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Overview

Most real-world pattern recognition problems are too complex to be efficiently handled us-

ing standard classification methods. Large number of classes or feature vectors, dataset

sparsity, classes having high overlap, low number of samples available, and the need for

online-training and classification are just some of the complexity issues that should be con-

sidered while designing a classification system. Some important examples that come from

real-world applications are text categorization (characterized by large number of categories

and words, sparsity of data and hierarchical relationships between class concepts) and can-

cer cell diognosis based on gene expression microarray information (HDLSS1 problem).

Combining classifiers (in pattern recognition) or ensemble learning (in machine learn-

ing), based on the divide and conquer principle, has proved to be efficient in many of these

complex situations. Ensemble methods such as bagging, boosting, Error-Correcting Output

Codes (ECOC), Mixture of Experts (ME) and random forests use a combination of simple

classifiers, working in a cooperative manner, instead of a single classifier responsible for the

entire task. These approaches are able to obtain better recognition rates (bias reduction) and

furthermore stabilize predictions (variance reduction).

This PhD thesis mainly focuses on theoretical and practical aspects of ensemble learning

and multiple classifier systems. The novelty comes from developing new ideas by extending

some classical approaches and standard algorithms, such as ME, random oracles, and ECOC.

Two newer versions of ME, HME and random oracle have been proposed with the result of

boosting their accuracy and efficiency. The standard ECOC method has also been extended,

giving rise to the Multi-Label ECOC (ML-ECOC, hereinafter). The proposed ideas and meth-

ods have been assessed not only using publicly available benchmark datasets (from the UCI

repository), as some real-world application areas have also been used for experiments.

The thesis is organized as follows: in chapter 1, a quick introduction to multiple classifier

systems is given and some important algorithms described in the literature (such as bagging,

boosting, random oracle, ME and ECOC) are briefly recalled. The main characteristics, pros,

and cons of these algorithms different algorithms are also reported (this information may be

helpful to identify which methods are expected to work better for a given problem).

Chapter 2 describes the proposed Random Prototype-based Oracle (RPO) method, which

is an ensemble of miniensembles. Inspired by the random linear oracle model, the proposed

method divides the problem space (i.e., the sample space) into smaller and hopefully simpler

subspaces using randomly selected prototype points, rather than using hyperplanes as done

with standard linear oracles. RPO has the advantage of decomposing the orginal problem

1high-dimensional low-sample size
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into two or more subspaces, whereas linear oracles have the limitation of enforcing only

binary decomposition.

Continuing with the idea of random decomposition of a complex problem, chapter 3

proposes Mixture of Random Prototype-based Experts (MRPE), together with its hierarchical

version. Embedding a random prototype for each expert in the ME framework is the main

idea of this method. In so doing, a simple distance-based rule can be used in both training

and operation phases of an ME ensemble instead of a trainable gating network that needs to

be trained together with the rest of experts. This simple modification boosts accuracy while

reducing the overall time required for training the ensemble.

Finally, chapter 4 is about ECOC, applied to a text categorization problem. In the first

subsection, we propose a metric extracted from ECOC decoding to better evaluate the label

assigned by the classifier. This ECOC-based reliability measure can be used to increase the

confidence of the classifier’s output on the inputs with high risk of mislabeling. The second

part of the chapter extends the ECOC algorithm to multi-label problems. To validate the

proposed ML-ECOC and compare its performance with the state-of-the-art methods, we

apply the ML-ECOC on the real-world problem of multi-label text categorization.

Keywords: Classifier ensemble, random linear oracle, mixture of experts, error-correcting

output codes, text categorization.



Chapter 1

Brief Overview of Multiple Classifier

Systems

The ultimate goal in pattern recognition is to achieve the best possible classification perfor-

mance for the task at hand. A promising approach towards this goal consists of combining

classifiers, as monolithic classifiers are typically not able to properly handle the complexity

of difficult problems. It has been proven that combining a set of independent classifiers with

acceptable accuracy leads to better performance [28], provided that the diversity among ac-

curate base classifiers in an ensemble system is enforced in some way. This chapter presents

a brief review of Multiple Classifier Systems (MCSs), also known in the literature as ensemble

learning, committee machine, or combining classifiers.

The main idea of MCSs is to employ ensemble of classifiers and combine them in vari-

ous fashions. Theoretically speaking, if we have an ensemble of M independent classifiers

with uncorrelated error areas, the error of an overall classifier obtained by simply averag-

ing/voting their output can be reduced by a factor of M . Unfortunately, the key assumption

of independence is unrealistic; in practice, as typically errors are highly correlated, so that

the factor of error reduction is usually much smaller than M . Many techniques have been

proposed in the machine learning and pattern recognition communities to generate diverse

classifiers. Among others, let us recall (i) bagging [12], (ii) boosting [61], (iii) random oracles

[29], (iv) mixture of experts (ME) [45], and (v) ECOC [17]. This chapter gives a brief descrip-

tion of the cited methods, although in the following, we will concentrate only on random

oracles, ME, and ECOC.

1.1 Bagging

Arcing (adaptive reweighting and combining) is a generic term that refers to reusing or se-

lecting data in order to improve classification performance. Bootstrap AGGregation or Bag-

ging [12] was proposed by Breiman in 1996 to improve the classification by combining clas-

sifications of randomly generated training sets. Bagging was the first effective method of

ensemble learning and is one of the simplest methods of arcing. The meta-algorithm, which

is a special case of model averaging, was originally designed for classification and is usually

applied to decision tree models, but it can be used with any type of classification model. The

3



4 CHAPTER 1. BRIEF OVERVIEW OF MULTIPLE CLASSIFIER SYSTEMS

method uses multiple versions of a training set by using the bootstrap, i.e. sampling with

replacement. Each of these data sets is used to train a different model, increasing diversity

among individuals. The outputs of the individual models are combined by voting the indi-

vidual outputs to create a final ensemble output.

Given a standard training set D , the bagging technique generates m training sets Di , i =

1,2, . . . ,m, by sampling examples from D uniformly and with replacement. In so doing, it is

likely that some samples will be repeated for any training set Di . If | D | = | Di | and if the

training set is large enough, the Di is expected to have about 63.2% of the unique examples

of D , the rest being repeated. Samples with this characteristic are known as “bootstrap sam-

ples”. Each Di is then used to train a base classifier. The output of the final ensemble is

calculated by combining the individual’s outputs (normally by using a voting strategy).

Experimental and theoretical results concerning the behavior of bagging allow to con-

clude that it is only effective when using unstable non-linear models1 Since the method aver-

ages several individual base classifiers, it is not useful for improving linear models. Similarly,

bagging is not superior to very stable models like k-nearest neighbors [58].

1.2 Boosting

Boosting [51] is a meta-learning algorithm which is based on the question posed by Kearns

[27]: “can a set of weak learners create a single strong learner?”. A weak learner is defined to be

a classifier which is only slightly better than random labeling. In contrast, a strong learner is

a classifier that is arbitrarily well-correlated with the true classification. Boosting is the most

widely used ensemble method and one of the most powerful learning ideas introduced in

the last twenty years.

One first creates a weak classifier. Several models are built iteratively, adding a new clas-

sifier at each step. Each new classifier is trained on a data set in which samples misclassified

by the previous model are given more weight while samples that are classified correctly are

given less weight (some boosting algorithms actually decrease the weight of repeatedly mis-

classified samples, e.g., boost by majority and BrownBoost). Classifiers are weighted accord-

ing to their accuracy and outputs are combined using a voting schema.

The original boosting algorithm has been proposed by Robert Schapire (a recursive ma-

jority gate formulation [51]) and Yoav Freund (boost by majority [16]) in 1990. They were

not adaptive and could not take full advantage of weak learners. Many variations of the

boosting algorithm have been proposed, typically focusing on a different way of weighting

training data points and hypotheses. First of all, let us recall AdaBoost (standing for “adap-

tive boosting”) [61] deserves a special citation, as it was the first algorithm that could adapt

to weak learners. AdaBoost is also the most popular boosting algorithm. It uses the same

training set over and over again (thus it does not need to be large) and can also combine an

arbitrary number of base-learners. Other relevant proposals include LPBoost, TotalBoost,

BrownBoost, MadaBoost, and LogitBoost.

1Unstable models are characterized by the fact that small changes in the training set can cause a significant

change in the model.
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1.3 Random Oracles

To design a classifier ensemble, two main alternative approaches have been proposed in

the literature: classifier fusion and classifier selection. Base classifiers in fusion methods

have the expertise to handle the whole classification boundary whereas in selection meth-

ods, each classifier is responsible for a specific part of the classification problem. Therefore,

decision making in fusion methods uses the result of all base classifiers whereas in selection

methods only one classifier is responsible for each test sample. In this case, the classifier

responsible for classification is selected by an expert called “oracle”.

Recently, Kuncheva and Rodriguez proposed another framework for ensemble making,

which combines fusion and selection [29]. The idea is to replace each classifier in the ensem-

ble with a miniensemble of two classifiers and an oracle, which embeds a linear hyperplane

to decide which classifier in the miniensemble should process the current input. Hence,

for each miniensemble, classification data are randomly split into two parts by a linear hy-

perplane, and then a classifier is assigned to each part. In the classification phase, for each

miniensemble, the competent classifier is chosen by the oracle depending on which region

of the input domain the current input belongs to. As highlighted by the authors, this ap-

proach encourages extra diversity in the ensemble while promoting high accuracy of the

individual ensemble members.

In the second chapter of this thesis 2, we first introduce Random Prototype-based Or-

acle (RPO) for miniensembles of classifier selection. For each classification problem, RPO

randomly splits the feature space into N subspaces, expecting that each resulting subspace

introduces easier boundaries. Then we extend the work done by Kuncheva and Rodriguez

and use the RPO method in the fusion-selection framework to design classifier ensembles

using different types of base classifiers. Considering the random nature of the RPO method

and its strategy aimed at decomposing the given problem into an arbitrary large number of

subproblems, base classifiers are expected to be more diverse while preserving high accu-

racy. As a result, a significant improvement in the overall accuracy has been achieved.

1.4 Mixture of Experts

Most real-world pattern recognition problems are too complicated for a single classifier to

solve. Divide-and-conquer principle has proved to be efficient in many of the complex situ-

ations, using a combination of classifiers which have complementary properties. The issues

are (i) how to divide the problem into simpler subproblems, (ii) how to assign base classifiers

to solve these subproblems, and (iii) how to obtain the final decision using their outputs.

In some cases the problem can be decomposed manually. However, in most real-world

problems, we either know too little about the problem, or it is difficult to achieve a clear un-

derstanding of how to manually decompose it into subproblems. Thus, a method for auto-

matically decomposing a complex problem into a set of overlapping or disjoint subproblems

is desirable, assigning one or more classifiers (experts hereinafter) to each subproblem.

