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An accurate and fast failure simulation for masonry walls is still an active field of research, due to its fundamen-
tal role in predicting the overall response of masonry structures under seismic and other extreme natural and man-
originated events. Multiscale models have been successfully exploited for achieving this task, being characterized by
high computational efficiency, especially in the presence of strong nonlinearities due to multiple microcrack initiation
and propagation. In this paper, a novel multiscale/multidomain approach for nonlinear analysis of masonries is pre-
sented, based on a couple-stress homogenization for undamaged regions and an adaptive strategy for triggering the
macro-to-micro switching operations. An extended validation of the proposed approach is presented, via suitable com-
parisons with a micromechanical model, here regarded as a benchmark model, that finely describes the microstructure,
based on the combined finite/discrete element method (FEM/DEM). A critical discussion of the obtained numerical
results has shown the efficacy of the proposed models as well as their limits of application.

KEY WORDS: masonry modeling, multiscale methods, multidomain approach, couple-stress continua,
FEM/DEM, nonlinear analyses, in-plane failure

1. INTRODUCTION

As is well known, there are several difficulties in masonry modeling, related to the peculiar nature of this composite
material and to the specific characteristics of masonry structures. Even if in the last decades the research community
paid great attention to this topic (Adam and Lourenço, 2011; Calladine, 1992; Milani, 2012; Sacco et al., 2018) there
are still some open questions: Which model may be more appropriate for studying the behavior of masonry material
and masonry structures? Is it better to adopt a discrete or a continuous model? How can a discrete system like masonry
material can be modeled as a continuum? How can the kinematic and static descriptors and the constitutive prescrip-
tions be transferred to the continuum model? Moreover, in the framework of continuous models, which continuum is
more suitable: a standard or a generalized continuum (Trovalusci and Pau, 2014)? The choice of the most appropriate
model for masonry is still an unresolved issue.

Masonry is a composite material characterized by heterogeneity, nonlinear behavior, and different responses in
compression and in tension. To a usually high strength in compression is coupled a very low or uncertain tensile
strength, due to the poor resistance of mortar joints to tension stresses. This aspect plays an important role in the case
of historical masonry, where the joints could be considered completely cracked: this led in the past to the formulation
of specific models for the so-called no-tension material that has been adopted for the modeling of masonry structure
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2 Reccia etal.

representing, in particular, a wide part of the architectural heritage (Como, 1992; Del Piero, 1989, 1998; Di Pasquale,
1992; Heyman, 1966).

Nevertheless, the mechanical behavior of real masonry is more complex and it is strongly influenced by its
constructive features: quality of constituent materials, size of blocks, thickness of joints, arrangement of blocks,
etc. All these characteristics play a relevant role in the mechanical behavior of masonry, and furthermore they vary
considerably from one case to another, even inside the same masonry structure. This calls for the need of specific
mechanical descriptions to be properly adopted case-by-case.

Despite the mentioned complexities in masonry modeling, in the common practice simplified phenomenological
models are usually adopted, in which masonry structures are modeled as simplified structural systems, such as a
system of nonlinear beams (Bucchi et al., 2013; Lagomarsino et al., 2013; Magenes and Calvi, 1997; Roca et al.,
2005; Turnsek and Tomazevic, 1980).

On the other hand, the scientific literature is wide ranging and several specific models have been proposed. With
a particular focus on brick/block masonry, it is possible to point out two different main approaches, developed over
the years but still extremely current:

• the discrete approach — in which masonry is modeled as a discrete system of elements (blocks, joints, and/or
interfaces) exhibiting different constitutive behaviors (Baggio and Trovalusci, 1993, 1998, 2000; Casapulla
et al., 2018; Cecchi and Sab, 2004; Lemos, 2007; Portioli et al., 2013, 2014);

• the continuum approach — in which masonry is modeled as an equivalent continuum, whose constitutive
model may be defined either through a simplified phenomenological approach, i.e., smeared cracking models
(De Carvalho Bello et al., 2017; Ghiassi et al., 2013; Lourenço and Rots, 1997) — or through homogenization
techniques for the derivation of both classical (Addessi et al., 2014; Anthoine, 1995; Caporale et al., 2015;
Casalegno et al., 2013; Cecchi and Sab, 2002; De Buhan and De Felice, 1997; Lourenço et al., 2007; Luciano
and Sacco, 1997; Milani, 2011) and generalized continua (Bacigalupo and Gambarotta, 2011; Baraldi et al.,
2015a; De Bellis and Addessi, 2011; Forest and Sab, 1998; Leonetti et al., 2018; Masiani and Trovalusci, 1996;
Pau and Trovalusci, 2012; Salerno and de Felice, 2009; Stefanou et al., 2008; Sulem and Muhlhaus, 1997;
Trovalusci and Masiani, 2003). In particular, among various generalized continua formulations, the micropolar
model has been widely proven to be able to properly account for the size and the orientation of the elements
(Masiani et al., 1995; Trovalusci and Pau, 2014).

Overall, on one hand, micromechanical models are able to completely reproduce the masonry microstructure
in order to provide reliable results, but, due to high computational costs, their applicability should be limited to
small portions of building. On the other hand, the adoption of macromechanical models obtained through multiscale
homogenization procedures may provide high computational efficiency keeping an appropriate numerical accuracy.

