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Abstract

This Thesis focuses on two specific research areas, both related to the subject of supervision
and diagnosis of industrial systems.

One topic is the fault detection and diagnosis, a subfield of the control engineering which
concerns itself with monitoring a system, identifying when a fault occurred, and pinpointing
both the type and location of fault. Within this context, this research addresses the issue of
discriminating between different faults which could affect both sensors and actuators of a
generic system, by developing a novel proposal based on two main concepts, namely sliding
mode observer and residual signature. The validity of the proposed fault diagnosis scheme
was tested successfully on a steam separator unit of a thermal power plant. This proposal
and its first results have been presented in the works [Fadda et al., 2015b] and [Fadda et al.,
2015a], whereas a first theoretic background to support this hybrid scheme was recently
provided in [Fadda et al., 2016].

The other topic is the data reconciliation and parameter estimation, a crucial technology
which allows for obtaining and validating reliable process models. Within this other context,
in this research the joint problem of performing in real-time the reconciliation of measure-
ments and the estimation of the model’s parameters, by exploiting the concept of temporal
redundancy, has been examined, and a suitable filtering approach which exploits the con-
cepts of quasi-steady-state and Kalman filter has been developed. An important contribution
to the state-of-the-art results in the opportunity of decoupling the two tasks of dynamic data
reconciliation and parameter estimation by means of two different schemes, which allow for
turning on the parameter estimation filter only when a stable estimate of the state has been
achieved. Also in this case, the effectiveness of the proposal has been evaluated on a real
industrial application, related to monitoring the healthy conditions of a pyrolysis reactor. A
scientific paper about this contribution will be submitted soon.

It is worth to remark that this research has been partially supported by the projects
PGR00152-RObust Decentralised Estimation fOr large-scale systems (RODEO), of the Ita-
lian Ministry for Foreign Affairs and International Cooperation, and by Region Sardinia
project n°CRP-24709 “SIAR - Sistemi Interconnessi per l’Automazione su Reti” (L. R.
7/2007).
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Introduction

The first two Sections of this Chapter aim to provide the main purposes of this work, and
the outline of this Thesis, respectively. Some of the topics in the present dissertation were
presented both in national and international conferences and papers. The last Section of this
Chapter contains the list of the Author’s publications derived from the present work.

Background and Motivation
Optimization in terms of costs and productivity has been always one of the most important
goals and the common objective for many industrial activities. The fast and steady progress
in many technological fields is getting every day to more complex industrial plants and the
corresponding control systems also are getting more sophisticated in both hardware and soft-
ware components. Furthermore, the increasing demand in terms of higher safety, availability
and reliability of the plant is another critical aspect to be taken into account. The process
monitoring, that is the supervision, control, and diagnosis of industrial processes is the line of
research where all the aspects mentioned above are considered. This dissertation focuses its
attention on two specific subjects of the process monitoring, which are respectively the Fault
Detection, Isolation and Diagnosis (FDD) and the Data Reconciliation (DR) and Parameter
Estimation (PE) in industrial applications.

The increasing of complexity in an industrial plant results in an higher probability of
plant failure and in a larger amount of errors and faults in the process measurement. As a
consequence, the ability of automatically detect and isolate malfunctions both in the process
and in the plant instrumentation as early as possible are demanding task which is receiving
considerable interest both from the industrial as well as the academic point of view.

Indeed, the early fault diagnosis while the process is still operating in a controllable
region could help avoiding the evolution of abnormal events, thus consequently productivity
losses could be reduced as well as major breakdowns or catastrophes.

Thesis Outline
The whole content of this dissertation was arranged in two main parts. The part I, called
“State of the Art”, provides a survey on the concepts and theoretical preliminaries needed
to understand the remains of this Thesis. Based on the available information reported in the
literature, the broad features of the main methodologies will be reviewed, without going into
details. However, only those approaches which result to be strictly related to the Author’s
proposal will be reviewed in detail, in order to highlight some important concept exploited
in the following of the dissertation. The part II, called “Author’s Contributions”, presents
and discusses the results and novel proposals of this research. In the following, the subject
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of each Chapter is briefly explained:

Part I: State of the Art

• Chapter 1. Fault Detection, Isolation and Diagnosis: The introductory Sections pro-
vide some basic concepts and definitions related to the topic of fault detection and diag-
nosis in industrial plants. Then, a comprehensive review of model-based, signal-based,
and data-driven fault diagnosis methods is presented. Finally, hybrid approaches are
briefly discussed. The objective is to introduce the reader to the part of the research
developed in the Chapters 3 and 4.

• Chapter 2. Data Reconciliation and Parameter Estimation: At first, some basic
concepts and definitions, related to the topics of data reconciliation and parameter es-
timation are introduced. Then, a rapid overview of different data reconciliation meth-
ods, where both steady-state and dynamic approaches are taken into account. Finally,
the parameter estimation problem is also considered, as well as some approaches to
implement the parameter estimation along the data reconciliation. The objective is to
introduce the reader to the part of the research developed in the Chapters 5 and 6.

Part II: Author’s Contributions

• Chapter 3. Hybrid Fault Detection and Diagnosis: This Chapter focuses on the novel
hybrid FDD proposal developed in this research to achieve a complete fault isolation
and diagnosis. The general architecture is depicted at fist, then the two main modules
of the FDD scheme are described in detail, i.e. the residual generator, based on the
concept of Sliding Mode Observer (SMO), and the residual evaluator, based on the
concept of residual signature analysis. Finally, the ongoing part of this research is
discussed.

• Chapter 4. Practical Application: Steam Separator: This Chapter discusses the
development of a practical application, which confirms the validity of the proposal
explained in Chapter 3. The linearized model of the system, i.e. a steam separator unit
of a thermal power plant, is presented at first. Then, two different SMOs for sensor
and actuator fault detection are developed, and their corresponding residual sets are
designed to achieve the fault diagnosis. Finally, the experimental results are shown
and commented.

• Chapter 5. Real-time DDR State-Parameter Estimation: This Chapter focuses on
the novel approach developed in this research to implement a real-time version of the
data reconciliation technique along with the parameter estimation. The two fundamen-
tal concepts behind this proposal, i.e. Quasi-Steady-State (QSS) model and Dynamic
Data Reconciliation (DDR), are introduced at first. Then, the novel procedure is ex-
plained in detail, and two different state-parameter decoupling strategies are proposed.

• Chapter 6. Practical Application: Pyrolysis Reactor: A practical application, which
confirms the validity of the proposal explained in Chapter 5, is developed and dis-
cussed. The considered process, i.e. a pyrolysis reactor, is depicted, then a suitable
model is provided. Finally, the experimental results are shown and commented.
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Chapter 1

Fault Detection, Isolation and Diagnosis

In the last decades, a great number of methodologies have been developed on the topic of
fault detection and diagnosis, ranging from analytical methods to artificial intelligence and
statistical approaches. Several attempts to classify such methods can be found in literature,
based on different perspectives. The three-part series of papers [Venkatasubramanian et al.,
2003c], [Venkatasubramanian et al., 2003a] and [Venkatasubramanian et al., 2003b], pro-
vided a comparative study where a broad classification of fault diagnosis methods into three
general categories was proposed, i.e. quantitative model-based methods, qualitative model-
based methods, and process history based methods. In [Angeli and Chatzinikolaou, 2004],
[Dai and Gao, 2013], [Yin et al., 2014a], fault diagnostic methods were reviewed respectively
from the data-driven perspective. The organization of this Chapter follows the classification
scheme firstly proposed in [Frank, 1990], then integrated in [Frank, 1996], and recently up-
dated by a two-part survey [Gao et al., 2015a], [Gao et al., 2015b], where a comprehensive
review for real-time fault diagnosis, with particular attention on the results reported in the last
decade, is given. Therefore, the Chapter is structured as follows: at first, in Section 2.1 some
important definitions about the topic of this dissertation, i.e. the Supervision and Fault Diag-
nosis of Industrial Systems, are briefly introduced; then, in Sections 1.2, 1.3, and 1.4, fault
diagnosis approaches are reviewed comprehensively from a model-based, signal-based, and
data-driven perspective, respectively. Finally, in the Section 1.5, hybrid approaches which
exploit the combination and integration of two or more of such fault diagnosis methodologies
are briefly discussed.

1.1 Basic Concepts and Definitions
The terminology used in this Thesis intends to be as much as possible consistent with that
proposed by the IFAC Technical Committee on Fault Detection, Supervision and Safety of
Technical Processes (SAFEPROCESS). The following set of definitions was firstly suggested
by [Isermann and Ballé, 1997], based on the discussion within the Committée during the pe-
riod 1991− 1995. Many other works in the literature, such as for example the books of
[Simani et al., 2010], [Chen and Patton, 1999] and [Isermann, 2006] agree with this nomen-
clature.

States and Signals

• Fault: An unpermitted deviation of at least one characteristic property or parameter of
the system from the acceptable/usual/standard condition.
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• Failure: A permanent interruption of a system’s ability to perform a required function
under specified operating conditions.

• Malfunction: An intermittent irregularity in the fulfilment of a system’s desired func-
tion.

• Error: A deviation between a measured or computed value (of an output variable) and
the true, specified or theoretically correct value.

• Disturbance: An unknown (and uncontrolled) input acting on a system.

• Perturbation: An input acting on a system, which results in a temporary departure
from the current state.

• Residual: A fault indicator, based on a deviation between measurements and model-
equation-based computations.

• Symptom: A change of an observable quantity from normal behavior.

Functions

• Fault Detection: Determination of the faults present in a system and the time of detec-
tion.

• Fault Isolation: Determination of the kind, location and time of detection of a fault.
Follows fault detection.

• Fault Identification: Determination of the size and time-variant behavior of a fault.
Follows fault isolation.

• Fault diagnosis: Determination of the kind, size, location and time of detection of a
fault. Includes fault detection, isolation and identification.

• Monitoring: A continuous real-time task of determining the conditions of a physical
system, by recording information, recognizing and indicating anomalies in the behav-
ior.

• Supervision: Monitoring a physical system and taking appropriate actions to maintain
the operation in the case of faults.

• Protection: Means by which a potentially dangerous behavior of the system is sup-
pressed if possible, or means by which the consequences of a dangerous behavior are
avoided.

Models

• Quantitative model: Use of static and dynamic relations among system variables and
parameters in order to describe a system’s behavior in quantitative mathematical terms.

• Qualitative model: Use of static and dynamic relations among system variables and
parameters in order to describe a system’s behavior in qualitative terms such as causal-
ities or if-then rules.
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Fault Detection

Tasks:

Residual Generation

(Symptom Estimation)

Fault Isolation

Tasks:

Residual Evaluation

(Symptom Decoupling)

Fault Classification

Tasks:

Fault Analysis

(type,magnitude,cause)

Measurements Residuals
Fault

Information

Fault Detection and Isolation Fault Diagnosis

Figure 1.1: Schematic representation of a generic FDD Procedure

• Diagnostic model: A set of static or dynamic relations which link specific input vari-
ables - the symptoms - to specific output variables - the faults.

• Analytical redundancy: Use of two or more (but not necessarily identical) ways to
determine a variable, where one way uses a mathematical process model in analytical
form.

System Properties

• Reliability: Ability of a system to perform a required function under stated conditions,
within a given scope, during a given period of time.

• Safety: Ability of a system not to cause danger to persons or equipment or the envi-
ronment.

• Availability: Probability that a system or equipment will operate satisfactorily and
effectively at any point of time.

• Dependability: A form of availability that has the property of always being available
when required. It is the degree to which a system is operable and capable of performing
its required function at any randomly chosen time during its specified operating time,
provided that the item is available at the start of that period.

As explained by [Frank, 1996], the main purpose of a FDD system is to prevent the
failing of the overall plant, by detecting abnormal or unexpected situations and their causes
early enough. The general scheme of FDD system which achieves this result is shown in the
Figure 1.1. Thus, the general solution is marked out by the following three facilities, accord-
ing to the definitions given in Section 2.1, i.e. 1) Fault Detection, 2) Fault Isolation, 3) Fault
Diagnosis. The two-stage architecture for the Fault Detection and Isolation (FDI) procedure
was firstly suggested by [Chow and Willsky, 1980], and now is widely accepted also by the
fault diagnosis community. As depicted in the Figure 1.1, it comprises two tasks, which are
called respectively: Residual Generation and Residual Evaluation, where the residual is de-
fined according to the nomenclature of Section 2.1. Therefore, according to [Frank, 1996],
the classification of Fault Detection methods depends on the approach applied to implement
the residual generation task, whereas the classification of Fault Isolation strategies refers to
the methodology used to evaluate residuals.

1.2 Model-Based Methodologies

1.2.1 Introduction
As stated by [Simani et al., 2010], [Chen and Patton, 1999], [Patton et al., 2010] a traditional
way to achieve the FDI, often referred to as hardware (or physical/parallel) redundancy, is
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based on the replication of sensors, actuators, computers, software, and other components to
measure and/or control a particular set of variables. Typically, a voting scheme is applied
to the identical components of this redundant system in order to decide if and when a fault
has occurred, and its likely location amongst redundant system components. As pointed out
by [Isermann and Ballé, 1997] and [Isermann, 1997], the main problems encountered with
hardware redundancy are the extra equipment and maintenance cost, as well as the addi-
tional space required to accommodate the equipment. During the last decades, advances in
modern control theory and progresses of computer technology led to powerful techniques
for mathematical modeling, system identification and state estimation, which have provided
novel schemes for FDD. Indeed, as referred by [Chen and Patton, 1999], [Patton et al., 1989]
[Patton et al., 2010], and also stated by [Simani et al., 2010], a more convenient approach
can be implemented, rather than replicating each hardware individually. Indeed, by exploit-
ing the concept of analytical or functional redundancy among various measured variables
of the monitored process, firstly proposed by [Beard, 1971], the dissimilar measured values
can be used together to cross-check each other, by means of analytical relationships about
the system being monitored, i.e., based on a mathematical model of the system, which can
be obtained by using either physical principles or systems identification techniques. When
such a concept of redundancy is applied to correct the measurements acquired by the sensors
as little as possible, in order to satisfy the algebraic constraints which describe the process
model, it usually refers to the Data Reconciliation subject, which will be discussed in the
Chapter 2. In most of the analytical redundancy schemes, the resulting difference generated
from the consistency checking of different variables is called as a residual, or symptom, sig-
nal, according to the previous nomenclature. As a consequence, according to [Frank, 1996],
[Gertler, 1998], [Chen and Patton, 1999], [Simani et al., 2010], a residual signal should pro-
vide a zero value as long as the process is evolving within its nominal dynamic, whereas
it should diverge from zero as soon as a fault affecting the checked variable has occurred.
Since analytical redundancy exploits a mathematical model of the monitored process, ac-
cording to [Frank, 1990], [Gertler, 1998], [Patton et al., 1989], [Chen and Patton, 1999],
[Simani et al., 2010], it is often referred to as the model-based approach to fault diagnosis.
The major advantage of the analytical redundancy approach is that no additional hardware
components are needed, because an FDI algorithm can be implemented via software on the
process control computer [Chen and Patton, 1999].

In [Gao et al., 2015a], model-based fault diagnosis methods are classified on the basis of
the different models used, as follows:

• deterministic fault diagnosis methods,

• stochastic fault diagnosis methods,

• fault diagnosis for discrete-events and hybrid systems

• fault diagnosis for networked and distributed systems

In this Section, only deterministic and stochastic fault diagnosis methods will be re-
viewed.

1.2.2 Fault Modeling
As stated by [Simani et al., 2010], [Chen and Patton, 1999], every FDI model-based ap-
proach needs at first to determine a mathematical model of the system to be supervised,
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Figure 1.2: Schematic representation of a generic faulty system

including all the possible fault cases. Furthermore, [Patton et al., 1989] pointed out that the
representation used to include fault effects in the process model, often depends more upon
the detection method used than upon the real nature of the process dynamics. Therefore, a
realistic approach and a good starting point for the subsequent fault diagnosis presupposes
the understanding of the nature of the real faults, their system location, and their mapping
into the generated residuals, or their description in terms of symptoms. In a first step, this
can be provided only by the inspection of real processes, the understanding of the physics
and a fault-symptom-tree analysis. In the Figure 1.2, a general scheme of a closed-loop
faulty system, suitable to discuss the design of the FDI techniques presented in this Thesis,
is provided.

The whole system in Figure 1.2 can be splitted in several different functional blocks,
as follows: actuators, process, output sensors, input sensors and controllers. The working
conditions of the system are monitored by means of the measurement signals acquired by the
input and output sensors, i.e. umes(t) and ymes(t), respectively, and the control signals u(t)
provided by the controllers devices to the actuators. Usually, all these signals are supposed to
be available for the FDI system. When this condition is not satisfied, as highlight by [Simani
et al., 2010], the missing of information about the system working conditions could make
the design of the FDI scheme a complicated task. E.g., the control action applied by robust
controllers, desensitizes the effects of faults and makes the diagnosis task difficult if some
important data could not be acquired from the sensors installed on the plant. The actual
inputs and outputs signals of the process, i.e. u(t) and y(t) respectively, are usually not
directly available, but they can be only measured by the input and output sensors. Therefore,
as remarked in [Simani et al., 2010], the design of an FDI system can be considered as an
observation problem of umes(t) and ymes(t).

As depicted in Figure 1.2, with reference to the occurrence of malfunctions, the loca-
tion of faults, and their modelling, the parts of a system which are usually considered as
potentially affected by faults are:

• Process

• Actuators

• Input Sensors
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Figure 1.3: Time dependency of faults: abrupt (a); incipient (b); intermittent (c)

• Output Sensors

Remark 1. As mentioned by [Simani et al., 2010], the controller device is typically con-
sidered as a fault-free component. Indeed, when the control signal u(t) provided by the
controller to the actuator is not directly available to the FDI system, and the actuator results
to be a component of the whole control device, e.g., when the control action is performed by a
digital computer, under this assumption, the actuator can be treated as the subsystem where
faults are likelier to occur, whilst the controller device remains free from faults. Hence, the
behavior of the controller device can be usually neglected in the design of a fault diagnosis
scheme.

The appearance of faults could be related to many different reasons, such as those sum-
marized by [Isermann, 2006]:

• wrong design, wrong assembling;

• wrong operation, missing maintenance;

• ageing corrosion, wear during normal operation

With regard to the operation phase, the faults can be classified, as suggested by [Iser-
mann, 2006], depending on their different way to appear, and their corresponding change
effect applied on the physical quantities, as follows:

• deterministic faults

– abrupt: when the fault appears suddenly, thus its bias effect can be modeled by
means of a step signal, having small or large size

– incipient: when the fault appears gradually, thus its drift effect can be modeled
by means of a ramp signal

• stochastic faults

– intermittent: when the fault appears in a non deterministic way

The different time dependency of faults is depicted in Figure 1.3.
It is worth to note that, according to [Simani et al., 2010], the faults affecting input and

output sensors can be further classified as follows, with regard to their way to affect the
system dynamics, as depicted in Figure 1.4

• additive faults:
ζ

mes = ζ + f (1.1)
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Figure 1.4: Fault models for input and output sensors: additive fault (a); multiplicative fault
(b);

• multiplicative faults:
ζ

mes = (1+φ)ζ = ζ + fζ (1.2)

where: ζ ∈ R and ζ mes ∈ R denote respectively the actual and measured value of a
generic physical quantity, whereas f ∈ R and fζ ∈ R are two different fault symptoms af-
fecting ζ , and φ ∈ R is an (unknown) time-varying function representative of the fault with
respect to ζ . The analytical models of φ(t) can have the following expressions:

• step fault signal:

φ(t) =
ζ%

100
δ−1(t− t f ) (1.3)

• ramp fault signal:

φ(t) =
ζ%

100

(
t
tr

)
[δ−1(t− t f )−δ−1(t− t f − tr)] (1.4)

• random-walk fault signal:

φ(t) =
∫ t

t f

vq(τ)dτ

∣∣∣∣ζ%/100

−ζ%/100
δ−1(t− t f ) (1.5)

where ζ% denotes the fault amplitude, expressed as percentage of full-scale related to the
measurement device, δ−1(·) is the Heaviside’s step function, t f is the fault occurrence time,
tr is the fault rise time, and vq(t) is a white noise process having autocorrelation function
E{vq(t1)vq(t2)} = qδ (t1− t2). As stated above, step, ramp and random-walk fault signals
can be used to simulate abrupt, slow and irregular variations of the physical parameters,
respectively. When dealing with multiplicative faults, note that, if φ 6= 0, then fζ 6= 0; thus
fζ = φζ is the fault symptom corresponding to the multiplicative fault φ . Additive faults
reflect static changes of signals, whereas multiplicative faults refer to dynamic changes of
signals, most of the times due to variations affecting the model parameters. Due to this fact,
multiplicative faults result to be harder to detect with respect to additive faults.

According to the modeling approach mentioned by [Ding, 2008], a State-Space repre-
sentation of a generic faulty Multiple In Multiple Out (MIMO) Linear Time Invariant (LTI)
system, suitable for the FDI approaches discussed in the following of this Thesis, can be
expressed as: {

ẋ= Ax+Bu+Edd+E ff
y =Cx+Du+Fdd+Fff

(1.6)
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Figure 1.5: Schematic representation of a generic residual generator

where x ∈Rn is the state vector, u ∈Rm is the input vector, y ∈Rp is the output vector, and
{A ∈ Rn×n, B ∈ Rn×m, C ∈ Rp×n, D ∈ Rp×m} are the matrices related to the standard fault-
free state-space representation, whereas f ∈ Rq is the known fault vector, provided that the
type of fault is not specified, whereas d ∈Rs denotes the vector of disturbances, or unknown
inputs, and finally {E f ∈ Rn×q, Ff ∈ Rp×q}, {Ed ∈ Rn×s, Fd ∈ Rp×s} are known constant
matrices, indicating the place where the faults and the disturbances occur, respectively, and
their respective influence on the system. For the sake of clarity, the time dependency of all
the considered signals was omitted.

The three different types of faults taken into account by this model reflect those depicted
in Figure 1.2, as follows:

• Actuator faults: are those which cause changes in the actuators, namely fa. They can
be modeled by setting E f = B and Ff = D.

• Process faults: are those used to indicate malfunctions within the process, namely fp.
Depending on their type and location, they can be modeled by setting E f = Ep and
Ff = Fp.

• Output Sensor faults: are those which directly act on the process measurements, na-
mely fs ≡ fy. They can be modeled by setting Ff = I.

Thus, for a system with sensor, actuator and process faults, we define:

f =

 fa
fp
fs

 , E f = [B,Ep,0] , Ff = [D,Fp, I] (1.7)

1.2.3 Residual Generation in Model-Based FDI
Each of the model-based approaches reviewed in this Section implements in a different way
the residual generation task. Nevertheless, each of these residual generators refers to the
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same general representation, which considers a generic linear time-invariant system, so that
it can be represented in the frequency domain in terms of the input-output relation:

Y (s) = Gu(s)U(s)+Gd(s)D(s)+G f (s)F(s) (1.8)

where Y (s), U(s), F(s), D(s) denote the Laplace transforms of the output vector y(t), the
input vector u(t), the fault vector f(t) and the disturbance vector d(t), respectively, whereas
Gu(s), G f (s), Gd(s) denote respectively the transfer matrices from u(t), f(t), d(t) to y(t).

The general structure of a residual generator based on the system description (1.8) is
shown in Figure 1.5.

According to [Chen and Patton, 1999], this structure refers to the following mathematical
expression for the residual signal:

R(s) = [Hu(s) Hy(s)]
[

U(s)
Y (s)

]
= Hu(s)U(s)+Hy(s)Y (s) (1.9)

where R(s) denote the Laplace transforms of the residual signal r(t), whereas Hu(s) and
Hy(s) are both transfer matrices which can be implemented by using stable linear systems.
According to the definition given in Section 2.1, the residual signal is designed in order to
implement the following condition:

r(t) = 0 ⇔ f(t) = 0 (1.10)

In order to satisfy the condition (1.10), the transfer matrices Hu(s) and Hy(s) must satisfy
the following constraint:

Hu(s)+Hy(s)Gu(s) = 0 (1.11)

Thus, as stated in [Chen and Patton, 1999], the design of the residual generator refers to
the choice of the transfer matrices Hu(s) and Hy(s) which satisfy the constraint (1.11). As a
consequence, different residual generators can be obtained by means of different Hu(s) and
Hy(s). Therefore, Hu(s) and Hy(s) are two design parameters which have to be chosen in
such a way the fault detection can be performed by means of the following threshold test:

J(r(t))< T (t) ⇒ f(t) = 0
J(r(t))≥ T (t) ⇒ f(t) 6= 0

(1.12)

where J(r) is a suitable residual evaluation function, whereas T (t) is its corresponding
threshold function. Hence, if the threshold test is positive, i.e. the residual evaluation func-
tion exceeds the value of the threshold function, a fault is likely occurring. Many different
ways of defining residual evaluation functions and determining static or adaptive threshold
functions can be found in literature, based on empirical or theoretical considerations.

According to Figure 1.5, and to the design constraint (1.11), when one or more faults
occur, the dynamic of the residual signal becomes:

r(s) = Hy(s)G f (s)f(s) = Gr f (s)f(s) =
q

∑
i=1

Gr f i(s) fi(s) (1.13)

where Gr f (s) = Hy(s)G f (s) is defined as the fault transfer matrix, that is a transfer matrix
which represents the relation between the residual and faults, whereas Gr f i(s) is the i-th
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column of the fault transfer matrix Gr f (s) and fi(s) is the i-th component of the fault vector
f (s).

Therefore, in order to detect the i-th fault fi, by means of the residual r(s), the i-th column
of the fault transfer matrix Gr f (s) should be non-zero, that is:

Gr f i(s) 6= 0 (1.14)

According to [Chen and Patton, 1999], the constraint (1.14) is defined as the fault de-
tectability condition of the residual r(s) to the fault fi. If the i-th fault satisfies the fault
detectability condition, then fi is said to be detectable in the residual r(s).

Nevertheless, as proven by [Chen and Patton, 1999], the satisfaction of the fault de-
tectability condition (1.14), does not guarantee a reliable fault detection, which instead needs
the satisfaction of a stricter constraint, called strong fault detectability condition, that is:

Gr f i(0) 6= 0 (1.15)

If the i-th fault satisfies the strong fault detectability condition, then fi is said to be
strongly detectable in the residual r(s).

As mentioned in [Chen and Patton, 1999], the satisfaction of the only fault detectability
condition, denotes an unsatisfactory design of the residual generator, because in this case it
may happen that the effect of the fault on the residual disappears, although the fault effect on
the system still exists.

1.2.4 Residual Evaluation in Model-Based FDI
As pointed up in [Chen and Patton, 1999], although the fault detection can be achieved by
means of a single residual signal, usually the fault isolation requires a residual set. If a
fault can be distinguished from the others by using a residual set, hence this fault is said
to be isolable by the residual set. If the residual set can isolate all faults, thus the residual
set achieves the required isolability property. In order to fulfil the fault isolation task, in
[Gertler, 1992] two different enhancement concepts have been introduced, namely Structured
Residual Set and Fixed Direction Residual Set. Both these concepts refer to a geometric
framework in which a residual vector spans the residual space, as depicted in Figure 1.6. The
components of this vector are those signals in the residual set. According to [Gertler, 1992],
[Chen and Patton, 1999], [Sobhani-Tehrani and Khorasani, 2009], [Patton et al., 2010], in
a structured residual set each signal is designed to be affected only by a specific subset of
faults, although remaining insensitive to the other ones. In a fixed direction residual set
instead, each signal is designed to be affected only by one specific fault, although remaining
insensitive to the other ones.

From a geometrical point of view, as explained by [Gertler, 1998], when using a struc-
tured residual set, in response to a single fault the residual vector is confined to a subspace
spanned by a subset of the vector’s components, because only a fault-specific subset of resid-
uals becomes non-zero. When using a fixed direction residual set instead, in response to a
particular fault, the residual vector holds on a fault-specific direction (or subspace), which
should be maintained also in dynamic transients.

The design procedure of a structured residual set consists of two steps: in the first step,
the sensitivity and insensitivity relationships between residuals and faults, according to the
assigned isolation task, are specified; in the second step, a set of residual generators is then
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Figure 1.6: Schematic representation of two types of enhanced residuals: (a) structured
residuals; (b) directional residuals

designed, according to the relationships previously defined. In a structured residual set the di-
agnostic analysis results to be simplified, because this task is reduced to determining which
of the residuals differ from zero. Indeed, for each residual, the threshold test can be per-
formed separately, taking to a Boolean decision table, which can then be used to fulfil the
isolation task.

In structured residuals, each element ri(t) of the residual set R = {r1(t), . . . ,rn(t)} is
connected to a different binary variable εi as follows:

εi(t) =
{

0 i f |ri(t)|< ki
1 i f |ri(t)| ≥ ki

i = {1, . . . ,n} (1.16)

where ki is the triggering limit used to test the residual ri when a fault occurs. Hence, the
vector~ε(t) = [ε1(t), . . . ,εn(t)]T results to be the fault code, or signature. The fault isolation
is then achieved by comparing the actual signature generated by~ε when a fault occurs to a
pre-defined set of signatures.

The concept of directional residual may also be expressed in a mathematical way, by
recalling the notation given by [Gertler, 1998], and mentioned also by [Chen and Patton,
1999], that is:

~r(t| fi(t)) = αi(t) ·~li i = {1, ...,n} (1.17)

In this notation, the constant vector~li(t) is the signature direction of the i-th fault in the
residual space Rn, and αi(t) is a scalar function that depends on the size and dynamics of
the fault. In general, a fault signature can be thought as the pattern which is generated by a
residual set when a specific fault occur. As pointed out by [Chen and Patton, 1999], the main
idea behind this geometric approach is to isolate faults by comparing the direction or sub-
space where lies the residual vector with the known fault signature directions or subspaces.
[Chen and Patton, 1999] also mention that to gain a reliable fault isolation, each fault signa-
ture has to be uniquely related to one fault. A residual set in which each residual is sensitive
to one fault only, results to be both structured and directional. This last type of residual sets,
are referred to as diagonal or basis residuals.

As mentioned in [Frank, 1996], other methods to evaluate residuals generated by model-
based approaches are those involving:

• threshold logic

• pattern recognition
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Figure 1.7: Schematic representation of the observer-based fault diagnosis approach

• fuzzy decision making

• neural networks

The most common residual evaluation methods result to be those based on threshold
tests. Constant threshold have been applied in many applications; nevertheless in [Ding and
Frank, 1991], [Emami-Naeini et al., 1988], it has been shown that better performances in
terms of robustness despite unknown inputs, reduction of false alarms, and ability to detect
small faults, can be achieved by using time-varying thresholds which can be adapted based
on the operating conditions of the process.

1.2.5 Observer-Based Approach
As explained in [Frank, 1990] and [Frank, 1996], the main idea behind a residual generation
task implemented by an observer-based approach consist in the estimation of the system’s
outputs from the measurements or a subset of the measurements, i.e. by means of one or
more observers, when dealing with deterministic models (or Kalman filters, when dealing
with stochastic models, e.g. when noise is considered), and then in the use of the estimation
error (or innovation), or a functional of it, as the residual signal for the detection and isolation
of the faults.

An important aspect remarked in [Frank, 1996] is that a diagnostic observer is not a state
observer, but it is an output observer. This difference implies that a diagnostic observer can
be designed also in the frequency domain, without the application of the state-space theory,
which is needed instead to design the state feedback in the case of incomplete measurement
of the state vector. Therefore, this consideration reveals the structural equivalence between
the observer-based approach and the stable factorization approach presented in Section 1.2.7.

The schematic diagram of the general configuration, i.e. a linear full order diagnostic
observer, is depicted in Figure 1.7. The residual signal r is generated by comparing the
actual measurements, denoted by the output vector y of the process, with their estimates,
denoted by the output vector ŷ of the nominal model, then it is filtered by the gain matrix
H and finally fed back to the model, in order to compensate unmatched initial conditions
and stabilize the observer, if the process dynamic is not stable. Therefore, by assuming
the model of the faulty process as the linearized state-space representation given in 1.6, the
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corresponding full-order observer results to be:{
˙̂x= Ax̂+Bu+H(y− ŷ)
ŷ =Cx̂+Du

(1.18)

Hence, the equations related to the state estimation error e = x− x̂ and the output esti-
mation error r = y− ŷ result to be, respectively:

ė= (A−HC)e+Edd+E ff −HFdd−HFff (1.19)

r =Ce+Fdd+Fff (1.20)

From (1.19) and (1.20), it is apparent r is a function of both f and d, that is the residual
signal is sensitive both to faults and unknown inputs. As pointed out by [Gertler, 1998], since
in every practical application unknown input signals are always present and unavoidable, i.e.
d 6= 0, because of model’s parameter variation, measurement noises as well as exogenous
unmodelled disturbances, the residual always differs from zero even if there is no fault, i.e.
f = 0. Thus, the matrix H is usually designed in such a way the fault detection can be
performed by means of the threshold test 1.12, where the threshold value is assigned larger
than the effect of the unknown inputs d(t) in the fault-free case. The feedback gain matrix
H is also a design parameter which allows to reach robustness, that is to decouple (in the
ideal case) the effects of faults from the effects of unknown inputs. When dealing with noisy
measurements or nonlinear processes, equivalent schemes based on reduced order observers,
Kalman filters or nonlinear observer can be used.

As denoted in [Frank, 1996], the objective of a robust observer-based residual generator
which aims to achieve also the fault isolation, is to produce structured or directional residual
sets such that individual faults are mapped into different patterns or directions, respectively,
independent of each other and also, for the sake of robustness, of the unknown input vector
d. The most powerful technique to reach distinguishability among faults is to implement the
total decoupling. As stated in [Frank, 1996], such a decoupling can be achieved either in the
time domain or in the frequency domain. The latter refers to the stable factorization approach
presented in Section 1.2.7. The decoupling strategy in the time domain refers to the concept
of fault detection filter, firstly proposed by [Beard, 1971] and [Jones, 1973]. The goal of the
fault detection filter is to map the residual related to a particular fault into a single direction or
plane in the residual space, so that this fault results to be decoupled from the other faults. In
order to achieve this result, the gain matrix H must be designed in such a way the direction of
each of the residuals has very attractive unidirectional properties. Let consider the full-order
observer previously defined in (1.18), and let make some assumptions, i.e. D = 0, d = 0,
since originally unknown inputs were not taken into account in this concept. According to
the modeling approach presented in Section 1.2.2:

• a fault on the i-th actuator can be modelled as follows:

ẋ= Ax+Bu+bi fa (1.21)

where bi is the i-th column of the E f = B matrix and fa is a time-varying scalar which
denotes the dynamic of the i-th actuator fault. In this case, the equations related to the
state estimation error and the output estimation error result to be, respectively:

ė= (A−HC)e+bi fa (1.22)
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r =Ce (1.23)

• a fault on the j-th output sensor can be modelled as follows:

y =Cx+ I j fy (1.24)

where I j is the j-th column of the Ff = I matrix and fy is a time-varying scalar which
denotes the dynamic of the j-th output sensor fault. In this case, the equations related
to the state estimation error and the output estimation error result to be, respectively:

ė= (A−HC)e−h j fy (1.25)

r =Ce+ I j fy (1.26)

where h j is the j-th column of the gain matrix H.

