FERMENTATIVE H₂ PRODUCTION FROM FOOD WASTE: PARAMETRIC

ANALYSIS OF FACTOR EFFECTS

M. Akhlaghi¹, M.R. Boni¹, A. Polettini¹, R. Pomi¹, A. Rossi¹, G. De Gioannis²,³, A. Muntoni²,³, D. Spiga²

¹ Department of Civil and Environmental Engineering, University of Rome “La Sapienza”, Italy
² Department of Civil and Environmental Engineering and Architecture, University of Cagliari, Italy
³ IGAG – CNR (Environmental Geology and Geoengineering Institute of the National Research Council), Italy

ABSTRACT

Factorial fermentation experiments on food waste (FW) inoculated with activated sludge (AS) were conducted to investigate the effects of pH and the inoculum-to-substrate ratio (ISR [g VS₅₁/g TOC_FW]) on biohydrogen production. The two parameters affected the H₂ yield, the fermentation rate and the biochemical pathways. The minimum and maximum yields were 41 L H₂/kg TOC_FW (pH = 7.5, ISR = 1.74) and 156–160 L H₂/kg TOC_FW (pH = 5.5, ISR = 0.58 and 1.74). The range of carbohydrates conversion into H₂ was 0.37–1.45 mol H₂/mol hexose, corresponding to 9.4–36.2% of the theoretical threshold. A second-order predictive model for H₂ production identified an optimum region at low pHs and high ISRs, with a theoretical maximum of 168 L H₂/kg TOC_FW at pH = 5.5 and ISR = 1.74. The Spearman’s correlation method revealed several relationships between the variables, suggesting the potentially governing metabolic pathways, which turned out to involve both hydrogenogenic pathways and competing reactions.
Keywords: biological hydrogen production; food waste; pH; inoculum-to-substrate ratio; response surface methodology; predictive model.

1. INTRODUCTION

Sustainable management of bio-waste is being more and more regarded as a key issue in both industrialized and emerging countries, on account of the need to reduce the potential environmental impacts from natural uncontrolled degradation and the energy exploitation perspectives that may be opened. European waste statistics indicate that ~245 Mt of municipal solid waste were generated in the EU-28 in 2016, out of which food waste (FW) is estimated to account for ~35% by weight. The environmental policies on bio-waste in most industrialized countries prescribe specific reduction targets to final disposal, promoting materials and energy recovery from bio-waste.

In this framework, biological treatment of FW is one of the key options for the environmentally sound management of biodegradable residues. More specifically, dark fermentation aimed at H₂ production ahead of further biological treatment has been widely studied for a variety of organic waste materials. In addition to the well-known positive environmental features of H₂ as an energy carrier, particularly if generated from renewable non-fossil sources, a first dark fermentation stage in AD may produce further environmental and economic advantages.

Separate optimization of the acidogenic and methanogenic phases in the two-stage configuration has been reported to significantly enhance energy recovery (10–25% (Lee and Chung, 2010); 20% (De Gioannis et al., 2017); 8–43% (Schievano et al., 2014); 38% (Massanet-Nicolau et al., 2013)) compared to the conventional single-stage layout.

Various FW and kitchen waste components as well as the organic fraction of municipal solid waste (OFMSW) are recognized to be suitable and relatively inexpensive sources of biodegradable organic matter for H₂ production, mainly due to their high carbohydrate
concentration, adequate moisture content and wide availability (Alexandropoulou et al., 2018; Alibardi and Cossu, 2016, 2015; Dong et al., 2009; Kim et al., 2011b, 2004; Kobayashi et al., 2012; Liu et al., 2006; Nazlina et al., 2011; Tawfik and El-Qelish, 2012; Wang and Zhao, 2009; Zhu et al., 2008).

Fermentative \(\text{H}_2 \) **production depends on several factors, acting either synergistically or antagonistically.** Factors include substrate-related characteristics (substrate composition, concentration and pre-treatment methods), microorganisms-related characteristics (inoculum type [pure/mixed cultures], inoculum pre-treatment and selection methods, inoculum-to-substrate ratio [ISR]), and control and operating parameters (temperature, pH, organic loading rate, hydraulic and cell residence time, reactor type and operation regime) (Alexandropoulou et al., 2018; Alibardi and Cossu, 2016; Ghimire et al., 2016; Tawfik and El-Qelish, 2014; Van Ginkel et al., 2001). Therefore, **prediction and optimization of the fermentation pathways requires both the individual effects of the relevant parameters and their mutual interactions to be described and quantified accurately.** To this aim, since investigations based on a “one variable at a time” approach are considered to be inadequate to provide a reliable understanding of the process (Akhlaghi et al., 2017), **alternative experimental design and data analysis methods should be adopted to pick the complex interrelations among the relevant factors.**

Under batch conditions and for a given substrate type, the fermentation process is chiefly governed by the operating pH and the availability of microorganisms. In particular, the operating pH is recognized to govern the substrate hydrolysis yield, the activity of hydrogenase, the energy utilization yield by the biomass as well as the metabolic pathways (Kim et al., 2011a; Rodríguez et al., 2006). The availability of microorganisms in the system is measured through either the ISR or its reciprocal, the food-to-microorganisms (F/M) ratio. The relative amounts of substrate and biomass in the system can determine a variety of conditions ranging from substrate-limited to substrate-sufficient growth (Liu, 1996), in turn affecting the yield of substrate conversion into
the metabolic products (Cappai et al., 2015). For a more detailed review of the individual effects of pH and ISR on the fermentation process, the reader is referred to previous literature studies (see e.g. (Akhlaghi et al., 2017; Cappai et al., 2018, 2014, De Gioannis et al., 2014, 2013, 2009; Ghimire et al., 2015) and references therein). Although the individual effects of pH and ISR on the kinetics and yield of fermentative H\textsubscript{2} production from organic residues have been widely investigated, so far relatively few studies (Ghimire et al., 2016; Pan et al., 2008; Van Ginkel et al., 2001) have been conducted on their combined influence, particularly for food waste. It is also emphasized that most studies have focused on the influence of the initial pH only, while that of the operating pH (which, on the other hand, is by far more relevant for the biochemical reactions) has been largely overlooked. The present work attempts to fill in the gaps on the joint effects of pH and ISR on hydrogenogenic fermentation of organic waste by means of a dedicate experimental campaign on a food waste sample that was deemed to be representative of the typical composition of the food fraction of Italian municipal solid waste (Andreasi Bassi et al., 2017). The main novel contribution to the knowledge in the field lies in the identification of the relationships and mutual interactions among the operating pH, ISR and the response variables of the fermentation process of the food waste of concern. To this aim, a systematic approach based on factorial experiments was adopted, followed by the identification of hidden relationships among the factors and the response variables by means of statistical analysis tools and empirical modelling of parameters effects. All such tools were combined to interpret the complex biochemical transformations involved in the process, identify the optimal conditions for hydrogenogenesis and provide indications for further enhancing the process yield.

