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ABSTRACT 

A simplified model, able to reproduce the pore pressure build-up until liquefaction under seismic 

shear loads, has been implemented in a one-dimensional code for loosely coupled site response 

analysis in effective stress. One-dimensional consolidation relationships have been also integrated 

in the formulation in order to simulate both generation and dissipation of excess pore water 

pressure. The performances of the code are evaluated by analysing an ideal soil profile, a centrifuge 

model test and an instrumented test site. The comparison between records and simulations 

highlighted that, notwithstanding the simplicity of the proposed approach, the code provides reliable 

predictions. 

 

Keywords: (loosely coupled) effective stress analysis, liquefaction, pore water pressure, 

dissipation, centrifuge, test site. 
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1. Introduction  

Seismic strong-motion events occurred during past years, such as the 2015 Gorkha (Nepal), the 

2012 Emilia (Italy), the 2010-2011 Canterbury (New Zealand) and the 2011 Tohoku-Oki (Japan) 

earthquakes, demonstrated that coupled phenomena in sandy/silty soils cannot be neglected in the 

analysis of site response; nevertheless, this issue is still a demanding task for the design of 

infrastructures and facilities. 

The soil response of saturated soils under strong motion seismic loading is ruled by rather complex 

mechanical processes, which may be basically ascribed to hysteretic behaviour and volumetric-

distortional coupling. The first consists in a decrease of the shear modulus associated with an 

increase in energy dissipation (damping); the second is related to plastic irreversible straining, that 

takes place at high shear loads and induces either volumetric strains in drained conditions, or pore 

pressure changes in undrained conditions. This latter may evolve into liquefaction in loose sandy 

soils. 

While the importance of first class of non-linear effects has been widely recognized [1], [2] and 

modelled in the most common and/or commercial codes performing seismic site response [3]–[6], 

the modelling of volumetric/distortional coupling still remains a challenging issue, due to the 

limitations of simplified approaches and to the specific expertise required for calibrating advanced 

constitutive models. 

In this study, a simplified pore water pressure model was implemented in a 1D computer code in 

order to carry out effective stress analyses. A so-called ‘loosely coupled approach’ [7] was followed 

taking into account the stiffness and strength degradation of the soil due to progressive build-up of 

pore water pressures induced by cyclic shear loading. Redistribution and dissipation of excess pore 

pressure during and after the seismic event are also considered, according to the one-dimensional 

consolidation theory [8].  

The numerical model can represent a useful tool for engineering practice, since it requires only few 

parameters, clearly defined and easy to be calibrated.  
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The description of the numerical code is briefly presented in Section 2, while the implementation of 

the constitutive relationships is detailed in Section 3.  

The overall performance of the numerical model was first evaluated on ideal soil profiles (section 4) 

and then validated by simulating a centrifuge test and seismic events recorded on well-instrumented 

test site (section 5). 

2. Numerical code 

SCOSSA is a computer code for one-dimensional (1D) seismic response analysis [9]; it models a 

soil profile as a system of consistent lumped masses, connected by viscous dampers and springs 

with hysteretic non-linear behaviour (Fig. 1a,b). 

The discretization of the subsoil profile into the lumped parameter system is based on Kuhlemeyer 

and Lysmer [10] criterion, where the maximum sub-layer thickness is a suitable fraction (1/6 - 1/8) 

of the minimum wavelength to be transmitted. 

Currently, the code is able to simulate both the transient seismic response (‘stick’ mode) and the 

permanent deformation mechanisms (‘slip’ mode) accounting for the coupled effects of 

deformability and strength [9] by carrying out total stress analyses. 

The performances of the code in the ‘stick’ mode  [9], were verified and validated together with 

those of other codes during an international benchmark within the framework of PRENOLIN 

project [1], [2]. 

For the purposes of this paper, only the ‘stick’ mode is handled, since a simplified pore water 

pressure model is here implemented into the code in order to model the transient seismic site 

response at large shear strains. 

The code SCOSSA performs non-linear seismic response analyses solving the ground motion 

equations in the time domain. The seismic response in terms of absolute displacements, d, to a base 

ground motion, ag (Fig. 1), can be computed by integrating the following system: 

  M a C v K d f            (1) 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

where M, C and K are the mass, damping and stiffness matrices respectively, f is the vector of 

applied forces. This latter depends on the input accelerogram, gv , which can be applied as ‘within’ 

or ‘outcrop’ motion at the bedrock [9]. 

The elements of the M and K matrices are defined from the mass, mj, and the current spring 

stiffness, kj, of a generic layer j, as follows: 

1 11 1
1 1; ;

2 2 2

j j j j n n
j n

h h hh
m m m

    




   ;       (2) 

j

j

j

G
k

h
             (3) 

where ρj, hj, and Gj are the density, thickness and tangent shear modulus of the j-th layer, 

respectively.  

The viscous damping matrix, C, is defined according to the full Rayleigh damping formulation [11]: 

R R  C Μ K            (4) 

where the constants R and R are set as functions of the minimum soil damping ratio, min, the 

fundamental frequency of the subsoil profile and the predominant frequency of the input motion. 

Modifications to the basic numerical procedure of the code have been required for implementing the 

pore pressure generation and dissipation models. The flowchart in Fig. 2 resumes the schematic 

algorithm adopted in the upgraded code for each time step. 

New additional routines have been introduced in the original algorithm implemented in SCOSSA, 

i.e. consolidation, generation of pore water pressure and adjustment of the shear modulus (shaded 

boxes in Fig. 2). A detailed description of these latter routines will be provided in the following 

section 3. 

