
  

Abstract— In this paper, the dynamic characteristics of Type–I 

ELM time series from the JET tokamak, the world's largest 

magnetic confinement plasma physics experiment, have been 

investigated through recurrence plots. The analysis has been 

focused on Recurrence Plots of pedestal temperature, line 

averaged electron density and outer divertor Dα time series during 

experiments with a carbon wall. The analysis of Recurrence Plots 

shows patterns similar to those characteristic of signals exhibiting 

type–2 intermittency, in particular, a characteristic kite-like 

shape; this gives useful hints to model the temperature signal as 

well as the Dα radiation time series, with simple nonlinear maps 

capturing the nearly periodic behaviour of Type–I ELMs. 

 
Index Terms—Edge Localized Modes, Recurrence Plots, ELM 

modelling 

 

I. INTRODUCTION 

N 1982 it was first observed at the Axially Symmetric 

Divertor Experiment (ASDEX) tokamak, that externally 

heated tokamak plasmas can rapidly reach an operating regime 

of improved confinement. The operating regime transition is 

normally accompanied by appearance of recurrent 

magnetohydrodynamic instabilities, known as Edge Localized 

Modes (ELMs). ELMs manifest themselves as short repetitive 

bursts of energy and particles at the plasma edge. The loss of 

energy and particles, which flow along the magnetic field lines 

towards the divertor plates, deteriorates the confinement, which 

may cause damage to the first wall. Additionally, the short but 

intense particle and power loads on the divertor cause erosion 

of the plates, which might become a serious concern in future 

machines, such as the International Thermonuclear 

Experimental Reactor, ITER. Despite these drawbacks, ELMs 

are beneficial in expelling exhaust impurities and helium ash 

that otherwise would accumulate in the plasma and eventually 

terminate the fusion burn. They also provide a means for 

density control. Hence the understanding and control of the 

level and nature of the ELM activity is crucial for the 

achievement of fusion power. 

Although a number of ELM types have been classified, the 
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physics of ELMs is still to a large extent unresolved. The 

information about the ELM dynamics is fundamental to 

develop a proper dynamical model, which could provide 

guidance in mitigating ELMs in view of the steady state 

operation of ITER. Several attempts are reported in literature to 

identify the nature, stochastic or deterministic, of ELMs and the 

results are sometimes conflicting. In [1] the results of a 

nonlinear dynamic analysis of Type-I ELM time series 

excluded the presence of chaos leading to the hypothesis of 

pseudoperiodic behaviour.  

In this paper, the dynamic characteristics of Type–I ELM 

time-series from the JET tokamak, the world's largest magnetic 

confinement plasma physics experiment, have been 

investigated through Recurrence Plots (RPs). This tool, together 

with the Recurrence Quantification Analysis (RQA), is a 

modern method of nonlinear data analysis. The tool of RPs, 

introduced in 1987 by Eckmann et al. [2], allows the 

visualization of a square matrix in which the matrix elements 

correspond to those times at which a state of a dynamical 

system recurs, revealing if the phase space trajectory of the 

dynamical system visits roughly the same area. The advantage 

of RPs is that they can also be applied to rather short and even 

non-stationary data. 

A huge amount of data for each JET experiment is available, 

up to several tens of GB. Time series of relevant plasma 

parameters are stored in the JET data warehouse. For ELM 

studies, the analysis has been focused on pedestal temperature, 

electron density at the edge of the plasma, and outer divertor 

deuterium visible light emission (Dα) time series. 

 
Fig. 1.  Pedestal temperature (top), line averaged electron density at the edge 

(middle), and Dα (bottom) time series for shot 74444. 
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Fig. 1 shows the pedestal temperature, the line averaged 

electron density at the edge, and the Dα time series for shot 

74444.  

All temperature, density and Dα time series exhibit early 

regular behaviour (laminar flow) intermittently interrupted by 

outbreaks (bursts) at irregular intervals. From a physical point 

of view, the ELM cycle consists of two phases: an ELM crash 

due to the MHD instability inducing energy and particle losses 

from the pedestal, and a quiescent phase recovering the pedestal 

pressure between ELMs (inter-ELM phase). The delay period 

between ELMs is apparently random; for this reason the nature 

of the irregularities is still under debate and the literature reports 

several attempts to establish if the ELM nature is deterministic 

or stochastic [3-9]. As it can be noticed, each ELM cycle is 

characterized in all the time series by asymmetry, i.e. 

temperature and density decrease (Dα increases) more rapidly 

than they increase (it decreases). This type of behaviour is 

typical of intermittent systems [10]. Such signals are copious in 

natural and physiological systems: e.g., annual sunspot 

numbers [11-12], laser output [13-17], human 

electrocardiogram [18-19], etc.. 