2. MATERIALS AND METHODS

2.1 Feedstock and inoculum
The substrate used in this study was source-separated OFMSW coming from door-to-door collection of municipal waste in a medium-size city located in central Italy. The OFMSW was manually sorted to select food components and then homogenised to ensure the reproducibility of sub-samples used for the characterization and fermentation tests. The obtained waste was deemed to be representative of the typical composition of the food fraction of Italian municipal solid waste (Andreasi Bassi et al., 2017).

The total solids (TS) content of the homogenised samples was adjusted through the addition of tap water to a final TS content of 4.3% by weight. The samples were kept frozen until use. Activated sludge (AS) from the aerobic unit of a municipal wastewater treatment plant was used as the inoculum. AS was considered a suitable biomass source due to the presence of facultative bacteria, which typically have a high growth rate and the ability to rapidly recover from accidental oxygen intrusion. The AS samples were kept frozen until use. Before fermentation, the AS was unfrozen and heat-shocked (105 °C, 30 min) prior to mixing with FW, in order to inactivate methanogens and harvest hydrogen producers. These are known to be capable of producing endospores when subjected to harsh conditions; the endospores can then germinate back to their active vegetative state when suitable growth conditions are established (Fan et al., 2004; Kim et al., 2011a). The heat-shock treatment (HST) conditions were selected on the basis of previous investigations (Cappai et al., 2014; De Gioannis et al., 2014).

The characterization parameters for the FW and AS samples are reported in Table 1.

2.2 Experimental set-up

Batch fermentation tests were conducted in mechanically stirred glass reactors connected to an automatic system for data recording and continuous pH control by means of NaOH addition. The reactors (total volume = 1 L, working volume = 0.5 L) were maintained under mesophilic conditions (T = 39±1 °C). Eudiometers were used to measure the biogas volume produced in
each reactor adopting the volume displacement principle; to this aim, each eudiometer was filled
with a NaCl-saturated solution acidified with H$_2$SO$_4$ to pH = 2 to prevent gas dissolution.

Automatic recording of the biogas volume was accomplished through an electronic load cell that
weighed the volume of solution displaced from the eudiometers into a storage tank. Corrections
for liquid and gas densities were made to convert the measured liquid weight to the

The latter was then further converted to standard temperature and

pressure conditions (T = 273.15 K, P = 105 Pa).

Before the onset of the experiments, the reactors were flushed with N$_2$ gas for a few minutes to
drive off air from the reactor headspace.

Nine batch fermentation runs (see Table 2) were arranged according to a full factorial design in
two factors (pH and ISR) at three levels: pH = 5.5, 6.5, 7.5, ISR = 1.74, 0.58, 0.19
g VS$_{AS}$/g TOC$_{FW}$ (corresponding to FW/AS ratios of 25:75, 50:50, 75:25). The use of factorial
designs at two (with possible addition of optional centre points) or three levels is common
practice in the statistical design of experiments. Each fermentation run was performed in
triplicate and the results will be reported in the following as the average of replicate data. Each
test was stopped once any appreciable biogas production could be no longer detected.

2.3 Analytical methods

A 10-mL volume of digestate was periodically sampled from the reactors during the
experiments. The sampling frequency was based on the observed biogas production profile over
time. An aliquot of the samples to be analysed for soluble parameters was also filtered onto a 1.2
μm membrane.

The process performance was evaluated by monitoring the volumetric amount and composition
of the biogas produced, as well as the concentration of total solids (TS), volatile solids (VS),
total organic carbon (TOC), dissolved organic carbon (DOC), soluble carbohydrates, volatile
fatty acids (VFAs) and ethanol.

The biogas was sampled from the eudiometers with a gastight syringe and analysed through a gas chromatograph (Model 3600 CX, VARIAN) equipped with a thermal conductivity detector and 2-m stainless-steel packed column (ShinCarbon ST) with an inner diameter of 1 mm. The operation temperatures of injector and detector were 100 and 130 °C, respectively, with He as the carrier gas. The oven temperature was initially set at 80 °C and subsequently increased to 100 °C at 2 °C/min.

The VFAs (acetic [HAc], propionic [HPr], butyric + iso-butyric [HBu], valeric + isovaleric [HVal], hexanoic + iso-hexanoic [HHex], heptanoic [HHep]) concentration in the digestate was determined in 0.2-µm filtered and HCl-acidified (pH = 2) liquid effluent with a gas chromatograph equipped with a flame ionization detector (FID) and a 30 m capillary column (TRB-WAX) with an inner diameter of 0.53 mm. The temperatures of the detector and the injector were 270 and 250 °C, respectively. The oven temperature was initially set at 60 °C, held for 3 min at this value, subsequently increased to 180 °C at a rate of 10 °C/min and finally increased to 220 °C at a rate of 30 °C/min and held for 2 min. All the analytical determinations were performed in duplicate.