Following the flowchart of Fig. 2, an initial updating of the vector of input forces, f, is carried out 

for the i-th time step. During the same time interval, a new distribution of the pore water pressure 

along the soil profile is evaluated starting from that evaluated at the previous time instant, assuming 

a constant value of the consolidation coefficient, cv (see § 3.2). The consolidation phenomenon 
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causes a reduction of the excess pore water pressure, with a negative variation of the pore pressure 

ratio, ru; this latter is defined as the ratio between the pore pressure, Δu, and the initial effective 

stress of the soil, ’0. 

At the same time step increment, the code uses the Newmark β method [12] to numerically integrate 

the equations of motion: 

 

 

1 1 1 1

1 1

2 2

1 1

1

1/ 2

 

 

   

 

 

  


     
        

i i i i

i i N i N i

i i i N i N i

t t

t t t

M a C v K d f

v v a a

d d v a a

       (5) 

The default coefficients are set equal to N = 0.5 e βN = 0.25, so that the method is unconditionally 

stable and no numerical damping is introduced. 

For a model with n degrees of freedom, the system (5) can be easily solved if expressed in the form: 

1 1  i i iA x Bx q             (6) 

where x is the vector of the unknown variables: 

{ }T T T Tx a v d             (7) 

In equation (6), q is the vector of the external forces, where the first n elements are equal to f, and 

the remaining 2n elements are null; A and B are the matrices of the integration method, defined as: 

 

 2

; 1
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N N
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t t t

 

 

  
  

      
        

M C K 0 0 0

A I I 0 B I I 0

I 0 I I I I

     (8) 

where I and 0 are the unit and null matrix, respectively, with n×n dimension. 

The numerical solution of system (6) is reduced to the inversion of the 3n×3n matrix A for each 

time step, which can be carried out by adopting exact or iterative methods. The code uses an exact 

inversion method based on the Crout-Doolittle factorization algorithm, modified for band matrices. 

Since the variability of the stiffness matrix, K, also depends on the solution of the system (5), as a 

first attempt the stiffness matrix is set equal to that calculated at the previous instant. 

The solution of the system (5) leads to the computation of the kinematic variables, i.e. acceleration, 

velocity and displacement. Then, the shear strain increment, Δj, is obtained through: 
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1j j

j

j

d d

h


 
              (9) 

where Δdj = dj 
i+1

 - dj 
i
 is the displacement variation in the time interval Δt, while hj is the sub-layer 

thickness. 

A continuous stress-strain relationship is used to compute the shear stress increment, Δj, in the 

time interval Δt, as a function of the shear strain level (eq. 9) and of the pore pressure ratio, ru, 

defined in the previous time instant (through the constitutive model described in § 3). 

The variation of shear stress generates accumulation of excess pore water pressure, that is computed 

using a simplified stress-based model for prediction of pore pressure build-up (see § 3.1). Finally, 

the effective increment of excess pore pressure ratio is calculated as balance between the generated 

and dissipated excess pore pressure (see § 3.2). 

The resulting value of ru is used to update the constitutive relationship and computing a new value 

of the tangent shear modulus, G (see § 3). 

The current value of the stiffness for the j-th sub-layer, kj, is computed by the tangent shear 

modulus, Gj, as follows: 

( )j j

j

j

G
k

h


              (10) 

Through equation (10), it is possible to define the stiffness matrix from the current shear strain level 

and excess pore pressure ratio, ru.  

Due to the mutual dependency between K and the system solution, x, an iterative computation 

needs to be applied at each time step. As a first attempt, the stiffness matrix is set equal to that 

calculated at the previous instant, i.e. [K
i+1

]k=0=K
i
; The system is solved and the strain, [

i+1
]k=0, and 

stress, [
i+1

]k=0, vectors are calculated, by which the stiffness matrix of the layering is again 

evaluated as [K
i+1

]k=1. The procedure is iterated until the maximum value of the relative error, rel, 

between two subsequent solutions, [x
i+1

]k-1 and [x
i+1

]k , defined as: 
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is less than a fixed tolerance value, tol. This iterative solution reduces the numerical instability 

occurring at the reversal points in the hysteresis loop. 

3. Constitutive model  

The effective-stress site response analysis is carried out following a “loosely coupled” approach 

where a soil constitutive model in total stress (§ 3.1) is adopted in combination with a semi-

empirical model for the prediction of pore pressure build-up (§ 3.2) and dissipation (§ 3.3). 

3.1. Cyclic stress-strain behaviour 

The non-linear hysteretic response of the springs is modelled using the “Modified Kondner and 

Zelasko” (MKZ) [13] relationship, along with extended Masing rules [14]. The stress-strain 

relationship (i.e. the backbone curve) for a monotonic loading path in simple shear is given by: 

  0

'

1


 





 


 

  
 

G
bb s

G

r

G
F           (12) 

where  is the shear strain level, G0 is the initial shear modulus, r is the reference shear strain,  

and s' are two dimensionless factors and  and G are two degradation index functions. The 

modulus degradation index function, G, is defined as: 

1G ur               (13) 

while the corresponding stress degradation index function, , is given by:  

1 ur


               (14) 

where  is an exponential constant which expresses the sensitivity of the backbone curve to pore 

water pressure changes. Matasovic and Vucetic [15] defined the constant  on the stress-strain 

response obtained from strain-controlled cyclic simple shear tests on Californian sandy soils. They 

found  values ranging between 3.5 and 5.  
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The same direct relationship between shear modulus and excess pore water pressure is also 

frequently used in other codes suitable for effective stress analyses codes (e.g. DESRA-2 [16]; D-

MOD2000 [17]). 

