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Abstract—The availability of accurate measurements is the
prerequisite for the actual implementation of many monitoring
and management applications in smart distribution networks.
Phasor Measurement Units (PMUs) can provide synchronized
voltage and current measurements, referred to a common time
reference (usually the Coordinated Universal Time, UTC). This
feature, as well as the high accuracy and reporting rate of PMUs,
can be exploited for an accurate network monitoring.

At the same time, the smartness of the grid can include the pos-
sibility for the measurement system to self-detect its weak points
and improve its performance. In this perspective, a technique for
the estimation and the compensation of systematic errors existing
in the components of a PMU-based distributed measurement
system suitable for monitoring three-phase distribution networks
is presented. The uncertainty induced by the components of
the measurement system, mainly instrument transformers and
PMUs, is included in the model, along with the uncertainty
affecting the values of the network line parameters. The method
exploits the possible constraints introduced by the grid topology
(presence of multiple lines, injected currents, etc.) to improve the
accuracy of the estimation, so that a proper compensation of the
estimated errors can be allowed. The validity of the approach is
verified though simulations performed on a small portion of a
test medium voltage distribution grid.

Index Terms—phasor measurement units, power distribution
lines, instrument transformers, voltage measurement, current
measurement, measurement errors, impedance measurement.

I. INTRODUCTION

Sizeable changes are occurring in power distribution net-
works (DNs) with the advent of distributed energy sources and
storage systems, particularly distributed renewables, as well as
with the introduction of electric vehicles and the proposals for
responsive load management and new energy markets.

This evolution asks for new approaches in the management
and control of the network, requiring a more intelligent cyber-
physical infrastructure for DNs that allows transforming them
into ”smart” DNs (SDNs). A prerequisite for advanced net-
work operation is an upgraded and sophisticated monitoring
system that can foster the transition towards network automa-
tion.

Phasor Measurement Units (PMUs), which provide syn-
chronized measurements of voltage and current phasors, as
well as frequency and rate of change of frequency (ROCOF),
can represent an interesting improvement to the monitoring
infrastructure. Thanks to the synchronization with respect to

a common coordinated universal time (UTC) reference, their
high accuracy and reporting rates, these devices are starting to
play an important role in modern electric power grids, forming
the basis of advanced and more effective monitoring applica-
tions. PMUs are currently employed mainly in the transmission
grid, where synchrophasor measurements from PMUs are used
for several applications [1]. PMU measurements can be used,
for example, for state estimation [2], [3], voltage stability
assessment, line parameter estimations [4]–[6] and also for
off-line applications such as post-mortem analysis.

Because of their high potential, PMUs have begun to be
considered for use in the monitoring and management of SDNs
as well. The development of PMUs specifically conceived
for this type of network encourages the use of PMUs in
many distribution applications [7], such as state estimation
techniques applied to DNs [8], [9]. There are research projects
aiming to design low-cost PMUs [10], [11] and at a large-scale
installation in DNs [12].

One interesting application that can be made feasible by
the widespread use of PMUs is estimating and compensating
for the systematic errors existing in the measurement system,
introduced by both the Instrument Transformers (ITs) and
the PMUs. Referring to transmission systems, paper [13]
proposes a method that can simultaneously estimate line
parameters as well as measurements. It requires the availability
of accurate measurements that can be achieved by a pre-
calibrated PMU receiving voltage and current signals from pre-
calibrated ITs. A PMU-based approach for on-line calibration
of voltage transformers has been presented in [14]. It requires
the placement of multiple good quality voltage measurements
(i.e. achievable again by pre-calibrated devices) at optimal
locations inside the network. Paper [15] presents a framework
for online bias error detection and calibration of PMU mea-
surements in a single transmission line using density-based
spatial clustering of applications with noise.

Focusing on distribution grids, limited attention has been
paid to PMU application in this field. In [16], the feasibility
of directly calculating impedances (of a transformer and a
single line) in DNs is investigated, but device and transducer
uncertainties are not considered in the model.

In this paper the main concepts of an approach aimed at
estimating the DN’s line parameters on the basis of PMU
measurements, proposed in [17] for single-phase systems
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and extended in [18] for three-phase systems, are adapted
and integrated to define an original technique to estimate
the systematic errors existing in the distributed measurement
system, including both ITs and PMUs. The proposed method
does not require pre-calibrated measurement devices, which
would become impractical in DNs. It is designed to work
continuously online for three-phase unbalanced networks. It
suitably exploits the different constraints that characterize
the grid. Injected currents and zero injection constraints are
introduced and used together with voltage drops to improve
the accuracy of the estimation, so that a proper compensation
of the estimated errors can be allowed. The method, which is
based on a recursive linearized weighted least squares (WLS),
is designed to operate on multiple branches simultaneously to
improve the estimation performance. Simulations performed
on a sample DN derived from the IEEE 13 bus test network
are used to study the perfomance of the proposed methodology
and the impact of the different constraints.

II. PROPOSED METHOD

A. Network and Measurement Model

When a three-phase unbalanced distribution network is
considered, a model for the generic branch (i, j) can be defined
as in Fig. 1. Shunt impedances are neglected as is usual in DNs
due to their small values1. The model can be represented by
means of the following symmetric 3× 3 impedance matrix:

Zij =

zij,aa zij,ab zij,ac
zij,ab zij,bb zij,bc
zij,ac zij,bc zij,cc

 (1)

where zij,pq = Rij,pq + jXij,pq (p and q ∈ {a, b, c}). When
one or two phases are not present in a branch (two-phase
or single-phase branch, respectively), the branch impedance
matrix is reduced accordingly and becomes 2× 2 or 1× 1.

The measurement system considered in the following is
represented by the synchronized measurements indicated in
Fig. 1: the wye-connected voltage synchrophasors vi,a, vi,b,
vi,c, vj,a, vj,b, vj,c at both ends of the line and the line current
synchrophasors iij,a, iij,b, iij,c. These measurements are given
by PMU devices that are assumed to be installed at each node
of the monitored network or subnetwork. Each PMU can have
multiple input channels and is connected to the corresponding
outputs of the instrument transformers (e.g. VTs and CTs).
PMU measurements can be time-aligned, thanks to the time-
tag associated with each measurement frame. In the following
and in the simulations of Section III the measurements are
considered, for the sake of simplicity, as independent of one
another. This assumption is realistic when measurements from
different instruments are considered. When multiple channels
of the same PMU are used, independence is not guaranteed.
Indeed, measured synchrophasors may present different levels
of correlation depending on PMU architecture and channel
coupling. For instance, a more detailed discussion about the

1If large shunt impedances were present, the models introduced in the
following could be modified to include them. In this case, it would be useful
to include in the measurement system also the end node current measurements
for each branch.