To describe the time evolution of H₂ production, the commonly adopted Gompertz bacterial growth model was modified to improve fitting for the two-staged biogas production already observed in our previous investigations (Akhlaghi et al., 2017; De Gioannis et al., 2014) and also confirmed in the present study. The two-stage modified Gompertz equation used in the present work has the form:

\[
HPY(t) = HPY_{max,1} \exp \left\{ - \exp \left[\frac{Rm_1 e^{HPY_{max,1}}}{HPY_{max,1}} (\lambda_1 - t) + 1 \right] \right\} + HPY_{max,2} \exp \left\{ - \exp \left[\frac{Rm_2 e^{HPY_{max,2}}}{HPY_{max,2}} (\lambda_2 - t) + 1 \right] \right\}
\]

where:
\(HPY = \) cumulative \(\text{H}_2 \) production yield at time \(t \)

\(HPY_{\text{max},1}, HPY_{\text{max},2} = \) maximum theoretical \(\text{H}_2 \) production yield for each stage

\(R_{m1}, R_{m2} = \) maximum \(\text{H}_2 \) production rate of each stage

\(\lambda_1, \lambda_2 = \) lag phase duration of each stage

The existence of fermentation stages described by different kinetic parameters is possibly associated to the presence of different substrate components that are degraded at different rates during the process.

Fitting of the experimental data with Equation (1) was accomplished by means of least-square non-linear regression using Table Curve2D®. In order to evaluate the overall duration of the process, the time \((t_{95}-\text{H}_2) \) required for \(\text{H}_2 \) production to attain 95\% of the maximum yield was also calculated.

2.4 Statistical analyses

As a first screening, in order to single out monotonic correlations between the variables of interest the Spearman’s rank-order correlation coefficients were calculated. Such coefficients provide a measure of the strength and direction of association between pairs of variables, where values of +1 and −1 mean, respectively, a perfect positive or negative correlation between the variables, while a value of 0 implies no correlation. Spearman’s correlation coefficients measure not only linear, but all kinds of monotonic correlations. The investigated variables included both the operating parameters and the main response variables of the process. The Spearman’s coefficients for each pair of variables were graphically visualized in a correlation matrix by means of the corrplot package (Wei and Simko, 2016) developed for application with the R software (R Development Core Team, 2009).

Further analyses were aimed at identifying statistically significant effects and interactions of pH and ISR on the process performance. The statistical t-test was adopted at a confidence level of
95%. The response surfaces for the process were derived through the second-order polynomial model given in Equation (2), which expresses each response variable, \(y \), as a function of the main (linear and quadratic) and interaction (linear \(\times \) linear) effects of the two factors:

\[
y = \beta_0 + \beta_1 x_1 + \beta_2 x_2 + \beta_{11} x_1^2 + \beta_{22} x_2^2 + \beta_{12} x_1 x_2 + \epsilon
\]

(2)

where:

\(x_1, x_2 \) = levels of the two factors
\(\epsilon \) = random error component
\(\beta_0 \) = zero-order coefficient
\(\beta_1, \beta_2 \) = linear component coefficients
\(\beta_{11}, \beta_{22}, \beta_{12} \) = quadratic component coefficients

The estimation of the coefficients of the polynomial model was made through least-square regression of the experimental data using the \textit{rsm} package (Lenth, 2009) implemented in R.

3. RESULTS AND DISCUSSION

3.1 H\(_2\) production yield

The specific hydrogen production yield (SHPY) per unit of initial TOC of FW in the mixture is reported in Figure 1. Individual data points are direct H\(_2\) production measurements, while continuous lines represent the two-stage Gompertz production curves derived from model (1).

The results of fitting of H\(_2\) production data with model (1) are reported in Table 3 in terms of parameter values and related statistics. It is worth mentioning that the degree of data fitting by the two-stage Gompertz model turned out to be in all cases higher than for the conventional Gompertz equation (results not shown).

The fermentation tests yielded in all cases (with the exception of run 25FW pH7.5) a relevant H\(_2\) production, in excess of 75 L H\(_2\)/kg TOC\(_{FW}\). The biogas produced was always found to be
composed of H_2 and CO_2 only, again with the exception of run 25FW pH7.5, in which CH_4

contents of 10–24% vol. were also detected. In all the other tests, the measured volumetric H_2

concentrations in the biogas were 47–69% at pH 5.5, 57–75% at pH 6.5 and 85–94% at pH 7.5.

As already pointed out in our previous studies (Akhlaghi et al., 2017; Cappai et al., 2014; De

Gioannis et al., 2014), the observed trend of the volumetric H_2 content as a function of pH was to

be related to the higher CO_2 solubility in water at higher pH conditions rather than to a direct
effect of these on the fermentation reactions.

The fermentation process was strongly affected by pH and ISR, and different combinations of

the two factors resulted in large changes in both the final yield and time evolution. The
correlation matrix showing the Spearman’s rank correlation coefficients for all the variables of
interest is reported in Figure 2. Each cell of the correlation matrix reports a circle whose size and
colour shade show graphically the value of the Spearman’s correlation coefficient (blue shades:
positive correlation; red shades: negative correlation).

The lowest SHPY (as derived from the two-stage Gompertz model), equal to 41.5 L H_2/kg

TOC$_{FW}$, was associated to FW = 25% (ISR = 1.74 g VS$_{AS}$/g TOC$_{FW}$) and pH = 7.5. The

maximum SHPY (160.3 L H_2/kg TOC$_{FW}$) was attained at FW = 25% (ISR = 1.74

g VS$_{AS}$/g TOC$_{FW}$) and pH = 5.5. The test conducted at FW = 50% (ISR = 0.58 g VS$_{AS}$/g TOC$_{FW}$)

and pH = 5.5 displayed a SHPY of 156.4 L H_2/kg TOC$_{FW}$, that was still close to the maximum

value attained. The existence of a negative linear correlation between SHPY and pH is clear

from data in Figure 2, confirming that the optimum region for H_2 production corresponded to

slightly acidic pHs. On the other hand, while no simple linear correlation turned out to hold

between SHPY and ISR (see Figure 2), subsequent statistical analyses indicated a more complex,
higher-order relationship between the two (see below for details).

The region of maximum H_2 production corresponds to the same combination of pH and ISR

identified in a companion study where cheese whey (CW) was used as the substrate for the
fermentation experiments (Akhlaghi et al., 2017). It should also be emphasized that our previous study on fermentation of synthetic food waste (Cappai et al., 2014) located the optimum region at pH = 6.5 and ISR = 0.14 g VS_{AS}/g TOC_{FW}, which is somewhat different from the condition identified in the present work. On one instance, it may well be that the real food waste sample used in this study had a different content of the relevant components for hydrogenogenesis compared to the synthetic food waste, which may have resulted in different effects of the operating parameters on the process performance. Yet, it should also be taken into account that a wider range of ISR values and a larger number of combinations between the two factors was investigated in the present work, reasonably leading to a more accurate identification of the optimal fermentation conditions.