Unlike the second rule of the original Masing criteria, the formulation by Phillips and Hashash [18] 

is adopted for expressing the stress-strain relationship in unloading-reloading conditions. 

Introducing the degradation indexes, the relationship proposed by Moreno-Torres et al. [19] is 

obtained: 

     0 0 0*

' ' '' ' '
( ) ( )

1 1 1
2

G c G c G c

ur m cs s ss s s

G c G m G m

r r r
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F F
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           

 (15) 

In equation (15), c and c are, respectively, the reversal shear strain and shear stress, m is the 

maximum shear strain attained during the time history, and F*(m) is a damping reduction factor, 

defined as follows: 

3
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 
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 

p

m
m

Mas

G
F p p

G
         (16) 

In equation (16), p1, p2 and p3 are non-dimensional parameters obtained from the best fit of the ratio 

between the strain-dependent hysteretic damping measured in laboratory tests, exp(), and that 

calculated using the conventional Masing rules, Mas(); G(m) is the secant modulus corresponding 

to the maximum shear strain γm attained during the loading history (see Phillips and Hashash [18], 

for details). The updated formulation modifies the Masing unloading-reloading rules, providing a 

better agreement with the experimental damping-strain curves for large shear strains. 

Fig. 3a shows the predicted effect of pore pressure build up on stress-strain cycles: the shear 

modulus reduction curve is updated every time an excess pore pressure change occurs (Fig. 3b). 

Stress-strain cycles computed adopting a total stress analysis are reported for comparison, clearly 

showing an overall higher shear modulus. 

Neglecting the excess pore water pressure, equations (12) and (15) are reduced to the original 

formulation in total stress described by Tropeano et al. [9]. 
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The parameters of the shear modulus reduction curve (equation 12), i.e. r,  and s', are fitted on the 

cyclic laboratory test results through non-linear multi-regression of the experimental data points. 

Nevertheless, cyclic laboratory tests often are not driven to failure and, consequently, the G/G0 

curve reproduced by the model is well-constrained by the data at small to moderate shear strains but 

does not necessarily provide an accurate representation of soil strength at large shear strains. Such 

inaccuracy may result in significant errors for seismic response analyses involving shear stress 

levels near failure condition [20]. 

Several researchers have proposed different adjustment procedures of the G/G0 curve ([21]–[23]) in 

order to solve the problem. In this study, the experimental data were fitted through the interpolation 

method suggested by Gingery and Elgamal [20], which provides a hyperbolic-like curve as a 

smooth transition between moderate strain levels and failure. As a results, the  :  relationship 

simultaneously matches the behaviour observed at small to moderate strains and the shear strength 

of the soil at large strains.  

This interpolation procedure scales equation (12) using a raised cosine function to force the 

backbone curve to predict the correct shear strength by intercepting a given G/G0 value at a defined 

shear strain value (i.e. the supposed failure strain).  

The value of shear strength, ff, depends on the initial stress state in the soil and on the way the 

shear stress is applied. As reported by Hardin and Drnevich [24], for initial geostatic stress 

conditions and shear stress applied to horizontal and vertical planes, ff, can be calculates as follows: 

1/2
2 2

0 01 1
sin cos

2 2
ff v v

K K
c    

     
          

     

      (17) 

where K0 is the coefficient of earth pressure at rest; ’v is the vertical effective stress and c’ and ’ 

are the strength parameters in terms of effective stress. Hardin and Drnevich [24] specified that 

effective stress conditions are used in equation (17) even though undrained conditions occur in 

dynamic loading. 
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The modified G/G0 curve is interpreted again with the MKZ relationship. In this way, the resulting 

parameters, r,  and s', are both representative of the best-fitting on the available laboratory data 

and respectful of the shear strength of the soil. 

 

Fig. 4 shows an application of the described procedure: the experimental data from laboratory tests 

on a silty sand [25] (Fig. 4a) were fitted to predict the stress-strain curve up to failure at 5, 15 and 

25 m depth from the ground level along a soil profile characterised by constant shear wave velocity 

(Fig. 4b). 

The above mentioned constitutive model is updated at every time step as function of the current 

value of the pore pressure ratio, ru. This latter is computed through the simplified stress-based 

model proposed by Chiaradonna et al. [26]. The model has also been generalized in order to 

simulate both accumulation and dissipation of excess pore water pressure during the shaking and 

the post-seismic phases. 

3.2. Generation of excess pore water pressure 

The pore pressure build-up can be computed by a simplified  model by adopting an endochronic-

based damage parameter, , which permits avoiding the use of empirical criteria to convert the 

irregular shear loading into an equivalent number of cycles [26].  

The model is based on simple analytical relationships, and allows for a straightforward calibration 

of the parameters on the results of cyclic laboratory tests. From these latter, the number of cycles at 

liquefaction, NL, is univocally related through the cyclic resistance curve to the cyclic resistance 

ratio, CRR, between the peak shear stress amplitude and the initial effective stress. The cyclic 

resistance curve is analytically described by the following equation: 

 

 

1

  
  

  

t r

r t L

CRR CSR N

CSR CSR N
          (18) 

where (Nr, CSRr) is a reference point, CSRt the asymptotic value of CRR as the number of cycles 

tends to infinite, and  is the slope of the best-fit relationship in a log-log scale (Fig. 5a). 
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The parameters CSRt and  are used to compute the damage parameter, , for any loading pattern. 