We consider masonry as a composite material, obtained by the union of at least two different components—units
and joints—with different constitutive behaviors and arranged in several possible ways. In order to take into account
this internal microstructure we consider two different mechanical models:

• a micromechanical model [“fine” model, marked (a) in the following), based on the discrete element method
(DEM) (Cundall, 1988), that accurately takes into account the effective micro-structure of masonry material
(Baraldi et al., 2013, 2015b, 2018b; Reccia et al., 2012) ;

• a multiscale/multidomain continuous model [“fine/coarse” model, marked (b) in the following), in which the
the characteristics of masonry emerging at microscale are accounted for at the macroscale by means of ho-
mogenization procedures (Greco et al., 2016, 2017), here applied to a couple-stress continuum description
(Leonetti et al., 2018).

The multiscale/multidomain model provides a computational strategy, whose aim is to reduce the typically high
computational cost exhibited by fully microscopic numerical analyses. The model is based on the combination of two
approaches: (i) a couple-stress (Mindlin and Tiersten, 1962; Toupin, 1964) homogenization technique to derive the
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A Multiscale/MultidomainModel 3

equivalent continuum to be used as a coarse model for undamaged masonry; (ii) an adaptive multidomain decom-
position technique, which allows us to automatically zoom-in the zones incipiently affected by damage onset. The
associated model refinement criterion requires the determination of microscopically informed first failure surfaces,
which take into account both classical and bending deformation effects, by taking advantage of the above-mentioned
couple-stress based homogenization technique.

The aim of this work is to propose a comparison between these two different modeling approaches in the failure
analysis of masonry panels. In particular, we provide a systematic validation of the results of the model (b) using the
comparison with the results obtained via a micromechanical model (a), that finely describes the microstructure. The
related accuracy and computational performances of the latter methodology are investigated via suitable numerical
experiments on different masonry panels with various sizes and aspect ratios, subjected to both vertical and lateral
actions.

The outlines of the paper are as follows. Section 2 provides the theoretical background of the proposed models:
the basic assumptions of the two models are reported, attention is paid to the opportunity, as well as the computational
convenience, of validating a nonclassical continuum multiscale/multidomain model, specifically conceived for the
gross modeling of masonry nonlinear behavior, with a more refined discrete model that has been proven to well
represent the failure behavior. In Section 3 the results of the numerical comparative analyses are reported. A first
analysis has been performed on a masonry wall panel subjected to in-plane horizontal displacements applied on the
top, with the purpose of calibrating the mechanical parameters to be adopted in the two models. Afterwards, attention
has been focused on the shape/scale effect, by changing both dimensions and shape of the panel but keeping fixed
dimensions and arrangement of bricks. Finally, in Section 4 some concluding remarks are presented.

2. THE FINE AND COARSE DESCRIPTIONS

In this section attention is focused on the basic theoretical assumptions of the two proposed descriptions for brick/block
masonry. The ‘fine’ nonlinear discrete model (a) (Section 2.1), that well represents the microstructure in detail, is as-
sumed as a benchmark model for validating the ‘fine/coarse’ couple-stress continuum model (b), enriched by the
heterogeneous description in the nonlinear regions of damage/failure via a multiscale/multidomain strategy (Sec-
tion 2.2). The former model has been widely proved to well represent the masonry nonlinear behavior, but with high
computational cost. The latter exploits the advantages of nonclassical continuum modeling, that, for instance, relies
on the possibility to take into account scale effects (Masiani et al., 1995; Trovalusci and Masiani, 2003; Trovalusci
and Pau, 2014), enriched by the multidomain decomposition strategy, that allows a detailed description of masonry
behavior with reduced computational costs.

2.1 A Combined Finite/Discrete Element Model (FEM/DEM) (a)

A micromechanical model, based on the use of combined finite and discrete element methods (FEM/DEM) is here
adopted as a benchmark model for validating the multiscale/multidomain model described in Section 2.2.

The discrete element method (DEM) (Cundall, 1988) belongs to a specific class of discrete models which have
to satisfy the following criteria: (Cundall and Hart, 1992): (i) discrete elements that can move independently; (ii)
contacts between the elements that may vary during the analysis, so that different elements can come in or lose
contact; (iii) contact detection governed by a molecular dynamics algorithm; (iv) analysis are performed under the
hypothesis of large displacements.

DEM was originally developed for the study of particulates, jointed rock, granular assemblies (Cundall and
Strack, 1979) and, in general, of nonlinear problems characterized by the mutual movement of rigid bodies, eventually
interacting through contact. For these reasons, it has been successfully adopted also for masonry modeling (Baraldi
et al., 2015a; Cecchi and Sab, 2004, 2009; Lemos, 2007).

The combination of the finite element method (FEM) with the discrete element method (DEM) had been already
introduced in the initial improvements of the original discrete model, in order to describe the deformability of the
elements by means of FE discretization (Cundall and Hart, 1985, 1992). The combined FEM/DEM approach here
adopted is based on the original method developed by Munjiza (2004) and improved by the Toronto Geo Group
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(Mahabadi et al., 2010). In FEM/DEM, which is based on the discrete element method, the DEs are meshed into FEs
with embedded crack elements that activate whenever the peak strength is reached.