As stated in [Chen and Patton, 1999], the fault detection filter must be designed in order
to make the quantity Ce assume a fixed direction in the output space when either bi fa 6= 0 or
I j fy 6= 0 occurs, that is the residual has uni-directional properties. Thus, by following [Frank,
1994], the gain matrix H is designed such that the following conditions are satisfied:

(a1) rank[Cbi, C(A−HC)bi, . . . ,C(A−HC)n−1bi] = 1

(a2) rank[Ch j, C(A−HC)h j, . . . ,C(A−HC)n−1h j] = 1

(b) all the eigenvalues of (A−HC) can be arbitrarily assigned

The satisfaction of condition (a1), i.e. the rank of the controllability matrix of (A,bi) pair
must be equal to one, guarantees that the fault on the i-th actuator will force the residual r to
grow in the direction Cbi, whereas the satisfaction of condition (a2), i.e. the rank of the con-
trollability matrix of (A,h j) pair must be equal to one, guarantees that the fault on the j-th
output sensor will force the residual r to belong to the subspace spanned by {Ch j, I j}. The
satisfaction of condition (b) instead, i.e. the matrix (A−HC) can be stabilized, guarantees
the stability of the filter. The fault detection filter has been actually the first raw implementa-
tion of the directional residual vector concept defined in Section 1.2.4. Indeed, the directions
Cbi and Ch j are known as the fault signature directions in the residual space. As pointed up
in [Frank, 1990], since the important information for the fault detection is in the direction
of the residual rather than in its dynamic, the use of a fault detection filter does not requires
the knowledge of the fault dynamic. Hence, a fault is isolated when the residual projections
along the known fault signature directions or in the known fault signature subspaces are suf-
ficiently large. However, since the fault detection filter does not account for the effects of
the unknown inputs, it cannot be used to implement a robust residual evaluation. As stated
in [Frank, 1994], all observer-based residual generators with perfect decoupling among the
faults and from unknown inputs can be treated as special cases of a unified approach, known
as the Unknown Input Observer (UIO) scheme. UIOs are well known from control theory.
Under certain conditions they allow to decouple the effect of unknown inputs from the es-
timate of the state. Following [Frank, 1990], let consider the general model of the faulty
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process given in 1.6, assuming D = 0; the corresponding UIO which meets the robustness
requirements as defined above can be represented in the following form:{

ż = Mz+ Ju+Ny
r = Lzz+Lyy

(1.27)

with the residual r having the following properties:{
f(t) = 0 =⇒ lim

t→+∞
r(t) = 0 ∀{u,d,x0,z0}

f(t) 6= 0 =⇒ r(t) 6= 0
(1.28)

and the state z of the UIO supposed to be a linear transformation of the faulty model’s state
x in the unfaulty case, after the response to unlike conditions has died out:

z = T x̂ (1.29)

that is the observer is supposed to estimate a linear transformation of the original state. A
necessary and sufficient condition for the existence of such an ideal UIO is given in [Patton
et al., 1989]. If these conditions are satisfied, the dynamic of the state estimation error
e= Tx−T x̂ and the residual r become, respectively:

ė= T ẋ− ż = T (Ax+Bu+Edd+E ff)−MT x̂− Ju−N(Cx+Fdd+Fff)+

+(MTx−MTx) =

= Me+(TA−NC−MT )x+(T B− J)u+(T Ed−NFd)d+(T E f −NFf )f

(1.30)

r = LzT x̂+LyCx+(LzTx−LzTx) =−Lze+(LzT +LyC)x (1.31)

Hence, to make the observer (1.27) a residual generator, the linear transformation T
and the matrices {M,N,J,Lz,Ly} must be designed in order to satisfy the following set of
equations: 

TA−MT = NC
J = T B
LzT +LyC = 0

(1.32)

To meet instead the robustness requirements, the linear transformation T and the matrices
of the observer {N,Ly} must satisfy also the following set of equations:

T Ed = 0 , T E f 6= 0
NFd = 0 , NFf 6= 0
LyFd = 0 , LyFf 6= 0

(1.33)

As shown in [Patton et al., 1989], the design problem given by the two equation sets
(1.32), (1.33) can be solved by using either the Kronecker canonical state representation
approach or the eigenstructure approach.

If all the design conditions are satisfied, including also the pole assignment of the ob-
server in order to satisfy (1.28), the dynamic of the residual signal becomes:

ṙ =−Lzė=−Lz(T E f −NFf )f = LzNFff −LzT E ff (1.34)



1.2 Model-Based Methodologies 20

As underlined in [Frank, 1996], an important precondition for the solvability of this prob-
lem is the availability of a sufficient number of measurements. Indeed, in order to decouple
q faults and s unknown inputs from each other, it needs at least q+ s independent measure-
ments which reflect the faults. Furthermore, in many practical situations unfortunately, the
physical conditions to satisfy (1.28), that is to design a UIO able to achieve a perfect de-
coupling, do not exist. Usually, only a compromise between fault detection sensitivity and
robustness with respect to unknown inputs can be implemented. In this case, an optimal ap-
proximation of a performance criterion which takes into account the sensitivity with respect
to the disturbance vector d, as well as the sensitivity with respect to the fault vector f , can be
found. This optimization problem can be solved either in the time domain or in the frequency
domain, by means of algorithms such as those suggested in [Wüennenberg, 1990].

Note that, as stated in [Frank, 1990], this approach is superior to the detection filter
approach in that it accounts for modelling errors also, and to the parity space approach in
that it also takes into account the sensitivity to the faults.

As stated in [Gao et al., 2015a], a bank of observer-based residuals is generally required
in order to achieve the fault isolation, which can be implemented mainly by the two following
schemes, both exploiting in a different way the concept of structured residual set discussed
in Section 1.2.4:

• Dedicated Observer Scheme: [Clark et al., 1975] given a certain set of faults to iso-
late, { f1, . . . , fi, . . . , fq} , i = 1, . . . ,q , the i-th observer is designed in such a way its
corresponding scalar residual ri results to be sensitive to the fault fi only. Therefore,
the corresponding dedicated residual set is designed according to the following fault
sensitivity conditions:

ri(t) = R( fi(t)) i = 1, . . . ,q (1.35)

where R(·) denotes a suitable functional, and then in such a way the fault isolation can
be achieved by means of the following threshold test:

ri(t)> Ti(t) ⇒ fi(t) 6= 0 i = 1, . . . ,q (1.36)

where Ti(t) are thresholds. As claimed in [Chen and Patton, 1999], this residual struc-
ture is very simple and all faults can be detected simultaneously, however it is difficult
to design in practice. Even when such a structured residual set can be designed, there
is normally no design freedom left to achieve other desirable performances such as
robustness against unknown inputs [Frank, 1990].

• Generalized Observer Scheme: [Frank, 1987] the i-th observer is designed in such a
way its corresponding residual signal ri results to be sensitive to all but one fault, and
independent of the unknown input vector d. Therefore, the corresponding generalized
residual set is designed according to the following fault sensitivity conditions:

r1(t) = R( f2(t), . . . , fq(t))
...
ri(t) = R( f1(t), . . . , fi−1(t), fi+1(t), . . . , fq(t))
...
rq(t) = R( f1(t), . . . , fq−1(t))

(1.37)



1.2 Model-Based Methodologies 21

where denotes a suitable functional, and then in such a way the fault isolation can be
achieved by means of the following threshold test:{

ri(t)≤ Ti(t)
r j(t)> Tj(t) ∀ j = 1, . . . , i−1, i+1, . . . ,q ⇒ fi(t) 6= 0

i = 1, . . . ,q
(1.38)

As claimed in [Frank, 1994], by using a GOS of q observers, the corresponding struc-
tured residual set allows again a unique fault isolation; however, in contrast to DOS,
only for a single fault at a time. Nevertheless, in this the additional design freedom
can now be used to make the FDI scheme robust to up to (q−2) unknown inputs.

Other important contributions to the generation of structured and directional residuals in
the framework of diagnostic observers include: [Massoumnia, 1986], [White and Speyer,
1986], [Park et al., 1994], [Edelmayer et al., 1997].

In this research, a particular class of nonlinear observers, namely SMOs, was investigated
to implement the residual generation task. Indeed, SMOs are able to generate injection
signals to estimate the symptoms of faults in spite of matched uncertainties, whereas in the
presence of unmatched uncertainties, although the total insensitive property is lost, their
effects can be optimally reduced by combining them with other optimization techniques as
in [Castaños and Fridman, 2006], [Yan and Edwards, 2007], [Orani et al., 2010], [Bejarano
et al., 2011], [Pillosu et al., 2012], [Pisano et al., 2014].

As stated in [Alwi et al., 2011], this result is achieved by a suitable filtering of the so-
called equivalent output error injection, which represents the average control signal provided
by the nonlinear output error injection term in order to maintain the sliding motion on the
controlled system. Since the introduction of a sliding motion on the observer forces its
outputs to exactly track the plant measurements, even in the presence of actuator faults, an
accurate estimation of the states results still possible.

Remark 2. The main differences between SMOs and the other observer-based methods,
reflect the fact that in the SMO, the equivalent output error injection signal can allow to
estimate the fault signal, while the standard residual, which is the signal based on the output
estimation error, result to be zero during the sliding motion.

As a consequence, in principle, SMOs allow to achieve simultaneous and accurate esti-
mation of both state and faults, whereas traditional linear observers using output error based
residuals, require a trade-off between robustness with respect to the state estimation, and
sensitivity to the fault detection. SMOs for sensor FDI are presented in [Edwards et al.,
2000, Tan and Edwards, 2002] for minimum phase linear systems. Recently these limitation
are removed in [Yan and Edwards, 2007], where nonlinear systems with stable Jacobian ma-
trix plus model uncertainties are considered. However, all those approaches are thought to
deal only with faults acting on the output’s sensors. If both output and input measurements
are faulty, the injection signals are hardly able to estimate/discern among faults. However,
these signals still embed, in some sense, information of them. By exploiting this fact, the
FDD proposal depicted in Chapter 3 has been developed.

1.2.6 Parity Space Approach
According to the explanation given in [Frank, 1990] and [Frank, 1996], the main idea be-
hind a residual generation which exploits the parity space approach is to test the consistency,
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Figure 1.8: Schematic representation of a residual generator in the parity space approach

i.e. to perform the parity check, of properly modified analytical redundancy equations of
the system, called parity equations, by using the actual measurement signals. By this way,
the faults can be detected from the inconsistency of the parity equations, which is revealed
by the residual vector. The modification of the system equations aims at the decoupling of
the residuals from the system states and among different faults to enhance their diagnosabil-
ity. The parity equation approach can be applied to either time-domain state-space model or
frequency-domain input-output model. The early contributions to the parity space approach
were provided in [Potter and Sunman, 1977], [Desai and Ray, 1984]. In [Chow and Will-
sky, 1984], parity equations were derived from the state-space model of the system. Starting
from this point of view, in [Gertler, 1992],[Staroswiecki et al., 1993] the structural equiv-
alence between observer-based and parity space residual generation approaches has been
proven. Furthermore, in [Wünnenberg and Frank, 1987], it has been shown that the parity
space approach leads to a special class of observer-based residual generators called dead-
beat observers. As shown in [Gertler, 1992], also more general observers can be obtained.
Further contributions focusing on relations based on transfer functions have been provided
in [Gertler and Singer, 1990], [Gertler, 1992], [Delmaire et al., 1994] , [Gertler and Kunwer,
1995], [Gertler, 1995], [Staroswiecki et al., 1993]. In practical situations the parity space
approach may results easier to handle than the observer-based approach, because in the latter
case more design constraints have to be satisfied.

The basic configuration of the parity space approach in input-output format first described
in [Gertler, 1992] is shown in Figure 1.8. Therefore, the residual signal can be represented
as follows:

R(s) =V (s)[Y (s)−Gu(s)U(s)] (1.39)

where V (s) denotes a linear filter which allows to implement the decoupling. In [Gertler,
1992] it has been proven that if the decoupling filter V (s) is designed according to the fol-
lowing form:

V (s) = Q(s)M̂u(s) (1.40)

where M̂u(s) and Q(s) are defined according to (1.41), then the structure depicted in Fig-
ure 1.8 becomes equivalent to that of the diagnostic observer shown in Figure 1.9. As men-
tioned in [Frank, 1996], the robustness achieved by a suitable design of the filter V consists
in a selection of those parity equations which reflect an independency, or at least a week
dependency, upon the modelling errors.
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Figure 1.9: Schematic representation of a residual generator in the frequency domain

1.2.7 Stable Factorization Approach
As explained in [Gao et al., 2015a], the basic idea behind the stable factorization approach
is to generate in the frequency domain a residual signal based on the stable coprime fac-
torization of the transfer function matrix of the monitored system, which is made sensitive
to the fault, but robust against disturbances by selecting an optimal weighting factor. This
method was first proposed by [Viswanadham et al., 1987], and further extended by [Ding
and Frank, 1990]. Recently, developments of the stable factorization approach have been
provided by [Abid et al., 2011] for nonlinear systems and by [Hu and Tsai, 2008], [Ming-
Cong et al., 2010] for applications in auto-balancing two-wheeled cart and thermal process,
respectively. Also in [Gao et al., 2015a] the structural equivalence among parity space, di-
agnostic observers and stable factorization approaches is confirmed. E.g., the realization of
the coprime factorization includes the design of a state-feedback gain. Moreover, also the
decoupling strategy mentioned in Section 1.2.5 can be easily implemented in the frequency
domain. Indeed, according to the definitions given in Section 1.2.3, several design method
to find the matrices Hu(s) and Hy(s) have been proposed, such as those in [Ding and Frank,
1991], [Frank, 1993].

According to [Frank, 1996], a straightforward method is that based upon the following
factorization of R(s):

R(s) = Q(s)[M̂u(s)Y (s)− N̂u(s)U(s)] (1.41)

where M̂u(s), N̂u(s) are left coprime factors of Hu(s), obtained by means of the factorization
Hu(s) = M̂u(s)−1N̂u(s), and Q(s) denotes a filter which can be designed in order to achieve
the frequency requirements of the residual signal. The resulting structure of this residual
generator is depicted in Figure 1.9. The substitution of Y (s) in (1.41) according to (1.8)
brings to the following result:

R(s) = Q(s)M̂u(s)[Gd(s)D(s)+G f (s)F(s)] (1.42)

Hence, by means of this factorization approach, the residual only depends on the faults and
the unknown inputs. In order to reach perfect decoupling among the faults and between
faults and unknown inputs, according to [Ding and Frank, 1991], Q(s) and M̂u(s) must be
designed such that:

Q(s)M̂u(s) = Q(s)M̂u(s)G f (s) = diag(t1(s), . . . , tq(s)) (1.43)
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where ti(s), i = 1, . . . ,q, are arbitrary time functions, and

Q(s)M̂u(s)Gd(s) = 0 (1.44)

Methods to find Q(s) and M̂u(s) suitable to solve this problem have been proposed
in [Ding and Frank, 1991],[Frank and Ding, 1993]. If the perfect decoupling cannot be
achieved, the same compromise between sensitivity with respect to faults and robustness
with respect to unknown inputs discussed in Section 1.2.5 for the time domain can be ob-
tained, i.e. by solving an optimization problem based on the same performance criterion.
Thus, as suggested in [Ding and Frank, 1991], in the frequency domain the approximate
decoupling strategy is implemented by maximizing the following performance index:

‖∂r/∂f‖
‖∂r/∂d‖

=
‖Q(s)M̂u(s)G f (s)‖
‖Q(s)M̂u(s)Gd(s)‖

(1.45)

where ‖∂r/∂f‖ and ‖∂r/∂d‖ denote the norms of sensitivity functions with respect to the
fault vector f and the unknown input vector d, respectively. As mentioned in [Frank, 1996],
the solution of this problem can be achieved by means of modern methods of H∞ optimiza-
tion. Extensions based on this idea where made in the context of parity relations by [Gertler
and Kunwer, 1995], [Staroswiecki et al., 1993] and others. As claimed in [Frank, 1996],
the design methods based on the frequency domain appear to be much simpler and better
tailored for engineering applications, since they allow to exploit well established frequency
domain techniques for the fault isolation. E.g., the design of the filter Q(s) allows to select
the portions of the spectral domain which provide a maximum ratio of the fault detection
sensitivity to the sensitivity with respect to unknown inputs, whatever the dependence of the
residual upon the spectral domain of the process signals may be.

1.2.8 Parameter Estimation Approach
As stated in [Frank, 1990], an alternative approach to those which implement residual gen-
erators based on the state estimation is that based on the parameter estimation. The main as-
sumption of this approach is that the faults reflect their effect in the physical parameters of the
actual process, e.g. friction, mass, viscosity, capacitance, inductance, etc. . . The fault detec-
tion is implemented according to the following procedure: an on-line estimation of the actual
process parameters is performed repeatedly, by means of well known parameter estimation
methodologies, then these results are compared with those obtained on the reference model
initially estimated under fault-free conditions; any difference among values of parameters is
an indicator of change in the process and may be interpreted as a fault. Important contribu-
tions in the development and application of this approach can be found in [Isermann, 1984],
[Isermann, 1993]. As denoted in [Gao et al., 2015a], the fault diagnosis methods based on
the parameter estimation result to be very straightforward if the model parameters reveal an
explicit mapping with the physical coefficients. Recent development of this approach can
be found in [Doraiswami et al., 2010], [Döhler and Mevel, 2013], [Akhenak et al., 2013].
In [Gao et al., 2007], an integration of descriptor estimator and parametric eigenstructure
assignment was used to improve robustness against measurement noises, modelling errors
and process disturbances. As underlined in [Frank, 1996], an important advantage brought
by the parameter estimation approach is that it allows to know the size of the deviations,
which is an important information for the fault diagnosis. Nevertheless, as a drawback, the
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Figure 1.10: Schematic representation of the SB approach to FDD

parameter estimation approach requires a system always excited in order to estimate the pa-
rameters, and this may be a problem when dealing with processes operating at stationary
conditions. Moreover, the determination of physical parameters from mathematical parame-
ters, which results to be necessary when no classification method can be used, is in general
not unique and only feasible if the order of the model is low. The results provided in [Frank,
1996] reveal that a close relationship and several interesting similarities can be found among
observer-based, parity space-based and parameter estimation-based approaches. The exis-
tence of correlations among all these approaches have been confirmed in other works also,
such as [Staroswiecki et al., 1993], [Delmaire et al., 1994], [Magni, 1995]. Furthermore, an
interesting generalization of these results was described by [Gertler, 1995], and the discus-
sion is still ongoing. Of course this close relationship appears to be logical, because all of
them evaluate the same signals, i.e. the inputs and outputs of the actual process. Since the
application of one method in place of another may be more o less efficient depending on the
specific situation, hence these approaches are often used together in practical applications,
in order to maximize the overall performances of the FDI system. As suggested in [Frank,
1996], a useful combination of these different techniques in practical applications is the use
of diagnostic observers or parity equations for a rapid fault detection and isolation, whereas
the parameter estimation is started when the fault diagnosis needs to be performed, e.g. to
determine the size and type of the faults.

1.3 Signal-Based Methodologies

1.3.1 Introduction
The Signal-Based (SB) methodologies denote all those approaches which employ a suit-
able processing on the measured signals rather than explicit input-output models in order to
achieve the FDI. By assuming that certain process signals bring information about the faults
of interest, which are reflected in the measurements under form of symptoms, the main idea
behind these methods is to extract a suitable set of features, i.e. relevant information, from
these signals, then to carry out the fault diagnosis by checking the consistency between the
known healthy signal pattern and the signal symptom of the real-time process extracted either
by using Time-Domain (TD), Frequency-Domain (FD), or Time-Frequency-Domain (TFD)
signal processing techniques. As stated in [Gao et al., 2015a], signal based fault diagnosis
methods are largely employed in a wide range of real-time applications, such as the moni-
toring and diagnosis of induction motors, power converters and mechanical components in a
system. A schematic representation of the SB approach to FDD is depicted in Figure 1.10.

The features to be extracted for the so-called pattern analysis, i.e. analysis of the fault
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symptoms, can be either:

• time-domain signals (e.g.: mean, standard deviation, trend, slope, . . . )

• frequency-domain signals: (e.g. spectral power density, frequency spectral lines, . . . )

• magnitudes (e.g.: peak, root mean square, . . . )

Hence, as done in [Gao et al., 2015a], signal-based fault diagnosis methods can be clas-
sified as follows:

• Time-Domain Signal-Based (TD SB) approach

• Frequency-Domain Signal-Based (FD SB) approach

• Time-Frequency Signal-Based (TF SB) approach.

1.3.2 Time-Domain Approach
The TD approach refers to all of those methods which perform the fault diagnosis by extract-
ing time-domain features. Typically, such kind of approach is applied to monitor continuous
dynamical processes, as confirmed by the following list of references, grouped in the follow-
ing two categories based on the dimensionality of the featured extracted from the measured
signals.

1.3.2.1 One-Dimension TD SB Methods

In [Chen and Lu, 2013] a fault diagnosis method was developed for power converters of
switched reluctance motors based on the analysis of the measured root-mean-square cur-
rent characteristics between healthy conditions and the situations under single/dual transis-
tor short circuit or open circuit. In [Freire et al., 2013] instead, the absolute value of the
derivative of the Park’s vector phase angle was used as a fault indicator for wind turbine
applications, i.e. to diagnose multiple open-circuit faults in two converters of PMSGs drives.
In [Shahbazi et al., 2013] a fault diagnosis method was addressed for open and short circuits
switch in non-isolated DC-DC converters, based on the slope of the induction current over
time, and a real-time implementation on FPGA digital target was used to validate the pro-
posal. In [Estima and Cardoso, 2013] another real-time algorithm was proposed to detect and
locate multiple power switch open circuit faults in inverted-fed AC motor drives, based on
the analysis of the measured motor phase currents and their corresponding reference signals.
In [Bouzid and Champenois, 2013] it was shown that, under balanced supply voltage, the
phase angle and the magnitudes of the negative and zero-sequence currents can be consid-
ered together as a set of reliable indicators of stator faults in the induction motors. In [Samara
et al., 2008], a statistical method was presented for the detection of sensor abrupt faults in
aircraft control systems, where the covariance of the sensing signals was used for feature
extraction. A TD SB diagnostic algorithm for the supervision of gear faults was recently
developed in [Hong and Dhupia, 2014], by combining fast Dynamic Time Warping (DTW)
with Correlated Kurtosis (CK) techniques. In this application, the fast DTW algorithm is
employed to extract the periodic impulse excitations caused from the faulty gear tooth, then
the extracted signal is re-sampled by using the CK technique for the subsequent diagnostic
analysis. By exploiting the periodicity of the geared faults, the CK algorithm can identify
the position of the local gear fault in the gearbox.



1.3 Signal-Based Methodologies 27

1.3.2.2 Two-Dimension TD SB Methods

In [Chong et al., 2011], a FDI method under the pattern classification framework was pro-
posed, where the vibration signal was translated into an image, then the local features were
extracted from this two-dimensional signal by means of the Scale Invariant Feature Trans-
form (SIFT) technique. Another approach based on two-dimensional features was recently
proposed in [Shahriar et al., 2013] for the fault diagnosis of induction motors. In this
method, the TD vibration signals acquired from the operating motor are firstly converted
into gray-scale images, then the discriminating texture features are extracted from these two-
dimensional signals by exploiting the Local Binary Patterns (LBP) technique. Finally, the
extracted texture features are send to a classifier to perform the fault diagnosis. In this ap-
plication, when converting signals into images, it has been noticed the added noise acts as
illumination variation. Since both SIFT and LBP techniques reveal illumination invariance
capability to some extent, the two proposed methods in [Chong et al., 2011], [Shahriar et al.,
2013] result to be robust enough even when dealing with high levels of background noises.

1.3.3 Frequency-Domain Approach
The FD approach refers to all of those methods where the fault diagnosis is achieved by
exploiting tools for the spectral analysis such as the Discrete Fourier Transformation (DFT).
As reported in [Gao et al., 2015a], one of the most powerful frequency-domain methods is
the Motor-Current Signature Analysis (MCSA), used for the diagnosis of motor faults. The
MCSA method, which is well reviewed in [Benbouzid, 2000], [Nandi et al., 2005], exploits
the spectral analysis of the stator current to detect rotor faults associated with broken rotor
bars and mechanical balance, without requiring access to the motor. Recent development of
the current based spectrum signature analysis for fault diagnosis applications can be found
in [Joksimović et al., 2013], [Gong and Qiao, 2013].

Vibration signal analysis is instead a common method to monitor and diagnose the con-
dition of mechanical equipment such as the gear box, since in this case a key indicator about
working condition of the machine results to be actually the sound produced by the equip-
ment. In [Pan et al., 2012], an algorithm based on the improved FD blind de-convolution
flow technique was proposed as an acoustic fault detection method for a gear box. More
recently, in [Feng and Zuo, 2013], Fourier spectrum and the demodulated spectra of ampli-
tude envelope were employed together in order to detect and locate multiple gear faults in
planetary gearboxes.

1.3.4 Time-Frequency-Domain Approach
The TFD approach refers to all of those combinations of TD and FD techniques applied in
order to achieve the fault diagnosis.

As pointed out in [Gao et al., 2015a], when the machines are working under an un-
loaded condition, unbalanced supply voltages, varying load, or load torque oscillations, the
measured signals typically appear transient and dynamic under the concerned time section.
Hence, the analysis of the stationary quantities to monitor or detect faults could become less
effective and reliable, either using a pure TD or FD approach. For such real-time monitoring
and fault diagnosis applications, since transient signals are located on a time-varying fre-
quency spectrum, suitable time-frequency decomposition tools are needed. As an example,
in [Feng et al., 2013] an effective fault diagnosis tool based on the information revealed by
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the feature extracted from non-stationary signals was proposed. In this application, the sig-
nal frequency components are identified by means of a time-frequency analysis able to reveal
their time variant features.

As reported in [Gao et al., 2015a], several time-frequency analysis methods have been
proposed and applied for the machinery fault diagnosis. The most common methods are
those based on the following techniques:

• Short-Time Fourier Transform (STFT)

• Wavelet Transform (WT)

• Hilbert-Huang Transform (HHT)

• Wigner-Ville Distribution (WVD)

The method based on the STFT proposed in [Nandi et al., 2011], which allows to deter-
mine signal frequency contents of local sections when the signal changes in time, is widely
applied to detect both stator and rotor faults in inductor motors. However, as mentioned by
[Gao et al., 2015a], the STFT requires high computational resources to achieve good reso-
lution. In [Gritli et al., 2013] the effectiveness of a method based on the WT for tracking
fault frequency components under non-stationary conditions has been proven. Indeed, as
a linear decomposition, the WT can provide a good resolution in time for high-frequency
components of a signal and a good resolution in frequency for low-frequency components.
In [Cabal-Yepez et al., 2013], the integration of STFT and discrete WT has been proposed
to achieve early diagnosis and prognosis of the abnormalities in industrial systems. In [Gao
et al., 2015a], is remarked that the practical application of STFT and WT may result limited
by some design elements which need to be correctly defined. E.g., the selection of a suit-
able window size in STFT is required, but generally it is not known a priori. Furthermore,
the selection of a suitable basic wavelet function in WT has a direct effect on the effective
capability to identify transient elements which are hidden within a dynamic signal. The
HHT method is not constrained by the limitations with respect to the time and frequency
resolutions suffered by STFT and WT. The method based on HHT proposed in [Yan and
Gao, 2006], on the basis of the instantaneous frequencies resulting from the intrinsic-mode
functions of the signal being analyzed, has provided quite interesting results in terms of
fault severity evaluation. The WVD technique features a relatively low computational cost
and high resolution, since the entire signal is exploited to obtain the energy at each time-
frequency bin. The application of WVD in fault diagnosis methods has been successfully
tested along with current analysis [Burnett et al., 1996] and vibration analysis [Tang et al.,
2010]. A relevant drawback of the conventional WVD is the appearance of cross terms in the
distribution of artifacts, which in some cases preclude the practical application of methods
based on such a technique. In [Climente-Alarcon et al., 2014] an improved fault diagno-
sis algorithm based on the WVD was recently proposed, based on the combination of the
conventional WVD along with advanced notch FIR filters, which can effectively minimize
the cross terms and provide seamless high-resolution time-frequency diagrams. As a conse-
quence, the diagnosis of rotor asymmetries and eccentricities in induction machines directly
connected to the grid can be achieved even in the worst cases. In [Xiang and Yan, 2014], a
self-adaptive WVD method based on local mean decomposition has been presented, which
can evidently remove the cross-terms of WVD to improve the performance in terms of defect
diagnosis.
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1.4 Data-Driven Methodologies

1.4.1 Introduction
As denoted in [Frank, 1996], [Gao et al., 2015b], both MB and SB approaches may be
difficult to apply under real conditions where no accurate mathematical models of the system
can be obtained, or no suitable signal patterns can be extracted. For the most part of typical
industrial processes, rather than a model or a signal pattern, a large amount of historical data
is usually available. Therefore, an alternative way to implement FDI systems is that to exploit
the underlying knowledge contained in the large volume of available historic data, which
implicitly represents the relationships among the process variables. As pointed out in [Gao
et al., 2015b], model-based, signal-based and knowledge-based algorithms all have to use
real-time data when performing real-time monitoring and on-line fault diagnosis. However,
only knowledge-based fault diagnosis approaches need to employ a large volume of historic
data available. From this point of view, knowledge-based fault diagnosis is also referred to as
Data-Driven (DD) fault diagnosis. As stated in [Frank, 1996], DD methods can be applied to
implement all the three tasks of the generic FDD procedure discussed in Section 2.1, namely
residual generation, residual evaluation and fault analysis, although in this case these phases
are not always as clearly separable as in the MB methodology. According to [Gao et al.,
2015b], DD fault diagnosis methods can be classified in the two following categories, based
on the nature of the extraction process of the knowledge base:

• Qualitative Fault Diagnosis Methods

• Quantitative Fault Diagnosis Methods

1.4.2 Qualitative Fault Diagnosis Methods
As mentioned in [Gao et al., 2015b], the most known and common qualitative fault diagno-
sis methods are those based on expert systems. Expert systems emerged in the late 1960s
as a branch of the artificial intelligence, which is a way to represent the human expertise
by means of a rule-based approach. Fault diagnosis methods based on expert systems was
first proposed in [Henley, 1984], [Chester et al., 1984], where the evaluation of the on-line
monitored data was performed according to a set of rules, learned from the past experience
of human experts. The main advantages provided by the expert systems are: the ease of
development, the transparent reasoning, the ability to reason under uncertainty, and the ca-
pability to explain the solutions provided. However, as it has been noticed in [Gao et al.,
2015b], faults diagnosis methods based on expert systems results to be system specific, with
low generality and low expandability. Some attempts to overcome this limitations has been
provided. In [Bo et al., 2012], a task-based diagnosis expert system was proposed, in which
object-oriented knowledge representation methods were applied so that the rules of a spe-
cific machine can be flexibly customized on the basis of a general rule set. In [Kodavade and
Apte, 2012], a universal fault diagnostic expert system framework was presented, based on
the integration of the object-oriented paradigm into a rule based expert system.

In many industrial applications, process malfunctions may reflect distinct trends in the
measurements, which can be suitably employed to identify such deviations from the nominal
conditions. Indeed, another common set of qualitative fault diagnosis methods refers to those
which implement the classification and analysis of the process trends. The Qualitative Trend
Analysis (QTA), comprehensively reviewed in [Venkatasubramanian et al., 2003b], is a DD
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technique which consists in the identification of process trends from noisy process data and
in the subsequent comparison of such extracted information to a set of known fault trends
stored in a database. As mentioned in [Gao et al., 2015b], the QTA technique has been
widely applied to implement the fault diagnosis in complex industrial applications, such as
those related to chemical processes. Recently, improved versions of the QTA have been
integrated with other qualitative tools, such as the Signed Directed Graphs (SDG), in order
to enhance their respective advantages while compensate their respective disadvantages. An
integrated framework which combines the completeness property of the SDG and the high
diagnostic resolution property of the QTA was proposed in [Maurya et al., 2007] for the
diagnosis of incipient faults. Another approach based on the integration of SDG and QTA,
which meets the fundamental diagnosis requirements such as correctness, completeness and
real-time, but also provides a good resolution, was proposed in [Dong et al., 2010] to make
the fault diagnosis of a distillation power unit.

1.4.3 Quantitative Fault Diagnosis Methods
All the quantitative knowledge-based methods share the same general approach, which es-
sentially consist in the formulation of the fault diagnosis by solving a suitable pattern recog-
nition problem. Quantitative information, called features, can be either extracted by using
statistical or non-statistical methods. Therefore, according to [Gao et al., 2015b], the quan-
titative knowledge-based fault diagnosis methods can be roughly classified into the two fol-
lowing sub-categories:

• Statistical Analysis DD FDD Methods

• Nonstatistical Analysis DD FDD Methods

1.4.3.1 Statistical Analysis DD FDD Methods

Under the statistical framework, the quantitative knowledge-based fault diagnosis methods
are mainly based on the following multivariate statistical techniques:

• Principal Component Analysis (PCA)

• Partial Least Squares (PLS)

• Independent Component Analysis (ICA)

Other common methods are those based on statistical pattern classifiers, and a more recent
strategy called Support Vector Machine (SVM). As mentioned in [Gao et al., 2015b], all
the above methods require a large amount of training data to capture the key characteristics
of the process by using statistical analysis. PCA is the most popular technique employed
in statistical-based fault diagnosis methods, because of its ability to handle huge amount of
highly correlated data, and its simple implementability. According to the definition provided
in [Sari, 2014], the PCA is an optimal linear dimensionality reduction technique, in terms
of capturing the main variations in data. The dimensionality reduction of the original data
set is achieved by projecting all the available data into the subspace spanned by a suitable
set of orthogonal vectors, known as loading vectors, which reveals most of the variance in
the data, without losing important information, so that the major trends in the original data
set can be properly described. Fault diagnosis methods based on PCA have been extensively
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investigated in literature and have successful applications in complex industrial systems, as
confirmed by the following references. In [Wang et al., 2008], a nonlinear extension of
PCA was developed for the diagnostic of diesel engines. In [Elshenawy and Awad, 2012], a
fault diagnosis method based on recursive PCA was presented for a time-varying industrial
process. Probabilistic fault diagnosis techniques based on the ability of PCA to de-noise
original signals and improve the signal-to-noise ratio PCA were proposed in [Jiang et al.,
2014] to monitor a rolling bearing with an outer race fault. In [Zhang et al., 2013], the
integration of y-indices, residual errors and faulty sensor identification indices with PCA
yielded to propose two different approaches for the diagnostic of gas turbine engines, both
easy to implement and computationally efficient. PLS, also known as Projection to Latent
Structure, is another dominant tool employed in statistical-based fault diagnosis methods
for complex industrial processes. As pointed out in [Sari, 2014], compared to PCA, which
aims to capture the correlation among the process variables, then to find the subspace which
contains the most variations, PLS instead, aims to determine at first which subspace is the
most correlated with a predicted block, then to describes the most variations in a predictor
block. As referred in [Sari, 2014], a typical application of such an approach is to consider
the process measurements as the predictor block and the product quality measurements as
the predicted block. The product quality is often measured off-line in the laboratory and
is not available on-line. Thus, PLS can be used both to predict the product quality and to
monitor the process. Recent development of fault diagnosis an monitoring methods based
on PLS can be found in literature. In [Ding et al., 2013], a DD scheme of key performance
indicator prediction and diagnosis for both static and dynamic processes was proposed as an
alternative solution to the standard PLS method, with simplified computation procedures. In
[Zhao et al., 2014], an improved structure based on a further decomposition for the obtained
PLS structure, namely Total Projection to Latent Structures (T-PLS), was presented. This
diagnostic method based on T-PLS, can well detect quality-relevant faults in industrial pro-
cesses subjected to a variety of raw materials and changeable control conditions. As stated
in [Gao et al., 2015b], ICA plays an important role in the real-time monitoring and diagnosis
of many industrial processes, since it allows to deal with latent variables which do not follow
a Gaussian distribution. Recently, a fault isolation method based on the kernel ICA was pro-
posed in [Zhang et al., 2014] for non-Gaussian nonlinear processes. In [Tsai et al., 2013], by
applying ICA to basis images defect detection was investigated for solar modules. In [Guo
et al., 2014], fault diagnosis technique based on ICA was applied to monitor and diagnose
rolling element bearing. As pointed out in [Gao et al., 2015b], SVM is a recent machine
learning technique relying on the statistical learning theory, which is able to achieve high
generalization and dealing with problems with low samples and high input features. SVM is
considered as a suitable technique potentially able to classify all kinds of data sets. The first
attempts to apply SVM for fault diagnosis and monitoring purposes were made by [AYDMJ
and Duin, 1999], [Rychetsky et al., 1999]. Several recent results about fault diagnosis ap-
plications based on SVM can be found in literature, e.g.:[Yin et al., 2014b], [Namdari et al.,
2014], [Sahri and Yusof, 2014].