Fig. 1. A generic network branch three-phase model and its parameters.

effect of a common timebase on correlation can be found in
[19]. If this kind of information is available, it can be included
rather easily in the model.

Following the approach [18], the above three-phase unbal-
anced model is used to define a measurement model that
considers all phasor measurements at a single timestamp2

and includes both systematic and random contributions to the
measurement uncertainty of the modeled PMU data.

As in [18], we first consider the single-branch model and
then we extend it to a set of branches, looking at the measure-
ments synchronized across a network. Referring to Fig. 1, the
voltage phasor measurements can be expressed as:

vi,p = Vi,pe
jϕi,p = V ri,p + jV xi,p (2)

where Vi,p and ϕi,p (with p ∈ {a, b, c}) are, respectively,
the magnitude and phase-angle measurements for phase p of
the ith node. V ri,p and V xi,p are the corresponding real and
imaginary parts of the phasor measurement vi,p. Analogous
symbols and definitions can be adopted for every node and,
in particular, for node j in the Fig. 1.

Similarly, the three current phasors of the line connecting
nodes i and j are:

iij,p = Iij,pe
jθij,p = Irij,p + jIxij,p (3)

where the Iij,p, θij,p, Irij,p and Ixij,p have the same meaning
as before (measurements of magnitude, phase angle and the
corresponding real and imaginary parts of the measured syn-
chrophasor) with the phase p ∈ {a, b, c}.

The measurement model requires the expression of the
measurements in (2) and (3) in terms of the measurement
errors as follows (h ∈ {i, j} and p is always the generic
phase):

vh,p = Vh,pe
jϕh,p

= (1 + ξsysh,p + ξrndh,p )V Rh,pe
j(ϕR

h,p+αsys
h,p+αrnd

h,p ) (4a)

iij,p = Iij,pe
jθij,p

= (1 + ηsysij,p + ηrndij,p )IRij,pe
j(θRij,p+ψsys

ij,p+ψrnd
ij,p) (4b)

where (as in [18]) both the systematic and random errors are
explicitly indicated by the superscrits sys and rnd, respectively.
In particular, in the first equation, ξh,p and αh,p are the errors

2the timestamp is not indicated in the following, unless strictly necessary
for the clarity of presentation
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associated with the voltage magnitude measurement Vh,p and
the phase-angle measurement ϕh,p given by a PMU. V Rh,p and
ϕRh,p are the reference values (superscript R from here on) of
the measured quantities, which are altered by ratio and phase-
displacement errors.

In (4b), with a similar notation, the parameters ηsysij,p and
ψsysij,p are the systematic ratio and phase-angle errors associated
with the synchronized measurements of the three currents. As
before, the superscript rnd denotes the random counterparts
of the errors. The reference quantities of the current measure-
ments are denoted by the superscript R.

In (4) it is assumed that the contributions of the small
relative errors, whatever their nature, in each stage of the
measurement chain can be summed up since the second order
products become negligible (with the uncertainties assumed
in Section III-A, they are typically three orders of magnitude
smaller). With this assumption, second order errors that arise
whenever there is a cascade of two relative errors are not
included in the model.

Separating the two error types highlights the different role
that the two contributions play: the systematic error is constant
across repeated measurements, while the random error changes
for every observation. For this reason, the first one is consid-
ered in the following as an unknown parameter to estimate,
while the second one gives the unavoidable uncertainty of the
available measurements. The measurement model in (4) allows
defining the parameters to be estimated by an algorithm that
aims at finding the compensation parameters for voltage and
current measurement chains.

B. Line Voltage Drop Equations

The estimation algorithm must rely on the synchronized
measurements and on the constraints given by Kirchoff’s laws.
In particular, in the single-branch case, the three-phase voltage
drop across the line sets the following relationships:

∆vRij = vRi − vRj = Ziji
R
ij (5)

where vRi =
[
vRi,a, v

R
i,b, v

R
i,c

]T
and vRj =

[
vRj,a, v

R
j,b, v

R
j,c

]T

are the vectors of reference voltage phasors and iRij =[
iRij,a, i

R
ij,b, i

R
ij,c

]T
is the vector of reference current phasors

(T indicates the transpose operator).
Equation (5) includes the actual branch-impedance matrix

that is known with a degree of uncertainty, since it is based
on prior knowledge from network database or previous mea-
surement campaigns. It is possible to rewrite (5) expressing
vRi , vRj and iRij in terms of the measured values and the
measurement errors. This amounts to making explicit the
reference values from (4). They can then be written as follows:

vRh,p = V Rh,pe
jϕR

h,p =
Vh,pe

jϕh,p

(1 + ξsysh,p + ξrndh,p )
e−j(α

sys
h,p+αrnd

h,p )

' Vh,pejϕh,p(1− ξsysh,p − ξ
rnd
h,p )

[
1− j(αsysh,p + αrndh,p )

]
(6a)

iRij,p = IRij,pe
jθRij,p =

Iij,pe
jθij,p

(1 + ηsysij,p + ηrndij,p )
e−j(ψ

sys
ij,p+ψrnd

ij,p)

' Iij,pejθij,p(1− ηsysij,p − η
rnd
ij,p )

[
1− j(ψsysij,p + ψrndij,p )

]
(6b)

where h ∈ {i, j} as above and the last approximation in
each equation is obtained by assuming both the magnitude
relative errors ξsysi,p , ξrndi,p , ξsysj,p , ξrndj,p , ηsysij,p, ηrndij,p and the phase-
angle deviations αsysi,p , αrndi,p , αsysj,p , αrndj,p , ψsysij,p, ψrndij,p much
smaller than one3, as it is, since transducer and PMU errors
are typically less than 1 % for amplitudes and less than 1 crad
(10−2 rad).