Jacobs et al. [45] have proposed an ensemble method based on the divide-and-conquer

principle called Mixture of Experts (ME), in which a set of networks referred to as expert

networks is trained together with a gating network. This tight coupling mechanism (i) en-

courages diversity among experts by automatically localizing them in different regions of

the input space and (ii) achieves good dynamic combination weights of the ensemble mem-
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bers by concurrently training the gating network together with the experts. The Hierarchical

Mixture of Experts (HME) [23] is a well-known tree-structured architecture, which can be

thought of as a natural extension of the Mixture of Experts (ME) model. The expert networks

form the leaves of the tree, whereas gating networks are located at the branch-points. Tasks

are approached using a “recursive” divide-and-conquer strategy: complex tasks are decom-

posed into subtasks which in turn are themselves decomposed into sub-subtasks. Like many

known classical artificial neural network ensemble methods, diversity in the standard HME

is promoted by randomly initializing their weight parameters. This choice drives experts to

start learning their task from different points in the search space, with the goal of getting

them specialized on different subspaces.

Since Jacob’s proposal in 1991, the ME model has been widely investigated. Many of the

earlier works on the ME and HME models use preprocessing to partition or transform the

input space into simpler and more separable spaces. An expert is then specialized on each

subspace without altering the learning rules established by the standard ME model. As a

consequence, the major effort in earlier works has been spent in the task of increasing the

individual accuracy of experts, so to facilitate their task on the corresponding areas of ex-

pertise. Waterhouse and Cook [49] and Avnimelech and Intrator [41] proposed to combine

ME with the boosting algorithm. Since boosting encourages classifiers to become experts on

patterns that previous experts disagree on, it can be successfully used to split the data set

into regions for the experts in the ME model, thus ensuring their localization and diversity.

Tang et al. [9] tried to explicitly “localize” experts by applying a cluster-based preprocessing

step, aimed at partitioning their input space. In particular, they used self-organizing maps

(SOM) to partition the input space according to the underlying probability distribution of

the data. As a result, better generalization ability, together with more stability in parameter

setting, is achieved. However, as they argue at the end of the paper, the proposed method

has been designed for (and validated on) only binary and low dimensional problems. Wan

and Bone [13] used a mixture of radial basis function networks to partition the input space

into statistically correlated regions and learn the local covariance model of the data in each

region. Ebrahimpour et al. [43] proposed a view-independent face recognition system using

ME by manual decomposition of the face view space into specific angles (views), an expert

being specialized on each view. Nevertheless, the proposed method is only efficient in 2D

face recognition and, as argued by the authors, extending this approach to other classifica-

tion problems and applications could be challenging and not always possible.

It is worth pointing out that, in the original formulation of the ME model, parameters are

determined by maximum likelihood, which is prone to severe overfitting, including singu-

larities in the likelihood function. This can be particularly problematic in a complex model

such as the HME, due to the relatively large number of parameters involved in defining the

distributions for experts and gating networks. Indeed, there are many singularities in the

likelihood function which arise whenever one of the mixture components collapses onto a

single data point. Simultaneously training gating networks and experts in an HME archi-

tecture (with the goal of obtaining sufficiently accurate classifiers with relatively optimum

parameters) continues to pose a research challenge.
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1.5 ECOC

ECOC is a technique which manipulates output labels of the classes. ECOC achieved promis-

ing results particularly on the problems with large number of classes. In ECOC method, a dis-

crete decomposition matrix (code matrix) is first defined for the multi-class problem at hand.

Then this problem is decomposed into a number of binary subproblems, (dichotomies), ac-

cording to content of the code matrix. After training binary classifiers on these dichotomies

and testing them on any incoming test sample, a binary output vector is created. The final

label is assigned to the class with the shortest distance (maximum similarity) between this

vector and the codewords. In particular, given a classification problem with Nc classes, the

main idea of ECOC is to create a codeword for each class. The code matrix, say M , is ob-

tained by arranging the codewords row-by-row. M ∈ {−1,0,+1}Nc×L and L is the code length.

From a learning perspective, M specifies Nc classes to train L classifiers (dichotomizers),

f1... fL . A classifier fl is trained according to the column M(., l ). If M(N , l ) = +1 then all ex-

amples of class N are positive, if M(N , l ) =−1 then its all examples are negative and, finally, if

M(N , l ) = 0 none of the examples of class N participate in the training of fl . Let y = [y1...yL],

yl ∈ {−1,+1} be the output vector of the L classifiers in the ensemble for a given input x. In

the decoding step, the class output that maximizes the similarity measure s between y and

the codeword M(N , .) is selected. In symbols:

C l ass Label = Ar g M ax S(y , M(N , .)) (1.1)

As for the similarity measures, common techniques are (i) the Hamming decoding dis-

tances (Equation (1.2)), when classifier outputs are hard decisions, and Margin decoding

(Equation (1.3)), when outputs are soft decisions. In symbols:

SH (y , M(N , .)) = 0.5×
L∑

l=1

1+ yl M(N , l ) (1.2)

SM (y , M(N , .)) =
L∑

l=1

yl M(N , l ) (1.3)

The ECOC matrix codifies the class labels in order to achieve different partitions of classes,

considered by each dichotomizer. The main coding strategies can be divided into problem-

indepentent (or fixed) and problem-dependent.

Problem-independent strategies.

Most of the popular ECOC coding strategies up to now are based on pre-designed problem-

independent codeword construction, which satisfy the requirement of high separability be-

tween rows and columns. These strategies include: 1vsA, where each classifier is trained

to discriminate a given class from the rest of classes using Nc dichotomizers; random tech-

niques, which can be divided into the dense random strategy, consisting of a binary matrix

with high distance between rows with estimated length of 10log2 Nc bits per code, and the

sparse random strategy based on the ternary symbol and with the estimated optimal length

of about 15log2 Nc . 1vs1 is one of the most well known coding strategies, with Nc (Nc −1)/2

dichotomizers including all combinations of pairs of classes [55]. Finally, BCH codes [48]

are based on algebraic techniques from Galois Field theory, and while its implementation is

fairly complex, it has some advantages such as generating ECOC codewords separated by a
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minimum, configurable Hamming distance and good scalability to hundreds or thousands

of categories.

All these codification strategies are defined independently of the data set and satisfy two

properties:

• Row separation.

In order to decrease misclassifications, the codewords should be as far apart from one

another as possible. We can still recover the correct label for x even if several classifiers

fail. A measure of the error-correcting ability of any code is the minimum Hamming

distance, Hc , between any pair of codewords. The number of errors that the code is

guaranteed to be able to correct is [
Hc−1

2
].

• Column separation. It is important that the dichotomies given as the assignments to

the ensemble members are as different from each other as possible. This will drive

the ensemble towards low correlation between the classification errors (high diversity)

which will hopefully increase the ensemble accuracy [17].

Problem-dependent code matrices.

All the coding strategies described above are fixed in the ECOC matrix design step, defined

without considering the problem characteristics or the classification performance. Recently

some researchers [14, 38, 37, 62, 21] argue that the selection and the number of dichotomiz-

ers must depend on the performance of the ensemble on the problem at hand.

The first approach to design problem-dependent ECOC has been proposed in [6], where

the back-propagation algorithm is used to drive the codewords for each class. However, this

method is only applicable when the base learner is a multi-layer perceptron. Utschick et

al. [60] also tried to optimize a maximum-likelihood objective function by means of the

expectation maximization (EM) algorithm in order to achieve optimal decomposition of the

multi-class problem into two-class problems.

Crammer et al. [26] proved that the problem of finding the optimal matrix is computa-

tionally intractable since it is (Non-deterministic Polynomial) NP-complete. Furthermore,

they introduce the notion of continuous codes and cast the design problem of continuous

codes as a constrained optimization problem.

Recently, Zhou et al. [62] proposed a method called Data-driven ECOC (DECOC) to ex-

plore the distribution of data classes and optimize both the decomposition process and the

number of base learners. The key idea of DECOC is to selectively include some of the binary

learners into the predefined initial codematrix based on a confidence score defined for each

learner. The confidence score for each column is computed by measuring the separability of

the corresponding binary problem. This measure is used to determine how likely a learner

will be included in the ensemble. The method needs to search the output label space and

ensure the validity of each candidate. Therefore, the efficiency of the method on problems

with larger number of classes is limited.

The Discriminant ECOC [37] renders each column of the code matrix to the problem of

finding the binary partition that divides the whole set of classes so that the discriminabil-

ity between both sets is maximum. The criterion used for achieving this goal is based on

the mutual information between the feature indexes and class labels. Since the problem is

defined as a discrete optimization process, the Discriminant ECOC uses the floating search

method as a suboptimal search procedure for finding the partition that maximizes the mu-

tual information. The whole ECOC matrix is created with the aid of an intermediate step
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formulated as a binary tree. Considering all the classes of a problem, a binary tree is built

beginning from the root as follows: each node corresponds to the best bi-partition of the set

of classes maximizing the quadratic mutual information between the class samples and their

labels. The process is recursively applied until sets of single classes corresponding to the tree

leaves are obtained. This procedure, ensure decomposition of the multi-class problem into

Nc −1 binary subproblems.

Forest ECOC [14] is an extension of Discriminant ECOC. It takes advantage of the tree

structure representation of the ECOC method to introduce a multiple-tree structured called

“Forest” ECOC. This method is based on embedding different optimal trees in the ECOC

approach to obtain the necessary number of classifiers able to ensure the required classifi-

cation performance.

ECOC Optimizing Node Embedding (ONE) [38] presents an approach that improves the

performance of any initial code matrix by extending it in a sub-optimal way. ECOC-ONE

creates the new dichotomizers by minimizing the confusion matrix among classes guided

by a validation subset. As a result, overfitting is avoided and relatively small codes with good

generalization performance are obtained.

Finally, Hatami [21] proposes a heuristic method for application-dependent design of

optimal ECOC matrix based on a thinning algorithm. The main idea of the proposed Thinned-

ECOC method is to successively remove some redundant and unnecessary columns of any

initial codematrix based on a metric defined for each column. As a result, the computational

cost for training the ensemble is reduced while preserving accuracy.

1.6 Summary of the Selected MCSs

Different classifier ensemble approaches can be compared using various characteristics.

Some combination schemes are adaptive in the sense that the combiner evaluates (or weighs)

the decisions of individual classifiers depending on the input pattern. In contrast, nonadap-

tive combiners treat all the input patterns the same. Adaptive combination schemes can

further exploit the detailed error characteristics and expertise of individual classifiers. Fur-

thermore, different combiners expect different types of output from individual classifiers. Xu

et al. [30] grouped these expectations into three levels: 1) measurement (or confidence), 2)

rank, and 3) abstract. At the confidence level, a classifier outputs a numerical value for each

class indicating the belief or probability that the given input pattern belongs to that class.

At the rank level, a classifier assigns a rank to each class with the highest rank being the first

choice. Rank value cannot be used in isolation because the highest rank does not necessarily

mean a high confidence in the classification. At the abstract level, a classifier only outputs

a unique class label or several class labels (in which case, the classes are equally good). The

confidence level conveys the richest information, while the abstract level contains the least

amount of information about the decision being made.

