

Università degli Studi di Cagliari

DOTTORATO DI RICERCA

INGEGNERIA ELETTRONICA ED INFORMATICA
Ciclo XXV

Combining FPGA prototyping and high-level simulation approaches for
Design Space Exploration of MPSoCs

Settore/i scientifico disciplinari di afferenza
ING-INF/01 ELETTRONICA

Presentata da: SEBASTIANO POMATA

Coordinatore Dottorato PROF. ALESSANDRO GIUA

Tutor/Relatore PROF. LUIGI RAFFO

Esame finale anno accademico 2011 – 2012

Ph.D. in Electronic and Computer Engineering

Dept. of Electrical and Electronic Engineering

University of Cagliari

Combining FPGA prototyping and

high-level simulation approaches

for Design Space Exploration of

MPSoCs

Sebastiano POMATA

Advisor: Prof. Luigi RAFFO

Curriculum: ING-INF/01 Elettronica

XXV Cycle

May 2013

Ph.D. in Electronic and Computer Engineering

Dept. of Electrical and Electronic Engineering

University of Cagliari

Combining FPGA prototyping and

high-level simulation approaches

for Design Space Exploration of

MPSoCs

Sebastiano POMATA

Advisor: Prof. Luigi RAFFO

Curriculum: ING-INF/01 Elettronica

XXV Cycle

May 2013

Dedicated to family, friends, colleagues.

Abstract

Modern embedded systems are parallel, component-based, heterogeneous and finely tuned

on the basis of the workload that must be executed on them. To improve design reuse, Ap-

plication Specific Instruction-set Processors (ASIPs) are often employed as building blocks

in such systems, as a solution capable of satisfying the required functional and physical con-

straints (e.g. throughput, latency, power or energy consumption etc.), while providing, at

the same time, high flexibility and adaptability. Composing a multi-processor architecture

including ASIPs and mapping parallel applications onto it is a design activity that require an

extensive Design Space Exploration process (DSE), to result in cost-effective systems. The

work described here aims at defining novel methodologies for the application-driven cus-

tomizations of such highly heterogeneous embedded systems. The issue is tackled at differ-

ent levels, integrating different tools.

High-level event-based simulation is a widely used technique that offers speed and flex-

ibility as main points of strength, but needs, as a preliminary input and periodically dur-

ing the iteration process, calibration data that must be acquired by means of more accurate

evaluation methods. Typically, this calibration is performed using instruction-level cycle-

accurate simulators that, however, turn out to be very slow, especially when complete multi-

processor systems must be evaluated or when the grain of the calibration is too fine, while

FPGA approaches have shown to perform better for this particular applications.

FPGA-based emulation techniques have been proposed in the recent past as an alterna-

tive solution to the software-based simulation approach, but some further steps are needed

before they can be effectively exploited within architectural design space exploration. Firstly,

some kind of technology-awareness must be introduced, to enable the translation of the em-

ulation results into a pre-estimation of a prospective ASIC implementation of the design.

Moreover, when performing architectural DSE, a significant number of different candidate

design points has to be evaluated and compared. In this case, if no countermeasures are

taken, the advantages achievable with FPGAs, in terms of emulation speed, are counterbal-

anced by the overhead introduced by the time needed to go through the physical synthesis

and implementation flow.

Developed FPGA-based prototyping platform overcomes such limitations, enabling the

use of FPGA-based prototyping for micro-architectural design space exploration of ASIP pro-

cessors. In this approach, to increase the emulation speed-up, two different methods are

proposed: the first is based on automatic instantiation of additional hardware modules, able

to reconfigure at runtime the prototype, while the second leverages manipulation of appli-

cation binary code, compiled for a custom VLIW ASIP architecture, that is transformed into

code executable on a different configuration. This allows to prototype a whole set of ASIP

i

solutions after one single FPGA implementation flow, mitigating the afore-mentioned over-

head.

A short overview on the tools used throughout the work will also be offered, covering

basic aspects of Intel-Silicon Hive ASIP development toolchain, SESAME framework general

description, along with a review of state-of-art simulation and prototyping techniques for

complex multi-processor systems.

Each proposed approach will be validated through a real-world use case, confirming the

validity of this solution.

Contents

1 Introduction 1

1.1 Main objectives and thesis organization . 1

2 State of the art 3

2.1 Application-Specific Instruction Set Processors (ASIPs): an overview 3

2.1.1 Different approaches in speeding up execution 3

2.1.2 Advantages in using custom ASIPs . 5

2.2 FPGA-based evaluation platforms for heterogeneous systems 6

2.2.1 Cycle-accurate software simulation . 6

2.2.2 The role of FPGAs as prototyping platforms 7

2.3 High-Level simulation techniques aimed to Design Space Exploration (DSE) . 8

2.3.1 System-Level DSE . 8

2.3.2 Introducing FPGAs to speed up DSE . 8

3 Intel reconfigurable ASIPs development platform 11

3.1 HiveLogic . 11

3.1.1 Architectural template . 11

3.1.2 Processor description and specification: TIM language 13

3.2 Retargetable software toolchain . 15

3.2.1 ANSI C Compiler . 15

3.2.2 Instruction scheduler . 16

3.2.3 C Debugger . 16

3.2.4 Host-Cell Runtime functions . 16

3.3 Multi-Processor systems instantiation . 17

4 Combining on-hardware prototyping and high-level simulation for DSE of MPSoCs 19

4.1 General toolset description . 20

4.2 Design Space Exploration: search engine . 21

4.3 System-level simulation . 22

4.3.1 FPGA prototype . 23

5 An hardware-based FPGA flow to evaluate performances of ASIPs 25

5.1 Fast ASIP DSE: an FPGA-based runtime reconfigurable prototyper 25

5.1.1 Approach overview . 25

5.1.2 Reference architectural template and DSE strategy 26

iii

iv CONTENTS

5.1.3 The reference design flow . 28

5.1.4 Area and Power/Energy models . 30

5.1.5 The proposed design flow . 31

5.1.6 The WCC synthesis algorithm . 32

5.1.7 Hardware support for runtime reconfiguration 34

5.1.8 Software support for runtime reconfiguration 35

5.1.9 Implementation degradation and overhead reduction techniques . . . 36

5.1.10 Use Cases . 37

6 Extending FPGA fast prototyping through binary manipulation 45

6.1 FPGA-based prototyping platform . 45

6.1.1 The WCC synthesis algorithm . 47

6.1.2 The binary manipulation algorithm . 47

6.1.3 Software support for binary manipulation 50

6.2 Interfacing the tools through co-simulation . 51

6.3 Use Case . 51

6.4 Extending binary manipulation techniques for fault-tolerance support 55

6.4.1 Overview on fault-tolerance techniques 55

6.4.2 Pearl and Pearl_FT processors . 56

6.4.3 Remapping algorithm . 56

7 SESAME: high-level simulation for heterogeneous MPSoCs 57

7.1 General description . 57

7.1.1 Kahn Process Network paradigm . 57

7.1.2 Design point description generation . 58

7.2 Extending SESAME to support Network-On-Chip interconnects 58

7.2.1 NoC interconnect architecture . 59

7.2.2 Topology file example . 59

7.2.3 SESAME NoC blocks . 60

7.2.4 Calibrating the NoC model . 62

7.2.5 Use case . 63

8 Conclusions 67

Bibliography 69

List of Figures

2.1 Sequential execution of stages/instructions . 4

2.2 Pipelined execution of stages/instructions . 4

2.3 ASIPs and other architectures . 6

3.1 Reference VLIW ASIP template . 13

4.1 General toolset overview . 20

5.1 Reference VLIW ASIP template . 28

5.2 Baseline prototyping flow . 29

5.3 Extended prototyping flow . 32

5.4 Example of instruction adapting . 36

5.5 Use case results for single-ASIP exploration. 39

5.6 Power consumption for each function unit . 40

5.7 Multi-ASIP platform under exploration . 41

5.8 Use case results for multi-ASIP exploration . 42

5.9 Use case results for multi-ASIP exploration - 2 . 43

6.1 Prototyper block diagram . 46

6.2 Flowchart for instruction manipulation algorithm. 49

6.3 Instruction word manipulation example . 50

6.4 MATLAB co-simulation interface . 52

6.5 Pareto plot for MJPEG use case . 53

6.6 Detailed calibration results at functional block level 54

6.7 GUI of the DSE framework, plotting the results obtained for the MJPEG use case . 54

7.1 Producer-Consumer application used for the calibration of the model 62

7.2 MJPEG application mapped on 4 cores, 3 switches network topology 64

7.3 Min, max and avg error for latency values . 65

v

List of Tables

5.1 Area models dependency . 31

5.2 Power models dependency . 31

5.3 FPGA hardware overhead figures . 44

5.4 FPGA critical path overhead figures . 44

vi

Chapter 1

Introduction

1.1 Main objectives and thesis organization

A common feature of modern embedded systems is the need for highly optimized application-

specific processing elements. Application Specific Instruction-set Processors (ASIPs) are of-

ten the only solution to the required functional and physical constraints able to provide, at

the same time, high flexibility and programmability.

These processors are typically performance- and power-optimized for a specific applica-

tion domain. The optimizations in terms of extension of the processor instruction set often

include vector processing and SIMD support, complex domain-specific arithmetic opera-

tions (e.g. MAC for digital signal processing). In terms of architecture organization, it is not

infrequent to find register files with particular configurations (depth, data width or num-

ber of ports), separate local memories for different kinds of application data, customized

data channels that implement real-time data flow into and out of the processing units, or

synchronization ports shared with other SoC blocks. As opposed to classic general-purpose

CPUs, because of the narrower and more regular application domain, ASIPs often rely less

on cache hierarchies, to save on the power budget. Instruction caches can sometimes be

avoided at all, in which case external agents pre-load the program code into dedicated pro-

gram memories.

As a consequence of such extreme configuration possibilities, to efficiently explore the

hardware-software customization of such systems appropriate emulation techniques are re-

quired to provide fast but accurate performance estimates. Along with the classic character-

ization of hardware modules and applications with standard functional metrics (i.e. execu-

tion time, cache performance, resource congestion), there is increasing interest in obtaining

early estimations of physical metrics, such as area occupation and power/energy consump-

tion. For all these requirements, hardware-based emulation techniques have been proposed

as an alternative, more scalable, solution to cycle-accurate software-based simulation ap-

proach.

FPGA devices, with their high flexibility, have shown to serve well for hardware-based

emulation but, at the same time, the achievable advantages are mitigated by the overhead

introduced by the physical synthesis/implementation flow. This overhead impacts on the

emulation time and thus on the number of explorable design space points.

In this work FPGA-based on-hardware emulation for design space exploration of com-

1

2 CHAPTER 1. INTRODUCTION

plex, heterogeneous systems composed by multiple ASIPs is explained, combined with high-

level simulation techniques allowing a faster, accurate evaluation of design possibilities.

Two different and alternative methods that uses hardware modules and software-driven

runtime reconfiguration of the emulating platform to enable the evaluation of different ar-

chitectural configurations after a single synthesis/implementation process are shown. This

helps in maximizing the speed-up of the overall evaluation process. The mechanism em-

ployed to reconfigure at runtime the emulating platform does not rely on standard partial

reconfiguration capabilities that are offered by current FPGA devices and toolchains: in-

stead, it’s done through a custom-developed algorithm to identify the logic to be placed on

the FPGA and the hardware modules that support the actual logic reconfiguration.

The majority of the research presented here has been conducted for the MADNESS FP7

project, where University of Cagliari was project leader. MADNESS aims at the development

of an automated framework of heterogeneous MPSoCs, with adaptivity and fault-tolerance

support. The project successfully concluded on March, 2013 (www.madnessproject.org).

The organization of this work can be summarized as follows: Chapter 2 will briefly in-

troduce state-of-art techniques for FPGA emulation and Design Space Exploration of com-

plex systems, illustrating also author’s previous contributions on the topic; Chapter 3, on the

other hand, describes the complex industrial toolchain by Intel (formerly SiliconHive) for the

design of custom VLIW ASIPs, presenting the tools and languages used to create a processor

starting from an high level input specification.

In 4, the combined approach of mixing high-level simulation and on-hardware prototyp-

ing through FPGA is explained: along with this, reader can find a description of how software

simulation and FPGA execution cooperates to achieve desired result. Following Chapters 5

and 6 will describe two different approaches to build an FPGA platform that serves as a fast

prototype for different architectures: the first will describe a solution based on instrument-

ing processor hardware with an additional module, automatically created starting from a

number of input specifications, while the second one proposes a pure software method that

leverages the ability of manipulating instruction words from the binary file, thanks to a priori

knowledge of ASIPs instruction format.

Last Chapter (7) presents the SESAME framework to the reader, including a short overview

on Kahn Process Network paradigm, and the contribution of this work, represented by the

extension of the simulation framework to support Network-On-Chip interconnects, thus al-

lowing the evaluation of hybrid systems with multiple cores communicating through such

network.

Chapter 2

State of the art

In this part of the thesis, academic research on the topics of ASIPs, VLIW processors, FPGA

simulation methods and Design Space Exploration algorithms will be presented. Each sec-

tion describes a different part of a general outlook on the topics developed during the doc-

toral course.

2.1 Application-Specific Instruction Set Processors

(ASIPs): an overview

2.1.1 Different approaches in speeding up execution

Very Long Instruction Word (VLIW) architectures allow for parallel execution of multiple

processing operations with a single instruction word. After a brief walkthrough the evolution

of computing approaches during history, key points of custom ASIPs will be described.

Sequential execution

During the seventies, the majority of the processors were purely sequential in two different

aspects: instructions were executed on a sequence (Figure 2.1), and each instruction was

decomposed in a set of actions (called stages) executed in a strict order. Typical stages that

compose an instruction are:

• IF - instruction fetch;

• DE - instruction decode;

• OF - operand fetch;

• EX - execution;

• WB - result write-back;

3

4 CHAPTER 2. STATE OF THE ART

Figure 2.1: Sequential execution of stages/instructions

Pipelining

Later on, engineers moved to pipelining instruction stages, thanks to the relatively low com-

plexity of RISC (Reduced Instruction Set Computing) processors. After the first stage was

completed, it was easy to continue the execution of other stages in parallel, keeping the

pipeline always full (Figure 2.2). However, this is not true for some cases, e.g. when pro-

cessor stalls on a memory load or write event.

Figure 2.2: Pipelined execution of stages/instructions

Instruction scheduling: Superscalar and VLIW

Once engineers reached the target of virtually one instruction per clock cycle, the next chal-

lenge was to further improve the execution speed, performing more than one instruction

per clock cycle. This challenge is still open, though, since it’s not trivial to execute multiple

instructions at once, due to data dependency between instructions, mutual exclusion due to

hardware resources contention, etc. Basically, both the Superscalar and VLIW approaches

leverage the instruction scheduling as a powerful tool to increase parallelism, with a sig-

nificant difference: superscalar architectures perform scheduling at run-time (Pentium IV,

PowerPC G4), while VLIW processors include the scheduling algorithm in the compiler, thus

allowing for a faster (and predictable) execution flow, but increasing the compilation time.