Focusing on phase a (similar expressions hold for the other
phases) it is possible to rewrite the voltage drop constraint as
follows, by substituting (1), (2), (3), and (6) in (5):

(V ri,a + jV xi,a)(1− ξsysi,a − ξ
rnd
i,a )

[
1− j(αsysi,a + αrndi,a )

]
+

− (V rj,a + jV xj,a)(1− ξsysj,a − ξ
rnd
j,a )

[
1− j(αsysj,a + αrndj,a )

]
'

∑
p∈{a,b,c}

{
(Rij,ap + jXij,ap)(I

r
ij,p + jIxij,p)

×(1− ηsysij,p − η
rnd
ij,p )

[
1− j(ψsysij,p + ψrndij,p )

]}
(7)

The constraint in (5), which involves only reference values
and branch impedances, is instead represented in (7) as a
relationship between the measured quantities and the mea-
surement errors of both magnitude and phase angle, using the
approximated expressions in (6).

Equation (7) is the complex-valued constraint of the first
phase and it can be rewritten in its real and imaginary parts,
after a few simplifications, as:

V ri,a−V rj,a −
∑

p∈{a,b,c}

(
Rij,apI

r
ij,p −Xij,apI

x
ij,p

)
'

V ri,a(ξsysi,a + ξrndi,a )− V rj,a(ξsysj,a + ξrndj,a )

−V xi,a(αsysi,a + αrndi,a ) + V xj,a(αsysj,a + αrndj,a )

+
∑

p∈{a,b,c}

(
−Rij,apIrij,ap +Xij,apI

x
ij,ap

)
(ηsysij,p + ηrndij,p )

+
∑

p∈{a,b,c}

(
Rij,apI

x
ij,ap +Xij,apI

r
ij,ap

)
(ψsysij,p + ψrndij,p )

(8a)

V xi,a−V xj,a −
∑

p∈{a,b,c}

(
Xij,apI

r
ij,p +Rij,apI

x
ij,p

)
'

V xi,a(ξsysi,a + ξrndi,a )− V xj,a(ξsysj,a + ξrndj,a )

+V ri,a(αsysi,a + αrndi,a )− V rj,a(αsysj,a + αrndj,a )

+
∑

p∈{a,b,c}

(
−Xij,apI

r
ij,ap −Rij,apIxij,ap

)
(ηsysij,p + ηrndij,p )

+
∑

p∈{a,b,c}

(
Xij,apI

x
ij,ap −Rij,apIrij,ap

)
(ψsysij,p + ψrndij,p )

(8b)

where approximations have been introduced considering the
second order terms (ξsysi,a + ξrndi,a )(αsysi,a + αrndi,a ), (ξsysj,a +

ξrndj,a )(αsysj,a +αrndj,a ), and (ηsysij,p+ηrndij,p )(ψsysij,p+ψrndij,p ) negligible
with respect to the others.

3the approximations (1 + x)−1 ' (1 − x) and ex ' (1 + x) have been
used.
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Equations (8), along with their phase b and phase c counter-
parts, show that these physical constraints define new equiv-
alent measurements that depend on the unknown systematic
errors and on the random measurement errors introduced by
the transducer-plus-PMU system for each quantity of interest.
These equations could be directly used to estimate the sys-
tematic errors, but, as mentioned above, the line parameters
are not accurately known. In order to estimate such errors,
we exploit the same approach as in [18], but with a different
target.

The generic element of Zij can be expressed as:

zij,pq = Rij,pq + jXij,pq

= R0
ij,pq(1 + γij,pq) + jX0

ij,pq(1 + βij,pq)
(9)

where γij,pq and βij,pq (p and q ∈ {a, b, c}) are the relative
deviations of the actual values of resistance and reactance
parameters, respectively, from the available values R0

ij,pq and
X0
ij,pq (e.g. nominal parameter values from DSO database).

These deviations are unknown and take into account the
lack of knowledge about the impedances while aiming at
the estimation of systematic measurement errors in voltage
and current. If neglected, they could have an impact on the
systematic error’s estimation.

Using (9) into (8), along with the expressions for the
other phases, and neglecting also the second order terms
involving γij,pq and βij,pq , it is possible to write the six
equations associated with the voltage drop as the following
linear problem:

bij =
[
Hξ,α
ij Hη,ψ

ij Hγ,β
ij

]


ξsysij

αsysij

ηsysij

ψsysij

γij
βij

+
[
Hξ,α
ij Hη,ψ

ij

]
ξrndij

αrndij

ηrndij

ψrndij


= Hijxij + εij

(10)
where bij is the vector of equivalent measurements associated
with branch (i, j) and is written as (only phase-a rows are
explicitly reported for the sake of brevity):

bij =

V
r
i,a − V rj,a −

∑
p∈{a,b,c}

(
R0
ij,apI

r
ij,p −X0

ij,apI
x
ij,p

)
V xi,a − V xj,a −

∑
p∈{a,b,c}

(
R0
ij,apI

x
ij,p +X0

ij,apI
r
ij,p

)
...


(11)

Hξ,α
ij is the submatrix expressing the linear measurement

function of these equivalent measurements with respect to
voltage amplitude and phase-angle errors, while Hη,ψ

ij is the
analogous matrix relating to current amplitude and phase-
angle errors. The systematic deviations are collected into the
subvectors:

ξsysij =
[
ξsysi,a , ξ

sys
j,a , ξ

sys
i,b , ξ

sys
j,b , ξ

sys
i,c , ξ

sys
j,c

]T
(12a)

αsysij =
[
αsysi,a , α

sys
j,a , α

sys
i,b , α

sys
j,b , α

sys
i,c , α

sys
j,c

]T
(12b)

ηsysij =
[
ηsysij,a, η

sys
ij,b, η

sys
ij,c

]T
(12c)

ψsysij =
[
ψsysij,a, ψ

sys
ij,b, ψ

sys
ij,c

]T
(12d)

Finally, Hγ,β
ij is the submatrix that takes

into account the line parameter deviations
γij = [γij,aa, γij,bb, γij,cc, γij,ab, γij,ac, γij,bc]

T and
βij = [βij,aa, βij,bb, βij,cc, βij,ab, βij,ac, βij,bc]

T. Details
on the entries of Hξ,α

ij , Hη,ψ
ij and Hγ,β

ij are given in Appendix
A. All the unknowns associated with branch (i, j) equations
are included in the state xij along with the impedance
parameter deviations.