Tables 1.1 and 1.2 compare above mentioned classifier ensemble techniques from dif-

ferent perspectives. Table 1.1 reports features such as ensemble architecture, dynamic or

static behaviours and the level of fusion, whereas Table 1.2 discusses the main advantages

and disadvantages of the ensembles.
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Table 1.1: The main characteristics of the selected MCSs.

Technique Architecture Dynamic Info-level

Bagging Parallel No Confidence

Boosting Parallel (Serial training) No Abstract

Rand. Subspace Parallel No Confidence

Rand. Oracle Parallel YES Confidence

ME Gated parallel YES Confidence

HME Gated parallel hierarchical YES Confidence

ECOC Parallel No Confidence

Table 1.2: Pros and cons of the selected MCSs.

Technique Pros Cons

Bagging Stable against noise Needs many comparable classifiers

Boosting Improves margins; unlikely to overtrain Unstable against noise

Rand. Subspace Effective for high dimensional data Needs many comparable classifiers

Rand. Oracle Explores local expertise Over division of data

ME Explores local expertise Difficulty of joint optimization

HME Explores local expertise Difficulty of joint optimization

ECOC Handles large number of classes Defining a good code matrix



Chapter 2

Random Prototype-based Oracle

Classifier ensembles based on selection-fusion strategy have recently aroused enormous in-

terest. The main idea underlying this strategy is to use miniensembles instead of mono-

lithic base classifiers in an ensemble with the goal of improving the overall performance.

This chapter proposes a classifier selection method to be used in selection-fusion strategies.

The method requires to split the given classification problem according to some prototypes

randomly selected from training data and to build a classifier on each subset. The trained

classifiers, together with an oracle used to switch among them, form a miniensemble of clas-

sifier selection. With respect to other methods used in the selection-fusion framework, the

proposed method has proven to be more efficient in the decomposition process with no lim-

itation in the number of resulting partitions. Experimental results on selected datasets from

the UCI repository show its validity.

The rest of this chapter is organized as follows: in Section 2, we introduce the Random

Prototype-based Oracle (RPO) as a novel classifier selection miniensemble method. Then we

use RPO for designing classifier ensembles. Experimental results are reported and discussed

in Section 3.

2.1 RPO miniensemble

The term "miniensemble of classifiers" (or simply miniensemble), used by Kuncheva and

Rodriguez for the first time, refers to the possibility of substituting a base classifier in an

ensemble with another ensemble, giving rise to a two-tiered ensemble architecture. The

miniensemble is expected to have approximately the same computational cost of a base

classifier while significantly improving the ensemble accuracy. In particular, Kuncheva and

Rodriguez proposed a miniensemble of classifier selection method called Random Linear

Oracle (RLO) [29]. An RLO consists of a pair of classifiers and a fixed, randomly created,

linear oracle. Each of these two classifiers learns on a different subspace (identified by the

oracle) and the oracle is also entrusted with deciding which classifier must be activated de-

pending on the current input to be classified. Figure 2.1 shows how this method works when

applied to a 2-class toy problem. It is worth pointing out that RLO is more useful for classi-

fiers not expressive enough to provide a good approximation of their class boundary. In fact,

these classifiers can not learn class boundary perfectly and decomposition of boundaries

11
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Figure 2.1: The RLO method applied to a 2-class toy problem.

introduces new, possibly easy to learn, problems [46, 5].

The Random Oracle method opened a very promising research field [29], [46], [5]. The

RPO introduced in this chapter has been devised within this novel research field.

For some weak learning algorithms, or in the event that classification boundaries are too

complex, decomposing the original problem into only two partitions (using a linear hyper-

plane) may not be enough to deal with the underlying complexity. A viable solution in these

cases can be to further decompose the problem, thus increasing the chances of introduc-

ing simpler subproblems. This is the underlying idea in which the RPO algorithm has been

framed. Algorithm 1 and figure 2.2 show the algorithmic view and a block diagram represen-

tation of the proposed method, respectively.

Algorithm 1 The generic algorithm for classifier selection based on RPO.

TRAINING:

1. choose randomly N prototype samples from the training set

2. assign each remaining sample in the training set to the nearest prototypes and split

the data into N subsets

3. build a classifier on each subset

TESTING:

1. for any incoming sample, ask the oracle to select the nearest prototype

2. give authority to the classifier responsible for this prototype to assign the class label

The main advantage of the proposed algorithm with respect to RLO is its flexibility in

decomposing the problem at hand. While RLO is able to partition the problem into only

two subproblems by means of a linear function (N = 2), RPO is able to extend this ability to

N ≥ 2 parts. Hence, for more complex classification boundaries, RPO is expected to perform

better than RLO. Figure 2.3 compares the performance of these two methods on a 2-class

toy problem. As clearly shown, the classification boundaries introduced by RPO are easier to
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Figure 2.2: Block diagram of classifier selection based on RPO.

Figure 2.3: Decomposition of a 2-class toy problem, RLO vs. RPO.

handle by any learning algorithm. 2.3 Left: original toy problem, 2.3 Middle: splitting with

a random linear function, 2.3 Right: splitting with random prototypes based on the nearest

distance measure. Selected prototypes (N = 3) from training data are represented by bold

points.

The parameter N in the RPO algorithm is the number of random prototypes needed

to decompose the original problem. This parameter depends on the characteristic of the

dataset, on the complexity of decision boundaries, on the number of training samples, and

on the type of base classifiers. In particular, in the event that a weak learning algorithm is

used to implement the base classifiers in the RPO algorithm and that the problem has com-

plex boundaries, N should be large.

The idea of applying RPO in a fusion-selection scheme consists of replacing each base

classifier in an ensemble with a miniensemble of N classifiers and an oracle. At the test-

ing phase, the labels issued by the miniensembles are combined throughout the ensemble

combination rule.

RPO addresses both accuracy and diversity issues in ensemble making. In particular, ac-

curacy is improved by dividing the original classification problem into N subproblems and

specializing each subclassifier on each part (divide and conquer principle), whereas diversity

is improved by including randomness in the decomposition process. For each miniensem-

ble, RPO randomly selects different prototypes to partition the problem. As a result, subclas-

sifiers are created on different training samples –thus enforcing diversity.



14 CHAPTER 2. RANDOM PROTOTYPE-BASED ORACLE

Table 2.1: The main characteristics of the selected UCI datasets.

Problem # Train # Test # Attributes # Classes

Glass 214 - 9 7

Iris 150 - 4 3

Letter 20000 - 16 26

Pendigits 7494 3498 16 10

Satimage 4435 2000 36 6

Segment 210 2100 19 7

Vowel 990 - 11 11

Yeast 1484 - 8 10

Table 2.2: Accuracy of RPO vs. RLO, using different learning algorithms.

Glass Iris Letter Pendigits Satimage Segment Vowel Yeast

RPO-MLP 76.7 93.3 75.7 93.2 83.3 83.1 62.0 54.2

RPO-SVM 74.4 94.1 76.9 92.7 84.9 84.4 62.9 55.5

RPO-FLDA 74.5 91.9 73.4 90.9 80.7 80.9 60.5 53.2

RLO-MLP 72.2 90.3 74.4 90.9 80.0 81.1 60.9 52.0

RLO-SVM 71.0 89.9 71.9 91.0 80.3 82.6 60.7 51.0

RLO-FLDA 70.8 87.5 70.1 90.1 77.9 78.0 58.8 51.1

Single-MLP 69.1 85.7 70.0 88.1 76.0 77.8 58.1 47.9

Single-SVM 68.8 84.4 70.7 86.9 76.2 77.3 55.9 48.0

Single-FLDA 66.6 83.9 69.5 85.1 74.0 76.4 55.5 47.3

2.2 Experimental results

We used some of the UCI machine learning data sets [40] to check the validity of the pro-

posed method. These data sets include real-world and synthetic problems, with variable

characteristics, previously investigated by other researchers. Table 2.1 shows the selected

datasets in more detail.

To determine the best value for N, we varied it from 2 to 10 for each dataset. We also

used 10-fold cross validation to ensure statistical significance while evaluating the accuracy

of classifiers. Three different types of algorithms, multi-layer perceptron (MLP) with back-

propagation learning rule, Support Vector machine (SVM) with linear kernels, and Fisher

Linear Discriminant Analysis (FLDA), have been tested to create base classifiers in ensem-

bles, also to study whether the proposed method is independent from the learning algo-

rithm.

Our first goal was to show the robustness of RPO with respect to RLO. Table 2.2 compares

the performances of RPO against RLO. The Performance of single base classifiers is also pre-

sented here as a base line. As clearly shown, RPO outperforms RLO regardless of the type of

algorithms used to train base classifiers, and both are more accurate than strategies that rely

on single base classifier.
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Table 2.3: Average improvement in the accuracy of standard ensembles using RPO.

Glass Iris Letter Pendigits Satimage Segment Vowel Yeast

Adaboost +0.3 +2.2 +0.9 0.0 +0.8 +0.2 +2.0 +1.3

Bagging +2.5 +2.7 +1.8 +1.1 +2.2 +2.9 +3.4 +3.0

Rand. subspace +2.1 +3.1 +2.7 +2.2 +3.0 +1.4 +3.3 +2.8

ECOC-1vsA +1.1 +2.7 +0.9 +1.1 +0.5 +0.8 +2.0 +2.7

ECOC-1vs1 +0.7 +1.1 +0.6 +0.2 +1.1 0.0 +1.8 +3.4

ECOC-dense +1.2 +2.6 +1.1 +0.5 +1.4 +2.0 +2.1 0.0

Majority Vote +2.0 +2.0 +1.5 +1.9 +1.6 +2.3 +2.8 +2.1

Table 2.3 shows that RPO improves the accuracy of standard ensemble methods. In this

experiment, the RPO algorithm has been applied to create Random Subspaces [22], Ad-

aboost [61], Bagging [12] and Error-Correcting Output Codes (ECOC) [17]. 1vs1, 1vsA and

dense random are different types of code matrices used in the ECOC ensemble strategy. As

shown, RPO improves the performance of standard ensemble strategies in almost all cases.





Chapter 3

Mixture of Random

Prototype-based Experts

The Mixture of Experts (ME) is one of the most popular ensemble methods used in pattern

recognition and machine learning. This algorithm stochastically partitions the input space

of a problem into a number of subspaces, experts becoming specialized on each subspace.

To manage this process, the ME uses an expert called gating network, which is trained to-

gether with the other experts.

In this chapter, we propose a modified version of the ME algorithm which first partitions

the original problem into centralized regions and then uses a simple distance-based gating

function to specialize the expert networks. Each expert contributes to classify an input sam-

ple according to the distance between the input and a prototype embedded by the expert.

The Hierarchical Mixture of Experts (HME) is a tree-structured architecture which can be

considered a natural extension of the ME model. The training and testing strategies of the

standard HME model are also modified, based on the same insight applied to standard ME.