The optimal SHPY measured here falls within the upper range of values documented by previous literature studies on batch fermentation of real food waste, which are summarized in the Supplementary Information document.

3.2 H$_2$ production kinetics

Most tests displayed a two-staged biogas production, which was generally more pronounced at higher ISR values. Multi-staged degradation is likely related to different substrate constituents being consumed at different rates. Similar conclusions were obtained in a fermentation study on different sugars (Rosales-Colunga et al., 2012), in which the rates of H$_2$ and metabolic products generation were found to be affected by the type of sugar substrate used.

An additional distinguishing feature of the fermentation experiments was the decrease in the biogas volume towards the end of the test, particularly at pH = 7.5. As discussed below, this was likely associated to H$_2$-consuming pathways that presumably became prevalent upon depletion of the preferred substrate for hydrogenogenesis.

The kinetics of the fermentation process was investigated through the parameter t_{95}-H$_2$ defined in
Section 2.3, adopted as an estimate of the total process duration. The other kinetic parameters of the modified Gompertz equation, R_m and λ, could not be adopted to comparatively evaluate the process kinetics under the different experimental conditions, since they are in turn dependent on the maximum yield attained and affected by the existence of sequential substrate degradation phases. As noted for SHPY, t_{95}-H_2 was also found to largely depend on both pH and ISR (see Figure 2 and Figure 1 d). At a given ISR, t_{95}-H_2 appeared to be negatively correlated with pH, while the trend with ISR was non-monotonic (see below for further considerations). The observed ranges for t_{95}-H_2 were 18–65 h at pH 5.5, 11–20 h at pH 6.5 and 5–16 h at pH 7.5. It should be mentioned that one of the replicates for the 75FW pH5.5 run displayed an unreasonably large value for t_{95}-H_2, which was therefore dropped from the dataset in view of the statistical analyses; the corrected average value for t_{95}-H_2 after removing the outlier was found to be 42.8 h. It was also evident that the best performance in terms of H_2 production was not mirrored by a faster fermentation kinetics, which clearly points at antagonistic reactions playing a role during the process itself.

3.3 Response surfaces for H_2 production

The response surfaces for SHPY and t_{95}-H_2 were derived by fitting the experimental data with the quadratic model (2), the results of which are depicted in Figure 3 (a) and (b) as contour plots versus pH and ISR. The curvature of the response surfaces indicates the importance of the second- order terms (quadratic effects of the factors and their interactions) to reliably predict H_2 production, as already observed in our previous study on CW fermentation (Akhalaghi et al., 2017). The second-order model provided a good description of the experimental results for SHPY, and the correlation between the measured and the predicted data showed an R^2 of 0.87. The shape of the contour plots also suggests that pH had a more relevant effect on SHPY than on t_{95}-H_2, particularly in the upper ISR region (> ~0.6 g VS/g TOC). The optimum region for H_2
production within the explored range of values was found to be located at the upper left of the plots in Figure 3 a), with a theoretical maximum of 168 L H_2/kg TOC_{FW} at $pH = 5.5$ and ISR = $1.74 \text{ g VS}_{AS}/\text{g TOC}_{FW}$.

The results of the second-order model adopted to describe the effects of the two factors show that some remarkable H_2 production yields can be attained provided that pH and ISR are selected within appropriate ranges. SHPY in excess of 120 L H_2/kg TOC_{FW} can be achieved under a variety of combinations for pHs ≤ 7.0 and ISRs $\geq 0.32 \text{ g VS}_{AS}/\text{g TOC}_{FW}$; increasing the target for SHPY to 150 L H_2/kg TOC_{FW} requires a narrower range of values, with $pH \leq 6.2$ and ISR $\geq 0.81 \text{ g VS}_{AS}/\text{g TOC}_{FW}$.

As mentioned, the overall duration of the process (see Figure 3 b)) was affected by ISR more than by pH. The influence of pH was only evident in the central region for ISR ($ISR = 0.8–1.2$ g $\text{ VS}_{AS}/\text{g TOC}_{FW}$), where the predicted range for t_{95-H_2} was 0–15 h.

3.4 Organic matter degradation

Figure 4 compares TOC and soluble carbohydrates in terms of time evolution of concentrations normalized by the corresponding initial value. The overall TOC degradation was very low for all tests and roughly linear over time, ranging from 2% for the 50FW pH7.5 run to 19% for the 25FW pH5.5 run. This clearly indicates that only a minor fraction of the substrate organic matter is mineralized during the process, the major portion being rather retained in the system in the form of either metabolic products, non-degraded carbon or microbial cells.

Unlike TOC, soluble carbohydrates displayed some significant degradation during the process, with a distinguishing shape of the concentration-vs.-time curves. As observed in our previous studies on both CW and FW (Akhlaghi et al., 2017; Cappai et al., 2014; De Gioannis et al., 2014), soluble carbohydrates were rapidly consumed during the fermentation process. This confirms the widely demonstrated carbohydrate characteristic of being the preferred substrate for
H₂ production (Alibardi and Cossu, 2016, 2015; Chatellard et al., 2016; De Gioannis et al., 2014, 2013; Nazlina et al., 2011; Rosales-Colunga et al., 2012; Santos et al., 2012). Soluble carbohydrate removal always exceeded 90% and in most cases lay in the range 94–96%, indicating that the degradation process was almost complete for such species. Apart from the runs 25FW pH7.5 and 50FW pH7.5 (for which the few digestate samples analysed did not allow to derive considerations about the carbohydrate utilization rate), all the remaining data were found to follow a first-order decay law, confirming the findings of our previous studies on CW (Akhlaghi et al., 2017; De Gioannis et al., 2014). The time required to attain 95% carbohydrate removal, t₉₅-carb, was derived from the first-order interpolating curves describing the time evolution of carbohydrates. The calculated values ranged from a minimum of 12 h for the 25FW pH6.5 run to a maximum of 81 h for the 75FW pH5.5 run. As mentioned above, no such calculations could be done for the 25FW pH7.5 and 50FW pH7.5 tests. All the other experiments displayed t₉₅-carb values below 34 h, indicating a relatively high carbohydrate consumption rate during the fermentation process. The positive linear correlation observed between t₉₅-carb and t₉₅-H₂ (see Figure 2) again clearly demonstrates that the hydrogenogenic process is closely governed by carbohydrate utilization.