The paper is organized as follows: section II describes the 

RPs; section III presents the database; section IV reports the 

results of the analysis; in section V the conclusions are drawn. 

II. RECURRENCE PLOTS 

Let us consider a dynamical system 

)f(
dt

(t)d
x

x
=  (6) 

and a scalar observable y(t). The first step to build a recurrence 

plot is to reconstruct the dynamics by embedding the one-

dimensional time series y(t) in a d-dimensional space using the 

method of delay coordinates [20]. The general topological 

result of Mañé and Takens [21-22] states that the complete 

dynamics of a system can be reconstructed from a set yn = [yn–

(m–1)τ, yn–(m–2)τ, …, yn–τ, yn] of time delayed versions of a suitable 

scalar measurement yn derived from the system at multiples of 

a fixed sampling time, where the embedding dimension m and 

the time delay τ are two critical parameters. Takens and Mañé 

proved that, if m  2D + 1, where D is the box counting 

dimension of the attractor, there exists a one to one 

correspondence between the state space reconstructed and the 

original one. This is a sufficient but not necessary condition. In 

practice, an attractor may also be reconstructed successfully 

with an embedding dimension satisfying m  D. The embedding 

dimension m can be estimated through the method of False 

Nearest Neighbors (FNNs) [23]. A simple criterion to compute 

the time delay  is to set it equal to the first minimum of the 

average mutual information I [24], when present. 

After reconstructing the embedding space, the RP can be 

mathematically expressed by a two-dimensional squared 

matrix, the so-called recurrence matrix 

( ), , , , , 0, , 1m

i j i j i j i j N =  − −  = −y y y y  (7) 

where N is the number of considered samples yi, ε is a threshold 

distance, ||⋅|| is a norm and Θ(⋅) is the Heaviside function. Each 

element of the matrix represents the recurrence at a different 

time j of a state at time i, equal to one if the distance between 

the two states is lower than ε, and equal to zero otherwise. The 

RP is obtained by plotting the matrix in a square map where 

both axes are time axes and assigning black dots to ones and 

white dots to zeroes. 

Since ℜi,i = 1, i , the RP has always a black main diagonal 

line, named the line of identity (LOI). Furthermore, the RP is 

symmetric by definition with respect to the main diagonal 

(ℜi,j = ℜj,i). 

Iwanski and Bradley [25] proposed the unthresholded 

recurrence plot (UTRP), a variation of the RP which plots 

directly the distance matrix 

, , , , , 0, , 1m

i j i j i j i j N = −  = −y y y y  (8) 

By using an appropriate color bar for the values of the threshold 

distance ε it is possible to highlight the different recurrence 

structures at different thresholds.  

Iwanski and Bradley [30] found that the appearance and 

statistics of recurrence plots for certain low-dimensional 

systems are not significantly altered by a small change in the 

embedding dimension, suggesting that these statistics may be 

important new invariant characteristics of a system. 

III. THE ELM DATABASE 

In [26] a statistical analysis of 60 JET D signals 

characteristic of JET Type-I ELMs was performed. The 

reference experimental campaigns, all in Deuterium, were 

C21 – C27b (9th June 2008 - 23rd October 2010). The wall was 

in graphite. The analysis was restricted to time intervals with 

fixed engineering conditions: only the experiments and time 

intervals characterized by variations of ±4% for toroidal 

magnetic field Bτ, ±2% for plasma current Ip, ±10% for NBI 

input power PNBI and lower triangularity δlow, were taken into 

account. All tolerances were related to the signal resolutions. 

The 60 shots correspond to 24 experimental conditions with 

different values of Ip, Bτ, PNBI and δlow for a total of 3448 Type–

I ELM time intervals. 

After the localization of the inter-ELM time intervals, the 

memorylessness test suggested the presence of memory in the 

ELM time intervals for the considered Type-I ELMs, in 

agreement with previous studies [27-28]. From a statistical 

point of view, the probability distribution of inter-ELM periods 

did not show the same properties with varying the experimental 

conditions. Pulses relative to similar inputs were grouped into 

24 groups, including 10 singles, 4 pairs and 10 cliques. Kruskal-

Wallis test [29] was applied to inter ELM intervals of pulses of 

the same group to verify whether they belonged to the same 

population. Four groups (6, 10, 16, 19) were identified with 5% 

confidence level (see Table I). The following analysis is 

restricted to pulses in these four groups. Nevertheless, the 

obtained results can be extended to all Type–I ELMs in the 

same plasma conditions (CW wall, deuterium plasma) since 

they are obtained on the base of qualitative considerations on 

the signals shape. 