In both cases, the proposed approach does not require to train the gating networks, as they

are implemented with simple distance-based rules. In so doing the overall time required

for training a modified ME/HME system is considerably lower. Moreover, centralizing input

subspaces and adopting a random strategy for selecting prototypes permits to increase at the

same time individual accuracy and diversity of ME/HME modules, which in turn increases

the accuracy of the overall ensemble.

Despite many studies on the theory and application of the ME model, to our knowledge,

its training, testing, and evaluation costs have not been investigated yet. After analyzing

the ME model in terms of number of required floating point operations, this chapter makes

an experimental comparison between the ME model and the proposed Mixture of Random

Prototype Experts.

Experimental results on a binary toy problem and on selected datasets from the UCI ma-

chine learning repository show the robustness of the proposed methods compared to the

standard ME/HME models.

The rest of the chapter is organized as follows: in Section 2, we briefly recall the standard

ME model and its hierarchical counterpart. Section 3 first introduces the concept of random

prototype-based splitting and then describes the proposed mixture of random prototype-

based experts. An extension of the model for hierarchical settings is also proposed. Section

17
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4 reports and discusses experimental results.

3.1 Standard Mixture of Experts Models

3.1.1 Standard ME Model

The adaptive mixture of local experts [45] is a learning procedure which achieves improved

generalization performance by assigning different subtasks to different experts. Its basic idea

consists of concurrently training several experts and a gating network. The gating function

assigns a “probability” to each expert based on the current input. In the training phase, this

value denotes the probability for a pattern to appear in the training set of an expert. In the

test step, it defines the relative contribution of each expert to the ensemble. The training

step attempts to achieve two goals: (i) for a given expert, find the optimal gating function;

(ii) for a given gating function (network), train each expert to achieve maximal performance

on the distribution assigned to it by the gating function. Accordingly, the accuracy of an

ME classifier is affected by the performance of both expert networks and gating network.

Resulting misclassifications in this model derive from two sources: (a) the gating network

is unable to correctly estimate the probability for a given input sample and (b) local experts

do not learn their subtask perfectly. Let us consider the network shown in Figure 3.1, which

represents an ME model with N = 3 experts. The i-th expert produces its output oi (x) as a

generalized linear function of the input x:

oi (Wi , x) = f (Wi · x) (3.1)

where Wi is the weight matrix of the i -th expert and f (.) is a predefined continuous nonlin-

earity. The gating network is also a generalized linear function, and its i -th output, gi (Vi , x),

is the multinomial logit (aka softmax) function of the gating network’s output, ogi
.

gi (Vi , x) =
exp(ogi

)
∑N

j=1 ogi

i = 1, ..., N (3.2)

where Vi is the weight vector of the gating network. Hence, the overall output of the ME

architecture, o(x), is

o(x) =
∑

i

gi (Vi , x) ·oi (Wi , x) (3.3)

Two training procedures have been suggested in the literature [45, 23] for finding opti-

mal weight parameters Wi and Vi : (i) the standard error back-propagation algorithm with

gradient descent and (ii) the Expectation-Maximization (EM) method.

3.1.2 Standard HME Model

The HME architecture 3.2 is a tree in which the gating networks lie at the nonterminal nodes

and the expert networks lie at the leaves of the tree. Hence, it can be considered an ensemble

of ME modules (as shown by dashed boxes). The task of each expert is to approximate a

function over a region of the input space. Given a sample, the task of the gating network

is to assign the weights to each expert. Figure 3.2 illustrates a mixture of four experts. In

accordance with the typical terminology used for describing HME architectures: x̄ is the
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Figure 3.1: Block diagram representing the mixture of experts (ME) model (N=3).

Figure 3.2: Block diagram representing a two-layer HME, with two ME modules.

input vector, oi j (x̄) is the output (expected value) of the ij-th expert, gi (x̄) is the output of

the top gating network, denoting the prior probability for the pattern to be generated by the

left or right branch of the root, and g j |i (x̄) is the output of the i -th bottom gating network,

denoting the prior probability that the pattern is generated by the i j -th expert. In addition,

t is the target (desired output) and Pi j (t |x̄) is the probability associated with the ij-th expert.

Assuming that experts are mutually exclusive, the overall probability, P (t |x̄) and the ex-

pected value at the network output, o(x̄), are given by:

P (t |x̄) =
∑

i

gi (x̄) ·
∑

j

g j |i (x̄) ·Pi j (t |x̄) (3.4)

o(x̄) =
∑

i

gi (x̄) ·
∑

j

g j |i (x̄) ·oi j (x̄) (3.5)

Note that the notations defined for the two-level depth tree shown in Figure 3.2 can be easily

extended to larger HME networks with a binary tree architecture.

Two training procedures are suggested in the literature [9, 13, 43] for finding optimal

weight parameters of the HME architecture. Again, the first is the standard error back-

propagation algorithm with gradient descent and the second procedure is based on the

Expectation-Maximization (EM) method.
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Figure 3.3: a) original problem, b) disjoint partitioning c) overlapping partitioning.

3.2 Mixture of Random Prototype-based Experts (MRPE)

and Hierarchical MRPE

3.2.1 Mixture of Random Prototype-based Local Experts

In this section, we illustrate the proposed mixture of random prototype-based experts with

more detail. The key underlying idea is to randomly partition the input space of the problem

into subspaces and then specialize each expert on each subspace by means of “soft” com-

petitive learning. First of all, the input space is partitioned according to some prototypes

randomly chosen from the training set, so that the input samples are weighted during the

training and testing phases based on their distances from the selected prototypes. The main

advantage of this method is that, instead of a complex gating network which must be trained

concurrently with other experts, the generated gating function has no parameters (weights)

to adjust –as it simply enforces a distance-based weighting policy. This modification im-

proves three important aspects of the standard ME model. First, it reduces the training time

by decreasing the number of parameters to be estimated. Secondly, as simple distance mea-

sures used by the gating function are more robust with respect to errors in determining the

area of expertise of an expert, errors in the proposed ME model are mainly limited to the er-

ror made by the expert networks, thus improving the overall accuracy of the classifier. Lastly,

the region of expertise for each expert in the standard ME model is nested, which makes the

problem difficult to learn. In the proposed method, each expert’s area of expertise is more

centralized, which makes the subproblem easier to learn. The latter property also makes the

rules embedded by an expert easy to analyze, which is vital in some applications that need

to make explicit the information about the area of expertise of each expert.

For the sake of simplicity and ease of comprehension, we describe this approach for the

synthetic two-class problem shown in Figure 3.3.a. We used two different partitioning meth-

ods, i.e. disjoint and overlapping, shown in Figure 3.3.b and Figure 3.3.c, respectively. In case

of disjoint partitioning, we first measure the distance between each training sample and the

prototypes, and then assign a fixed value, η j to the hi of the expert proportional to these

distances. hi is an estimate of the “a posteriori” probability for the i-th expert to generate

the desired output o and used as the coefficient of the learning rate for updating the weight

parameters of the expert (static strategy). This implies that the weight update on the expert

network whose prototype is nearest to the current input sample will be stronger than those

performed on the others (the closer the expert the stronger the update is). Similarly, in the

testing phase, the expert whose prototype is nearest to the input sample will contribute to a

greater extent to the final output.
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Algorithm 2 Mixture of Random Prototype-based Experts

PARAMETERS:

• str ateg y = {st ati c,d ynami c}

• N number of experts in an ME classifier

• E = {η j ∈ (0,1) | j = 1..N } such that: ηk ≤ ηk+1;k = 1..N −1 and |E | =
∑

j η j = 1

WITH:

• Ψ= {ǫi | i = 1..N } set of experts

• P = {pi ∈ LS | i = 1..N } set of randomly chosen prototypes, each assigned to an expert

• Xt , Tt training set and Xe , Te testing set

TRAINING:

For x ∈Xt Do:

• D(x) = {di (x) | i = 1..N } where

di (x) = ‖x −pi‖

• H(x) = {hi (x) | i = 1..N } where

hi (x) represents the expected capability of ǫi to deal with the given input x

[str ateg y = st ati c] : hi (x) = ηr , r = Rank(ǫi ,D(x))∗

[str ateg y = d ynami c] : hi (x) = 1−
di

‖D(x)‖
, ‖D(x)‖ =

∑
j d j (x)

• update each expert ǫi (i = 1..N ) according to the standard learning rule for ME

TESTING:

Given an x ∈Xe Do:

• D(x) = {di (x) | i = 1..N }

• G(x) = {gi (x) | i = 1..N } where

[str ateg y = st ati c] : gi (x) = ηr , r = Rank(ǫi ,D(x))∗

[str ateg y = d ynami c] : gi (x) = 1−
di

‖D(x)‖
, ‖D(x)‖ =

∑
j d j (x)

• calculate the overall output:

o j (x) =
∑N

i gi (x) ·o(x,Wi )

• select the class label ck such that

k = ar g max j (o j (x))

* r = Rank(ǫi ,D(x)) returns the rank of expert ǫi (i.e. a number in [1,N]) according to the distance

D(x) evaluated on the input x (the lower the distance, the highest the ranking).
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Figure 3.4: Block diagram representation of the proposed HMRPE model.

Unlike disjoint partitioning, where the learning rate coefficients are fixed for each parti-

tion and change sharply from one to another, in the overlapping method they change smoothly,

proportional to the distances (dynamic strategy). Similarly, the amount of di for the i -th ex-

pert depends on how close the prototype is to the current input sample x. In other words,

for disjoint learning, the amount of expertise and contribution of experts is fixed for each

partition, whereas, for overlapping learning, their expertise smoothly vary with the distance

di from the prototypes embedded in the experts. It is worth pointing out that the proposed

method is general enough to be applied for building ME classifiers using both standard error

back-propagation and EM learning rules. Algorithm 2 reports the procedure to be used for

training and testing a mixture of random prototype-based experts, using both disjoint and

overlapping partitioning rules for any chosen learning method.

3.2.2 Hierarchical MRPE Model

This section presents the proposed hierarchical mixture of random prototype-based experts

(HMRPE) with more detail. The key underlying idea is to randomly partition the input space

of the problem into subspaces and then pushing each expert to specialize on its subspace by

means of “soft” competitive learning.

RP-based splitting for HME – For each ME module of an HME architecture, the input space

is partitioned according to some prototypes randomly chosen from the training set. Let us

note that the learning rules of the first-layer gating networks (gating of the ME modules)

change with respect to the standard HME model, whereas the gating networks of the other

layers (second, third, and so on) do not.