For a regular harmonic loading of given amplitude, CSR, i.e. the ratio between the modulus of the 

maximum shear stress, |max, and the initial effective stress,  is proportional to the number of 

cycles, N, and it can be written as [26]: 

 4 tN CSR CSR


      (19) 

Combining equations (18) and (19), the damage parameter at liquefaction, L, can be expressed as 

follows:  

 4L r r tN CSR CSR


             (20) 

The pore pressure model defines also an univocal relationship between the normalized number of 

cycles, N/NL and the pore pressure ratio, ru with the polynomial function [26]: 

(0.95 )
   

     
   

b d

u

L L

N N
r a a

N N
         (21) 

where a, b, c and d are curve-fitting parameters (Fig. 5b). Given the proportionality between the 

number of cycles, N, and the damage parameter,  (eq. 19), any pore pressure change can be 

expressed as a variation of the normalized damage parameter, /L (see [26] for details). 

For an irregular shear loading history, expressed as follows: 

0

( )
( )

t
t






 


            (22)  

the damage parameter, , can be computed at every time instant as: 

0( )t d     (23) 

where 0 is the damage cumulated at the last reversal point of the function (τ
*
- CSRt) reached at the 

time instant t. The parameter 0 can be defined as follows:  

0

0

( ) if ( ) 0 or ( )

( ) if ( ) 0 or ( )

  


  

 

 

   
 

  

t

t

t dt t t CSR

t dt t t CSR
       (24)
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i.e. 0 is a stepwise function assuming the value of the damage parameter gained at the time step 

(t  dt) every time the stress ratio reaches a local maximum value or when τ
*
 = CSRt. 

The increment of the damage parameter, dκ, in the time interval dt is given by: 

0

0 if  ( )

( ) ( ) if  ( )

t

t

t CSR
d

t t t CSR





  



 

 
 

   

 (25) 

where 0 max    if *( ) 0 t  and 0
  tCSR  otherwise.  

The damage function increases when * overcomes CSRt, which represents the threshold below 

which there is no pore pressure build-up [26].  

In the discrete time-step analysis, it is possible to define the “generated damage” increment, gen, 

as follows: 

1    gen i i           (26) 

3.3. Dissipation of excess pore water pressure 

The dissipation of excess pore water pressure during a time step is also taken into account, by 

solving the diffusion equation, also known as Terzaghi 1D consolidation equation [8]:  

2

2v

u u
c

t z

 


 
            (27) 

where cv is the vertical consolidation coefficient, and the pore water pressure, u, is a function of both 

the depth, z, and the time, t. 

For a homogeneous compressible soil layer, the consolidation equation (27) can be rewritten into an 

explicit finite difference form as [28]: 

 1

2 1 2 1 2 2 2 1 22

      
i

i i

j j j j ju u u u u         (28) 

where: 

2v

t
c

z






            (29) 

According to equation (28) the pore pressure at time i+1 for a layer j-th can be calculated by 

knowing the conditions at time i (u2j-2, u2j-1 and u2j in Fig. 1c). If a regular depth discretization, Δz, 
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is adopted, the accuracy of the solution of equation (28) is inversely proportional to the value of Δt 

and Δz. Furthermore, the solution is numerically stable if  < 0.5; it is generally assumed a value 

equal or less than 0.1. The above requirements entail the need to adopt values for Δt and Δz small 

enough and calibrated on the parameter cv. 

More details about the development and verification of the formulation adopted for consolidation 

analysis can be found in [29]. 

In lack of direct measurements, the consolidation coefficient, cv, of each layer can be computed 

through its well-known definition: 

oed
v

w

k E
c


             (30) 

By knowing the unit weight of the water, w, the permeability, k, and the oedometric modulus, Eoed, 

of the soil. From the elasticity theory, the oedometric modulus can be related to the stiffness of the 

soil, G0, and the Poisson’s ratio, , as: 

 

 
02 1

1 2
oed
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E









           (31) 

Using equations (28) and (29), it is then possible to define a reduction of excess pore water pressure 

for every time step and the corresponding decrease of pore pressure ratio, ru. 

The corresponding variation, diss, of the damage parameter can be computed by inverting eq. 

(21), through replacement of N/NL with/L [26]. 

Summarizing, at each time step the excess pore pressure can be generated and partly dissipated; this 

partially drained condition is reflected by the “net damage parameter”, n, being: 

1      i i

n n gen diss          (32) 

where gen and diss are respectively the variations of damage parameter corresponding to the 

generation and the dissipation of ru in the same time step, Δt.  

Finally, the pore pressure ratio in the considered time step is computed as: 
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          (33) 

which is a generalization of the original relationship (equation 21) where the damage parameter, 

is replaced by the net damage, n, defined by equation (32). Indeed, if the consolidation is 

neglected, n becomes equal to  and the original formulation of the relationship is obtained. 

Fig. 6 shows an example of application of the pore pressure model in totally undrained and partially 

drained conditions in the case of a saw-tooth periodic time history of shear stress (Fig. 6a). The 

damage parameter and pore pressure ratio were computed through the cyclic resistance curve and 

the pore pressure relationship plotted in Figs. 5a,b.  

As a result of the application of eqs. (23), (24) and (25), in totally undrained conditions, the damage 

parameter increases when * exceeds the threshold value, CSRt; otherwise, it remains constant. 

Conversely, in partially drained conditions, the accumulation of the net damage parameter is slower 

and it decreases after the end of shaking (Fig. 6b). The same trend can be observed also in the time 

history of the normalized damage parameter (Fig. 6c). 

Once the pore pressure ratio is expressed as a function of the net damage parameter by equation 

(33), the time history of excess pore water pressure (Fig. 6d) can be calculated, whatever the 

drainage conditions. 

After the end of the shear loading, the model clearly simulates the consolidation process. 