1.4.3.2 Nonstatistical Analysis DD FDD Methods

The most common computational approach employed in the main part of the nonstatistical
data-driven fault diagnosis methods is the Artificial Neutral Network (ANN). Following the
explanation given in [Frank, 1996], the ANN is based on a collection of single processing
units, called neurons, which become active as soon as their inputs exceed certain thresholds.
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The neurons are arranged in subsets, called layers, which are connected in such a way the
signals at the input are propagated through the network to the output. The choice of the acti-
vation function of each neuron contributes to the overall nonlinear behavior of the network.
Thus, the ANN is typically defined by three different types of parameters:the interconnection
pattern between the different layers of neurons, the learning process for updating the weights
of the interconnections and the activation function that converts a neuron’s weighted input to
its output activation. In terms of topology, the ANN can be classified into:

• Radial Basis Networks

• Recurrent Dynamic Networks

• Self-Organizing-Maps

• Back-Propagation Networks

• Extension Networks

In terms of learning strategy, two different approaches can be applied, i.e. supervised and
unsupervised learning. As explained in [Gao et al., 2015b], when using the supervised learn-
ing, the knowledge-base is extracted from the historical data to emulate the nominal sys-
tem behavior, which is then compared in real-time to that of the actual process, in order
to check for deviations from the nominal conditions. When using unsupervised learning in-
stead, the knowledge-bases related to the nominal and faulty conditions are all extracted, then
are used, during the real-time monitoring. The most popular supervised learning strategy in
ANN has been the back-propagation algorithm. Indeed, several papers address the problem
of fault diagnosis using back-propagation neural networks. E.g., the works of [Watanabe
et al., 1989], [Venkatasubramanian and Chan, 1989], [Ungar et al., 1990], [Hoskins et al.,
1991] are among the first attempts to demonstrate the usefulness of fault diagnosis methods
based on ANN in chemical engineering. A survey of ANN-based fault diagnosis methods
for steady-state processes was presented by [Venkatasubramanian et al., 1990]. The exten-
sion to dynamic processes was later provided by [Vaidyanathan and Venkatasubramanian,
1992]. Several different network architectures have been proposed to achieve the fault di-
agnosis. For instance, a multi-resolution hierarchical neural network has been proposed in
[Bakshi and Stephanopoulos, 1993] whereas self-organizing neural network structures have
been proposed in [Carpenter and Grossberg, 1988] and [Whiteley and Davis, 1994]. Recent
developments of ANN-based fault diagnosis methods in several different real-time appli-
cations, such as combustion engines, steam turbine generators, nuclear process, induction
machines and power network quality, are reported in [Gao et al., 2015b].

Another common approach employed in many nonstatistical data-driven fault diagnosis
methods is the Fuzzy Logic (FL). The main idea behind the FL is to approximate the human
way of reasoning, by partitioning a feature space into fuzzy sets, then using fuzzy rules to
implement the deductive analysis. According to [Chen and Patton, 1999], the most appealing
feature of FL is to be a powerful tool for modeling not well specified data; therefore this
approach results to be highly suited for applications where a complete information about
the system is not available to the designer. Recent developments have shown the interest to
combine FL with other knowledge-based techniques such as expert systems or ANN in order
to solve engineering-oriented diagnosis issues [Nan et al., 2008] or getting better diagnosis
performances [Wijayasekara et al., 2014].
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1.5 Hybrid Methodologies
It is apparent that each of the three different methodologies discussed in the previous Sections
of this Chapter presents its own advantages and constraints. MB approaches need only a few
data to make fault diagnosis, but their implementation usually is not straightforward, and
the performances depend on the accuracy of the model. Both SB and DD methods can
be applied when a model is unavailable or is not enough compliant with the real system,
specially if the industrial application is complex. Nevertheless, on the one hand, since SB
techniques perform the fault diagnosis by extracting suitable features from the output signals,
they result less robust than MB methods, when dealing with noises such as unknown inputs
or unbalanced conditions. On the other hand, DD techniques achieve the fault diagnosis by
means of expensive procedures in terms of computational resources, which require a lot of
historical data. In the last years, several attempts to make hybrid FDD systems, which aim
to suitably combine or integrate such approaches, in order to exploit the advantages of each
method and increase the overall performances in terms of diagnostic capabilities, have been
investigated for a wide range of engineering applications.

In [He et al., 2013], a SB-DD integration was proposed to diagnose plastic bearing faults.
Specifically, the outer race fault was isolated by applying a statistical approach, whereas
other types of faults were isolated by means of frequency-domain fault features, extracted
with the Fast Fourier Transform (FFT), as well as time-domain features, extracted by a TD
SB algorithm, and given as inputs to a K-Nearest-Neighborhood (KNN) classifier to achieve
the fault diagnosis. Another SB-DD method was presented in [Soualhi et al., 2013] for
the FDD of induction motors. In this application, different signal processing techniques,
including spectral analysis, were developed to extract features sensitive to electrical and me-
chanical faults, whereas a DD classifier, denoted as Artificial Ant Clustering, was employed
to classify different operation modes. The new data were then compared with such a knowl-
edge base in order to perform the fault diagnosis. The integration of SB and DD approaches
was exploited also in [Seshadrinath et al., 2014] to diagnose inter-turn faults in induction
machines. At first, features were extracted from the measured vibration signals, by means
of the Dual-Tree Complex Wavelet Transform (DTCWT), then their classification in healthy
and faulty features was performed through PCA and probabilistic ANN. Another interesting
SB-DD application was presented in [Ebrahimi et al., 2014], where WT, PCA and fuzzy
SVM were exploited to achieve, separately, each of the following three tasks: 1) the fea-
ture extraction, 2) the dimension reduction and elimination of linear dependence among the
extracted features, 3) the fault classification.

The integration of MB and DD method was also investigated, as in [Sheibat-Othman
et al., 2014], where such an hybrid fault diagnosis method was proposed for chemical re-
actors, typically subjected to high nonlinearities and high variability of dynamics. Indeed,
at first the fault detection was achieved by implementing a SVM, but with this method it
was difficult to detect faults generated by the highly transitional dynamics. Thus, in order to
improve the fault isolation capability, a combination of the SVM with an observer based on
a simplified initial model was exploited, where the model was corrected and updated by the
information provided by the SVM.
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1.6 Conclusion
In this Chapter, a general overview of the first subject discussed in this dissertation has been
provided. At first, a basic set of definitions was given to introduce the reader to those con-
cepts widely used in the topic of fault detection, isolation and diagnosis. Then, the different
methodologies which nowadays include almost the whole state-of-the-art about the FDD sys-
tems, i.e. MB, SB, and DD, have been discussed and compared. For each of these method-
ologies, the main approaches and techniques were reviewed, by underlying their respective
advantages and constraints. Since in this research the integration of different fault diagnosis
methodologies was exploited, a brief discussion about the hybrid approaches and the most
recent proposals provided by the fault diagnosis community in this promising direction were
also investigated.



Chapter 2

Data Reconciliation and Parameter
Estimation

The research area of gross error detection in sensor data and subsequent validation is closely
related to the topic of fault detection and diagnosis. The gross error detection, or sensor
validation, refers to the identification of faulty, or failed, sensors in the process. Two major
types of gross errors can be found in practical applications. The first type of gross error refers
to the instrument performance, and includes measurement bias, drifting, uncalibration, and
total instrument failure. The second type of gross error refers to the constraints related to the
model, and includes unaccounted loss of energy and material resulting from leaks, process
equipment, or model uncertainties due to inaccurate parameters. Several techniques have
been proposed in the literature for the detection and elimination of these two types of gross
errors, as stated in [Narasimhan and Jordache, 1999].

Data reconciliation, or rectification, is the task of providing estimates for the true values
of the sensor readings. Since fault diagnosis includes sensor failures also in its scope, hence,
data validation and rectification can be considered as a specific case of a more general fault
diagnosis problem. Data Reconciliation (DR) technology is widely applied nowadays in
various chemical, petrochemical, and other material processing industries. It is applied off-
line, or in connection with on-line applications, such as process optimization and advanced
process control.

Both unmeasured variables and model parameters can be estimated by data reconcili-
ation, providing that enough measured data is available in order to make them observable.
Applications such as simulation and optimization of existing process equipment rely on a
model of the equipment. These models, usually, contain parameters which have to be esti-
mated from the available plant data. This is also known as model tuning, for which accurate
data is essential. The use of erroneous measurements in model tuning can give rise to incor-
rect model parameters, which can nullify the benefits achievable through optimization.

According to [Narasimhan and Jordache, 1999], three different ways to apply the data
reconciliation and gross error detection technologies to industrial applications can be distin-
guished:

• Process unit balance reconciliation and gross error detection

• Parameter estimation and data reconciliation

• Plant-wide material and utilities reconciliation
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This Chapter focuses attention only on those approaches which perform the data recon-
ciliation and parameter estimation tasks. The Section 2.1 introduces to some basic concepts
and definitions, related to the topics of data reconciliation and parameter estimation. The
Section 2.2 provides a rapid overview of different DR methods, referring to systems operat-
ing at steady-state conditions. In Section 2.3 instead, dynamic data reconciliation procedures
are reviewed. Finally, in Section 2.4, the parameter estimation problem is also considered,
ad some approaches which allow to estimate parameters along with the data reconciliation
procedure are discussed.

2.1 Basic Concepts and Definitions
Efficient, profitable, and safe plant operations depend on accurate and reliable process data.
DR is a technique that has been developed to improve the accuracy of measurements by re-
ducing the effect of random errors in the data. The principal difference between DR and other
filtering techniques is that the former explicitly makes use of process model constraints, and
obtains estimates of process variables by adjusting process measurements, so that the esti-
mates satisfy the constraints. The reconciled estimates are expected to be more accurate than
the measurements and, more importantly, they are also consistent with the known relation-
ships between process variables, as defined by the constraints. In order for data reconciliation
to be effective, there should be no gross errors, either in the measurements, or in the process
model constraints. Gross error detection is a companion technique to DR, which has been
developed in order to identify and eliminate gross errors. Thus, DR and gross error detection
are applied together to improve accuracy of measured data.

DR and gross error detection both achieve the reduction of errors, only by exploiting the
redundancy properties of measurements. Typically, in any process, the variables are related
to each other through physical constraints, such as material or energy conservation laws.
Given a set of such system constraints, a minimum number of error-free measurements is
required, in order to compute all of the system parameters and variables. If there are more
measurements than this minimum, then redundancy exists in the measurements, which can
be exploited. This property is usually called spatial redundancy, and when it exists, the sys-
tem of equations is said to be overdetermined. DR cannot be performed without the spatial
redundancy. With no extra measured information, the system is just determined, and no cor-
rection to erroneous measurements is possible. Furthermore, if fewer variables than those
needed to determine the system are measured, the system is undetermined, and the values
of some variables can be estimated only through other means, or if additional measurements
are provided. A second type of redundancy, refers to the fact that measurements of process
variables are made continually in time at a high sampling rate, producing more data than
necessary to determine a steady-state process. This property is usually called temporal re-
dundancy. If the process is assumed to be in a steady state, then temporal redundancy can
be exploited, by simply averaging the measurements, and applying steady-state DR to the
averaged values.

If the process state is dynamic, however, its evolution is described by differential equa-
tions corresponding to mass and energy balances, which inherently capture both the temporal
and spatial redundancy of measured variables. For such process, Dynamic Data Reconcili-
ation (DDR) and gross error detection techniques have been developed, to obtain accurate
estimates consistent with the differential model equations of the system.

As stated above, DR improves the accuracy of process data, by adjusting the measured
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values so that they satisfy the process constraints. The amount of adjustment made to the
measurements is minimized, since the random errors in the measurements are expected to be
small. In the general case, not all variables of the process are measured, due to economic or
technical limitations. The estimates of unmeasured variables, as well as model parameters,
are also obtained as part of the reconciliation problem. The estimation of unmeasured values
based on the reconciled measured values is also known as data coaptation.

2.2 Steady-State Data Reconciliation

2.2.1 Introduction
According to [Romagnoli and Sánchez, 2000], the following definitions are provided. As-
suming the absence of gross errors, the measurement vector can be written as follows:

y = x+εεε (2.1)

where y ∈ Rn is the measurement vector, x ∈ Rn is the vector of the actual values of the
variables, and εεε ∈Rn is the vector which denotes the unknown random measurements errors.
Usually, some assumptions about the statistical properties of the measurement errors are also
made, i.e. the random errors are assumed to follow a multivariate normal distribution with
zero mean and known variance-covariance matrix. Therefore:

• The expected value of the measurement errors is zero, i.e. E(εεε) = 0

• The subsequent measurements are independent, i.e. E(εεε iεεε
T
j ) = 0 ∀i 6= j

• The covariance matrix of the measurement errors is known and positive definite, i.e.
Cov(εεε) =ΣΣΣ = E(εεε iεεε

T
i )

where E(·) is the expectation operator. It is worth to notice that, since both x and y are
vectors in the Rn space, at this stage, all the process variables are assumed to be measured.

As explained before, additional information must be introduced in practice, under the
form of process model equations, since the process variables must conform to some relation-
ships arising from the physical characteristics of the model. These constraint equations are
usually represented as a set of nonlinear algebraic equations:

f(x,u) = 0
g(x,u)≤ 0

(2.2)

where u ∈ Rp indicates the vector of unmeasured process variables, f(·) ∈ Rm denotes the
set of m equality constraints representing the process model and g(·) ∈Rq denotes the set of
q the inequality constraints.

In general, data reconciliation can be formulated by the following constrained weighted
least-squares optimization problem:

min
x,u

(y−x)T
ΣΣΣ
−1(y−x)

s.t.


f(x,u) = 0
g(x,u)≤ 0
xL ≤ x≤ xU

uL ≤ u≤ uU

(2.3)
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where {xL,xU} and {uL,uU} denote the lower and upper bounds of x and u, respectively.
As pointed out in [Romagnoli and Sánchez, 2000], if the measurement errors are nor-

mally distributed, the resolution of problem (2.3) provides the maximum likelihood esti-
mates of process variables. Therefore, they result to be minimum-variance unbiased estima-
tors. Different methodologies are required to solve the problem (2.3), depending on whether
the constraints are a linear or a nonlinear set of equations. Some of these methods will be
reviewed in the following of this Section.

2.2.2 Linear Data Reconciliation
As mentioned in [Romagnoli and Sánchez, 2000], two different situations have to be con-
sidered in linear data reconciliation. Indeed, sometimes, all the variables included in the
process model are measured, but more frequently, some of them cannot be measured. Both
cases will be briefly reviewed in the next two Paragraphs.

2.2.2.1 Linear DR with all variables measured

In this case, the problem (2.3) can be reformulated as:

min
x,u

(y−x)T
ΣΣΣ
−1(y−x)

s.t. Ax = 0
(2.4)

where A∈Rm×n is a matrix of known constants. In this case all variables are redundant. Sev-
eral different resolution methods are available in literature for this problem. Good surveys
about them can be found in [Romagnoli and Sánchez, 2000], [Mah, 2013].

In this paragraph only two approaches will be discussed, which are the traditional one,
called batch resolution, and an alternative one, based on the Q-R factorization.

Batch Solution

Introducing the measurement errors into the process constraints, by means of (2.2), the
optimization problem (2.4) becomes:

min
εεε

εεε
T

ΣΣΣ
−1

εεε

s.t. A(y−εεε) = 0
(2.5)

The solution of this problem is obtained by applying the Lagrange multipliers method,
where the Lagrangian is:

L = εεε
T

ΣΣΣ
−1

εεε−2λ
T A(y−εεε) (2.6)

Since ΣΣΣ is positive definite and the constraints are linear, the minimization conditions are:

∂L
∂εεε

= 2ΣΣΣ
−1

εεε +2AT
λ = 0 ⇒ ΣΣΣ

−1
εεε =−AT

λ

∂L
∂λ

= A(y−εεε) = 0 ⇒ Aεεε = Ay
(2.7)
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hence:

εεε =−ΣΣΣAT
λ

A(−ΣΣΣAT
λ ) = Ay ⇒ λ =−(AΣΣΣAT )−1Ay

(2.8)

Hence, the estimate of the process variables, i.e. x̂, is then obtained by substituting the
result of (2.8) in (2.1), that is:

x̂ = y−ΣΣΣAT (AΣΣΣAT )−1Ay (2.9)

Q-R Factorizations

In this procedure, the constrained problem (2.5) is transformed into an unconstrained
one. By means of the Q-R orthogonal factorization algorithm, depicted in [Romagnoli and
Sánchez, 2000], and applied to matrix A, the following result can be obtained:

AΠ = QR (2.10)

where Q ∈ Rm×m is an orthogonal matrix, R ∈ Rm×n is an upper-triangular matrix, and
Π ∈ Rn×n is a permutation matrix of A, and the following partitioning arise:

Q = [Q1 Q2] , R =

[
R11 R12

0 0

]
, Π

T x =

[
xr

xn−r

]
(2.11)

where r = rank(R11) = rank(A), Q1 ∈ Rm×r has r orthonormal columns, R11 ∈ Rr×r is a
nonsingular upper triangular matrix, and xn−r is an arbitrary vector. In [Romagnoli and
Sánchez, 2000] it has been shown that the general solution of the undetermined system Ax =
0 ca be obtained as:

xr =−R−1
11 R12xn−r (2.12)

As a consequence, the vector of the objective function related to the problem (2.5), i.e.
(y−x), can be expressed as follows:

(y−x) = y− [I1 I2]

[
xr

xn−r

]
= y+ I1R−1

1 R2xn−r− I2xn−r =

= y+(I1R−1
1 R2− I2)xn−r

(2.13)

where:

IΠ = [I1 I2] , Ĩ = I1R−1
1 R2− I2 (2.14)

being I ∈ Rn×n the identity matrix and Ĩ ∈ Rn×(n−r) a matrix with independent columns.
Hence, the unconstrained minimization problem can be stated as:

min (y+ Ĩxn−r)
T

ΣΣΣ
−1(y+ Ĩxn−r) (2.15)

and the solution of this problem can be computed by means of the standard method of La-
grange multipliers seen above in the batch solution, that is:

x̂n−r =−(ĨT
ΣΣΣ
−1Ĩ)−1ĨT

ΣΣΣ
−1y (2.16)

finally, the estimate x̂r, is then obtained by substituting the value of (2.16) in (2.12).
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2.2.2.2 Linear DR with unmeasured variables

In many practical applications, usually, only a subset of process variables are measured.
Hence, all the unmeasured variables must be estimated. In this paragraph, the approaches
discussed for the linear data reconciliation problem involving only measured variables will
be applied, in order to provide a general solution of the linear data reconciliation problem,
which can deal both with measured and unmeasured variables.

Following [Romagnoli and Sánchez, 2000], the main idea is based on the decoupling of
the unmeasured variables from the measured ones, by means of Q-R orthogonal factoriza-
tions. By this way the overall estimation problem is divided in two subproblems.

A1x+A2u = 0 (2.17)

where x ∈ Rn denotes the vector of the n measured variables, u ∈ Rp denotes the vector of
the p unmeasured variables, A1 ∈ Rm×n and A2 ∈ Rm×p are compatible matrices.

By means of the Q-R orthogonal factorization algorithm depicted in the previous para-
graph, applied to matrix A2, the following result can be obtained:

A2Π = QR (2.18)

where Q∈Rm×m, R∈Rm×p , and Π∈Rp×p have the same meaning of the matrices depicted
(2.11). Hence, in this case will be: r = rank(R11) = rank(A2), and the vector of unmeasured
variables, i.e. u ∈ Rn, will be partitioned into two subsets:

Π
T u =

[
us

up−s

]
(2.19)

Hence, multiplying the linearized constraints (2.17) by QT = Q−1, the following result
arises:

QT
1 A1x+R11us +R12up−s = 0

QT
2 A1x = 0

(2.20)

Thus, by applying the standard reconciliation procedure on the decoupled subsystem of
the measured variables u, the solution will be the same as in (2.9), that is:

x̂ = y−ΣΣΣ(QT
2 A1)

T [(QT
2 A1)ΣΣΣ(QT

2 A1)
T ]−1(QT

2 A1)y (2.21)

The unmeasured variables can be explicitated from the first equation of (2.20), as follows:

us =−R−1
11 (Q

T
1 A1x̂+R12up−s) =−RT

11QT
1 A1x̂−R−1

11 R12up−s (2.22)

where the up−s components are set arbitrarily. Two different cases have to be considered:

1. Rank(R11) = p

2. Rank(R11)< p
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In case 1), all the unmeasured process variables are estimable, and then a unique solution
can be obtained for their estimation, by means of the rectified measured values (2.21) and of
the balance equations (2.22).

In case 2), some unmeasured process variables cannot be estimated, and an infinite num-
ber of solutions are possible. Thus, the basic solution is:

us =−RT
11QT

1 A1x
up−s = 0

(2.23)

2.2.3 Nonlinear Data Reconciliation
As mentioned in [Romagnoli and Sánchez, 2000], a plant under steady-state operating con-
ditions is commonly represented by a non-linear system of algebraic equations, made up
of energy and mass balances, as well as thermodynamic relationships, and sometimes other
physical behaviors of the system also. In these cases, the data reconciliation is based on the
solution of a nonlinear constrained optimization problem. The general problem (2.3) can be
formulated also by using a more compact notation:

min
z

ΣΣΣ(z)

s.t.


f(z) = 0
g(z)≤ 0
zL ≤ z≤ zU

(2.24)

where z∈Rn+p is the vector of optimization variables, which includes both the measured and
unmeasured process variables, and ΣΣΣ(z) is the objective function. According to [Romagnoli
and Sánchez, 2000], the necessary conditions for an optimal solution of the problem are
equivalent to those for optimizing the Lagrange function, which is defined as:

L(z,λ ,µ) =ΣΣΣ(z)+
m

∑
i=1

λi fi(z)+
q

∑
j=1

µ jg j(z) (2.25)

The following are the well known Kuhn-Tucker (KT) conditions:

• Linear dependency of the gradients:

∇ΣΣΣ(z)+
m

∑
i=1

λi∇ fi(z)+
q

∑
j=1

µ j∇g j(z) = 0 (2.26)

• Constraint feasibility:

fi(z) = 0 , i = 1, . . . ,m
g j(z)≤ 0 , j = 1, . . . ,q

(2.27)

• Complementary conditions:

µ jg j(z)≤ 0 , j = 1, . . . ,q (2.28)
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• Nonnegativity conditions for inequality multipliers:

µ j ≥ 0 , j = 1, . . . ,q (2.29)

where λi and µ j are the Lagrange and Kuhn-Tucker multipliers, respectively.
The sufficient conditions for obtaining a global solution of the nonlinear programming

problem are those requiring both the objective function and the constraint set to be convex.
If these conditions are not satisfied, there is no guarantee that the local optimum will be the
global optimum. In the following, the applicability of two different techniques for solving
the nonlinear data reconciliation problem is discussed.

2.2.3.1 Successive Linearizations

The method developed for problems with linear constraints can be extended also to deal with
nonlinearly constrained problems. According to [Romagnoli and Sánchez, 2000], the main
idea is to linearize the nonlinear equality constraints, i.e. f(x,u) = 0, by means of a Taylor
series expansion around an estimation of the solution (xk,uk). Usually, measurement values
are used as initial estimations for the measured process variables. Therefore, the following
linear system of equations can be obtained:

A1x+A2u = c (2.30)

where:

A1 =
∂ f
∂x

∣∣∣∣
(xk,uk)

, A2 =
∂ f
∂u

∣∣∣∣
(xk,uk)

, c = A1xk +A2uk− f(xk,uk) (2.31)

As mentioned in [Romagnoli and Sánchez, 2000], orthogonal factorizations may be ap-
plied to solve the general problem (2.3) if the system of equality constraints f(x,u) = 0 is
made up of linear mass balances, bilinear component and energy balances. After replacing
the bilinear terms of the original model by the corresponding mass and energy flows, a linear
data reconciliation problem results. Thus, the unmeasured variables can be eliminated by
means of the orthogonal factorization procedure. Once the subset of equations containing
only measured variables has been identified, the original problem is reduced to the linear one
in (2.5), that is:

min
x,u

(y−x)T
ΣΣΣ
−1(y−x)

s.t. Gx = b
(2.32)

where: G = QT
2 A1 and b = QT

2 c.
Hence, the corresponding solution, which results to be the optimal point for the linear

constraints, is:

x̂ = y−ΣΣΣGT (GΣΣΣGT )−1(Gy−b) (2.33)

us =−R−1
11 QT

1 c−RT
11QT

1 A1x̂−R−1
11 R12up−s (2.34)
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Several iterations are then performed, by linearizing the constraints about the previous
iterate, until a solution which satisfies the nonlinear constraints is obtained. The successive
linearisation method has the advantage to be simple and fast in terms of computational re-
quirements. In addition, it can be modified to choose a step size to minimize a pre-specified
penalty function. However, variable bounds cannot be handled, because it may fail to con-
verge to the desired minimum and it might oscillate when multiple minima exist.

2.2.3.2 Nonlinear Programming Techniques

Non-Linear Programming (NLP) algorithms are applied when dealing with general nonlin-
ear objective function, not just a weighted least squares objective function, since they can
explicitly handle nonlinear constraints, inequality constraints, and variable bounds. Typical
algorithms include Sequential Quadratic Programming (SQP) techniques, such as NPSOL
[Gill et al., 1986], and reduced gradient methods, such as GRG2 [Lasdon and Waren, 1977].
The main features of both approaches are described.

Sequential Quadratic Programming

According to [Romagnoli and Sánchez, 2000], a SQP technique involves the resolution
of a sequence of explicit Quadratic Programming (QP) subproblems. The solution of each
subproblem produces the search direction dk, which has to be taken to reach the next iterate
zk+l from the current iterate zk. A one-dimensional search is then accomplished in the di-
rection dk to obtain the optimal step size. To apply the procedure, the nonlinear constraints
f(x,u) = 0 are linearized by means of a Taylor series expansion and the related linear opti-
mization problem is resolved to find the solution, i.e. dk, which minimizes a quadratic ob-
jective function subject to linear constraints. According to [Romagnoli and Sánchez, 2000],
the QP subproblem is formulated as follows:

min
d

1
2

dT
k HL(zk,λ k)dk +∇ΣΣΣ

T (zk)dk

s.t. ∇f(zk)dk + f(zk) = 0
(2.35)

where HL(zk,λ k) is the Hessian matrix of the Lagrange function formulated for the problem
(2.3), ∇ΣΣΣ and ∇f(zk) denote the gradients of the objective function and of the constraints,
respectively.

Reduced Gradient Method

This technique is based on the resolution of a sequence of optimization subproblems
for a reduced set of variables. According to [Romagnoli and Sánchez, 2000], the process
constraints are used to solve a set of variables, i.e. zD, called basic, or dependent, in terms
of the others, i.e. zI , which are known as nonbasic, or independent. By means of these
variables, the problem (2.3) is transformed into another one of fewer dimensions:

min
zI

ΣΣΣ(zI)

s.t. zL
I ≤ zI ≤ zU

I

(2.36)
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where ΣΣΣ(zI) denotes the reduced objective function, whereas its reduced gradient is formu-
lated as:

ΣΣΣ
T
R =

[
∂ΣΣΣzI

∂zI

]T

−
[

∂ΣΣΣzI

∂zD

]T [
∂ f

∂zD

]−1[
∂ f
∂zI

]
(2.37)

Initially, the search direction, i.e. d, in the space of the independent variables, is de-
termined from the elements of ΣΣΣT

R , then the search components for the dependent ones are
computed. A one-dimensional search is accomplished to obtain a solution for zI . The re-
maining dependent variables of zD are evaluated as functions of zI , by means of the process
constraints.

The main disadvantage of these NLP algorithms is the large requirement in terms of com-
putation time, needed to perform the successive linearisation algorithm. Nevertheless, such
methods can be applied in a wide range of applications, since they are able to manage nonlin-
ear objective functions, equality and inequality constraints, as well as bounds on variables.
The performance of NLP algorithms is better when the problems are well-scaled. Since very
often order and magnitude of variables are different, thus a scaling is usually required. Fur-
thermore, if constraints have different magnitudes, they need to be scaled, in order to obtain
constraints’ residuals of the same magnitude. The accuracy of the solution provided by the
NLP software depends on the problem to be solved.

2.3 Dynamic Data Reconciliation

2.3.1 Introduction
In the previous Section the data reconciliation problem was considered for systems assumed
to be operating at steady state. As a consequence, only one set of data was supposed to be
available. As pointed out in [Romagnoli and Sánchez, 2000], in many practical situations, the
occurrence of various disturbances makes the steady-state assumption not verified anymore,
since it generates a dynamic or quasi-steady-state response of the process. A continuous
monitoring of a process operating under dynamic or quasi-steady-state conditions is needed,
to take into account correctly these changes in the operating conditions. If the process is
sampled at fixed frequency, then along with the spatial redundancy defined above also the
temporal redundancy takes place. As stated in [Romagnoli and Sánchez, 2000], in this case,
by applying in two different times, t1 and t2, the data reconciliation methods presented in the
previous Section, the estimates of the process variables are said to be obtained independently,
that is, no previous information is considered in the estimation procedure. This means the
past information is discarded, thus the temporal redundancy is ignored. In this Section, the
data reconciliation problem for dynamic evolving processes is considered. The temporal
redundancy is taken into account by using filtering techniques.

2.3.2 Linear Dynamic System Model
According to [Romagnoli and Sánchez, 2000], a dynamic system can be modeled as follows:

ẋ = f(x)+w(t)
y = φ(x)+εεε(t)

(2.38)
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with initial conditions set as: x(0) = x0, and where f(x) and φ(x) denote the functions which
model the internal and the output dynamic of the system, respectively, x ∈ Rn is the state
vector, y ∈ Rm is the measurement vector, and w ∈ Rn, εεε ∈ Rm are the vector which denote
the unknown modeling and observation errors, respectively, both supposed to be Gaussian
white noise processes. Hence:

w(t)≈ N[0;Q(t)] , Q(t) = QT (t)> 0
εεε(t)≈ N[0;R(t)] , R(t) = RT (t)> 0

(2.39)

where N[·] stands for normal distribution, which parameters in the brackets are the mean and
the spectral density, respectively, whereas Q(t) and R(t) denote the spectral density matrices
of w(t) and εεε(t), respectively.

For the continuous formulation, the covariance matrices of the model and observation
errors are defined as:

E[w(t)wT (t)] = Q(t)∆(t−ξ )

E[εεε(t)εεεT (t)] = R(t)∆(t−ξ )
(2.40)

where E(·) is the expectation operator and ∆ is the Dirac delta function.
The distinctive aspect of the dynamic case with respect to the static one, is the time

evolution of the estimate x̂ and its error covariance matrix ΣΣΣ, which can be expressed as
follows, according to [Romagnoli and Sánchez, 2000]:

˙̂x = f̂(x, t)
Σ̇ΣΣ(t) = E(xfT )− x̂f̂T +E(fxT )− f̂x̂T +Q(t)

x(0) = x0 , ΣΣΣ(0) =ΣΣΣ0

(2.41)

The implementation of practical algorithms for the computation of the estimate x̂ and its
error covariance ΣΣΣ requires methods that do not depend on knowing the entire probability
density function p(x, t) for x(t). A method often used consists in the expansion of f in (2.38)
as a Taylor series around a certain point x̂ close to x. Carrying out the first-order expansion
on the current estimate of the state vector, the following result arises:

f(x, t) = f(x̂, t)+A(x̂, t)(x− x̂)+ . . . (2.42)

where the generic component of the A matrix is:

Ai j(x̂, t) =
∂ fi(x, t)

∂x j

∣∣∣∣
x(t)=x̂(t)

(2.43)

Following [Romagnoli and Sánchez, 2000], by applying the expectation operation on
both sides of (2.42) and substituting the result into the first equation of (2.41) it yields:

˙̂x = f(x̂, t) , x(0) = x0 (2.44)

Substituting (2.44) into the second equation of (2.41), an expression for the differential
equation of the estimation error covariance matrix ΣΣΣ is obtained:

Σ̇ΣΣ(t) = A(x̂, t)ΣΣΣ(t)+ΣΣΣ(t)AT (x̂, t)+Q(t)
ΣΣΣ(0) =ΣΣΣ0 ; ΣΣΣ0 =ΣΣΣT

0 > 0 (2.45)
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According to [Romagnoli and Sánchez, 2000], the two approximate expressions (2.44)
and (2.45), which denote the temporal evolving of the estimate and the error covariance,
respectively, are referred in the literature to as the Extended Kalman Filter (EKF) propaga-
tion equations. In order to implement the algorithm, usually it results more convenient to
approximate (2.44) and (2.45) with their corresponding discrete form. Thus, respectively:

xk+1 = Fkxk +(w)k (2.46)

where (w)k ∼ N[0,Qk] is now a stochastic sequence, with Qk = Q(t)∆′. Being ∆′ = tk+1− tk
the time step, and ∆ the sampling interval, hence i = ∆/∆′ denotes the number of time steps
contained in the sampling interval.

ΣΣΣk+1 = FkΣΣΣkFT
k +Qk (2.47)

where Fk represents the transition matrix related to the system equation (2.44).
As stated in [Romagnoli and Sánchez, 2000], the statistical properties of the random

process x, i.e. mean x̂ and covariance ΣΣΣ, can be evaluated in the time interval tk < t < tk+l ,
but in this process there is an input noise w which increases the error, damaging the quality
of the estimate. If at a time tk−1 the updated values of the mean and the estimate error
covariance are available, i.e. x̂(tk−1|tk−1) and ΣΣΣ(tk−1|tk−1), where the argument means at
time tk−1, given information up to time tk−l , these values are then used as initial values to
evaluate the temporal evolution of the mean and covariance in the time interval tk−1 < t < tk,
by means of the model equations (2.44), (2.45). According to [Romagnoli and Sánchez,
2000], once the predicted values are computed, i.e. x̂k/k−1 and ΣΣΣk/k−1, then the minimum
variance estimate of the state vector, i.e. x̂k, can be obtained as the solution of the following
minimization problem:

min J = aT
k ΣΣΣ
−1
k/k−1ak +εεε

T
k R−1

k εεεk (2.48)

where ak = xk− x̂k/k−1 and εεεk = yk−Cxk denote the objective functions related to the
modeling prediction errors and the observation errors, respectively.