The governing equations in a FEM/DEM system are

Mü+Cu̇ = f , (1)

whereM is the lumped mass matrix,C is the damping diagonal matrix,u is the vector of the nodal displacements,
andf = {fext,fint,fdef ,fjoint}T is the vector of the nodal forces, which includes several contributions: external
forcesfext; internal forcesfint, related to the interaction between the elements; deformation forcesfdef , com-
puted under the assumption of isotropic linear elasticity; and crack forcesfjoint, the forces transmitted through joint
elements and used to simulate material failure. An explicit second-order finite-difference time integration scheme
is applied to solve the equations of motion for the discretized system and to update the nodal coordinates at each
simulation time step. FEs allow modeling elastic deformation, while DEs are able for modeling interaction, frac-
ture, and fragmentation processes. In the normal direction, body impenetrability is enforced using a penalty method
(Munjiza and Andrews, 2000), while in the tangential direction, discontinuity frictional behavior is simulated by a
Coulomb-type friction law (Mahabadi et al., 2012).

The FEM/DEM approach here adopted was originally introduced in soil mechanics problems (Munjiza et al.,
1995); however, it has been successfully extended to the field of masonry structures by some of the authors (Baraldi
et al., 2013, 2015b, 2018b; Reccia et al., 2012, 2016) and by other research groups (Miglietta et al., 2016, 2017;
Smoljanovíc et al., 2013, 2015, 2017).

2.1.1 FEM/DEM Approach for Masonry Panels

The approach here adopted follows the lines developed in previous works of some of the authors, and in particular
in (Baraldi et al., 2018a). Masonry panels are modeled as an assemblage of deformable bricks connected by zero-
thickness Mohr-Coulomb interfaces. A mesh of triangular constant strain triangle (CST) FEs is adopted to model
the whole masonry panel, under the hypothesis of plane stress. Each brick is modeled by 16 FEs; deformability is
governed by elastic modulus and Poisson’s ratio. The nonlinear behavior is modeled by crack elements, four-noded
cohesive elements embedded among all the triangular FEs. The crack elements allow us to model the mortar joints, but
they can also represent inner brick subdivisions, so that cracks may occur both in the bricks and in the joints between
adjacent bricks. However, in order to compare the FEM/DEM approach to the multiscale/multidomain model (b)
described in Section 2.2, in this work the bricks are assumed to be infinitely resistant to tensile and shear forces;
therefore damage is limited to the interfaces (mortar joints) between adjacent bricks. The mesh adopted and the two
different crack elements inside and between bricks are shown in Fig. 1(a). It is possible to notice that, the mortar
joints being modeled as zero-thickness interfaces, the dimensions of the bricks are increased by half of the joints’
thickness (extended bricks), with reference to the running bond arrangement that will be considered in the numerical
simulations (Section 3).

Interfaces are governed by a tensile strength criterion,(σ⊥ ≤ ft), and by a Mohr-Coulomb yield criterion,
(| σ∥ |≤ fs), with fs = c − σ⊥tanϕ, where(σ) = {σ⊥ σ∥}T is the stress vector, with the normal and tangential

FIG. 1: Meshadopted for FEM/DEM model (a) RVE defined for the continuous multiscale model (b)
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components, respectively, over a generic interface depending on the relative displacements between two adjacent
blocks. The mechanical parameters involved in the joints are cohesionc > 0, friction angleϕ (0 < ϕ < π \ 2), and
the tensileft and shear strengthfs.

The cohesive law adopted in the FEM/DEM model is a modified version proposed by Lisjak et al. (2013). When
the value of cohesionc or tensile strengthft is reached, the crack elements are activated. Depending on the local
stress and deformation field, fractures can develop and grow in mode I (decohesion mode), mode II (slippage mode),
or in mixed mode I-II. The nonlinear behavior of crack elements is governed by two fracture energies: mode I,GIc,
related to the decohesion mechanism, and mode II,GIIc, related to the slippage mechanism, corresponding to the
areas under the bonding stress-softening curves reported in Fig. 2. This cohesive law has been also implemented in
the multiscale/multidomain model.

Numerical simulations are performed utilizing the open source computer code Y2D/Y-GUI (Mahabadi et al.,
2010) for generating input files and Y-Geo (Mahabadi et al., 2012) for running numerical analyses. Results have been
processed by means of ad hoc MATLAB scripts and by means of spreadsheets.

2.2 Multiscale/Multidomain Model for Masonry Structures (b)

The continuum model is a linearly elastic couple stress model, obtained using a homogenization procedure, enriched
by the discrete description in the regions in which failure mechanisms occur. The macroscopic couple stress de-
scription is the key ingredient of the adopted multiscale/multidomain framework, allowing for the injection of the
characteristic length of masonry in its overall mechanical response, both in the linear and nonlinear ranges.