So, the VLIW processor, once it fetches an instruction, is able to perform each operation in

parallel, without the need of dependency check or hardware resource conflicts inspection

between operations.

2.1. APPLICATION-SPECIFIC INSTRUCTION SET PROCESSORS (ASIPS): AN OVERVIEW 5

Compiler or Hardware complexity?

As previously said, VLIW architectures shift the complexity burden on the compiler develop-

ment: even though also RISC superscalar implementations need sophisticated compilation

techniques, VLIW compilers represent the highest level of complexity, thus setting an ini-

tial obstacle to a prospective implementation. However, it should be considered that such

a complex task as writing the compiler must be performed only once, rather than at each

change of the hardware implementation as with superscalar processors. Designers can thus

obtain a smaller, faster chip (this means a cheaper device), and the design phase itself can

be more rapid, requiring less debugging effort. Lastly, the compiler can be improved at a

later stage, adding or enhancing its capabilities, without the need of changing the hardware

design of the processor.

Real world implementation problems

One of the issues regarding VLIW instruction format is due to the fact that, even when a

function unit has no operation to execute, its relative portion of instruction bits still must be

loaded from memory. As one can imagine, even the most sophisticated compilation algo-

rithms cannot schedule operations on each function unit at each cycle. This leads to waste

of memory space in instruction memory, in instruction cache, and also bus bandwidth re-

sources. Furthermore, if a VLIW processor is equipped both with integer and floating point

function units, it’s hard to keep the latter working while the software application is only per-

forming integer calculations. However, these problems can still be addressed by mainly two

different approaches: compressing the instruction with a coded representation, or using an

instruction word format that covers only partially the available hardware resources. For the

first method, Huffman coding can be used to allocate fewer bits for most frequent opera-

tions. In the second technique, the operations contained in the instruction word also carry

the information about which function unit has to execute it: this will lead to significant sav-

ing of memory space thanks to instruction word reduction, but will also limit the maximum

number of operations to be conducted in parallel. Again, the designer is responsible of an-

alyzing the application flow in order to choose the best tradeoff between instruction length

and execution speed.

2.1.2 Advantages in using custom ASIPs

Electronic systems developers nowadays face more complex challenges, requiring flexibil-

ity in design and ability to quickly reach the market with innovative, even more powerful

products. This trend has surely contributed to the adoption of application-specific proces-

sors (ASIPs) under the form of IP cores, allowing to obtain high performances and low power

consumption, paired with easy software programmability, as demonstrated by [10].

ASIPs propose to exploit an a-priori knowledge about the processor target application,

in order to enhance area and energy efficiency of the architecture. As an example, a custom-

designed special instruction can be used to perform a particular operation faster (i.e., in less

cycles), thus allowing the designer to slow down the clock frequency and consequently, cut

the power consumption. Furthermore, inefficient ALU instructions can be removed if there’s

no reason to support them, enabling a significant reduction of needed transistors and area

occupation on chip.

6 CHAPTER 2. STATE OF THE ART

Figure 2.3: ASIPs vs other architectures: flexibility and efficiency (courtesy of

www.retarget.com)

ASIPs represent a sort of convenient trade-off between flexibility and efficiency (see Fig-

ure 2.3), since they can be placed, inside the whole architectural spectrum, among general-

purpose CPU and hardwired data paths. On the one hand, they are more efficient in terms

of instruction-level and data-level parallelism than general-purpose microprocessors, offer-

ing an higher ratio of operations executed with respect to power consumption. On the other

hand, though, they are way more flexible than hardwired data paths, that offer to the de-

signer little-to-none reconfigurability nor possibility of being used for different software ap-

plication than the one they were designed for.

2.2 FPGA-based evaluation platforms for heteroge-

neous systems

2.2.1 Cycle-accurate software simulation

Today, the vast majority of architectural simulation is performed, at maximum accuracy (i.e.

cycle-level) in software. Among the most famous solutions, many are still sequential, like

SimpleScalar [5], Simics [30], Gem5 [7] or MPArm [6]. To cope with the increasing system

complexity, parallel software simulators have entered the scene [34]. Some of them give up

on pure cycle-level accuracy and look at complex techniques, like event-based simulation,

statistical sampling, dynamic accuracy switching and simulation state roll-back, to model

complex, multi-core architectures that run full software stacks [3],[15]. Moreover, specific

solutions have been developed for particular classes of processor architectures, and specifi-

cally optimized to enable rapid design space exploration of such architectures. For instance,

in [4] and [14], a software-based simulation and exploration framework targeting optimiza-

tion of a parametric VLIW microprocessor is presented.

Despite these innovations in the field, there is general consensus on the fact that clas-

sic software approaches are not anymore able to provide cycle-accuracy for complex multi-

2.2. FPGA-BASED EVALUATION PLATFORMS FOR HETEROGENEOUS SYSTEMS 7

core hardware-software designs in reasonable simulation times. A promising alternative ap-

proach aims at preserving cycle-accuracy, resorting to the extremely high speeds that can be

achieved by running the target architecture on some kind of configurable hardware. FPGA

devices naturally provide this configurable hardware substrate, potentially enabling hun-

dreds of MHz of pure emulation speed already in the earliest stages of the design flow. In ad-

dition, their integration capacity, scalability, the relatively low cost and the decreasing power

consumption figures suggest FPGAs are going to be the reference platform for hardware-

based emulation for the next future[45].

2.2.2 The role of FPGAs as prototyping platforms

The most important contribution to the field of large hardware FPGA platforms for simula-

tion of complex systems is brought by the RAMP project [46]. Several research activities have

been condensated within the scope of this large project, including the first FPGA prototype

of a transactional memory chip multiprocessor [47], a thousand-core high-performance sys-

tem running scientific benchmarks on top of a message-passing communication library [25]

and a SPARC based multi-threaded prototype which implemented FPGA-accelerated emu-

lation by introducing the separation between functional and timing simulation [43]. Within

the RAMP project, moreover, runtime configuration has been investigated to the extent of

some cache-related parameters.

Other examples of hardware-based full-system emulators are [13], [16], [11] and [28], in

which the FPGA-based layer is employed to accelerate the extraction of several metrics of

the considered architecture, specified and automatically instantiated in a modular fashion.

These papers also quantify the speedup achievable through FPGA prototyping in three/-

four orders of magnitude in emulation speed, when compared to software-based simulators.

Nevertheless, as mentioned, FPGA-based approaches are still affected by an overhead intro-

duced by the synthesis and implementation flow [32]. With the standard flow, this amount

of additional time has to be spent every time a hardware parameter is changed. Several ap-

proaches aim at the reduction of the number of necessary synthesis/implementations, by

looking at FPGA reconfiguration and programmability capabilities.

In [26], the authors use the FPGA partial reconfiguration capabilities to build a framework

for Network on Chip based (NoC) emulation. Also in [48], relying on partial reconfigurabil-

ity techniques, FPGAs are used to optimize register file size in a soft-core VLIW processor.

Both these solutions implement platform runtime reconfiguration employing specifically

designed logic that is increasingly being included in the latest high-end FPGA devices. As

opposed to these approaches, presented work devises a more generally applicable mecha-

nism, which is more oriented towards software-based reconfiguration and employs minimal

hardware modifications to the logic under emulation.

The main use scenario of described toolchain is along with a DSE engine, that provides as

output the candidate architectures according to the design requirements, asks for emulation

of a set of those and iteratively proceeds in the exploration. Some examples that can benefit

from using this approach during the evaluation phase are [37], [17] and [12].

8 CHAPTER 2. STATE OF THE ART

2.3 High-Level simulation techniques aimed to De-

sign Space Exploration (DSE)

2.3.1 System-Level DSE

The process of system-level DSE is typically performed exploiting support from two differ-

ent kind of tools [18]: an evaluation platform that examines the design points in the design

space, using for example analytical models or (system-level) simulation, and an exploration

engine that iteratively searches and decides which points have to be evaluated. There is a

significant variety of approaches that aim at defining novel methods to perform either one

or the other step in a time-effective manner, [40, 27, 21], especially targeting heterogeneous

MPSoCs [44, 21, 29].

The majority of the approaches rely on system-level simulation to do the evaluation [18].

Basing on the Y-Chart principle we can find simulation tools that work at a high level of

abstraction like [23, 24].

Modular system-level MP-SoC DSE framework are proposed in [36, 8, 29], for DSE of

embedded systems. The MultiCube project [1] has similar objectives, but it mostly targets

micro-architectural exploration of multiprocessors rather than system-level architectural

exploration.

In [2], authors present a framework specifically targeting ASIPs, integrating a design tool-

chain with a virtual platform to explore a number of axes of the MP-SoC configuration space.

2.3.2 Introducing FPGAs to speed up DSE

However, none of the mentioned approaches, to the best of author’s knowledge, experiments

the integration of high-level simulation and FPGA prototyping. In literature, the use of emu-

lation on reconfigurable hardware has been often limited to the analysis and exploration of

high-performance computing systems, mainly enabling the prototyping of static architec-

tural templates to speed-up the evaluation of architectural design techniques on complex

applications. The most important contribution to the field of large hardware multi-FPGA

platforms for simulation of complex systems is brought, again, by the RAMP project [46].

Examples of hardware-based full-system emulators are [13] and [28], in which the FPGA-

based layer is employed to accelerate the extraction of several metrics of the considered

architecture, specified and automatically instantiated in a modular fashion. Such papers

report a speedup achievable with the use of FPGA prototyping of three/four orders of mag-

nitude in emulation speed, when compared with software-based simulators. The Daedalus

framework [35] can be considered a baseline for the work presented here. In Daedalus, on-

hardware evaluation is used for DSE purposes. FPGA-based evaluation platforms are au-

tomatically created using the ESPAM tool. However, support for prototyping of highly het-

erogeneous (e.g. ASIP-based) architectures was not completely provided, since configura-

tion at component-level was not allowed and no countermeasures are taken to balance the

overhead related with the synthesis and implementation flow. Some works that aim at the

reduction of the number of necessary synthesis/implementations, by looking at FPGA re-

configuration and programmability capabilities, can be found in literature. RAMP Gold, a

framework developed within the RAMP project, also provides some capabilities of changing

at runtime the cache-related parameters during the emulation. In [48], relying on partial re-

configurability techniques, FPGAs are used to optimize register file size in a soft-core VLIW

2.3. HIGH-LEVEL SIMULATION TECHNIQUES AIMED TO DESIGN SPACE EXPLORATION (DSE) 9

processor. In author’s previous work [31] a hardware reconfigurable prototyping platform to

allow fast ASIP design space exploration was implemented.

Chapter 3

Intel reconfigurable ASIPs

development platform

This chapter will briefly introduce the architectural template used in most parts of this the-

sis, represented by Intel’s family of configurable VLIW processors. First, an introduction on

the architecture will be made, moving later to the description of a common architecture tem-

plate, and finally describing the compiler and the tools shipped by Intel with the processor

development kit.

3.1 HiveLogic

The cores described in these section are built using SiliconHive ([19]) (now Intel) develop-

ment platform for custom VLIW processors, called HiveLogic. The platform offers to the

designer a good amount of degrees of freedom at design time: on the one hand, this makes

the generated processors highly customizable and tailored for a particular application/set of

constraints, while on the other hand exposes greater complexity to the designer, having to

explore such a considerable design space. This poses a problem that this work tries to tackle

and optimally solve thanks to the support of a novel Design Space Exploration algorithm and

an enhanced FPGA platform, as described in following chapters.

The main input for the processor generation is represented by a TIM file (custom Sili-

conHive description language), that contains every detail about the configuration, in terms

of issue slots, description of each function unit, number and size of register files, intercon-

nect between issue slots, local data and program memories, custom operations and FIFO

adapters to interface with an host processor.

3.1.1 Architectural template

All Silicon Hive processors are derived from a common Processor Architecture Template

(PAT). The PAT defines a processor that consists of one or more interconnected so-called

Cells. A single cell defines a Very Long Instruction Word (VLIW) machine that is capable of

executing parallel software with a single thread of control. According to the PAT a cell con-

sists of a Core that performs computations under software program control, and a so-called

11

12 CHAPTER 3. INTEL RECONFIGURABLE ASIPS DEVELOPMENT PLATFORM

CoreIO that provides a memory and I/O subsystem allowing the core to be easily integrated

in any system, while providing local storage to increase local memory bandwidth and largely

reduce strain on shared system resources. The core consists of a VLIW data path and a se-

quencer controlling the data path under software control. The sequencer is a simple state

machine containing a program counter register as well as a status register. The status regis-

ter in the sequencer is used to enable special processor modes under software control. The

program counter value is used to locate instructions stored in a local program memory or

instruction cache. The presence of a local program memory guarantees an instruction fetch

throughput of one complete VLIW instruction per cycle enabling maximum performance.

This works especially well for smaller program sizes that warrant the cost of such a local

program memory. For larger programs, additionally or alternatively an instruction cache

is present coupled through a dedicate master interface. The instruction cache typically im-

proves the performance in fetching instructions stored in external memory. Obviously, a cer-

tain performance penalty due to cache misses cannot be avoided. The data path contains a

number of functional units organized in a number of parallel issue slots. The issue slots are

connected to registers organized in a number of register files via programmable intercon-

nect. The functional units perform compute operations on intermediate data stored in the

register files. On each issue slot an operation can be started in every clock cycle. Some func-

tional units, termed load/store units, have access to so-called logical memories in CoreIO.

Each logical memory contains one or more storage or I/O devices. These allow the load/store

units memory mapped access to local physical memory in CoreIO or to perform memory

mapped I/O with the system. Supported storage and I/O devices include SRAM memories,

flipflop-based memories, blocking streaming interfaces, and master interfaces. The system

in which a cell is integrated has access to the storage devices in CoreIO via one or more slave

interfaces. System access to program memory and status and control registers of the cell is

provided through slave interfaces as well. The stream, master, and slave interfaces support

commonly used standard protocols to provide clean and easy integration of a processor in a

wide variety of system architectures.

According to the Processor Architecture Template (see Fig. 3.1), every processor consists of

a composition of sub-structures called processor slices, that are complete vertical datapaths,

composed of elementary functional elements called Template Building Blocks, such as:

• register files (RF): holding intermediary data in between processing operations, con-

figurable in terms of width, depth, number of read and write ports;

• issue slots (IS): basic unit of operation within processor; every issue slot includes a set

of function units (FU), that implement the operations actually executable. Every issue

slot receives an operation code from the instruction decoding unit and, accordingly,

accesses the register files and activates the function units;

• logical memories: container for hardware implementing memory functionality;

• interconnect: automatically instantiated and configured, implementing the required

connectivity within the processor.

In order to simplify the description of our work, an assumption on the architecture is

made: Hive processors will always contain a control slice, in charge of handling the pro-

gram counter and updating the status register, plus a variable number of different processing

slices, with no restrictions on their internal composition.