It must be remarked that the liquefaction condition is assumed to occur for ru equal to 95%, 

according to a stress-based criterion. This assumption also avoids computational problems, which 

would be otherwise induced on the stiffness matrix by the zeroing of the effective stresses if 

liquefaction occurs. 

4. Performance on ideal soil profiles  

The performance of the SCOSSA-PWP code was preliminarily verified adopting a simple scheme 

of a uniform 30 m thick layer of silty sand (Fig. 7), with the ground water table located at 1 m 

depth.  
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The selected reference input motion is the NS component of the main-shock of Umbria-Marche 

seismic sequence (26/09/1997, Mw = 6), recorded at the Assisi station with a maximum acceleration 

of 0.273 g (ASS, Fig. 7c). The time history of acceleration was applied as an outcrop motion at the 

bedrock, which was modelled as a permeable visco-elastic half-space with the properties reported in 

Table 1.  

The same table also shows the main properties of the silty sand. 

Figs. 7a,b show the profiles of the shear wave velocity, VS, and the shear strength, ff, respectively.  

The profile of VS corresponds to a  a power function of z with an exponent equal to 0.25 

characterised by a value of 100 m/s at surface (Fig. 7a). The shear strength was computed according 

to equation (17), but the profile was discretized into a stepwise-function for sake of simplicity (blue 

line in Fig. 7b).  

The non-linear and dissipative behaviour of the soil was modelled adopting the curves plotted in 

Fig. 7d, which result from the application of the MKZ model to the experimental data adjusted 

following the procedure described in Section 3. 

The characterisation of cyclic strength of the silty sand  (see eq. 18 and Fig. 5a) was based on the 

experimental data reported by Porcino and Diano [27]. The same data from cyclic simple shear tests 

were also used to calibrate the pore pressure model (eq. 21 and Fig. 5b). Full details about the 

calibration procedure can be found in [26]. 

The degradation parameter of eq. (14), , has been set to the mean value of 3.5, as suggested by 

Matasovic and Vucetic [15], while the consolidation coefficient, cv, computed through eqs. (30) and 

(31) by setting k = 10
-5

 m/s and = 0.3 was equal to 1.31 m
2
/s. 

Total (TS) and effective stress (ES) analyses were performed on the soil column. In the effective 

stress analyses, the calculations were carried out according to the procedure described in section 2 

(loosely coupled approach), while in the total stress analyses the pore pressure model was adopted 

following a decoupled approach. In this latter case the computation followed the original algorithm 

of SCOSSA [9], and the shear stress history resulting from the total stress analysis  was used to 



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

predict the pore pressure build-up induced by the cyclic loading, by applying “offline” the pore 

water pressure model (§ 3.1).  

Fig. 8 shows the results in terms of the profiles of maximum acceleration, shear strain, stress and 

pore pressure ratio computed by total and effective stress analyses, both considering and neglecting 

the dissipation of excess pore pressure.  

The maximum acceleration computed through the effective stress analyses is lower than that 

obtained by the total stress analysis along the first 3 m of the soil column and between 9 and 19 m 

(Fig. 8a).  

Higher shear strains are mobilized along the shallowest part of the column in the effective stress 

analyses, due to the degradation of stiffness induced by excess pore pressure build-up.  

Differences between the shear strain profiles computed applying the coupled and decoupled 

approaches can be better appreciated looking at the shear stress-strain cycles at 3 m depth, reported 

in Figure 3.  

Few differences are found between the maximum shear stress profiles in coupled and decoupled 

analyses; in this latter case, the stress amplitude are slightly higher because they are less affected by 

the accumulation of excess pore water pressure.  

As a consequence, the pore water pressures computed by the decoupled approach are higher than 

those obtained by the coupled approach and liquefaction condition is reached in the shallowest 5 m 

of the soil column (Fig. 8d). 

In partially drained conditions, an accurate discretization of the soil profile was required. Indeed, 

the maximum thickness of each layer should satisfy, at the same time, the Kuhlemeyer and Lysmer 

[10] criterion and the numerical stability of the consolidation subroutine,  < 0.1, described in § 3.2: 

 
0.5

max

10
6

S
v

V
c t z

f
              (35) 

 i.e. the discretization of soil column is a function of both soil properties (shear wave velocity, 

permeability) and input motion features (time step, maximum frequency). 
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Few differences are found in the maximum acceleration and shear strain profiles computed by 

considering or neglecting the dissipation process (Fig. 8a,b). The maximum shear stress profiles are 

identical, highlighting that consolidation process is triggered after the peak stress value is attained 

(Fig. 8c). This is also confirmed by the maximum pore pressure ratio profiles, which are quite 

similar in the two analyses, except for the first meters under the ground water table, where the 

hydraulic gradients is high enough to induce a sensible reduction in excess pore water pressure 

(Fig. 8d).  

Figs. 8e-f-g detail the effect of consolidation on the shear stress and excess pore pressure at 3 m 

depth. A clear reduction of  excess pore pressure is induced by the simultaneous dissipation process 

(Fig. 8g), showing the importance of a correct evaluation of consolidation characteristics of soil for 

an appropriate prediction of the seismic response, if an effective stress analysis is carried out taking 

into account the dissipation process. 

5. Validation on a centrifuge test 

Comparison with Centrifuge test No. 1 carried out during the VELACS (Verification of 

Liquefaction Analysis by Centrifuge Studies) project has been considered, since it reproduces a 

simple one-dimensional scheme in free-field conditions [30]. 