The numerical results are obtained using an original finite element (FE) discretization, formulated for couple-
stress media and implemented within the commercial code COMSOL Multiphysics®, which exploits an adaptive
multilevel domain decomposition strategy, initially proposed in Greco et al. (2015, 2016, 2017) for classical continua
and then extended to couple-stress continua (Leonetti et al., 2018). The proposed multiscale/multidomain model
allows the nonlinear analysis of masonry structures. The fracture simulation is performed under the assumptions of
quasistatic loading conditions, isothermal evolution over time, and small displacements. The macroscopic problem is
discretized by a coarse mesh of finite elements which cannot capture the nonlinear microstructural behavior. Indeed,
initiation and propagation of cracks (mainly occurring at the mortar joints) are only represented at the fine scale.
It follows that linear homogenization is sufficient for deriving the macroscopic constitutive model of undamaged
masonry.

In the critical regions where the scale separation assumption is not satisfied, the homogenization step is by passed
and a concurrent multiscale method based on domain decomposition is adopted. In these regions, the microscopic
model is directly solved in a strongly coupled manner with the macroscopic model, as discussed in Leonetti et al.
(2018). The proposed concurrent multiscale model for masonry structures is equipped with adaptive capabilities,

FIG. 2: Constitutive behavior of the crack elements (Lisjak et al., 2013): (a) mode I, decohesion; (b) mode II, slippage; (c) mixed
mode I-II. Subscripts p and r refer to onset and complete separation, respectively.
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with the aim of reducing the overall computational cost of the associated numerical method for the solution of the
underlying nonlinear problem.

2.2.1 Couple-Stress Homogenization

As a homogenized model for undamaged masonry, a couple-stress model is adopted here, regarded as a modified
Cosserat model obtained by introducing an additional internal constraint (constrained Cosserat model).

In the linearized kinematics setting, the consistent strain measures of a couple stress continuum are the (symmet-
ric) strain tensor and the curvature tensor:

ε =
1
2

[
∇u+ (∇u)

T
]
, χ = ∇ω, (2)

where the rotation vectorω is not independent as in the Cosserat model, but is related to the displacement vectoru
as follows:

ω =
1
2

curl(u) =
1
2

[
∇u− (∇u)

T
]
. (3)

It is worth noting that Eq. (2) represents the equality between the Cosserat microrotation and the local rigid rotation
(macrorotation) as defined for classical media.

By neglecting the body couple per unit volume of the continuum, the differential form of the equilibrium equa-
tions for the couple-stress theory can be written as

div (σ) + b = 0, div (µ) = 0, (4)

whereσ andµ are the stress and couple-stress tensors, div(·)denotes the divergence operator, andb is the body
force. It is worth noting that the stress tensorσ, the dynamical work-conjugated counterpart of the strain measureε,
is symmetric.

By standard variational arguments, it follows that the virtual work principle for a couple-stress continuum occu-
pying a Euclidean regionP bounded by a surface∂P can be written as∫

P
(σ · δε+ µ · δχ) dV =

∫
∂Pt

t · δu dS +

∫
∂Pm

m · δωdS +

∫
P
b · δudV, (5)

wheret andm are the traction and surface couple imposed on the portions∂Pt and∂Pm, respectively, andδ denotes
the usual variational operator.

The elastic energy density functionW = W (ε,χ) takes the general form

W =

(
1
2
Aε · ε+Bε · χ+

1
2
Dχ · χ

)
. (6)

whereA, B, andD are constitutive tensors. Under the hypothesis of hyperelasticity, it follows that the constitutive
equations for the couple-stress model are

σ =
∂W

∂ε
= Aε+Bχ, µ =

∂W

∂χ
= BTε+Dχ. (7)

In order to derive the macroscopic elastic moduli tensor for the undamaged masonry, a repeating cell is considered
[Fig. 1(b)], subjected to five (three Cauchy and two bending) independent pure macrodeformation modes. Periodic
boundary conditions are imposed for the Cauchy modes, whereas the special mixed boundary conditions shown in
Fig. 3 are prescribed for the bending modes, involving a combination of periodic, antiperiodic, and zero fluctuation
on different portions of the repeating cell (RC) boundary.
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FIG. 3: Boundaryconditions required for bending macrodeformation modes (χ31, χ32 macroscopic curvatures;w1, w2 horizontal
and vertical components of the microscopic fluctuation field over the RC boundary)

Let us consider a two-dimensional framework. The homogenized response of undamaged masonry is assumed to
be orthotropic; thus only six independent moduli must be identified. The homogenized constitutive law can be written
in the following matrix form (overlined symbols indicate the homogenized quantities):

σ11

σ22

σ12

µ31
µ32

 =


A1111 A1122 0 0 0
A1122 A2222 0 0 0

0 0 A1212 0 0
0 0 0 D3131 0
0 0 0 0 D3232



ε11

ε22

ε12

χ31
χ32

 , (8)

whereσij andεij (with i, j = 1,2) represent the macroscopic (homogenized) Cauchy stress and strain components,
respectively, whereasµ3i andχ3i (with i = 1,2) are the macroscopic couple-stress and curvature components,
respectively. Moreover,Aijhk (with i, j, h, k = 1,2) denote the homogenized Cauchy moduli, whereasD3i3i (with
i = 1,2) arethe homogenized bending moduli, related to the unit dimensions, which are responsible for the size
dependence of the overall mechanical response of the medium.