3.1. HIVELOGIC 13

Figure 3.1: Reference VLIW ASIP template

3.1.2 Processor description and specification: TIM language

All of Silicon Hive’s programming and processor generation tools are configured to target

a specific processor instance described in the TIM language. TIM is therefore crucial for

Silicon Hive processor design. To convert a TIM description from human readable form into

a form that can be understood by Silicon Hive’s tools, the TIM language is supported by a

dedicated TIM compiler, invoked by a straightforward make flow (thus hiding the complexity

to the final user). Here an example of what a TIM processor description looks like:

// cluster includes

#include <pbb/pse/std_base/pearl/bpse_pearl.tim>

/* ============================ */

/* Cell declaration. */

/* ============================ */

Cell pearl <signed intWidth, signed llWidth, signed bpFifoWidth>

(mmioW_DTL<intWidth> sl_ip, fifoW_DTL<bpFifoWidth> st_ip0, st_ip1)

-> (mmioW_DTL<intWidth> sl_op, fifoW_DTL<bpFifoWidth> st_op0, st_op1)

{

/* type size properties */

CharBits := 8;

ShortSize := 2;

IntSize := intWidth/8;

LongSize := 4;

LongLongSize := llWidth/8;

14 CHAPTER 3. INTEL RECONFIGURABLE ASIPS DEVELOPMENT PLATFORM

/* Default memory */

DefaultMem := bp.BP_DEFAULTMEM;

/* Stack pointer */

SPs := bp.BP_LSUBASE_RF[0];

Stacks := bp.BP_DEFAULTMEM;

/* Return pointer */

RP_rf := bp.BP_LSUDATA_RF[1];

signed pmemWidth := 67;

signed pcBitsPmemCap := 12;

signed pcBitsViewCount := 0;

signed pcBitsSmallestViewFactor := 0;

signed statusControlRFcap := 8;

signed branchLatency := 2;

signed bpRF1cap := 32;

signed bpRF2cap := 32;

signed bpS1ImmBits := 13;

signed bpS2ImmBits := 5;

signed bpMemCap := 16384;

signed bpFfgCount := 2;

signed bpFfgWidth := bpFifoWidth;

signed bpFfgCap := 2;

bpse_pearl bp < pmemWidth, pcBitsPmemCap,

pcBitsViewCount, pcBitsSmallestViewFactor,

statusControlRFcap, branchLatency,

intWidth,

bpRF1cap, bpRF2cap,

bpS1ImmBits, bpS2ImmBits,

bpMemCap,

bpFfgCount, bpFfgWidth, bpFfgCap >

(bp.op, sl_ip, sl_ip, sl_ip, st_ip0, st_ip1);

sl_op = { bp.sl_op_config, bp.sl_op_pmem, bp.sl_op_dmem };

st_op0 = bp.st_op0;

st_op1 = bp.st_op1;

};

/* ========================== */

/* Processor declaration. */

3.2. RETARGETABLE SOFTWARE TOOLCHAIN 15

/* ========================== */

Processor pearl_processor

(mmioW_DTL<intWidth> sl_ip, fifoW_DTL<bpFifoWidth> st_ip0, st_ip1)

-> (mmioW_DTL<intWidth> sl_op, fifoW_DTL<bpFifoWidth> st_op0, st_op1)

{

/* basic parameters that hold throughout the whole cell */

signed intWidth := 32;

signed llWidth := 40; when intSize==16

signed bpFifoWidth := 32; // in bits

pearl pearl <intWidth, llWidth, bpFifoWidth>

(sl_ip, st_ip0, st_ip1);

sl_op = pearl.sl_op;

st_op0 = pearl.st_op0;

st_op1 = pearl.st_op1;

};

3.2 Retargetable software toolchain

HiveLogic comes equipped with a retargetable scheduler and compiler, capable of optimally

exploiting the hardware resources of chosen processor configuration in a transparent way

for the user. Once the designer builds the processor configuration(s) he plans to use, the

toolchain generates needed symbols and libraries for each architecture. Thanks to this, user

can compile the application and have it automatically scheduled for the hardware under

consideration. Together with the compiler suite, also an instruction-level simulator is pro-

vided: through this tool, the designer is able to perform an evaluation of processor perfor-

mances when running a given application or computation kernel.

3.2.1 ANSI C Compiler

Hive C Compiler is an ANSI C compiler, provided with the Intel SDK installation. Through

a complex chain of makefiles inclusions, the designer is able to invoke different simulations

of a target application by issuing always the same commands, no matter how complex the

application is or which system it is mapped on. User must provide the code running on

the Hive processors (called cells), tipically a processing kernel, and the code in charge of

initializing the cells from the host processor. Here follows an example of Makefile for an

application mapped on a single-core system.

SYSTEM = pearl_system

PROGRAMS = img_conv_3x3

METHODS = crun sched target

img_conv_3x3_CELL = pearl_16_3is

img_conv_3x3_FILES = img_conv_3x3.hive.c

img_conv_3x3_CFLAGS = -fno-stack -Whivesched,"-trace 2" -html

16 CHAPTER 3. INTEL RECONFIGURABLE ASIPS DEVELOPMENT PLATFORM

img_conv_3x3_CFLAGS += -Werror

img_conv_3x3_LDFLAGS += -embed

HOST_FILES = img_conv_3x3.c img_conv_3x3_c.c

HOST_CFLAGS = -W -Wall #-DHIVE_MULTIPLE_PROGRAMS -Werror

HOST_OUT = host.elf

include $(HIVEBIN)/../share/apps/hive_make.mk

The SDK allows the user to perform different kinds of simulations:

• C-Run: host code and cell code are both compiled with the workstation C compiler

(gcc in this case), and a simple consistency and syntax check is performed;

• Unscheduled: cell code is compiled by Hive C compiler but it’s not scheduled; gener-

ated simulator will now use the cell datapath and it’s aware of cell memory dimensions,

but execution statistics are not provided.

• Scheduled: cell code is compiled and scheduled by Hive toolchain, allowing the de-

veloper to obtain accurate execution statistics (for the processor datapath, but still not

for external memory accesses). This simulation is the most useful when it comes to

optimizing the code to exploit instruction-level parallelism.

3.2.2 Instruction scheduler

HiveSDK offers to the developer two different schedulers, called hivesched and manifold.

The main difference between the two is that the first performs a non-exhaustive scheduling

inspection, while the latter, being obviously slower, can lead to better results. Anyway, it’s

not possible to leave the complete burden of code optimization to scheduling algorithm, so

the developer must take care of avoiding common pitfalls when writing the application code

and apply good programming practices to allow the best exploitation of a parallel processor

architecture.

3.2.3 C Debugger

Hive SDK comes with a debugger, similar in its usage to GNU Debugger, that takes scheduled

code, executes it on the hardware model and it’s able to read local memories and registers,

plus providing watchpoints for variables and conditional execution. However, it should still

be considered that on a VLIW architecture, a single instruction can (and often does) contain

operations for multiple issue slots, thus stimulating more than an operation inside the cell

processor. Developer should take this behavior into account when dealing with debugging

Hive applications.

3.2.4 Host-Cell Runtime functions

To simplify the work of software developers, SiliconHive SDK provides runtime functions

that can be used to access cell memories and FIFOs from the host processors. The retar-

getable toolchain takes care of transparently converting cells and variables names to the

3.3. MULTI-PROCESSOR SYSTEMS INSTANTIATION 17

correspondant memory mapped addresses, so that user can conveniently refer the variables

by their names inside the cell’s software. Most important functions are listed below:

• hrt_fifo_rcv: allows the host to fetch a token from a cell’s FIFO, and blocks the host if

FIFO is empty;

• hrt_fifo_snd: allows the host to send a token inside a cell’s FIFO, and blocks the host if

FIFO is full;

• hrt_scalar_load: loads a variable value from cell’s data memory, transparently masking

memory-mapped address of the variable;

• hrt_scalar_store: stores a variable value to cell’s data memory, transparently masking

memory-mapped address of the variable.

3.3 Multi-Processor systems instantiation

HiveLogic toolchain allows the designer to develop systems with more than one processor

communicating through FIFO channels, containing custom memories, interconnects and

I/O peripherals instantiated as black-box units (in this work, a custom Network-On-Chip in-

terconnect has been used to connect different ASIPs in a system). As for a single processor,

the platform can produce VHDL code of the whole described system, enabling an FPGA ex-

ecution and evaluation process of the configuration or a prospective ASIC implementation.

System description is provided by the user through an HSD file (a format similar to the al-

ready described TIM), where the designer can instantiate the desired elements, interconnect

the elements to the bus, add interface I/O signals and tune additional elements parameters

(e.g. bus latency, clock gating etc).

Once user has completed the instantiation of system elements, it’s possible to compile

the description and the toolchain will take care of producing necessary header files and li-

braries. Among other things, the system header file contains needed information to allow

host-cells interconnect, including memory-mapped addresses of Hive cell memories, FIFO

adapters address and sizes and I/O ports interconnect. The header file must be included by

the application intended to be executed on that system. The designer also has the possibility

of generating VHDL code for system interconnection elements and cells, obtaining a set of

files that can be integrated in an FPGA development flow to perform synthesis/implemen-

tation on a prototyping device.

Below an example of a real multi-processor system (used for the porting of an H.264

decoder), composed by three slightly different Hive processors, interconnected with FIFO

adapters, exchanging data with an host processor through Silicon Hive’s proprietary CIO bus

protocol, and equipped with a master interface to provide the ability of performing load/s-

tores on other Hive cells data memories.

System h264_hive_system

{

signed bus_data_width := 32;

signed bus_addr_width := 32;

signed bus_burst_size := 4;

18 CHAPTER 3. INTEL RECONFIGURABLE ASIPS DEVELOPMENT PLATFORM

pearl_freshcoco_economy_32 pearl_1 (bus.sl_ip_1,

pearl_bp_fifo_fifo_fifo0.st_out,

pearl_bp_fifo_fifo_fifo1.st_out,

);

pearl_freshcoco_economy_32_3fifo pearl_2 (bus.sl_ip_2,

pearl_1.st_op4, pearl_3.st_op3,

pearl_bp_fifo_fifo_fifo7.st_out);

pearl_freshcoco_economy_32_4fifo pearl_3 (bus.sl_ip_3,

pearl_bp_fifo_fifo_fifo6.st_out,

pearl_2.st_op1);

FifoAdapter_new_2s pearl_bp_fifo_fifo_fifo0

<32, bus_data_width, bus_addr_width, 4> (pearl_1.st_op0,

bus.bp_fifo_fifo_fifo0);

FifoAdapter_new_2s pearl_bp_fifo_fifo_fifo1

<32, bus_data_width, bus_addr_width, 4> (pearl_1.st_op1,

bus.bp_fifo_fifo_fifo1);

SystemBus bus (host.op0, pearl_1.mt_op, pearl_2.mt_op);

HostProcessor host<bus_data_width, bus_addr_width, 4>;

User_Properties := { NoDefaultResetGate, 1 };

User_Properties := { Processor, true };

};

Chapter 4

Combining on-hardware

prototyping and high-level

simulation for DSE of MPSoCs

The problem of efficient Design Space Exploration for complex MPSoCs is the spark behind

the novel approach presented in this thesis. On one hand, exploration and evaluation of

a particular architecture can be done with cycle-accurate software simulators, if available:

the major drawback of this method is the time needed to simulate complex, real-world ap-

plications (think of multimedia as an example), that can take up to hours to complete and

produce detailed statistics. On the other hand, reconfigurable devices such as FPGA seem to

provide a solution for this problem, thanks to the flexibility and speed they can offer: how-

ever, if designer should undergo the complete synthesis and implementation flow each time

he needs to evaluate a different architectures, advantages offered would be easily overtaken

by these time-consuming tasks.

Proposed approach, starting from this practical problem, combines the benefits of an

high-level simulation framework and a genetic algorithm for DSE, that receives as input the

characterization number obtained by the calibration of a given architecture on FPGA de-

vices. FPGA standard flow is improved, thanks to novel approaches described in the follow-

ing chapters.

The rest of this chapter will describe how a combined FPGA-software simulation ap-

proach can be successfully exploited, thanks to the cooperation between the SESAME frame-

work and an FPGA prototyping platform. In the next Chapters (5 and 6), two different and

alternative approaches for characterization of multiple ASIPs configurations on FPGA will

be presented: the first exploiting a custom-developed hardware module, automatically in-

stantiated in the processor hardware, and the last one based on a pure software solution,

leveraging the possibility of manipulating the instruction words for a given application bi-

nary. Both these methods can be used to provide execution metrics to the DSE algorithm

described hereafter. At the end of each chapter, a use case will be described, supporting and

confirming the validity of proposed approaches.

19

20
CHAPTER 4. COMBINING ON-HARDWARE PROTOTYPING AND HIGH-LEVEL SIMULATION FOR

DSE OF MPSOCS

4.1 General toolset description

The toolset here presented integrates three main components: a search engine, a simulation

tool and a FPGA-based prototyping platform. The interaction between the tools is depicted

in Figure 4.1.




















































Figure 4.1: General toolset overview

The main input to the toolset is the application code, along with the specifications of the

constraints that must be considered during the optimization process. Moreover all the tools

can receive some input directives related to the settings of their operation mode. The search

of the optimal design point is an iterative process that is driven by the Design space search

engine (search engine hereafter). This tool, that will be described more in detail in section

4.2, embeds novel techniques for effectively pruning the design space by means of heuristic

search algorithms and techniques for avoiding the use of relatively time-consuming sim-

ulations during DSE. When the search engine requires the evaluation of a (set of) design

point(s), it produces a system-level description of those design points (Design point system-

level description in the figure). At the output of the search engine, such description is ex-

pressed using a very abstract format to specify the design point to be evaluated and, ade-

quately translated by a utility (Design point description generation in the figure), can be elab-

orated by the lower level of the toolchain. At this level, the FPGA-based prototyping platform

and the simulator co-operate in different ways during the evaluation process.

4.2. DESIGN SPACE EXPLORATION: SEARCH ENGINE 21

More in detail, two use cases are typically possible:

• preliminary calibration;

At the starting point, the FPGA-based prototyper is exploited for calibrating the sim-

ulation model. The execution of the application tasks is emulated on a baseline single-

ASIP hardware prototype, to perform a detailed component-level (processor-level) DSE.

According to such emulation, the tasks are conveniently characterized in terms of their

computation latency over different processor configurations. Once this detailed char-

acterization has taken place, the resulting numbers are passed as input to the simu-

lation model, as a characterization table, so that it can start serving as an evaluation

platform for the search engine.

• periodic tuning and detailed analysis;

When needed, during the iterative process, the search engine is able to directly ask

the prototyping for a (set of) customized multi-ASIP design point(s) under evaluation

(dashed line in Figure 4.1). The prototyper is exploited, in this case, for system-level

DSE, obtaining a detailed characterization that may be provided as a feedback to the

search engine and to refine the tuning of the simulator.

At the end, a Pareto front is provided to the user, to be considered when choosing the

optimal application-specific architecture.