Why does HMRPE work? – Notwithstanding the amount of empirical studies proving that

diversity and individual accuracy of ensemble members are two primary factors that affect

the overall classification accuracy, theoretical studies clearly show that they are not indepen-

dent [24]. Hence, the success of the proposed HMRPE approach can be attributed to three

factors as follows:

1. Splitting the input space into N centralized parts makes the subproblems easier to
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Figure 3.5: Input space partitioning performed by the HME (top) and the HMRPE (bottom)

learn for the expert network. As a consequence, the individual accuracy of the en-

semble members is expected to be better than, or at least not worse than, the one

exhibited by sets of experts specialized over the nested and stochastic subspaces. It

is worth noting that, although expected, higher individual accuracy is not guaranteed

by any means, since it depends on the complexity of classification boundaries, on the

adopted learning algorithm, as well as on the position of the selected prototypes. 3.5

compares the regions of expertise of an ME module, embedded in both the standard

HME and the HMRPE models, on a four-class toy problem. The top left figure shows

the original problem, and the next three figures report the nested areas of expertise

for the three experts in the standard ME module. The bottom left figure shows how

the problem is partitioned using three random prototypes, and the next three figures

highlight the centralized areas of expertise of three experts in the proposed HMRPE

module.

2. Since each ME module embedded in the HMRPE architecture has its own set of pro-

totypes (which are different from those embedded by the other ME modules), experts

are specialized on very different data subsets, thus enforcing diversity.

3. The accuracy of an HME classifier is affected by the performance of both experts and

gating networks. Accordingly, resulting misclassifications in this model derive from

two sources: (a) the gating networks are unable to correctly estimate the probability

for a given input sample and (b) local experts do not learn their subtask perfectly. Since

simple distance rules used by the gating function are more robust with respect to errors

in determining the area of expertise of an expert, errors in the proposed HMRPE model

are mainly limited to the error made by the expert networks, thus improving the overall

accuracy of the classifier.

3.3 Run-time Performance of ME and MRPE

In pattern recognition, the accuracy of classifier systems is usually the main concern. How-

ever, in real applications, their run-time performance may play an important role as well.

In practice, many well-performing classifiers cannot be used in real applications due to the
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amount of computational resources required for training, testing, or online evaluation.1

In computer science, the worst-case time complexity of algorithms is typically evaluated

in terms of asymptotic behavior, denoted by the Landau symbol O (also called “big-O” nota-

tion) [42]. For practical applications, the asymptotic behavior is not informative enough, as

the order of magnitude expressed in terms of well-known functions (e.g., logarithmic, poli-

nomial, and exponential) hides details that can make the difference in terms of elapsed time

for a run. For this reason, we prefer to carry out our analysis in terms of number of floating

point operations (FLOPs). This is not an ideal measure [25]; however, it is useful for com-

paring the performance of a classifier system, as it focuses on the number of additions and

multiplications required to perform a given task. In modern computer systems with floating

point units (FPUs), addition and multiplication are comparable in complexity. Division has

a similar complexity and function evaluations (e.g. exp(x), xp ) have roughly 2.5 times the

complexity of an addition.

The expected run-time performance of any learned classifier system, including those

compliant with the ME model, requires different formulations, depending on which specific

phase (i.e., training or testing/online evaluation) is considered. As training is usually per-

formed once (or from time to time in the event that the underlying process is time-variant),

in the following we will concentrate on testing/online evaluation.

3.3.1 Run-time Performance of the ME Model

In general, this run-time performance depends on the type of classifier used, on its param-

eters, and on the characteristics of the problem to be solved (e.g., the number of samples

used for training n, the number of features (dimensions) in each sample d , and the number

of classes to be distinguished c).

As reported in Figure 3.6, the run-time performance of an ME classifier system can be de-

composed as three main components: 1) expert networks, 2) gating network, and 3) aggre-

gation (also called combination). Hence, the overall testing/online evaluation performance

of an ME classifier equipped with Ne experts is:

TME =

Ne∑

e=1

Te +Tg +Ta (3.6)

1. Run-time performance of an expert (Te ): Let us consider an expert with d nodes in in-

put, He nodes in the hidden layer and c nodes in the output layer. According to these

hypotheses, between the input and the hidden layer, and between the hidden and the

output layer, there are Wi 1 = d×He and Wi 2 = He×c connections, which yield to d×He

and He×c multiplications, d×He and He×c additions, respectively. Considering He+c

additions of bias terms and He +c evaluations of the unit transfer functions in the out-

put nodes (e.g., sigmoids), the total complexity of an individual expert implemented

by a Multi-Layer Perceptron (MLP) and equipped with a single hidden layer is:

Te = 2He (d + c)+3.5(He + c) (3.7)

1 We assume that a classifier system behaves in the same manner when testing and online evaluation is

performed. Indeed, the difference holds only at an abstract level (i.e., it is related with the interpretation of such

phenomena) rather than at a concrete level. For this reason, in the following, testing and online evaluation will

be considered in the same way.



3.3. RUN-TIME PERFORMANCE OF ME AND MRPE 25

Figure 3.6: Total run-time of an ME classifier has 3 components: Te ),Tg andTa .

2. Run-time performance of the gating network (Tg ): In the standard ME model, the tech-

nology used for implementing the gating network is typically the same of that used

for implementing base classifiers. Hence, let us assume that gating networks are also

MLPs. However, parameters of the gating function, such as the number of nodes in the

hidden and in the output layer, are usually different, as the task of the gating function

is different form the one performed by experts. For instance, an implementation of the

ME model equipped with Ne = 3 experts and applied to a 10-class problem, the output

layer of each expert has 10 neurons while the output layer of the gate has 3 nodes. Hg

being the number of hidden nodes, the complexity of the gating network formulates

as follows:

Tg = 2Hg (d +Ne )+3.5(Hg +Ne ) (3.8)

where Ne is the number of individual experts contributing in the ME classifier.

3. Run-time performance of aggregation (Ta): In the aggregation step, the final label for

each incoming sample is obtained by summing up, suitably weighted, the outputs of

the experts (see Figure 3.6). As the weighted output of an expert has c multiplications,

Ta furmulates as follows:

Ta = c · (Ne +1) (3.9)

3.3.2 Run-time Performance of the MRPE Model

The experts and the aggregation rule in the MRPE model do not change with respect to the

standard ME model. Hence, we only need to reformulate the expected run-time perfor-

mance for the gating network. Indeed, the main contribution of the MRPE is its simple gate

structure which makes it less complex and more accurate. The distance-based gating func-

tion does not need any training process, as it assigns learning rates and weights to an expert

only based on the distance between the incoming samples and the random prototypes. The

complexity of this distance measure D(x, pi ), where x and pi are d-dimensional vectors, is



26 CHAPTER 3. MIXTURE OF RANDOM PROTOTYPE-BASED EXPERTS

Table 3.1: The accuracy for the ME vs. the proposed MRPE on the UCI datasets (in %).

Standard ME Disjoint parti-

tion

Overlapping

partition

Glass 87.7 ± 0.61 89.3±0.43 89.6±0.40

Iris 88.7 ± 1.05 90.9±0.80 91.1±0.78

Letter 88.0 ± 0.43 89.5±0.44 90.2±0.31

Pendigits 71.5±0.94 73±0.73 73.8±0.82

Satimage 60.9±1.55 63.8±1.0 64.4±1.21

Segment 79.0±0.85 82.2±0.68 82.9±0.79

Vowel 72.1±1.75 75.8±1.77 76.9±1.44

Yeast 50.6±2.22 52.7±1.56 54.0±1.45

3d . At each evaluation, the gating network has to calculate Ne times the distance. Assuming

that the function evaluation is hi (x) = 1−
di

‖D(x)‖
, the expected run-time performance is:

Tg = Ne · (3d +2.5) (3.10)

As an example, let us suppose that we have an implementation of the ME model with

three experts and a gate network with 20 nodes in its hidden layer. Moreover, let us assume

that we must deal with a 20-class problem characterized by a 50-dimentional sample space.

The ratio of TgME /TgMRPE is 4.65 which clearly shows a significant saving in terms of evalua-

tion complexity.

3.4 Experimental Results and Discussion

Some UCI machine learning data sets [40] have been used to check the validity of the pro-

posed method. These data sets include real-world and synthetic problems, with variable

characteristics. For the datasets with no train/test partitioning, the classification perfor-

mance assessed by the 10-fold cross-validation provides realistic generalization accuracy

for unseen data. To build the standard HME and the proposed HMRPE models, we used

a Multi-Layer Perceptron (MLP) architecture with one hidden layer, trained with the back-

propagation learning rule [47]. To determine the best value for the N partitions, which is

equal to the number of experts, we varied it from 2 to 10 for each dataset. We also varied

the number of hidden neurons in expert networks to experimentally find the optimal archi-

tecture of the MLP experts for each problem. The results of these experiments (shown in

Tables 3.1 and 3.2) highlight that the proposed method outperforms the standard ME and its

hierarchical counterpart for all selected datasets, no matter whether disjoint or overlapping

partitions are adopted.

For further comparison, the time required for training the different datasets is shown

in Table 3.3, which highlights that the training time of the proposed method is consider-

ably shorter than the standard version. Simulations are performed using an Intel CPU with

2.83GHz and 4GB RAM memory. Note that the results presented here which compare stan-

dard HME and the proposed method, use the same parameters and architecture.
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Table 3.2: The accuracy for the HME vs. the proposed HMRPE on the UCI datasets (in %).

Standard HME Disjoint parti-

tion

Overlapping

partition

Glass 88.7±0.59 89.3±0.55 90.5±0.49

Iris 87.6±1.1 90.2±0.7 91.3±0.7

Letter 89.0±0.81 89.0±0.45 90.2±0.4

Pendigits 70.9±0.44 72.9±1.1 73.1±1.05

Satimage 61.5±2.05 62.3±2.0 64.1±2.3

Segment 78.5±0.95 82.9±0.78 83.8±0.8

Vowel 73.3±1.8 76.8±1.87 77.0±1.65

Yeast 50.0±2.35 53.7±2.6 54.1±2.6

Table 3.3: Training time of the ME and HME vs. the proposed MRPE and HMRPE (seconds).

Glass Iris Letter Pendigits Satimage Segment Vowel Yeast

Standard ME 50 232 351 324 59 49 30 41

MRPE 28 158 221 258 39 32 21 29

Standard HME 84 324 451 604 99 71 44 67

Hierarchical MRPE 198 311 451 451 63 53 30 42

To ensure statistical significance while evaluating the accuracy of classifiers, we used 10-

fold cross-validation to compare run-time performances. To build the standard ME and the

MRPE models, we used a MLP architecture with one hidden layer, trained with the back-

propagation learning rule [47]. To determine the best value for the Ne number of partitions,

which is equal to the number of experts, we varied it from 2 to 10 for each dataset. We also

varied the number of hidden neurons in expert networks to experimentally find the opti-

mal architecture of the MLP experts for each problem. The results of these experiments are

reported for the ME and for the MRPE models, in terms of training time, error rate and test-

ing/online evaluation performance. Figure 4.2 highlights that the latter model outperforms

the former for all selected datasets.
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Figure 3.7: ME vs. MRPE in terms of training time, error rate and evaluation time, respec-

tively.



Chapter 4

ECOC for TC task

Text categorization is a key task in information retrieval and natural language processing.