As for the random errors, vector εij is the vector of the six
equivalent random errors associated with the six equivalent
measurements in (10). εij is obtained from the voltage and
current random errors by a matrix multiplication, using the
same submatrices Hξ,α

ij and Hη,ψ
ij as before.

To estimate the unknowns
[
ξsysij

T
αsysij

T
ηsysij

T
ψsysij

T
]T

, it
is necessary to estimate the state xij . The main idea is
to use multiple measurement sets corresponding to different
timestamps (giving us different equations (10), one for each
time-tag t). In the next sections additional constraints are
discussed and the estimation algorithm is presented in detail.

C. Multiple Lines and Injection Constrains

When considering a full set of nodes and the corresponding
branches, the voltage drop along all lines must be considered,
which provides additional constraints along with additional
unknown parameters corresponding to all included voltage and
current phasor measurements. All the measurements corre-
sponding to time t can be considered simultaneously thanks
to PMU absolute time alignment.

For this reason, a new state x is defined as the concatenation
of vectors xij for (i, j) ∈ Γ, where Γ is the set of considered
branches. For each t, a vector b and a matrix H are obtained
by vertically concatenating bij and Hij for (i, j) ∈ Γ, thus
defining the overall estimation problem.

In addition, Kirchoff’s Current Law applied at each node
can help define new constraints. In this paper, we assume that
current injection measurements are available. In the following,
current synchrophasors are condsidered injected at a given
node j as in Fig. 2.

The additional three-phase constraint given by the measured
injection ij is the following:

iRj =
∑
k∈Ω+

j

iRjk −
∑
l∈Ω−

j

iRjl (13)

where the symbol iRj indicates the reference injection vector,
while Ω+

j and Ω−j are the set of outgoing and incoming
branches of node j, respectively. Focusing on the generic phase
p, the constraint (13) can be rewritten in its real and imaginary
parts as a function of the measurements and the unknowns.
Equations similar to (6) are used (also for the injected current)
and the same assumptions as before to obtain:

Irj,p −
∑
k∈Ω+

j

Irjk,p −
∑
l∈Ω−

j

Irjl,p
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𝐙𝑖𝑗

Fig. 2. Multiple branches three-phase example model.

= Irj,p(η
sys
j,p + ηrndj,p )− Ixj,p(ψ

sys
j,p + ψrndj,p )

−
∑
k∈Ω+

j

Irjk,p(η
sys
jk,p + ηrndjk,p) +

∑
l∈Ω−

j

Irjl,p(η
sys
jl,p + ηrndjl,p)

+
∑
k∈Ω+

j

ixjk,p(ψ
sys
jk,p + ψrndjk,p)−

∑
l∈Ω−

j

ixjl,p(ψ
sys
jl,p + ψrndjl,p)

(14a)

Ixj,p −
∑
k∈Ω+

j

Ixjk,p −
∑
l∈Ω−

j

Ixjl,p

= Ixj,p(η
sys
j,p + ηrndj,p ) + Irj,p(ψ

sys
j,p + ψrndj,p )

−
∑
k∈Ω+

j

ixjk,p(η
sys
jk,p + ηrndjk,p) +

∑
l∈Ω−

j

ixjl,p(η
sys
jl,p + ηrndjl,p)

−
∑
k∈Ω+

j

irjk,p(ψ
sys
jk,p + ψrndjk,p) +

∑
l∈Ω−

j

irjl,p(ψ
sys
jl,p + ψrndjl,p)

(14b)

where ηsysj,p and ψsysj,p are the systematic errors of the measured
current injection, while the corresponding random errors are
denoted by the superscript rnd.

The above equations for all the phases can be rewritten in
matrix form as:

bj =
[
Hη,ψ
j∗ Hη,ψ

j

]
ηsysj∗
ψsysj∗
ηsysj

ψsysj

+
[
Hη,ψ
j∗ Hη,ψ

j

]
ηrndj∗
ψrndj∗
ηrndj

ψrndj


= Hjxj + εj

(15)

where all the symbols have a similar meaning as in (10),
with j∗ indicating that all the branches arriving and leaving j
must be considered and subscript j referring to the injection
quantities. xj includes all the unknowns associated with both
the involved branch and node current measurements.

When a node is a zero-injection node, the information
can be used to define constraints similar to the injection
constraints. The only difference is that no injection-related
unknowns are present and thus the current balance in (14) is a
zero vector, while (14) and (15) can be simplified by dropping
the injection terms.

D. Solution of the Estimation Problem

To solve the estimation problem all the above constraints
must be considered and an overall problem can be defined:

bt = Htx + εt = Htx + Hξ,α,η,ψ
t et

=
[
Hξ,α
t Hη,ψ

t Hγ,β
t

]
x +

[
Hξ,α
t Hη,ψ

t

]
et

(16)

where the subscript t makes the measurement timestamp
explicit, x is the N -size vector of all the unknowns and et
is the vector of all the zero-mean random errors. et has a
covariance matrix Σe (time independent), which is assumed
to be diagonal if it includes the variances of decorrelated
PMU measurements. If this is not the case, the fundamentals
of this method should not be affected, though the covariance
matrix would become block diagonal. No limitation prevents
the inclusion of correlation information between different
measurements, when available. εt is thus a zero mean random
vector and its covariance matrix is obtained as follows:

Σεt
= Hξ,α,η,ψ

t Σet
(Hξ,α,η,ψ

t )T (17)

It is interesting to highlight that (17) gives the covariance
matrix of the random components in (16) once the constraints
are defined as functions of the measured values. Given the
measurements, Ht and Hξ,α,η,ψ

t are defined and known. The
random term represents thus the a posteriori equivalent random
deviations of the constraints due to unknown random errors
isolated from the other errors.

Additional constraints can be added when considering prior
information on the errors and on the line parameter uncertainty
(see [17] for details). The initial prior is given by xpr = 0N×1

and the associated covariance matrix Σpr is diagonal and given
by squared uncertainties associated with the parameters.