4.2 Design Space Exploration: search engine

To optimally explore the design space for optimum design points, a search engine that uti-

lizes heuristic search techniques, such as multi-objective Genetic Algorithms (GAs), has been

developed. Such GAs prune the design space by only performing a finite number of design-

point evaluations during the search, evaluating a population of design points (solutions)

over several iterations, called generations. With the help of genetic operators, a GA pro-

gresses iteratively generating new populations towards the best possible solutions. In the

search engine, the design space is explored in an iterative fashion using the NSGA II evolu-

tionary algorithm. This module constructs a chromosome, a string of values representing

the architectural- and mapping-related, which, for the sake of the exploration that is consid-

ered, may be defined as follows:

[p1, p2, · · ·p j · · ·pN ,k1,k2, · · ·k j · · ·kN]

where the position j refers to a specific application process, the value p j indicates respec-

tively the ID of the processing unit in the system onto which the application process is

mapped, and the k j indicates the architectural configuration chosen for the processor (ob-

viously if pi = p j (task i and j are mapped on the same processor), then ki = k j). As men-

tioned, such string is analyzed by the Design point description generation utility to produce

two different design description formats: the input for the prototyping platform (expressed

using an industrial proprietary format) and the input for the simulation tool. Both formats

will be described more in detail in the following sections.

To further optimize the DSE process, the search engine also allows for hybrid DSE in

which fast but slightly less accurate analytical performance estimations are interleaved with

more accurate but slower Sesame system-level simulations to evaluate design points during

22
CHAPTER 4. COMBINING ON-HARDWARE PROTOTYPING AND HIGH-LEVEL SIMULATION FOR

DSE OF MPSOCS

DSE. Evidently, the aim is to interleave the analytical evaluations with the simulative eval-

uations in a way such that most evaluations are performed analytically. As a consequence,

such an approach could significantly improve the efficiency of the DSE process, allowing for

searching a much larger design space. The hybrid DSE part of the Search module is, however,

beyond the scope of this work. The interested reader is referred to [39] for more details.

4.3 System-level simulation

For simulative evaluation of design points during the DSE, the Sesame MPSoC simulation

framework [38] is deployed. Sesame is a modeling and simulation environment for the ef-

ficient design space exploration of heterogeneous embedded systems. According to the Y-

chart design approach, it recognizes separate application and architecture models within a

system simulation. An application model describes the functional behavior of a (set of) con-

current application(s). An architecture model defines architecture resources and captures

their performance characteristics. Subsequently, using a mapping model, an application

model is explicitly mapped onto an architecture model (i.e., the mapping specifies which

application tasks and communications are performed by which architectural resources in

an MPSoC), after which the application and architecture models are co-simulated to quali-

tatively study the performance consequences of the chosen mapping. For application mod-

eling, Sesame uses the Kahn Process Network (KPN) model of computation in which paral-

lel processes implemented in a high-level language communicate with each other via un-

bounded FIFO channels. Hence, the KPN model unveils the inherent task-level parallelism

available in the application and makes the communication explicit. Furthermore, the code

of each Kahn process is instrumented with annotations describing the application’s compu-

tational actions, which allows to capture the computational behavior of an application. The

reading from and writing to FIFO channels represent the communication behavior of a pro-

cess within the application model. When the Kahn model is executed, each process records

its computational and communication actions, generating a trace of application events, an

abstract representation of the application behavior, necessary for driving the architecture

model. Application events are generally coarse grained. Typical examples are:

• read(channel id, pixel block) that represents a communication event, in this case a data

read from a FIFO channel

• execute(DCT) that represents an atomic computation event, in this case the execution

of a DCT kernel.

The architecture model simulates the performance consequences of such computation and

communication events generated by the application model. It is parameterized with an

event table (the previously mentioned calibration table), that contains latency values that

are associated to a given event. A table entry could include, for example, the number of cy-

cles needed by a given processor architecture to complete a DCT function, that is the com-

putation latency associated with the event execute(DCT). Other kind of events, such as the

previously mentioned communication actions or remote memory access can be modeled,

associating a latency to a different architectural component, but are not strictly related with

the scope of this method that mainly discusses about processor characterization. To realize

4.3. SYSTEM-LEVEL SIMULATION 23

trace-driven co-simulation of application and architecture models, Sesame has an interme-

diate mapping layer that controls the mapping of Kahn processes (i.e., their event traces)

onto architecture model components by dispatching application events to the correct archi-

tecture model component.

This description (Design point .yml description in Figure 4.1) is specified in YML (Y-chart

Modeling Language), an XML-based format that consists of three parts: a high-level archi-

tectural description of the design point, an application graph description and a description

of the mapping of application processes and communication channels onto the architec-

ture resources. This information is automatically generated (by the Design point description

generation). Moreover, it receives the calibration table by the FPGA-based prototyping envi-

ronment.

4.3.1 FPGA prototype

In the next two chapters, the two different approaches for FPGA evaluation of design points

will be presented. Both approaches were developed during the doctoral course, and present

their own advantages and drawbacks. The method described in Chapter 5 was developed at

an earlier stage, through the creation of a custom tool that parses the complete set of design

points and instantiates an additional hardware block, while the latter, described in Chapter

6, leverages the predictability of each instruction format for every design point under con-

sideration and performs binary manipulation at runtime.

The hardware approach would prove to serve better in an application where software

changes more often than architectural configurations: the additional hardware module is

created just once and software doesn’t need any manipulation. The second method, on the

other hand, introduces no overhead in terms of hardware resources and is suitable for every

application that involves benchmarking a particular target application.

Chapter 5

An hardware-based FPGA flow to

evaluate performances of ASIPs

5.1 Fast ASIP DSE: an FPGA-based runtime recon-

figurable prototyper

In the section, a complete emulation toolchain is described. This toolchain, given a set of

candidate ASIP configurations, identifies and builds an overdimensioned architecture ca-

pable of being reconfigured via software at runtime, to emulate all the design space points

under evaluation. The approach has been validated against two different design space ex-

ploration case studies, with a filtering kernel and an MJPEG encoding kernel. Moreover, the

presented emulation toolchain couples FPGA emulation with activity-based physical mod-

eling to extract area and power/energy consumption figures. Furthermore, it’s shown how

the adoption of the presented toolchain reduces significantly the design space exploration

time, while introducing an overhead lower than 10% for the FPGA platform resources and

lower than 0.5% in terms of the operating frequency.

5.1.1 Approach overview

As already introduced, the objective of this work is to enable fast exploration of the processor

configuration space, to identify the best customization for a given application. In order to

do so, in the context of FPGA-based on-hardware emulation, authors aim at minimizing the

overhead introduced by the FPGA platform synthesis and implementation process, when

different processor configurations have to be prototyped. In fact, the elementary approach

to this problem would imply a different FPGA synthesis run for each candidate configura-

tion, impacting significantly on the speed-up over pure software simulation. Instead of do-

ing that, investigation has been conducted on the possibility of identifying what it’s named

a worst case processor configuration (WCC). The WCC is a processor configuration that is

oveprovided to include all the hardware resources necessary to emulate on FPGA every con-

figuration included in the predefined set of candidates. The size and complexity of the WCC

configuration will depend on the kind and number of architectural variations between the

different configurations. After this process, synthesis and implementation on the FPGA plat-

25

26 CHAPTER 5. AN HARDWARE-BASED FPGA FLOW TO EVALUATE PERFORMANCES OF ASIPS

form of only the WCC processor configuration is performed, thus limiting the mentioned

time overhead to a single run. After its implementation on the FPGA, a runtime map of each

specific configuration onto the implemented WCC is performed, by activating/deactivating

hardware sub-blocks when needed, through dedicated software-based configuration mech-

anisms. The specific hardware/software mechanisms for runtime reconfiguration allow to

select the functional blocks included in the WCC processor configuration and to adapt the

connections between them. When emulating a configuration on top of a larger set of re-

sources, the interconnection elements configuration are as relevant to the functional cor-

rectness as the block selection: this is due to the fact that WCC configuration should not

generate incorrect communication latencies possibly caused by delays that are not part of

the currently emulated configuration.

The conceived algorithm to build the WCC configuration, together with the hardware

modules that implement the mechanisms for its runtime configuration, were designed to

preserve full cycle-accuracy. In detail, the number of clock cycles that an arbitrary set of in-

structions will take to execute on the WCC configuration, when configured to emulate on the

FPGA a candidate configuration, has to be exactly the same that it would take on the same

candidate configuration, when it is synthesized and emulate alone on the FPGA. Similarly,

all the functional metrics (congestion, latency, CPI) will be exactly the same, when mea-

sured in terms of clock cycles. The only difference between the WCC configuration and each

single candidate configuration, when synthesized and placed on the FPGA, will be the num-

ber of utilized resources and the operating frequency of the FPGA emulator. Overall, this

mechanism preserves the correct functional behavior of the ASIP processor and the binary

compatibility of the WCC configuration to the executable code that would run on every can-

didate topology. The algorithm that we use to synthesize the WCC configuration is described

in Section 5.1.6.

The design flow that implements the proposed prototyping technique refers, as baseline,

to the industrial ASIP customization flow of SiliconHive. This flow has been extended to pro-

vide the needed support for runtime configuration. On the hardware side, some further HDL

generation capabilities were added, that have been integrated with the baseline flow and will

be explained in Section 5.1.7). On the software side, author implemented the generation of

software functions allowing a user to manage the reconfiguration at application level. The

reference baseline flow is described in Sect. 5.1.3 and shown in Fig. 5.2. The extensions are

presented in Sect. 5.1.5 and in Fig. 5.3.

5.1.2 Reference architectural template and DSE strategy

This section will present the ASIP architecture template taken as reference for exploration

purposes. Also, which variables identify the design space to explore are defined. The consid-

ered processor template belongs to the class of VLIW ASIPs, and is composed of instances of

industrial IPs, based on a flexible Processor Architecture Template (PAT). It employs an auto-

matically retargeting compiler.

Fig. 5.1 shows the main building blocks of the VLIW template. Every processor generated

from this template consists of a composition of sub-structures called processor slices, which

are complete vertical datapaths that propagate data through the Processor Template. The

processor slices are composed of elementary functional elements called Template Building

Blocks, such as:

5.1. FAST ASIP DSE: AN FPGA-BASED RUNTIME RECONFIGURABLE PROTOTYPER 27

• register files: they hold intermediary data between processing operations and are con-

figurable in terms of width, depth, number of read and write ports. Typically, ASIPs

generated from this architecture template include many register files.

• issue slots: they are the basic units of execution within the processor. Every issue

slot includes a set of function units (FUs), that implement the operations actually ex-

ecutable and compose the execution stage. From an operating viewpoint, every issue

slot receives an operation code from the instruction decoding phase and, accordingly,

accesses the register files and activates the proper function units;

• logical memories: these are containers for hardware implementing memory function-

ality;

• interconnect modules: configurable connections automatically instantiated and con-

figured. They implement the required connectivity within the different processor build-

ing blocks. In detail, connections can appear on the forward propagation data path

along the processor slice, but also on the backward path to implement the writeback

into the different register files. The interconnect module from the register files to issue

slots is called Argument Select Network (ASN), while the interconnect from the issue

slots to the register files is called Result Selection Network (RSN).

In this work, starting from SiliconHive’s Pearl processor, author enables a design space

exploration that covers most of the degrees of freedom exposed by the PAT, but not all of

them. The control processor slice is made of two issue slots, two general-purpose register

files, one local memory and one slave interface for external control. The two issue slots con-

tain a minimal set of function units, which are mainly in charge of managing the program

flow (handling the program counter and updating the status register) and the interaction

with the program memory. This control logic includes a decoder that generates the opcodes

to the function units from the VLIW instructions and a sequencer that handles instruction

fetching.

Moreover, to limit the degrees of freedom, the processing slices must have only one issue

slot and one register file. This is to say that, in order to have more than one issue slot inside

a processor configuration, more than one processing slice is required. Finally, FUs inside ev-

ery issue slot are taken from a pool of pre-defined FUs. Although the industrial methodology

supports full extensibility of the instruction set through the definition of custom instruc-

tions, for the scope of this work this possibility is not taken into account.

Having defined these limitations on the range of possible template configurations, the

design point including only the control slice is the simplest stand-alone processor configura-

tion that can be evaluated. Other design points are processor configurations that instantiate

an arbitrary number of additional processing slices and feature different parameterizations

of the building blocks included in them. As a result of what was introduced so far, the design

space under consideration is thus determined by the following degrees of freedom:

• NI S(c) is the number of issue slots inside the generic configuration c;

• FU _set (x,c) is the set of function units in the generic issue slot x, for the configuration

c;

28 CHAPTER 5. AN HARDWARE-BASED FPGA FLOW TO EVALUATE PERFORMANCES OF ASIPS

Figure 5.1: Reference VLIW ASIP template

• RF _si ze(x,c) is the size (depth) of the register file associated with issue slot x, in con-

figuration c;

• n_mem(c) is the number of local memories in configuration c.

Although the way of specifying the parallel datapaths to be instantiated in the processors

is limited, the configurability of the template keeps being very wide. With further engineer-

ing effort, that is beyond the scope of this research activity, the techniques and the tools here

presented can be extended to overcome the mentioned limitations, keeping the correctness

of the theoretical approach.

5.1.3 The reference design flow

Figure 5.2 plots the baseline flow for configuration of the ASIP template described in Sect.

5.1.2. The reference toolchain is SiliconHive’s HiveLogic toolchain, composed by a core gen-

erator, a system generator and the HiveCC compiler. The figure shows the simplest mecha-

nism to perform exploration of a given design space employing the baseline ASIP configu-

ration flow. Every configuration to be evaluated during the DSE process is described using

a proprietary description format. The description customizes the composition of the ASIP

architecture under prototyping, in terms of number and kind of blocks, and their connec-

tivity. In the baseline flow, every configuration description is passed to an RTL generator,

that analyzes it and provides as output the VHDL hardware description of the whole archi-

tecture. This HDL code is then used as input for the FPGA implementation phase, that can

be performed with commercial tools.

5.1. FAST ASIP DSE: AN FPGA-BASED RUNTIME RECONFIGURABLE PROTOTYPER 29

Figure 5.2: Baseline prototyping flow (Evaluation time for N candidate architectures can

be measured to be approximately N hours for a typical design case like those presented in

5.1.10)

On the software side, in order to perform the evaluation of the architecture with the de-

sired application, the target source code is compiled by means of an automatically retar-

getable compiler. The compiler is able to optimize the instruction flow with respect to the

instruction set and to the architecture of the processor under prototyping. In order to do

so, it extracts information on the underlying ASIP architecture from the same configuration

specification provided in input by the DSE engine. The compiler then retargets itself accord-

ing to the considered ASIP configuration specification. After compilation, the program can

be executed on the ASIP actually implemented on FPGA.

The hardware structures, within the scope of this work, have been instrumented with

dedicated activity probes and counters, capable of collecting performance (in terms of num-

bers of cycles) and the activity figures (i.e. number of accesses) of the blocks in the consid-

ered ASIP. In addition to estimation of functional metrics, these activity traces are used to es-

timate physical metrics, such as dynamic power consumption. This estimation is performed

through a layer of analytical modeling that will be described in Sect. 5.1.4.