Providing a reliability measure of the classification result for a text document into a partic-

ular category can benefit the recognition rate as well as better inform the user with regard

to the confidence that should be attributed to the output. In the first section of this chapter,

a novel reliability measure is proposed starting from running different binary classifiers in

the Error-Correcting Output Codes (ECOC) framework. Documents classified in a particular

category which have a higher ECOC-computed distance from their classification in the next

ranked category also have a higher associated reliability. This is the main idea explored in

the proposed ECOC-based text classifier with a reject option.

Furtheremore, when a sample belongs to more than one label from a set of available

classes, the classification problem (known as multi-label classification) turns to be more

complicated. Text data, widely available nowadays in the world wide web, is an obvious

instance example of such a task. The second section of this chapter, presents a new method

for multi-label text categorization created by modifying the Error-Correcting Output Coding

(ECOC) technique. Using a set of binary complimentary classifiers, ECOC has proven to be

efficient for multi-class problems. The proposed method, called ML-ECOC, is a first attempt

to extend the ECOC algorithm to handle multi-label tasks. Experiments performed for some

commonly used text categorization benchmark datasets demonstrate the potential of the

proposed method.

4.1 ECOC classifier with a reject option

Information growth in the world wide web and digital form makes vital the development of

automatic intelligent tools to manage massive amount of data. A large percentage of the

information available on the web is stored as text data which needs to be analysed and pro-

cessed in an efficient way.

Text classification (TC) is a typical information retrieval task with important real-world

applications such as document indexing, routing and filtering, web page hierarchical cate-

gorization [44]. The problem refers to the classification of text documents into one or more

predefined categories. A machine learning approach to this problem builds a classifier based

on a training set of labeled documents. Several classifiers have been investigated in the lit-

29
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erature for the text categorization task including neural networks, k-nearest neighbors, sup-

port vector machines, naive Bayes and multiple classifier systems [15] [2].

In some applications such as search engines, the prediction of web pages that match

user-given keywords does not require to be fully precise since the user is involved in decid-

ing which of the top ranked documents is the most relevant to his/her search. However,

the reliability of a classification result is crucial in other applications such as recommender

systems. This latter issue is the focus of the current research.

Reliability measures in the context of text categorization can be used to improve the clas-

sification accuracy and inform the user (or human operator) on the level of decision confi-

dence given by the automatic system. Research in this area is still in the early stages [18] [19]

[56] [39]. The methods proposed so far in the literature need further improving and more

efficient reliability models are necessary.

In this section, we propose an ensemble-based reliability measure for the text categoriza-

tion task. To be more specific, the Error-Correcting Output Codes (ECOC) algorithm [17] is

engaged to define the distance of a given document to a category. Comparing the distances

of a given document from each category, we can asses the reliability of the candidate class

as an output result. The classes with a reliability lower than a threshold suggest the user

to follow another classification strategy. Computational experiments are performed for the

Reuters benchmark text classification dataset and results are compared with that of related

work.

4.1.1 Related Work

This subsection focuses on related work devoted to reliability measures for text categoriza-

tion. Given a classifier result stating that a document d belongs to a class ci , how reliable is

this decision and how can it be explored in obtaining better classification accuracies?

In [56], the concept of reliability is used in connection with the problem of literature-

based discovery. The authors describe an association rule mining approach to determin-

ing relationships among scientific publications. Documents are represented as vectors of

weights (the importance of a word in a document). A number of preprocessing techniques

including n-gram representation of text (more specifically unigram and bigram), stemming

and stopwords are considered. Additionally, a term weighting scheme for indicating the im-

portance of a term in a document is employed. In this context, a reliability measure is de-

fined to assess quality of the discovered patterns (docsets). The reliability measure proposed

is based on a citation matrix built from citing and cited information available in a scientific

publication database. A n-th order association citation matrix of size m ×m (where m is the

number of considered documents) is created to indicate the citation paths (of size n) from

a document to another. Experiments are performed for a dataset collected by the authors

from the ACM Digital Library (more than 10000 articles considered). As the authors indicate,

the document representation is shown to highly influence the reliability score while bigram

scheme significantly outperforms the unigram one.

Fumera et al [18] investigate the potential of introducing a reject option for text cate-

gorization. To do this, the authors propose a strategy for deciding if the classifier result is

reliable. Normally, the classifier computes a score called posterior probability si ∈ [0,1] for a

document d to belong to category ci . A threshold τi is then used for each category to decide

if document d should be assigned to category ci i.e. if si (d) ≥ τi then d ∈ ci . Fumera et al

observe that the classifier decision is highly reliable when the value of si is much higher than
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the threshold τi . Based on this observation, the reject option is simply implemented by using

two thresholds (denoted by τHi and τLi ) instead of only one as follows: if τLi < si (d) < τHi

then d is rejected (and later manually classified). Of course, if si (d) ≥ τHi then d ∈ ci and if

si (d) ≤ τLi then d ∉ ci . This work is extended in [?] to include a second stage in which the

documents rejected in the first stage are automatically categorized using another classifier.

Experiments on the Reuters 21578 benchmark dataset indicate a performance improvement

with a reasonable number of rejected documents. It should be noted that in [18] [19] the

constraint is put on the maximum number of withheld decisions for each individual cate-

gory.

Recently, the same authors –Pillai et al [39]– report the results for multi-label classifi-

cation when the objective is to maximize the classification accuracy on the non-rejected

documents with a constraint on the maximum number of rejected ones. A reliability mea-

sure is used to decide whether a document should be rejected or not. For each category,

the Van Rijsbergen’s F measure is used as a scalar performance measure based on the val-

ues of precision (the probability that a retrieved document is relevant to a given topic) and

recall (the probability that a relevant document is retrieved). Considering multi-label clas-

sifiers, the global precision and recall over all categories are obtained by averaging (at micro

or macro level) the class values. Correspondingly, the value of the F measure is obtained and

denoted by F̂ . To decide if a document d has to be rejected, the authors define a reliability

measure R(d) based on maximizing F̂ for the non-rejected documents. The idea is that the

higher the value of F̂ for all documents except d the less reliable is the classification of d .

All documents d for which R(d) falls below a prespecified rejection threshold are removed.

Experiments are reported for two text categorization benchmark datasets (Reuters 21578 -

ModApte and Heart Disease subset of the Ohsumed dataset) and one image annotation task

(Scene dataset). The authors report the improvement of the classification accuracy (always

increasing with the rejection rate) - particularly when about 30% of samples are rejected.

In [3], a reliability measure for Naive Bayes (NB) is proposed to address text classifica-

tion problems which involve extremely asymmetric misclassification costs. The NB classi-

fier is extended by modulating the score returned by NB based on the information-theoretic

Kullback-Leibler (KL) divergence. The idea is to assess the confidence of NB decisions by

measuring the difficulty of reversing the NB result for a given input. Given a classifier re-

sult which says that a document d belongs to a certain class, the authors ask the question

how much extra training with d is necessary to reverse the classifier outcome. The KL diver-

gence is used to measure the effected change to the training distribution. The paper reports

the improvement of results using NB-KL compared to the baseline NB for three benchmark

datasets i.e. Reuters 21578, 20 Newsgroups and TREC-AP.

A meta-classifier approach to reliable classification is investigated in [36] [33]. A conformity-

based classifier is trained as a meta-classifier to predict the correctness of each document

classification of a base classifier. For this purpose, the p-values of the meta-predictions are

computed based on non-conformity functions and used in deciding which class output of

the base classifier is the most reliable. In this way, the meta-classifier decides if the class

predicted by the base classifier for an individual instance is a reliable result (otherwise, the

classification is rejected). The estimation of p-values for each class can be however a difficult

task in this approach.

Looking over the main existing related work highlights the fact that they mostly use a

simple thresholding strategy on the posterior probability or evaluation measures such as

F1. Moreover, they normally rely on the opinion of a single expert in a rejection/acceptance
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decision, which obviously is not as reliable as an ensemble decision. However, the most

important motivation of continuing research in this area is a low performance of existing

systems in obtaining a good reliability. The method proposed in this chapter tries to address

these issues by consensus of a set of binary experts, forming an ECOC classifier. This strategy

takes advantage of significant ensemble features e.g. redundancy and diversity to increase

the reliability of decisions.

4.1.2 The ECOC Classifier with a Reject Option

The proposed reliability measure for text categorization takes advantage of the computed

distances of a given document from any category in an ECOC decoding step to evaluate the

confidence of label assignment. ECOC is a strategy to indirectly deal with a multi-class prob-

lem by hiring complementary binary classifiers, each focusing on different partitions (di-

chotomies) of the problem [17]. The main advantages of ECOC, which particularly proved to

be efficient for large number of classes, are as follows: (i) possibility of using strong binary

classifiers such as boosting and support vector machines (SVM) algorithms which can not di-

rectly address multi-class problems, (ii) generally, it is expected to be easier to address binary

problems than multi-class problems with two many classes (divide and conquer principle),

(iii) introduces redundancy for the same solutions so that if a classifier makes a mistake the

final true label can still be recovered using information given by the other classifiers which

have contributed to the same task (error-correcting property), and (iv) in datasets with small

number of samples per class or imbalanced classes such as text data, the ECOC approach can

lead to denser problems by merging different classes into a superclass which can potentially

be better addressed by a dichotomizer.

The ECOC matrix codifies the class labels in order to achieve different partitions of classes

considered by each dichotomizer. The main coding strategies can be divided into problem-

independent (or fixed) [48] [48] and problem-dependent [21] [37] [38] [62].

The main idea of the proposed method is that a category assigned to a document is more

reliable if the distance of predicted codeword to the candidate class is shorter than the dis-

tance to the second ranked candidate. For the ECOC-based text categorization system, the

proposed reliability measure for the classification of a document d is defined as follows:

Reli abi l i t y(d) =
Hd (cw2, yd )−Hd (cw1, yd )

Hd (cw2,cw1)
×100 (4.1)

where cw1 and cw2 are the closest and second closest rows of the code matrix to the

output vector yd given by ECOC classifier for each test document and Hd is the Hamming

distance between two codewords. A reliability threshold can be set on Reli abi l i t y so that

testing documents with reliability smaller than the threshold can be rejected.

Finally, the recognition rate and the rejection rate computed by the proposed method for

text categorization with a reject option are defined as follows:

Recog ni t i on Rate =
ψc

ψa
(4.2)

Re j ect i on Rate =
ψr

ψn
(4.3)

where ψc is the number of correctly labeled documents, ψa is the number of accepted docu-

ments which obtained the reliability score above the calculated threshold, ψr is the number
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of rejected documents and ψn represents the total number of documents. The threshold

can be adjusted based on a trade-off between recognition rate and rejection rate. For exam-

ple, for applications with low tolerance on errors such as those in information security, the

threshold should be set higher and the error rate can be reduced at the cost of more rejec-

tions.