It is worth noting that the couple-stress model usually requires aC1 continuity for the discretized displacement
field, when employed in a standard finite element setting. To avoid this strong requirement, the couple-stress model is
directly derived from an unconstrained Cosserat model, in which displacements and rotations are taken as independent
nodal variables. The additional internal constraint enforcing the equality between macrorotations (i.e., computed from
displacement gradients) and microrotations (i.e., local rotations) is introduced in the variational formulation by means
of a penalty approach, as proposed in Garg and Han (2013).

2.2.2 Multiscale/Multidomain Formulation

At the microscopic level, regular masonry may be regarded as a two-phase composite material, made of units (e.g.,
bricks or blocks) and mortar joints periodically arranged. We analyze the in-plane behavior of two-dimensional (2D)
assemblies, due to the assumed small thickness. It follows that the given structure is described by a periodic hetero-
geneous continuum, occupying a bounded open setΩ ⊂ R2. Its external boundary∂Ω is made of two disjoint parts,
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denoted as∂DΩ and∂NΩ, where Dirichlet and Neumann boundary conditions are prescribed, respectively. The units
behave as linearly elastic, whereas the mortar joints are modeled as cohesive interfaces, collectively denoted asΓc,
equipped with a mixed-mode softening constitutive law. According to this approach, referred to as simplified micro-
modeling, artificially expanded units are modeled by bulk elements, whereas the joints are lumped into zero-thickness
elements placed in between the units.

Even under the hypotheses of zero body forces, small deformations, and quasistatic loading conditions, the
mechanical response of the considered masonry structure subjected to in-plane external actions can be obtained
by solving a highly nonlinear boundary value problem (BVP), due to the presence of damageable interfaces and
unilateral contact conditions along the crack faces. This nonlinear problem is cumbersome to solve at the fine
scale in the standard finite element setting, due to the excessively high number of associated degrees of freedom
(DOFs).

In order to reduce the complexity of such a purely microscopic problem, the multiscale model proposed in
Leonetti et al. (2018) is here adopted, based on a two-level domain decomposition approach used in combination
with a couple-stress homogenization technique. According to this model, a homogenized couple-stress model for
masonry is adopted everywhere, except for critical regions, where nonlinear damage phenomena occur, thus requiring
a detailed microstructural modeling.

As a consequence, the original problem is replaced by the equivalent multiscale/multidomain problem shown
in Fig. 4, leading to the partition ofΩ in two nonoverlapping subdomains, i.e., the macroscopic and the microscopic
domains denoted asΩM andΩm, respectively. Because of this partition, additional internal boundaries are introduced,
collectively referred to as the micro/macro interface and indicated byΓint.

Let um anduM represent the micro- and macroscale displacement elds, belonging to the spaces of admissi-
ble solutions,Um andUM , respectively. The resulting boundary value problem (BVP) turns out to be an interface
problem, represented by the following variational formulation: Find(um,uM ,λ) ∈ Um × UM × Λ such that∫

Ωm\Γc

σm · ε(δum)dΩ +

∫
Γc

tc(JumK,d) · JδumKdΓ +

∫
Γint

λ · δumdΓ

=

∫
∂NΩm

t⋆m · δumdΓ, ∀δum ∈ Vm ,∫
ΩM

(σM · ε(δuM ) + µM · χ(δuM ))dΩ−
∫
Γint

λ · δuMdΓ

=

∫
∂NΩM

t⋆M · δuMdΓ, ∀δuM ∈ VM ,

FIG. 4: Multiscale/multidomainscheme for a masonry structure
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∫
Γint

δλ · (um − uM ) dΓ = 0, ∀δλ ∈ Λ. (9)

The first two equations represent the equilibrium conditions of the portionsΩm andΩM , respectively, while the
third equation is the kinematic compatibility condition at the micro/macro interface. In Eq. (9),λ is the Lagrange
multiplier field, belonging to a properly defined spaceΛ, whereasδ denotes the usual variational operator. Moreover,
Vm andVM are the spaces of test functions forum anduM , respectively. Furthermore,tc are the cohesive tractions;
t⋆m andt⋆M are the boundary tractions imposed on the microscopic and macroscopic portions of∂NΩ, respectively.
Finally, the double square brackets denote the jump of the enclosed quantity across the cohesive boundaryΓc. It is
worth noting that the curvatureχ and the couple-stressµM tensors are defined only overΩM .

The required constitutive law must then be computed from the couple-stress based homogenization explained in
Section 2.2.1. Furthermore, as shape functions for the Lagrange multiplier fieldλ, Dirac functions have been chosen,
so that the displacement continuity alongΓint is enforced pointwise, resulting in a strong coupling between micro-
and macrodisplacements [see Lloberas-Valls et al. (2012) for additional details].

The above formulation takes into account a mixed-mode cohesive law,tc (JumK, d), of the intrinsic type, which
involves a scalar state variabled indicating the current damage level and ranging from 0 (for perfect interfaces) to
1 (for completely failed interfaces). Such an irreversible cohesive law has been properly calibrated to be perfectly
equivalent to that used within the FEM/DEM approach. In the elastic range, the interface constitutive law can be
written astc = K[[um]] = diag{Kn,Ks}, Kn andKs being the normal and tangential stiffness components,
respectively. Moreover, the inelastic parameters of the interface elements are the tensile,ft, and shear,c, cohesive
strengths; the friction angle,φ; and both the mode I,GIc, and mode II,GIIc, fracture energies. The elastic stiffness
components are not regarded here as penalty values, but possess a precise physical meaning, being determined from
the elastic properties of masonry constituents and the joint thickness, according to Lourenço and Rots (1997).