The left side of Figure 5.2 highlights the time necessary for traversing the entire base-

line flow, for each processor configuration. On a workstation equipped with a Core2 Q6850

processor running at 2 GHz, 8 GB of DDR3 RAM memory and running Ubuntu 10.04 Linux

OS with the Xilinx ISE FPGA synthesis/implementation toolchain for a Xilinx Virtex5 LX330

30 CHAPTER 5. AN HARDWARE-BASED FPGA FLOW TO EVALUATE PERFORMANCES OF ASIPS

device, roughly 20 seconds for the platform VHDL generation and code compilation were

needed. The largest part of the time was consumed by the FPGA synthesis/implementation

toolchain which took about a hour to complete. This time has been measured with the FPGA

device operating far from its resource capacity limit. Therefore, the basic scenario for de-

sign space exploration, employing an entire run for each of the N candidate configurations,

would require approximately N hours to complete.

5.1.4 Area and Power/Energy models

After the execution, collected emulation data are translated to estimated physical metrics by

means of dedicated area, frequency and energy models, and fed back to the DSE engine. The

translation is performed by means of a set of analytical expressions that allow the evaluation

of the energy, area and critical path contributions of the functional blocks inside the library.

Such analytical expressions depend both on their static parameterization and switching ac-

tivity. The power modeling layer is able to separately account for leakage and dynamic power

consumption. Such models refer to a target technology library.

The modeling phase has to acquire information on the architecture configuration, there-

fore it takes as input a description of the current configuration with a dedicated file gen-

erated during the RTL generation phase. Examples of the relevant architectural information

are the number, kind and depth of the different issue slots, number of ports, width and depth

of the register files, size of the memories, and so on. The on-hardware emulation then pro-

vides the activity traces necessary to perform the analytic estimation of interest.

For space reasons, it’s preferrable not to list here all the model formulae for estimation of

area occupation, leakage and dynamic power consumption of every functional block. How-

ever, tables 5.1 and 5.2 provide information on how the area and power models account for

the different processor blocks. The entries in the tables report the dependency between the

related block and the architecture parameters. These parameters are then used in conjunc-

tion with technology-dependent normalized values (e.g. per-bit area occupation, per-bit

leakage power numbers) to obtain the actual metric estimation of interest. For instance, the

second line of Table 5.1 reports on the area contribution related to multiplexing logic around

the FUs inside an issue slot. Such area occupation is proportional to the number of opera-

tions actually available inside the issue slot. Similarly, the third line of Table 5.2 indicates that

the leakage power consumed by the same logic depends linearly on the occupied area, while

the dynamic power consumption is proportional to the logic access rate. This access rate

factor is extracted, within the design flow, by the activity traces obtained through on-FPGA

emulation.

In reading the Tables, it’s useful to point out that the #oper ati onsI S parameter is differ-

ent from the #oper ati onsP in that the former refers to the operations executable by a single

issue slot, while the latter refers to all the operations simultaneously executable by the en-

tire processor, i.e. by all the issue slots. Also it’s useful to highlight the difference between

the operation count parameters #oper ati onsI S ,#oper ati onsP and the current clock tick

operation count parameter OPC . The first two parameters are static quantities, depending

only on the architecture configuration, and impact on area occupation and static power con-

sumption, while the latter is a dynamic quantity that accounts for the number of currently

executing operations, and obviously impacts on dynamic power consumption.

The models, that is, the formulae used to calculate power and area and whose main de-

pendencies are reported in Tables 5.1 and 5.2, were obtained through limited experimenta-

5.1. FAST ASIP DSE: AN FPGA-BASED RUNTIME RECONFIGURABLE PROTOTYPER 31

Area

FU ∝ FU _Por t_Si ze

IS mux logic ∝ #oper ati onsI S

Register File ∝ RF depth,RF wi d th

Decoder ∝ #oper ati onsP

Result Select Network ∝ #oper ati onsP (#RF por t s +#I Sout put_por t s)

Sequencer constant

FIFOs ∝ Mem_si ze

Program Memory ∝ Mem_si ze

Data Memory ∝ Mem_si ze

Table 5.1: Area models dependency recap. Subscripts for operations separate operation

count for the single issue slot (IS) from the overall processor count (P)

Leakage Power Dynamic Power

FU ∝ FU _Por t_Si ze ∝ FU _Por t_Si ze, Access_Rate

IS mux logic ∝ Ar ea ∝ Access_Rate

Register File ∝ Ar ea ∝ RF wi d th, Access_Rate,#por t s

Decoder ∝ Ar ea ∝OPC

Result Select Network ∝ Ar ea ∝ Access_Rate,OPC

Sequencer constant constant

FIFOs ∝ Mem_si ze ∝ Mem_si ze, Access_Rate

Program Memory ∝ Mem_si ze ∝ Mem_si ze

Data Memory ∝ Mem_si ze ∝ Mem_si ze, Access_Rate

Table 5.2: Power models dependency recap. OPC stands for Operation Per Cycle. Program

Memory is assumed to have 100% access rate

tion. As part of the experiments, different processors were synthesized and analyzed in de-

tail, using Synopsys front-end and back-end tools, including lay-out and wireload models.

The results of these analyses were used to calculate the detailed normalized per-bit power

and area numbers. However, the results are not yet suitable for very wide ranges of param-

eters. For example, the linear dependency on port width for function unit metrics is not

always applicable.

To date, the experiments leading to the normalized per-bit power and area numbers in-

volved 16- and 32-bit datapaths. When scaling these datapaths between these numbers, and

comparing additional detailed synthesis results with results from the models, obtained total

overall accuracy of the formulae remains within 10%.

5.1.5 The proposed design flow

To allow fast prototyping of multiple candidate interconnect configurations inside the sys-

tem, the baseline flow has been extended with a utility that analyzes the whole set of configu-

rations under prototyping, synthesizes the WCC and creates the configurable hardware and

the software functions needed to map each candidate configuration on top of the overdi-

mensioned hardware.

32 CHAPTER 5. AN HARDWARE-BASED FPGA FLOW TO EVALUATE PERFORMANCES OF ASIPS

Figure 5.3: Prototyping flow extended with runtime reconfiguration capabilities (Evaluation

time for N candidate architectures is approximately 1 hour and N ×20 seconds)

Figure 5.3 shows the extended flow. By comparison with Figure 5.2, it can be noticed how

many ASIP configuration descriptions can be passed as input to the flow. Based on such

input sets, the extended flow identifies the WCC and creates its configuration description, in

compliance with the same description format of the reference flow. As a consequence of this

modification of the flow, Figure 5.3 shows how the time necessary to perform the evaluation

of N different candidate ASIP configurations is now reduced to roughly N ×20sec +1hour .

Reported times are meaningful examples of the duration of every evaluation step, as can

be measured in real design cases. The precise numbers are obviously dependent on the

application, on the hardware architectures and on the system used for the implementation

flow.

The synthesis algorithm is described in Sect. 5.1.6. The hardware and software support

implementation details are respectively provided in Sects. 5.1.7 and 5.1.8.

5.1.6 The WCC synthesis algorithm

Algorithm 1 is the algorithm used to identify the worst case configuration, for the considered

input set of candidate ASIP configurations. In the extended flow, all the design points under

5.1. FAST ASIP DSE: AN FPGA-BASED RUNTIME RECONFIGURABLE PROTOTYPER 33

test must be provided to the flow at the beginning of the iterative process.

ALGORITHM 1: Worst Case Configuration Identification

Input: A set of K candidate ASIP configurations

Output: Worst Case Configuration (WCC)

NI S(W CC) = 1;

RF _si ze(1,W CC) = 0;

FU _set (1,W CC) = {};

for each candidate configuration c with c=1, . . . ,K do
NI S(W CC) = max{NI S(i)}; with i =1, . . . ,c

for each issue slot x of the configuration c do
RF _si ze(x,W CC) = max{RF _si ze(x, i)}; with i =1, . . . ,c

FU _set (x,W CC) = FU _set (x,c) ∪ FU _set (x, i); with i =1, . . . ,c
end

end

The WCC is defined iteratively while analyzing all the candidate configurations. At every

iteration, it is updated according to the design point currently under analysis. At iteration N

(i.e. parsing the N − th candidate configuration under test c)

• The number of issue slots inside c is identified and compared with previous iterations.

A maximum search is performed, then, if needed, the WCC is modified to instantiate

NI S(W CC) issue slots. For every issue slot of every candidate configuration c, there

must be one and only one corresponding issue slot in the WCC.

• For every issue slot x inside c, the size of the associated register file is identified and

compared with previous iterations. A maximum search is performed, then, if needed,

the register file related to the issue slot x inside the WCC is resized to have RF _si ze(x,W CC)

locations. Since there is one and only one issue slot in the WCC that corresponds to

the issue slot x of c, the related register file in WCC can be identified without any am-

biguity.

• For every issue slot x inside c, the set of FUs is identified and compared with previous

iterations. The issue slot x inside the WCC is modified, if needed, to instantiate a set of

FUs being the minimum superset of FUs used in previous configurations.

To clarify the WCC construction algorithm, let’s consider a possible design space with the

following three different candidate configurations:

• A first candidate configuration with 3 issue slots, respectively instantiating the func-

tional units {FU _A,FU _B}, {FU _A,FU _C ,FU _D}, {FU _B ,FU _C } and the register files

of sizes 12, 8 and 16 (always expressed in terms of 32-bit registers).

• A second candidate configuration with 2 issue slots, respectively instantiating the func-

tional units {FU _A,FU _B ,FU _D}, {FU _A,FU _B ,FU _C } and the register files of sizes

24 and 16.

• A third candidate configuration with 4 issue slots, respectively instantiating the func-

tional units {FU _C }, {FU _A,FU _B ,FU _C ,FU _E }, {FU _C ,

FU _D,FU _E }, {FU _A,FU _B ,FU _C } and the register files of sizes 8, 32, 24 and 16.

34 CHAPTER 5. AN HARDWARE-BASED FPGA FLOW TO EVALUATE PERFORMANCES OF ASIPS

Decomposing the outer loop of the algorithm, the WCC is iteratively constructed as fol-

lows:

1. The WCC instantiates 3 issue slots, with functional units {FU _A,FU _B},

{FU _A,FU _C ,FU _D}, {FU _B ,FU _C } and register file sizes 12, 8 and 16 respectively.

2. The WCC is then modified to instantiate 3 issue slots, with functional units

{FU _A,FU _B ,FU _D}, {FU _A,FU _B ,FU _C ,FU _D}, {FU _B ,

FU _C } and register file sizes 24, 16 and 16 respectively. It can be noticed how the func-

tional unit sets are being populated according to the union of the candidate configu-

rations sets.

3. Finally, the WCC is modified to instantiate 4 issue slots, with functional units

{FU _A,FU _B ,FU _C ,FU _D},

{FU _A,FU _B ,FU _C ,FU _D,FU _E }, {FU _B ,FU _C ,FU _D,FU _E },

{FU _A,FU _B ,FU _C } and register file sizes 24, 32, 24 and 16 respectively.

5.1.7 Hardware support for runtime reconfiguration

The software runtime reconfiguration capability is supported by two hardware modules, au-

tomatically generated and instantiated in the overdimensioned WCC architecture basing on

the set of different input configurations that are passed to the exploration engine.

The first module is the instruction adapter, a programmable decoder that interprets and

delivers every single chunk of the VLIW instruction to the relevant hardware element. For

each candidate architecture in input, knowing the complete set of architecture parameters,

the instruction bits can be split in sub-ranges that identify specific control directives to the

datapath. Examples of such bit ranges are operation codes (that activate specific function

units and specific operations inside the issue slots), index values (used to address the lo-

cations to be accessed in the register files), and configuration patterns (used to control the

connectivity matrices that regulate the propagation of the computing data through the dat-

apath). The width and the position of the boundaries between the bit ranges are not fixed

but instead depend on the architectural configuration that must execute the instruction.

The configurable instruction adapter is in charge of translating the instructions produced

by the compiler, which re-targets itself for each candidate ASIP configuration, into an in-

struction executable on the WCC. All the sequences in the instruction related to a given slice

of the configuration under evaluation are adapted in size and dispatched to the correspond-

ing slice of the WCC. The value of each control directive is modified to ensure the instruction

will provide the correct functionality on the overdimensioned prototype, despite the pres-

ence of additional hardware. All slices that do not exist in the configuration under test are

disabled using dedicated opcodes.

Figure 5.4 shows an example of how the instruction adapter works. In the example, an

instruction produced by the compiler for a configuration under test c requires the activation

of the FU in charge of performing shift operations (shu) in I S1. Inside the candidate config-

uration c alone, the instruction decoder would statically split the VLIW instructions as it is

stored in the program memory into different opcodes and pass each of them to the proper is-

sue slot. Inside the issue slot I S1, only the shu function unit would then be activated, basing

on the ocpode value.

5.1. FAST ASIP DSE: AN FPGA-BASED RUNTIME RECONFIGURABLE PROTOTYPER 35

In the extended flow, where the number of issue slots is potentially different (more issue

slots are usually instantiated in the WCC) from the one of each candidate configuration, the

instruction adaptation is necessary to execute the same instruction binary on the WCC. The

adapter is adequately programmed via software through a memory-mapped register write,

in order to obtain information on the configuration identifier. According to this value, it then

decodes the different instruction fields, generates a new (longer) instruction word and dis-

patches the new opcodes according to the mapping strategy. In the example of Figure 5.4 I S1

is mapped onto I Sm in the WCC. The opcode originally targeted for I S1 is thus dispatched

to I Sm. Its value is translated to activate the shu, taking into account the architectural com-

position of I Sm in terms of its worst case function units. Since the opcode values may differ

from each candidate configuration to the WCC, the opcode width is adapted to the WCC ar-

chitecture. Similar dispatching/translation is applied by the adapter to the other instruction

fields.

The second hardware module, the memory router, is introduced in order to support dif-

ferent connections between the pool of data memories instantiated in the WCC and the issue

slots. The baseline flow supports, directly inside the application code, the explicit position-

ing of variable and data structures in each memory inside the architecture. To keep this

capability in the extended flow, and to allow at the same time the possibility of arbitrarily

dispatching the operations to the issue slots inside the WCC, the memory router provides

connectivity between memories and issue slots to be programmable according to the con-

figuration under prototyping. The programmability mechanism follows the same logic of

the opcode dispatching process implemented inside the instruction adapter that we previ-

ously mentioned. An identifier is stored, for each candidate configuration, inside a memory-

mapped register. Its value drives the connections to the different memory modules.

5.1.8 Software support for runtime reconfiguration

Software support for reconfiguration is realized simply writing a memory mapped register,

which stores a unique configuration identifier and acts as an architecture selector, directly

accessible by a function call at C application level. The automatic flow provides, in the form

of a simple API, the function that accesses this register. The value stored in the register, as

already described in Sect. 5.1.7 controls the instruction adapter and the memory router, to

select one among the candidate configurations under emulation. The generated routines

are suitable to be compiled and linked by the application executable file running on an host

processor controlling the ASIP.

