© 2018 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media,
including reprinting/republishing this material for advertising or promotional purposes, creating new collective works, for resale or redistribution to
servers or lists, or reuse of any copyrighted component of this work in other works.”

DOI [10.1109/TSMC.2017.2665479].

A Novel Approach for Constraint
Transformation in Petri nets with
Uncontrollable Transitions

ShouGuang Wang, Senior Member, IEEE, Dan You, and Carla Seatzu, Senior Member, IEEE

Abstract—The main contribution of this paper consists in a
linear algebraic characterization of the admissible marking set
relative to a Petri net with uncontrollable transitions, subject to a
linear constraint. In more detail, given a linear constraint that
limits the number of tokens in one place, an algorithm is proposed
to compute an approximation of the admissible marking set in
terms of a disjunction of transformed linear constraints. The
optimality of the solution is guaranteed provided that certain
conditions are satisfied during the intermediate steps of the
iterative approach. In all the other cases the set of markings
described by the transformed -constraints could be surely
contained in the admissible marking set.
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I. INTRODUCTION

N the last decades the discrete event system (DES)

community devoted a lot of efforts to the problem of
preventing a DES from reaching some forbidden states [1]-[25],
[27]-[33]. Very efficient solutions have been proposed
assuming Petri nets (PNs) as the reference model [12], [15],
[25]. In particular, it has been proven that, when the set of legal
states is expressed in terms of Generalized Mutual Exclusion
Constraints (GMEC) it is easy to impose the satisfaction of the
constraints by simply adding monitor places. Furthermore,
maximal permissiveness (i.e., optimality) of the closed-loop
system behavior is guaranteed if all transitions are controllable
and observable. On the contrary, when some of the transitions
are uncontrollable, it is in general necessary to also forbid some
legal markings. Indeed, it could occur that an illegal marking
can be reached by a legal one firing an uncontrollable transition,
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so such a legal marking should be forbidden as well. As aresult,
even if all transitions are assumed to be observable, the control
problem becomes challenging and the main goal becomes that
of characterizing (possibly in linear algebraic terms) a set of
markings called admissible marking set. The admissible
marking set is the largest subset of legal markings from which a
forbidden marking can never be reached by firing
uncontrollable transitions only. The theory of monitor places
has been extended in a very elegant and efficient way to handle
the problem of imposing linear constraints on PNs with
uncontrollable transitions [1], [12], [16], [25]. However, the
maximal permissiveness is not guaranteed, i.e., the set of
reachable markings of the controlled system is usually a strict
subset of the admissible marking set.

Recently, great attention has been devoted to the problem of
linear constraint transformation [21]-[24], [27]-[29], [31]-[33].
In the case of arbitrary uncontrollable subnets, Luo et al. [24]
and Wang et al. [33] propose approaches to perform the
transformation of a GMEC with positive weights.
Unfortunately, their approaches do not always lead to an
optimal solution [33].

To guarantee optimality of the solution, much works deal
with special structures of the uncontrollable subnet [21], [23],
[27]-[29], [31], [32] and/or special structures of the constraint(s)
[27]-[29]. As an example, an equivalent transformation of a
GMEC with positive weights has been provided in [21] and [23]
under the assumption that the uncontrollable subnet is forward
concurrent free (i.e., no transition has two or more input places).
The works in [31], [32] deal with uncontrollable subnets that
are subclasses of forward concurrent free nets. Luo et al. in [22]
propose a method that simultaneously reduces PNs and linear
constraints, which can simplify the control problem in the case
of PNs with uncontrollable transitions.

Note that the problem of computing an optimal
transformation in the case of uncontrollable subnets that
contain both structures of forward-concurrent (i.e., a transition
has two or more input places) and forward-conflict (i.e., a place
has two or more output transitions) has not been solved yet. Ma
et al. [27]-[29] recently studied the constraint transformation in
such uncontrollable subnets, which are named uncontrollable
subnets with conflicts and synchronizations in [29]. In more
detail, the work in [29] shows that the constraint transformation,
under such assumption on the uncontrollable subnet, may suffer
the “GMEC inflation phenomenon”, i.e., the admissible



marking set cannot be characterized as a finite disjunction of
linear constraints thus it may be too complicated to efficiently
implement it in a closed-loop form. To avoid this phenomenon,
they focus on uncontrollable subnets under more restrictive
assumptions and on constraints with a very special structure. In
such a case, they propose an algorithm that provides an optimal
solution as a disjunction of linear constraints [28], [29]. More
specifically, they assume that the constraint imposes an upper
bound on the number of tokens in one place only and the
uncontrollable subnet is acyclic and backward conflict free
(BCF), i.e, it has no circuit and each place has at most one input
transition. The work in [27] focuses on a subclass of such nets
called assembly flow systems.

In this work (which is the journal version of [34]), as in
[27]-[29], we focus on constraints imposing an upper bound on
the number of tokens in one place. Note that the uncontrollable
subnets that we handle are more general. In particular, it is only
required that the limited place does not belong to any circuit of
the uncontrollable subnet. Obviously, the nets we consider may
contain both structures of forward-concurrent and
forward-conflict. Besides, the proposed approach leads to an
optimal solution provided that certain conditions are satisfied
during the intermediate steps of the iterative approach.
Moreover, it guarantees the optimality of the solution if the
uncontrollable subnet is acyclic and BCF as in [28], [29]. In
other words, the proposed approach guarantees the optimality
of the solution in all those cases where optimality is guaranteed
using the approaches in [27]-[29] plus other cases where the
approaches in [27]-[29] cannot be applied. Furthermore, the
proposed approach also offers an optimal transformation when
dealing with cases, for which the approaches in [24], [33] fail.