Thanks to the high reporting rates of PMUs, which are very
fast with respect to typical network dynamics, it is possible to
have repeated measurements of the same operating conditions
(e.g. considering the meausurements received in a second).
The assumption is that over such a small interval the conditions
of the specific measured quantity are almost stationary. Even
in a DN scenario, small-timescale variations can usually be
neglected. However, a check is always performed for the
compatibility of the collected measurements, so that abrupt
variations can be easily detected. The method allows using
a different number of repeated measurements and discarding
measurement sets that cannot be relied on, so that the above
assumption can be practically met. These measurements can
be used to define a problem like (16) for each time instant
ti. Since these repeated measurements can be considered as
repetitions of the same measurement process, the follow-
ing equivalent problem is considered (using the timestamps
t1, · · · , tM ):

b̄ = H̄x + ε̄ (18)

where b̄ =
∑tM
t=t1

bt/M is the average of the equivalent
measurement vectors and H̄ and ε̄ are the averages of the
matrices Hti and of the vectors εt, respectively. The covari-
ance matrix of ε̄, with the above assumptions, can be obtained
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approximately as:

Σε̄ =
1

M
H̄ξ,α,η,ψΣe(H̄ξ,α,η,ψ)T (19)

with an analogous interpretation of symbols as before. A
proof of the validity of (18) as an approximate, but faster
to solve, counterpart of the complete batch WLS, which
would involve all the subproblems (16) associated with the
timestamps t1, · · · , tM , is given in Appendix B.

The solution of the systematic deviation estimation problem
can be improved by considering not only repeated mea-
surements of the same operating conditions but also mea-
surements performed at different times, when the network
loading conditions have changed. We can consider M repeated
measurements of P different operating conditions (referred to
as “cases” in the following). All the equations and defined
problems share the same unknown vector x. This means that
the systematic error parameters are considered constant among
different conditions. This assumptions is further discussed in
Section III-A. In this paper, we propose to estimate x with
a sequential procedure that solves multiple WLS problems of
type (18), one for each case considered.

The following steps are performed:
1) Solve the problem for the first case c1:

ḡc1 =

[
b̄c1
0

]
=

[
H̄c1

IN

]
x +

[
ε̄c1
epr

]
=

[
H̄c1

IN

]
x +

[
H̄ξ,α,η,ψ
c1 0
0 IN

] [
ēc1
epr

]
= Āc1x + dc1

(20)
where c1 indicates the first considered case with its
associated M repeated measurement sets. The solution
is obtained via WLS as:

x̂c1 = (ĀT
c1Wc1Āc1)−1ĀT

c1Wc1 ḡc1 = G−1
c1 H̄T

c1Wc1 ḡc1
(21)

using the weighting matrix Wc1 =

[
Σ−1

ε̄c1
0

0 Σ−1
pr

]
.

The covariance matrix associated with the estimation is
Σx̂c1

= G−1
c1 .

2) Define the new problem for the new case c2 relying on
the obtained estimations of case c1:

ḡc2 =

[
b̄c2
x̂c1

]
=

[
H̄c2

IM

]
x+

[
ε̄c2
ex̂c1

]
= Āc2x+dc2 (22)

where ex̂c1
is the estimation error after first step. The

estimation is again obtained by WLS considering the

weigthing matrix Wc2 =

[
Σ−1

ε̄c2
0

0 Gc1

]
.

The estimation of x̂c2 and of Σx̂c2
are obtained. The

problem in (22) can be rewritten considering the de-
viation from the previously estimated quantities, thus
strengthening the linearization of Sections II-B and II-C.

3) Repeat the second step for any new case ci+1 using the
output of case ci along with its covariance matrix as
input data untile all P cases are treated.

The sequential method allows to obtain estimation for each
new set of measurements and to update previous estimations
accordingly. The overall algorithm is thus a mixed recursive

Fig. 3. Three-phase test network.

WLS considering P approximate problems of type (18). When
a new estimation is computed, it is possible to check for the
presence of bad data (highly erroneous measurements). The
WLS paradigm can be exploited by means of a χ-square test
detection [20] with a possible normalized residual computation
for bad data identification. Other strategies could also be
adopted, but new proposals or in-depth analyses on this topic
are beyond the scope of the paper.

III. TESTS AND RESULTS

A. Test Assumptions

The proposed methodology has been tested by means of
simulations using a sample DN derived from the IEEE 13 bus
test network [21]. The network schema is shown in Fig. 3 with
node and branch (between parentheses) indices. The network
used for the tests has ten nodes and nine branches: four three-
phase, three two-phase and two single-phase. The network has
a zero injection at node 7. Appendix C illustrates the branch
and load configurations.

Monte Carlo simulations have been performed to verify the
performance of the estimator. NMC = 1000 trials have been
used, considering, for each trial, P = 10 cases and M = 10
repeated measurements for each case. Each trial corresponds
to a different realization of possible systematic errors and of
line parameter deviations. A powerflow with reference values
is used to compute reference quantities to be measured. Shunt
impedances have been duly used in the powerflow even if,
as discussed above, they are not present in the estimation
model. Preliminary tests have shown that their contribution
is practically negligible.

In the following, for the sake of a simpler presentation
and without losing generality, we assume that systematic
contributions are due mainly to ITs and thus depend on their
accuracy class, while random errors are mainly associated with
PMUs and thus are included in the accuracy intervals defined
by instrument specifications. The approach is in principle
able to deal with random contributions arising also from ITs,
provided that suitable information is available.

In each trial, for each case and for every set of mea-
surements, systematic and random errors are applied as a
cascade (without the first order approximation of (4)) to both
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magnitude and phase angle of the reference synchrophasors
obtained with powerflow. As discussed in Section II, the
unknown systematic errors in each trials are assumed constant.
While for VTs the assumption practically matches the actual
behavior, since the voltage variations are limited, for CTs
the approximation is looser. In this concern, the proposed
estimation algorithm aims to compensate the main system-
atic contributions associated with the transducers, using a
linear model. Residual nonlinearities are thus not included
and not compensated. However, the algorithm is practically
implemented including a verification of the current levels
so that very low currents with respect to nominal ones,
where the effects of possible nonlinearities would be more
evident, are not considered in the estimation process. The same
assumptions as in [18] are adopted to have a realistic setup:

1) Voltage Transformers (VTs) and Current Transformers
(CTs) are assumed to be of class 0.5 [22], [23], thus
using: 0.5 % for voltage and current ratio errors, 0.6 crad
for VT phase-angle displacement and 0.9 crad for CT
phase-angle displacement. The errors and deviations,
here and in the following, have uniform distributions,
meaning a standard deviation σ = ∆/

√
3, where ∆

represents the corresponding maximum absolute devia-
tion. These distributions are used to define each MC trial
and thus the actual systematic errors for each estimation
process.