In case the user does not modify the application code to instrument it with the function

calls that select the architecture configuration under test, the extended framework provides

an alternative way, which employs Xilinx System Generator (SysGen). The utility was used

to enable direct access from a host workstation to the configuration selector, and to allow

easy access to the emulation results. SysGen consists of a set of Matlab/Simulink blocks

and routines that enable, among other features, selecting a hardware system, implemented

on an FPGA device, as if it was a Matlab/Simulink block, and to allow the cooperation of

software-based simulation and on-hardware prototyping.

SysGen provides the capability of automatically creating the hardware and software sup-

port for data exchange between the FPGA board and a host processor. It also enables stimuli

generated by a software-based simulation environment (such as a Matlab function itself or

an HDL simulated stimuli generator like Modelsim) to be fed as input to the hardware. In

36 CHAPTER 5. AN HARDWARE-BASED FPGA FLOW TO EVALUATE PERFORMANCES OF ASIPS

Figure 5.4: Example of instruction adapting

this way, after every execution, the user can choose the next configuration to evaluate di-

rectly from the Simulink graphic interface and automatically restart the application.

5.1.9 Implementation degradation and overhead reduction tech-

niques

As specified in the definition of the instruction adapter and memory router in Section 5.1.7,

the modules were designed to not introduce any spurious latency cycle in the WCC with

respect to the single configurations. For this reason, cycle-accuracy is always guaranteed.

However, as a consequence of the provision of runtime reconfiguration capabilities, a degra-

dation of the quality of results may be expected with respect to the hardware implementa-

5.1. FAST ASIP DSE: AN FPGA-BASED RUNTIME RECONFIGURABLE PROTOTYPER 37

tion of a single sample configuration on the FPGA device. In particular, two aspects related

to the implementation quality can be affected and potentially preclude the usability of the

approach. Firstly, the FPGA area occupation of the WCC determines whether the prototyp-

ing platform fits on one given target programmable device or not. Secondly, in case the

additional hardware (instruction adapter and memory router) affects the critical path of the

candidate system, the WCC working frequency might have an impact on the emulation time.

These possible drawbacks have been evaluated in detail while implementing the flow ex-

tensions. In order to minimize the area occupation of the WCC netlist, the minimum needed

subset of hardware resources is identified by the WCC synthesis algorithm. The mapping of

the instruction fields inside the instruction adapter is optimized to reduce as much as pos-

sible the number of different adaptations that must be allowed by the circuitry, to minimize

its area and, being the adapter a combinational module, its propagation delay to prevent im-

pacting the overall working frequency of the prototype. The resulting area/frequency over-

head is quantified in Sect. 5.1.10. Readers can find there the experimental results and discuss

how the mentioned overhead can be effectively controlled and how the proposed approach

is applicable to systems characterized by considerable complexity.

5.1.10 Use Cases

In this section two use case scenarios for the previously described runtime reconfiguration

techniques are described. The first use case involves exploration of a possible configura-

tion space for the architecture of a single ASIP, running an image filtering kernel application.

The second use case involves exploration of a multi-ASIP system, composed of three proces-

sors, a packet-based on-chip interconnection switch, two different shared modules (a UART

controller and a hardware Test&Set semaphore bank for lock-based synchronization) and a

MicroBlaze platform control processor. The running application is an MJPEG codec, parti-

tioned and mapped on the three ASIP processing elements. For both sets of experiments, the

adopted hardware FPGA-based platform features a Xilinx Virtex5 XC5VLX330 device, count-

ing over 2M equivalent gates.

Single-ASIP exploration

Author will present the results obtained while performing the single-ASIP architecture se-

lection process over a set of 30 different ASIP configurations. The explored design points

were identified considering different permutations of the following processor architectural

parameter values:

• NI S(c): 2 or 3 or 4 or 5;

• FU _set (x,c): from 3 to 10 FUs per issue slot;

• RF _si ze(x,c): 8 or 16 or 32 entries, each 32-bits wide;

• n_mem(c): 2 or 3 or 4 or 5.

A filtering kernel was compiled for every candidate configuration and the resulting bina-

ries were executed on the WCC prototype, adequately re-configured. Although the above-

mentioned design space could seem small, this design case is very realistic. In fact several

38 CHAPTER 5. AN HARDWARE-BASED FPGA FLOW TO EVALUATE PERFORMANCES OF ASIPS

DSE engines, like [12], when selecting the best system-level configuration over millions of

design points, often start by exploring the system-level composition (number and kind of

cores in the system) or the interconnection topology and application task mapping. This

first space design space pruning is usually performed using a tuned high-level software sim-

ulator, which is very fast but not capable of detecting the precise functional and physical be-

havior of the micro-architectural modules. To be effective, the simulator is usually fed with

latency and power numbers related to the execution of an application on a given processor

instance. Such numbers are typically obtained from a single-processor detailed prototyping.

This use case not only allows to assess the feasibility of the approach, but also presents an

example of such kind of analysis.

In Fig. 5.5, the results of the evaluation obtained with respect to total execution time,

total latency, total energy and power dissipation are shown. The energy results have been

calculated assuming an identical clock frequency for all the considered ASIP configurations.

In theory, energy could be modeled only after an operating frequency estimation step is per-

formed. The reason behind this is obviously the different critical paths that might appear

in different configurations. However, since in this use case logic synthesis results identified

the critical path in the same piece of logic for all the ASIP configurations, the operating fre-

quency can be assumed to be the same without introducing any error.

To avoid the disclosure of sensitive industrial information, authors do not report abso-

lute power, frequency and area numbers. Instead, a back-annotation of the emulation re-

sults referring to “comparative” numbers for energy and area contributions for the functional

blocks in the ASIPs has been done. The area, power and energy figures are thus reported re-

spectively in Rµm2 (relative square microns), RµW (relative microWatts) and RµJ (relative

microJoules), while, for the execution time, the number of cycles is chosen. The use of such

relative units does not hide the usefulness of the performed analysis for a prospective de-

signer approaching comparative architecture selection. Multi-constraint optimization can

be effectively performed. For example, imposing a constraint on maximum execution time

(e.g. 200K cycles), the user could identify a subset of candidates satisfying the constraint

(configurations #{0,5,8,9,12,16,19,24}). Then, among these, one could choose the best con-

figuration with respect to power or area (#24).

From the performed analysis a designer could estimate topolog y_29 to be the joint op-

timal configuration, for the considered target application, from the points of view of energy

consumption, execution time, and area occupation. To identify possible computation bot-

tlenecks and power hot-spots inside the architecture, performance and power profiling at

the functional unit level can also be obtained, referring to each single functional unit in-

cluded in the configurations under test. As an example, it’s shown in Fig. 5.6 a plot reporting

power consumption of each function unit in a particular configuration, during the execution

of the already mentioned filtering kernel binaries.

The cycle-accurate correctness of the emulation of a candidate configuration with the

WCC is guaranteed by construction of the WCC architecture. In fact, every instruction that

traverses the ASIP datapath, both in the candidate configuration and in the WCC, under-

goes the same exact logic path. The WCC architecture does not insert any new pipeline stage

in the instruction path with respect to the ASIP. What can change is only the operating fre-

quency of the WCC and thus the resulting execution real time, due to the more complicated

combinatorial logic (e.g.: instruction adapter), but the emulated CPI will be exactly the same

(as a count of clock cycles). To confirm this behavior, it’s useful to compare the experiment

results obtained by the prototyping all the candidate configurations on the WCC architecture

5.1. FAST ASIP DSE: AN FPGA-BASED RUNTIME RECONFIGURABLE PROTOTYPER 39

(a) Area occupation (b) Total execution cycles

(c) Power consumption of FUs (d) Energy consumption of FUs

Figure 5.5: Use case results. Every configuration is labeled with a 4-tuple, whose elements

represent the total number of issue slots, the register file capacity (in 32-bit words), the num-

ber of fully-featured issue slots, the number of data memories. Execution cycles are reported

for the different configurations under emulation. Moreover, the modeled power consump-

tion (expressed in RµW), area occupation (expressed in Rµm2) and total energy consump-

tion (expressed in RµJ) figures are reported.

with the results of their stand-alone evaluation. As expected, exactly the same “functional re-

lated” (execution time, latency, switching activity) performances are estimated. Cycle/signal

level accuracy can thus be assessed for the presented approach.

In order to evaluate the speed-up that was allowed by the proposed approach, it should

firstly be considered the time needed for the same design exploration performed using the

classic approach. This requires the designer to go through the implementation flow for all

the candidate design points. The related time depends on the complexity of the considered

design point. For the set of candidates in this example, implementation time ranged from

roughly 20 minutes to 45 minutes, for a total of 15 hours. When using our approach, on the

other hand, only one synthesis is required. Such synthesis of the WCC required roughly 45

minutes, allowing for a 20x speed-up. In this analysis, author is not accounting for the time

needed for the execution of the kernels on the prototypes, since it is negligible (few seconds)

with respect to the implementation time.

40 CHAPTER 5. AN HARDWARE-BASED FPGA FLOW TO EVALUATE PERFORMANCES OF ASIPS

Figure 5.6: Power consumption for each FU in a particular configuration, composed of four

issue slots, with register files of 16 entries, reported in RµW .

Multi-ASIP configuration

A second use case is now presented, which validates the proposed emulation approach in-

side the exploration of a multi-ASIP system. Several are the reasons for which such kind of

use case is important. Firstly, since cycle-accurate simulation becomes slower as the size of

the simulated system increases, obtaining execution traces of multi-core systems by means

of software-based methods quickly becomes unpractical. As opposed to software-based

simulators, the emulation speed achievable with FPGA devices is not affected, in general, by

the system size. The only requirement is that the system under prototyping fits in the target

configurable device. Therefore, a multi-ASIP system exploration should, in terms of overall

speed-up, favor FPGA-based emulation approaches as opposed to pure software simulation.

Moreover, the use case shows that it is possible to cross-optimize the micro-architectures

of the ASIPs, exploiting results obtained from a complete system prototyping. In fact, it’s

demonstrated how the designer is able to observe the mutual influence among the proces-

sors and between the processors and the surrounding environment (interconnect infrastruc-

ture, peripherals, shared memories) without relying on further software-based simulation

steps.

Author now presents the prototyping results obtained by the execution of an MJPEG en-

coder on a parallel MPSoC composed of a host processor and three ASIPs, interconnected by

means of a Network on Chip subsystem. The system is represented in Figure 5.7.

The application is partitioned into four parallel computing tasks, communicating through

FIFO channels, according to a programming model based on Kahn Process Networks ([9]).

In detail:

• the host processor is in charge of initializing the program and data memories inside the

ASIPs and executing a parallel task (named Video_in). The Video_in task dispatches the

5.1. FAST ASIP DSE: AN FPGA-BASED RUNTIME RECONFIGURABLE PROTOTYPER 41

Figure 5.7: Multi-ASIP platform under exploration

input stream pixels, the header and footer information to the other tasks

• the second task then involves the DCT encoding calculations and is mapped on the

first ASIP (ASIP1)

• the third task takes care of the quantization process (Q in short) and is mapped on the

second ASIP (ASIP2)

• the fourth and last task performs the variable length encoding part (VLE) and is exe-

cuted by the third ASIP (ASIP3).

In order to explore the micro-architectures of the single ASIPs, ASIP1 and ASIP2 were

enriched with the support for fast prototyping. ASIP3 on the contrary has been implemented

as a single static configuration. By doing so, ability to investigate on the impact that the

customization of ASIP1 and ASIP2 has on the metrics related with the execution of the VLE

task, which runs on ASIP3, has been preserved.

In detail, in the presented results the number of issue slots and the kind of included func-

tion units inside ASIP1 and ASIP2 were the variables that defined the exploration space. We

42 CHAPTER 5. AN HARDWARE-BASED FPGA FLOW TO EVALUATE PERFORMANCES OF ASIPS

let ASIP1 and ASIP2 processors issue slot counts assume all the possible combinations of

values from 2 to 4.

(a) Execution Times (b) IPC per ASIP

Figure 5.8: Second use case results. Every horizontal axis captures the number of issue slots

inside processors ASIP1 and ASIP2. Execution cycles are reported for the different configu-

rations under emulation. The IPC for every ASIP is also reported.

Figure 5.8 plots the results of the exploration in terms of execution times (measured in

clock ticks) and IPC per ASIP. The execution times are probed on the ASIP3 processor. Con-

sidering the typical communication pattern of an MJPEG encoder, and considering the task

mapping explained in Figure 5.7, it is clear how the ASIP3 will have to wait for the ASIP1 and

ASIP2 to complete their assigned tasks (DCT and Q) to complete its own task. In fact, this is

a classic example of dataflow communication pattern, therefore the execution time of ASIP3

fully characterizes the overall application execution time.

The power results were instead acquired as a sum of the power dissipation occurring in

the ASIP1 and ASIP2 processors, for their different configurations. ASIP3 was not considered

in the power estimation process, since its architectural configuration has been kept constant.

By looking only at the execution time results, it seems that the architectural modifications

performed inside the ASIP2 processor (which is assigned the quantization task) were unable

to produce an impact on the ASIP3 execution time. This means that, as for what regards

the execution time, the DC T task is the most hungry, and optimizing its execution is key to

obtaining an overall performance improvement.

Interestingly, changing the number of issue slots from 2 to 3 does not affect the execution

time. We could argue that this is related to how much the VLIW compiler proficiently uses

the available issue slots to exploit the DC T task available parallelism.

It’s possible to provide an estimation of the system power and energy consumption. Fig-

ure 5.9 shows the energy (measured in RµJ) and power consumption (measured in RµW)

figures. It is important to mention that, as already explained in Sect. 5.1.10, the energy es-

timation has been carried out without accounting for the real operating frequency of the

processors. This is still a reasonable assumption, since the most relevant piece of logic is

included in all the processor configurations and limits the critical path, regardless of the ar-

chitectural modifications that we made. We are also assuming that the entire processing

section of the system runs within a single frequency domain.

By looking at the power numbers, on the other hand, we see that the architectural changes

to both the ASIP1 and ASIP2 processor configurations have an impact on the overall results.

5.1. FAST ASIP DSE: AN FPGA-BASED RUNTIME RECONFIGURABLE PROTOTYPER 43

(a) Power consumption (b) Energy consumption

Figure 5.9: Second use case results. Every horizontal axis captures the number of issue slots

inside processors ASIP1 and ASIP2. Execution cycles are reported for the different configu-

rations under emulation. The modeled power consumption (expressed in RµW) and energy

consumption (expressed in RµJ) figures are reported. Values are expressed as offset with

respect to a zero-point (lowest value of power and energy consumption).

The numbers suggest that the most convenient architectural configuration, in terms of en-

ergy, features 2 issue slots in the ASIP1 processor and 4 in the ASIP2 processor.

In the use case exploration, we kept the NoC switch configuration constant and changed

the configurations of ASIP1 and ASIP2. This means that the candidate configurations with

the highest number of issue slots could have experienced more network congestion than

the ones with less issue slots, simply because of the increased memory references issued

per cycle. Since this difference exists among the various candidate configurations, the WCC

architecture exactly reproduces it when configured to emulate the different candidate con-

figurations. This is another consequence of the cycle-accuracy that the WCC architecture

has with respect to the direct emulation of each single candidate configuration.