3.5 Metabolites production and analysis of the metabolic pathways

Since, unlike carbohydrate degradation, SHPY varied among the tests, the metabolic pathways governing the fermentation process were likely affected by the specific experimental conditions adopted. In order to identify the prevailing biochemical reactions, the analysis of the relevant metabolic products was conducted. The metabolites concentrations over time are reported in Figure 5 along with the corresponding H₂ production. Valerate and heptanoate were always lower than the analytical detection limit (10 ppm), while hexanoate was detected, although at notably low concentrations, for a limited number of digestate samples only. Acetate and butyrate
were, along with ethanol, the main metabolic products measured in the digestate; propionate was also found in the samples, although it was detected at relevant concentrations towards the final fermentation stages only. The correlation analysis of the variables showed that the specific concentrations (mmol/kg TOC_{FW}) of acetate, butyrate and propionate all positively correlated with ISR (see Figure 2), suggesting that increased amounts of biomass in the system promoted substrate conversion into the metabolic products. The production of multiple metabolic products from FW has widely been reported (see e.g. (Alexandropoulou et al., 2018; Cappai et al., 2014; Cheng et al., 2016; Han et al., 2016; Kim et al., 2011b; Reddy et al., 2018)). According to our considerations (see below), this clearly points out at reaction pathways with different H₂ generation yields and likely being mutually competitive as well. However, a univocal identification of the individual pathways proves rather troublesome, given the complexity of the microbial reactions involved during fermentation, particularly due to the wide variety of the substrate and inoculum constituents. However, the results of digestate characterization in terms of concentrations of metabolites and their relative ratios can still provide interesting indications about the prevailing biochemical mechanisms. In particular, among the analysed metabolic products, acetate displayed the highest concentrations along the test. The final content lay in the ranges (in mol HAc/kg TOC_{FW}) 2.2–3.5 at pH 5.5, 4.3–9.6 at pH 6.5, and 6.2–13.7 at pH 7.5.

Ethanol was prevalent over butyrate at the initial stages of the process, while the relative concentration of the two species tended gradually to reverse as time elapsed. Another distinguishing feature, already observed in our previous experiments on CW (Akhlaghi et al., 2017), was related to the progressively increasing trend of the HBu/HAc molar ratio over time and the positive correlation it displayed with SHPY (or negative correlation with pH; see Figure 2). SHPY was also found to correlate with the butyrate molar fraction of the total metabolites analysed (see Figure 2), indicating larger proportions of butyrate in the digestate being associated to higher H₂ yields. While in principle the yield of the commonly acknowledged H₂-
producing pathways (see reactions (3) and (4) below) would not support this finding, the positive
correlation between butyrate and H₂ production has been previously reported by several studies
(see e.g. (Ghimire et al., 2018; Guo et al., 2014; Kim et al., 2006; Noblecourt et al., 2018)) and is
motivated by the fact that butyrate is the only species univocally associated to H₂ generation. To
this regard, the absence of a direct monotonic correlation between acetate and SHPY may
support this statement, likely resulting from the masking effect of competing processes, as
detailed in the following discussion. Some authors (Michel-Savin et al., 1990) also observed a
higher acetate production by Clostridium tyrobutyricum during the initial fermentation stages
corresponding to the exponential growth phase of the biomass, which may be justified by the
higher ATP generation from acetate than from butyrate production, with a more efficient energy
supply to the microbial cells. In the same study, butyrate was on the other hand found to form at
lower biomass growth rates, which possibly explains the increasing trend of the HBu/HAc ratio
with time observed in our experiments.

The concomitant presence of different metabolic products was taken as an evidence of the
existence of multiple biochemical pathways during the experiments. Indeed, the clostridial-type
fermentation of hexose-type carbohydrates would yield 2 moles of H₂ per mole of either acetate
or butyrate produced, as indicated by reactions (3) and (4) (see e.g. (Ljungdahl et al., 1989)):

\[
C_6H_{12}O_6 + 2H_2O \rightarrow 4H_2 + 2CO_2 + 2CH_3COOH \quad (3)
\]

\[
C_6H_{12}O_6 \rightarrow 2H_2 + 2CO_2 + CH_3CH_2CH_2COOH \quad (4)
\]

Propionic fermentation represents a competitive pathway for hydrogenogenesis, since the
corresponding reaction (Eq. (5) (Antonopoulou et al., 2008)) consumes 1 mol of H₂ per mol of
propionate produced:

\[
C_6H_{12}O_6 + 2H_2 \rightarrow 2CH_3CH_2COOH + 2H_2O \quad (5)
\]

The presence of both acetate and butyrate in the digestate suggests that reactions (3) and (4)
would occur concomitantly during the tests. The facts that SHPY was positively correlated with
the HBu/HAc molar ratio and that this ratio increased over time may either indicate a higher rate for reaction (4) compared to (3) (likely to consume the excess reducing equivalent produced during the process (Ljungdahl et al., 1989)), or acetate production deriving from additional pathways, which possibly overlapped and competed with the hydrogenogenic reactions. The latter was proposed by other authors (Ghimire et al., 2018) as a tentative explanation of the nature and relative amount of the metabolic products observed. Potential candidates for competing reactions may include: a) heterotrophic/autotrophic homoacetogenesis (Eqs. (6) and (7) (Ljungdahl et al., 1989; Saady, 2013), the latter even involving H₂ consumption); b) lactate plus acetate production by homofermentative lactic acid bacteria (Eq. (8) (Antonopoulou et al., 2008)), or 3) propionate plus acetate production from lactate (Eq. (9) (Ljungdahl et al., 1989)).