The remainder of this paper is organized as follows. Section
IT provides some background on PNs and recalls the notion of
admissible marking set. Section III proposes the novel
constraint transformation approach. Examples are presented in
Section IV. Conclusions are drawn in Section V where we also
discuss our future lines of research in this framework.

II. PRELIMINARIES

A. Petri nets

An ordinary Petri net (PN) [26] is a 3-tuple N=(P, T, F)
where P is the set of places, T is the set of transitions, and F is
called the flow relation. P and T are non-empty, finite, and
disjoint sets, and ' (P x T) U (T x P). Graphically, places and
transitions are represented by circles and bars, respectively, and
F is a set of directed arcs connecting places and transitions.
Given a node xe PUT, *x={ye PUT |(y, x)e F} is the set of
inputs of x, while x*={ye PUT |(x, y) € F'} is the set of outputs of
x. Furthermore, VX< PUT, *X=U_,"x,and X* =U _, x".

The incidence matrix of N is [N]: PxT—{-1, 0, 1} indexed
by P and T such that [N](p, H)=1 if pet’\*t; [N](p, ©)= —1 if
pe *t\*;otherwise [N](p, £)=0, Vpe P and Vte T.

A marking or state of a PN N is a vector m: P—~N where
N={0, 1, 2, ...}. Generally, m is also denoted by the multi-set
notation Z],E p m(p)p, where m(p) is the number of tokens in

place p at m. For instance, m=[1, 0, 3, 0]7 is denoted by
m=p+3ps. The initial marking of a PN is denoted as moand (N,
my) is called a net system with initial marking m.

A transition ¢ is enabled at a marking m, denoted as m|[f), if
Vpe*t, m(p)>0. t can fire at m if it is enabled at m. If ¢ fires at m,
reaching a marking m', we denote this as m[f)m', where
m'(p)=m(p)+[N](p, t), Vpe P. Furthermore, given a sequence of
transitions a=t;itpp...tu, ty€ T, j=1, 2, ..., k, we say o is enabled at
m, denoted as m[a), if m[t;ym[to)ma[ts) ... myi[tx). We denote
as m[oymy if my is reached by firing o at m. We use R(N, my) to
denote the set of all reachable markings of N from my.

A transition is called controllable if it can be prevented from
firing by a supervisory policy and otherwise it is called
uncontrollable. The transition set T is accordingly partitioned
into two disjoint subsets: 7, is the set of uncontrollable
transitions, and T is the set of controllable transitions.

A string xi1x2...x, is called a path of N if x;1€x;” for all
=1, ..., n—1, and x;€ PUT for all i=1, ..., n. A path x;xs...x, is
called a circuit if x1=x,. An uncontrollable path is a path in
which each transition is uncontrollable.

We use R(N, myo, u) to denote the set of reachable markings in
(N, mg) under the supervision of a policy u. A policy that
disables all controllable transitions is called the least
permissive one, denoted as tzeo. Thus, R(N, mo, uzer,) 1 the set
of reachable markings in (N, mo) with all controllable
transitions being disabled, i.e., it consists of myg and all
markings reachable from my by firing uncontrollable transitions.
Clearly, R(N, mo, tzero0) = R(N, mo, u) for any control policy u.
Besides, R{ N, m) denotes the set of markings (including m) in
N reachable from m by firing ¢ once or multiple times.

B. Linear constraints

Using standard notation in the PN literature [15], a linear
constraint on the marking m of a PN is denoted as (w, k), i.e.,
w-m<k, where w is a weight vector from P to N and & is an
integer. The legal marking set of (w, k) is

L sy ={meN" | 0-m<k},
and the admissible marking set of (w, k) is
*ﬂa},k) ={me [(w,k) | R(N,m,u,,) C [(a),k)} .

Moreover, a set of linear constraints is denoted as W={(w;,

k), (w2, k2), ..., (wn, kn)}, where n€ N'. The disjunction of the

constraints in W is denoted as V(W), i.e., V(w, hew @-m<k. The
legal marking set of V(W) is

[v(W) = U(w,k)erZw,k) >
and the admissible marking set of V(W) is
~/qv(m/) ={me [v(W) | R(N,m,u,,,,)C [v(W)} .
Finally, given two sets of linear constraints W, and W,, we
say that they are equivalent if A= Avw).

III. LINEAR CONSTRAINT TRANSFORMATION

As discussed in the Introduction, for a PN system with
uncontrollable transitions, to guarantee a legal behavior, its
evolution should be limited within its admissible marking set.
In this section, we focus on legal marking sets in the form of a



linear constraint involving one place only, and consider the
problem of characterizing the admissible marking set as a finite
disjunction of linear constraints.

Problem 1: Given an ordinary PN subject to a linear
constraint (wo, ko): m(po)<ko, compute a finite set of linear
constraints Wog, such that Loy, =0, k0)-

We call the set Wor such that

) = w0, r0) the optimal
transformation of (wo, ko).