Both the functional results and the cycle counts obtained with this FPGA approach and

the baseline software simulation were completely equivalent. But, while cycle-accurate soft-

ware simulation required few minutes (roughly five on average per configuration), onboard

execution on the FPGA prototype required only few seconds (roughly two) to emulate each

candidate architecture. A synthesis/implementation flow, performed on an Intel Quad-Core

machine with commercial tools, required less than half an hour to complete. Such time ob-

viously depends on the size of the system, but can be estimated in the order of one hour

for moderately complex systems. According to the mentioned numbers, the presented ap-

proach allows a time saving that increases with the number of candidate topologies under

prototyping, outperforming soon (for approximately ten candidate design points involved

in the design process) software-based simulation. Moreover, the software-based simulation

is not always effective. For example if design cases imply the evaluation of runtime mid-

dleware policies or network routing protocols, whose effectiveness must be measured on

execution times much longer than a single processing kernel, simulation times become un-

affordable, making FPGA emulation the only available evaluation method and our approach

fundamental for its application to DSE.

44 CHAPTER 5. AN HARDWARE-BASED FPGA FLOW TO EVALUATE PERFORMANCES OF ASIPS

Hardware overhead due to runtime configurability

In this section, a quantitative analysis on the overhead introduced by the addition of recon-

figuration support is presented, in terms of occupied hardware resources and critical path

degradation. For this scope, referring to the previously presented use case, a comparison

between the results obtained by a synthesis of the WCC and the most hardware-hungry con-

figuration under test (when implemented for a stand-alone evaluation, without support for

runtime reconfiguration) is performed. Again, the WCC is generated to support 30 different

configurations. This degree of exploration is reasonably interesting for this kind of applica-

tions, though larger pools of configurations can always be used.

As can be noticed from Table 5.3, the introduced overhead in FPGA resource utilization

is limited, also considering that WCC is built iteratively from a set of 30 different candidates.

Considering that author is comparing the WCC to the most power-hungry of the 30 input

ASIP configurations, the result would be expected more related to the overhead introduced

by the logic necessary for the reconfiguration mechanism (i.e. instruction adapter and mem-

ory router modules) than to the overprovision of actual architectural functional blocks (i.e.

issue slots and function units). Table 5.3 confirms that, in terms of FPGA resources, this

overhead is limited to 10% of the largest candidate ASIP configuration. Moreover, since the

memory router and instruction adapter are mostly combinational modules, the overhead is

almost entirely consumed by the look-up table (LUT) FPGA slice logic.

Also, a comparison related to the logic synthesis maximum operating frequency is pre-

sented, being this a limiting factor for the overall emulation speed. Results presented in Ta-

ble 5.4 show that critical path is almost not impacted (less than 0.1%) by the presence of the

hardware structures implementing reconfiguration support. This result is particularly rele-

vant, since the instruction adapter and memory router are made out of almost completely

combinational logic, therefore their potential impact on the critical path was high. How-

ever, after the insertion of such modules, the critical path still resides inside more complex

function units (e.g. multiply-and-accumulate) and is not affected by the inserted logic. The

minimal increase is due to unpredictable behaviors of the synthesis algorithm.

The results show how the overhead reduction mechanisms explained in Sect. 5.1.9 ef-

fectively allow to perform prototyping of a reasonable number of different configurations

without significant emulation time degradation.

Occupied Slices Slice Registers Slice LUTs

Largest 19859 6923 16387

configuration

WCC 21278 6931 17951

(+7.1%) (+0.001%) (+9.5%)

Table 5.3: FPGA hardware overhead figures

Critical path

Largest configuration 9.809ns

WCC 9.817ns

Table 5.4: FPGA critical path overhead figures

Chapter 6

Extending FPGA fast prototyping

through binary manipulation

This chapter will present an alternative approach to the hardware-based fast FPGA prototyp-

ing, thanks to a custom-developed algorithm designed to operate on application binaries,

obtained from SiliconHive C compiler. In this approach, to increase the emulation speed-

up, author exploits translation of application binary code, compiled for a custom VLIW ASIP

architecture, into code executable on a different configuration. This allows to prototype a

whole set of ASIP solutions after one single FPGA implementation flow, mitigating the afore-

mentioned overhead. In the toolset, the resulting evaluation platform serves as an underly-

ing layer for a Design Space search algorithm. This method is able to provide latency num-

bers, or any other interesting performance metrics such as area, energy and power figures,

that can fed SESAME simulator and start a design space exploration process with the afore-

mentioned tools.

6.1 FPGA-based prototyping platform

The FPGA-based prototyping platform, as mentioned, is used to provide detailed character-

ization numbers when needed by the optimization process. The evaluation can be done at

component-level on a single ASIP (during preliminary characterization) or on a complete

system-level configuration. The inputs to the prototyping phase are:

• the partitioned application code (coded in plain C)

• a set of ASIP architectural specifications, describing the processor configurations to be

evaluated, expressing number and kind of template building blocks and their connec-

tivity, according to the reference architectural template previously described;

• a system-level specification, describing the system architecture in terms of number

and kind of processing elements and defining their connectivity. When performing

the preliminary calibration step, the system-level specification is a default single-ASIP

system that includes a host processor in charge of uploading the binaries in the ASIP

memories. When performing a system-level evaluation, the multi-ASIP specification is

45

46 CHAPTER 6. EXTENDING FPGA FAST PROTOTYPING THROUGH BINARY MANIPULATION

automatically created by the Design point description generation tool shown in Figure

4.1.

Both the ASIP- and the system-level specifications (both indicated as Design point configura-

tion description in Figure 4.1) are expressed in a proprietary industrial format. This enables

to exploit the tools in the industrial flow ([41]) that is taken as reference within the project,

aimed at the design and the programming of ASIP architectures compliant with the previ-

ously described general template. The tool suite includes HDL generators and a retargeting

compiler, and envisions a typical ASIP design flow. A configuration description is passed

to the RTL constructor, that analyzes it and provides as output the VHDL description of the

whole architecture. This HDL code is used as input for the FPGA implementation phase, that

can be performed with standard commercial tools. The target application code is compiled

by means of an adequate compiler, retargeting itself according to the instruction set and the

architectural features of the processor under prototyping. After compilation, the program

can be executed on the ASIP implemented on FPGA. In order to enable fast on-FPGA evalu-

ation of multiple design points, such flow has been extended within the project as shown in

Figure 6.1.

Figure 6.1: Prototyper block diagram

The prototyping speed-up technique developed within MADNESS focuses on the identi-

fication of what it’s named a worst case configuration (WCC), i.e. a processor configuration

6.1. FPGA-BASED PROTOTYPING PLATFORM 47

that is over-dimensioned with the hardware resources necessary to emulate all the configu-

rations included in the predefined set of candidates. Once the WCC has been implemented

on FPGA, to evaluate different design points, on top of it the binaries obtained compiling

the target application for each candidate configuration are adapted by means of a custom-

defined manipulation algorithm and then executed. The manipulation is aimed at activat-

ing only the needed subset of the WCC circuitry, to mime the prototyping of the considered

design point after a stand-alone implementation and programming flow. During the exe-

cution, it’s possible to obtain, by means of dedicated counters automatically instantiated in-

side the HDL code before synthesis, performance and switching activity metrics. To evaluate

every candidate architecture only the meaningful counters inside the WCC are considered,

assuring the obtained results to be perfectly equivalent to those obtainable from its “single-

configuration” prototyping.

6.1.1 The WCC synthesis algorithm

In the extended flow, all the design points under test are provided to the flow at the beginning

of the iterative process. The WCC is defined by updating it at each iteration according to the

design point under analysis. At iteration N (i.e. parsing the N − th candidate configuration

under test c)

• The number of issue slots inside c is identified and compared with previous iterations.

A maximum search is performed, then, if needed, the WCC is modified to instantiate

NI S(W CC) issue slots, where

NI S(W CC) = max{NI S(i)} for i = 1, ..., N ;

• For every issue slot x inside c, the size of the associated register file is identified and

compared with previous iterations. A maximum search is performed, then, if needed,

the register file related to the issue slot x inside the WCC is resized to have RF _s(x,W CC)

locations, where

RF _s(x,W CC) = max{RF _s(x, i)} for i = 1, ..., N ;

• For every issue slot x inside c, the set of FUs is identified and compared with previous

iterations. The issue slot x inside the WCC is modified, if needed, to instantiate a set of

FUs being the minimum superset of FUs used in previous configurations:

FU _set (x,W CC) =

FU _set (x,c)∪FU _set (x, i) for i = 1, ..., N ;

6.1.2 The binary manipulation algorithm

For each candidate architecture, knowing the architectural parameters, the instruction bits

can be partitioned in sub-ranges that identify specific control directives to the datapath,

such as operation codes (selecting specific function units and specific operations inside

issue slots), index values specifying the locations to be accessed in the register files, and

48 CHAPTER 6. EXTENDING FPGA FAST PROTOTYPING THROUGH BINARY MANIPULATION

configuration patterns for the connectivity matrices controlling the propagation of the com-

puting data through the datapath. The width and the position of each range are statically

dependent on the architectural configuration that must execute the instruction. For each

field, a disabling configuration is defined, able to determine a no-operation for the related

datapath part. The algorithm presented hereafter assumes, according to the structure of

the instruction word for the considered ASIP flow and for most VLIW architectures, the size

and position of each instruction field to be univocally determined a priori once processor

architecture is specified, thus allowing to correctly predict instruction structure. The gen-

eral idea is then to manipulate each single instruction field of a candidate configuration, in

order to fit it (modified in position, size and value) in the WCC instruction format. The en-

tire set of these structures represent a full description of the instruction format for the can-

didate architecture: these values, automatically extracted in the analysis phase and paired

with WCC description, are sufficient to implement the binary translation feature. Further-

more, if differences in hardware require modifications of the value associated to a particu-

lar architecture instruction field (e.g. an issue slot has a different set of function units in a

candidate architecture than the corresponding one instantiated in WCC), offset values are

computed by the parser and stored in an extension of cited data structure associated with

that field, ready to be added to field values by the algorithm when needed. We now present

the main steps involved in translating a binary application for a target configuration. First,

each parsed candidate architectural description is analyzed by the tool, and compared to

the WCC description, to identify: the position and the size of the field inside the candidate

instruction word, the position and the size of the field in the WCC, and an “offset” indication

to be considered during adaptation.

struct field_s field_A_n = {6, 4}; //{position, size}

struct field_s field_A_wcc = {8, 6};

struct offset_s offset_A_wcc = {0};

struct field_s field_B_n = {14, 3};

struct field_s field_B_wcc = {25, 6};

struct offset_s offset_B_wcc = {0};

struct field_s field_C_n = {31, 3};

struct field_s field_C_wcc = {44, 5};

struct offset_s offset_C_wcc = {1};

A strict one-to-one relationship is thus established between each processor slice (and the

related instruction fields) in the candidate architecture and a corresponding processor slice

miming it in the WCC. The information contained inside the “offset” structure indicates how

the value in the related candidate instruction must be modified, taking into account hard-

ware structures instantiated in the WCC but not involved in the prototyping of the consid-

ered design point.

For every instruction in the candidate binary, a WCC instruction word is then populated

with corresponding values read from the candidate instruction word.

If value needs to be modified due to differences in hardware between WCC and candi-

date, the corresponding offset value is added to the value written in destination field. It may

also happen that a disabling configuration (i.e. an opcode that disables a function unit, or

a register file output port) is found: this value is eventually extended on its most significant

bits with ones, to match differences in length, and written in the appropriate field of WCC

6.1. FPGA-BASED PROTOTYPING PLATFORM 49

















































































Figure 6.2: Flowchart for instruction manipulation algorithm.

50 CHAPTER 6. EXTENDING FPGA FAST PROTOTYPING THROUGH BINARY MANIPULATION

instruction.

An example is depicted in Figure 6.3.

6.1.3 Software support for binary manipulation

Software support for binary translation is provided within the proposed framework, and is

included in already presented tools. All the binary manipulations are done on a host ma-

chine before programming the FPGA and uploading application code on it, such that is con-

venient to perform multiple translations of the application binary and adapt it for different

configurations. Obtained translated binaries can be loaded on FPGA onboard memory, and

subsequently executed on the ASIP prototyping platform only by invoking a custom C func-

tion in the application flow, in charge of selecting the correct binary code for the desired

emulated configuration and uploading it to ASIP program memory. At the end of each on-

ASIP execution, metrics are automatically extracted from the platform, accessing memory-

mapped counters, obviously excluding those related to hardware elements that are instanti-

ated within the WCC but are not involved in the prototyping of a specific configuration under

test.

  



  

 

































  

   

Figure 6.3: Example of manipulation of an instruction word. First field is left-extended to

obtain the same length of corresponding field on the WCC; second field represents a dis-

abling configuration adapted for WCC; third field is left-extended and modified, due to the

presence of an offset value.

6.2. INTERFACING THE TOOLS THROUGH CO-SIMULATION 51

6.2 Interfacing the tools through co-simulation

In order to enable the calibration data to be comfortably accessed by the DSE environment,

a dedicated support for extracting the emulation results from the FPGA was implemented,

exploiting Xilinx SysGen toolbox for Matlab.

The toolbox enables to define shared memories that can be accessed either by the hard-

ware modules implemented on the FPGA, or by a Simulink instance running on a host work-

station. In this way, it is sufficient to connect the performance counters inside the processors

and the other modules in the system to such memories, to have a user-friendly interface to

the evaluation platform.

The HDL generator was enhanced in order to automatically set-up the needed connec-

tions and wirings to support the counter values fetching. More in detail, the HDL generator

was slightly modified in order to set-up the needed connections, defining the needed wiring

resources and instantiating an “address generator” to dispatch the different counter values

to different shared-memory locations.

Simulink objects and Matlab funtions can, at the other end, read from the shared mem-

ory activity values and counts to make them available for plotting or in the workspace. Being

the DSE environment also implemented using Matlab, this results in an efficient method

implementing the exchange of data between the tools (i.e. to implement the transfer of the

previously described calibration table). In Figure 6.4 a screenshot of the framework user

interface is shown.