The same database has been used in [1] to investigate the 

pseudo-periodicity of ELM time series. 

In the next section, the previously described database is 

analysed with RPs; a subscript, which indicates the membership 

clique, is added to the name of each pulse for ease of notation.  
 

TABLE I 



GROUPS WITH DIVISION BY ENGINEERING CONDITIONS (PLASMA CURRENT, 
TOROIDAL MAGNETIC FIELD, NBI INPUT POWER AND LOWER TRIANGULARITY) 

AND BELONGING TO THE SAME EXPERIMENT. 

 Pulses # of 

intervals 

Engineering conditions 

6 74375, 74376 54 2.5MA, 2.5T, 

15.1-15.5MW, 0.33-0.35 
10 74443, 74444 90 2.5MA, 2.7T,  

14-15.8MW, 0.32 

16 76428, 76430, 76431, 
76437, 76438 

197 2MA, 2T, 
7.5MW,0.35 

19 76470, 76471, 76472, 

76473, 76474, 76475, 
76476, 76477, 76478, 

76479 

363 2MA, 2T, 

14.5-16.8MW, 0.35-0.37 

 

IV. RESULTS 

A. Recurrence plots 

The embedding parameters have been evaluated for 

temperature, density, and Dα time series before creating the 

RPs. If we consider that the rise/crash time of a burst is about 

2-3 sampling times, it can be assumed that a small  is 

necessary. Fig. 2 shows that, with τ = 1, the attractor is well 

unfolded. Thus, the chosen value is τ = 1. 

 

Fig. 2.  3D Projection for a) pedestal temperature, b) density at the edge and c) 

outer divertor Dα, with τ = 1. 

 

To determine the appropriate embedding dimension, the 

False Nearest Neighbours (FNNs) method has been used. The 

estimated embedding dimension could be evaluated as the 

shortest m for which the percentage of FNNs is lower than 30%. 

The obtained results on the list of shots showed m = 3 for the 

temperature and density time series and values in the interval 4 

– 7 for the D time series. It is worth noting that this estimation 

might be greater than the right embedding dimension due to the 

presence of noise in the signals. Fortunately, RPs are not 

particularly sensitive to the choice of embedding parameters 

and we have found only marginal, almost invisible, differences 

when choosing embedding dimension and time delay within 

reasonable ranges. 

In Fig. 3a the UTRP related to temperature time series for 

shot 7647119 is shown, where black and white points represent 

respectively the smallest and the highest distances between 

points. White corridors are present when ELMs appear, i.e. the 

distance between points of the burst and those of the laminar 

phase is high. Squares or rectangular blocks among white 

corridors correspond to laminar phases. By introducing the 

threshold ε, the shape of the blocks varies (Fig. 3b). The RPs of 

the temperature time series have a checkerboard structure, 

which is typical of periodic and quasi-periodic systems [30]. In 

particular, for ε chosen such that the recurrence point density is 

approximately 30%, squares and rectangles with an elongated 

lower left corner are present. Moreover, the presence of close 

secondary peaks gives rise to larger and closer white corridors 

in the UTRP and white corridors in the central region of the RP. 

 
Fig. 3.  a) UTRP and b) RP for temperature time series of shot 7647119. 

 

The UTRP and RP in Fig. 4 for shot 743756 highlight the 

presence of non-stationarity. Indeed, large bright regions on the 

higher left and lower right part give evidence of increasing 

distances among points of the first and second part of the series 

in the embedding space, harder to notice from the visualization 

of the time series alone. This is due to the fact that the second 

part of the time series is characterized by slightly higher values 

during the laminar phase. 

 
Fig. 4.  a) UTRP and b) RP for temperature time series of shot 743756. 

 

Fig. 5–6 show the UTRP and RP of density and Dα time series 

for shot 743756. As it can be noticed easily, the same typical 

kite-like shape appears in the RP image, although the effect of 

non-stationarity is less visible, both for density and Dα. 

Moreover, the RP for density shows a more complex structure 

inside the kite, mainly due to the high frequency oscillations in 

the time series. 



 
Fig. 5.  a) UTRP and b) RP for density time series of shot 743756. 

 
Fig. 6.  a) UTRP and b) RP for Dα time series of shot 743756. 