According to [Romagnoli and Sánchez, 2000], the solution of the minimization problem
(2.48) is given by the formula:

x̂k =ΣΣΣk[ΣΣΣ
−1
k/k−1x̂k/k−1 +CT R−1

k yk] (2.49)

where:

ΣΣΣk = [ΣΣΣ−1
k/k−1 +CT R−1

k C]−1 (2.50)

As pointed out in [Romagnoli and Sánchez, 2000], since ΣΣΣ is a positive definite symmet-
ric matrix, its trace can be taken as a measure of the estimate error covariance. Furthermore,
it should be noted that the solution of the minimization problem, i.e. the recursive equations
(2.49) and (2.50), simplifies to the updating step of a Kalman Filter (KF).

2.3.3 Quasi-Steady-State System Model
In this Section, the data reconciliation analysis is referred to systems operating at Quasi-
Steady-State (QSS) conditions, which reflect those situations where the dominant time con-
stant of the systems’ dynamic response is much smaller than the period with which dis-
turbances affect the system. The disturbances able to induce such kind of behavior in the
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operating conditions of the process, may refer to slow variations in the heat transfer coeffi-
cients, catalytic activity in reactors, etc. . . , or the source of a disturbance may be a sudden
but lasting change. Therefore, a process can be considered as operating in QSS conditions,
when it exhibits slow, or occasionally sharp, transitions between steady states. According to
[Stanley and Mah, 1977], the model for such kinds of processes can be expressed as follows:

• a set of n transition equations:

xk+1 = Ixk +nk ; k = 0,1, . . . (2.51)

where xk and nk are the state vector and the process noise vector at time tk, respectively;

• a set of l measurement equations:

yk = Cxk +εεεk ; k = 0,1, . . . (2.52)

where yk and εεεk are the output vector and the measurement error vector at time tk,
respectively;

• a set of m steady-state algebraic balance equations:

Akxk +wk = 0 ; k = 0,1, . . . (2.53)

where Ak and wk are the matrix related to the linear approximation of the model, and
the modeling error vector at time tk, respectively.

As in the static case, the state and all the error vectors in the model are supposed to be
uncorrelated and normally distributed random variables, with known covariance matrix, that
is:

xk ∼ N[x0,ΣΣΣ0]

nk ∼ N[0,S]
εεεk ∼ N[0,R]

wk ∼ N[0,Q]

(2.54)

If the predicted values are available at time tk, by following the same reasoning explained
in Section 2.3, the minimum variance estimate of the state vector, i.e. x̂k, is obtained as the
solution of the following minimization problem:

min J = aT
k ΣΣΣ
−1
k/k−1ak +εεε

T
k R−1

k εεεk +wT
k Q−1

k wk (2.55)

where ak = xk− x̂k/k−1, εεεk = yk−Cxk and wk = −Axk denote the objective functions
related to the prediction errors, the observation errors, and the modeling errors, respectively.
As in Section 2.3, the solution of the minimization problem is given by the formula (2.49),
where in this case the estimate of the error covariance is computed as:

ΣΣΣk = [ΣΣΣ−1
k/k−1 +CT R−1

k C+AT Q−1
k A]−1 (2.56)

The values of x̂k and ΣΣΣk computed by means of the equations (2.49) and (2.56), respec-
tively, are used as initial values to evaluate the temporal evolution of the mean and covariance
in the time interval tk < t < tk+1, that is:

x̂k+1/k = x̂k (2.57)
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ΣΣΣk+1/k = [ΣΣΣk +Qk] (2.58)

According to [Romagnoli and Sánchez, 2000], the initial values for the recursive compu-
tations are assumed to be available, and given by x̂0 = x0 and ΣΣΣ0 = ΣΣΣ(0). As in Section 2.3,
the solution of the minimization problem again simplifies to the updating steps of a static
Kalman filter. As pointed out in [Romagnoli and Sánchez, 2000], for the linear case, matri-
ces A and C do not depend on x, thus the covariance matrix of errors can be computed in
advance, without having actual measurements. Instead, when the problem is nonlinear, these
matrices depend on the last available estimate of the state vector, and the Extended Kalman
Filter (EKF) takes place.

2.4 Joint Data Reconciliation Parameter Estimation

2.4.1 Introduction
A problem associated with the data reconciliation is the estimation of various model param-
eters. Indeed, data reconciliation and gross error detection algorithms make use of plant
models, which might have totally unknown parameters, or parameters subject to changing
during the plant operation. Most of these parameters, such as heat transfer coefficients, foul-
ing factors, distillation column tray efficiencies, compressor efficiencies, etc. . . , are fixed
values for the process optimization; therefore, a high accuracy in their estimated values is
required.

One approach to the parameter estimation problem is to solve it simultaneously with the
reconciliation problem. The model parameters can be treated as regular unmeasured vari-
ables, or as tuning parameters, which are adjusted in NLP-type algorithms to match the plant
measurements. The major problem with this approach is that in the presence of gross errors,
the parameters may be adjusted to wrong values, or some measurements can wrongly be de-
clared in gross error, because of errors in model parameters. To obtain an accurate solution
for both measured variables and model parameters, an iterative process is usually required,
which is time consuming, especially with rigorous models. An alternative approach is to
separate and sequentially solve the two problems. First, data reconciliation and gross error
detection is performed using only overall material and energy balances. The model param-
eters are then estimated using the reconciled values. This is similar to projecting out the
unmeasured model parameters from the reconciliation problem, along with their associated
model equations. The parameter estimates obtained using the sequential approach are iden-
tical to those obtained using the simultaneous approach, if there are no a priori estimates of
the parameters available. Moreover, the parameter estimates obtained using the sequential
approach may not always satisfy bounds on parameter values. An iterative procedure may be
used to eliminate such problems. This approach was applied to parameter estimation prob-
lems in connection with advanced process control applications. The computational time is a
serious constraint for such applications, and usually only one iteration is applied.

The parameter estimation is also an important aspect of activities such as process design,
evaluation, and control. Since, usually, the data acquired from the field do not satisfy the
process constraints, Error-In-Variable (EIV) methods typically are used to obtain both pa-
rameter and reconciled data estimates which are consistent with the model. Such approaches
represent a special class of optimization problem, because the structure of least squares is
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exploited in the development of the optimization procedure. A review of this subject can be
found in [Biegler et al., 1986].

This Section discusses the joint parameter estimation and data reconciliation problem.
First, the typical parameter estimation problem, in which the independent variables are error-
free, is analyzed. The main aspects related to the processing of the information are consid-
ered. Later, the more general formulation in terms of the error-in-variable method, where
measurement errors in all variables are considered in the parameter estimation problem, is
examined.

As stated in [Romagnoli and Sánchez, 2000], the nature of a parameter estimation prob-
lem depends on the mathematical model used to match the experimental data. Indeed, a
model contains both state variables, e.g.: concentrations, temperatures, pressures, etc. . . ,
and parameters, e.g.: rate constants, dispersion coefficients, activation energies, etc. . . . Fur-
thermore, the state variables can be decomposed into two different groups: independent and
dependent variables. Thus, the following vectors of variables and parameters can be defined:

• θθθ = [θ1, . . . ,θg]
T : vector of parameters whose numerical values are unknown

• x = [x1, . . . ,xn]
T : vector of state variables

• y = [y1, . . . ,yp]
T : vector of observed variables, which are the actually measured pro-

cess variables.

This decomposition leads to two different problems. According to the definitions given
in [Romagnoli and Sánchez, 2000], a single experiment consists of the measurement of each
of the n observed variables for a given set of all the state variables, i.e. dependent and
independent variables. If all the independent state variables are error-free, only errors in the
dependent variables y need to be minimized. Therefore, in this case, the model result to be
explicit, since the vector of observed variables y can be expressed as an explicit function of
the state x and the parameters θθθ , as follows:

y = f(x,θθθ) (2.59)

where f ∈ Rp is a vector which contains a set of p functions of known form.
Since in this case g parameters need to be estimated, thus at least g observations must

be performed. By assuming that M different experiments are done, then each individual
experiment provides a different set of values, that is:

y j = f(x j,θθθ) , j = 1, . . . ,M (2.60)

It is worth to notice that this approach is quite general, since also those applications
where the states and parameters are related by ordinary differential equations can be taken
into account, by referring to the following formulation:

dxi

dt
= fi(t,x(t),θθθ) , xi(0) = xi0 , i = 1, . . . ,n (2.61)

The simplest case of this parameter estimation problem results when all state variables
xi(t) and their derivatives its ẋi(t) are measured directly, since the estimation task involves
only n algebraic equations. On the other hand, if the derivatives are not available by direct
measurement, the integrated forms need to be used, which again yield a system of algebraic
equations. When some of the independent state variables are subject to errors instead, the
model results to be implicit, and the distinction between independent and dependent variables
is no longer clear. In this case, errors for all variables need to be minimized.
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2.4.2 Sequential Processing
In the sequential processing approach to parameter estimation, an initial estimate of θθθ ∈ Rg

is obtained from a minimal data set, in which the number of observations is equal to the
number of components of θθθ , that is:

y0 =

 y10
...

yg0

 (2.62)

Hence, the initial estimate, i.e. θ̂θθ 0, can be computed from the model of the system, that
is:

f0(θ̂θθ 0) =

 f10(θθθ)
...

fg0(θθθ)

+εεε0 = y0 (2.63)

where each element of f0 denotes the prediction of an observed variable at time t = t0, and εεε0
is the measurement error related to the minimal data set y0. In order to obtain the covariance
matrix of the initial estimate error, the same approach discussed in paragraph 2.3.2 can be
applied. Thus, the prediction function f0(θ̂θθ 0) can be expanded as a Taylor series around the
true value of the parameter set, i.e. θθθ . Hence, by retaining only the constant and linear terms:

f0(θ̂θθ 0) = f0(θθθ)+D0(θθθ)(θ̂θθ 0−θθθ) (2.64)

where:

D0(θθθ) = ∇f0(θθθ) (2.65)

By defining ∆∆∆0 = (θ̂θθ 0−θθθ), (2.64) can be written also as:

D0(θθθ)∆∆∆0 = f0(θ̂θθ 0)− f0(θθθ) = εεε0 (2.66)

Hence, the covariance matrix of the initial measurement error εεε0 can be expressed as:

ΨΨΨ = E[εεε0εεε
T
0 ] = E[D0(θθθ)∆∆∆0∆∆∆

T
0 DT

0 (θθθ)] (2.67)

By defining the covariance matrix of the parameter estimation error as: ΣΣΣ0 = E[∆∆∆0∆∆∆T
0 ],

the covariance matrix of the initial estimate can be expressed as a function of the known
covariance matrix of the measurement errors, as follows:

ΣΣΣ0 = [DT
0 (θθθ)ΨΨΨ

−1D0(θθθ)]
−1 (2.68)

At the subsequent time t = tl , following the initial estimation, a new observation y1 can be
computed. At this point, the objective function to be minimized can be written, by combining
the new data with the previous estimate, according to [Romagnoli and Sánchez, 2000]:

J(θθθ/θθθ 0,εεε1) = θθθ
T
0 ΣΣΣ
−1
0 θθθ 0 +εεε

T
1 ΨΨΨ
−1

εεε1 =

= (θ̂θθ 0−θθθ)T
ΣΣΣ
−1
0 (θ̂θθ 0−θθθ)+ [y1− f1(θθθ)]

T
ΨΨΨ
−1[y1− f1(θθθ)]

(2.69)

where f1(θθθ) denotes the predicted value of the observation y1 at time t = t1 based on the
value of the system parameters.
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According to [Romagnoli and Sánchez, 2000], the new covariance matrix of the error
estimate when the measurement at time t = t1 is processed as a function of the previous one,
can be expressed as:

ΣΣΣ1 = [ΣΣΣ−1
0 +DT

1 (θθθ)ΨΨΨ
−1D1(θθθ)]

−1

⇒ ΣΣΣ
−1
1 =ΣΣΣ

−1
0 +DT

1 (θθθ)ΨΨΨ
−1D1(θθθ)

(2.70)

The process can be iterated at each step by introducing or deleting new observations. By
induction, according to [Romagnoli and Sánchez, 2000], the covariance matrix for the error
estimate at the k−th step can be written as:

ΣΣΣk+1 = [ΣΣΣ−1
k +DT

k+1(θθθ)ΨΨΨ
−1Dk+1(θθθ)]

−1

⇒ ΣΣΣ
−1
k+1 =ΣΣΣ

−1
k +DT

k+1(θθθ)ΨΨΨ
−1Dk+1(θθθ)

(2.71)

where the positive signs stand for the addition of information.
As mentioned in [Romagnoli and Sánchez, 2000], this procedure can be extended in

general to different kinds of variables also, other than time, such as temperature, pressure,
or some other qualitative variable such as the type of catalyst. In this way a whole range
of operating conditions can be covered, by processing the information at each stage in a
sequential manner, using the information available from previous calculations.

2.4.3 Error-in-Variable Methods
In the EVM, the measurement errors in all variables are taken into account in the parameter
estimation. EVM provides consistent estimates with respect to the model of both parameters
and reconciled data. Often, the regression models result to be implicit and undetermined,
that is:

f(x,y,θθθ) = 0 (2.72)

where x and y denote the independent and dependent variables, respectively, whereas θθθ

denotes the parameter set.
As stated in [Tjoa and Biegler, 1992], the estimation problem is often referred to as pa-

rameter estimation with implicit models or Orthogonal Distance Regression (ODR). There-
fore, such an approach consist in the minimization of a suitably weighted least squares func-
tion, which includes both independent and dependent variables.

By defining the vector containing both independent and dependent variables as:

z =
[

y
x

]
(2.73)

an implicit model including m equations, denoted by the vector f = [ f1, . . . , fm]
T , n pro-

cess variables, denoted by the vector z = [z1, . . . ,zn]
T , and g parameters, denoted by the

vector θθθ = [θ1, . . . ,θg]
T , can be described as follows:

f(z,θθθ) = 0 (2.74)
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In the experiments, the observed measurements of all values, denoted by the vector z̃,
can all be affected by errors, that is:

z̃ j = z j +εεε j , j = 1, . . . ,M (2.75)

where M denotes the number of experiments.
Following [Romagnoli and Sánchez, 2000], assuming that the measurement errors εεε j

are normally distributed and uncorrelated, with zero mean and known positive definite co-
variance matrix ΨΨΨ j, the parameter estimation problem can be formulated as a minimization
problem with respect to ẑ j and θ̂θθ , as follows:

min
z j,θθθ

M

∑
j=1

(z̃ j− z j)
T

ΨΨΨ
−1
j (z̃ j− z j)

s.t. f(z j,θθθ) = 0 , j = 1, . . . ,M

(2.76)

As mentioned in [Romagnoli and Sánchez, 2000], several alternative algorithms have
been proposed in the literature to solve efficiently the optimization problem (2.76), related
to the application of EVM. The main approaches can be distinguished as:

• Simultaneous solution methods

• Nested EVM

• Two-stage EVM

Simultaneous Solution

As stated in [Romagnoli and Sánchez, 2000], the most straightforward approach to solve
nonlinear EVM problems is to apply nonlinear programming techniques to make a simulta-
neous estimation of both z j and θθθ . In the standard formulation of the weighted least squares
parameter estimation there are only g optimization variables, which correspond to the num-
ber of unknown parameters. Instead, the simultaneous parameter estimation and data recon-
ciliation formulation provides (nM+g) optimization variables. As a consequence, since the
dimensionality of the problem directly increases with the number of data sets, it can become
large. A feasible path optimization approach can be very expensive to solve such a NLP
problem, since an iterative calculation is required to solve the undetermined model. A more
efficient way is to use an infeasible path approach. However, many of these large-scale NLP
methods are efficient only in solving problems with few degrees of freedom. A decoupled
SQP method, based on a globally convergent SQP algorithm, was proposed by [Tjoa and
Biegler, 1992].

Nested EVM

In this approach, proposed by [Kim et al., 1990] following ideas similar to those of
[Reilly and Patino-Lea1, 1981], the two problems of parameter estimation and data recon-
ciliation are decoupled; however, the latter is optimized at each iteration of the parameter
estimation. The algorithm is made by the following two steps:

• Step 1: If k = 1, set ẑ = z̃, θ̂θθ = θθθ 0, then go to Step 2
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• Step 2: Find the minimum of the function for Solve the two nested minimization
problems:

J1 = min
θθθ

M

∑
j=1

(z̃ j− z j)
T

ΨΨΨ
−1
j (z̃ j− z j)

s.t. J2 = min
ẑ j

M

∑
j=1

(z̃ j− z j)
T

ΨΨΨ
−1
j (z̃ j− z j)

s.t. f(z j,θθθ) = 0 , j = 1, . . . ,M

(2.77)

As pointed out by [Kim et al., 1990], the difference between this algorithm and the
proposal of [Reilly and Patino-Lea1, 1981], is that the successive linearization solution is
replaced with a nonlinear programming problem. The nested NLP is solved as a set of
decoupled NLPs, and the size of the largest optimization problem to be solved is reduced to
the order of n.

Two-Stage EVM

The two-stage algorithm follows the work of [Valko and Vajda, 1987], which basically
decouples the two problems. Starting from the definition of the general EVM problem in
(2.76), the vectors z1, . . . , zM minimize the constrained problem at fixed θθθ , if and only if
each z j, j = 1, . . . ,M, is the solution of the following problem:

min J(z) = (z̃− z)T
ΨΨΨ
−1(z̃− z)

s.t. f(z,θθθ) = 0
(2.78)

where the index j is dropped, since the problem (2.78) is solved separately for each j =
1, . . . ,M.

By linearizing the constraints in (2.78) around some estimate ẑ, the estimation error can
be defined in terms of the following linear approximation:

e = f(ẑ,θθθ)+N(ẑ,θθθ)(z̃− ẑ) = 0 (2.79)

where N denotes the Jacobian matrix of f with respect to the variables z. Thus, by keeping
ẑ fixed, and setting d = (z̃− z), in place of the generic nonlinear problem (2.78) it can be
solved the following linearized problem:

min dT
ΨΨΨ
−1d

s.t. −N(ẑ,θθθ)d+ f(z̃,θθθ)+N(ẑ,θθθ)(z̃− ẑ)
(2.80)

whose solution, according to [Romagnoli and Sánchez, 2000] is:

d̂ =ΨΨΨNT (NΨΨΨNT )−1[f+N(z̃− ẑ)] (2.81)

The problem can be solved using the successive linearization technique presented in
Section 2.2.3, until the convergence is achieved. The fixed point in the iteration, i.e. ẑ,
is the solution of (2.78). Thus, by putting the equation (2.81) into (2.80), the corresponding
objective function J can be expressed as follows:

J(ẑ) = [f+N(z̃− ẑ)]T (NΨΨΨNT )−1[f+N(z̃− ẑ)] (2.82)



2.5 Conclusion 54

The equation (2.82) contains explicit information about the effect of the parameters on
the objective function of (2.78). This fact has been exploited in the following procedure:

• Step 1: If k = 1, set ẑ jk = z̃ j ∀ j = 1, . . . ,M, then go to Step 2

• Step 2: Find the minimum θθθ k+1 of the function:

J(θθθ) =
M

∑
j=1

[f j +N j(z̃ j− ẑ jk)]
T (N jΨΨΨNT

j )
−1[f j +N j(z̃ j− ẑ jk)] (2.83)

where f j = f(z j,θθθ) and N j =
∂ f(z j,θθθ)

∂z j
|z j=ẑ jk

. If k > 1 and ‖θθθ k−θθθ k+1‖≤ Tb, then finish;
otherwise go to Step 3.

• Step 3: At fixed θθθ k+1, perform the data reconciliation for each j = 1, . . . ,M by apply-
ing the successive linearizations procedure:

ẑnew
j = ẑ j−ΨΨΨNT

j (N jΨΨΨNT
j )
−1[f j +N j(z̃ j− ẑ j)] (2.84)

Compute (2.84) until the convergence is achieved, then set ẑ jk = ẑnew
j , k = k+ 1 and

return to Step 2.

As stated in [Romagnoli and Sánchez, 2000], by means of this algorithm, the entire
procedure can be easily implemented, since existing programs can be putted together, such
as the successive linearizations step, which can be implemented by the already available data
reconciliation strategy. An alternative formulation was proposed by [Kim et al., 1990], where
the successive linearization approach in Step 3 is replaced with a nonlinear programming
problem.

2.5 Conclusion
This Chapter has provided a general overview of the second subject of this dissertation,
which refers to the data reconciliation and parameter estimation methodologies for industrial
process monitoring applications. Since data reconciliation and parameter estimation together
aim to validate the process measurements acquired by sensors, they are both directly related
to the fault diagnosis topic. The main concepts and definitions of the DR technology have
been introduced and discussed at first. Thus, the main linear and nonlinear steady-state tech-
niques have been briefly reviewed, as well as the two fundamental methods which imple-
ment a DDR approach, including the QSS system model, exploited in this research. Then,
the parameter estimation problem has been considered along with the data reconciliation
task. Thus, the main joint data reconciliation and parameter estimation approaches, which
are currently applied in many of the methods available in the literature, have been examined.
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Chapter 3

Hybrid Fault Detection and Diagnosis

3.1 Hybrid FDD Architecture
When faults which could affect both the q inputs and p outputs measurements of a generic
MIMO system cannot be separated in frequency, conventional MB approaches can only per-
form at most the detection of the fault occurrence. However, although these techniques are
able to provide some estimation of the fault symptoms, they do not allow in general to dis-
criminate among every fault. This follows from the fact that MB algorithms may generate a
number of residuals that is equal to the number of the system outputs. Consequently, only
p independent faults can be isolated simultaneously [Pilloni et al., 2013]. Note that, if more
than p faults occur, the residuals produced by a MB residual generator, e.g. a SMO [Pilloni
et al., 2012] or a properly designed KF [Simani et al., 2010], still carry information about the
whole set of faults. However, those information could be extracted if an augmented residual
space is designed and its temporal dimension is exploited. In this Chapter a novel hybrid
FDD approach able to achieve a complete fault isolation and diagnosis is presented. The
architecture of the proposed scheme is depicted in figure 3.1, and the main modules of this
FDD scheme are described in detail in the following Sections. The residual generation is
achieved by taking advantage of the sliding mode tool presented in Section 3.2, whereas,
the residual evaluation task, which is discussed in Section 3.3, is performed by extending
the residual signature concept towards a time-varying setting over a suitably designed aug-
mented residual space. Then, in the Section 3.3.4, different strategies, which are still under
development for the analysis of residuals, are briefly introduced.

3.2 Fault Detection by Residual Generation
In order to generate residuals which are able to deal with both sensor and actuator faults, and
at the same time which are robust enough towards uncertainties, the SMO design approach
proposed by [Yan and Edwards, 2007] was exploited. The scheme of this robust residual
generator is shown in figure 3.2, and a detailed description of it is given in the following of
this Section.
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Figure 3.1: Hybrid FDD Architecture scheme

3.2.1 Robust Residual Generation by SMO
Let consider the following model for a generic nonlinear faulty system:

ẋ= G(x,u)+∆G(x)
y = h(x)+fs

(3.1)

where x∈Ω⊂Rn is the state vector, u∈Rm is the input vector, y ∈Rp is the output vector,
whereas the vector pair {G(x,u),h(x)} depicts the nominal system’s dynamic, supposed
to be smooth and bounded around a neighborhood Ω of the system working point. All the
uncertainties and disturbances, as well as faults affecting the actuators, are taken into account
by the vector ∆G(x), while fs is the vector of faults, supposed to be bounded, which directly
affect the output sensors, and that is:

‖fs(t)‖ ≤ ρ(t) (3.2)

where ρ(t) is an known continuous function and ‖ · ‖ is the Euclidean norm operator.
According to definitions given in [Yan and Edwards, 2007], if the nominal system de-

noted by the pair {G(x,u),h(x)} is uniformly observable with uniform observability index
the set of nonnegative integer scalars {r1,r2, · · · ,rp} such that ∑

p
i=1 ri = n, then a diffeomor-

phism in the domain Ω, that is T (Ω) : x 7→ z can be designed as follows:

zi1 = hi(x)

zi2 = LG(x,u)hi(x)

...

ziri
= Lri−1

G(x,u)
hi(x).

(3.3)

where L j
G(x,u)

hi(x) =
∂ jhi(x)

∂x j G(x,u) is the j-th order Lie derivative of the i-th output of
the system hi(x) along the vector field G(x,u), and zi = (zi1 ,zi2, · · · ,ziri

) for indices i =
1, · · · , p , j = 1, · · · ,ri−1 , whereas z = (z1,z2, · · · ,zp).

In accordance with [Yan and Edwards, 2007], in the new coordinates z defined by the
transformation (3.3), the dynamics of the system (3.1) can be expressed in its corresponding



3.2 Fault Detection by Residual Generation 58

Brunovsky canonical representation, that is:{
ż =Az+BΦ(z,u)+Ψ(z)
y = Cz+fs

(3.4)

where A = diag(A1, · · · ,Ap) ∈ Rn×n , B = diag(B1, · · · ,Bp) ∈ Rn×p and C = diag(C1,
· · · ,Cp) ∈ Rp×n, whose matrices Ai ∈ Rri×ri , Bi ∈ Rri×1 and Ci ∈ R1×ri (i = 1, · · · , p) are
defined as follows:

Ai =


0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

...
0 0 0 · · · 1
0 0 0 · · · 0

 , Bi =


0
0
...
0
1

 , Ci =
[

1 0 · · · 0
]

(3.5)

whereas the vectors Φ(z,u) ∈ Rp and Ψ(z) ∈ Rn are respectively:

Φ(z,u) =


φ1(z,u)
φ2(z,u)

...
φp(z,u)

=


Lr1

G(x,u)
h1(x)

Lr2
G(x,u)

h2(x)
...

Lrp
G(x,u)

hp(x)


x=T−1(z)

(3.6)

Ψ(z) =


ψ1(z)
ψ2(z)

...
ψp(z)

=

[
∂T (x)

∂x
∆G(x)

]
x=T−1(z)

(3.7)

where φi ∈ R, and ψi ∈ Rri ∀i = 1,2, · · · , p.
The nonlinear function Φ(z,u) can be splitted in two different parts; the first one related

to the linear component of the function, while the second one taking into account the residual
nonlinear component. In other words, Φ(z,u) can be expressed also in terms of a pair of
design matrices {Λ,Γ} as follows:

Φ(z,u) =−Λz+Γ(z,u) (3.8)

where:

• Λ = diag(Λ1,Λ2, · · · ,Λp) ∈Rp×n with Λi = (αi0,αi1, · · · ,αi(ri−1)) ∈R1×ri is a diago-
nal matrix designed such that the roots of the polynomial algebraic equation:

λ
ri +αi(ri−1)λ

(ri−1)+ · · ·+αi1λ +αi0 = 0 (3.9)

have all negative real part ∀i = 1,2, · · · , p.

By making this choice, each of the (Ai−BiΛi) matrices results to be stable. Conse-
quently, (A−BΛ) is Hurwitz.

• Γ(z,u) ∈ Rp is a suitable vector chosen such that the decomposition (3.4) preserves
the own nominal dynamic of the system (3.1), that is: G(x,u) = (A−BΛ)z +
BΓ(z,u).
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Figure 3.2: SMO Residual Generator scheme

It is worth to note that the following constraint:

‖Γ(z,u)−Γ(ẑ,u)‖ ≤LΓ‖z− ẑ‖ (3.10)

needs to be satisfied for any z, ẑ ∈ T (Ω) ⊂ Rn, where LΓ ∈ R+ is a continuous
function, in order to make feasible the design of the observer as explained in section
3.2.2.

3.2.2 Observer Design
If (3.8) and (3.10) are both satisfied, the following augmented system can be obtained:

ż = (A−BΛ)z+BΓ(z,u)+Ψ(z)
ża = Aaza +BaCz+Bafs
ya =Caza

(3.11)

where za ∈ Rp and ya ∈ Rp are respectively the state and output’s vectors of a linear filter
described by the set of matrices {Aa ∈ Rp×p , Ba ∈ Rp×p , Ca ∈ Rp×p} which are three
design parameters to be defined later.

Notice that, this filter has two main advantages: it enables the conversion of the output
sensors faults in (3.1) into pseudo-actuator faults with respect to (3.11), and it allows the
arbitrary reduction of the measurements noise.

Let consider now the following observer dynamic:

˙̂z = (A−BΛ)ẑ+BΓ(ẑ,u)
˙̂za = Aaẑa +BaCẑ+ν(t,ya, ŷa)
ŷa =Caẑa

(3.12)

where ν is the sliding mode control algorithm, defined as the unit-vector:

ν := k(t)CT
a

ya− ŷa

‖ya− ŷa‖
(3.13)
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with the scalar gain k(t) being designed later.
Let:

e(t) = z(t)− ẑ(t) (3.14)

and
ea(t) = za(t)− ẑa(t) (3.15)

It follows from (3.11) and (3.12) that the two dynamics of errors (3.14) and (3.15) can be
expressed respectively as:

ė= (A−BΛ)e+B[Γ(z,u)−Γ(ẑ,u)]+Ψ(z) (3.16)

and:

ėa = Aaea +BaCe+Bafs−ν(t,ya, ŷa) (3.17)

At this point, two different types of faulty scenario need to be considered.

3.2.2.1 Output Sensors Faults

In this scenario, only faults on the output sensors are taken into account. Therefore, the error
dynamic (3.16) becomes:

ė= (A−BΛ)e+B[Γ(z,u)−Γ(ẑ,u)] (3.18)

Proposition 1. Let define Q ∈ Rn×n as the following symmetric, i.e. QT = Q, negative
definite matrix, i.e. Q < 0:

Q = P(A−BΛ)+(A−BΛ)T P+ ε1(LΓ)
2In +

1
ε1

PBBT P (3.19)

If the assumptions (3.8) and (3.10) are both satisfied, then the dynamic of the error system
(3.18) is stable if there exist a matrix P > 0 and a constant scalar ε1 > 0 such that Q < 0.

Proof. Let consider the candidate Lyapunov function V (t) = eT (t)Pe(t) ∈ R, where P ∈
Rn×n is a symmetric, i.e. PT = P, positive definite matrix, i.e. P > 0, such that the time-
derivative of the Lyapunov function along the trajectories of system (3.18) is negative semi-
definite, that is V̇ (t)≤ 0 , ∀t > 0.

V̇ |(3.18) = eT Pė+ ėT Pe=

= eT P{(A−BΛ)e+B[Γ(z,u)−Γ(ẑ,u)]}+
+{eT (A−BΛ)T +[Γ(z,u)−Γ(ẑ,u)]TBT}Pe=

= eT [P(A−BΛ)+(A−BΛ)T P]e+

+eT PB[Γ(z,u)−Γ(ẑ,u)]+ [Γ(z,u)−Γ(ẑ,u)]TBT Pe

(3.20)

If the quantity XTY is a scalar, hence: XTY = (XTY )T = Y T X . Because the quantities
BT Pe and Γ(z,u) are both vectors ∈ Rp, by setting X = [Γ(z,u)−Γ(ẑ,u)], Y = BT Pe,
then (3.20) becomes:

V̇ |(3.18) = eT [P(A−BΛ)+(A−BΛ)T P]e+2[Γ(z,u)−Γ(ẑ,u)]TBT Pe (3.21)
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From the well known Young’s inequality 2XTY ≤ ε1XT X + 1
ε1

Y TY , where ε1 > 0 is a
constant value which provides an additional design freedom, then (3.21) becomes:

V̇ |(3.18) ≤ eT [P(A−BΛ)+(A−BΛ)T P]e+

+ ε1 [Γ(z,u)−Γ(ẑ,u)]T [Γ(z,u)−Γ(ẑ,u)]+
1
ε1
(BT Pe)TBT Pe

(3.22)

Because of (3.10), then (3.22) becomes:

V̇ |(3.18) ≤ eT [P(A−BΛ)+(A−BΛ)T P]e+ ε1(LΓ)
2‖z− ẑ‖2 +

1
ε1
eT PBBT Pe (3.23)

and since ‖z− ẑ‖2 = ‖e‖2 = eT Ine, consequently:

V̇ |(3.18) ≤ eT
[

P(A−BΛ)+(A−BΛ)T P+ ε1(LΓ)
2In +

1
ε1

PBBT P
]

︸ ︷︷ ︸
=Q

e
(3.24)

If (3.24) is satisfied, it implies that e is bounded, that is:

sup
0≤t≤∞

‖e(t)‖ ≤ b (3.25)

for some positive scalar b. As claimed in [Yan and Edwards, 2007], because of the scalar
ε1 in (3.24), without loss of generality it can be assumed that P > In rather than just being
positive definite.

At this point, in order to design the SMO, the following two-step design procedure is
then applied.

The first step of this procedure is to design the sliding surface such that the system has the
desired performance when constrained to move on it. In this case, a suitable sliding surface
is:

S = {(e,ea) | ea = 0} (3.26)

Indeed, because of (3.24) and (3.25), the sliding mode dynamics of the two error systems
(3.18) and (3.17) associated with the sliding surface (3.26) are both stable.

The second step is then to design of a sliding mode controller/observer gain such that the
system can be driven onto the sliding surface and a sliding motion maintained thereafter.

Proposition 2. According to the sliding mode theory, the only requirement needed to guar-
antee the stability of the observer (3.12) is to choose a suitable gain k(t) in (3.13) such that
the error systems (3.18) and (3.17) can be driven both to the sliding surface (3.26) in a finite
time. This happens if the inequality (3.24) holds, and k(t) satisfies the following constraint:

k(t)≥ ‖BaC‖b+‖Ba‖ρ(t)+η , η > 0 (3.27)

where η is an additional design parameter.
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Proof. Let Va(t) = 1
2‖ea(t)‖2 = 1

2e
T
a ea be a candidate Lyapunov function to evaluate the

stability of the error dynamic (3.17), then:

V̇a|(3.17) =
1
2
(
ėT

a ea +eT
a ėa
)

(3.28)

If the quantity XTY is a scalar, hence: XTY =(XTY )T =Y T X . By setting X = ėa, Y = ea,
then it results: ėT

a ea = eT
a ėa. Consequently, (3.28) can be rewritten as:

V̇a|(3.17) = eT
a ėa = eT

a [Aaea +BaCe+Bafs−ν(t,ya, ŷa)] =

= eT
a Aaea +eT

a BaCe+eT
a Bafs−eT

a ν(t,ya, ŷa)
(3.29)

Since, Aa is a design matrix which can be defined as Hurwitz, i.e. Aa < 0, it follows that:

eT
a Aaea ≤ 0. (3.30)

Therefore, from (3.29) and (3.30), the following inequality arises:

V̇a|(3.17) ≤ eT
a BaCe+eT

a Bafs−eT
a ν(t,ya, ŷa) (3.31)

From (3.13) and by taking into account the bound constraints on the fault vector fs, i.e.
(3.2), and on the error signal e, i.e. (3.25), then (3.31) becomes:

V̇a|(3.17) ≤ ‖ea‖‖BaC‖b+‖ea‖‖Ba‖ρ−eT
a k(t)CT

a
ya− ŷa

‖ya− ŷa‖
(3.32)

From (3.15), it follow that:

‖ya− ŷa‖=
√

(ya− ŷa)T (ya− ŷa) =
√

(Caza−Caẑa)T (Caza−Caẑa) =

=
√

[(Ca(za− ẑa)]T [(Ca(za− ẑa)] =
√

(Caea)T (Caea) =

=
√

eT
a CT

a Caea

(3.33)

and since Ca is a design matrix which can be defined as orthogonal, i.e. CT
a Ca =CaCT

a = Ip,
by setting Ca = Ip, consequently:

‖ya− ŷa‖=
√
eT

a Ipea =
√
eT

a ea = ‖ea‖ (3.34)

Hence, from (3.33) and (3.34), then (3.32) can be rewritten as:

V̇a|(3.17) ≤ ‖ea‖‖BaC‖b+‖ea‖‖Ba‖ρ(t)− k(t)(eT
a CT

a )
(Caea)

‖ya− ŷa‖
=

= ‖ea‖‖BaC‖b+‖ea‖‖Ba‖ρ(t)− k(t)
‖ea‖
‖ea‖

2
=

= ‖ea‖‖BaC‖b+‖ea‖‖Ba‖ρ(t)− k(t)‖ea‖=
= ‖ea‖ [‖BaC‖b+‖Ba‖ρ(t)− k(t)]︸ ︷︷ ︸

=−η

=−η‖ea‖

(3.35)
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According to [Shtessel et al., 2013], (3.35) is the so-called reachability condition, i.e.
eT

a ėa ≤−η‖ea‖, which must be satisfied in order to guarantee that the sliding motion on the
surface (3.26) is achieved and maintained after some finite time. Thus, the gain k(t) must be
designed in order to satisfy the following constraint:

−η = ‖BaC‖b+‖Ba‖ρ(t)− k(t)
⇒ k(t)≥ ‖BaC‖b+‖Ba‖ρ(t)+η

(3.36)

Hence the proof is complete.