2) As for PMUs, a maximum Total Vector Error (TVE)
of 0.1 % has been considered by splitting it into a
maximum amplitude error of 0.1 % and a maximum
phase angle error of 0.1 crad (10−3 rad).

3) Maximum deviations of line parameters Rij,pq and
Xij,pq (for every (i, j) ∈ Γ and p, q ∈ {a, b, c}) have
been assumed equal to ±15 %.

4) To simulate different cases, which correspond to differ-
ent loading conditions, the loads can vary up to 30 %.
Similar load variations are used in the literature, e.g.
in [13] and [24], and can be considered realistic when
compared to typical daily load profiles. It is interesting to
notice that current variations can be smaller in the main
feeders. In the simulations, the voltage profile remains
always within the permitted range.

B. Performance Indexes

To assess the performance, the following root mean square
errors (RMSEs) are used:

RMSEξsys
i,p

=

√√√√NMC∑
i=1

(ξ̂sysi,p − ξ
sys
i,p )2

NMC
(23)

RMSEαsys
i,p

=

√√√√NMC∑
i=1

(α̂sysi,p − α
sys
i,p )2

NMC
(24)

RMSEηsys
ij,p

=

√√√√NMC∑
i=1

(η̂sysij,p − η
sys
ij,p)

2

NMC
(25)

RMSEψsys
ij,p

=

√√√√NMC∑
i=1

(ψ̂sysij,p − ψ
sys
ij,p)

2

NMC
(26)

RMSEηsys
k,p

=

√√√√NMC∑
i=1

(η̂sysk,p − η
sys
j,p )2

NMC
(27)

RMSEψsys
j,p

=

√√√√NMC∑
i=1

(ψ̂sysk,p − ψ
sys
j,p )2

NMC
(28)

whereˆdenotes the estimated quantities, p the analysed phase,
(i, j) ∈ Γ, and k indicates the measured injection node as
in Section II. RMSEs thus represent a statistical index of the
errors between the actual and estimated systematic errors.

C. Single branch

If only a single branch is considered (branch (1, 2), nodes
1 and 2), the results in terms of ξsysi,p and αsysi,p are reported in
Table I for the three-phases. The RMSE results are compared
with the standard deviations (between parentheses) of the
extracted systematic errors computed in the NMC trials (which
are close to the theoretical values derived from the assumed
accuracies dividing by

√
3). These standard deviations thus

represent the prior RMSEs. The improvements can be seen
from percentages of RMSE reduction reported under each
value. The results concerning RMSEηsys

12,p
and RMSEψsys

12,p
are

not shown in Table I, since the improvements are very small
(respectively below 0.4 % and 1 %).

TABLE I
RMSE OF ESTIMATED VOLTAGE MAGNITUDE AND PHASE-ANGLE

SYSTEMATIC ERRORS FOR BRANCH 1 (SINGLE-BRANCH ESTIMATION).

Phase RMSE [%]

ξsys1,p ξsys2,p αsys
1,p αsys

2,p

0.21 0.21 0.25 0.25
a (0.28) (0.29) (0.35) (0.36)

−26% −29% −27% −29%
0.21 0.21 0.25 0.25

b (0.29) (0.29) (0.35) (0.35)
−28% −27% −29% −27%
0.21 0.22 0.25 0.25

c (0.29) (0.29) (0.34) (0.34)
−26% −27% −27% −25%

To assess the validity of the first order approximation and
of the procedure presented in Section II-D, the results in Table
I have been compared with those obtained with a full batch
WLS implementation using Gauss-Newton iterative solution
of the nonlinear estimation problem defined without approxi-
mations. The percent RMSE values are almost the same (only
the fourth decimal digit changes), while the execution times
with the proposed approach are about one order of magnitude
lower. Similar results are obtained for all the tests in the
following, achieving an empirical proof of the correctness of
the assumptions made in Section II to define the proposed
technique for the estimation problem.
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D. Multiple branches

Another set of tests has been performed to verify the
performance obtained when the algorithm is applied to a set
of branches simultaneously. Figures 4-9 refer to the system-
atic error estimation obtained using the full network when
only voltage drop constraints are considered (compared with
standard deviations of extracted errors as before). Figures 4
and 5 show, respectively, the estimation RMSE of the voltage
related parameters for phase a as a function of the node index
(node 3, 4 and 8 are missing since they are two-phase nodes
without the first phase). It is clear that a strong reduction of
the systematic errors (about 60 %, that is much larger than
in single-branch case) can be achieved for both magnitude
and phase-angle by compensating the measurements with the
estimated parameters. Similar results can be found for phases
b and c. If 30 % maximum deviation is assumed for the line
parameters (tests not shown here for the sake of brevity),
the results worsen only slightly, thus showing the efficacy of
the method also when such parameters are known with high
uncertainty.

The RMSE values give a statistical index of the estimation
performance achieved. To give a better insight, Fig. 6 com-
pares, for all the MC trials and with reference to the first
case of each trial, the values of node 2 voltage magnitude
affected by VT systematic error and the corresponding values
after that error has been compensated using the estimated ξ̂sys2,a .
The compensated voltages are clearly distributed in a narrower
band around the reference value. All the reference values
have been normalized to one to allow an easier comparison
and thus the horizontal dashed line represents the perfect
compensation. Complementary information is also given by
the representations of the errors in Fig. 7. In the upper graph
the histograms of actual systematic errors and residual errors
after voltage magnitude compensation are compared for the
same node 2. The occurrence frequency for each 0.05 %-wide
bin is reported. In the lower graph, the same errors are plotted
in terms of their empirical cumulative distributions (cdf). The
residual errors distribution depends on the distributions of the
systematic errors, but it is also the result of the combinations
due to the estimation algorithm. It is clear how the errors
are more frequently located around lower values and within a
smaller range.