 

B. From type–2 Intermittency to ELMs 

As stated above, the shape of squares and rectangles with an 

elongated lower left corner resembles a uniformly black kite. 

This is a characteristic common to all the cliques. The same 

shape is characteristic of RPs for type–2 intermittency systems 

[31], model of weakly chaotic behavior. It is important to 

clarify that there is no connection between the intermittency 

type (type–2) and Type-II ELMs [32], which are not subject of 

the present paper. 

One of the first models of type–2 Intermittency, developed 

by Manneville in 1980 [33, 34], consists of a simple iteration 

for laminar and reinjection phases 
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where rth is chosen such that f(rth) = 1. System (9), when  > 0, 

shows ordinary chaotic dynamics. Fig. 7 shows the rn time 

series obtained for  = 0.001. 

 
Fig. 7.   Dynamics of type–2 intermittency (α = 0.001). 

 

The UTRP and RP for the rn time series are shown in Fig. 8. 

The threshold ε of the RP has been chosen such that the 

recurrence plot density is approximately 30%. A uniformly 

black kite-like shape appears for the laminar phase in the RP in 

Fig. 8b. 

 
Fig. 8.  a) UTRP and b) RP for type–2 intermittency time series (α = 0.001). 

 

There is an evident similarity between RPs of type–2 

intermittency and those of temperature and Dα time series, 

which exhibit the same characteristic kite-like shape, despite 

the different orientation. This main difference is due to the fact 

that in the temperature (Dα) series, the growth (decrease) is first 

fast and then slows whereas rn is characterized by an initially 

slow growth which becomes faster with time and a following 

fast decay. The RPs similarity suggests further investigation of 

intermittent systems with the scope of modeling Type–I ELMs 

in terms of relaxation and drive during aperiodic oscillations. In 

this case, the aperiodic behavior is interpreted as a pseudo-

periodic behavior, i.e., a periodic behavior corrupted by a 

dynamical noise [1], 

As an attempt to obtain the same orientation of the kites in 

the RP, the map (9) has been inverted in the laminar region and 

its convexity modified to obtain a map which qualitatively 

describes the behavior of temperature time series, i.e., a slow 

growth towards an equilibrium value Teq, interrupted by a fast 

crash after crossing a threshold Tth (see Fig. 9). Once this critical 

value has been exceeded, the system relaxes to a status of lower 

energy by rapidly decreasing the pressure gradient. Then the 

cycle repeats and can continue indefinitely if the conditions 

remain stationary. This kind of instability is guided by pressure, 

and the ELM frequency increases with the heating power. This 

translates into an inverse proportionality between the heating 

power and the mean laminar phase length. 

 

 
Fig. 9.  Time series generated by inverting the map (9) in the laminar region. 

 

The first equation describes the relaxation and dissipation of 

the perturbations and the second the drive process in the plasma. 

The model can be described by 
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where Tmin is the minimum value obtainable by Tn during the 

drive phase, Tmax = hT(Tth) is the maximum value obtainable by 

Tn during the relaxation phase, and the parameter 



γT  (0, Tmax – Tmin] is an arbitrary value which determines the 

maximum temperature attainable during the drive process.  

The map in (10) exhibits different dynamic behaviors, 

depending on the parameters γT and Tth, both chaotic and 

periodic (see fig. 10a when Tmin = 0 and Teq = 1). When the map 

is periodic, the period of the time series can vary between one 

and many ELM cycles. In fig. 10b the different dynamical 

behaviors are shown, where N is the number of ELM cycles 

inside one period of the time series. 

 
Fig. 10.  a) Lyapunov Exponent and b) dynamical behavior for temperature 

model in (10) with varying parameters γT and Tth (α = 0.001). 

 

 In particular, when Teq =1, Tth = 0.9793 and Tmin = 0, the map 

is periodic for γT < 0.3821 and chaotic for γT > 0.3821. When 

the map is periodic, N = 1 for γT < 0.316 and N > 1 for 

γT > 0.316. A property of the map, common to all values of Tth, 

is that for low values of γT the system is periodic with period 

equal to one ELM cycle; then, after increasing the value of γT, 

the map is subject to a continuous series of bifurcations that 

alter the size of the period, until the system becomes chaotic. 

Fig. 11 shows three time series, respectively obtained when 

γT = 0.2, 0.35 and 0.7. 

 
Fig. 11.  Temperature-like time series for Teq =1, Tth = 0.9793, Tmin = 0.  

a) γT = 0.1 (periodic, N = 1); b) γT = 0.35 (periodic, N = 8); c) γT = 0.7 

(chaotic). 