Once the sliding motion takes place, then:

ea = ėa = 0 (3.37)

Hence, from (3.17) it yields:

BaCe+Bafs−νeq = 0 (3.38)

where νeq is the so-called equivalent output error injection, which plays the same role as-
sumed in the sliding mode control theory by the equivalent control [Utkin, 1992]. The equiv-
alent output injection signal represents the average behavior which needs to adopt the dis-
continuous function (3.13) in order to keep on the sliding motion. The filter design parameter
Ba can be chosen according to (1.7). Hence, by setting Ba = Ip, (3.38) becomes:

Ce+fs−νeq = 0 ⇒ fs =−Ce+νeq (3.39)

As claimed in [Yan and Edwards, 2007], given the structure of the unit-vector ν in (3.13),
the corresponding νeq signal can be approximated to any accuracy by the following low-pass
filter:

νeq ≈ νσ = k(t)CT
a

ya− ŷa

‖ya− ŷa‖+σ
(3.40)

where k(t) satisfies (3.27) and σ > 0 is a suitable scalar.
Thus, by defining the estimation of the vector fault fs as:

f̂s = νσ (3.41)

Then from (3.40) and (3.41):

fs− f̂s =−Ce+(νeq−νσ ) (3.42)

Since because of (3.24) e(t) is exponentially stable, i.e. lim
t→+∞

e(t) = 0, hence from (3.42)

it results a precise reconstruction of the output sensor fault fs can be achieved by making σ

as small as possible, that is:

‖νeq−νσ‖ ⇒ fs− f̂s ≈ 0 ⇒ f̂s ≈ fs (3.43)

Remark 3. Because the signal f̂s depends on ya and ŷa only, which can both be obtained
online, this fault reconstruction scheme is convenient for a practical implementation.

Remark 4. Others sliding mode control algorithm could be used in place of the unit-vector
structure in (3.13), such as the componentwise super-twisting injection signal [Levant, 1998].
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3.2.2.2 Actuators and Output Sensors Faults

In this scenario, both the faults on actuators and output sensors are taken into account. There-
fore, the dynamics of the error system e and ea are the general ones in (3.16) and (3.17),
respectively. In this case, some additional requirements need to be satisfied in order to guar-
antee the stability of the SMO. The following constraint introduces a bound on the magnitude
of the faults on the actuators:√

Ψ(z)T PΨ(z)≤ 1
2

d ∀z ∈ T (Ω) (3.44)

where P > In is the matrix which satisfies (3.24) and d is another design parameter set as a
constant value. In this scenario, in contrast with the previous one, the exponential conver-
gence to zero of e(t) cannot be guarantee, but only the convergence into a closed set, whose
amplitude should be strictly related to the magnitude of the perturbed term Ψ(z).

Proposition 3. If the inequality (3.24) and the constraint (3.44) hold, for any value of the
arbitrarily small positive constant ε2 > 0, after a time t ≥ T1, e(t) will remain confined into
the set:

B =

{
e|eT Pe≤

(
d + ε2

α

)2
}

(3.45)

where α = −λmax(P−1/2QP−1/2) is the maximum eigenvalue of the matrix P−1/2QP−1/2

with Q defined as in (3.19).

Proof. As done in the proof of preposition 1, let consider the candidate Lyapunov function:
V = eT Pe to evaluate the stability of the error dynamic (3.16). Then, by applying the same
steps:

V̇ |(3.16) = eT Pė+ ėT Pe=

= eT P{(A−BΛ)e+B[Γ(z,u)−Γ(ẑ,u)]+Ψ(z)}+
+{eT (A−BΛ)T +[Γ(z,u)−Γ(ẑ,u)]TBT +Ψ

T (z)}Pe=

= eT [P(A−BΛ)+(A−BΛ)T P]e+2[Γ(z,u)−Γ(ẑ,u)]T (BT Pe)+

+2(Pe)T
Ψ(z)

(3.46)

From (3.24), the following inequality arises:

V̇ |(3.16) ≤ eT Qe+2(Pe)T
Ψ(z) (3.47)

The inequality (3.47) can be rewritten in terms of P1/2 as follows:

V̇ |(3.16) ≤ eT Qe+2eT PΨ(z) =

= eT (P1/2P−1/2)Q(P−1/2P1/2)e+2eT (P1/2P1/2)Ψ(z) =

= eT P1/2(P−1/2QP−1/2)P1/2e+2eT P1/2(P1/2
Ψ(z)) =

= (P1/2e)T (P−1/2QP−1/2)(P1/2e)+2(P1/2e)T (P1/2
Ψ(z))

(3.48)
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Since quadratic forms always satisfy the Rayleigh principle [Shtessel et al., 2013], na-
mely:

λmin(W )‖x‖2 ≤ xTWx≤ λmax(W )‖x‖2 (3.49)

Then, by setting W = P−1/2QP−1/2, x= P1/2e, and applying the Euclidean norm oper-
ator ‖ · ‖, the inequality (3.48) becomes:

V̇ |(3.16) ≤ λmax(P−1/2QP−1/2)‖P1/2e‖2 +2‖P1/2e‖‖P1/2
Ψ(z)‖ (3.50)

Since also V and (3.44) can be all rewritten in terms of P1/2, that is:

V = eT (P1/2P1/2)e= (eT P1/2)(P1/2e) = (P1/2e)T (P1/2e) = ‖P1/2e‖2 (3.51)

√
Ψ(z)T PΨ(z) =

√
(Ψ(z)T P1/2)(P1/2Ψ(z)) = ‖P1/2

Ψ(z)‖ ≤ 1
2

d (3.52)

Then, by applying (3.51), (3.52), and setting α = −λmax(P−1/2QP−1/2), the inequality
(3.50) becomes:

V̇ |(3.16) ≤−αV +d
√

V (3.53)

Therefore, the condition which guarantees the stability of the error e(t) is:

V̇ |(3.16) ≤ (d−α
√

V )
√

V (3.54)

If e(t) /∈B, from (3.45) it implies that, ∀ε2 > 0:

V >

(
d + ε2

α

)2

⇒
√

V >
d + ε2

α

⇒ α
√

V > d + ε2 ⇒ (d−α
√

V )<−ε2

(3.55)

Hence, the following inequality:

V̇ |(3.16) ≤−ε2
√

V (3.56)

guarantees the validity of the proposition 3, and consequently the proof is completed.

By applying the design procedure depicted in Section 3.2.2.1, since the dynamic (3.17)
of ea(t) is the same in both cases, the constraint to be satisfied by the gain k(t) in (3.13) so
that the error systems (3.16) and (3.17) can be driven both to the sliding surface (3.26) in a
finite time is still (3.36).

Remark 5. In the fault configuration considered in Section 3.2.2.1, i.e. Ψ(z) = 0, the sliding
motion results to be asymptotically stable, because of: lim

t→+∞
e(t) = 0. When faults on the

actuators are taken into account instead, i.e. Ψ(z) 6= 0, it results e(t) ∈B ∀t ≥ T1, that
is the sliding motion is ultimately bounded. Therefore, in this case, once the sliding motion
takes place, from (3.42) the following approximation can be obtained by making σ as small
as possible:

‖νeq−νσ‖ ≈ 0 ⇒ fs− f̂s ≈−Ce ⇒ f̂s ≈ fs +Ce (3.57)
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Remark 6. According to (1.7), when the unknown term Ψ(z) refers to faults on the actua-
tors, it can be expressed also as:

Ψ(z) =Bfa (3.58)

Hence, since the error dynamic depends on the input measurement fault term, i.e. e =
e(Ψ(z)), the functional dependence of the error dynamics from the uncertainties on the input
channels, when they refer to actuator faults, can be represented in a more generic form by
using the following expression:

Ce= E(fa) (3.59)

where E(·) is a functional representative of the filtering action applied to the unknown signal
fa due to the particular structure of the system.

At this point, a convenient way to determine optimal values for the design parameters is
then presented. Let consider the following inequality:

Q+
1
γ

P < 0 ⇒ P−1/2QP−1/2 +
1
γ

P−1/2 P︸︷︷︸
=P1/2P1/2

P−1/2 < 0

⇒ P−1/2QP−1/2 +
1
γ

In < 0 ⇒ P−1/2QP−1/2 <−1
γ

In

(3.60)

where Q and P are the design matrices defined in Proposition 1 and γ ∈R is a positive scalar.
Thus, in terms of eigenvalues:

λmax(P−1/2QP−1/2) =−α <−1
γ

⇒ γ >
1
α

(3.61)

As a consequence, to find the design matrix P, which implies to minimize γ in the equa-
tion (3.60), results also in decreasing the radius of the boundness set (3.45). According to
[Yan and Edwards, 2007], a suitable way to solve the design problem is to find matrices P
and X which minimize the scalar γ > 0, and such that the following constraints are satisfied:[

P(A−BΛ)+(A−BΛ)T P+ ε1(LΓ)
2In +X PB

BT P −ε1Ip

]
< 0 (3.62)

In < P (3.63)

P < γX (3.64)

where X ∈ Rn×n is a so-called ’slack’ variable. This is a convex optimization problem and
can be solved by means of Linear Matrix Inequality (LMI) techniques. Indeed, by recalling
the definition of Shur complement, let M ∈ R(p+q)×(p+q) a matrix block, such as:

M =

[
Ā B̄
C̄ D̄

]
(3.65)
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where Ā ∈ Rp×p, B̄ ∈ Rp×q, C̄ ∈ Rq×p, D̄ ∈ Rq×q are block submatrices and D is invertible.
Then, the Schur complement of the block D of the matrix M is:

M/D̄ = Ā− B̄D̄−1C̄ (3.66)

Hence, the Shur component of the matrix in (3.62) is:

P(A−BΛ)+(A−BΛ)T P+ ε1(LΓ)
2In +X︸ ︷︷ ︸

Ā

−(PB)︸ ︷︷ ︸
B̄

(−1/ε1)︸ ︷︷ ︸
D̄−1

(BT P)︸ ︷︷ ︸
C̄

(3.67)

If the constraint (3.62) is satisfied, then it will result:

P(A−BΛ)+(A−BΛ)T P+ ε1(LΓ)
2In +

1
ε1

PBBT P <−X (3.68)

If also constraints (3.63) and (3.64) are satisfied, then it will result:

In < P < γX ⇒ − γX <−P <−In ⇒ −X <−1
γ

P <−1
γ

In (3.69)

Therefore, the inequality (3.60) is satisfied.

3.3 Fault Isolation and Diagnosis by Residual Evaluation
In order to achieve a complete FDD, a novel analysis, which extends the standard concept
of directional residual introduced in the Section 1.2.4, has been developed. Such residual
evaluation method has been applied to the injection signals generated by the SMO, as de-
picted in the previous Section. Given a generic MIMO system, the faults affecting its inputs
can be defined as fu ≡ fa, whereas the faults affecting its outputs as fy ≡ fs. If the fault
symptoms fu and fy are bounded, it has been shown that their occurrence can be easily de-
tected by exploiting the concept of the equivalent output error injection signal [Utkin, 1992],
as follows:

∃ν(ea) : (ea, ėa) = 0 ⇒ νeq ≈ E(fu)+fy (3.70)

By recalling the standard definition of residual provided in Section 1.2.5 for a generic
observer-based residual generator, the residual r generated by means of the SMO scheme
should be defined as the difference between the output ya and its estimate ŷa, i.e. the error
signal ea, given as input to the feedback block H, according with the scheme depicted in
Figure 1.7. In this approach instead, as showed in Figure 3.2, the residual signal is defined
as the output of the filter H, that is:

r = Hea = H(ya− ŷa) = ν(ea) (3.71)

By comparing (3.70) and (3.71) it is apparent that resorting to the equivalent output
injection in SMO corresponds to those fault isolation approaches depicted in Section 1.2
where a suitable filter is designed to exploit frequency separation properties among faults,
measurement noises and/or unknown inputs. However, since also the SMO scheme is an
observer-based method, it is affected by the same precondition needed for the solvability of
the decoupling problem discussed in Section 1.2.5, which is the availability of a sufficient
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number of measurements. Indeed, when faults affect both the q inputs and p outputs channels
of a generic MIMO system, their occurrence can be detected by the residual observer-based
residual generator scheme designed in the previous section. However, although this tech-
niques is able to provide some estimation of the fault symptoms, in general it does not allow
to discriminate among every fault, since the maximum number of residuals which can be
generated, i.e. the output injections, is equal to the number of the system’s outputs. There-
fore, only p faults can be independently detected. However, when more than p faults occur,
these residuals signals still carry the information about all faults. Thus, whenever a new fault
occurs, the goal is to discern among the following three scenarios:

1. r ≈ E( fu) ⇒ input fault;

2. r ≈ fy ⇒ output fault;

3. r ≈ E( fu)+ fy ⇒ (input + output) fault.

It is apparent that the third scenario is a combination of two isolated faults. The proba-
bility of simultaneous fault occurrences on both input and output at the same instant of time
is very low, then it is often neglected [Tadić et al., 2012]. Nevertheless, in order to complete
the FDD task, it needs to classify both faults by post-processing the residual r such that
decoupling between the different fault symptoms is attained.

3.3.1 Residual Evaluation by Signature Analysis
The residual evaluation method developed in this work refers to the geometric approach to
FDI discussed in Section 1.2.4. Indeed, also this approach refers to a suitable set of residuals
R = {ri} (i = 1, ...,n) as a basis of the residual space, whose dimensionality n is equal to the
number of detectable faults fi. The corresponding residual vector~r, whose components are
all fault-sensitive, is defined as:

~r(t) = [r1(t),r2(t), ...,rn(t)]T =~r( f1(t), f2(t), ..., fn(t)) (3.72)

The isolation of faults is achieved by exploiting the main idea behind the decoupling
strategy introduced by Beard and Jones in the early 1970s and discussed in Section 1.2.4.
Precisely, the fault isolation is performed by analysing the fault signature of the residual
vector, namely the fixed direction or the subspace where~r take its trajectory when a generic
faulty symptom fi occurs. However, as it happens for the fault detection filter of Beard
and Jones, when one or more components of~r result to be dynamically sensitive to several
faults fi, this design method could be not effective, because the requested one-to-one corre-
spondence among fixed direction of signatures and faulty symptoms is not guaranteed. To
overcome this limit, in this proposal the concept of signature direction has been extended.
Referring to the standard definition of directional residual, i.e. (1.17), the signature direction
is not considered anymore as a constant time-independent vector, i.e.~li, but as a more general
time-varying vector, i.e. ~Li(t), which is able to depict any shape during its time evolution.
Thus, the new mathematical notation introduced for this extended directional residual vector
is:

~r(t| fi(t)) =~Li(t) ; i = {1, ...,n} (3.73)

It is worth to note that in this case, in addition to the one-to-one correspondence between
fault signatures and fault sources, another condition to be guaranteed in order to have a



3.3 Fault Isolation and Diagnosis by Residual Evaluation 69

reliable fault isolation is the distinctiveness among the signatures, i.e., the shapes, generated
by different faults. By this way, the fault isolation problem is then converted into a fault
classification problem, that could be solved by using suitable pattern recognition techniques.
Indeed, the pattern generated by the residual vector when a specific fault occurs is now a
characteristic trajectory in the residual space. Hence, fault isolation could be achieved by
determining which one of the known fault trajectories is the most similar to that taken by
the residual vector during a certain amount of time after the fault occurred. The time needed
for the generation of suitable fault patterns is an important aspect to take into account. The
length of the temporal window needed by the residual generator in order to produce enough
data will depend on the specific dynamic of the system and on some parameters of the SMO.
In order to better understand all the general aspects mentioned above, let consider at first
the simplest case, that is a SISO system. As stated before, at this level of analysis, the
simultaneous occurrence of different faults is not taken into account. The residual space
needed for a SISO system with faults considered both at the input and output side is R2. On
one hand, by applying the SMO-based scheme, the residual generator provides only a scalar
output injection, which is sensitive to both faulty symptoms. On the other hand, the residual
evaluation approach requires to design a residual set R = {r1,r2} such that the following
residual vector:

~r(t) = [r1(t),r2(t)]T =~r( fu(t), fy(t)) (3.74)

and the corresponding fault signatures:{
~r(t| fu(t)) =~Lu(t)
~r(t| fy(t)) =~Ly(t)

(3.75)

could be defined.
In the next two paragraphs, two different ways of designing a suitable residual set by

using the injection signal, i.e. νeq(t), and the measured output, i.e. ymes(t), are proposed. In
order to simplify the notation, the time dependency of all the considered signals is omitted.

3.3.2 Residual Set Ra

In this approach, the residual r1(t) is designed to be the signal directly related to the fault on
the output channel, i.e. fy(t). The missing residual r2(t) instead, is designed to be directly
related to the fault on the input channel, i.e. fu(t). In general terms, this result can be
obtained by applying a proper filtering action on the signal νeq(t). Thus, by designing this
filter as the inverse of the functional in (3.59), i.e. E−1(·), the following residual set can be
defined:

Ra :
{

ra1( fu, fy) = νeq ≈ E( fu)+ fy
ra2( fu, fy) = νeq = E−1(νeq)≈ fu +E−1( fy)

(3.76)

With this choice, in nominal conditions, the residual set Ra becomes:

fu = 0 , fy = 0 ⇒
{

ra1 ≈ 0
ra2 ≈ 0 (3.77)

Therefore, since ~ra(t) ≈ [0 , 0]T , in this case the residual vector will stay around the
origin of the residual space R2 and, as expected, any trajectory will be depicted.
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When a fault occurs on the output channel, the two components of the residual set Ra
will raise the following configuration:

fu = 0 , fy 6= 0 ⇒
{

ra1 ≈ fy
ra2 ≈ E−1( fy)

(3.78)

Consequently, the residual vector~ra will start to generate on the residual space R2 the
fault signature:

~ra(t| fy) =~La( fy)≈ 〈 fy,E−1( fy)〉 (3.79)

where the function-valued vector~La( fy) will reflect the dynamic of the faulty symptom af-
fecting the output channel, filtered by E−1(·), i.e. the inverse of the functional defined in
(3.59). When a fault occurs on the input channel instead, the following configuration will
appear:

fu 6= 0 , fy = 0 ⇒
{

ra1 ≈ E( fu)
ra2 ≈ fu

(3.80)

Hence, the residual vector ~ra will start to generate on the residual space R2 the fault
signature:

~ra(t| fu) =~La( fu)≈ 〈E( fu), fu〉 (3.81)
where the function-valued vector~La( fu) will reflect the dynamic of the faulty symptom af-
fecting the input channel, filtered by E(·), i.e. the functional defined in (3.59). Therefore,
since~ra generates two different fault signatures corresponding to the fault symptoms fu and
fy, the residual set Ra can be used to isolate faults affecting the input and output channels of
a SISO system.

Nevertheless, with this configuration it is not possible to discriminate between two dif-
ferent types of fault fu and fy such as: fy ≈ E( fu), because in this case both symptoms will
generate the same fault signature, i.e. ~La( fy) ≈~La( fu) ≈ 〈E( fu), fu〉. In order to overcome
this limit, the following residual set was then designed:

3.3.3 Residual Set Rb

Also in this approach, the component r1(t) result to be directly related to the fault on the
output channel. Nevertheless, in this case, the missing component r2(t) sensitive to the fault
on the input channel is obtained by exploiting the relationship between injection signal, i.e.
νeq, and measured output, i.e. ymes, as follows:

Rb :
{

rb1( fu, fy) = νeq ≈ E( fu)+ fy
rb2( fu,y) = ν⊥eq = ymes−νeq ≈ y−E( fu)

(3.82)

With this choice the following relationship can be exploited:

rb1 + rb2 = νeq +ν
⊥
eq = ymes (3.83)

The trajectories of the residual vector~rb, having as components those of the set Rb, will
evolve according to a the following reasoning. In nominal conditions, the residual set Rb
becomes:

fu = 0 , fy = 0 ⇒
{

rb1 ≈ 0
rb2 ≈ y (3.84)
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Therefore, since~rb(t)≈ [0 , y], in this case the residual vector will depict on the residual
space R2 the actual dynamic of the system. Then, assuming steady state nominal condi-
tions, i.e. y = ȳ, the residual vector will stay fixed on the point of the residual space R2

corresponding to this steady state, and its trajectory will not evolve.
When a fault on the output channel occurs, then the configuration assumed by the residual

set Rb becomes:

fu = 0 , fy 6= 0 ⇒
{

rb1 ≈ fy
rb2 ≈ y (3.85)

Hence, the residual vector ~rb will start to generate on the residual space R2 the fault
signature:

~rb(t| fy) =~Lb( fy)≈ 〈 fy,y〉 (3.86)

where the function-valued vector~Lb( fy) will reflect the dynamic of the faulty measurement,
which of course will result to be a 2D shape strictly correlated to the faulty symptom fy.
When a fault on the input channel occurs instead, the configuration of the residual set Rb
becomes:

fu 6= 0 , fy = 0 ⇒
{

rb1 ≈ E( fu)
rb2 ≈ y−E( fu)

(3.87)

Hence, both components of~rb are affected in the same way by the faulty symptom. As a
consequence, after a certain amount of time, depending on the type and intensity of the fault,
the trajectory of~rb will tend to converge to the following curve S ∈ R2:

S = {(rb1,rb2) ∈ R2 | rb2 =−rb1 + ȳ} (3.88)

where ȳ denotes the nominal dynamic of the system. When dealing with system operating
at steady state nominal conditions, the trajectory of the curve S becomes a subspace of R2,
that is the straight line having slope −1 and rb2-intercept ȳ. In this case the fault signature
generated by~rb will be:

~rb(t| fu) =~Lb( fu)≈ 〈E( fu),y−E( fu)〉 (3.89)

where the function-valued vector~Lb( fu) will result to be a 2D shape convergent to the curve
(3.88).

The curve S results to be the key factor of the residual set Rb, because by analysing if
the trajectory of~rb converges on this portion of the residual space R2 it will be possible to
discriminate if a signature reflects a fault on the input or the output of the system.

3.3.4 Features Extraction
In order to improve the performances of the FDD system in terms of fault isolation and
diagnosis, in this work the opportunity to apply suitable signal processing techniques to
residual signals and signatures was also investigated. This research is still undergoing and
no experimental results are still available; nevertheless the two different draft of proposals
under development are briefly discussed in this Section.
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3.3.4.1 Data-Driven Approach

The alternative definition of signature provided in Section 3.3.1 is the key element of the
novel hybrid approach to FDI investigated in this research. Indeed, it gives the opportu-
nity to implement the whole residual evaluation task by exploiting a wide range of pattern
recognition techniques, typically used in other contexts like handwritten signature verifica-
tion [Faundez-Zanuy, 2007], [Fierrez et al., 2007], [Jain et al., 2002], [Lee et al., 2004],
curve/shape matching and time series analysis [Efrat et al., 2007], [Keogh and Ratanama-
hatana, 2005], [Nakamura et al., 2013], [Marteau, 2009], and motion trajectory analysis [Wu
and Li, 2009], [Vlachos et al., 2002]. As stated in the previous Section, the whole hybrid
FDI proposal can be thought also as a pattern recognition scheme, where the residual gener-
ator block can be interpreted like a pattern generator module, while the residual evaluation
block can be treated and developed as a pattern classification module. The main objective of
the latter is to analyze the patterns generated by the previous module when a fault occurs, in
order to extract some features that allow for comparing the current signature among the other
ones, stored in the faults database, which the considered pattern recognition system will be
able to classify. The study of suitable DD approaches is still ongoing. The most promising
pattern recognition techniques seem to be those developed in the field of biometric recog-
nition of handwritten signature [Fierrez et al., 2007], in order to find other discriminative
information which can be extracted from the fault signatures. These methods can be broadly
divided into two main categories:

• feature-based

• function-based

The first class of methods refers to a holistic vector representation, consisting of a set of
global features which are derived from the signature trajectories [Lee et al., 1996, Ketab-
dar et al., 2005]. The second class of methods refers to time sequences describing local
properties of the signature, i.e. position trajectory, velocity, acceleration, which are used for
recognition [Jain et al., 2002, Nalwa, 1997, Li et al., 2006]. Several features could be tested
in order to improve the performance of the fault classifier.

3.3.4.2 Signal-Based Approach

This idea refers to the fact that residual signals can be considered also as discrete time-series,
since they are generated by a software-implemented algorithm, i.e. the SMO. Therefore,
their temporal evolution can be evaluated also by exploiting some concepts related to the SB
methodologies reviewed in Section 1.3. This research is exploiting the concept of time series
segmentation. A good survey about this topic is provided in [Keogh et al., 2004], whereas
in [Martı́ et al., 2014] an interesting application of such an approach in order to implement
an efficient anomaly detection on a oil platform turbo-machinery is presented. As stated in
[Martı́ et al., 2014], depending on the application, the segmentation of time-series is applied
to locate stable periods of time, to identify change points, or to simply compress the original
time series into a more compact representation.

The traditional approach to residual evaluation based on signature analysis refers to those
trajectories in the residual space Rp which are updated based on the sampling frequency of
the residual generator. Therefore, assuming to collect for each of the p residual signals a
dataset of N samples, instead of referring to the residual signature, i.e. the N points depicted
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in the residual space Rp by the residual vector, the idea is to process the p time series related
to the residual set in order to extract more information, by means of a suitable segmentation.

According to definitions given in [Bouchard, 2006], a time series can be expressed as a
set of n pairs, each of them consisting of a vector and a scalar, as follows:

T = {(v1, t1), . . . (vn, tn)} (3.90)

where vi is the value of the generic m-dimensional function at time ti, (i = 1, . . . ,n). A more
practical definition of a time series refers to the concept of regular time series, where the
amount of time between two consecutive pairs is constant. A segment is a contiguous subset
of a time series that is itself a time series, which can be formally expressed as:

S = {s1, . . . ,sn0} (3.91)

where si = (vi+ j, ti+ j), ∀i = {1, . . . ,n0} for a fixed value of the offset 0 ≤ j ≤ (n− n0). As
pointed out in [Bouchard, 2006], a segmentation is not a partition, thus not all the time value
pairs in a time series T are included in a segment S. As a consequence, a time series T
can be splitted in a set of segments, such as: T = {S1, . . . ,Sk}. Different applications have
different time-series and segmentation criteria. At this stage of the research, only a basic
segmentation strategy has been applied to residual signals in order to evaluate empirically
the effective potential of such an approach in terms of fault isolation.

The main assumption of the proposal is that more information can be extracted from each
residual if the corresponding time series is splitted into a set of segments, and a suitable met-
ric or feature for each period is computed, in order to evaluate the behavior of the residual in
each time window. By this way, the resulting fault signature will reflect also the peculiarities
of the dynamic patterns assumed by every component of the residual vector in each of the
time windows, thus it will be able to provide more information en respect to the conventional
fault signature.

The proposed approach does not implement any of those automatic segmentation strate-
gies reviewed in [Bouchard, 2006], but refers instead to a static choice of the fixed size n0
for all the segments on the basis of empirical considerations. By this way, also the on-line
implementation results to be straightforward.

Formally, the proposed segmentation strategy can be expressed as follows: given a time
series r(t)= {(r1, t1), . . . (rN ,rN)} of N samples, where wk =(rk, tk), ∀k = {1, . . . ,N} denotes
the generic sample of the residual signal, the i-th segment of the partitioning is defined as:

Wi = {w1+M×(i−1), . . . ,wM×i},∀i = {1, . . . ,N0} (3.92)

where M is the number of samples in each of the segments Wi, whereas N0 = N/M ∈ N is
the total number of segments in the time series r(t).

Each of the Wi segments can be referred to as observing window. A suitable metric, or
feature, denoted as F , and representative of the local dynamic behavior of the residual signal
within the observing window, has to be selected at this point. As a result, by computing the
selected feature F for each of the N0 observing windows Wi, a new dataset, denoted as D,
can be obtained. This new set of N0 samples can be formally expressed as a time series, as
follows:

D = {(F(W1),W1), . . . (F(WN0),WN0)} (3.93)

where F(Wi) denotes the value of the feature F related to the observing window Wi, (i =
1, . . . ,N0).
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By doing this way, it is apparent that the residual generator has been converted into a
pattern generator . Therefore, the fault diagnosis can be performed by means of a suitable SB
methodology, according to the general scheme depicted in Section 1.3.1. As a consequence,
the resulting FDD system can be considered as a novel hybrid architecture, where the fault
detection is based on a MB methodology, whereas the fault isolation and diagnosis refers to
the implementation of a SB approach.

Another interesting point of view, which refers again to the fault detection by residual
signature analysis, is being evaluated in this research. This novel proposal refers to the fact
that the time series D can be considered itself as a residual signal, which results to be just a
filtered version of the original one, and hence it can be used as a component of a new residual
vector. As stated above, the expected result is that the new trajectories in the residual space
will be more able to represent the peculiarities of each different fault typology.

Referring to Section 1.3, it has been shown that several different kind of features can be
evaluated for the pattern analysis. Therefore, the feature F to be extracted from the observing
window result to be a key parameter in the design of such a fault diagnosis system. It is
worth to remark that also the size of the observing window, i.e. M, is an important design
parameter which hardly affects the isolation capabilities of the new signatures, since its value
directly influences the dynamic properties which can be hidden or highlight. At the moment,
a methodological formulation of this approach which aims to provide more details about the
design procedure is still under study.

3.4 Conclusion
In this Chapter a new hybrid FDD scheme has been presented. The whole proposal can be
splitted in two main parts: the residual generation and the residual evaluation stage. The
first stage is implemented by exploiting a MB method based on SMO, while the second one
introduces a graphical approach which exploits an alternative definition of fault signature.
This hybrid FDD approach can be expressed also as a pattern recognition scheme, where
the residual generator block is the pattern generator module, whereas the residual evaluation
block refers to as the pattern classification module. In this Chapter, it was shown that a
fault classification scheme can be designed for a generic SISO system, by exploiting the
output injection signal of the corresponding SMO. Faults affecting both the input and output
channels can be isolated, overcoming the limitations related to a direct use of the output
injection signal as residual for FDI. For a generic MIMO system, having m inputs and p
outputs, the dimension of the residual space is equal to q = m+ p, but only p residuals
can be directly generated. In this case, a proper manipulation of the output injections and
other available measurements must be designed in order to find the remaining m = q− p
components needed by the residual set. A systematic procedure to find an optimal set of
components making the residual vector able to depict signatures which are suitable for the
fault isolation is the most challenging aspect of this proposal, and it is still under study.



Chapter 4

Practical Application: Steam Separator

In this Chapter, the development of an FDD system which exploits the design approach
discussed in Chapter 3 is applied to a typical industrial application related to the electricity
generation field. Even though the growth of renewable power stations, currently, in some
countries, a large portion of the overall power supply is still provided by thermal power
plants. E.g., as mentioned by [Aldian Ambark Shashoa et al., 2013], in Serbia thermal power
plants are the largest generators of electricity, contributing to more than the 65% of whole
demand. Due to this fact, designing fault diagnosis systems which could prevent accidents
and down time by allowing early detection of faults is a crucial task.

In the literature, most of the works dealing with the problem of FDI in thermal power
plant propose solutions formulated in the framework of statistical decision making, such
as likelihood ratio test [Chetouani, 2011], Bayes decision [Sun et al., 2012], CUmulative
SUM (CUSUM) classification [Tadić et al., 2012] and SVM [Chen et al., 2011]. Although
statistical approaches have a long tradition in FDI, those approaches are limited for processes
in the steady state. Therefore, their efficiency for the detection of faults in dynamic systems
has limits [Ding, 2008]. To overcome such a limitation, MB solutions for FDI have received
considerably attention in the last decades.

This work deals with the problem of MB-FDI in water-steam power plants where, due to
extreme pressures and temperatures, sensors and actuators are prone to failures. Both fault
in the output channels, e.g. water flow and water level sensors, and in the input channels,
e.g. steam flow sensor and feedwater actuator, are analyzed. Although SMOs are renowned
in FDI for their ability to generate injection signals able to reproduce faulty behaviors, when
both output and input measurements are faulty, they are hardly able to estimate the faults
or to discern among them. However, those signals still embed, in some sense, an aggregate
information about the faults nature. To overcome this limitation and achieve FDI, the pro-
posed approach is to process the injection terms generated by a suitably designed SMO, by a
procedure able to identify a distinguishing signature for each fault. Both faults in the sensor
and actuator characteristics are considered. The performances of the proposed scheme have
been evaluated through simulations which used real data taken from the TEKO B1 Thermal
Power Plant of Kostolac (Serbia), whose nominal power is 330 MW.

This Chapter is organized as follows: in Section 4.1 a linearized model of the plant is
presented; then, in Section 4.2 two different SMOs for sensor and actuator fault detection
are developed, based on the scheme depicted in Section 3.2, whereas in Section 4.3 the
practical implementation of the residual evaluation based on the signature analysis discussed
in Section 3.3 is developed. The experimental results of the proposed FDD application are
finally discussed in Section 4.4.
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Figure 4.1: Thermal power plant schematic representation

4.1 Process Description, Modeling and Validation
The steam separator is a critical component in thermal power plants having schematic rep-
resentation such that depicted in Figure 4.1. The processes which take place in a steam
separator are highly nonlinear and involve several different parts. The boiler is the main unit,
where the chemical energy of fossil fuel is converted into heat energy of steam. It denotes the
core of the following water-steam cycle. The water, partially heated through an economizer,
is provided to the steam drum by a set of feed pumps. Other pumps of the same feedwater
system discharge the water into a system of pipes inside the boiler. In the boiler, the water is
converted into steam. Before it leaves the boiler, the steam is then delivered to a superheater.
The superheated steam, finally goes on to the turbines. The steam separator unit under anal-
ysis is the same considered in [Aldian Ambark Shashoa et al., 2013]. The drum’s geometry
is cylindrical, with an height of 24 [m] and a diameter of 2 [m]. Nominal temperatures inside
the furnace are as high as 1400 [◦C]. Nominal temperatures and pressures of the steam are
540 [◦C] and 165÷ 175 [bar] respectively. One of the process requirements is to maintain
the water level in the drum at an height of 8 [m], independently to the other variables. This
goal is achieved by implementing a closed loop scheme in which a cascaded PID receiving
as input the difference signal between the required and the measured water level, is able to
provide as output the control signal for the feedwater pump discharge. Consequently, the
most important measurements for this control system are:

• the feedwater flow at the steam drum inlet;

• the steam flow at the steam drum outlet;

• the water level in the steam drum.