Definition 1 [15]: Consider a PN N=(P, T, F) subject to (wo,
ko): m(po)<ko. The uncontrollable subnet with respect to (w.r.t)
(w0, ko) is the net Nyo=(Pwo, Two, Feuo) Where: Pgois the set of
places, including po, from which po can be reached following an
uncontrollable path; 7,0 is the set of uncontrollable input
transitions of places in P.o; Fuois the restriction of F to (Puo ¥
Two) ) (Tw() X Pa)o).

Consider the PN in Fig. 1(a) where uncontrollable transitions
are denoted with black rectangles, i.e., T,={#i-#4}. The
uncontrollable subnet w.r.t (wo, ko): m(po)<ko 1S Newo=(Pwo, Two,
F0) shown in Fig. 1(b), regardless of k.

Fig. 1. (a) A PN and (b) its uncontrollable subnet w.r.t (o, ko):
m(po)Sko

In the rest of this paper, the following assumption is made.

Assumption 1: The limited place po in (w0, ko): m(po)<ko
does not belong to any circuit of the corresponding
uncontrollable subnet.

A. Transformation of a linear constraint via a transition

Definition 2 [23]: Consider a PN N with incidence matrix [NV]
and a constraint (w, k). We denote w the row vector defined as
@ =w-[N].

Clearly, for any ¢, it holds that w(¢f)=w-m'—w-m, where m' is
the marking reached from m by firing ¢. It implies that w(z) is a
measure of the firing effect of 7 on (w, k).

Property 1 [33]: Let N be a PN subject to (w, k) and te T,
such that @(£)<0. If me L, », it is RAN, m) C Lo, p.

Definition 3 [33]: Consider a PN N with set of places P and
set of uncontrollable transitions 7,. Let Q be the set of all
possible linear constraints over P. The wuncontrollable
transition gain transformation is a function p: QX T, X P—~Q
defined as follows:

V(w, ke Q,VteT,, VpeP, (', k)= p((w, k), t, p),
where

k'=k
o(p") p'#pvp'e’t
Vp'e P, o'(p)=Ja(p)+@(t) p'=pap'e’t\t’
k+1 p'=pap'e’tnt

Definition 4 [33]: Given (w, k)e Q and te T, o((w, k), ?) is
defined as

{(o,k)} @(t)<0

o((@. k), ’)={ U tp((@.k)t.py @(0)>0

pe’t
where p follows from Definition 3.

Let us consider as an example the linear constraint (wo, ko):
m(po)<1l and the net in Fig. 1(a). Let us focus on the
uncontrollable transition #;. We want to compute o((wo, ko), t1)
based on Definition 4. We first observe that it is wo(¢;)=1>0
thus, according to Definition 4, it holds:

o((wo, ko), )= {p((@o, ko), 11, p1)} U {p((@0, ko), 11, p2)},
since {pi, p>} is the set of input places of #. Moreover, by
Definition 3 it is:

p((a)o, ko), t1,p1): {(601, k])} where (a)l, kl)I m(po)+m(p1)S1,
and
p((a)o, ko), l1,p2)= {(a)z, kz)} where (a)z, kz): m(po)+m(p2)Sl.

Property 2: Given (w, k)e Q and te T, for any (', k") o((w,
k), t), it holds:

1) @'(£)<0; or

2) @'(t)>0 and Jpe *1, such that w(p)=k+1.

Proof: Follows from Definition 4. ]

We next prove the following proposition, whose significance
will be evident in the following.

Proposition 1: Let W be a set of linear constraints.
Low=Asw if Vte T, and V(w, k)e W, one of the following
conditions holds:

1) @w(H)<0;

2) w(?)>0 and Jpe *t, such that w(p)>k.

Proof: Consider a linear constraint (w, k)e W. Without loss of
generality, we suppose that T, can be partitioned in two sets,
denoted as T, and T2, such that Vte 7,1, @w(£)<0 and Vte T,
w(?)>0 and Ipe °t, such that w(p)>k. First, consider te T,,. It is
clear that Vme £, 1, R(N, m) & L, r by Property 1. Let us
now consider r€ T,p. Since Jpe*t, such that w(p)>k, we can
conclude that Vme £, v, m(p)=0. This means that ¢ is not
enabled at any me £, . Hence, starting from any me £, p, it
is not possible to reach a marking outside of £, s by firing any
te Ty. Since Lygn=U (o, sew L (@, #, it obviously holds that
starting from any me L), it is not possible to reach a marking
outside of £, by firing any re T,.. Therefore, Lign=A.w). =

B. Characteristic linear constraints and combination linear
constraints

Three notions are introduced in this subsection: legal linear
constraint, characteristic linear constraint and combination
linear constraint w.r.t. the constraint (wo, ko): m(po)<ko. Note
that in the rest of the paper the constraint (wo, ko) will refer
to m(po)<ko by default.



Definition 5: A linear constraint (w, k) is called a legal linear
constraint w.r.t. (wo, ko) if Lo, 1 S Lwo, 0.

Consider again the PN in Fig. 1(a). Given the linear
constraint (wo, ko): m(po)<2, it is easy to see that (w1, ki):
2m(po)+m(p1)<5 is a legal linear constraint w.r.t. (wo, ko) while
(w2, k2): 2m(po)+m(p2)<6 is not a legal constraint w.r.t. (o, ko).

A necessary and sufficient condition is presented now, under
which a linear constraint is legal w.r.t. a given linear constraint.