4.2 Multi-Label ECOC

Text Categorization (TC), also known as document classification, plays a key role in many

information retrieval (IR) -based systems and natural language processing (NLP) applica-

tions. First research on TC goes back to Maron’s [34] seminal work on probabilistic text clas-

sification. Since then, TC has been used for a number of different applications using tech-

niques from machine learning, pattern recognition and statistics. In [15], TC applications

are grouped into hierarchical categorization of web pages, word sense disambiguation, au-

tomatic indexing for boolean IR systems, document filtering and organization. Speech cate-

gorization as combination of a speech recognition and TC methods, multimedia document

categorization through the analysis of textual captions, author identification for literary texts

of unknown or disputed authorship, language identification for texts of unknown language,

automated identification of text genre, and automated essay grading are some examples for

such applications in real-world problems [50] [52] .

A traditional classification problem in pattern recognition refers to assigning any incom-

ing sample to one of two (binary problem) or more (multi-class problem) distinct predefined

classes. An even more complex scenario, called multi-label classification, is one in which

the classes have overlap between each other. TC or automatically labeling natural language

texts with thematic categories from a predefined set is one such task. An instance document

or web page about “Persian carpet exhibition” can belong to both “economy” and “art” cate-

gories. Despite its multi-label nature, the majority of research studies on TC have considered

it as single-label task by assigning the samples into only one of the existing classes. However,

this approach simplifies the task and handles it using a huge bibliography of learning algo-

rithms, yet failing to provide a complete solution to multi-label TC.

There are two main approaches in the literature to deal with multi-label classification:

(i) Problem transformation approaches which transform the multi-label problem into one

or more single-label problems, and (ii) Algorithm adaptation approaches which extend spe-

cific learning algorithms in order to handle the multi-label task directly. Although many ap-

proaches have been proposed based on different kinds of classifiers and architectures over

a variety of application domains, there is no clear winner method over the rest (see [59] [11]

for some recent surveys) and each of them has its own advantages and disadvantages.

This section proposes a method for multi-label TC called ML-ECOC created by extending

the ECOC strategy. ML-ECOC modifies the coding/decoding phases of the standard ECOC

algorithm making it suitable to the multi-label problems. This modification includes setting

up new rules in both coding and decoding phases to avoid the occurrence of any inconsis-

tency while handling multi-label data. Experiments on the text mining problem of Multi-

Label Text Categorization (ML-TC) show a good performance of the proposed ML-ECOC.

Comparissons to the state-of-the-art methods from different perspectives are carried out

and the obtained results are analysed in detail.
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Figure 4.1: An instant document d and a codematrix of 7×9.

4.2.1 Multi-Label ECOC for TC

The first application of ECOC algorithm on TC dates back to 1999 [10] [20], However, in these

studies, the authors simply use standard single-label classifiers and view the problem as a

traditional multi-class classification. Since then, many researchers also used ECOC with dif-

ferent types of classifiers on various applications but with more or less the same assump-

tions. From the ECOC literature, one can conclude that there are three main possible ways

to improve ECOC classifiers: (i) code matrix design, (ii) building binary classifiers, and (iii)

decoding step. In TC area, the improvements are mainly limited to the second option i.e.

building binary classifiers as accurate as possible. This goal is achieved in [57] by Model-

Refinement strategy which is used to adjust the so-called bias in centroid classifiers. The ba-

sic idea is to take advantage of misclassified examples in the training data to iteratively refine

and adjust the centroids of text data. In [32], Li et al. proposed a simple strategy to improve

binary text classification via multi-class categorization (dubbed 2vM) for applications where

sub-class partitions of positive and/or negative classes are available. As multi-class catego-

rization may implicitly capture the interactions between sub-classes, detailed subclasses are

expected to help differentiating the positive and negative classes with high accuracy.

The reason that all these works are limited to single-label assumption is that an inconsis-

tency would occur otherwise in ECOC classification while applying to multi-label data. For

instance, imagine a document d belongs to a label set [1,3,5], each label representing a con-

tent based topic. Also imagine 5-th column of an instance (predefined or given) matrix M 7×9

shown in Figure 4.1 which is used to create dichotomizer f5. Considering d →ω= [c1,c3,c5],

now the question is which super-class sample d belongs to (+1 or -1)? According to tradi-

tional decoding of ECOC, the sample belongs to both super-classes of the dichotomy at the

same time. This inconsistency in assignment of d is not only limited to f5 but also occures

for dichotomies 3,4, 6, 7 and 8. In fact, standard ECOC algorithm is only capable of single-

label prediction for a traditional multi-class problem while it suffers from lack of capability

to handle multi-label data in general. Therefore, a modification in the ECOC algorithm is

required such that it can directly address multi-label data in both training the dichotomizers

and label set prediction without any assumption and limitation. As mentioned before, the

only way to address this issue so far was simplifying the problem to single-label classification

[20] [10].

Although the single-label assumption may be true in some TC applications, it certainly

limits the application of ECOC to real-world multi-label cases. This is the point where ECOC

algorithm requires a major modification to be applicable to multi-label problems. In the
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Figure 4.2: ML-ECOC: Gray and white boxes represent 0 and +1, respectively.

following, we introduce the ML-ECOC method to address any multi-label problem without

any constraint and restricting assumption.

The main idea of ML-ECOC is to generate a codeword for each category of a TC task with

only +1 (positive class) and 0 (don’t care) bits. Unlike standard ECOC algorithm, where at

least one +1 and one −1 bits are required at each column to define a dichotomy, to be non-

zero is all ML-ECOC needs for a column. A classifier defined according to each column of

the ML matrix and used to calculate degree of membership of d into a super-class which

includes one or more categories. The inconsistency in the dichotomizing process is avoided

by defining only positive class and neutral set which can not have any overlapping area.

It is worth noting that a document belongs to i th positive class if and only if at least one

of its labels from the label set is in the i th super-class. A document d (Figure 4.2) either

should belong to positive class of i th column or its neutral set. For instance, d is a member

of 2,3,4,5,6,7 and 8 positive class sets while should be considered as neutral for 1st and 9th.

Subsequently, it is obvious that this modification requires also different decoding strat-

egy, since standard Euclidean or Hamming distances with Ar g M ax labeling are not appli-

cable anymore. Let us suppose a predicted codeword yd = [y1...yL], 0 ≤ yl ≤ +1} is a string

assigned to document d (each bit representing the output of a classifier i.e. P l (+1 | d)). The

posterior probability of each class using ML-ECOC is calculated as follows:

P (cN | d) =
1

| M(N , .) |

L∑

l=1

P l (+1 | d)M(N , l ) (4.4)

For each document, ML-ECOC sorts categories by score and assigns YES to each of the t

top-ranking categories. Parameter t is an integer ranging from 1 to the number of categories

Nc whose value can be either specified by the user or automatically tuned using a validation

set. It should be noted that when t = 1, this multi-label assignment turns into the standard

single-label TC with Ar g M ax rule. Obviously, it is just typical thresholding strategy adopted

to ML-ECOC and the other existing thresholding methods can be applied. The generic ML-

ECOC is summarized in Algorithm 1.

4.2.2 Why does ML-ECOC work?

– The success of the ML-ECOC idea can be attributed to following three factors:
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Algorithm 3 ML-ECOC.

Input: Xt , Tt training set, Xe , Te testing set and f learning algorithm.

Training:

1. generate a binary codemtrix M Nc×L which Nc is the number of categories and L varies

with coding strategy.

2. for i -th column in M :

3. build (create) one-class set made of T
+

i
and T

∗
i

supper-classes (positive and neutral

sets respectively)

4. train i -th classifier fi with i -th training set

Testing:

1. apply Xe on entire set of fi s

2. create a codeword which i -th bit is fi (Xe ) =P i (+1 |Xe )

3. calculate the posterior probability for each class using Eq. 4.4

4. use multi-label decoding to predict label set

Output: ω̄= [c̄p , c̄q , c̄r ]

1. Unlike the standard TC approaches trying directly to discriminate different classes,

ML-ECOC transfers the entire class space to many super-classes, which are not nec-

essarily carrying meaningful concepts, by mixing them . This is helpful particularly to

deal with what is called in the literature Data sparsity. This is a measure for how much

data we have for a particular dimension/entity of the model. A dataset is sparse if the

number of samples for each class is not enough for a classifier to discriminate it from

the rest which is normally the case in the TC problem. Therefore, mixing categories by

ML-ECOC decomposing, not only used to define new class-boundaries which might

provide additional information in final decision making, but also provides new one-

class problems with more samples per positive class (in the case each super-class has

more than one category). For instance, each super-class in first dichotomy of Figure

4.2 is made of 3 categories.

2. No matter which TC approach is chosen, a class-label is assigned to a document if its

corresponding classifier fires. In fact, when a category is wrongly detected, there is no

any efficient way to go back and fix it without the increase of the algorithm complexity

and computational cost. However, in ML-ECOC there is no dedicated classifier for each

category and decisions are made by consensus of all classifiers. Therefore, because

of its error-correcting capability, even if some errors occur in the bit level, the final
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Table 4.1: The main characteristics of the selected subset of the datasets.

problem total samples nominal numeric label cardinality density distinct

rcv1v2 600 0 47235 103 2.642 0.026 946

tmc2007 28596 49060 0 22 2.158 0.098 1341

decision can still be reliable.

3. Another important issue arising while dealing with TC refers to class-imbalanced datasets

where there is no balance between the positive and negative set of a category. This

problem can badly affect the learning process particularly in the Local Classifier per

Category approach when a category stands against the rest. ML-ECOC keeps more bal-

ance between two resulted positive classes and neutrals by having chance of includ-

ing more than one class in the positive class set. For instance Sparse-random method

can possibly include more than one category in a positive class resulting into more

balanced data. Consequently, efficient learning of the class boundaries by classifiers

results in more accurate prediction.

4.3 Numerical Experiments and Results

For the text categorization experiments, we have chosen two commonly used multi-label

datasets i.e. the Reuters (RCV1-V2) and TMC2007. A brief description of each is given below.

RCV1-V2: Reuters Corpus Volume1-Version2 is a large-scale dataset for text classifica-

tion task. It is based on the well known benchmark dataset for text classification, the Reuters

(RCV1) dataset. We use the topics full set 3 that contains (804,414) news articles. Each article

is assigned to a subset of the 103 topics. A detailed description of the RCV1 dataset can be

found in [31]. We pre-processed RCv1v2 documents as proposed by Lewis et al. [31] and, in

addition, we separated the training set and the testing set using the same split adopted in

[31]. In particular, documents published from August 20, 1996 to August 31, 1996 (document

IDs 2286 to 26150) are included in the training set, while documents published from Septem-

ber 1, 1996 to August 19, 1997 (document IDs 26151 to 810596) are considered for testing.

The result is a split of the 804,414 documents into 23,149 training documents and 781,265

test documents. In order to save computational resources, we have randomly chosen 600

documents (300 training documents and 300 testing documents) as indicated in Table 4.1.