2.2.3 Adaptive Model Refinement Technique

The previously described multiscale/multidomain formulation is used in combination with an adaptive framework,
which is mainly responsible for the overall efficiency of the proposed multiscale method.

The model refinement strategy adopted here is based on the fulfillment of a properly defined zooming-in criterion.
According to this criterion, the zone of interest, directly influenced by fracture phenomena, is continuously updated
to push the micro/macro interface away from the already damaged zones.

Similarly to the well-known adaptive mesh refinement, the model refinement strategy consists in replacing the
homogenized coarse-scale model by the heterogeneous fine-scale model in the spatial regions where homogenization
ceases to be valid because of the occurrence of strain localization phenomena. Indeed, in this situation both macroho-
mogeneity and perfect periodicity conditions are no longer valid. The macro-to-micro switching operations are based
on the detection of subdomains where the first nonlinearity is predicted. To this end, a suitable first failure surface
defined on the macroscopic strain space is derived for the given repeating cell. Operationally, this limit locus is con-
structed by points after solving a number of (linear) microscopic problems by varying the prescribed macrostrain path
direction, under plane-stress conditions. All the related numerical details are explained in Leonetti et al. (2018).

At the beginning of the multiscale analysis, the undamaged masonry is described as a homogenized material and
the computational domain is decomposed into a finite number of coarse-level elements (here referred to as macro-
elements) arranged in a rectangular grid. At a given load level, a global nonlinear boundary value problem is solved,
and all the macro-elements for which the above-mentioned switching criterion is fulfilled are flagged as critical and
replaced by finely meshed subdomains representing the underlying masonry microstructure with damageable mortar
joints. The latter step is repeated at fixed external load according to the predictor-corrector algorithm shown in Fig. 5,
until the macro-strain level in all the remaining macro-elements is kept below its critical value. After that, the external
load is further incremented and the overall loop is repeated within the adopted (displacement-based) continuation
strategy until the final collapse of the structure.

It is worth noting that the extension of coarse- and fine-level meshed subdomains is expected to vary during the
multiscale simulation, and therefore the assumed scalar damage variable must be projected from the previous to the
current mesh.
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FIG. 5: Predictor-corrector algorithm for the adaptive multiscale/multidomain model refinement

The multiscale/multidomain model presented here has been implemented within the commercial finite element
software COMSOL Multiphysics®, used in combination with related product LiveLink® for MATLAB. In fact, an ad
hoc developed MATLAB code has been linked to the main computational environment to implement the previously
described predictor-corrector algorithm for model refinement within the built-in continuation solver.

3. NUMERICAL SIMULATIONS

A series of numerical analyses on masonry walls has been performed with the purpose of comparing the two ap-
proaches, evaluating their advantages and limits of applicability. The main differences between the two models are
synthesized in Table 1.

The two models adopt the same mechanical parameters at the microscale, in particular, as stated in Section 2, the
same cohesive law adopted in FEM/DEM, developed by Lisjak et al. (2013) and described in Section 2.1, has been
introduced in the multiscale/multidomain model. At the macroscale, the multiscale model requires the macroscopic
elastic moduli, which characterize the constitutive to the constitutive law coming from homogenization.

A first analysis has been carried out with the purpose of calibrating the parameters to be adopted in the two
models. With this aim, a benchmark example (Raijmakers and Vermeltfoort, 1992), widely studied by several authors,
has been considered. It consists of a square masonry panel with a running bond arrangement of bricks, tested in the
laboratory by applying increasing horizontal displacements on the top of the wall until the collapse. Then, panels of
different dimensions and shape, made of bricks of constant size, shape, and arrangement, have been considered for
the comparison between the two models. The panels analyzed are reported in Fig. 6.

TABLE 1: Comparison between the main features of the two
models

FEM/DEM (a) Multiscale/Multidomain (b)

Discrete Model Continuum Model

Molecular Dynamic Quasi-static FEMAnalysis

Finite-Displacement Contact Cohesive Contact

LargeDisplacements Small Displacements
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FIG. 6: Panels: benchmark panel (a); square panel double size (b); rectangular panel (c)

3.1 Calibration of the Parameters: Benchmark Panel

A first analysis is performed on a square panel with a side ofH = B = 1.10 m, made of 18 layers consisting of
five bricks, each one arranged in a running bond pattern, as shown in Fig. 6(a). The dimensions of the bricks are
(210× 52) mm2 with a width of 100 mm. Both vertical and horizontal mortar joints have a thickness of 10 mm. The
analysis reproduces the tests made by Raijmakers and Vermeltfoort (1992) and afterwards studied by several authors.
In particular, the works of Lourenço (1996) and Lourenço and Rots (1997) have been considered as a reference for
the mechanical parameter adopted for constituents and joints, summarized in Tables 2 and 3.

The panel is fixed at the base and subjected to an increasing horizontal displacement on the top, as shown in Fig. 7.
Vertical displacements are fixed on the top in order to reproduce the test setup, in which horizontal displacements were
applied through a loaded steel beam along their upper edge. Self-weight is taken into account.