Property 3: Consider (wo, ko): m(po)<ko and a linear
constraint (w, k) with w(po)#0. (v, k) is a legal linear constraint
W.I.t. (a)o, ko) lff

k< k*=(kot1)-w(po)—1.
Proof: (=>) For each me L, », clearly it is me L, i), i.e.,
 m<(kot1)-w(po)—1. (D)
From the above inequality it follows that w'-m<kot+1, where
w'=w/w(py). Clearly, we have wom < w'm since w'(po)=1.
Hence, wo-m<ky holds. In other words, L, 1y € Lo, ko) holds.
By Definition 5, (w, k) is a legal linear constraint w.r.t. (wo, ko).

(<=) By contradiction, suppose that k£ >k*. Since k is an
integer, we have k 2(kot+1)-w(po). Clearly, there is a marking
m=(ko+1) po such that me £, ry and mg Lo, ko). In other words,
Liw, 1y T Lo, k0), which contradicts the assumption that (o, k) is
a legal linear constraint w.r.t. (wo, ko). Hence, it is k< k*. [ ]

Definition 6: A linear constraint (w, k) is called a
characteristic linear constraint w.rt. (wo, ko): m(po)<ko if
@(po)#0 and k=k*, where k*=(ko+1)-cw(po)—1.

As an example, let (wo, ko): m(po)<2 be a linear constraint for
the net in Fig. 1(a). We argue that (w1, k1): 2m(po)+m(p1)<5is a
characteristic linear constraint w.r.t. (wo, ko) since w1(po)=0 and
ki=(kot+1)-@1(po)—1. On the contrary, (w2, k2): 2m(po)+tm(p1)<4
is not a characteristic linear constraint w.r.t. (wo, ko) since
kzi(ko‘f‘ 1 )'wz(po)—l .

Note that (wo, ko) is obviously a characteristic linear
constraint w.r.t. itself by Definition 6.

Property 4: Let (w, k) be a characteristic linear constraint
w.r.t. (wo, ko). The constraint (w, k) is a legal linear constraint
w.r.t. (o, ko).

Proof: Straightforward from Definition 6 and Property 3. m

Property 5: Let (o, k) be a characteristic linear constraint
w.r.t. (wo, ko) and te T,,. Any constraint (o', k)€ o((w, k), f) is a
characteristic linear constraint w.r.t. (wo, ko).

Proof: By Assumption 1, po does not belong to any circuit of
the uncontrollable subnet. Hence, '(po)=w(po) and k'=k for any
(o', KYe o((w, k), t) by Definition 4. Beside, k=(kot1)-w(po)—1
since the linear constraint (w, k) is a characteristic one w.r.t. (wo,
ko). Hence, k'=(kot+1)-@'(po)—1 holds for any (o', k')e o((w, k), ?).
In other words, V(w', ke o((w, k), 1), (@', k') is a characteristic
constraint w.r.t. (o, ko). [

In what follows, two linear constraints (w1, ki) and (w2, k2)
are called opposite w.r.t. te T, if either @i(£)>0 and @»(¢)<0, or
@1(£)<0 and @(1)>0, i.e., if # has opposite firing effect on the
two constraints.

We now introduce the concept of combination linear
constraints of opposite linear constraints w.r.t. an
uncontrollable transition.

Definition 7: Let (w1, ki) and (w2, k) be two linear
constraints and e T,, such that the two constraints are opposite
w.r.t. t. The combination linear constraint of (w1, k1) and (w2, k»)
w.r.t. ¢ is the linear constraint (12, ki 2)=y (w1, k1), (@2, k2), t)
defined as follows:

w1270 orHw ()] w2,

ki 2= @) kit (O] kot |@2(0) |- [o1(D)].

To clarify the above definition, let us consider again the PN
in Fig. 1(a), where T,={fi-t+}. Let us consider two linear
constraints (w1, ki): m(po)tm(p2)tm(p3)<l and (w2, k»):
m(po)+m(p1)+m(p4)<1, and the uncontrollable transition #. The
two constraints are clearly opposite w.r.t. #4 since w;(ts)=2 and
@a(t4)= —1. According to Definition 7, the combination linear
constraint of (w1, k1) and (w2, k2) W.r.t. #4 is

(w12, k12) = w1, k), (@2, k2), 1a):

3m(po)+2m(p1)+m(p2)+tm(p3)+2m(ps)<5.

Property 6: Consider two linear constraints (w1, k1) and (w2,
k») that are opposite w.rt. t€T,. Let (w12, ki2) be the
combination linear constraint of (w1, k1) and (w2, k) w.r.t. £. It
holds: @ 2(#)=0.

Proofi Follows from the fact that, by Definition 7, it is
@1 2(t)= |@2(0)| w1 (¢)+Hew1(f)|-wa(7). Since the two constraints are
opposite w.r.t ¢, it is |w2(f)|-@1(H)= —|wi(?)|-@2(2). ]

Proposition 2: Let (w12, ki2)=w((w1, k1), (02, k2), t) be the
combination linear constraint of (w1, k1) and (w2, k2) w.r.t. t€ T,,.
It holds kl,z Z(ko‘f'l)'a)l,z(po)—l if (a)l, k]) and (a)z, kz) are two
characteristic linear constraints w.r.t. (wo, ko): m(po)<ko.