The high positive correlation between the acetate and propionate concentrations evidenced by the Spearman’s coefficient in Figure 2 suggests that, among the competing pathways, reaction (9) may have played a role during the process, as already proposed by (Guo et al., 2014).

\[
\begin{align*}
C_6H_{12}O_6 & \rightarrow 3\text{CH}_3\text{COOH} \\
2\text{CO}_2 + 4 \text{H}_2 & \rightarrow \text{CH}_3\text{COOH} + 2\text{H}_2\text{O} \\
2C_6H_{12}O_6 & \rightarrow 3\text{CH}_3\text{COOH} + 2\text{CH}_3\text{CHOHCOOH} \\
3\text{CH}_3\text{CHOHCOOH} & \rightarrow 2\text{CH}_3\text{CH}_2\text{COOH} + \text{CH}_3\text{COOH} + \text{CO}_2 + \text{H}_2\text{O}
\end{align*}
\]

The ratio between the total amount of metabolic products analysed and DOC at the end of the tests was rather different throughout the experimental runs, with values of 47–63% at pH 5.5, 23–35% at pH 6.5, and 33–82% at pH 7.5. This suggests that either non-degraded dissolved carbon or other metabolic products in addition to the analysed species were present in the digestion system, also possibly indicating a more complex set of metabolic reactions than that expressed by Equations (3)–(9). The specific contribution of the individual metabolic pathways taking place during the process is rather hard to quantify, even more so considering the variety of the potential metabolic products formed. Taking into account the main processes commonly
related to \(\text{H}_2 \) production (mainly reactions (3), (4) and (5)), the measured production of acetate, butyrate and propionate was used to stoichiometrically calculate a theoretical SHPY (\(\text{SHPY}_{\text{theor}} \)) as illustrated in previous papers (Akhalgahi et al., 2017; Cappai et al., 2014; De Gioannis et al., 2014). The ratio between the observed and theoretical SHPY (see Figure 6 a)) displayed relatively high values at pHs 5.5 and 6.5 (with ranges of 67–88\% and 79–88\%, respectively), indicating a comparatively small contribution of alternative metabolic pathways to \(\text{H}_2 \) production. At pH 7.5 the \(\text{SHPY}_{\text{obs}} \) was only 6–60\% of \(\text{SHPY}_{\text{theor}} \), which clearly suggests that a significant portion of the measured metabolic products derived from other pathways than those expressed by reactions (3)–(5). Interestingly, the \(\text{SHPY}_{\text{obs}}/\text{SHPY}_{\text{theor}} \) ratio correlated negatively with the fraction of DOC retrieved in the measured metabolic products (\(\Sigma(C_{\text{metab. prod.}})/\text{DOC} \); see Figure 2 and Figure 6 a)). This may be interpreted considering that a closer agreement between \(\text{SHPY}_{\text{obs}} \) and \(\text{SHPY}_{\text{theor}} \) was generally associated to metabolic pathways producing a different pool of products (not interfering with \(\text{H}_2 \) production) in addition to those resulting from reactions (3)–(5). Conversely, low \(\text{SHPY}_{\text{obs}}/\text{SHPY}_{\text{theor}} \) ratios (particularly at pH 7.5) were most likely the result of competing reactions involving metabolic products in common with clostridial fermentation, which reduced \(\text{SHPY}_{\text{obs}} \) compared to the anticipated theoretical value. In such cases, this in turn also indicates that a non-negligible portion of the substrate degraded did not take part in hydrogenogenic reactions.

The calculated conversion yield of carbohydrates into \(\text{H}_2 \) was found to lie in the range 0.37 – 1.45 mol \(\text{H}_2 \)/mol hexose, corresponding (on account of the so-called Thauer limit of 4 mol \(\text{H}_2 \)/mol hexose) to 9.4–36.2\% of the theoretical conversion attainable. These values are comparable to those achieved in our previous experiments on both FW and CW (Akhalgahi et al., 2017; Cappai et al., 2014; De Gioannis et al., 2013) and within the range reported in the literature.
3.6 Carbon mass balance

The carbon mass balance at the end of the experiments was calculated to further infer on the substrate degradation mechanisms. The following contributions to total C were accounted for (see Figure 6 b): 1) C in the form of the analysed metabolic products (VFAs and ethanol); 2) residual organic C, in both soluble and particulate forms (C present as non-degraded organic compounds and/or other metabolic products not accounted for in item 1), as well as microbial cells; 3) dissolved inorganic C; 4) C removed through periodic digestate sampling; 5) gasified C. The term “balance” in Figure 6 b) represents the C mass that was apparently lost due to either inaccuracies in the analytical measurements or sample inhomogeneity and was thus required to close the materials balance. All contributions to the mass balance were calculated from direct measurements in the liquid and gaseous phases, with the exception of dissolved inorganic C, that was indirectly estimated through chemical equilibrium considerations based on CO₂ solubility as a function of pH and temperature. The program was run with the operating pH, the digestate temperature and the measured CO₂ pressure as the input values and yielded the total inorganic C concentration in the liquid phase at thermodynamic equilibrium as the output.

While the initial partitioning of DOC was observed to have changed considerably at the end of the runs (the \(\Sigma(C_{\text{metab. prod.}})/\text{DOC} \) ratio increasing from 7.2–12.5% to 55.3–96.2%), yet the highest share (81–98%) of the initial TOC turned out to be retained in the digestate as residual C (34–66% as soluble species [with 14–28% ascribed to the measured metabolites] and 24–47% in particulate forms). The amount of gasified C was always found to account for a low fraction (3.5–7.4%) of the initial TOC.

4. CONCLUSIONS

- pH and ISR exerted individual and synergistic effects on the H₂ yield, the fermentation kinetics and the biochemical pathways. This implies that careful optimization of the...
operating conditions is required to maximize H\textsubscript{2} production

- the hydrogenogenic process was strongly related to carbohydrate degradation. This provides useful indications on the types of organic residues potentially suitable for H\textsubscript{2} production

- the second-order predictive model was used to identify the theoretical optimal region for H\textsubscript{2} production (168 L H\textsubscript{2}/kg TOC\textsubscript{FW}), which may then be subjected to further refinement experiments to account for higher-order effects of the factors

- the governing metabolic pathways were found to involve both hydrogenogenic and competing reactions. Enhancing organic matter conversion into H\textsubscript{2} beyond the maximum observed in the present study (1.45 mol H\textsubscript{2}/mol hexose) would thus require inhibition of H\textsubscript{2}-scavenging pathways

- changes in waste composition due to geographical or seasonal factors, with particular reference to the carbohydrate content, are expected to imply different H\textsubscript{2} yields, thus requiring specific investigation of the fermentation process

SUPPLEMENTARY INFORMATION

E-supplementary data for this work can be found in the e-version of this manuscript online.