As in the single-branch case, different results are obtained
when focusing on branch currents. Figure 8 shows the results
in terms of RMSEηsys

ij,a
for all the branches of phase a, while

Fig. 9 reports the corresponding values of RMSEψsys
ij,a

. The
advantages, even if present, are very limited (an error reduction
of less than 1 % for ηsysij,a and at most 2 % for ψsysij,a. With a
30 % maximum deviation of the line parameters the reductions
are even smaller (e.g. almost halved for RMSEψsys

ij,a
).

On the contrary, when current injection measurements are
also present, RMSEηsys

ij,a
and RMSEψsys

ij,a
undergo strong reduc-

tions (up to 57 % and 62 %, respectively) at some branches, as
shown in Figs. 10 and 11. The constraints directly applied to
the currents thus limit the variability of the systematic errors
in the measurements of the involved or near branches. This is
also confirmed by tests performed with higher variability of

1 2 3 4 5 6 7 8 9 10
node

0.1

0.15

0.2

0.25

0.3

[%
]

sys
i,a

 estimation

Estimation RMSE
Actual std

Fig. 4. RMSE of estimated voltage magnitude systematic errors, see eq.
(23).

1 2 3 4 5 6 7 8 9 10
node

0.1

0.15

0.2

0.25

0.3

0.35

0.4

[c
ra

d]

i,a
sys estimation

Estimation RMSE
Actual std

Fig. 5. RMSE of estimated voltage phase-angle systematic errors, see eq.
(24).

the line parameters (30 %), since the results are very similar.
The effects of the additional constraints on RMSEξsys

i,p
and

RMSEαsys
i,p

are instead negligible in this configuration.
When injections are measured (nodes 2, 3, 6 are considered

in the following), the state is extended to include the cor-
responding magnitude and phase-angle systematic errors ηsysj,p

and ψsysj,p . Table II compares the RMSEηsys
j,p

and RMSEψsys
j,p

for
nodes 3 and 6 with the initial uncertainty of the parameters (be-

Fig. 6. Normalized voltage magnitudes in the presence of systematic errors
before and after compensation.



9

Fig. 7. Systematic error compensation: histograms of systematic errors before
and after compensation (top graph); empirical cumulative distribution of the
errors (bottom graph).

1 2 3 4 5 6 7 8 9
branch

0.25

0.26

0.27

0.28

0.29

[%
]

ij,a
sys estimation

Estimation RMSE
Actual std

Fig. 8. RMSE of estimated line current magnitude systematic errors, see eq.
(25).

tween parentheses) for all the three-phases. The improvements
are clear (percentages of reduction are reported in the third row
of each block). Node 2 does not achieve significant advantages
and the RMSEs are almost equal to prior uncertainties.

TABLE II
RMSE OF ESTIMATED INJECTED CURRENT MAGNITUDE AND

PHASE-ANGLE SYSTEMATIC ERRORS.

Injection
Node

RMSE [%]

ηsysj,a ηsysj,b ηsysj,c ψsys
j,a ψsys

j,b ψsys
j,c

− 0.16 0.16 − 0.25 0.27
3 (−) (0.29) (0.29) (−) (0.52) (0.52)

− −44% −46% − −53% −48
0.15 0.13 0.13 0.22 0.24 0.21

6 (0.29) (0.29) (0.29) (0.52) (0.52) (0.52)
−47% −54% −53% −57% −53% −60%

Other tests have been performed considering zero-injection
at node 7 as well. In Fig. 12, the RMSEηsys

ij,p
values are reported

1 2 3 4 5 6 7 8 9
branch

0.4

0.45

0.5

[c
ra

d]

ij,a
sys estimation

Estimation RMSE
Actual std

Fig. 9. RMSE of estimated line current phase-angle systematic errors, see
eq. (26).

1 2 3 4 5 6 7 8 9
branch

0.1

0.15

0.2

0.25

0.3

[%
]

ij,a
sys estimation

Estimation RMSE
Actual std

Fig. 10. RMSE of estimated line current magnitude systematic errors when
constraints also on injected currents are considered, see eq. (27).

(and compared with the standard deviations of the correspond-
ing parameters), showing that the zero-injection constraints
significantly improve the estimation for the involved branches
of phase a and c (RMSE reductions up to 30 % and 26 %,
respectively), while phase c is almost unaffected since it is
not present in branches 6, 7 and 9. Similar results have been
obtained for RMSEψsys

ij,p
with a maximum reduction of about

31 %.
As a final consideration, it has been verified that the WLS

problem conditioning does not degrade significantly when
multiple branches and injection constraints are introduced
(constraints are not virtual measurements as in other appli-
cations). This, among others, is the effect of a homogeneous
accuracy of the instruments across the network and of the
lack of extremely different lengths and impedances among the
branches. If very large DNs with highly problematic topologies
were considered, the method could be still applied to set of
branches while multi-area strategies could be introduced.

IV. CONCLUSIONS

A method for estimating and compensating the systematic
errors of synchronized phasor measurements in three-phase
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1 2 3 4 5 6 7 8 9
branch

0.2

0.3

0.4

0.5

[c
ra

d]
ij,a
sys estimation

Estimation RMSE
Actual std

Fig. 11. RMSE of estimated line current phase-angle systematic errors when
constraints also on injected currents are considered, see eq. (28).

1 2 3 4 5 6 7 8 9
branch

0.2

0.22

0.24

0.26

0.28

0.3

[%
]

ij,p
sys estimation

RMSE phase a
RMSE phase b
RMSE phase c
Actual std phase a
Actual std phase b
Actual std phase c

Fig. 12. RMSE of the estimations of line current magnitude deviations with
zero-injection constraints.

distribution networks has been presented. The estimation al-
gorithm takes into account the different uncertainty contribu-
tions in the measurement chain and considers line parameter
uncertainty in the measurement model as well.

Testing has shown that additional constraints, such as ad-
ditional injection measurements and zero-injections, allow a
much better estimation of current measurement systematic
errors.

The proposed techique is a first step towards the definition
of a total estimator that allows for a self-aware monitoring
system that is able to continuously improve its data.

APPENDIX A
MEASUREMENT MATRICES OF THE THREE-PHASE LINE

VOLTAGE DROP ESTIMATION PROBLEM

The expressions of the measurement matrices in the problem
(10) are given in the full page equations (A.1), (A.2) and (A.3).