Proof: According to Definition 7, it is

k1 2=[ea(0)|-kr+e (0)]- kot @) | (1)), and 2

@1.2(po)=lm2(2) |- 1(po)He (1)]- w2(po) 3)

Since (w1, k1) and (w2, k2) are characteristic constraints w.r.t.
(wo, ko), by Definition 6 it holds

ki=(kot1)-wi(po)—1, and 4)

ko=(kot1)-wa(po)—1. %)

Now, considering (2)-(5), it is easy to show that

k1 2=(kot1)-01 2(po)~(l@1 (D[ HewaA(D)] =@ |- [ (D)) (6)

Since |1 (f)[=1and |w2(7)|21, it can be verified that |@1(2)|+|@2(?)]

—|@a(f)|-[1(1)|<1. Hence, ki1 22(kot1)-w12(po) —1. [ |

Proposition 2 allows us to draw two important conclusions:
e [f we combine two characteristic constraints w.r.t. (o, ko)

according to Definition 7, then the resulting combination
linear constraint could be not legal w.r.t. (wo, ko). In
particular, this happens if k12> (ko+1)-w12(po)—1.

e In the case the combination linear constraint resulting from
the above combination is legal w.r.t. (wo, ko), it is a
characteristic linear constraint w.r.t. (wo, ko). In particular,
this happens if k1 2 = (kot+1)-w12(po)—1.

The following proposition provides a necessary and
sufficient condition under which the combination linear
constraint of two characteristic opposite linear constraints w.r.t.
an uncontrollable transition and a given constraint is still a
characteristic one w.r.t. the same initial given constraint.

Proposition 3: Let (w1, ki) and (w2, k2) be two opposite
characteristic linear constraints w.r.t. (wo, ko) and te T,,. The



combination linear constraint (w12, k1 2)=w((w1, k1), (w2, k2), 1)
is a characteristic one w.r.t. (wo, ko) iff
|w1(H)=1 or |wa(f)|=1.

Proof: The proof'is based on that of Proposition 2. It has been

proved that
ki 2=(kot1)-012(po)—([@1(D)|+|@2(0) |- |2 [ |1 (D). (7)

(=>) We have |[@1(0)|+|@2(2)|—|w2(?)|- |1 (£)|=1 since |wi(f)|=1 or
|ZD2([)|:1. Clearly, k1,2:(k0+1)-a)1,2(po)—1. Hence, (a)l,z, kl,z) isa
characteristic one w.r.t. (wo, ko).
(<=) Since (w12, k12) is a characteristic one w.r.t. (o, ko), then
ki2=(kot1)-w12(po)—1. Hence, it is known from (7) that
|1 ()| +|@2(2)|—|w2(2)|- |1 ()| =1. Hence, |@i(£)|=1 or |wa()=1. =

C. The proposed algorithm

In this subsection we present the main result of the paper,
namely, a novel iterative algorithm for linear constraint
transformation. Before doing that, we provide a further
definition and some preliminary results.

Definition 8: Let W and W, be two linear constraint sets. We
say that W, implies W> (or W> is implied by W), denoted as
Wi=W,, ifﬁ(m)g A(Wl) and _/qv(m):_/qv(Wl).

Theorem 1 [34]: Let W={(w1, k1), (w2, k2)} be a set of linear
constraints such that {(wo, ko)} =W and te T, such that @(£)>0
and @ (£)<0. It holds:

{(wo, ko)}= W'=0((w, k1), 1) U
{(C()Z, kz)’ V/((wla k|)7 (w27 k2)7 t)}a

if y((w1, k1), (w2, k2), t) is a characteristic linear constraint w.r.t.

(a)o, ko).

Theorem 1 claims that a set W of two linear constraints (w;,
k1) and (w2, k2) whose union is implied by (wo, ko), can be
transformed into an equivalent set " that is still implied by (wo,
ko), via an uncontrollable transition #, whenever the
combination of the two constraints (w;, k1) and (w2, k2) w.r.t. tis
a characteristic linear constraint w.r.t. (o, ko). In more detail,
the equivalent set /¥ is obtained as the union of three sets:

e the first one is o((w1, k1), ¢) that is computed transforming
(@1, k1) in accordance to Definition 4;

e the second set is a singleton containing (w2, k2);

o the third set is still a singleton and contains the combination
linear constraint of (w1, ki) and (w2, k2) w.r.t. ¢ that is
computed according to Definition 7.

The above constraint transformation can be generalized to
sets defined via an arbitrary number # of linear constraints.

Corollary 1: Let W={(w1, k1), (w2, k2), ..., (wn, kn)}, ne N

be a set of linear constraints such that{(wo, ko)}= W and te T,,.

It holds:

{(wo, ko)} = W'=U o, pew o((@, k), HU
wpeely((wi k), (), k), 1)}

if Vi, ))e E={(, j)| i, je {1, 2, ..., n}, @()>0 and @(#)<0},

v((wi, ki), (w), k), t) is a characteristic linear constraint w.r.t.

(a)o, ko)

Proof: The result follows from the recursive application of
Theorem 1 and the fact that o((w, k), )={(w, k)} if @(£)<0. =

Based on Corollary 1, we propose an algorithm to compute a
linear constraint transformation of a given constraint (wo, ko)
and to evaluate if it is optimal.

Algorithm 1: Linear constraint transformation

Input: A PN N with set of uncontrollable transitions 7, and
(a)o, ko): m(po)Sko.