TMC2007: This is the dataset used for the SIAM 2007 competition organized by the text

mining workshop held in conjunction with the 7th SIAM International Conference on Data

Mining [1]. This competition sponsored by NASA Ames Research Center, focused on devel-

oping text mining algorithms for document classification. It contains 28596 aviation safety

reports in free text form, annotated with one or more out of 22 problem types that appear

during certain flights [54]. The dataset comes from human generated reports on incidents

that occurred during the flights which means there is one document per incident. Text rep-

resentation follows the boolean bag-of-words model. The goal was to label the documents

with respect to the types of problems that were described. This is a subset of the Aviation

Safety Reporting System (ASRS) dataset, which is publicly available. Some other statistics of

the dataset are given in Table 4.1.
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In the applications using text categorization as the core task, the computational effi-

ciency is crucial because of very large number of features, classes and samples. Therefore,

the need for designing a simple and fast classification system is important. There are many

research studies using different kinds of classifiers such as k-nearest neighbors (kNN), sup-

port vector machines (SVM), artificial neural networks (ANN), bayesian methods and roc-

chio classifiers [15]. However, in practice most of them are not applicable as in real-world

applications, e.g. search engines and recommender systems, a just-in-time response has

great importance. Among them, the naive bayes and centroid classification algorithms are

extremely simple and straightforward illustrating competitive performance on text catego-

rization problems. Moreover, they do not need to memorize a huge amount of training data

as some other classifiers do (e.g. kNN) and adjust so many parameters (e.g. ANN).

For the experiments presented in the current chapter, we used centroid-based classifiers

as the ECOC dichotomizers. This means that the prototype vector or centroid vector (µ+
i

) is

computed for super-class T
+

i
as:

µ
+
i =

1

|T +
i

|

∑

d∈T
+

i

d (4.5)

where |T +
i

| denotes the cardinality of set T
+

i
, i.e. the number of documents that belong to

positive set in the i -th individual and d is a training document.

In the testing step, we calculate the similarity of a document d to each centroid by the

cosine measure,

S(d ,µ+
i ) =

d ·µ+
i

|| d || · ||µ+
i
||

(4.6)

This similarity can be regarded as the posterior probability of the dichotomizer and used

for i -th bit of the predicted codeword ȳd .

Numerical results emphasize the performance of the proposed method in discriminat-

ing between the reliable and unreliable decisions made for documents classified by ECOC

algorithm. Documents with low reliability score (i.e. lower than the threshold τ) are rejected

whereas those with higher reliability score are accepted. However, finding an optimal value

for τ proved to be important and should be done by considering all factors of the classifiers.

Among them, the recognition and rejection rates are the most effective ones and should be

very well adjusted while designing a classifier with a reject option. False Rejection (FR) oc-

curs either when a category is correctly assigned to a document with low reliability or when

high reliability is given to a document with incorrectly predicted label. The results obtained

for the Reuters dataset are presented in Table 4.2. The proposed method correctly rejects

documents falsely predicted by classifiers, i.e. True Rejection (TR) ratio, whereas the FR ra-

tio is very low considering the large number of test documents.

It is important to note that the FR and TR ratios are directly related to the threshold τ.

Higher thresholds avoid the label assignment for false predicted documents while the FR

increases. Therefore, in applications with high cost for mislabeling, the proposed strategy

reduces the cost at the risk of rejecting some correctly labeled documents.

We have compared the results of the proposed method with those of different commonly

used TC algorithms [4] [35] as well as the related reliability methods [18] [19]. The standard

TC methods used for comparison are the big-bang (global method), the flat method, Local
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Table 4.2: Results obtained by the proposed method.

Problem Rejected documents TR FR Accuracy boost (%)

Topics 97 87 10 3.8

Industry 88 79 9 3.7

Regions 90 83 7 1.3

Table 4.3: Recognition rate of the proposed method compared to the standard TC methods.

Problem big-bang LCN ECOC ECOC ECOC Proposed Proposed Proposed

D-Rand S-Rand BCH Method Method Method

(D-Rand) (S-Rand) (BCH)

Topics 34.5 34.1 35.5 34.4 35.9 37.9 37.0 36.9

Industry 38.3 36.7 38.1 39.1 38.9 40.0 40.5 39.9

Regions 38.0 37.0 37.5 36.8 37.3 38.3 38.2 38.0

Classifier per Node (LCN) and ECOC classifier with various matrices (without a reject op-

tion). For all these methods, centroid-based classifiers with the same parameters have been

implemented. As shown in Table 4.4, the proposed method boosts the accuracy of the stan-

dard TC approaches using the ECOC algorithm and outperforms the related TC reliability

methods.

Consequently, the evaluation of methods to handle multi-label data requires different

measures than those used for traditional single-label classification. Various measures are

traditionally being used for evaluation of multi-label classification (particularly for docu-

ment and text applications) such as classification accuracy, precision, recall and F1. These

are defined below.

cl assi f i cati on accur ac y =
1

n

n∑

d=1

I (ωd = ω̄d ) (4.7)

where I (tr ue) = 1 and I ( f al se) = 0 and n is the number of documents in a dataset. This

is a very strict evaluation measure as it requires the predicted set to be an exact match for

the true set in the label set no matter if a classifier makes a mis-classification at only one

category or the entire set.

pr eci si on =
1

Nc

Nc∑

ci=1

T Pci

T Pci
+F Pci

and r ecal l =
1

Nc

Nc∑

ci=1

T Pci

T Pci
+F Nci

(4.8)

where T P , F P and F N stand for the true positive, false positive and false negative for each

category, respectively. The F1-score which considers both the pr eci si on and r ecal l of the

test set is formulated as:

F 1 =
2pr eci si on.r ecal l

pr eci si on + r ecal l
(4.9)

where an F 1 score reaches its best value at 1 and worst score at 0.
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Figure 4.3: Precision-Recall curves for the RCV data (up) and TMC2007 (bottom).

Table 4.4: F1 score of the proposed method (PM)compared to thetandard TC methods.

Problem big-bang LCC ML-ECOC (drand) ML-ECOC (2vsA)

rcv1v2 34.5 34.1 37.9 37.0

tmc2007 38.3 36.7 40.0 40.5

We have compared the results of the proposed method with some of commonly used TC

algorithms. The standard multi-label TC methods used as baseline methods are the big-bang

(global method) and Local Classifier per Category (LCC). For all these methods, centroid-

based classifiers with the same parameters have been implemented. As shown in Table 4.4,

the proposed ML-ECOC using Dense random and 2vsA codes outperforms the standard TC

approaches on the selected datasets by obtaining the maximum F1 scores. One can note

that the results for 2vsA code for rcv1v2 data is missing. This is because of large number of

classes of RCv1v2 data which make building ECOC classifier unfeasible.

To give more detailed information, Figure 4.3 shows precision-recall curves, red and blue

curves being ML-ECOC and LCC approaches, respectively. Because of the superior perfor-

mance on ML-TC datasets, the LCC approach is used to compare with the ML-ECOC. As

clearly shown, the proposed ML-ECOC is able to obtain slightly better results on RCv1-v2

while always winning on TMC2007 data.
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Concluding remarks

As concluding remarks, let us briefly recall the ideas and the results concerning the methods

described in this thesis.

Chapter 2 presents a novel miniensemble method, to be used in the selection-fusion

framework. The proposed method, called random prototype oracle, splits the input domain

based on some prototypes selected randomly from training data and then builds a classi-

fier on each subset. These classifiers are used in combination with an oracle that knows the

area of expertise of each classifier, thus generating a miniensemble. Thanks to the random

nature of the decomposition procedure, miniensembles created on a specific problem differ

from one run to another. These miniensembles can be used as base classifiers in any ensem-

ble strategy to improve its accuracy without increasing the computational cost. We carried

out experiments on eight data sets taken from the UCI machine learning repository. First

we show that the method introduced here results in more accurate miniensembles with re-

spect to the traditional random linear oracle. Then we have shown that RPO improves the

performance of standard ensemble strategies. A critical point of the proposed method is

to determine the best number for splits, which in principle depends on the nature and on

the complexity of datasets and learners. Although currently found experimentally, we are

studying a way for estimating it with an automatic procedure.

Chapter 3 presents a modified version of the popular ME algorithm. Unlike the stan-

dard ME, which specializes expert networks on nested and stochastic regions of the input

space, the proposed method partitions the sample space into subspaces based on similari-

ties with randomly-selected prototypes. This strategy enables to define a simple rule for the

gating network for both training and testing. As shown by experimental results, despite its

simplicity, the proposed method improves the accuracy of the both standard ME and HME

models while reducing the training time. Furthermore, the expected run-time performance

for the standard ME model and for the MRPE model have been formulated for the first time.

Theoretical results are confirmed by experimental results, which also highlight that MRPE

performs better also in terms of accuracy. Experimental results have been reported for error

rate, training time and testing/online evaluation time. Future work for this research topic

will be focused on defining a light procedure for automatically determining the number of

experts for a given problem, without resorting to complex preprocessing and time consum-

ing methods. Adapting this method to simple distance-based classifiers (instead of artificial

neural networks) is another interesting future research direction, concerned with reducing

41
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the training time of the overall network while maintaining high accuracy. We are also ex-

perimenting heuristics able to help in the process of partitioning the input space (instead of

using random prototypes).

In the first section of Chapter 4, an efficient distance-based rule is introduced to evaluate

the reliability of decisions made by ECOC text classifier for a given document. The proposed

approach relies on the computed distances of an incoming document from each category

given by the ECOC decoding step to make a final decision about the candidate category. A

document will be assigned to a class with maximum posterior probability if its reliability

score is higher than a predefined threshold. This way, by double checking the candidate cat-

egory, the reliability of the decision made by ECOC classifier is increased. Experiments show

capability of the method to boost the recognition rate with rejecting decisions about doc-

ument class which have been assigned a low reliability. Future work for this research topic

focuses on adapting the proposed ECOC-based reliability to more complicated paradigms

such as multi-label [8] or hierarchical TC problems since the application of ECOC classifier

on these areas has not been explored so far. Investigating different strategies to formulate

reliability measures based on binary classifiers opinion given by ECOC ensemble is another

interesting research line.

In the second section of Chapter 4, an extension of the ECOC algorithm called ML-ECOC

is proposed to tackle multi-label TC problems. To avoid the inconsistency in coding step, the

proposed ML-ECOC method decomposes a multi-label problem into some complementary

one-class sub-problems unlike the standard ECOC which builds dichotomies. Multi-label

relationship is taken into account in the testing phase by using a novel decoding strategy

adopted for ECOC algorithm. Experimental results on Reuters datasets confirm the poten-

tial of the proposed ML-ECOC on multi-label classification with large number of categories.

Recently, some studies [7] [53] try to increase ECOC reliability by proposing a reject mech-

anism. One interesting future research line refers to multi-label text categorization with a

reject option.

Summarizing, this thesis proposes some new ideas in the field of classifier ensembles,

making a step forward in this research topic. All methods described in the thesis have been

successfully applied to various problems, including publicly available benchmark datasets

from UCI repository and Reuters version 2 text categorization task.
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