APPENDIX B
PROOF OF THE VALIDITY OF REPEATED MEASUREMENT

EQUIVALENT PROBLEM

The solution of problems like (20) and (22) (the latter in the
same form as the former) is obtained from a type (21) solution.

Considering a generic case associated with matrix Ā =

[
H̄
IN

]
and equivalent measurements ḡ =

[
b̄
0

]
(the subscript referring

to a specific case is, from here on, dropped for the sake of
simplicity), where overbars denote that they are averages of
M timestamp-specific counterparts Ati and gti . Since these
matrices are linear functions of the measurements (see (A.1)-
(A.3)) averaging corresponds to compute the matrices from
the average measurements. The random error vector is ε̄ =
H̄ξ,α,η,ψē. The solution of the problems is:

x̂ = (H̄TΣ−1
ε̄ H̄ + Σ−1

epr
)−1H̄TΣε̄b̄ (B.1)

In the following, it is proven that the estimate in (B.1) is
equivalent, from a practical viewpoint, to the solution of the
following problem:

bt1
...

btM
0

 =


Ht1

...
HtM

IN

x+


Hξ,α,η,ψ
t1 0 · · · 0

...
. . .

...
Hξ,α,η,ψ
tN 0

0 · · · 0 IN



εt1

...
εtM
epr


(B.2)

which is:

x̂′ = (

M∑
i=1

HT
tiΣ
−1
εti

Hti + Σ−1
epr

)−1
M∑
i=1

HT
tiΣ
−1
εti

bti (B.3)

Focusing on W̄ = Σ−1
ε̄ and defining δFti , Hξ,α,η,ψ

ti −
Hξ,α,η,ψ
R (subscript R indicates here and in the following

matrices and vectors computed from the reference values), we
can write:

W̄ =

∑M
i=1

(
Hξ,α,η,ψ
R + δFti

)
M

Σe

M

×

∑M
i=1

(
Hξ,α,η,ψ
R

T
+ δFT

ti

)
M

−1

'M

[
Hξ,α,η,ψ
R ΣeH

ξ,α,η,ψ
R

T
+

(
M∑
i=1

δFti

)
ΣeH

ξ,α,η,ψ
R

T

+Hξ,α,η,ψ
R Σe

M∑
i=1

δFT
ti

]−1

= M
(
ΣR + δΣ̃

)−1

'M
(
Σ−1
R −Σ−1

R δΣ̃Σ−1
R

)
= M

(
WR + δW̃

)
(B.4)

where the approximations are obtained by neglecting second
order terms. Similarly, defining δHti , Hti − HR, it is
possible to obtain:

Wti '
(
ΣRδFtiΣeH

ξ,α,η,ψ
R

T
+ Hξ,α,η,ψ

R ΣeδF
T
ti

)−1

= (ΣR + δΣti)
−1 ' ΣR −Σ−1

R δΣtiΣ
−1
R

= WR + δWti

(B.5)
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Hξ,α
ij =

V
r
i,a −V ri,a −V xi,a +V xj,a
V xi,a −V xi,a V ri,a V rj,a

...
...

...
...

 , (A.1)

Hη,ψ
ij =

−R
0
ij,aaI

r
ij,a +X0

ij,aaI
x
ij,a +R0

ij,aaI
x
ij,a +X0

ij,aaI
r
ij,a · · ·

−R0
ij,aaI

x
ij,a −X0

ij,aaI
r
ij,a −R0

ij,aaI
r
ij,a +X0

ij,aaI
x
ij,a · · ·

...
...

 , (A.2)

Hγ,β
ij =

R
0
ij,aaI

r
ij,a −X0

ij,aaI
x
ij,a · · ·

R0
ij,aaI

x
ij,a +X0

ij,aaI
r
ij,a · · ·

...
...

 , (A.3)

Substituting (B.4) and b̄ =
∑M
i=1 bti/M in (B.1) and

defining δbti , bti − bR, after a few passages, we obtain:

x̂ '

[
MHT

RWRHR +

(
M∑
i=1

δHT
ti

)
WRHR

+HRWR

M∑
i=1

δHti +MHT
RδW̃HR + Σ−1

epr

]−1

×

[
MHT

RWRbR +

(
M∑
i=1

δHti

)
WRbR

+ HT
RWR

M∑
i=1

δbti +MHT
RδW̃bR

]
(B.6)

and we can compare the estimation with the following (from
(B.3), using (B.5)):

x̂′ '

[
MHT

RWRHR +

(
M∑
i=1

δHT
ti

)
WRHR

+ HRWR

M∑
i=1

δHti +HT
R

(
M∑
i=1

δWti

)
HR + Σ−1

epr

]−1

×

[
MHT

RWRbR +
M∑
i=1

δHtiWRbR

+ HT
RWR

M∑
i=1

δbti + HT
R

(
M∑
i=1

δWti

)
bR

]
(B.7)

Looking at (B.6) and (B.7), the only differences are in the
terms depending on the variations of the weighting matrices
(the fourth term for each pair of square brackets in both
equations). But, considering (B.4) and (B.5), it is possible to
see that δW̃ =

∑M
i=1 δWti and thus, x ' x′ as claimed.

APPENDIX C
TEST NETWORK LINE CONFIGURATION AND DATA

Figure 3 reports the test network topology along with the
branch indexes. Branches 1 and 5 correspond to configuration
601 (with length 2000 feets) of the line data in [25] (doc-
ument IEEE 13 Node Test Feeder.doc), while branches 2, 3
correspond to configuration 603 (lengths 500 and 300 feets,
respectively) and branches 4, 6, 7, 8, 9 to configurations 602,

604, 605, 606 and 607 respectively (lengths 500, 300, 300,
500, 800 feets, respectively).

TABLE III
NOMINAL POWERS OF THE LOADS.

Power
type

Ph Node
2 3 4 5 6 8 9 10

P [kW]
a 8.5 0 0 160 393.5 0 485 128
b 33 170 230 120 418 0 68 0
c 58.5 170 230 120 613.5 170 290 0

Q [kVAr]
a 5 0 0 110 225 0 -10 86
b 19 125 132 90 239 0 -140 0
c 34 125 132 90 405 -120 12 0
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