Output: Wor and Flage {True, False}. /*Flag=True implies
that the linear constraint transformation is optimal, while
Flag=False implies that it may be not. */

1. Flag < True;

2. WOR — {(wo, ko)};

3. while 3¢e T, and J(w', k)€ Wor, such that @'(£)>0 and
w'(p)<k', Vpe 't do

4. for each (w', k')e Wor such that @'(1)>0 and w'(p)<k,

Vpe*tdo

5. Wor WQR\{(C()', k')} @) Q((CO', k'), t);

6. for each (", k")e Wor such that @"(¥)<0 do

7. Compute the combination linear constraint
y((@', k), (0", k"), 1);

8. (wc, ke) «— (o', k), (0", k"), ?);

9. if (wc, kc) is not a characteristic linear
constraint w.r.t. (wo, ko) then

10. (COC, kc) — (a)c, kc*), where

kc*z(k(ﬁ‘ 1 )~a)c(po)—1 ;

11. Flag < False;

12. end if

13. Wor <= WorU {(wc, kc)};

14. end for

15.  end for

16. end while
17. Output: Wor and Flag.
18. End.

In the following we briefly explain the above algorithm. We
preliminary observe that Flag records if the transformation is
optimal. To this aim Flag is initialized at “True”, assuming that
an optimal transformation is computed. Then we note that the
set Wor stores the computed linear constraints and is initialized
at {(wo, ko)}. By checking if the condition in Step 3 is met, it is
decided if the constraints in Wor should be transformed.
Specifically, once a transition te T, satisfies the condition in
Step 3, the constraints in Wor require to be transformed via ¢ as
follows. For each (@', k")e Wor satisfying the two conditions: 1)
t has a positive firing effect on (@', £'); and 2) for each input
place of ¢, its weight in @' is not bigger than k', we perform the
following procedure. First, we replace (', k') by some new
linear constraints according to Step 5. Next, for each linear
constraint in Wop satisfying the condition that ¢ has a negative
firing effect on it, we compute a combination linear constraint,
as shown in Step 7. Then, in Steps 8-13, we determine if the
computed combination linear constraint is a characteristic one.
If so, we add it to Wog, otherwise it has to be modified to a
characteristic one (to make it legal) before being added to Wog.
Note that Flag is changed to “False” if the computed
combination linear constraint is modified before being added to
Wor, which indicates that the transformation may be not
optimal now. The above steps are iterated until the condition in
Step 3 is not satisfied and then the final result is outputted.



Lemma 1: Let a PN N and (wo, ko) be the inputs of
Algorithm 1. Each linear constraint in Wor computed during the
execution of Algorithm 1, is a characteristic constraint w.r.t.
(a)o, k())

Proof: Obviously, (wo, ko) is a characteristic constraint w.r.t.
itself. Besides, Property 5 shows that the transformation of a
characteristic linear constraint via a transition results in
characteristic constraints. Moreover, it is clear that (wc, kc)
computed in Step 13 is a characteristic linear constraint. As a
result, the conclusion holds. [

The theorem next indicates that the transformation result
outputted by Algorithm 1 is optimal if the outputted Flag=True,
otherwise it may be not optimal.

Theorem 2: Let a PN N and (wo, ko) be the inputs of
Algorithm 1. The linear constraint set Wor outputted by
Algorithm 1 satisfies the following two conditions:

D) L y=Awo ko if Flag=True; and

2) L,w,.) S Awoo if Flag=False.

Proof: First, we prove that Algorithm 1 ends after a finite
number of steps. According to Properties 2 and 6, once Wor is
transformed via a transition te7, (i.e., the iteration cycle
composed by Steps 3-16 is executed once), another transition is
picked for the next transformation. Hence, Algorithm 1
terminates in a finite number of steps for acyclic nets since the
number of uncontrollable transitions is finite. As for cyclic nets
(i.e., nets with circuits), although there may be a transition te 7,
whose firing effect is periodically positive on a linear constraint,
t can be picked for transformation finite times only, since the
input places of # have to meet a condition as shown in Step 3. As
aresult, Algorithm 1 ends in a finite number of steps.

Next, we prove that £, =4, . if Flag=True.

According to Corollary 1, every time the iteration cycle
composed by Steps 3-16 is executed once, the updated Wor
satisfies the condition .4, | =0, ko). After the iteration cycle

is executed a finite number of times, the final Wor does not
meet the condition in Step 3. According to Proposition 1, we
have £, = A, . Therefore, it holds £, = Awo. ko).

Finally, we prove that £, ,c Ao, 10y if Flag=False. Let

Wori and Wor, be the linear constraint sets before and after
executing once the iteration cycle composed by Steps 3-16,
during which Flag is changed from “True” to “False”. Clearly,
./flv(%m)=w4wo, x0)- Since Flag is changed to “False”, at least one

combination linear constraint (ec, kc) computed in Step 7 is not
a characteristic one w.r.t. (wo, ko), and (wc, kc) is thereby
modified as a characteristic one (wc¢, kc*). According to
Lemma 1, we know that the combination linear constraint (wc,
kc) is obtained from two characteristic linear constraints and
thus it holds that £{,c, kcx) € Lwc, kcy by Proposition 2. Hence,
some admissible markings of Wor1 may be removed in this
iteration cycle according to the proof of Theorem 1. Hence, we
have 4, '€ Ay = Awo.10). As aresult, for the final Wog,

Loty € Awn ko - .