REFERENCES

doi:10.1016/J.JCLEPRO.2017.11.078

Michel-Savin, D., Marchal, R., Vandecasteele, J.P., 1990. Control of the selectivity of butyric
acid production and improvement of fermentation performance with Clostridium

Figure captions

Figure 1. Cumulative H₂ production as a function of pH and mixture composition (a, b, c); Plot of t_{95}-H₂ as a function of pH and ISR (d)

Figure 2. Correlation matrix showing the Spearman’s rank correlation coefficients for each pair of variables. Blank cells indicate non-significant correlations ($p > 0.05$). The size and colour shade of circles represent the value of the correlation coefficients between pairs of variables (blue shades: positive correlation; red shades: negative correlation)

Figure 3. a) Response surfaces for SHPY (L H₂/kg TOC_FW) and b) t_{95}-H₂ (h) as derived from the quadratic model (2)

Figure 4. Time evolution of soluble carbohydrates and TOC as a function of pH and mixture composition

Figure 5. Time evolution of VFAs and ethanol (left-hand y-axis) as a function of pH and mixture composition, and comparison with H₂ production (right-hand y-axis)

Figure 6. a) SHPYobs/SHPYtheor and (Σ metabolic products)/DOC; b) Carbon mass balance for the experimental runs
Table 1. Average composition of FW and AS

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Unit of measure</th>
<th>FW</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>pH</td>
<td>-</td>
<td>3.81 ± 0.01</td>
<td>7.08 ± 0.01</td>
</tr>
<tr>
<td>Total Solids (TS)</td>
<td>g/L</td>
<td>43.6 ± 2.8</td>
<td>19.3 ± 0.1</td>
</tr>
<tr>
<td>Volatile Solids (VS)</td>
<td>g/L</td>
<td>40.2 ± 1.9</td>
<td>14.9 ± 0.4</td>
</tr>
<tr>
<td>Total Organic Carbon (TOC)</td>
<td>g/L</td>
<td>25.7 ± 3.9</td>
<td>9.35 ± 1.95</td>
</tr>
<tr>
<td>Soluble organic carbon (DOC)</td>
<td>g/L</td>
<td>9.6 ± 0.8</td>
<td>0.55 ± 0.05</td>
</tr>
<tr>
<td>Total ammonia</td>
<td>mg N-NH₄/L</td>
<td>210.2 ± 8.8</td>
<td>710.2 ± 2.2</td>
</tr>
<tr>
<td>Soluble ammonia</td>
<td>mg N-NH₄/L</td>
<td>203.9 ± 33.0</td>
<td>615.2 ± 26.4</td>
</tr>
<tr>
<td>Total carbohydrates</td>
<td>g hexose/L</td>
<td>13.9 ± 1.9</td>
<td>2.3 ± 0.4</td>
</tr>
<tr>
<td>Soluble carbohydrates</td>
<td>g hexose/L</td>
<td>23.1 ± 0.7</td>
<td>0.04 ± 0.003</td>
</tr>
</tbody>
</table>
Table 2. Experimental conditions adopted during the fermentation experiments

<table>
<thead>
<tr>
<th>Run no.</th>
<th>Run code</th>
<th>Mixture composition (% wet wt.)</th>
<th>ISR (g VSAS/g TOC_FW)</th>
<th>Operating pH</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>25FW pH5.5</td>
<td>25% FW, 75% AS</td>
<td>1.74</td>
<td>5.5</td>
</tr>
<tr>
<td>2</td>
<td>25FW pH6.5</td>
<td>25% FW, 75% AS</td>
<td>1.74</td>
<td>6.5</td>
</tr>
<tr>
<td>3</td>
<td>25FW pH7.5</td>
<td>25% FW, 75% AS</td>
<td>1.74</td>
<td>7.5</td>
</tr>
<tr>
<td>4</td>
<td>50FW pH5.5</td>
<td>50% FW, 50% AS</td>
<td>0.58</td>
<td>5.5</td>
</tr>
<tr>
<td>5</td>
<td>50FW pH6.5</td>
<td>50% FW, 50% AS</td>
<td>0.58</td>
<td>6.5</td>
</tr>
<tr>
<td>6</td>
<td>50FW pH7.5</td>
<td>50% FW, 50% AS</td>
<td>0.58</td>
<td>7.5</td>
</tr>
<tr>
<td>7</td>
<td>75FW pH5.5</td>
<td>75% FW, 25% AS</td>
<td>0.19</td>
<td>5.5</td>
</tr>
<tr>
<td>8</td>
<td>75FW pH6.5</td>
<td>75% FW, 25% AS</td>
<td>0.19</td>
<td>6.5</td>
</tr>
<tr>
<td>9</td>
<td>75FW pH7.5</td>
<td>75% FW, 25% AS</td>
<td>0.19</td>
<td>7.5</td>
</tr>
</tbody>
</table>
Table 3. Kinetic parameters of the two-stage Gompertz model and related statistics