All these physical quantities are measured indirectly, via differential pressures. Water
and steam flows are both measured by differential pressure transmitters (Siemens Sitrans
PDSIII7MF4533), having measurement range of 0÷ 500 [mbar] and accuracy of 0.075%,
which are located on the inlet and outlet of the steam drum, respectively. The water level
instead, is measured by differential pressure gauges (Siemens Sitrans PDSIII7MF4433), hav-
ing measurement range of 0÷1570 [mbar] and accuracy of 0.075%, which are located at the
bottom of the steam drum.

As done in [Aldian Ambark Shashoa et al., 2013], faults where the corresponding error
is multiplicative, i.e. the measurement results to be scaled, have been considered. Based on
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the operator’s experience, they represent the most frequent faults which could affect a steam
separator measurement system. Such faults are also the most difficult to detect, because
they cause only a degradation of the measurement quality instead of an abrupt change in
the measurement; they are virtually undetectable by standard methods, e.g. those algorithms
which only check limits.

Therefore, the system architecture of the steam separator can be thought as a cascade
control scheme where the objective is to control both the volume of water and the inlet of
water mass-flow rate inside the steam drum. In the system model depicted in figure 4.2, four
main blocks can be easily recognized, which are respectively:

• the water-level PID controller, which generates the set-point for the feedwater system;

• the feedwater system, consisting of a nested closed loop multistage centrifugal pump
system whose output is used to adjust the boiler’s water level;

• the water piping, which conducts the water inside the boiler;

• the steam drum, where the water is converted into steam.

As stated above, the dynamics of the system under analysis result to be nonlinear. There-
fore, in order to apply the FDD design procedure presented in chapter 3, a linearized version
of the model is needed.

The next subsections provide a State-Space representation of the corresponding linear
model identified for each of the needed blocks mentioned above, that is:

ẋ = Ax+Bu
y =Cx+Du (4.1)

Notice that, each State-Space representation is expressed in its phase variables canonical
form, e.g. the output of each system exits from a chain of integrators, that is:

A =


0 1 0 0

0 0 . . . 0
0 0 0 1
∗ ∗ ∗ ∗

 , C =
[

1 0 · · · 0
]

(4.2)

For each subsystem, the identification procedure was conducted by exploiting practical
methods for the characterization of dynamical systems, such as step-response-like tests. For
this task, real data acquired from the plant over a period of 24 hours during which there were
no faults have been employed.

4.1.1 Feedwater System Linear Model
As previously stated, the feedwater system consists of a nested and enough fast closed-
loop system whose input is generated by the water-level regulator, i.e. an adjustable water-
flow set-point, whereas its output is used to adjust the boiler’s water level. According to
figure 4.2, this sub-system can be modeled as a SISO system having the set-point for the
feedwater system, namely qPID

w (t), as the input signal, and the water flow going into the
water piping system, namely q′w(t), as the output signal. By means of a simple black-box
step-response test, which consists in the comparison between the step-test responses of the
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real and linearized version of this sub-system under the same operating conditions, the real
dynamics has been approximated by a second-order linear model, as follows:

q′w(s)
qPID

w (s)
≈ k

1+2 ξ

ωn
+ s2

ω2
n

(4.3)

where the variable s denotes the representation in terms of Laplace transforms, and the
model’s parameter and their corresponding values are:

• DC Gain: k = 2;

• Damping Ratio: ξ = 0.53;

• Natural Frequency: ωn = 0.2903.

The corresponding State Space representation of this model is: Aw Bw

Cw Dw

=

 0 1
-0.843 -0.3077

0
0.1685

1 0 0

 (4.4)

The only difference in the step-test response of the real and the approximated model of
the feedwater system was related to the presence of some steady-state self-sustained oscilla-
tions in the original system due to the nonlinearities inside the PID water flow regulator, such
as the anti-windup saturation components. Since a linearized approximation of the system
was needed, these nonlinear behaviours have been neglected.

4.1.2 Water Piping Linear Model
The water piping conducts the water flow into the boiler. According to figure 4.2, the water
piping can be modeled as a SISO system having the water flow going from the feedwater
system, namely q′w(t), as the input signal, and the water flow going into the steam drum,
namely qw(t), as the output signal. This system has been modeled as a pure delay. Therefore,
in order to get a linear approximation of it, the following Padé first-order approximation of a
pure delay has been considered:

qw(s)
q′w(s)

≈

(
1− ∆Tw

2 · s
)

(
1+ ∆Tw

2 · s
) (4.5)

where the variable s denotes the representation in terms of Laplace transforms, ∆Tw =
10 [sec] is the water time delay, and the corresponding State Space representation of this
model is: [

Apw Bpw
Cpw Dpw

]
=

[
∆T w/2 ∆T w

1 -1

]
(4.6)
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Figure 4.2: Nonlinear Steam Separator System Model

4.1.3 Steam Drum Linear Model
The steam drum is the main part of the boiler, where the water is converted into steam
and also residual drops of water are removed from the steam. According to figure 4.2, this
sub-system can be modeled as a SISO system having as input signal the overall flow going
into the drum, computed as the difference between the water flow pumped into the drum
and the steam flow leaving the steam drum, namely the difference signal qw(t)− qs(t), and
as output signal the water level inside the drum, namely h(t). In accordance with [Aldian
Ambark Shashoa et al., 2013], the dynamic of the steam drum has been modeled as a pure
integrator as follows:

h(s)
qw(s)−qs(s)

≈ 1
1000 ·

(
d2 π

4

)
s
≈ 0.0003

1
s

(4.7)

where the variable s denotes the representation in terms of Laplace transforms, and d is the
steam drum’s diameter

The corresponding State Space representation of this models is:[
Ad Bd
Cd Dd

]
=

[
0 1 −1
1 0 0

]
(4.8)

4.1.4 Steam Separator Forward Path Linearized Model
The attention was focused on the forward path of the steam separator, that is where the
separation between water and steam occurs. In accordance with the scheme in figure 4.4, this
forward path results to be the series of the following sub-systems, respectively: feedwater
system, water piping, and steam drum. By properly combining the linearized version of
those dynamics, the following 4th order stable MIMO (2in - 2 out) LTI dynamic model has
been derived:

ẋ= Ax+B1u1 +B2u2
y =Cx

(4.9)

where x = [x1,x2,x3,x4]
T ∈ Ω ⊂ R4 represents the system’s state, with: x1 = h(t), x2 =

qw(t), x3 = q′w(t) and x4 = q̇w
′(t), whereas u1 = qs(t) and u2 = qPID

w (t) are its inputs and
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y = [y1,y2]
T = [h(t),qw(t)]T ∈ R2 are its output vector. Ω is a neighborhood of the system

working point.
As stated above, the system under analysis is highly complex. Indeed, besides the pro-

cesses which take place are nonlinear, also the water-steam boundary is not clear, because
the drum contains a mixture of both in a diphasic state and, in addition, the steam pressure af-
fects the water level [Aldian Ambark Shashoa et al., 2013]. However, given the ultimate goal
to provide a simple and sufficiently accurate mathematical description of the process, and re-
minding that, due to the control action of the system, the water level is maintained around
a nominal value of ȳ1 ≈ hSP = 8 [m], with approximatively ȳ2 = y2(∞) ≈ 200 [m3/sec] of
nominal inlet water flow, see e.g. the bottom plots in Figure 4.3, a linear approximation
of the plant around this nominal working point has been identified, according to [Aldian
Ambark Shashoa et al., 2013, Kvaščev et al., 2011].

Matrices A ∈ R4×4 , B1 ∈ R4×1, B2 ∈ R4×1, C ∈ R2×4, in accordance with the previous
treatment, are denoted as follows:

 A B1 B2

C

=

=



0 0.0003 0 0
0 0 1 0
0 0 0 1
0 −0.0169 −0.1458 −0.5077

−0.0003 0
0 0
0 −0.1685
0 0.1193

1 0 0 0
0 1 0 0


(4.10)

In accordance with definitions provided in Section 3.2.1, the pair (A,C) of the nominal
system (4.10) is observable with observability indices {r1 = 1, r2 = 3} such that ∑

2
i=1 ri = 4.

Worth also to remark that matrix A has a zero column, i.e., the inherent integrating effect of
drum is preserved.

To confirm the effectiveness of the proposed model, the two bottom plots of Figure 4.3
show a comparison between the measured and the estimated system’s outputs. During the
test, the system model (4.10) was fed by real inputs collected over a period of 3 hours of
operation, which are reported in the two top plots of Figure 4.3. The model’s output closely
follow the measured variables and thus the proposed model is validated.

4.1.5 Sensor Fault Modeling
Due to the fact that nowadays control signals are available to the supervisory system, e.g.
SCADA, and the PID/PLC integrates diagnostic routines, u2 can be assumed as fault-free.
Data from the field are stored in the SCADA system with a sampling period of 1 [sec].

Taking into account the operating conditions, e.g. extreme pressures and temperatures,
sedimentation of substances and erosion of material, the most frequent class of faults are not
related to ageing, but to performance degradation of the measurement devices. Such faults
or measurement errors are multiplicative and result to be hardly detectable, even virtually
undetectable by simple methods based on thresholds checking, e.g. 4÷ 20 [mA] signalling
protocol.

From that, since all the field measurement, i.e. u1, y1 and y2, may be faulty, according to
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Figure 4.3: Top: System’s inputs. Bottom: Comparison between measured (green) and
estimated (red) outputs.

definitions provided in Section 1.2.2, the system (4.9) can be rewritten as follows:

ẋ= Ax+B1u1 +B2u2 +B1 fu1

y =Cx+fy
(4.11)

where
fu1 = ξ u1 , fy = [ fy1 , fy2]

T = [µ1x1 , µ2x2]
T (4.12)

represent respectively the faulty symptoms in the input and output measurements. Worth also
to remark that, due to working constraints, the whole set of system trajectories are always
bounded during operation, i.e. the water level and water flow are approximatively constant,
therefore it holds:

‖ fu1(t)‖ ≤ σ(t) , ‖fy(t)‖ ≤ ρ(t) (4.13)

where σ(t) and ρ(t) are known continuous function associated to the sensors full-scale.
Hence, the measurement acquired by the three sensors in Figure 4.2 are denoted by the
following quantities:

qmes
s = umes

1 = u1 + fu1 = (1+ξ )u1

hmes = ymes
1 = y1 + fy1 = (1+µ1)y1

qmes
w = ymes

2 = y2 + fy2 = (1+µ2)y2

(4.14)
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Figure 4.4: Inputs and outputs of the Steam Separator Forward Path and Feedwater System
models

It is worth also to note that, if there is no fault, all symptoms are zero, i.e. fu1 = 0,fy = 0.
Thus, the faulty model (4.11) degenerates into the nominal one in (4.9).

4.1.6 Actuator Fault Modeling
In order to verify as much as possible the effectiveness of the proposed FDD approach, in this
application also the controller device has been modeled as a potentially faulty component,
even though, as mentioned in Sections 1.2.2 and 4.1.5, such systems are typically considered
fault-free. This further condition has been taken into account in addition to the fault modeling
approach depicted in Section 4.1.5, by focusing on the sub-dynamic of the steam separator
related to the feedwater system. Referring to the Section 4.1.1, the feedwater system has
been modeled as the following second order stable SISO LTI dynamic system:

ẋw = Awxw +Bwuw
yw =Cwxw

(4.15)

where xw = [x1w,x2w ]
T ∈ Ωw ⊂ R2 represents the system’s state, with: x1w = q′w(t), x2w =

q̇w
′(t), whereas uw = qPID

w (t) and yw = q′w(t) are the system’s input and output, respectively.
Ωw is a neighborhood of the system working point.

Therefore, different residuals have been generated for this purpose, based on a different
SMO which works in parallel to the SMO designed for the forward path of the steam separa-
tor. Recalling the remark 1 of Section 1.2.2, since in this case the control action is performed
by a digital computer, the actuators installed on the feedwater system can be considered as
a component of the whole controller device. As a consequence, the fault on the PID con-
troller can be modeled as an actuator fault affecting the feedwater system. Thus, taking into
account the same approach considered in Section 4.1.5 for modeling the faults on sensors,
and according to definitions provided in Section 1.2.2, the system (4.15) can be rewritten as
follows:

ẋw = Awxw +Bwuw +Bw fuw

yw =Cwxw + fyw
(4.16)

where

fuw := ξwuw , fyw := µwyw (4.17)

denote the faulty symptoms in the PID controller output, and in the water flow sensor in-
stalled before the water piping, i.e. the input and the output of the feedwater system, respec-
tively. According to the remark of Section 4.1.5, the same boundness conditions hold:

‖ fuw(t)‖ ≤ σw(t) , ‖ fyw(t)‖ ≤ ρw(t) (4.18)
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Figure 4.5: Steam Separator Forward Path SMO Residual Generator

where σw(t) and ρw(t) are known continuous function associated to the full-scale of their
respective device.

Hence, the process signals in Figure 4.2 are denoted by the following quantities:

qPID
w = uPID

w = uw + fuw = (1+ξw)uw

q′w = ymes
w = yw + fyw = (1+µw)yw

(4.19)

Again, when there is no fault, both symptoms are zero, i.e. fuw = 0, fyw = 0. Thus, the
faulty model (4.16) degenerates into the nominal one in (4.15).

4.2 SMO Design
For both the steam separator forward path and the feedwater system, the residual generator
has been implemented according with the scheme discussed in Section 3.2.

4.2.1 Steam Separator Forward Path SMO
At first, the following remark about the modeling of the fault signal fu1 need to be considered.

Remark 7. In the Steam Separator forward path faulty model (4.11), the fault signal fu1

refers to a sensor fault in place of an actuator fault on the input channel. As a consequence,
since the scenario considers both input and output measurement faults, the original scheme
in Figure 3.2 was modified as depicted in Figure 4.5.

Therefore, according with Section 3.2.1, the model (4.11) becomes:

ẋ= Ax+B1u1 +B2u2
y =Cx+fy

(4.20)

and its corresponding Brunowsky canonical representation is:

ẋ= (A−BΛ)x+BΓx+B1u1 +B2u2
y = Cx+fy

(4.21)
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where matrices {A , B , C = C}, are selected in accordance with (3.5), Λ is an arbitrary
matrix such that (A−BΛ) is Hurwitz, whereas Γ is chosen such that A = (A−B(Λ−Γ)).
Furthermore, according to (3.10), the following constraint needs to be satisfied in order to
make feasible the design of the observer:

‖Γx−Γx̂‖ ≤ β‖x− x̂‖ (4.22)

for any x, x̂ ∈ Ω ⊂ R4, with β ∈ R+. Worth to remark that the decomposition (4.21) pre-
serves the own dynamic of the system in (4.20) and, since the system (4.9) is in an observable
canonical form, i.e. y1 ≡ x1 and y2 ≡ x2, no further transformation T (Ω) : x 7→ z is required.

The augmented dynamics of (4.21) is:

ẋ= (A−BΛ)x+BΓx+B1u1 +B2u2
ẋa = Aaxa +BaCx+Bafy
ya =Caxa

(4.23)

where xa ∈ R2 and ya ∈ R2 are respectively the state and output’s vectors of a suitably
designed filter described by matrices {Aa , Ba = I2 , Ca = I2}.

The corresponding observer dynamic of (4.23) is:

˙̂x= (A−BΛ)x̂+BΓx̂+B1u1 +B2u2 +B1 fu1
˙̂xa = Aax̂a +BaCx̂+ν(t,ya, ŷa)
ŷa =Cax̂a

(4.24)

where ν(t,ya, ŷa) is the so-called unit-vector SMC algorithm defined in 3.13.
In accordance with definitions given in (3.14) and (3.15), from (4.23) and (4.24) it results:

ė= (A−B(Λ−Γ))e−B1 fu1 (4.25)

ėa = Aaea +Ce+fy−ν(ea) (4.26)

where the input measurement fault term B1 fu1 in (4.25) makes the role of the disturbance
vector Ψ(z) in (3.16).

Hence, the two error dynamics (4.25) and (4.26) have respectively the same form as in
(3.16), and (3.17) and the whole observer design procedure can be applied with any differ-
ence. As a consequence, it results that by an analogous analysis as in Section 3.2.2, the
design parameters of the SMO can be found by solving the following LMI convex optimiza-
tion problem:

min
P,X

γ subject to :[
(A−BΛ)T P+P(A−BΛ)+ ε1β 2I4 +X PB

BT P −ε1I2

]
< 0

I4 < P , P < γX

(4.27)

where X ∈ R4×4 is a symmetric positive definite “slack” variable, whereas ε1 > 0 and γ > 0
are arbitrary constants.

Hence, a sliding motion is achieved after a finite transient along the manifold (3.26).
From that, since ėa = ea = 0, according to Preposition 3 in Section 3.2.2.2, the reduced
order error state e results to be optimally, uniformly bounded with respect to:

B =
{
e | eT Pe≤ γ

2 (d + ε2)
2
}
∀ε2 > 0 (4.28)
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where d is a known constant satisfying the following constraint related to the magnitude of
the faults on the input channels, according to (3.44):

‖P1/2B1 fu1‖ ≤
1
γ
‖B1σ(t)‖ ≤ 1

2
d (4.29)

Furthermore, once the sliding mode condition is achieved, the fault symptoms in the out-
put measurement vector y can be estimated by exploiting the concept of equivalent control,
i.e. (3.39), since it results:

νeq = Ce+fy (4.30)

where νeq is obtained by low-pass filtering of the discontinuous signal ν(t), as in (3.40).
By substituting the matrix C = C, the two components of the equivalent output error

injection vector νeq = [νeq1 , νeq2]
T assume the following explicit form:

veq1 = e1 + fy1

veq2 = e2 + fy2
(4.31)

where the two components of the error vector e= [e1 , e2]
T are the solution of the following

ODEs:

ė1 =−0.0003 fu1...e 2 +0.5077ë2 +0.1458ė2 +0.0169e2 = 0 (4.32)

As a consequence, it result that e2 is vanishing, and then veq2 is able to exactly estimate
the fault symptom associated to the water flow measurement. On the other hand, due to the
particular structure of the system, see Figure 4.4 and the first row of the matrix in (4.10), the
injection term associated to the steam drum includes both the fault symptoms associated to
this dynamic, which are the measurement errors related to the water level and the steam flow
sensors. Actually, it results:

veq1(t) =−0.0003
∫ t

0 fu1(τ)dτ + fy1(t)
veq2(t) = fy2(t)

(4.33)

Remark 8. In order to correctly extract the whole information about the faults, a further
filtering effect of the signal ν(ea) must be avoided. Hence, since the relative degree between
the filter output ya and the output injection ν(ea) is 1, the componentwise super-twisting
control law [Levant, 1998]

νi (eai(t)) = ki1| eai(t) |1/2sign(eai(t))+ ki2

∫
sign(eai(τ))dτ (4.34)

with i = 1,2 has been used in place of (3.13). This allows to avoid the low pass filtering
of ν(ea) in order to extract the equivalent control νeq, as the next condition

νi (eai(t)) = νeqi (t) (4.35)

is in force after the sliding mode has been established along the manifold ea (t) = 0.

The Figure 4.6 shows the effectiveness of the proposed approach in terms of fault detec-
tion capability, and at the same time confirms the fact that the two residuals generated by the
SMO are influenced by the whole set of faults, i.e. those affecting the steam flow, water level
and water flow sensors.
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Figure 4.6: Fault Detection results by using the Steam Separator Forward Path SMO

Figure 4.7: Feedwater System SMO Residual Generation

4.2.2 Feedwater System SMO
Remark 9. Since in the feedwater system faulty model (4.16) both the sensor and the actu-
ator can be affected by faults, thus the scheme of the SMO residual generator related to a
generic system, depicted in Figure 3.2, and the scheme related to the feedwater system SMO
residual generator, depicted in Figure 4.7, reflect the same configuration.

According with Section 3.2.1, the model (4.16) can be decomposed in its corresponding
Brunowsky canonical representation, that is:

ẋw = (Aw−BwΛw)xw +BwΓwxw +Bwuw +Bw fuw

yw = Cwxw + fyw
(4.36)

where matrices {Aw , Bw , Cw = Cw}, are selected in accordance with (3.5), Λw is an
arbitrary matrix such that (Aw−BwΛw) is Hurwitz, whereas Γw is chosen such that Aw =
(Aw−Bw(Λw−Γw)). Furthermore, according to (3.10), the following constraint needs to
be satisfied in order to make feasible the design of the observer:

‖Γwxw−Γx̂w‖ ≤ βw‖xw− x̂w‖ (4.37)
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for any xw, x̂w ∈ Ωw ⊂ R2, with βw ∈ R+. Worth to remark that the decomposition (4.36)
preserves the own dynamic of the system in (4.16) and, since the system (4.15) is in an
observable canonical form, i.e. yw ≡ x1w , no further transformation T (Ωw) : xw 7→ zw is
required.

The augmented dynamic of (4.36) is:

ẋw = (Aw−BwΛw)xw +BwΓwxw +Bwuw +Bw fuw

ẋaw = aawxaw +bawCwxw +baw fyw

yaw = cawxaw

(4.38)

where xaw ∈ R and yaw ∈ R are respectively the state and the output of a suitably designed
filter described by the scalars {aaw , baw = 1 , caw = 1}.

The corresponding observer dynamic of (4.38) is:

˙̂xw = (Aw−BwΛw)x̂w +BwΓwx̂w +Bwuw
˙̂xaw = aaw x̂aw +bawCwx̂w +νw(t,yaw , ŷaw)
ŷaw = caw x̂aw

(4.39)

where νw(t,yaw, ŷaw) is the so-called unit-vector SMC algorithm defined in 3.13.
In accordance with definitions given in 3.14 and 3.15, it follows from (4.38) and (4.39)

that:

ėw = (Aw−Bw(Λw−Γw))ew +Bw fuw (4.40)

ėaw = aaweaw +Cwew + fyw−νw(eaw) (4.41)

where the input measurement fault term Bw fw in (4.40) makes the role of the disturbance
vector Ψ(z) in (3.16).

Hence, the two error dynamics (4.40) and (4.41) have respectively the same form as in
(3.16), and (3.17) and the whole observer design procedure can be applied with any differ-
ence. As a consequence, it results that by an analogous analysis as in Section 3.2.2, the
design parameters of the SMO can be found by solving the following LMI convex optimiza-
tion problem:

min
Pw,Xw

γw subject to :[
(Aw−BwΛw)

T Pw +Pw(Aw−BwΛw)+ ε1wβ 2
wI2 +Xw PwBw

BT
wPw −ε1w

]
< 0

I2 < Pw , Pw < γwXw

(4.42)

where Xw ∈ R2×2 is a symmetric positive definite “slack” variable, whereas ε1w > 0 and
γw > 0 are arbitrary constants.

Hence, a sliding motion is achieved after a finite transient along the manifold (3.26).
From that, since ėaw = eaw = 0, according to Preposition 3 in Section 3.2.2.2, the reduced
order error state ew results to be optimally, uniformly bounded with respect to:

Bw =
{
ew | eT

wPwew ≤ γ
2
w (dw + ε2w)

2
}
∀ε2w > 0 (4.43)

where dw is a known constant satisfying the following constraint related to the magnitude of
the faults on the input channels, according to (3.44):

‖P1/2
w Bw fuw‖ ≤

1
γ
‖Bwσw(t)‖ ≤

1
2

dw (4.44)
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Furthermore, once the sliding mode condition is achieved, the fault symptoms in the out-
put measurement signal yw can be estimated by exploiting the concept of equivalent control,
i.e. (3.39), since it results:

νeqw = ew + fyw (4.45)

where νeqw is obtained by low-pass filtering of the discontinuous signal νw(t), as in (3.40),
and ew is the solution of the following ODE:

ëw +0.3077ėw +0.0843ew =−0.1685 fuw (4.46)

As a consequence, it result that, due to the particular structure of the system, the injection
term νeqw includes both symptoms of the faults related to the PID controller and the feedwater
dynamic: Therefore, (4.45) can be expressed also as:

νeqw(t) = Ew( fuw(t))+ fyw(t) (4.47)

Remark 10. In order to correctly extract the whole information about the faults, a further
filtering effect of νw(eaw) must be avoided. Hence, since the relative degree between the filter
output yaw and the output injection νw(eaw) is 1, the componentwise super-twisting control
law [Levant, 1998]

νw (eaw(t)) = k1w | eaw(t) |
1/2sign(eaw(t))+ k2w

∫
sign(eaw(τ))dτ (4.48)

has been used in place of (3.13). This allows to avoid the low pass filtering of νw(eaw) in
order to extract the equivalent control νeqw , as the next condition

νw(eaw(t)) = νeqw(t) (4.49)

is in force after the sliding mode has been established along the manifold eaw(t) = 0.

The Figure 4.8 shows the effectiveness of the fault detection capability for the feedwater
system also, and at the same time confirms the fact that the residual signal generated by the
observer in this case is influenced by both faults acting on the input and output of the system,
i.e. those affecting the PID controller and the water flow sensor installed at the beginning of
the water piping.

4.3 Residual Set Design

4.3.1 Steam Separator Forward Path Fault Signatures
According with the scheme in Figure 4.5, the following two-dimensional residual vector was
generated by the SM-based residual generator depicted in Section 4.2.1:

r = νeq ⇒ [ry1 , ry2] = [νeq1 , νeq2] ⇒
{

νeq1(t) = ry1( fy1(t), fu1(t))
νeq2(t) = ry2( fy2(t))

(4.50)

As discussed in Section 4.2, the two components of the residual vector r are influenced
by the whole set of faults, i.e. those affecting the steam-flow, water-level and water-flow
sensors. However, as expected, since the number of faults is greater than the number of
residuals, two on three faults influence the same residual. Thus, only the fault occurrence
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Figure 4.8: Fault Detection results by using the Feedwater System SMO

can be detected, but it is not possible to discriminate between a fault on the steam flow and
a fault on the water level, both detected by the injection signal νeq1, whereas the water flow
sensor fault can be directly isolated by using only the injection signal νeq2.

Indeed, the isolation of the water flow sensor’s fault fy2(t) can be achieved by a simple
threshold checking, typical of a dedicated observer scheme, that is to determine if the con-
sidered residual has exceeded or not its threshold, as explained in Section 1.2.5. Hence, in
the considered case, a fault in the water flow sensor is detected and isolated if it results:

ry2(t)≥ Tw ⇒ fy2(t) 6= 0 (4.51)

Furthermore, residual ry2 directly gives the shape of the fault such that fault diagnosis
can be directly achieved for the water flow sensor.

Threshold checking for residual ry1 cannot guarantee the isolation of the water level and
steam flow sensor faults, due to the same sensitivity of ry1 to both faults. Since the sub-
dynamic of the steam separator forward path model which affects the output injection νeq1
is the steam drum depicted in Section 4.1.3, which is a SISO system, therefore the residual
evaluation approach discussed in Section 3.3 can be applied to residual ry1 in order to achieve
the complete fault isolation. Both the residual sets Ra and Rb have been designed. According
to 3.3.2, in order to obtain the missing component of the residual set Ra, a suitable filtering
action on the injection signal veq1 need to be designed.

Remark 11. Due to the particular structure of the steam drum, the filtering action applied
by the functional E(·) to the signal fu1 have the same dynamic of the model, that is a pure
integrator:

E( fu1) = Ce≈−0.0003
∫ t

0
fu1(τ)dτ (4.52)

Therefore, the inverse filtering effect en respect to E(·) is a pure differentiator.

By taking into account the Remark 11, and assuming that the dynamics of the fault on
the level measurement device is slowly varying with respect to both the system and observer
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dynamics, the effect of the fault on the steam flow measurement device can be isolated by
differentiating the output injection veq1.

Since veq1 in (4.33)-(4.34) is continuous but not differentiable, in order to make possi-
ble the use of a Levant’s robust differentiator [Levant, 1998], and also to reduce the noise
propagation, it is filtered by:

ẋb = Abxb +Bbνeq1
yb =Cbxb

(4.53)

where (Ab,Bb,Cb) represents a properly designed low-pass filter having relative degree m≥
1. Then, the output yb is differentiated by the Levant’s robust differentiator [Levant, 1998]

ż1 = z2−λ1| z1− yb |1/2sign(z1− yb)
ż2 =−λ2sign(z1− yb)

(4.54)

with properly chosen gains λ1, λ2. Once the differentiator converges, the following condition
holds:

z2 = ẏb ≈ ν̇eq1 = E−1(νeq1) (4.55)

Thus, the residual set Ra has been designed as follows:

Ra :
{

ra1( fu1, fy1) = νeq1 ≈−0.0003
∫ t

0 fu1(τ)dτ + fy1

ra2( fu1) = ν̄eq1 = z2 ≈ fu1−0.0003 ḟy1

(4.56)

With this choice, in nominal conditions, the residual set Ra becomes:

fu1 = 0 , fy1 = 0 ⇒
{

ra1 ≈ 0
ra2 ≈ 0 (4.57)

Therefore, since~ra(t) ≈ [0 , 0]T , in this case the residual vector will stay around the origin
of the residual space R2 and, as expected, no trajectory will be depicted.

When a fault occurs on the output channel y1, the two components of the residual set Ra
will raise the following configuration:

fu1 = 0 , fy1 6= 0 ⇒
{

ra1 ≈ fy1

ra2 ≈ ˙fy1

(4.58)

Consequently, the residual vector~ra will start to generate on the residual space R2 the fault
signature:

~ra(t| fy1) =~La( fy1)≈ 〈 fy1 ,
˙fy1〉 (4.59)

where the function-valued vector ~La( fy1) will reflect the dynamic of the faulty symptom
affecting the channel y1, filtered by the inverse of the functional E(·), which, according to
(4.52), is a pure differentiator.

When a fault occurs on the input channel u1 instead, the following configuration will
appear:

fu1 6= 0 , fy1 = 0 ⇒
{

ra1 ≈−0.0003
∫ t

0 fu1(τ)dτ

ra2 ≈ fu1

(4.60)
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Hence, the residual vector ~ra will start to generate on the residual space R2 the fault
signature:

~ra(t| fu1) =~La( fu1)≈
〈
−0.0003

∫ t

0
fu1(τ)dτ , fu1

〉
(4.61)

where the function-valued vector ~La( fu1) will reflect the dynamic of the faulty symptom
affecting the channel u1, filtered by the functional E(·), i.e. the pure integrator in (4.52).

Therefore, Ra results to be a suitable residual set when it needs to isolate fault affecting
both the water level and the steam flow sensor, since the corresponding vector ~ra is able
to generate fault signatures which reflect different dynamics and then which result to be
distinguishable.

Nevertheless, as stated in Section 3.3.2, with this configuration it is not possible to dis-
criminate between an abrupt fault on the steam flow sensor, and an incipient fault on the
water level sensor, such that: fy1 ≈

∫ t
0 fu1(τ)dτ , because both faults will generate the same

fault signature, i.e. ~La( fy1)≈~La( fu1)≈ 〈−0.0003
∫ t

0 fu1(τ)dτ, fu1〉.
In order to overcome this limit, the following residual set was then designed:

Rb :
{

rb1( fu1, fy1) = νeq1 ≈−0.0003
∫ t

0 fu1(τ)dτ + fy1

rb2( fu1, fy1) = ν⊥eq1 = ymes
1 −νeq1 ≈ y1 +0.0003

∫ t
0 fu1(τ)dτ

(4.62)

The trajectories of the directional residual vector~rb, having as components those of the
set Rb, will evolve according to the following reasoning. In nominal conditions, as shown in
Figure 4.2, at steady state the level of the drum is keep equal to the set point value by the
water level PID, i.e. hSP = ySP

1 . Hence the residual set Rb becomes:

fu1 = 0 , fy1 = 0 ⇒
{

rb1 ≈ 0
rb2 ≈ ySP

1
(4.63)

Therefore,~rb will stay fixed around the point of the residual space R2 corresponding to
this steady state and its trajectory will not evolve, i.e.~rb(t)≈ [0 , ySP

1 ]T .
When a fault on the level sensor occurs, then the level of the drum, i.e. y1, will start

changing, until the control loop will not bring back the system to the steady state. When
the level will have reached its new constant value, then ~rb will stay fixed on the point of
the residual space corresponding to the new steady state, until the fault fy1 will be on. The
configuration assumed by the components of Rb will be then:

fu1 = 0 , fy1 6= 0 ⇒
{

rb1 ≈ fy1

rb2 ≈ y1
(4.64)

The important thing to remark is that during this transient,~rb will generate on the residual
space R2 the fault signature:

~rb(t| fy1) =~Lb( fy1)≈ 〈 fy1 , y1〉 (4.65)

where the function-valued vector~Lb( fy1) will be a 2D shape strictly correlated to the dynamic
of the faulty symptom fy1 .

When a fault on the steam flow sensor occurs instead, this faulty symptom will not have
any influence on the level of the drum, and consequently the output of the system will not
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move from its nominal conditions, i.e. y1 = ySP
1 . The configuration of Rb related to this fault

condition will be:

fu1 6= 0 , fy1 = 0 ⇒
{

rb1 ≈−0.0003
∫ t

0 fu1(τ)dτ

rb2 ≈ ySP
1 +0.0003

∫ t
0 fu1(τ)dτ

(4.66)

Hence, both components of~rb are affected in the same way by the faulty symptom. As a
consequence, after a certain amount of time, depending on the type and intensity of the fault,
the trajectory of~rb will tend to converge to the subspace S of R2 denoted as follows:

S = {(rb1,rb2) ∈ R2 | rb2 =−rb1 + ySP
1 } (4.67)

that is the straight line having slope −1 and rb2-intercept ySP
1 , until the fault’s dynamics will

have ended. Hence, in this case the fault signature generated by~rb will be:

~rb(t| fu1) =~Lb( fu1)≈
〈
−0.0003

∫ t

0
fu1(τ)dτ , y+0.0003

∫ t

0
fu1(τ)dτ

〉
(4.68)

where the function-valued vector ~Lb( fu1) will result to be a 2D shape convergent to the
subspace (4.67).

4.3.2 Feedwater System Fault Signatures
According with the scheme in Figure 4.7, for the residual signal generated by the SMO
depicted in Section 4.2.2, only the following residual set has been implemented:

Rbw :
{

rb1w( fuw, fyw) = νeqw ≈ Ew( fuw)+ fyw

rb2w( fuw,yw) = ν⊥eqw
= ymes

w −νeqw ≈ yw−Ew( fuw)
(4.69)

The trajectories of the residual vector ~rbw , having as components those of the set Rbw ,
will evolve according to the same reasoning depicted in Section 3.3.3. Therefore, in the
following, only the expressions of the residual signatures and of the curve Sw are reported:

~rbw(t| fyw) =~Lbw( fyw)≈ 〈 fyw , yw〉 (4.70)

~rbw(t| fuw) =~Lbw( fuw)≈ 〈Ew( fuw),yw−Ew( fuw)〉 (4.71)

Sw = {(rb1w ,rb2w) ∈ R2 | rb2w =−rb1w + ȳw} (4.72)

Since also the feedwater system operates at steady state nominal conditions, then also the
curve Sw can be considered as a subspace of R2, that is the straight line having slope −1 and
rb2w-intercept ȳw.