Summarizing, the linear constraint transformation computed
via Algorithm 1 is optimal when all the computed combination
linear constraints are characteristic ones w.r.t. the initial linear
constraint (@, ko).

D. A special case: acyclic backward conflict free
uncontrollable subnets

In this subsection we show that, under the assumption of
acyclic BCF nets (namely the assumptions in [28], [29]),
regardless of the order in which transitions are considered when
implementing Algorithm 1, the optimality of the solution is
guaranteed. Before doing that, we present a preliminary result.

Theorem 3: Let a PN N and (wo, ko) be the inputs of
Algorithm 1, and Wor be the linear constraint set outputted by
Algorithm 1. It holds that £, =4 ,,, if during

transformations, for any couple of opposite linear constraints
w.r.t. any transition te T, the absolute value of the firing effect
of ¢is 1 on either of them.

Proof: By Lemma 1, it is clear that any couple of opposite
linear constraints computed while executing Algorithm 1 are
characteristic ones w.r.t. (wo, ko). Hence, their combination
linear constraint is also a characteristic one due to Proposition 3.
As aresult, Algorithm 1 outputs Flag=True. In other words, the
resulting set of constraints Wor is such that £, (=4 ). ®

According to Theorem 3, we can decide if the transformation
resulted from Algorithm 1 is optimal by simply looking at the
firing effect of transitions on constraints during intermediate
transformations. Although Theorem 3 does not characterize the
PN structure that leads to an optimal solution, it provides an
interesting condition, which reveals useful when dealing with
some special classes of PNs. In particular, as shown by the
following property, it reveals useful when dealing with the class
of PNs considered in [28], [29]

Property 7: Consider a PN N and a linear constraint (wo, ko)
such that the uncontrollable subnet w.r.t. (wo, ko) is an acyclic
BCF net. While performing transformations according to
Algorithm 1, for any couple of opposite linear constraints w.r.t.
any transition te T,, the firing effect of # is 1 on one of them.

Proof: Let us first introduce some definitions and notations.
Since the uncontrollable subnet is BCF, we denote as “p the
single input uncontrollable transition (if any) of place p.
Besides, we denote as P(w)={pe P | w(p)>0} and say that place
pisahead place w.r.t. (w, k) if pe P(w) and Vp'e *(°p), p'e¢ P(w).
If (w, k) has only one head place, we denote it p,. Finally, we
say that (w, k) is a good linear constraint if the following
conditions simultaneously hold:

1) it has only one head place p;

2) Vpe P(w)\{po}, @(“p)=0; and 3) w(“p,)=1.

Consider (', kK)eo((w, k), t), where (w, k) is a good
constraint. By Definition 4, (w', k') is still a good constraint
since the uncontrollable subnet is acyclic.

Consider a combination linear constraint (w12, k1.2)=w((w1,
k1), (w2, k2), t), where (w1, k1) and (w», k2) are both good linear
constraints, and te T, with @(¢)>0 and @»(#)<0. By Definition 7,
it holds P(w12)=P(w1)UP(w>) and Vt'e T,, @i 2()=|w(?)|-w1(f')



+a1(2)|-w2(¢'). Since (w1, k1) is a good constraint and @(£)>0, it
holds ="p and thus @;(f)=1. Hence, Ve T,

@12 )=|w2A0) @1 () toa(1). (®)
Let pe P(w12). Three cases may occur:

1) pe P(w1)NP(w>): It can be verified that p#pei1and p£pe:.
Hence, @i("p)=0 and @»("p)=0 since (w1, k1) and (w», k») are
both good linear constraints. Therefore, by (8), it is @1 2(“p)=0.

2) pe P(w1)\P(w>): 1t is wa(“p)=0 since p¢ P(w>). Since (w1,
k1) is a good constraint, @i(“p)=0 if pe P(wi)\{pw1}. By (8),
@1 2("p)=0 if pe P(w01)\({pw1 } UP(w2)). Consider now the case
DP=Do1. By Property 6, it is @ 2(“p)=0 since ="p,. As a result,
w1 2("p)=0 for any pe P(w)\P(w>).

3) pe P(w2)\P(w1): It is @i(*p)=0 since pe P(w1). By (8),
wl,z(l’p):o ipr P(wz)\{pwz} and (Dm(“p):l ifp:pwz.

Hence, (w12, k12) is still a good constraint with pg1 2= pe?.

Now, clearly, (wo, ko): m(po)<ko is a good constraint.
Therefore, based on the above analysis, we can conclude that
during the transformations performed by Algorithm 1, each
linear constraint (w, k) is a good linear constraint. In other
words, Ve T, w(t)=1 if @w(£)>0, thus proving the statement. m

We thereby have the following corollary.

Corollary 2: Let a PN N and (wo, ko) be the inputs of
Algorithm 1 and Wor be the linear constraint set outputted by
Algorithm 1. It holds: £, 1= Ao 40, if the uncontrollable

subnet w.r.t. (wo, ko) is an acyclic BCF net .
Proof: Straightforward from Property 7 and Theorem 3. =

IV. NUMERICAL EXAMPLES

In this section, two numerical examples are presented to
illustrate Algorithm 1.

Example 1: Consider again the PN in Fig. 1(a). Let (wo, ko):
m(po)<1 be the initial linear constraint. The linear constraint
transformation of (wo, ko) according to Algorithm 1 is
performed as follows.