A horizontal uniform layer of Nevada sand was placed in a laminar box with a relative density of 

about 40%. Fig. 9 shows the cross section of the laminar box and some of the sensors used in the 

test. The laminar box consists of 30 rectangular aluminium rings assembled on top of each other 

with roller bearings in between. The roller bearings allow the box to deform and follow the soil 

deformations, in order to simulate the response of a semi-infinite sand layer during shaking. The 

inside dimensions of the laminar box are 45.72 × 20 cm. 

The sand layer was fully saturated with water and the total unit weight resulted 19.36 kN/m
3
. 

The soil was extensively tested in the laboratory in order to properly characterize the static and 

dynamic behaviour of the material [31].  
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The model was spun at a centrifuge acceleration of 50 g (hence, the scale factor was n=50), while 

excited horizontally at the base with the target prototype accelerogram shown in Fig. 10b. The 

measured vertical acceleration was so small to be considered negligible.  

Horizontal (AH) and vertical (AV) accelerometers as well as piezometers (P) allowed for 

monitoring the soil in terms of horizontal and vertical motions and excess pore pressures, 

respectively (Figure 9). 

The pore pressure time histories measured at the same elevations were essentially identical, 

verifying the one-dimensional behaviour of the model [30]. 

In this study, the numerical modelling of the experiment No. 1 was performed in prototype scale, 

corresponding to a 10 m thick uniform sand layer, with piezometers P1, P2, P3, P4 positioned at 

1.45, 2.6, 5 and 7.5 m from the surface, respectively (Fig. 10a). 

The groundwater table is at the surface level; the base of the model is considered impervious, while 

free drainage can occur only through the surface of the sand layer. 

The bedrock has been considered as rigid and the horizontal acceleration has been applied as 

‘inside’ input motion at the base of the profile. 

The unit weight of sand has been adopted equal to 25.05 kN/m
3
 to incorporate the inertia of the 

rings, as proposed by Taboada [32]. 

The dynamic properties of Nevada sand were defined based on resonant column test data [31]. Tests 

were carried out on specimens consolidated at different isotropic pressures, which made it possible 

to define a power function relating the small-strain stiffness, G0, to the mean effective stress, p’ 

(Fig. 10c). The obtained relationship plots very close to that suggested for the same sand by Taiebat 

et al. [33]. From the above G0-p’ relationship, the shear wave velocity profile was obtained as a 

power function of depth, z (Fig. 10a). 

The experimental data from the resonant column tests [31] at p’= 40 and 80 kPa  (Fig. 11a) have 

been considered to define the non-linear and dissipative properties of Nevada sand, again through 

MKZ model (Fig. 11b).  
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Figs. 11c,d show the cyclic resistance curve and the pore pressure relationship for Nevada sand, 

based on the results of cyclic simple shear tests [31]. Differently from the soil considered in the 

previous example, the Nevada sand exhibits a pore pressure relationship strongly dependent on the 

cyclic stress ratio applied during the test; indeed, upper and lower bound curves can be defined for 

fitting the test results, while the pore pressure model requires the definition of a unique ru : N/NL 

relationship. Since the cyclic stress ratio estimated for the reference input motion is higher than 0.3 

[34], the upper bound curve has been considered in the analysis. 

The degradation parameter, , in eq. (15) has been set equal to 3.5. 

The consolidation coefficient, cv was directly back-figured, from a best-fit of the pore pressure 

dissipation curves recorded at the end of the dynamic shaking. In fact, the proposed model does not 

necessarily require to assign cv by separately setting in eq. (30) the values of k and Eoed. These latter 

might be affected by significant uncertainties, if inferred from the laboratory tests on small size 

specimens and then assigned to the larger centrifuge model, due to likely inhomogeneities of its 

fabric, density and stress-strain distribution. 

Fig. 12 compares the predicted pore pressures versus those measured at the different depths. The 

left plots focus on the pore pressure response during the shaking, while those to the right show also 

the subsequent dissipation. 

The measured pore pressure trends indicate that soil at P1 and P2 depths definitely liquefied. At P3, 

the pore pressure ratio reached unity later during the shaking, while at P4 liquefaction did not take 

place. 

All time histories reveal the typical pattern observed in comparable model tests on saturated sand 

[32], consisting of: 

- an initial build-up of excess pore pressure, reaching a plateau in the shallower piezometers 

as liquefaction took place; 

- a dissipation process evolving from the bottom to the top of the layer as the excess pore 

water is expelled through the surface and the partially or fully liquefied soil densifies. 
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In the simulation, an excess pore pressure ratio, ru, equal to 0.95 (liquefaction) is reached after 2 

seconds of shaking at the shallow piezometer P1 (1.45 m), as well as at 2.6 m (P2) and 5 m depth 

(P3). The same simulation well predicts the experimental pore pressure build-up measured at 7.5 m 

(P4) depth, not exceeding 80% of the effective overburden pressure.  

It must be observed that the higher the depth, the earlier the attainment of the maximum pore 

pressure in the simulation with respect to the experimental results; this can be ascribed to a possible 

increase with depth of the relative density that is not taken into account in the numerical model (due 

to the adoption of a unique cyclic resistance curve in the analysis). 

Probably the adoption of a constant cv in the numerical simulation might be the reason why the 

triggering of dissipation starts at the same instant whatever the depth, i.e. right after the end of the 

dynamic shaking, whereas in the experimental results the decay of ru is increasingly delayed 

approaching surface. 

In Fig. 13, the simulated acceleration time histories are compared with the signals recorded at 0, 2.6 

and 5.0 m depth. Due to the discretization criterion adopted, while the excess pore pressures were 

computed exactly at the same depths where piezometers were installed, the accelerations were 

returned at the top of the corresponding sublayers, i.e. at depths slightly different from those where 

the horizontal accelerometers were placed. 