 

The system in (10) can exhibit also a pseudo-periodic 

behavior [1] when in the periodic region is corrupted by a 

dynamical noise. In this case, the resulting system is described 

by 
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where the dynamic noise ηn is uniform in the interval 

[-ηmax, ηmax] and is responsible of the irregular behavior in 

frequency and amplitude of the signal. 

A map, which graphically represents the behavior of the 

model in (11), is shown in Fig. 12. The gray stripes indicate the 

tolerances due to noise.   

 
Fig. 12.  Map for pseudo-periodic temperature model. 

 

Fig. 13 shows the Tn time series obtained for α = 0.001, 

Tth = 0.9793, Teq = 1, Tmin = 0, ηmax = 0.003, γT = 0.1. 

 
Fig. 13.  Pseudo-periodic temperature-like time series. 

 

The RP and UTRP for the obtained time series are shown in 

Fig. 14. The threshold ε of the RP has been chosen such that the 

recurrence point density is approximately 30%. A uniformly 

black kite-like shape appears for the laminar phase oriented as 

in temperature time series. 

 
Fig. 14.  a) UTRP and b) RP for temperature-like time series. 

 

With respect to type–2 intermittency, the inversion and the 

convexity modification along the laminar phase changes the 

equilibrium point and its stability. In fact, in type–2 

intermittency there is a single unstable equilibrium point in the 

origin, which destabilizes the trajectory, and a reinjection 

phase, which reinjects the trajectory in a zone close to the 

equilibrium point. In the new map there is a single stable 

equilibrium point in Teq towards which the trajectory tends and 

a crash phase in which the trajectory is sent far from the 

equilibrium point. 

Moreover, with an analogue procedure, it is possible to 

reproduce a behavior similar to the one characteristic of the D 

time series taking into account that the D burst (decay) occurs 

when the temperature crashes (increases). Thus, a D model can 



be obtained by setting T = Teq + Deq – D in (11) obtaining a 

model of the form: 
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where Dmin = hD(Dth) is the minimum value obtainable by Dn 

during the relaxation phase when ηmax = 0, Dmax is the maximum 

value obtainable by Dn during the drive phase when ηmax = 0, 

Deq is the equilibrium point towards which the trajectory tends 

during the relaxation phase, and γD is an arbitrary value which 

determines the minimum value reachable during the drive 

process.  

 A map which graphically represents the behavior of the 

model in (12) is shown in Fig. 15. The gray stripes indicate the 

tolerances due to noise.  

 
Fig. 15.  Map for pseudo-periodic Dα model. 

 

Fig. 16 shows the Dn time series obtained for α = 0.001, 

Dth = 0.0207, Dmax = 1, Deq = 0, ηmax = 0.003, γD = 0.1. 

 
Fig. 16.  Pseudo-periodic Dα-like time series. 

 

The RP and UTRP for the obtained time series are shown in 

Fig. 17. 

 
Fig. 17.  a) UTRP and b) RP for Dα-like time series. 

 

Also in this case a kite-like shape appears, similar to the one 

shown in D and temperature time series.  

V. CONCLUSIONS 

Recurrence plots have been applied to investigate the 

characteristics of Type–I ELM time-series of JET tokamak with 

a carbon wall. Even if the discussion is developed at a heuristic 

level, avoiding all the delicate mathematical questions, we think 

it may shed some light on currently still puzzling problem of 

modeling ELMs. 

Recurrence plots of temperature, density, and D time series 

show patterns similar to those characteristic of signals 

exhibiting type–2 intermittency, in particular, a characteristic 

kite-like shape. Starting from this similarity, a qualitative model 

of temperature and D time series has been derived starting 

from a type–2 intermittency model. The models presented in the 

paper describe the qualitative behavior of temperature and D 

time series. Oscillations can be either periodic/pseudo-periodic 

with period varying between one and many ELM cycles, or 

chaotic: in case of temperature, the modelled time series is 

characterized by a slow growth towards an equilibrium value 

which is interrupted by a fast crash; for D, the fast growth and 

the slower crash are reproduced. 

This is a first attempt at modeling Type–I ELMs, which 

needs to be validated and connected with physical parameters 

and existing physical models. Firstly, a parameter identification 

will be made to fit the models to the individual signals in 

particular experimental conditions. The first objective of this 

identification phase is to find a connection between the 

threshold parameter in the model and the critical pressure 

gradient characteristic of the majority of physical models 

describing the ELM behavior. 
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