4.4 Experimental Results
In order to corroborate the validity of the proposed FDI framework, hereinafter some results
obtained on a set of real data collected from the the Steam Separator Unit of the Serbian
Thermal Power Plant TEKOB1 in Kostolac are presented. The parameter configurations
used for the practical implementation of the two SMOs discussed in Sections 4.2.1 and 4.2.2
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Parameter Value

Λ =
[

Λ1 Λ2
]

100×
[

0.5 0 0 0
0 1250 75 1.5

]T

{Aa , Ba , Ca} {100I2 , I2 , I2}
{k11 , k12} {2

√
10 , 20}

{k21 , k22} {2
√

10 , 20}

Table 4.1: design parameter values of the steam separator forward path SMO

Parameter Value

Λw =
[

λ1w , λ2w

] [
3 , 5

]
{aaw , baw , caw} {−10 , 1 , 1}
{k1w , k2w} {2

√
10 , 90}

Table 4.2: design parameter values of the feedwater system SMO

Parameter Value

{Ab , Bb , Cb} {100I2 , I2 , I2}
{λ1 , λ2} {2

√
0.01 , 0.01}

Table 4.3: Levant’s differentiator parameter values

are shown in table 4.1 and 4.2, respectively, whereas the parameter configuration used to
implement the Levant’s differentiator discussed in Section 4.3 is shown in table 4.3. The
optimization parameters of the LMI convex optimization problems in (4.27) and (4.42) were
found by using the gevp solver available in the Matlab Robust Control Toolbox®.

In order to evaluate a broader set of fault configurations, including different kind of
failures, simulations were performed by corrupting healthy real data acquired from the plant
with suitable multiplicative faults, according to (4.14) and (4.19). The abrupt faults were
modeled according to (1.3), whereas the incipient faults according to (1.4), assuming a fault
rise time of 24 hours, i.e. tr = 86400 [sec]. Different percentage of faults were considered, by
spanning the values of parameters ξ , µ1, µ2, ξw and µw from 0.05 to 1, which means from 5%
to 100% of the device’s measurement scale. As an example, when considering an incipient
fault having intensity equal to 75%, it means that the faulty device will introduce the 100%
of error after 32 hours. Furthermore, in order to validate the robustness of the proposed
algorithm against noisy measurements, all the real data, already affected by noise, have
been further corrupted by a white-gaussian noise suitably designed to simulate the standard
level of signal-to-noise ratio for industrial data-acquisition systems, i.e. SNR = 80 [dB]
[Pachchigar, 2013].

The four plots in the Figure 4.9 provide a comparison among the actual value the and
measurement acquired by the water level and the steam flow sensors, which are the two
devices whose fault diagnosis cannot be directly performed by only using the SMO, since
both are detected by the same output injection signal. For each measurement, three different
percentages of fault intensity are considered: low intensity (25%), denoted by the red color,
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Figure 4.9: Temporal evolution of the water level measurement signal (top) and the steam
flow measurement signal (bottom) when different kind of fault occur: abrupt (left) and in-
cipient (right). The fault starts at t=0 [sec].

medium intensity (50%), denoted by the blue color, and high intensity (75%), denoted by
the green color. In each case, the fault starts at time t = 0 [sec]. The two plots on the top
are related to the water level measured signal, i.e. ymes

1 , whereas the two plots on the bottom
refer to the steam flow measured signal, i.e. umes

1 . These plots highlight how differently the
two kind of sensor failures considered in this work, i.e. abrupt fault, on the left, and incipient
fault, on the right, corrupt the correct measurement. The black line in each plot reveals the
constant dynamic maintained in nominal condition by both input and output sensors, i.e.:
umes

1 = ū1 ≈ 200 [m3/sec] and ymes
1 = ȳ1 ≈ 8 [m]. The other three colored lines instead, allow

to rate how much the variation introduced by the abrupt fault is apparent with respect to that
introduced by the incipient fault. Moreover, the two plots on the top reflect the erroneous
control action performed by the closed loop system when a fault occurs on the output mea-
surement, because of the wrong information provided in this case by the faulty sensor to the
PID. Indeed, as reflected in the top-left plot, when abrupt faults occur on ymes

1 , after a certain
amount of time, which depends on the fault’s intensity, the faulty symptom µ1results to be
no more directly appreciable when looking at this measurement signal. Actually, as reflected
in the top-right plot, when dealing with incipient faults on ymes

1 , no faulty symptom can be
appreciated on it. This hiding effect of the faulty symptoms affecting the water level sensor
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Figure 4.10: Temporal evolution of the output injection signal νeq1(t) when different kind
of fault occur: abrupt (left) and incipient (right) on the water level sensor (top) and on the
steam flow sensor (bottom). The fault starts at t=0 [sec].

is a challenging aspect related to this particular FDI application.
The plots of the injection signal νeq1 shown in Figure 4.10 confirm the effectiveness of

the proposed fault detection scheme. Indeed, the two plots on the top reveal the reliability
of the reconstructed faulty symptom affecting the water level sensor, i.e. abrupt fault, on the
top-left, and incipient fault, on the top-right. The two plots on the bottom instead, reflect
the temporal evolution of the filtered version of the faulty symptom affecting the steam flow
sensor, i.e. abrupt fault, on the bottom-left, and incipient fault, on the bottom-right, according
to (4.52). The experimental results therefore, confirm the expected simultaneous sensitivity
of the injection signal νeq1 to both water level and steam flow sensor failures, as pointed
out in (4.33), and also the fact that a complete fault diagnosis cannot be achieved by only
using residuals generated by the SMO. The two plots on the top-right and on the bottom-left
in the Figure 4.10 reveal also another challenging aspect of this FDI application, already
mentioned in Section 4.3.1 when talking about the fault isolation capabilities of the residual
set Ra. Indeed, those two plots reflect the same dynamic, i.e. a ramp signal, generated by
the injection νeq1 when an incipient fault occurs on the water level sensor and an abrupt
fault affects the steam flow sensor respectively. As a consequence, if a strong incipient fault
occurs on the water level sensor, i.e. µ1 ≥ 75%, or a soft abrupt fault occurs on the steam
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flow sensor, i.e. ξ ≤ 25%, the two straight dynamics assumed by νeq1 will be almost the
same. Because of this, the capability to discriminate between these two faulty symptoms
results to be a very challenging diagnostic request for any FDI system.
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Figure 4.11: Fault Signatures generated by the residual vector ~ra. Top-Left: Water level
sensor abrupt fault. Top-Right: Water level sensor incipient fault.Bottom-Left: Steam flow
sensor abrupt fault. Bottom-Right: Steam flow sensor incipient fault.

In the Figure 4.11 and Figure 4.12 some experimental results are shown, which confirm
the effectiveness of the residual evaluation approach designed in Section 4.3 in terms of fault
isolation capability. Let consider the Figure 4.11, which illustrates the fault signatures gener-
ated by the residual vector~ra, according to (4.56), when faults affect the water level sensor,
i.e. the two plots on the top, and the steam flow sensor, i.e. the two plots on the bottom.
Referring to the abrupt faults, i.e. ~ra(t| fy1) on the top-left, and~ra(t| fu1) on the bottom-left,
even by a simple visual inspection it results easy to distinguish between the two trajectories
depicted by~ra; as expected also, the two curves~La( fy1) and~La( fu1) result to be not affected
by the fault intensity. Referring to the incipient faults instead, i.e. ~ra(t| fy1) on the top-right,
and~ra(t| fu1) on the bottom-right, even though these two curves look similar, they still reflect
different dynamics, which again do not depend on the fault intensity. Moreover, the shape of
the signature related to the incipient fault on the water level reflect similar dynamic proper-
ties with respect to the signature of the abrupt fault on the steam flow. These two signatures
are different just because of the filtering effect introduced by the Levant’s robust differentia-
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Figure 4.12: Fault Signatures generated by the residual vector ~rb. Top-Left: Water level
sensor abrupt fault. Top-Right: Water level sensor incipient fault.Bottom-Left: Steam flow
sensor abrupt fault. Bottom-Right: Steam flow sensor incipient fault.

tor, according to (4.59). To summarize, the experimental results shown in the Figure 4.11
confirm the capability of the residual set Ra to isolate both abrupt and incipient faults on both
the water level and steam flow sensors. The complete fault isolation was obtained also by
using the residual set Rb, as shown in the Figure 4.12, which illustrates the fault signatures
generated by the residual vector~rb, according to (4.62). The two signatures on the left, i.e.
~rb(t| fy1) on the top-left, and~rb(t| fu1) on the bottom-left, confirm also for the residual set Rb
the high isolation capability when dealing with abrupt faults. The other two signatures on
the right instead, i.e.~rb(t| fy1) on the top-right, and~rb(t| fu1) on the bottom-right, reveal how
the two curves~Lb( fy1) and~Lb( fu1) can be distinguished, because in this case a discrimina-
tive element is available. The comparison term is the straight black line depicted in all the
four plots, which represents the subspace S ∈ R where, according to (4.67), will tend to lie
the trajectory of ~rb when a fault on the steam flow occurs. The reason why in both cases
the trajectory of~rb does not lie exactly on the subspace S, is due to the presence of a small
error introduced into the observer in order to satisfy the required boundary condition (4.28).
Therefore, through the empirical comparison of signatures generated by the residual set Rb,
was found a simpler and much effective way to discriminate by visual inspection between
faults on the steam flow and water level sensors, even when dealing with faulty symptoms
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Figure 4.13: Temporal evolution of the controller PID signal (top) and the feedwater system
measured signal (bottom) when different kind of fault occur: abrupt (left) and incipient
(right). The fault starts at t=0 [sec].

of incipient type. Indeed, in this last case the two corresponding signatures will differ with
respect to the number of times the residual vector~rb ”crosses” the subspace S.

The four plots in the Figure 4.13 provide a comparison among the nominal and faulty
values of the two measurements processed by the water flow sensor and the PID controller,
respectively. Again, for each signal, three different percentages of fault amplitude, i.e. low,
medium and high, are considered. In each case, the fault starts at time t = 0 [sec]. The two
plots on the top are related to the water flow measured by the sensor installed at the output of
the feedwater system, i.e. ymes

w , whereas the two plots on the bottom refer to the set-point send
by the PID controller to the feedwater system, i.e. uPID

w . These plots highlight the corruption
effects introduced on the actual signal by abrupt faults, on the left, and incipient faults, on
the right. The black line in each plot reveals the nominal dynamic of input and output of the
feedwater system, i.e.: uPID

w = ūw ≈ 100 [m3/sec] and ymes
w = ȳw ≈ 200 [m3/sec], whereas

again, the three colored lines allow to rate how much the variation introduced by the abrupt
fault is apparent with respect to that introduced by the incipient fault.

Also in this case a complete fault isolation was obtained, as shown in the Figure 4.15,
which illustrates the fault signatures generated by the residual vector~rbw , according to (4.69).
The two signatures on the left, confirm also for the residual set Rbw the high isolation capa-
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Figure 4.14: Temporal evolution of the output injection signal νeqw(t) when different kind of
fault occur: abrupt (left) and incipient (right) on the feedwater sensor (top) and on the PID
controller (bottom). The fault starts at t=0 [sec].

bility when dealing with abrupt faults. The two signatures right, confirm the discriminative
capability of Rbw even for incipient faults. Also in this case, the black line depicted in all the
four plots, represents the subspace Sw ∈ R where will tend to lie the trajectory of~rbw when
a fault on the input channel occurs, i.e. a fault on the PID controller. Again, the reason why
the trajectory of~rw does not lie exactly on the subspace S, is due to the presence of a small
error introduced into the observer in order to satisfy the required boundary condition (4.43).
Then, these experimental results confirm the fault isolation capability also for the residual
set Rbw , when dealing with abrupt and incipient faults on the water flow sensor and the PID
controller of a feedwater system.

In conclusion, for the considered application, the whole fault isolation can be achieved
not only by developing a suitable signature evaluation algorithm, but also in a relatively easy
way, by means of a simple visual inspection of the fault signatures from a human experienced
operator.
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Figure 4.15: Fault Signatures generated by the residual vector~rbw . Top-Left: feedwater sen-
sor abrupt fault. Top-Right: feedwater sensor incipient fault.Bottom-Left: PID controller
abrupt fault. Bottom-Right: PID controller incipient fault.

4.5 Conclusion
In this Chapter, the development of an FDD system for a water-steam power plant has been
discussed. The design approach discussed in Chapter 3 has been exploited. The proposed hy-
brid FDI scheme can be divided into two main parts: the residual generator and the residual
evaluation stage. The first stage is implemented by using a model-based SMO methodology,
while the second one exploits a graphical approach which allows to perform the fault iso-
lation by means of a simple visual inspection of fault signatures. The alternative definition
of signature proposed in this research gives the opportunity to implement the whole residual
evaluation task also in a completely automated way, by integrating suitable signal based or
data-driven techniques. However, this research is still ongoing and experimental results are
not yet available for the industrial application considered in this Chapter. Further research is
needed also to define a well stated framework able to formally support the advantages given
by applying data-mining techniques to a residual generator based on SMOs, which resulted
to be an effective fault detector for the considered application. The experimental results con-
firm for the considered application the opportunity to achieve a full fault isolation even when
enough measurements are not available. Indeed, by processing the output injection of the
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SMOs, it is possible to identify also faults in the input devices and then get a sufficiently
accurate fault classification, overcoming the limitations related to a direct use of the output
injection signals as residuals.



Chapter 5

Real-time DDR State-Parameter
Estimation

Data Reconciliation is a methodology which exploits process information and mathemati-
cal methods in order to automatically correct measurements in industrial processes. When
dealing with chemical processes, as explained in [Romagnoli and Sánchez, 2000], errors in
process measurements give rise to discrepancies in material and energy balances. In such
cases, DR procedures allow to obtain more accurate estimates of process variables that are
consistent with a model of the plant’s dynamics. This Chapter presents a novel approach to
implement a real-time version of DDR along with Parameter Estimation. In the Sections 5.1
and 5.2, two fundamental concepts are introduced, which are the QSS model formulation
and the DDR, respectively. Then, in Section 5.3, the novel joint data reconciliation pa-
rameter estimation procedure is explained in detail, whereas in Section 5.4 two different
state-parameter decoupling strategies are proposed.

5.1 Quasi-Steady-State Model Formulation
The problem to be tackled in this Chapter is that of DR for applications in which the dominant
time constant of the dynamic response of the system is much smaller than the period in which
disturbances enter the system. As pointed out in Section 2.3.3, under this assumption the
system displays QSS behavior. Thus, it can be assumed the process will be essentially at
steady state, except for slow drifts or occasional sudden transitions between steady states. In
such cases, the estimates should be consistent, that is, they should satisfy the mass and energy
balances. Under these assumptions, the vector f(x) of balance equations, at a particular
instant of time k, can be represented as follows in the discrete domain:

f(xk) = f(x̂k)+Ak(xk− x̂k) = f(x̂k)+Akxk−Akx̂k = Akxk−bk (5.1)

where:

Ak =
∂ f(x)

∂x

∣∣∣∣
x=x̂k

, ai jk =
∂ fi(x)

∂x j

∣∣∣∣
x=x̂k

, bk = Akx̂k− f(x̂k) (5.2)

Hence, the set of constraints can be rewritten as:

f(xk) = 0 ⇒ bk = Akxk (5.3)



5.1 Quasi-Steady-State Model Formulation 103

Therefore, as stated in [Romagnoli and Sánchez, 2000], the system’s dynamics can be
modeled by the following three sets of equations, expressed in the discrete domain:

• a set of n transition equations:

xk+1 = Ixk +wk ; k = 0,1, . . . (5.4)

where xk+1 and wk are the state vector and the process noise vector at time tk respec-
tively;

• a set of n measurement equations:

yk = Ixk +(v1)k ; k = 0,1, . . . (5.5)

where yk and (v1)k are the output vector and the measurement error vector at time tk
respectively;

• a set of m balance equations:

bk = Akxk +(v2)k ; k = 0,1, . . . (5.6)

where bk, Ak and (v2)k are the vector containing the estimation of the nonlinear part
for each of the balance equations, the matrix related to the linear approximation of the
model, and the modeling error vector at time tk respectively.

According to (2.54), the state and all the error vectors in the model are supposed to be
uncorrelated and normally distributed random variables with known covariance matrix, that
is:

xk ∼ N[x0,ΣΣΣ0]

wk ∼ N[0,Q]

(v1)k ∼ N[0,R1]

(v2)k ∼ N[0,R2]

(5.7)

According to (2.38), the DDR is based on a system modeled in its state-space form,
which can be expressed as follows in the discrete domain:

xk+1 = Fkxk +wk

zk = Gkxk +vk
(5.8)

The three equation sets previously defined can be related to this state-space representa-
tion by considering an augmented system having a state vector xk of dimension n and an
observation vector zk of dimension n+m. Therefore, the following correspondences arise:

zk =

[
yk
bk

]
; vk =

[
(v1)k
(v2)k

]

Fk = I ; Gk =

[
I

Ak

] (5.9)

and consequently, the correlation matrix of the observation error vector vk is:

R =

[
R1 0
0 R2

]
(5.10)
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5.2 Dynamic Data Reconciliation
According to (2.3), the steady-state DR problem can be stated as the following constrained
LSE problem:

min
x
(y−x)T Q−1(y−x)

s.t. f j(x) = 0 , j = 1, . . . ,m
(5.11)

where each constraint f j(x) is a balance equation which has to be satisfied.
The DR problem above is assumed to be operating at steady-state, i.e. only one set of data

is available. However, as mentioned in Section 2.1, when the process is sampled regularly,
at discrete periods of time, along with the spatial redundancy also the temporal redundancy
can be exploited. When static DR methods are used, the estimates of the desired process
variables calculated for two different times, t1 and t2, are obtained independently, that is,
no previous information is exploited in the generation of estimates for other times. In other
words, temporal redundancy is ignored and past information is discarded. In the QSS model
formulation, as remarked in the previous Section, the process is considered essentially at
steady state, except for slow drifts or occasional sudden transitions between steady states.
In such cases, the estimates should be consistent, that is, they should satisfy the mass and
energy balances.

Let consider the situation at time tk, and let suppose the predicted values are already
available. According to (2.48), the minimum variance estimates of the states can be obtained
as the solution of the following minimization problem:

min J(x) = [x− x̂k/k−1]
T

ΣΣΣ
−1
k/k−1[x− x̂k/k−1]+vT

k R−1
k vk (5.12)

As shown in Section 2.3.2, the solution of this minimization problem simplifies to up-
dating steps of a static KF. For the linear case, the matrices do not depend on x and the
covariance matrix of error can be calculated in advance, without having actual measure-
ments. When the problem is non-linear instead, these matrices depend on the last available
estimate of the state vector, and the EKF takes place.

As fully explained in the literature ([Bryson, 1975], [Jazwinski, 1970], [Gelb, 1974]),
when dealing with stochastic systems having dynamic linear models and both errors and
noises assumed to be all uncorrelated and Gaussian, it can be shown that the KF is an
observer-based solution which guarantees an optimal state estimation along with the min-
imum variance. According to the same general formulation given in [Simon, 2010], [Kamen
and Su, 1999], [Friedland, 1969], the equations of the KF in its recursive form can be ex-
pressed for the considered case as follows:

x̂k = Fkx̂k−1 +Kk (zk−GkFk−1x̂k−1) (5.13)

where x̂k is the state estimation vector at time tk, whereas Kk is the so-called Kalman gain
matrix, which is computed as:

Kk =ΣΣΣkGT
k
(
GkΣΣΣkGT

k +R
)−1

(5.14)

ΣΣΣk is the so-called a priori covariance matrix of the state estimation error (xk−1− x̂k−1),
because it takes into account the observations up to zk−1 but not the current observation zk,
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and it is recursively computed by means of the following so-called variance equation:

ΣΣΣk+1 = Fk (I−KkGk)ΣΣΣkFT
k +Q (5.15)

According to [Friedland, 1969], the computation of ΣΣΣk+1 is done in two stages. Indeed,
at first the following matrix is computed:

Tk = (I−KkGk)ΣΣΣk (5.16)

Then, ΣΣΣk+1 is obtained as:

ΣΣΣk+1 = FkTkFT
k +Q (5.17)

Notice that, Tk is often called as the a posteriori covariance matrix of the state estimation
error (xk− x̂k), because it takes into account all the past observations including the current
value zk. The initial estimates for the KF are computed as follows:

x̂0 = E[x0]

ΣΣΣ0 = E[(x0− x̂0)(x0− x̂0)
T ]

(5.18)

where E[·] is the expectation operator. As stated in [Simon, 2010], if the process noise and
the observation error sequences wk and vk are both Gaussian and uncorrelated, at each time
step tk the KF will minimize the trace of the estimation error covariance matrix ΣΣΣk.

5.3 Joint Data Reconciliation - Parameter Estimation
The modeling approach considered in this Section allows the implementation of a DDR
technique based on a suitable EKF scheme, which includes the estimate of an unknown
parameter vector θθθ of p elements. Indeed, according to (5.9), the matrix Gk contains the
linear approximation of the steady-state constraints; thus, it depends also on the parameters
to be estimated. As it has been done in [Romagnoli and Gani, 1983], in order to estimate the
values of those variables which cannot be directly measured, the EKF approach is applied
after extending the state vector x, that is by adding to it the parameter vector θθθ as follows:

xA =

[
x
θθθ

]
(5.19)

The system considered for the EKF implementation, modeled in its state-space form, it
becomes in the discrete domain:

xAk+1 = Mkxk +wAk

zk = HkxAk +vk
(5.20)

where:

xAk =

[
xk
θθθ k

]
l n
l p

; wAk =

[
wk
0

]
l n
l p

(5.21)
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Mk =

n
←→

p
←→ Fk

∂Fk
∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

0 I

 l n

l p
=

 I[n] 0[n,p]

0[p,n] I[p]

= I[n+p]
(5.22)

Hk =

n
←→

p
←→[

Gk
∂Gk
∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

]
l (n+m)=

n
←→

p
←→

I[n] 0[n,p]

Ak
∂Ak
∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k


l n

l m

(5.23)

Therefore, the recursive equations become:

x̂Ak = Mk−1x̂Ak−1 +KAk

(
zk−HkMk−1x̂Ak−1

)
(5.24)

KAk =ΣΣΣAkHT
k
(
HkΣΣΣAkHT

k +R
)−1

(5.25)

ΣΣΣAk+1 = Mk
(
I−KAkHk

)
ΣΣΣAkMT

k +QA (5.26)

where:

QA =

n
←→

p
←→[

Q 0
0 0

]
l n

l p

(5.27)

is the covariance matrix of the augmented process noise vector wAk .
The augmented Kalman gain matrix KAk , and the a priori covariance matrix ΣΣΣAk of the

augmented state estimation error (xAk−1− x̂Ak−1), are partitioned as follows:

KAk =

n+m
←→ Kxk

Kθk

 l n

l p

;
ΣΣΣAk =

n
←→

p
←→ ΣΣΣxk ΣΣΣxθk

ΣΣΣθxk ΣΣΣθk

 l n

l p

(5.28)

where:

• ΣΣΣxk is the covariance matrix related to the state estimation error (xk− x̂k), that is the
autocovariance of the state estimation problem

• ΣΣΣθk is the covariance matrix related to the parameter estimation error (θθθ k− θ̂θθ k), that is
the auto covariance of the parameter estimation problem

• ΣΣΣxθk = ΣΣΣθxk = ΣΣΣT
xθk

is the covariance matrix related to the state xk and parameter θθθ k
estimation errors, that is the cross-covariance of the joint state-parameter estimation
problem.
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The initial estimate of the parameter vector θ̂θθ 0 it is assumed to be known at the initial
time step t0 with a given approximation error. This fact implies that ΣΣΣθ0 6= 0. Indeed, the
assumption ΣΣΣθ0 = 0 implies the parameter vector θθθ is perfectly known at the initial time,
thus it will be known thereafter also, that is ΣΣΣθk = 0 ∀k, and no parameter estimation but
state estimation only will be performed by the EFK. The same consideration applies also to
the initial estimate of the state, thus ΣΣΣx0 6= 0. Another assumption needed to make possible
the state-parameter decoupling is to consider x and θθθ to be independent at the initial time
step t0; this fact implies: ΣΣΣxθ0 =ΣΣΣθx0 = 0.

By computing ΣΣΣAk+1 in two stages, as follows:

TAk =
(
I−KAkHk

)
ΣΣΣAk (5.29)

then:

ΣΣΣAk+1 = MkTAkMT
k +QA (5.30)

with the Kalman gain computed as:

KAk = TAkHT
k R−1 (5.31)

the equations related to the computation of ΣΣΣxk , ΣΣΣθk and ΣΣΣxθk result to be all coupled. Con-
sequently, these covariance matrices cannot be obtained independently, and hence the state
and parameter estimation problems cannot be solved separately.

As claimed in [Romagnoli and Gani, 1983], and proved in the appendix of [Friedland,
1969], the a priori covariance matrix ΣΣΣAk and the a posteriori covariance matrix TAk can be
computed respectively also by means of an equivalent transformation, more suitable for the
state-parameter decoupling purpose, which makes use of the auxiliary matrices UAk , VAk and
Ek as follows:

ΣΣΣAk = Σ̃ΣΣAk +UAkEkUT
Ak

TAk = T̃Ak +VAkEkVT
Ak

(5.32)

Where Σ̃ΣΣAk and T̃Ak are respectively the a priori and a posteriori covariance matrices
related to the state estimation problem only. The values of T̃Ak and Σ̃ΣΣAk+1 are obtained by
means of the standard two-stage computation based on the variance equation, that is:

T̃Ak =
(
I− K̃AkHk

)
Σ̃ΣΣAk (5.33)

then:

Σ̃ΣΣAk+1 = MkT̃AkMT
k +QA (5.34)

being K̃Ak the Kalman gain related to the state estimation problem only, which can be com-
puted as:

K̃Ak = Σ̃ΣΣAkHT
k
(
HkΣ̃ΣΣAkHT

k +R
)−1

= T̃AkHT
k R−1 (5.35)

The value of the auxiliary matrices UAk+1 and VAk are obtained by means of a two-stage
approach analogous to that used for the computation of Σ̃ΣΣAk+1 and T̃Ak as follows:

VAk =
(
I− K̃AkHk

)
UAk (5.36)
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then:

UAk+1 = MkVAk (5.37)

The value of the auxiliary p-dimensional squared matrix Ek is obtained by means of the
following recursive equation:

Ek+1 = Ek−EkUT
Ak

HT
k
[
(HkΣ̃ΣΣAkHT

k +R)+HkUAkEkUT
Ak

HT
k
]−1 HkUAkEk (5.38)

Since T̃Ak , Σ̃ΣΣAk , and K̃Ak , are all parameter-free matrices, they can be partitioned as fol-
lows:

T̃Ak =

 T̃xk T̃xθk

T̃θxk T̃θk

=

n
←→

p
←→ T̃xk 0

0 0

 l n

l p

(5.39)

Σ̃ΣΣAk =

 Σ̃ΣΣxk Σ̃ΣΣxθk

Σ̃ΣΣθxk Σ̃ΣΣθk

=

n
←→

p
←→ Σ̃ΣΣxk 0

0 0

 l n

l p

(5.40)

K̃Ak =

 K̃xk

K̃θxk

=

n+m
←→ K̃xk

0

 l n

l p

(5.41)

Therefore, by taking into account all the partitioned versions of the involved matrices,
the following result arises:

T̃xk =
(
I− K̃xkGk

)
Σ̃ΣΣxk (5.42)

Σ̃ΣΣxk+1 = FkT̃xkFT
k +Q (5.43)

K̃xk = Σ̃ΣΣxkGT
k
(
GkΣ̃ΣΣxkGT

k +R
)−1

= T̃xkGT
k R−1 (5.44)

and the following block partitioning arise for the auxiliary matrices:

VAk =

p
←→
Vxk

Vθk


ln

lp

=

nl

pl

n
←→

p
←→

I− K̃xkGk −K̃xk
∂Gk
∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

0 I



p
←→
Uxk

Uθk


ln

lp

(5.45)
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UAk+1 =

p
←→

Uxk+1

Uθk+1


ln

lp

=

nl

pl

n
←→

p
←→

Fxk
∂Fk
∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

0 I



p
←→
Vxk

Vθk


ln

lp

(5.46)

Thus:

Vxk =
(
I− K̃xkGk

)
Uxk−

(
K̃xk

∂Gk

∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

)
Uθk =

= Uxk− K̃xk

(
GkUxk +

∂Gk

∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

Uθk

)
Vθk = Uθk

(5.47)

Uxk+1 = FkVxk +

(
∂Fk

∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

)
Vθk

Uθθθ k+1 = Vθk

(5.48)

It is worth to note that the auxiliary submatrices Uθk and Vθk are being not updated from
their initial value, that is:

Uθk+1 = Vθk =⇒ Uθk+1 = Uθk =⇒ Uθk = Uθ0 (5.49)

By introducing the auxiliary matrix Sk, defined as:

Sk = GkUxk +

(
∂Gk

∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

)
Uθk (5.50)

The following recursive formula arises:

Vxk = Uxk− K̃xkSk (5.51)

Then, in terms of partitioned matrices, ΣΣΣAk and T̃Ak become:

ΣΣΣxk = Σ̃ΣΣxk +UxkEkUT
xk

ΣΣΣxθk = Σ̃ΣΣxθk +UxkEkUT
θk

ΣΣΣθxk = Σ̃ΣΣθxk +UθkEkUT
xk

ΣΣΣθk = Σ̃ΣΣθk +UθkEkUT
θk

(5.52)

Txk = T̃xk +VxkEk+1VT
xk

Txθk = T̃xθk +VxkEk+1VT
θk

Tθxk = T̃θxk +VθkEk+1VT
xk

Tθk = T̃θk +VθkEk+1VT
θk

(5.53)
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The initial values of the auxiliary matrices: Ux0 = 0, Uθ0 = I, E0 = I, can be obtained
by recalling the initial conditions discussed above, which have to be imposed in order make
feasible the state-parameter decoupling implementation, that is:

• Initial uncertainty in the state estimation:
⇒ ΣΣΣx0 = Σ̃ΣΣx0 = E[(x0− x̂0)(x0− x̂0)

T ] 6= 0

• Initial uncertainty in the parameter estimation:
⇒ ΣΣΣθ0 6= 0

• First estimate of x and θθθ are done independently:
⇒ ΣΣΣxθ 0 =ΣΣΣθx0 = 0

Indeed, with this choice the following configuration arise:

ΣΣΣxk = Σ̃ΣΣxk +UxkEkUT
xk

ΣΣΣxθk = UxkEk

ΣΣΣθxk = EkUT
xk

ΣΣΣθk = Ek

(5.54)

Txk = T̃xk +VxkEk+1VT
xk

Txθk = VxkEk+1

Tθxk = Ek+1VT
xk

Tθk = Ek+1

(5.55)

Therefore, the Kalman gain matrix can be expressed in its state-parameter decoupled
form, as follows :

KAk =

n+m
←→
Kxk

Kθk


ln

lp

=

nl

pl

n
←→

p
←→

Txk Txθk

Tθxk Tθk



n+m
←→
GT

k(
∂Gk
∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

)T



n+m
←→R−1

 ln+m =

=

nl

pl

n
←→

p
←→

T̃xk +Vxk Ek+1VT
xk

Vxk Ek+1

Ek+1VT
xk

Ek+1



n+m
←→
GT

k(
∂Gk
∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

)T



n+m
←→ R−1

 ln+m =

=

nl

pl

n+m
←→

(
T̃xk +Vxk Ek+1VT

xk

)
GT

k +Vxk Ek+1

(
∂Gk
∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

)T

Ek+1VT
xk

GT
k +Ek+1

(
∂Gk
∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

)T



n+m
←→ R−1

 ln+m
(5.56)
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Thus, in terms of partitioned matrices:

Kxk = T̃xkGT
k R−1 +Vxk

Ek+1VT
xk

GT
k +Ek+1

(
∂Gk

∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

)T
R−1 =

= K̃xk +VxkKθk

Kθk =

Ek+1VT
xk

GT
k +Ek+1

(
∂Gk

∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k

)T
R−1

(5.57)

The optimum estimation of the state-parameter vector x̂Ak , given the sequence of obser-
vations {z0, . . . ,zk}, can be obtained by exploiting the well-known filtering recursive formula
(5.24), proposed by [Kalman, 1960]. The formula can be partitioned as follows:


x̂k

θ̂̂θ̂θ k

=


Fk−1

∂Fk−1
∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k−1

0 I




x̂k−1

θ̂̂θ̂θ k−1

+

+


Kxk

Kθk



zk−

 Gk
∂Gk
∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k




Fk−1
∂Fk−1

∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k−1

0 I




x̂k−1

θ̂̂θ̂θ k−1



=

=


Fk−1xk−1 +

(
∂Fk−1

∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k−1

)
θ̂̂θ̂θ k−1

θ̂̂θ̂θ k−1

+

+


Kxk

Kθk



zk−

 GkFk−1 Gk

(
∂Fk−1

∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k−1

)
+ ∂Gk

∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k




x̂k−1

θ̂̂θ̂θ k−1





(5.58)

Thus, in terms of partitioned matrices:

x̂k = Fk−1x̂k−1 +

(
∂Fk−1

∂θθθ

∣∣∣∣
θθθ=θ̂̂θ̂θ k−1

)
θ̂̂θ̂θ k−1+

+Kxk
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(5.59)
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As done in [Friedland, 1969], by removing from the equation (5.59) all the components
related to the parameter vector θ̂θθ k, it becomes possible to define as x̃k the parameter-free
estimate for the state vector x̂k:

x̃k = Fk−1x̃k−1 + K̃xk

(
zk−GkFk−1x̃k−1

)
= Fk−1x̃k−1 + K̃xk r̃k (5.60)

where:

r̃k = zk−GkFk−1x̃k−1 (5.61)

is defined as the residual of parameter-free estimation.

Proposition 4. The state vector x̂k can be expressed in terms of its parameter-free estimate
x̃k and the parameter estimate θ̂θθ k, as follows:

x̂k = x̃k +Vxkθ̂θθ k (5.62)

Proof. By substitution of (5.62) in the bracketed term which have in common the expres-
sions of x̂k and θ̂θθ k in (5.59), and by taking into account that Uθk = Vθk = I, the following
expression can be written:

zk−GkFk−1x̂k−1 +Gk
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=Sk

θ̂̂θ̂θ k−1 = r̃k−Skθ̂̂θ̂θ k−1

(5.63)

Thus, the expressions of x̂k and θ̂θθ k can be written also in terms of the parameter-free
components x̃k and r̃k as follows:

x̂k = Fk−1

(
x̃k−1 +Vxk−1 θ̂̂θ̂θ k−1

)
+

(
∂Fk−1
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)
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=
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(
r̃k−Skθ̂̂θ̂θ k−1

)
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(
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)
θ̂̂θ̂θ k−1 +Kθk r̃k

(5.64)
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Figure 5.1: Scheme of the Single Channel State-Parameter Decoupling Filter

By substituting in (5.62) the expression of θ̂̂θ̂θ k in (5.64), it can be obtained another ex-
pression of x̂k, written in terms of the parameter-free components x̃k and r̃k:

x̂k = x̃k +Vxk

[(
I−KθkSk

)
θ̂̂θ̂θ k−1 +Kθk r̃k

]
(5.65)

It is worth to note that (5.64) and (5.65) must be equal in order to be two equivalent
expressions of x̂k in terms of x̃k and r̃k.

Thus:

x̃k +
(
Vxk −Vxk Kθk Sk

)
θ̂̂θ̂θ k−1 +Vxk Kθk r̃k = Fk−1x̃k−1 +

(
Uxk −Kxk Sk

)
θ̂̂θ̂θ k−1 +Kxk r̃k

=⇒ x̃k = Fk−1x̃k−1 +
(
Uxk −Kxk Sk−Vxk +Vxk Kθk Sk

)
θ̂̂θ̂θ k−1 +

(
Kxk −Vxk Kθk

)
r̃k

(5.66)

To complete the proof, the expression of x̃k in (5.66) must be equal to the definition of x̃k
given in (5.60).