The results of the analysis are reported in Fig. 8, where the reaction at the base is plotted versus the displacement
applied on the top. The dashed line is referred to the solution provided by FEM/DEM (a) while the solid line is
referred to the solution of the multiscale/multidomain model (b). The kinematic mechanisms of collapse are shown
for different values of displacements on top, identified on the curves by red circles. The two mechanisms marked with
(a) are referred to the FEM/DEM model: figures on the left provide the FE mesh, in blue; the crack elements activated,
in black; and the cracked joints, in red; the figures on the right, for the sake of clearness, show only the cracked joints.
The two mechanisms marked with (b) are referred to the multiscale/multidomain model: in gray are the areas in which
the macro-elements are replaced by finely meshed subdomains, representing the underlying masonry microstructure
with damageable mortar joints; in red are the cracked joints. In Fig. 8 the mechanisms in the nonlinear phase (at a
value of 0.001 m of the horizontal displacement at the top) and at the collapse (at 0.002 m) are reported.

TABLE 2: Elastic properties of masonry components

Component E [MPa] ν

Bricks 16700 0.15
Mortar 782 0.14

TABLE 3: Inelastic parameters of mortar joints

ft [MPa] c [MPa] fc [MPa] ϕ [deg] GIc [N/mm] GIIc [N/mm]

0.25 0.35 10.5 36.9 0.018 0.125
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FIG. 7: Boundaryconditions and load applied on the square panel

FIG. 8: SquarepanelH = B = 1.10 m: Horizontal displacements on top vs reaction at base. Collapse mechanisms at 1 mm and
at 2 mm obtained by FEM/DEM model (a) and multiscale/multidomain model (b).

The results of the two approaches are in good agreement; however, some differences between them may be
pointed out. The FEM/DEM model is a discrete model, in which the equation of motion is solved by an explicit
second-order finite-difference time integration scheme, leading to a discontinuous nonsmooth curve. The multi-
scale/multidomain model, instead, is a continuous model adopted to perform a quasistatic FEM analysis, resulting in a
continuous smooth curve. However, the two curves exhibit a very similar trend and in both cases the value of collapse
load, measured as reaction at the base, is around 50 kN, also comparable is the collapse displacement (0.002 m).
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The collapse mechanisms provided by the two models are similar and in good agreement with the ones observed
in the tests (Raijmakers and Vermeltfoort, 1992) and in the literature (Lourenço and Rots, 1997). At the beginning
of the nonlinear phase, 0.001 m of displacement, failure occurs in the upper and lower horizontal joints, close to
the corners. Subsequently, at the collapse, 0.002 m of displacement, cracking spreads out in the panel along the
main diagonal, which is a typical shear damage pattern. However, some slight differences may be noticed: while in
FEM/DEM the damage affects both vertical and horizontal joints, leading to a mechanism in which sliding occurs, in
the multiscale/multidomain model cracking along the diagonal appears only in the vertical joints, with the predomi-
nant rotation mechanism. The comparison between the results allows us to consider reliable the adopted parameters
for the two models, and in particular the cohesive law implemented in both models (Lisjak et al., 2013).

3.2 Sensitivity to Shape/Scale Effects

Two cases of study have been analyzed for evaluating the sensitivity of the two models with respect to the shape and
scale effects, by varying dimensions of the panel and keeping constant size and arrangement of bricks and boundary
conditions (Fig. 6). The first case study is a square panel with sideH = B = 2.20 m (double size with respect to the
benchmark panel), made of 36 layers consisting of 10 bricks, each one arranged in a running bond pattern [Fig. 6(b)].
The second case study is a rectangular panel with the same base of the benchmark panel,B = 1.10 m, but double
height,H = 2B = 2.20 m, made of 36 layers consisting of five bricks, each one arranged in a running bond pattern
[Fig. 6(c)]. The results of all the analyses performed are reproduced according to Fig. 8 with the same information
provided and the same symbols adopted.

3.2.1 Case 1—Double Size Square Panel (H = B = 2.20 m)

The results of the analysis are reported in Fig. 9. The results of the two approaches are in good agreement, the value of
reaction at the base of the collapse is around 90 kN, corresponding to 0.0026 m of displacements on the top; however,
some differences between them may be highlighted. The differences between the two curves are greater than in the
benchmark case, in particular close to the collapse. The multiscale/multidomain model shows an increasing trend of
the curve also after 0.0015 m of displacements, where the behavior becomes completely nonlinear. The reaction at
the base increases until the convergence cannot be reached at the collapse of the panel. Instead, in the same steps,
FEM/DEM provides more oscillations in the results, due to the activation of the crack elements, to the breaking of
joints, to the changes in the contacts between the elements and to the dynamic field of analysis. This is typical in the
case of an explicit solution of the equation of motion. Moreover, it may be observed that the discontinuous curve of
FEM/DEM shows the beginning of softening.

The mechanisms of collapse are similar to the benchmark case. In FEM/DEM model (a), a mixed shear-sliding
mechanism develops, with two diagonal cracks occurring in the areas above and below the cracks in the horizontal
joints close to the corners. In the multiscale/multidomain model (b) the nonlinear behavior affects the diagonal area
of the panel—in which the microstructure is activated—however, cracking occurs only in the horizontal joints close
to the corners.