It can be noted that acceleration amplitudes are overestimated at surface and at 2.6 m depth, 

particularly after the liquefaction occurrence.  

A better prediction is observed at 5.0 m depth: in this case the amplitude of the record are nicely 

simulated after 5 s.  

6. Validation on an instrumented test-site  

Another validation benchmark is proposed with reference to a seismic recording array located near 

to the Sendai port, in the North-East of Japan (Fig. 14a). The recording station, belonging to the 

PARI network, consists of a surface accelerometer and a downhole geophone at 10.4 m depth. The 

array is deployed in a Holocene sedimentary soil, called “beach ridge”, consisting of gravel and 
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sand of marine origin. This surface deposit is underlain by the Pliocene “Geba formation”, forming 

the Northern and Eastern hills and consisting of gravel stone, sandstone, tuff, tufaceous siltstone 

and lignite [2] and [35]. 

The Senday array site was selected as a validation benchmark in the framework of the PRENOLIN 

Project [2], being the subsoil layering about horizontal (as checked by several MASW tests) and the 

S-wave propagation direction of the selected seismic records about vertical [2]. 

The upper part of the soil column is composed of loose gravel with a thickness of 1.25 m, overlying 

5.9 m of a moderately dense fine sand (Fig. 14b). From 7.15 m in depth a stiff slate formation can 

be considered as the seismic bedrock. The ground water table is located at 1.45 m from the surface. 

Downhole PS logging permitted to obtain the in-situ shear wave velocity profile; the stress-strain 

and strength properties were measured by laboratory tests on undisturbed samples [2]. 

The shear wave velocity profile adopted in the analysis (Fig. 14c) was obtained by adjusting the in-

situ measurements, until showing a better agreement with the surface/borehole transfer function 

empirically obtained from weak-motion seismic records [2].  

Undisturbed sand samples were retrieved at the depths of 3.3 and 5.4 m to carry out laboratory tests. 

Both samples were subjected to cyclic undrained triaxial tests to determine pre-failure stress-strain 

properties of soil; liquefaction and static strength were measured on the shallowest sample by 

means of stress-controlled cyclic undrained and consolidated-drained triaxial tests, respectively. A 

cohesion c’ = 1.2 kPa and an internal friction angle φ’ = 43.6° were obtained from the triaxial test. 

The experimental data of laboratory tests are compared to the analytical curves predicted by the 

relevant constitutive models in Fig. 15. 

The pre-failure cyclic triaxial tests were used to define the variation of normalized axial stiffness, 

E/E0, and damping with strain level, a  

Following the equivalence criteria between triaxial and simple shear tests [36], the axial strain was 

converted into shear strain as γ = 1.5⋅εa, while the ratio E/E0 was assumed equal to G/G0.  

Figs. 15a,b show the good agreement between the MKZ model and the experimental data. 
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The cyclic resistance and pore pressure parameters were assigned to the fine sand layer on the basis 

of the results of the cyclic triaxial liquefaction tests (Figs. 15c,d). 

The cyclic axial strength ratio was converted into an equivalent simple shear ratio through a 

correction factor equal to 0.64, i.e. the mean value of the factors computed adopting the procedures 

suggested by Castro [37] and Finn et al. [38].  

As already observed for Nevada sand (Section 5), for the Sendai fine sand the experimental ru : 

N/NL relationship is not univocal, but strongly dependent on the cyclic stress ratio applied in each 

test (Fig. 15d). In this case, a unique mean curve was defined as the best-fit of the whole data set.  

In lack of direct measurements, a permeability coefficient equal to 1 ⋅ 10
-5

 m/s was adopted; the 

consolidation coefficient was computed through equation (30), by assigned Eoed through equation 

(31), with  = 0.24 and K0 = 0.31 estimated from the friction angle through the Jaky [39] 

relationship. 

In the one-dimensional analyses carried out by means of SCOSSA, the downhole acceleration 

records were applied as input motions. A rigid bedrock can be therefore assumed at the depth of 

10.4 m, where the downhole sensor is located; the slate rock layer above the downhole sensor 

(7 ÷ 10.4 m) was instead modelled as a linear visco-elastic material, with constant damping equal to 

1 %.  

Six recorded input motions were selected, representing three different PGA levels (≥ 0.06, 0.02-

0.03 g and ≤ 0.01 g) and two distinct frequency ranges [2].  

The characteristics of the downhole and surface records are reported in Table 2, where the 

numbering of input motions corresponds to decreasing PGA amplitudes. 

Figs. 16 and 17 compare the surface records versus the simulations of total stress analyses, for the 

low and high frequency content input motions, respectively. 

The results are expressed in terms of acceleration time histories and spectral accelerations, both 

normalized with respect to the PGA recorded at surface. 
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For the low-frequency input signals, the surface motion predicted for input #1 (PGA= 0.251 g) 

strongly mobilizes the non-linear soil behaviour and overestimates by a factor of 1.5 the recorded 

PGA and the peak spectral acceleration attained between 0.1 and 0.2 s (Fig. 16a). 

The predicted ground motions are in a good agreement with the records for the input signals #4 

(Fig. 16b) and #8 (Fig. 16c), characterized by medium-low intensity.  

The results of total stress analyses with the high-frequency input motions (Fig. 17) show an overall 

good prediction of the surface time histories and response spectra, except for the overestimation of 

spectral ordinates at periods lower than 0.15 s related to input #3. 