<table>
<thead>
<tr>
<th>pH</th>
<th>HPY_{max1} (Nl/kg TOC_{fW})</th>
<th>R_{m1} (Nl/kg TOC_{fW}·h)</th>
<th>λ_1 (h)</th>
<th>HPY_{max2} (Nl/kg TOC_{fW})</th>
<th>R_{m2} (Nl/kg TOC_{fW}·h)</th>
<th>λ_2 (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>25FW pH 5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 = 0.9995</td>
<td>72.44</td>
<td>37.34</td>
<td>3.53</td>
<td>87.82</td>
<td>4.31</td>
<td>0.53</td>
</tr>
<tr>
<td>Fit std. error = 1.0485</td>
<td>88.43</td>
<td>52.51</td>
<td>149.85</td>
<td>133.91</td>
<td>53.23</td>
<td>6.62</td>
</tr>
<tr>
<td>50FW pH 5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 = 0.9986</td>
<td>114.22</td>
<td>29.40</td>
<td>3.55</td>
<td>42.20</td>
<td>8.99</td>
<td>13.39</td>
</tr>
<tr>
<td>Fit std. error = 2.0153</td>
<td>223.04</td>
<td>57.60</td>
<td>104.01</td>
<td>69.71</td>
<td>25.31</td>
<td>109.83</td>
</tr>
<tr>
<td>75FW pH 5.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 = 0.9990</td>
<td>72.85</td>
<td>5.57</td>
<td>31.47</td>
<td>3.65</td>
<td>0.11</td>
<td>78.53</td>
</tr>
<tr>
<td>Fit std. error = 1.0125</td>
<td>753.63</td>
<td>142.78</td>
<td>653.34</td>
<td>10.05</td>
<td>54.51</td>
<td>236.49</td>
</tr>
<tr>
<td>25FW pH 6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 = 0.9997</td>
<td>58.06</td>
<td>3.46</td>
<td>0.67</td>
<td>70.41</td>
<td>59.38</td>
<td>3.18</td>
</tr>
<tr>
<td>Fit std. error = 0.7725</td>
<td>71.62</td>
<td>38.84</td>
<td>8.70</td>
<td>105.33</td>
<td>8.09</td>
<td>36.17</td>
</tr>
<tr>
<td>50FW pH 6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 = 0.9994</td>
<td>99.05</td>
<td>47.92</td>
<td>3.26</td>
<td>25.52</td>
<td>5.12</td>
<td>7.23</td>
</tr>
<tr>
<td>Fit std. error = 1.0357</td>
<td>135.21</td>
<td>62.46</td>
<td>211.03</td>
<td>33.38</td>
<td>30.66</td>
<td>40.25</td>
</tr>
<tr>
<td>75FW pH 6.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 = 0.9997</td>
<td>56.85</td>
<td>31.70</td>
<td>4.55</td>
<td>59.61</td>
<td>4.20</td>
<td>2.88</td>
</tr>
<tr>
<td>Fit std. error = 0.7467</td>
<td>78.10</td>
<td>55.23</td>
<td>211.82</td>
<td>93.43</td>
<td>47.68</td>
<td>41.08</td>
</tr>
<tr>
<td>25FW pH 7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 = 0.9926</td>
<td>40.34</td>
<td>33.80</td>
<td>2.38</td>
<td>1.14</td>
<td>0.83</td>
<td>10.33</td>
</tr>
<tr>
<td>Fit std. error = 0.5782</td>
<td>404.18</td>
<td>45.15</td>
<td>156.83</td>
<td>11.00</td>
<td>1.37</td>
<td>17.97</td>
</tr>
<tr>
<td>50FW pH 7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 = 0.9951</td>
<td>76.36</td>
<td>30.31</td>
<td>2.63</td>
<td>1.08</td>
<td>3630.00</td>
<td>-90.88</td>
</tr>
<tr>
<td>Fit std. error = 1.8329</td>
<td>241.35</td>
<td>13.33</td>
<td>55.40</td>
<td>3.31</td>
<td>1900.96</td>
<td>-49.87</td>
</tr>
<tr>
<td>75FW pH 7.5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2 = 0.9992</td>
<td>82.20</td>
<td>31.35</td>
<td>4.26</td>
<td>15.63</td>
<td>2.46</td>
<td>11.67</td>
</tr>
<tr>
<td>Fit std. error = 0.9831</td>
<td>291.67</td>
<td>70.85</td>
<td>225.49</td>
<td>45.79</td>
<td>21.44</td>
<td>54.32</td>
</tr>
</tbody>
</table>

Note: The table shows kinetic parameters for different pH conditions and related statistics such as R^2, fit errors, and 95% confidence intervals.
Figure 1
Figure 2
Results of the ANOVA for SHPY

Multiple $R^2 = 0.8063$

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear (pH, ISR)</td>
<td>2</td>
<td>10257.5</td>
<td>5128.8</td>
<td>12.44</td>
<td>0.0012</td>
</tr>
<tr>
<td>Quadratic (pH, ISR)</td>
<td>2</td>
<td>280.6</td>
<td>140.3</td>
<td>3.40</td>
<td>0.0674</td>
</tr>
<tr>
<td>Interaction (pH, ISR)</td>
<td>1</td>
<td>7519.3</td>
<td>7519.3</td>
<td>18.24</td>
<td>0.0011</td>
</tr>
<tr>
<td>Residuals</td>
<td>12</td>
<td>4945.7</td>
<td>412.1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td>3</td>
<td>3102.2</td>
<td>1034.1</td>
<td>5.05</td>
<td>0.0254</td>
</tr>
<tr>
<td>Pure error</td>
<td>9</td>
<td>1843.5</td>
<td>204.8</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results of the ANOVA for t_{95-H_2}

Multiple $R^2 = 0.8769$

<table>
<thead>
<tr>
<th>Model Type</th>
<th>Df</th>
<th>Sum Sq</th>
<th>Mean Sq</th>
<th>F value</th>
<th>Pr(>F)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear (pH, ISR)</td>
<td>2</td>
<td>640.08</td>
<td>320.04</td>
<td>7.46</td>
<td>0.0685</td>
</tr>
<tr>
<td>Quadratic (pH, ISR)</td>
<td>2</td>
<td>276.43</td>
<td>138.22</td>
<td>3.2218</td>
<td>0.1791</td>
</tr>
<tr>
<td>Interaction (pH, ISR)</td>
<td>1</td>
<td>0.45</td>
<td>0.45</td>
<td>0.0104</td>
<td>0.9252</td>
</tr>
<tr>
<td>Residuals</td>
<td>3</td>
<td>128.7</td>
<td>42.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lack of fit</td>
<td>3</td>
<td>128.7</td>
<td>42.9</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pure error</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Figure 3
Figure 4
Figure 5
Figure 6