3.2.2 Case 2—Rectangular Panel (H = 2B = 2.20 m)

The differences between the two models are related to their specific characteristics and are emphasized by the results
of the analysis performed on a rectangular panel. The results of the analysis are reported in Figs. 10 and 11, and
provide the same information as the previous figures. In Fig. 10 attention is focused on the linear phase, while in
Fig. 11 the results of analysis up to the collapse are provided.

In Fig. 10 the results in terms of the reaction at the base versus displacements on the top provided by the two mod-
els are very similar. At a displacement of 0.0036 m the panel is still in the linear phase; the reaction is around 50 kN.
The reaction increases almost linearly, except for a slight change of slope due to the opening of the cracks close to the
corners. However, looking at the mechanisms of collapse, it is possible to notice that in the multiscale/multidomain
only the corners are affected by nonlinearity, while in FEM/DEM crack elements activate in the whole diagonal.
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FIG. 9: Doublesize square panel (H = B = 2.20 m): horizontal displacements on top vs reaction at base. Collapse mechanisms
at 1 and 2.6 mm obtained by FEM/DEM model (a) and multiscale/multidomain model (b).

FIG. 10: RectangularpanelH = 2B = 2.20 m: Horizontal displacements on top vs reaction at base. Collapse mechanisms in the
elastic phase obtained by FEM/DEM model (a) and multiscale/multidomain model (b).
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FIG. 11: RectangularpanelH = 2B = 2.20 m: Horizontal displacements on top vs reaction at base. Collapse mechanisms in the
nonlinear phase obtained by FEM/DEM model (a) and multiscale/multidomain model (b).

As the analysis goes on, until 0.015 m of displacement on top, the two models provide completely different
results as shown in Fig. 11. The curve of multiscale/multidomain model constantly increases, while in FEM/DEM
the activation of the mixed shear-sliding mechanisms lead to softening. The distance between the two curves grows
as the displacements on top increase, and it is more evident when large displacements are reached. In the multi-
scale/multidomain model, the field of analysis is in fact limited to the small displacements hypothesis. Even if the
microstructure is activated where joints break and the panel behaves nonlinearly, the wall remains a deformable con-
tinuous heterogeneous panel. Instead, as FEM/DEM is a fully discrete model, once the cracks determine the separation
of portions of the panel, these portions move separately from each other.

This aspect is more clear looking at the mechanisms of collapse: even if the nonlinearity spreads out along the
panel, in the multiscale/multidomain model (b) cracking still affects only the two corners, while in FEM/DEM (a),
cracking affects the whole lower area of the panel. This difference between the two models is made more evident
by the prevented rotation of the upper side of the panel. As is already known, in the case of slender masonry panels
with bricks of this aspect ratio the global mechanism of collapse is overturning (Baggio and Trovalusci, 1993; Baraldi
et al., 2018b; Masiani et al., 1995), but in this case this mechanism is not allowed.

4. CONCLUSIONS

In this work, two different approaches to the modeling of masonry materials have been compared: (a) a micromechanic
discrete model, based on a mixed finite/discrete element method, namely, FEM/DEM, and (b) a multiscale continuous
model, based on a couple-stress homogenization and on a multidomain decomposition. The aim of this work is the
validation of the latter model by the comparison with the former one, here regarded as a benchmark. The main
features of the two models in comparison may be synthesized: (i) discrete versus continuum model; (ii) molecular
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dynamics versus quasistatic FEM analysis; (iii) finite displacements contact versus cohesive contact; (iv) low versus
high computational efficiency.

The two models have been compared by analyzing the behavior of masonry panels subjected to incremental
horizontal displacements applied on top. With this aim, a square panel has been modeled with reference to the test
carried out by Raijmakers and Vermeltfoort (1992), that is a benchmark example widely studied by several authors.
This comparison allowed us to calibrate the mechanical parameters adopted in the two models. Subsequently, two
different cases of study have been considered: a square panel with double size with respect to the benchmark panel
and a rectangular panel, keeping fixed in both cases size and arrangement of bricks. The purpose was the evaluation
of the sensitivity of the two models to shape and scale effects.

Some final remarks may be pointed out:

• both the FEM/DEM model and the multiscale/multidomain model model are able to provide reliable results
for the in-plane failure analysis of masonry panels;

• mechanical properties at macroscale obtained by couple-stress homogenization allow taking into account the
characteristics of masonry material, in particular the size of heterogeneity;

• the FEM/DEM model allows performing analysis under the large displacements hypothesis, but with high
computational costs that limit its application to small structures;

• the application of the present multiscale/multidomain model is limited to the small displacements hypothesis;

• the multiscale model conjugates accuracy in results with high computational efficiency, leading to the possi-
bility of analyzing large size real buildings;

• the adopted multiscale/multidomain model generally leads to an overestimation of both strength and stiffness
of masonry with respect to the FEM/DEM approach. In particular, the appearance of the softening branch is
delayed, due to the small displacement assumption, being too restrictive in real-life situations, where large-
scale contact plays a fundamental role in stress redistribution.
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