The effective stress analyses were performed on the whole set of input motions, but excess pore 

pressure was triggered only for the records #1 and #3, i.e. those with the highest PGA (0.251 and 

0.062 g). For all the other input motions, the results of effective stress analyses are practically 

coincident with those above shown.  

The results of effective stress analyses for input motions #1 and #3 are compared in Fig. 18, with 

the recorded data and total stress simulations. 

The comparisons demonstrate that the effective stress analyses predict the surface ground motion, 

with a definitely satisfying reproduction of the maximum recorded spectral accelerations and 

predominant periods. 

7. Conclusion 

A loosely-coupled approach to simulate liquefaction of saturated soils in one-dimensional seismic 

response analyses has been presented. The calculation steps required for numerical implementation 

and calibration of the model parameters are given in Sections 2 and 3. The main advantage is that 

the constitutive model is simple and requires a straightforward calibration of soil parameters with 

respect to those implemented in other numerical codes performing effective stress analyses. The soil 

properties required for the model calibration are the shear strength, the variation of the shear 

modulus and damping ratio with shear strain, consolidation coefficient, the cyclic resistance curve 

and the relationship between excess pore pressure and number of cycles. 
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The computer code SCOSSA was updated for predicting the seismic response of a horizontally 

layered subsoil across the whole range of possible shear strains, from the smallest amplitudes up to 

liquefaction. 

The performance of the model and the code have been first tested on ideal soil profile under 

different drainage conditions, then validated by comparing the predictions with the results of a 

centrifuge test and the seismic motions recorded at a well-documented array station. 

The overall good match between numerical and experimental results highlights the reliability of the 

model implemented in the code, notwithstanding the simplicity of the proposed approach. 

As a future development, the loosely coupled formulation will be integrated in the ‘slip’ mode of 

the code [9], in order to predict also the permanent deformation mechanisms. 
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Figure captions 

Fig. 1. Layered soil column (a) modelled as a multi-degree of freedom system for dynamic equilibrium (b) and as a 

multilayered continuous system (c) for consolidation  

Fig. 2. Flowchart of the numerical algorithm 

 Fig. 3. (a) Shear stress-strain cycles and (b) time histories of shear strain and excess pore water pressure ratio in total 

(decoupled approach) and effective stress analysis (coupled undrained approach). 

Fig. 4. Normalized shear modulus reduction (a) and shear stress vs. shear strain (b) curves computed using the best-

fitting calibration procedure of the MKZ model and adjustment according to Gingery and Elgamal [18] 

Fig. 5. Cyclic stress ratio vs. number of cycles (a) and excess pore pressure ratio relationship (b) for a silty sand (data 

from [27] )  

Fig. 6. Model performance under a regular saw-tooth shear stress history (a): time histories of shear stress ratio and 

damage parameter (b); normalized damage parameter (c); excess pore pressure (d) 

Fig. 7. Profiles of VS (a) and shear strength (b); input motion (c); variation of normalized stiffness and damping with 

shear strain (d) 

Fig. 8. Profiles resulting from total decoupled and effective coupled stress analyses: maximum (a) acceleration, (b) 

shear strain, (c) shear stress, (d) pore pressure ratio; Time histories of shear stress and pore pressure at 3 m depth for 

(a) total stress analysis, (b) effective stress analysis in undrained conditions and (c) effective stress analysis with 

dissipation of excess pore pressure 

Fig. 9. Cross section of the centrifuge laminar box  

Fig. 10. Soil model and VS profile (a), reference input motion (b), G0 - p’ relationship (c) 

Fig. 11. Laboratory results vs. constitutive model for Nevada sand: resonant column test data (a); normalized shear 

modulus and damping (b); cyclic resistance curve (c); pore pressure relationship (d)  

Fig. 12. Recorded and computed excess pore pressure time histories during the first 20 s (a) and until attainment of 

dissipation (b) 

Fig. 13. Recorded and simulated acceleration time histories at the surface (a), 2.3 m (b) and 4.6 m (c) 

Fig. 14. Location of Sendai in Japan with location of the Sendai vertical array (a); soil model (b) and VS profile (c) 

Fig. 15. Sendai array sand: results and interpretation of pre-failure (a) and liquefaction (b,c) cyclic triaxial tests 

Fig. 16. Sendai array site, low frequency input motions: time histories and response spectra recorded at surface vs. 

those simulated by total stress analyses 

Fig. 17. Sendai array site, high frequency input motions: time histories and response spectra recorded at surface vs. 

those simulated by total stress analyses 

Fig. 18. Sendai array site, strongest input motions: time histories and response spectra recorded at surface vs. those 

simulated by total and effective stress analyses 
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Tables 

Table 1. Main soil parameters 

Parameter Silty sand Bedrock 

Dry unit weight, d (kN/m
3
) 17.73 22.00 

Porosity, n 0.32 - 

Shear wave velocity, VS (m/s) See Fig. 7a 800 

Friction angle, (°) 34.6 - 

Coefficient of earth pressure at the 

rest, K0 
0.43 - 

Poisson’s ratio,  0.3 - 

Permeability, k (m/s) 1 × 10
-5

  

Small strain damping ratio, D0 (%) 1.9 0.5 

Cyclic strength parameters = 1.99; CSRt = 0.10 - 

Pore pressure parameters a = 1.07; b = 0.53; c = -0.12; d = 4 - 

 

Table 2. EW components of the downhole and surface records  

Record Frequency content 
downhole 

PGA [g] 

surface 

PGA [g] 

1 

Low 

0.251 0.405 

4 0.025 0.075 

8 0.005 0.009 

3 

High 

0.062 0.183 

6 0.035 0.074 

7 0.012 0.033 
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