linked data (QALD-4). In Linda Cappellato, Nicola Ferro, Martin Halvey, and
Wessel Kraaij, editors, Working Notes for CLEF 2014 Conference, Sheffield, UK,
September 15-18, 2014., volume 1180 of CEUR Workshop Proceedings, pages
1172-1180. CEUR-WS.org, 2014.

Jorg Waitelonis, Nadine Ludwig, Magnus Knuth, and Harald Sack. Whoknows?
evaluating linked data heuristics with a quiz that cleans up dbpedia. Interact.
Techn. Smart Edu., 8(4):236-248, 2011.

Chong Wang, Miao Xiong, Qi Zhou, and Yong Yu. Panto: A portable natural
language interface to ontologies. In Enrico Franconi, Michael Kifer, and Wolfgang
May, editors, ESWC, volume 4519 of Lecture Notes in Computer Science, pages
473-487. Springer, 2007.

Haofen Wang, Thanh Tran, Chang Liu, and Linyun Fu. Lightweight integration
of IR and DB for scalable hybrid search with integrated ranking support. J. Web
Sem., 9(4):490-503, 2011.

Yufeng Wang and Akihiro Nakao. Poisonedwater: An improved approach for
accurate reputation ranking in p2p networks. Future Generation Comp. Syst.,

pages 1317-1326, 2010.

Max L. Wilson, Bill Kules, M. C. Schraefel, and Ben Shneiderman. From keyword
search to exploration: Designing future search interfaces for the web. Foundations
and Trends in Web Science, 2(1):1-97, 2010.

Qiang Wu, Christopher J. Burges, Krysta M. Svore, and Jianfeng Gao. Adapting
boosting for information retrieval measures. Inf. Retr., 13(3):254-270, June 2010.

Wentao Wu, Hongsong Li, Haixun Wang, and Kenny Q. Zhu. Probase: A prob-
abilistic taxonomy for text understanding. In ACM SIGMOD 2012, pages 481—
492, New York, NY, USA, 2012. ACM.

116

[63]

[64]

[65]

Fatos Xhafa and Leonard Barolli. Semantics, intelligent processing and services
for big data. Future Generation Comp. Syst., pages 201-202, 2014.

Jun Xu and Hang Li. Adarank: A boosting algorithm for information retrieval.
In Proceedings of the 30th Annual International ACM SIGIR Conference on
Research and Development in Information Retrieval, SIGIR ’07, pages 391-398,
New York, NY, USA, 2007. ACM.

Hugo Zaragoza, Henning Rode, Peter Mika, Jordi Atserias, Massimiliano Cia-
ramita, and Giuseppe Attardi. Ranking very many typed entities on wikipedia.
In Mrio J. Silva, Alberto H. F. Laender, Ricardo A. Baeza-Yates, Deborah L.
McGuinness, Bjrn Olstad, ystein Haug Olsen, and Andr O. Falco, editors, CIKM,
pages 1015-1018. ACM, 2007.

117

	Introduction
	The Context
	Semantic Web overview
	Knowledge Bases used
	RDF
	DBpedia
	Freebase
	Wikidata
	MusicBrainz
	SPARQL

	Contribution
	The Approach
	Query By Example: Qpedia
	RankProperties
	TagProp

	Thesis Structure

	State of the Art
	Search Systems
	Ranking Systems: entities and properties
	Tagging and QA Systems

	Qpedia: An user-Friendly Interface for RDF data
	The engine behind Qpedia
	Implementation
	The UI Module
	The Query Manager
	Triplestore / Execution Manager
	Native Android Client

	RankProperties: A possible solution for Ranking RDF properties
	MLR Algorithms
	Proposed Features
	Training Set
	Models
	Feature Selection
	Time Performance
	Precision Performance
	Examples of Generated Models

	TagProp: An idea for tagging RDF Property
	The TagProp algorithm
	Choice of correct RDF property and synonyms
	A practical example

	Possible backend for TagProp

	Experiments
	RankProperties
	Quantitative measures for the Evaluation
	Test Dataset
	Time Performance
	Quality of Ranking
	Other important experiments for the Evaluation

	Qpedia
	TagProp
	Quality of Tagging

	Conclusion And Outlook
	Thesis main contributions
	Directions for further research

	Technical Details on the RankProperties tools
	Web Server
	Model Generator
	Evaluation Tool

	Technical Details on the TagProp tools
	Web Server
	Tools and Utilities
	Label Extraction
	Synonyms Extraction
	TagProp GUI
	Qald Extended

	Technical Details on Qpedia
	Jena Experiments
	Bibliography