Therefore, the two following conditions must apply:

Kxk−VxkKθk = K̃xk

=⇒Kxk = K̃xk +VxkKθk

(5.67)

Uxk−KxkSk−Vxk +VxkKθkSk = 0

=⇒ Vxk = Uxk−
(
Kxk−VxkKθk

)
Sk

=⇒ Vxk = Uxk− K̃xkSk

(5.68)

Both these constraint are satisfied, thus the proof is successfully completed.

5.4 Decoupled State-Parameter DDR procedure

5.4.1 Single Channel Estimator
By applying the results obtained in Section 5.3, it is possible to develop the following com-
putational procedure, which allows to implement a parameter-free state estimation x̃ inde-
pendent of the parameter vector estimation θ̂̂θ̂θ = [θ̂1, . . . , θ̂p]. The whole procedure can be
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splitted in four different sub-programs. The algorithm 1 implements the updating of the all
model matrices, by taking as inputs the actual and estimated measurement vector, i.e. x,
and x̂, respectively, as well as the estimates of parameters, i.e. θ̂̂θ̂θ , then it sends as outputs
to the state and parameter estimators the observation vector, i.e. z, and the updated model
submatrices, i.e. G, and C = ∂G/∂θθθ . The Algorithm 2 refers to the KF, which performs
the parameter-free state estimation, by taking as inputs the observation vector, i.e. z, the
model matrix G, and the error and noise covariance matrices, i.e. R, and Q, respectively,
then providing as output the state estimation vector x̃, and the other parameter-free matrices
needed by the parameter estimation filter, i.e. the Kalman gain K̃x, the covariance matrix
Σ̃ΣΣx, and the residual of parameter-free estimation r̃. The algorithm 3 implements the filter
which performs the estimates of parameters, by taking as inputs the parameter-free compo-
nents from the KF, i.e. K̃x, Σ̃ΣΣx, and r̃, the error covariance matrix, i.e. R, and the model’s
matrices G and C, then providing as outputs the parameter vector estimation, i.e. θ̂̂θ̂θ , and
the correction term δ = Vxθ̂̂θ̂θ . Finally, the algorithm 4 implements the updating of the state
estimation vector, by taking as inputs the estimations provided by the two decoupled filters,
i.e. the parameter-free state estimation x̃, and the correction term δ , then providing as output
the vector x̂. The corresponding scheme of this computation procedure is showed in figure
5.1. The covariance matrices R, and Q are both supposed to be known; thus, they are not
considered in this graphical representation, which aims to depict the updating logic of the
state-parameter decoupling strategy. In this scheme the computation procedure leads to a
two parallel filtering parts, the first one corresponding to the standard KF, which generates
the original state estimation x̃, and the second one implementing the adaptive part, which
generates the corrective term δ due to the parameter estimation θ̂θθ . The final state estimation
x̂ is then computed by taking into account both the estimation components of the two decou-
pled filters. As depicted in Figure 5.1, this state-parameter decoupling filter can be seen also
as a single channel estimator. This approach results to be effective and useful in many prac-
tical applications, because it allows to make the parameter estimation after the ”state profile”
estimation has been performed. Indeed, the way to solve the estimation problem requiring
the initial values both for the state and parameter vectors is to keep constant the parameter
vector to a good assumed profile θ̂θθ 0, i.e. to keep closed the parameter estimation channel,
and to update for a certain amount of time the state estimation until a good state profile is
reached; thus, the parameter estimation channel could be opened and consequently also the
parameter vector would start to be estimated.

5.4.2 Multi-Channel Estimator
The direct application of the joint Data Reconciliation-Parameter Estimation procedure de-
veloped in Section 5.3 to an industrial system can be done only if a certain amount of restric-
tive assumptions apply. Indeed, most of the time, the number of parameters which need to be
estimated at the same time in an industrial process make unsatisfied the observability prop-
erty of the corresponding augmented system which should be filtered, that is the necessary
condition for the application of this estimation procedure. In such a case, the problem could
be solved by reducing the number of components in the parameter vector θ̂θθ up to obtain a
corresponding augmented system which satisfies the observability property. All the remain-
ing parameters which cannot be estimated must be supposed known and constant. In order to
overcome this limitation, in this paper a novel approach which makes use of a suitable set of
state-parameter decoupling filters has been proposed. The main idea is to split the whole set
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Algorithm 1: Update Model (θθθ estimation) matrices

Input : x, x̂, θ̂̂θ̂θ
Output: C,G,z

1 f← SteadyStateEqs(x̂, θ̂̂θ̂θ)
2 A← Jacobian(f, x̂)
3 B← Jacobian(f, θ̂̂θ̂θ)
4 G← [I ; A]
5 C← [0 ; B]
6 f← SteadyStateEqs(x, θ̂̂θ̂θ)
7 Am← Jacobian(f,x)
8 Bm← Jacobian(f, θ̂̂θ̂θ)
9 D← [Am , Bm]

10 xA← [x , θ̂̂θ̂θ ]
11 e← D ·xA
12 b← (e− f)
13 z← [x , b]

Algorithm 2: Update Parameter-Free Kalman Filter
Input : G,R,Q,z,k
Output: K̃x,Σ̃ΣΣx, r̃, x̃

1 if k = 0 then
2 Σ̃ΣΣx← Σ̃ΣΣx0

3 x̃← 0
4 end
5 K̃x← Σ̃ΣΣxGT (GΣ̃ΣΣxGT +R)−1

6 Σ̃ΣΣx← (I− K̃xG)Σ̃ΣΣx +Q
7 r̃← z−Gx̃
8 x̃← x̃+ K̃xr̃

of parameters to estimate in a certain number of subsets. As underlined before, each one of
these subsets must to be chosen such as its corresponding augmented system is observable,
that is the estimation with a state-parameter decoupling filter would be feasible.

Therefore, given l suitable, i.e. observable, parameter subsets, the whole parameter vec-
tor of the model, i.e. θθθ T , having a total number of p components, can be splitted as follows:

θθθ T = [θθθ 1, . . . ,θθθ i, . . . ,θθθ l] (5.69)

where:
θθθ i = [θi1, . . . ,θipi] , i = 1, . . . , l

∑
l
i=1 pi = p

(5.70)

Hence, the parameter vector containing the i-th set of estimates, i.e. θ̂θθ i, can be denoted
as:

θ̂θθ Ti = [θθθ 1, . . . ,θ̂θθ i, . . . ,θθθ l] (5.71)
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Algorithm 3: Update Parameter Estimation Filter
Input : K̃x,Σ̃ΣΣx,G,C,R, r̃,k
Output: δ , θ̂̂θ̂θ

1 if k = 0 then
2 Ux← 0
3 E← I
4 θ̂̂θ̂θ ← θ̂̂θ̂θ 0

5 end
6 S←GUx +C
7 Vx← Ux− K̃xS
8 Ux← Vx

9 E← E−EST (GΣ̃ΣΣxGT +R+SEST )−1SE
10 Kθ ← E(VT

x GT +C)R−1

11 θ̂̂θ̂θ ← θ̂̂θ̂θ +Kθ (r̃−Sθ̂̂θ̂θ)

12 δ ← Vxθ̂̂θ̂θ

Algorithm 4: Update State Estimation
Input : x̃,δ
Output: x̂

1 x̂← x̃+δ

Figure 5.2: Scheme of the l2−Channels Parameter Estimation with Decoupled KF State
Estimation
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whereas the estimated parameter vector as:

θ̂θθ T = [θ̂θθ 1, . . . ,θ̂θθ i, . . . ,θ̂θθ l] (5.72)

The following modify is then applied to the update of model’s matrices procedure imple-
mented inside each of the l state-parameter decoupling filters. Therefore, in a multi-channel
estimation scheme, the algorithm 5 is applied in place of the algorithm 1. The only differ-
ence between these two codes results in the implementation of the splitting strategy of the
parameter vector, which in the algorithm 5 reflects (5.70) and (5.71).

Algorithm 5: Update Model (θθθ i estimation) matrices

Input : x, x̂, θ̂̂θ̂θ Ti

Output: C,G,z

1 θ̂̂θ̂θ i← [θ̂i1, · · · , θ̂ipi ]

2 f← SteadyStateEqs(x̂, θ̂̂θ̂θ Ti)
3 A← Jacobian(f, x̂)
4 B← Jacobian(f, θ̂̂θ̂θ i)
5 G← [I ; A]
6 C← [0 ; B]
7 f← SteadyStateEqs(x, θ̂̂θ̂θ Ti)
8 Am← Jacobian(f,x)
9 Bm← Jacobian(f, θ̂̂θ̂θ i)

10 D← [Am , Bm]

11 xA← [x , θ̂̂θ̂θ i]
12 e← D ·xA
13 b← (e− f)
14 z← [x , b]

The estimation of the whole parameter vector, i.e. θ̂̂θ̂θ T , can then be performed by apply-
ing the l2−Channels state-parameter decoupling filter scheme depicted in Figure 5.2. In this
case, a more precise estimate of the state vector, i.e. x̂, can be obtained by applying a stan-
dard KF, which directly exploits the better estimates of the whole parameter set. Currently,
the research is ongoing to formalize an effective application of this multi-channel scheme.
Particularly, a suitable strategy based on the analysis of the observability properties of each
of the l dynamic models in needed, to find a correct channel opening sequence, which guar-
antees the estimation of the whole parameter set. An idea to define the channel opening
sequence can be to compute the sensitivity matrix of the system with respect to the paramet-
ric variations and, starting from the parameter set which sensitivity index are higher, then to
iterate the procedure until the convergence of the estimates is reached.

5.5 Conclusion
In this Chapter, a novel approach to solve the joint data reconciliation along with parame-
ter estimation problem, for systems displaying a quasi-steady-state behavior, has been pre-
sented. A decoupled state-parameter DDR procedure which exploits the concepts of QSS
model and EKF has been developed. In order to solve the parameter estimation problem,
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two different schemes, based on this novel state-parameter decoupling procedure, have been
proposed. The single channel scheme aims to achieve the estimation of a parameter set which
makes satisfied the observability property of the system. The multi-channel scheme instead,
based on an array of l state-parameter decoupling filters of l channels each, resolve to the
more challenging estimation problem related to a larger set of parameters, which cause the
observability loss of the resulting model. Research is currently ongoing, in order to provide a
suitable strategy for the channel opening sequence of the l2−Channels scheme, based on the
observability analysis. Further research is needed also to analytically evaluate the conver-
gence properties of both the proposed schemes, even tough, in principle, they should reflect
the same algorithmic efficiency of the EKF approach.



Chapter 6

Practical Application: Pyrolysis Reactor

This Chapter addresses the application of the joint dynamic data reconciliation and param-
eter estimation procedure for real-time purposes, explained in Section 5.3, to an industrial
pyrolysis reactor. The corresponding joint dynamic data reconciliation along with parameter
estimation problem was solved by means of the two decoupled filtering approaches discussed
in Section 5.4. A real-time version of the state-parameter decoupling filter was implemented
at first, to find two independent solutions for the state and parameter estimation problems.
The problem of estimating sets of parameters which cause the observability loss of the re-
sulting model was also considered. The performances of both the single and multi-channel
estimators have been tested using real data sets collected over a full operational cycle of the
plant. In Section 6.1, the pyrolysis process is depicted and a suitable model is provided.
Then, in Section 6.2, the experimental results which confirm the validity of the proposed
data reconciliation and estimation methods are shown.

6.1 Process Description and Modeling
The pyrolysis reactor is an important processing step in an olefin plant. It is used to crack
heavier hydrocarbons such as naphtha, LPG, etc. to lower molecular weight hydrocarbons,
such as ethylene. The pyrolysis reactor analyzed in this study consists of two identical sec-
tions. Each section of the reactor is commonly referred with the term “side”. Each side
contains six parallel “coils”. A pyrolysis coil is a mechanical component of a cracker fur-
nace where highly endothermic reactions occur to convert hydrocarbons to petrochemicals.
The heat required for cracking the hydrocarbons is supplied from the hot flue gas by conven-
tion and radiation. Feed gases are divided and passed uniformly through each coil. Steam
in also added to each coil, in the required portion, as a cracking media. Cracked gases from
each coil in a side are mixed together, and passed through a Transfer Line Exchanger (TLE).
The schematic layout of the plant is showed in Figure 6.1.

The reactor’s model considered in this research is based on first principles and is the same
depicted in the appendix of [Weiss et al., 1996]. The overall hydrocarbon and steam mass
flow balance are, respectively:

FHtot =
N

∑
i=1

FHi (6.1)

FStot =
N

∑
i=1

FSi (6.2)



6.1 Process Description and Modeling 120

Figure 6.1: Schematic layout of the pyrolysis reactor

and both refers to a total number N = 6 of coils. FHtot is the total flow of hydrocarbons to
the reactor; FHi is the flow of hydrocarbons to the i-th coil; FStot is the total flow of steam to
the reactor; FSi is the flow of steam to the i-th coil. Only the overall flow balance equation
related to hydrocarbon, i.e. (6.1), has been taken into account in this model. As in [Weiss
et al., 1996], the following assumptions are made:

• all coils on both sides are identical;

• a linear relationship exists between the heat transfer coefficient for the side and the
heat transfer coefficient for the coils;

• other effects such as the enthalpy change related to the cracking reactions are taken
into account by a specific heat coefficients.

The overall energy balance is given by:

UA
[

T ST − (Tout +TX)

2

]
−FT M(Tout−TX) = 0 (6.3)

where:

• U is the heat transfer coefficient for the reactor side;

• A is the heat transfer area of the reactor side;

• T ST is the tube skin temperature;

• Tout is the coil outlet temperature;

• TX is the crossover temperature of the reactor side, estimated as the mean value of the
crossover temperature measured for each single reactor coil:

TX =
N

∑
i=1

TXi (6.4)
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• FT M is the thermal mass flow of the reactor side:

FT M = FHtotch +FStotcs (6.5)

where the two coefficients ch and cs are the specific heat of hydrocarbon and steam
respectively.

The following N = 6 equations evaluate the energy balance for each single coil i =
1, . . . ,N:

UiAi

[
T ST − (TOi +TXi)

2

]
−FT Mi(TOi−TXi) = 0 (6.6)

where:

• Ui is the heat transfer coefficient for the i-th reactor coil;

• Ai is the heat transfer area of the i-th reactor coil;

• TOi is the cracking temperature for the i-th reactor coil;

• TXi is the crossover temperature for the i-th reactor coil;

• FT Mi is the thermal mass flow of the i-th reactor coil:

FT Mi = FHich +FSics (6.7)

To summarize, the pyrolysis reactor depicted in figure 6.1 has been modeled by using a
total number of m = 8 balance equations where n = 27 measured variables are involved. The
resulting vectors of measurements and constraints are structured as follows, respectively: the
vector y = [y1, . . . ,yn]

T contains n = 27 measurements where:

• y1 is the total flow of hydrocarbon

• y2, . . . , y7 are the flows of hydrocarbons to the single coils

• y8, . . . , y13 are the flows of steam to the single coils

• y14, . . . , y19 are the crossover temperatures for the single coils

• y20, . . . , y25 are the cracking temperatures for the single coils

• y26 is the tube skin temperature

• y27 is the coil outlet temperature

whereas the vector f(x) = [ f1(x), . . . , fm(x)] contains m = 8 balance equations, where:

• f1(x) is the overall hydrocarbon flow balance equation (6.1)

• f2(x) is the side energy balance equation (6.3)

• f3(x), . . . , f8(x) are the single coil energy balance equations (6.6)
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It is worth to note that, according to (5.5), all the process variables are measured in this
application. Therefore, the state vector x has the same components of the measurement
vector y.

From a theoretical point of view, all the remaining variables of the model, that is: the side
and coil heat transfer coefficients U and Ui, the side and coil heat transfer areas A, Ai and
the two specific heat coefficients ch, cs could be considered in general terms as parameters.
Thus, six different parameter vectors could be defined as follows:

θθθ a = [U ]

θθθ b = [U1, . . . ,UN ]

θθθ c = [ch]

θθθ d = [cs]

θθθ e = [A]
θθθ f = [A1, . . . ,AN ]

(6.8)

Consequently, the vector θθθ T containing the whole set of p = 16 potential parameters
related to the pyrolysis reactor’s model can be defined as follows:

θθθ T = [θθθ a,θθθ b,θθθ c,θθθ d,θθθ e,θθθ f ] (6.9)

Nevertheless, by following the same modeling approach applied in [Weiss et al., 1996],
on the basis of the information available about the specific plant considered in this research,
some additional assumptions can be made in order to reduce the dimension of θθθ T , that is
to reduce the number of parameters which need to be estimated. Indeed, the two specific
heat coefficients, i.e. ch and cs, can be determined by using a rigorous cracking simulator
such as PHENICS, while the side and coil heat transfer areas, i.e. A and A1, . . . , AN , can be
determined as measurement values by analyzing some geometrical properties of the plant.
Thus, only the side and coil heat transfer coefficients, i.e. U and U1, . . . , UN , remain the
parameter which actually need to be estimated in practice, being them unknown quantities
which cannot be directly measured.

6.2 Experimental Results
The validity of the joint dynamic data reconciliation and parameter estimation scheme pro-
posed in Chapter 5 has been tested using a real data set collected over a full operational cycle
of the considered pyrolysis reactor. At first, the estimation problem where in the pyrolysis
process almost all parameters of the reactor’s model can be measured, and then supposed
to be known and constant, has been considered. The initial values assumed for each single
parameter are shown in table 6.1.

In this case, as stated in Section 6.1, only the side and coil heat transfer coefficients
cannot be directly measured. Nevertheless, because of their dependence on the coke which
build up on the tubes, they can be estimated by applying the single channel state-parameter
decoupling filter depicted in Section 5.4.1, by considering θθθ = [θθθ a,θθθ b]. The figures from
6.2 to 6.6 aim to compare the two different estimation profiles for each of the n = 27 state
variables, obtained when filtering the plant measurements, i.e. xi, denoted by the blue line
in the plots, by the single channel state-parameter decoupling filter. It is easy to note the
better estimations achieved when keeping closed the parameter estimation channel, i.e. x̂i,
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Parameter Value

Heat transfer coeff. (side) 0,15 kcal/s m2 ◦C
Heat transfer coeff. (coil) 0,15 kcal/s m2 ◦C

Specific heat capacity (hydrocarbon) 0.92 kcal/kg ◦C
Specific heat capacity (steam) 0.1 kcal/kg ◦C

Heat transfer area (side) 150m2

Heat transfer area (coil) 25m2

Table 6.1: Pyrolysis reactor model parameter values

denoted by the green line in the plots, en respect to the parameter-free state estimation, i.e.
x̃i, denoted by the red line in the plots. The Figure 6.8 shows the performance of the filter in
terms of parameter estimation. The entire profile of both the side heat transfer coefficient and
all the single coil heat transfer coefficients, denoted by the blue lines in the plots, is coherent
with the expected results. Indeed, the almost constant decreasing of each value with respect
to time denotes the slow coke build up effect on the coils during the operating cycle of the
pyrolysis reactor.

The main limitation related to the reduced number of parameters which could be es-
timated at the same time, by applying the single channel procedure developed in Section
5.4.1, applies also for the pyrolysis reactor considered in this research. Indeed, the direct
application of such an estimation procedure does not allows to estimate at the same time
all the potential parameters of the pyrolysis reactor’s model, that is all the p = 16 compo-
nents of the vector θθθ T defined in (6.9), but smaller subsets only, which do not cause the
loss of observability for the corresponding augmented system. Therefore, by filtering the
plant measurements with the single channel state-parameter decoupling filter, the estimation
of θθθ = θθθ T raised to wrong results, while the following estimations was feasible, separately:
θθθ = θθθ a , θθθ = θθθ b, θθθ = θθθ c, θθθ = θθθ d , θθθ = θθθ e, θθθ = θθθ f , θθθ = [θθθ a,θθθ b], θθθ = [θθθ e,θθθ f ]. It is worth
to note that, for each case, all the remaining parameters of the reactor’s model which are
not being estimated by the single channel state-parameter decoupling filter, would be set as
a suitable constant values. A good estimation of the whole parameter vector θθθ T was raised
by filtering the plant measurements with the multichannel state-parameter decoupling filter
depicted in paragraph 5.4.2. The Figures from 6.8 to 6.11 aim to corroborate the validity of
this claim. These plots show the performance of the multichannel filter in terms of parameter
estimation. For each measurable parameter, the corresponding estimation profile is coherent
with the measured value reported in table 6.1. Furthermore, for all the heat transfer coeffi-
cients, the corresponding estimates are coherent with those obtained by applying a different
approach.

Finally, in order to provide a tool software, which could be used also by the plant engi-
neers to monitor in real time all the operating indicators of the pyrolysis reactor, a Graphical
User Interface (GUI) written in Python language has been developed. The Figure 6.12 shows
a screenshot of this GUI. The main objective of this tool is to implement both a fault detec-
tion system and a regeneration cycle time predictor for the reactor, by providing real time
updating trends for both reconciled data and important operating parameters of the consid-
ered pyrolysis plant, such as the heat transfer coefficients. Currently, the first prototype of
this Python GUI implements a real-time version of the single-channel estimation filter, but it
can be used only off-line, since it can manage only datasets of measurements stored in excel
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Figure 6.2: Comparison of the estimation profiles obtained for the single coil flows of hy-
drocarbons when filtering the plant measurements by the single channel state-parameter de-
coupling filter.

files. For the future, a new version of this tool will be available, which will implement also
the multi-channel estimation scheme, and will be able to receive directly from the DCS the
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Figure 6.3: Comparison of the estimation profiles obtained for the single coil flows of steam
when filtering the plant measurements by the single channel state-parameter decoupling fil-
ter.

real-time measurements acquired from the plant, thus, work on-line.
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Figure 6.4: Comparison of the estimation profiles obtained for the single coil crossover
temperatures when filtering the plant measurements by the single channel state-parameter
decoupling filter.
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Figure 6.5: Comparison of the estimation profiles obtained for the single coil cracking tem-
peratures when filtering the plant measurements by the single channel state-parameter de-
coupling filter.
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Figure 6.6: Comparison of the estimation profiles obtained for the tube skin temperature and
coil outlet temperature when filtering the plant measurements by the single channel state-
parameter decoupling filter.
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Figure 6.7: Comparison of the estimation profiles of the heat transfer coefficient side ob-
tained when filtering the plant measurements by the single and multiple channel state-
parameter decoupling filter.

6.3 Conclusion
In this Chapter, the validity of the novel approach proposed in Section 5.3, to solve the joint
data reconciliation along with parameter estimation problem for processes operating in under
slowly evolving dynamics, has been tested on an industrial pyrolysis reactor. A steady state
model for such a process has been provided. At first, some important indicators of plant
malfunctioning which cannot be directly measured, have been considered as parameters.
Thus, the corresponding estimation problem has been solved by means of the single channel
estimator proposed in Section 5.4.1. The more challenging estimation problem, related to a
larger set of parameters which cause the observability loss of the resulting model, has been
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Figure 6.8: Comparison of the estimation profiles of the heat transfer coefficient coils
obtained when filtering the plant measurements by the single and multiple channel state-
parameter decoupling filter.
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Figure 6.9: Estimation profile of the heat transfer area reactor side obtained when filtering
the plant measurements by the multichannel state-parameter decoupling filter.

also considered. The corresponding extended estimation problem has been then solved by
exploiting the novel multi-channel scheme, based on an array of state-parameter decoupling
filters, depicted in Section 5.4.2. The experimental results on a real data set, collected over
a full operational cycle of the pyrolysis plant, confirm the validity of both the single channel
and multi-channels schemes. Finally, a GUI implementing a real-time version of the single-
channel estimation algorithm, working off-line on datasets of the pyrolysis reactor, has been
developed. An improved version of this software application, currently under development,
will be provided soon to the plant technicians, to monitor on-line all the operating indicators
which allow to determine a better regeneration cycle time of the reactor, and consequently,
to reduce the off-line periods of the plant.
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Figure 6.10: Estimation profile of the heat transfer area reactor side and coils obtained when
filtering the plant measurements by the multichannel state-parameter decoupling filter.
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Figure 6.11: Estimation profile of the specific heat transfer capacity coefficient of hydrocar-
bon and steam obtained when filtering the plant measurements by the multichannel state-
parameter decoupling filter.

Figure 6.12: Python GUI for the DDR State-Parameter single channel estimation algorithm



Conclusion and Future Work

This dissertation has explored two different issues, both related to the subject of supervision
and diagnosis of industrial systems. Within the topic of fault detection and diagnosis, this
research has addressed the problem of discriminating between different faults which could
affect both sensors and actuators of a generic system. Towards the topic of data reconcili-
ation and parameter estimation instead, the problem of performing jointly and in real-time
the reconciliation of measurements and the estimation of the model’s parameters has been
examined. The first part of the Thesis, has been devoted to introduce some indispensable
concepts and the state-of-the-art of these two research areas. Then, the various contributions
of this work have been explained and discussed, based on the same order of topics followed
in the previous presentation.

In Chapter 1, the main fault diagnosis methodologies, i.e. model-based, signal-based and
data-driven methods, including some of their combinations within the more recent hybrid ap-
proaches, have been reviewed, by focusing on those aspects which refer to the contributions
developed in the Chapters 3 and 4 of is dissertation. Specially, the Beard Fault Detection Fil-
ter (BFDF) has been discussed as fault-disturbance decoupling strategy, as well as the use of
SMOs as residual generators in the framework of robust diagnostic observers. Furthermore,
other key concepts such as structured and directional residual sets, as well as their typical
residual evaluation schemes based on the analysis of fault signatures, have been presented.

In Chapter 2, the main approaches to solve the the data reconciliation and parameter
estimation problems, both in static and dynamic contexts, have been reviewed, by taking
particular attention in discussing those concepts exploited in the contributions presented in
the Chapters 5 and 6 of this dissertation. It is worth mentioning that two fundamental model
formulations, i.e. LD and QSS, which allow to perform the DDR, have been specifically
analyzed.

In Chapter 3, the novel proposal developed in this research to achieve a complete fault
diagnosis has been presented. This method is based on an hybrid scheme, where the gener-
ation of residuals is performed by exploiting a suitable SMO filtering approach, while their
evaluation by extending the concept of residual signature towards a time-varying setting,
over a suitably designed augmented residual space. This strategy, which aims to solve the
general issue of discriminating between different faults when not enough measurements are
available, has been successfully applied on a SISO system, where different faults can affect
both the input and output channel, but only a single residual signal can be generated and
evaluated by the standard MB approaches. In this proposal, the main limit of the geometric
approach to FDI suggested by Beard, related to the lack of robustness with respect to un-
known inputs, has been overcome by exploiting the advantages provided by a robust residual
generation based on SMOs. The proposed FDD architecture can be considered as a novel
hybrid approach, since several different DD or SB methods can be exploited to analyze the
time-varying fault signatures, generated in the augmented residual space which is spanned
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by suitable residual sets, such as the two suggested in this work. This research is still on-
going. Indeed, currently, two different ways to achieve an automatic residual evaluation,
based on a DD and a SB method, respectively, are being investigated, but no experimental
results are available yet. Nevertheless, the two draft of proposals have been presented. The
formulation of a systematic procedure for finding the optimal set of residuals which make
signatures suitable for the fault isolation of a generic MIMO system is another challenging
aspect of this proposal still under study. Further research should be done also to investigate
the opportunity to apply different diagnostic observers, easier to design with respect to SMO,
as residual generators. Furthermore, standing the structural equivalence between observer-
based and parity space residual generation approaches, another interesting direction would
be the evaluation of the latter as residual generators in the hybrid FDD scheme proposed
here.

In Chapter 4, a practical application of the FDD scheme explained in Chapter 3 has been
evaluated, based on real data acquired from one of the steam separator units of a thermal
power plant. Two SMOs have been designed in order to test different fault configurations
and issues, i.e. abrupt and incipient faults, on sensors and actuators, in open loop and closed
loop systems. Indeed, each of the two SMOs, refers to a different sub-dynamic of the whole
system, having a different feedback setting and a different set of sensors and actuators. The
experimental results confirm the capability of such a geometric approach to discriminate
among all the considered faulty conditions, even by means of a simple visual inspection
of the fault signatures. Since the simulations were performed by corrupting the available
healthy data with suitable multiplicative faults, it would be interesting to perform a more
challenging evaluation of the developed FDD system, using real faulty data acquired from
the plant.

In Chapter 5, the novel procedure which allows to implement jointly and in real-time
DDR and parameter estimation has been presented. This method exploits a well-known fil-
tering approach, based on the combination of fundamental concepts such as QSS and KF,
and integrates an algorithm which allows to solve separately the problems of estimating
state and parameters. Such a state-parameter decoupling procedure was already proposed
for the treatment of bias in recursive filtering, but it was never applied for data reconciliation
issues. Two different schemes, based on this novel state-parameter decoupling procedure,
have been proposed in this Thesis to solve the parameter estimation problem. The single
channel scheme allows to estimate a parameter set which makes satisfied the observability
property of the considered model. The multi-channel scheme instead, by means of an array
of l state-parameter decoupling filters of l channels each, resolve to the more challenging
problem of estimating those sets of parameters which cause the observability loss of the re-
sulting model. Research is currently ongoing, in order to provide a suitable formulation of
the channel opening sequence for the l2−Channels scheme, based on the observability anal-
ysis. Further research is needed also to analytically evaluate the convergence properties of
both the proposed schemes, even tough, in principle, they should reflect the same algorithmic
efficiency of the EKF approach.

In Chapter 6, the effectiveness and reliability of the proposal explained in Chapter 5 have
been evaluated, by processing real measurements acquired from a pyrolysis reactor. The
single-channel state-parameter decoupling filter performed successfully the estimation of
some important indicators of the plant’s malfunctioning, which cannot be directly measured,
but can be considered as parameters. The more challenging estimation problem, related to a
larger set of parameters which cause the observability loss of the resulting model, was also
considered and solved by exploiting the multi-channel scheme. The experimental results on
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different data sets, collected over full operational cycles of the pyrolysis plant, confirmed
the validity of both the single channel and multi-channels schemes. A software GUI im-
plementing a real-time version of the single-channel estimation algorithm, working off-line
on datasets of the pyrolysis reactor, has been also developed. An improved version of this
software application is currently under development, and will be provided soon to the plant
technicians, to monitor on-line all the operating indicators which allow to determine a better
regeneration cycle time of the reactor, and consequently, to reduce the off-line periods of the
plant.
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estimation for large-scale systems (rodeo). In Italy Serbia Day: Growth and Development
through Science and Technology, pages 45–50.

[Fadda et al., 2015b] Fadda, G., Pilloni, A., Pisano, A., Usai, E., Marjanović, A., and
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[Wünnenberg and Frank, 1987] Wünnenberg, J. and Frank, P. M. (1987). Sensor Fault De-
tection via Robust Observers, pages 147–160. Springer Netherlands.

[Xiang and Yan, 2014] Xiang, L. and Yan, X. (2014). A self-adaptive time-frequency anal-
ysis method based on local mean decomposition and its application in defect diagnosis.
Journal of Vibration and Control, page 1077546314538992.

[Yan and Gao, 2006] Yan, R. and Gao, R. X. (2006). Hilbert–huang transform-based vibra-
tion signal analysis for machine health monitoring. IEEE Transactions on instrumentation
and measurement, 55(6):2320–2329.

[Yan and Edwards, 2007] Yan, X.-G. and Edwards, C. (2007). Sensor fault detection and
isolation for nonlinear systems based on a sliding mode observer. International Journal
of Adaptive Control and Signal Processing, 21(8-9):657–673.

[Yin et al., 2014a] Yin, S., Ding, S. X., Xie, X., and Luo, H. (2014a). A review on basic data-
driven approaches for industrial process monitoring. IEEE Transactions on Industrial
Electronics, 61(11):6418–6428.

[Yin et al., 2014b] Yin, S., Gao, X., Karimi, H. R., and Zhu, X. (2014b). Study on sup-
port vector machine-based fault detection in tennessee eastman process. In Abstract and
Applied Analysis, volume 2014. Hindawi Publishing Corporation.

[Zhang et al., 2013] Zhang, Y., Bingham, C., Gallimore, M., et al. (2013). Fault detection
and diagnosis based on extensions of pca. Advances in Military Technology, 8(2):27–41.

[Zhang et al., 2014] Zhang, Y., Yang, N., and Li, S. (2014). Fault isolation of nonlinear
processes based on fault directions and features. IEEE Transactions on Control Systems
Technology, 22(4):1567–1572.

[Zhao et al., 2014] Zhao, X., Xue, Y., and Wang, T. (2014). “fault detection of batch process
based on multi-way kernel t-pls,. J. Chem. Pharm. Res, 6(7):338–346.


	Terms and Abbreviations
	Introduction
	Background and Motivation
	Thesis Outline

	I State of the Art
	Fault Detection, Isolation and Diagnosis
	Basic Concepts and Definitions
	Model-Based Methodologies
	Introduction
	Fault Modeling
	Residual Generation in Model-Based FDI
	Residual Evaluation in Model-Based FDI
	Observer-Based Approach
	Parity Space Approach
	Stable Factorization Approach
	Parameter Estimation Approach

	Signal-Based Methodologies
	Introduction
	Time-Domain Approach
	One-Dimension TD SB Methods
	Two-Dimension TD SB Methods

	Frequency-Domain Approach
	Time-Frequency-Domain Approach

	Data-Driven Methodologies
	Introduction
	Qualitative Fault Diagnosis Methods
	Quantitative Fault Diagnosis Methods
	Statistical Analysis DD FDD Methods
	Nonstatistical Analysis DD FDD Methods


	Hybrid Methodologies
	Conclusion

	Data Reconciliation and Parameter Estimation
	Basic Concepts and Definitions
	Steady-State Data Reconciliation
	Introduction
	Linear Data Reconciliation
	Linear DR with all variables measured
	Linear DR with unmeasured variables

	Nonlinear Data Reconciliation
	Successive Linearizations
	Nonlinear Programming Techniques


	Dynamic Data Reconciliation
	Introduction
	Linear Dynamic System Model
	Quasi-Steady-State System Model

	Joint Data Reconciliation Parameter Estimation
	Introduction
	Sequential Processing
	Error-in-Variable Methods

	Conclusion


	II Author's Contributions
	Hybrid Fault Detection and Diagnosis
	Hybrid FDD Architecture
	Fault Detection by Residual Generation
	Robust Residual Generation by SMO
	Observer Design
	Output Sensors Faults
	Actuators and Output Sensors Faults


	Fault Isolation and Diagnosis by Residual Evaluation
	Residual Evaluation by Signature Analysis
	Residual Set Ra
	Residual Set Rb
	Features Extraction
	Data-Driven Approach
	Signal-Based Approach


	Conclusion

	Practical Application: Steam Separator
	Process Description, Modeling and Validation
	Feedwater System Linear Model
	Water Piping Linear Model
	Steam Drum Linear Model
	Steam Separator Forward Path Linearized Model
	Sensor Fault Modeling
	Actuator Fault Modeling

	SMO Design
	Steam Separator Forward Path SMO
	Feedwater System SMO

	Residual Set Design
	Steam Separator Forward Path Fault Signatures
	Feedwater System Fault Signatures

	Experimental Results
	Conclusion

	Real-time DDR State-Parameter Estimation
	Quasi-Steady-State Model Formulation
	Dynamic Data Reconciliation
	Joint Data Reconciliation - Parameter Estimation
	Decoupled State-Parameter DDR procedure
	Single Channel Estimator
	Multi-Channel Estimator

	Conclusion

	Practical Application: Pyrolysis Reactor
	Process Description and Modeling
	Experimental Results
	Conclusion

	Conclusion and Future Work
	Bibliography