1) Wor is initialized at {(wo, ko)};

2) We select #; for transformation since wo(¢1)=1>0 and
wo(p)<ko, Vpe*ti. Thus, (wo, ko) is replaced by o((wo, ko),
t)={(w1, k), (w2, k2)}, where

(w1, k1): m(po)ytm(p1)<1 and
(2, kz): m(po)+m(p2)<1.
The updated Woris Wor={(w1, k1), (w2, k2)}.

3) We select # for transformation since w()=1>0 and
w1(p)sk, Vpe*t,. Thus, (w1, ki) is replaced by o((wi, k),
t)={(ws, k3)}, where

(w3, k3): m(po)ytm(p1)tm(ps)<1.
The updated Woris Wor={(w2, k2), (w3, k3)}.

4) We select #;3 for transformation since wy(#3)=1>0 and
w2(p)<hky, Vpe*ts. Thus, (w2, k2) is replaced by o((w2, k),
t3)={(ws, k4)}, where

(w4, ks): m(po)tm(p2)tm(p3)<1.
The updated Woris Wor={(w3, k3), (w4, ka)}.

5) We select #4 for transformation since wa(f4)=2>0 and
w4(p)<ks, Vpe*ts. Thus, (ws, ks) is replaced by o((ws, ks),
ta)={(ws, ks)}, where

(ws, ks): m(po)y+m(p2)+m(p3)+2m(ps)<1.

Note that @3(¢4)=—1<0. It means that the combination linear
constraint (ws, ke)=w((wa, ki), (w3, k3), t4) has to be computed:
(a)g, kﬁ): 3m(po)+2m(p1)+m(pz)+m(p3)+2m(p4)ﬁ5.
Clearly, (ws, k) is a characteristic one w.r.t. (wo, ko). Hence, it
is added to Wor without modification, resulting in Wor={(w3,
k3), (s, ks), (we, ke)}. Finally, such a set Wor is the output of

Algorithm 1 since w(¢)<0 for any t€ T, and any (w, k)€ Wor.

It can be easily verified that the resulting Wor is an optimal
transformation of (wo, ko) since the only combination linear
constraint (ws, k) is a characteristic one w.r.t. (o, ko).

Note that the approaches in [27]-[29] cannot be applied to
this example since the net in Fig. 1(a) is not an acyclic BCF net.

Fig. 2. The PN considered in Example 2

Example 2: Consider the PN N in Fig. 2 with T,={#i—#4} and
let (w0, ko): m(po)<1 be the initial linear constraint. The linear
constraint transformation of (wo, ko) according to Algorithm 1
is performed as follows.

1) Wor is initialized at {(wo, ko)};

2) t; is selected for transformation, resulting in Wor={(w1, k1),
(w2, k2)}, where

(w1, k1): m(po)tm(p1)<1, and
(@2, k2): m(po)tm(p2)<1;

3) t» is selected for transformation, resulting in Wor={(w3, k3),

(w4, ks), (w2, k2)}, where
(w3, k3): m(po)+m(p1)+m(p2)<1, and
(@4, k3): m(po)tm(p1)tm(p3)<1;

4) t; is selected for transformation. Note that w»(#3)=1>0 and
w4(t3)=—1<0. This means that a combination linear constraint
should be computed for (w2, k2) and (w4, k4) via t3 and it is
definitely a characteristic one due to Proposition 3. Hence, we
have W0R={(a)3, k3), (a)4, k4), (a)s, ks), (606, k(,), (w7, k7)}, Where

(ws, ks): m(po)tm(p2)+m(p1)<1,
(ws, ke): m(po)+m(p2)+m(p3)<1, and
(w7, k7)= y((w2, k2), (w4, ka), 13):
2m(po) +m(p1)+m(p2)+m(p3)<3.

5) t4 1s selected for transformation, resulting in Wor={(w3',
k}), (0)4', k4), ((ué, kﬁ), (607', k7)}, where

(w3, ks): m(po)y+tm(p1)tm(p2)y+m(pa)<l,
(w4', ks): m(po)+m(p1)+m(p3)+m(ps)<1, and
(w7, k7): 2m(po) +m(p1)+tm(p2)+m(p3)+m(p4)<3.
Now, Wog is the final transformation since @(#)<0 for any te T,
and any (w, k)e Wog.

Clearly, the final Wop is the optimal transformation of (wo, ko)
since the only combination linear constraint (w7, k7) is a
characteristic one w.r.t. (wo, ko).



Note that the approach in [33] when applied to Example 2
does not provide an optimal transformation. This is because a
non-empty complementary marking set [33] that appears after
titts being picked for transformation has to be neglected to
perform the follow-up transformation via #s.

V. CONCLUSIONS AND FUTURE WORK

A novel approach is provided in this work to perform

constraint transformation in PNs with uncontrollable transitions.

In particular, it deals with a linear constraint that limits the
number of tokens in one place and is applicable to any net
provided that the limited place in the constraint does not belong
to any circuit of the uncontrollable subnet. The solution is in the
form of a disjunction of linear constraints and its optimality is
guaranteed if all the combination linear constraints computed
during transformations are characteristic ones w.r.t. the initial
linear constraint.

Our future work will be devoted to two main goals:

1) characterizing the structures of PNs for which it is known
a priori that our proposed algorithm guarantees an optimal
solution; and

2) improving the proposed algorithm, making it applicable to
more general problems of constraint transformation.
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