6.3 Use Case

In this section, a typical use case of the previously described integrated toolset, where the

FPGA-based prototyping platform is used for preliminary calibration of the simulation model,

is presented. The target application is a motion-JPEG (MJPEG in the following) video com-

pression kernel. The use case is a DSE process that optimizes the mapping of the application

parallel tasks on a selected set of ASIP configurations. During the calibration, an exploration

of the component-level design space exposed by the ASIP template was done, evaluating 18

different ASIP configurations under the workload related with the execution of the parallel

tasks inside the MJPEG task-graph. The explored design points were identified considering

different permutations of the following parameter values:

• NI S(c): 2 or 3 or 4 or 5;

• FU _set (x,c): two different sets of FUs were considered, basically differing only for the

inclusion of a multiply-and-accumulate FU (MAC), that is the most power/area hungry

inside the library;

• RF _si ze(x,c): 8 or 32 entries, each 32-bits wide;

A filtering kernel was compiled for every candidate configuration and the resulting binaries

were executed on the WCC prototype, after being adequately manipulated. During the pre-

liminary calibration phase, as previously explained, a system with a host processor and one

over-dimensioned ASIP core was designed. The host processor is in charge of reading the

adapted binary from its local memory and upload it to ASIP program memory. After the bi-

nary file has been uploaded, host processor triggers the ASIP core for its start and wait until

52 CHAPTER 6. EXTENDING FPGA FAST PROTOTYPING THROUGH BINARY MANIPULATION

Figure 6.4: Screenshot of the Matlab GUI after a prototyping of a 4-tasks application kernel

executed on 4 ASIP configurations. On the top-left (in the workspace) the calibration table

of latency numbers to be passed in input to the simulation tool. On the right the Simulink

model used to access the shared memories implementing the interface with the FPGA proto-

type. At the bottom detailed emulation data plotted as histograms. Below the latency values,

the FPGA seen as a black box by the Matlab/Simulink environment.

the end of its execution, to fetch from ASIP local memory the results of the execution and

eventually to check them for the presence of any errors.

The adopted hardware FPGA-based platform features a Xilinx Virtex5 XC5VLX330 device,

counting over 2M equivalent gates.

The synthesis/implementation flow, performed on an Intel Quad-Core machine with

commercial tools, required less than half an hour to complete. Binary translation was also

performed on the same machine, but the related overhead in terms of emulation time is

negligible (less than a second). According to this numbers, the presented approach allows a

time saving that increases with the number of candidate topologies under prototyping, easily

outperforming software-based simulation. The results of the preliminary component-level

DSE are plotted in Figure 6.5. All the presented data are obtained after traversing only one

synthesis/implementation flow. Area numbers are evaluated according to the ASIP config-

uration features and to area models provided by the industrial partners in the MADNESS

project. Similar models are also available for energy, but the possibility of evaluating power

6.3. USE CASE 53

Figure 6.5: Pareto plot representing the latency values included in the calibration table anno-

tated with the area value corresponding to the related ASIP configurations. Different symbols

are used to represent values associated to different tasks in the MJPEG kernel

consumption, even if enabled at both simulation- and prototyping-level, is not discussed

in this work. As may be noticed, all the tasks show to have similar behavior with respect

to the fitting to the different candidate ASIP architectures. Design points that, for all the

tasks, experience an execution time much longer than the others (right end of the graph)

are those that do not feature any MAC, that, evidently, is intensively exploited for the kind of

workload in the MJPEG kernel. Besides estimating computation latency for the tasks in the

target application, the prototyping phase can be used to identify computation bottlenecks

and congestion hot-spots inside the architecture. As an example, we show in Figure 6.6 a

graph reporting number of accesses to every function unit and register file in a candidate

ASIP configuration, during the execution of the MJPEG kernel.

As may be noticed, in the presented example, the WCC is used to evaluate a design point

featuring only 3 issue slots, thus the activity counters related to issue slots 3 and 4 are never

stimulated and must not been considered when evaluating the design point.

After the calibration step, the system-level DSE process can be initiated. The DSE en-

gine can start evaluating different design points using the simulation model. The simulation

model is able to tune itself by reading, directly from the Matlab workspace, the data inside

the previously mentioned characterization table. As an example of the achievable results, we

show in Figure 6.7 the Pareto graph obtained after an exploration process that involved an

iterative evaluation of 100 generations with each population composed of 50 solutions each.

This implies 500 evaluations performed by the toolset. The whole DSE experiment, after

calibration, required 35 minutes on the previously mentioned Intel Quad-Core workstation.

54 CHAPTER 6. EXTENDING FPGA FAST PROTOTYPING THROUGH BINARY MANIPULATION

Figure 6.6: Detailed calibration results at functional block level

Figure 6.7: GUI of the DSE framework, plotting the results obtained for the MJPEG use case

6.4. EXTENDING BINARY MANIPULATION TECHNIQUES FOR FAULT-TOLERANCE SUPPORT 55

As may be noticed in the Pareto graph, after the DSE process, a set of design points has

been identified, showing different performance (execution time) vs cost (area) trade off. The

fastest and more area-hungry Pareto point (top-left of the graph) features one host processor

(executing the VideoIn task) and three ASIP processors. The three selected configurations are

different, featuring respectively 4 ISs (3 equipped with MAC, executing the DCT task), 4 ISs

(2 equipped with MAC, executing both Vle and Q) and 3 ISs (1 with MAC executing Vout).

However a solution providing the same execution time but requiring less hardware is also

identified, mapping DCT and Vout on the same processors, but using two different smaller

processors for Vle and Q (respectively featuring 1 IS without MAC and 2 ISs with one MAC).

The slowest and cheapest solution (the Pareto point at the bottom-right corner of the plot) is

a single-ASIP featuring only one instance of the cheapest processor (1 processing issue slot

without MAC), that is in charge of executing all the tasks in the target application kernel.

Besides providing the plot in the figure, the process collects the simulation results for all the

evaluated design points and the related HDL system-level description, in order to enable the

protoyping of a multi-ASIP design point on the FPGA platform.

6.4 Extending binary manipulation techniques for

fault-tolerance support

6.4.1 Overview on fault-tolerance techniques

With the growing number of transistor on a single chip, technology scaling and high wiring

density, fault probabilities have grown alongside with performances, limiting the overall

ability of the processors to be available in an extended life period. Indeed, BER (bit error

rate) value in a modern processor is ten times bigger than the one of a memory chip, mainly

due to the higher complexity of the first. Considering all of this, fault-tolerance techniques

must be adopted in order to guarantee availability for mission critical applications: as an ex-

ample, Intel Itanium architecture provides important mechanisms such as Machine Check

Abort along with standard Error Correcting Code to optimize overall dependability of the

chip.

A classic approach to fault-tolerance is represented by triple modular redundancy (TMR),

consisting in three different phases of intervention: detection, where the presence of a fault

is determined and, if possible, its nature is evaluated (temporary vs. fixed, minor vs. criti-

cal); location, during which fault is located in a precise hardware module; recovery, tentative

approach to restore normal execution. Recovery is generally obtained thanks to redundant

hardware resources, that can be spare units (not used during normal execution flow), or they

can also be parts of the core that serves both during normal flow and recovery state.

To demonstrate the feasibility of supporting fault-tolerance in this platform, the work

presented here is based on an off-line instruction remapping method, requiring easier con-

trol structures on the hardware and avoiding to interfere and slow down application exe-

cution with on-line checking/remapping routines. However, should this approach prove as

being interesting for a prospective implementation, interesting research can be conducted

on the topic of extending support to on-line remapping techniques, developing appropriate

hardware modules to detect faults and leveraging the instruction manipulation techniques

described here for task remapping.

56 CHAPTER 6. EXTENDING FPGA FAST PROTOTYPING THROUGH BINARY MANIPULATION

6.4.2 Pearl and Pearl_FT processors

For the sake of this work, two simple VLIW architectures are considered: the first is a Pearl

processor, a two-ways processor developed by SiliconHive, with the first issue slot equipped

with basic control/logic function units, and a second slot sporting arithmetic and DSP-oriented

function units. Starting from this template, Pearl_FT was developed, by means of replicat-

ing the second issue slot and instantiate it as a spare unit, where instructions could have

been remapped by developed algorithm. A general assumption has been made, requiring

that each detected fault can occur in the second issue slot, thus allowing to easily remap the

operation on the spare issue slot. This also doesn’t require recompilation of application code

for both the processors, since applications compiled for Pearl processor will be executable

transparently on the Pearl_FT variant.

6.4.3 Remapping algorithm

In the workflow described here, author assumes that, at some point of the application ex-

ecution, a fault has been detected and program execution has to be aborted. A general as-

sumption on fault localization was made, consisting in the possibility of finding faults only

on the second issue slot of Pearl processor.

Exploiting the binary manipulation already described in 6.1.2, the toolchain is instructed

to remap each operation from the second issue slot, where it was scheduled originally, onto

the spare issue slot added in the Pearl_FT.

Performing this operation is more or less the same process as described in the already

referenced section, but another important aspect on the interconnect wirings has to be kept

into account. Since instruction word not only contains opcodes and operands for the func-

tion units, but also the signals that drive multiplexors and other interconnection hardware

elements, relevant bits of the instruction have to be modified, so to move the input/output

paths to/from the spare issue slot onto the correct register file connected to it.

Once these operations have been performed, it’s possible to seamlessy execute an ap-

plication compiled for the Pearl processor onto the Pearl_FT cell, without any access to the

second issue slot hardware resources that were marked as faulty. Again, it’s useful to point

out that this can be obtained without any recompilation of the application, but simply lever-

aging the remapping and instruction manipulation algorithms.

Chapter 7

SESAME: high-level simulation for

heterogeneous MPSoCs

7.1 General description

As described in Section 4.3, SESAME is a framework for high-level simulation. Inside the

MADNESS FP7 Project, usage of SESAME has been envisioned as a center point for DSE

of heterogeneous multi-processor systems. Its three-layered structure can be described as

composed by:

• the application model, that describes the functional behavior for an application;

• the architecture model, that defines architecture resources and their performance char-

acteristics;

• the mapping model, specifying which tasks of the application are to be mapped on

which part of the architecture.

SESAME framework can be useful both at system-level and component-level DSE: for the

first part, it tries to help designers in choosing how many processors to instantiate for a given

application, how to map tasks onto processors, how should processor communicate among

each other. Furthermore, for what concerns component-level DSE, the problem lies in how

to configure the processing elements, or, in the case of multiple available ASIPs configura-

tions, which ones to choose among them.

In this work, particular focus is put on the architectural model, since it was extended to

support other forms of interconnect (see following sections).

7.1.1 Kahn Process Network paradigm

Application considered for this simulation framework all follow the KPN paradigm ([22]): in

such an approach, parallel processes communicate among them through FIFO channels at

their ends. In Kahn paradigm, reading from a FIFO is a blocking operation, while write oper-

ation is not: KPN model is very suitable for dataflow applications (like multimedia process-

ing), thus is chosen by SESAME as the ideal paradigm to describe applications. Furthermore,

57

58 CHAPTER 7. SESAME: HIGH-LEVEL SIMULATION FOR HETEROGENEOUS MPSOCS

no matter what the process scheduling can be, they provide determinism in terms that each

input application will always lead to the same output.

Workload of each application, transformed into a KPN-compliant model by means of

manual intervention or through automated frameworks ([42]), is annotated by marking oc-

currencies describing computational and communication events of the application: this

leads to the generation of traces driving the architectural model of SESAME simulator.

7.1.2 Design point description generation

In order to obtain the functionality already described in Section 4.3, a custom C tool ap-

plication was developed by the author. Once the DSE algorithm produces as output a set

of design points to be evaluated, both the FPGA prototyper and SESAME simulator needs

adequate inputs to simulate those architectures and obtain relevant figures.

The developed tool is in charge of performing exactly this operation: starting from an

abstract specification, obtained from DSE engine output, the tool produces adequate input

files for FPGA prototype builder and for SESAME simulator.

For what concerns FPGA, a topology input file is created, representing an equivalent

mapping of the design point, with automatic link instantiation between desired cores and

route generation; on the other hand, a YML description of the architecture is produced for

SESAME framework, along with routing functions that are in charge of simulating the flits

exchange that occur on a NoC interconnect.

These operations are performed automatically and seamlessly among the different ap-

plications involved: also, files are placed in the correct directories by the tool itself, enabling

an automated workflow based on scripted operations.

7.2 Extending SESAME to support Network-On-Chip

interconnects

The aim of the work here described is the provisioning of an alternative approach for simu-

lations of heterogeneous systems containing a NoC interconnect. Before this extension, an

RTL simulation was needed to evaluate performance of a given architecture, coupled with

a particular network topology and task mapping infrastructure. RTL simulations are time-

hungry and overdetailed considering that one could just need latency numbers for their sys-

tem being benchmarked. So, the solution was seen in an enrichment of SESAME framework,

already used for complex MPSoCs high-level simulations, in order to support our Network-

On-Chip interconnect. As already discussed before, SESAME is mainly composed by three

different layers: application, mapping and architecure. With respect to the extension of the

framework to support NoC, the architectural layer was enhanced with custom-developed

building blocks, in order to model the missing Network On Chip components. Furthermore,

the critical part of the work was represented by the calibration of NoC blocks latencies for

communication/computational patterns, so that they could reflect real hardware behavior

and provide consistent performance metrics (see Section 7.2.4).

7.2. EXTENDING SESAME TO SUPPORT NETWORK-ON-CHIP INTERCONNECTS 59

7.2.1 NoC interconnect architecture

The interconnect structure is based on SHMPI framework ([33]), based on successive cus-

tomizations of xpipescompiler ([20]) NoC architecture, that can be roughly described as

composed by these basic elements:

• network interface;

• switch;

• link.

Network Interface

The NI connects cores (processing units) to the Network. It’s in charge of building the header

of the packet thanks to the information stored inside an internal look-up table. The packet

is then divided in multiple chunks, called flits, and injected into the network.

Switch architecture

Switches are designed to interconnect and exchange packets between different elements of

the network. They are designed with forward flow control, meaning that a flit is only sent

to the next switch whether it has available space to store it. Switch is equipped with a set

of registers that act as buffer to store incoming flits, given the fact that each flit has to be

acknowledge upon reception by the receiver.

Link element

Links can have different lengths inside the interconnect, thus different paths may be instan-

tiated inside a network: this suggested to design links as a collection of basic segments, each

one requiring a single clock cycle to be traversed.

7.2.2 Topology file example

A completely custom interconnect can be described, in terms of number of cores, number of

switches, links configuration and network topology. Description is done through a text file

specification (example following).

topology(nocxplorer_custom_top, other);

core(core_0, switch_0, 1, 6, userdefined, initiator);

core(core_1, switch_0, 1, 6, userdefined, initiator);

core(core_2, switch_1, 1, 6, userdefined, initiator);

core(core_3, switch_1, 1, 6, userdefined, initiator);

core(pm_4, switch_0, 1, 6, double, target:0x10, high:0x1000ffff);

core(pm_5, switch_0, 1, 6, double, target:0x12, high:0x1200ffff);

core(pm_6, switch_1, 1, 6, double, target:0x14, high:0x1400ffff);

core(pm_7, switch_1, 1, 6, double, target:0x16, high:0x1600ffff);

switch(switch_0, 5, 5, 6, 0, 0);

switch(switch_1, 5, 5, 6, 1, 0);

60 CHAPTER 7. SESAME: HIGH-LEVEL SIMULATION FOR HETEROGENEOUS MPSOCS

link(link0, switch_0, switch_1);

link(link1, switch_1, switch_0);

The description file is parsed by a compiling utility that produces, as output, complete

HDL description of each NoC element, including parametric switches and NIs, along with a

convenient Xilinx ISE project file that allows user to synthesize and implement on FPGA the

created design in a matter of minutes.

7.2.3 SESAME NoC blocks

Custom blocks can be easily added to SESAME by describing them in a particular format,

called Pearl (a C-like descriptive language). To enable the usage of SESAME for this purpose,

NIs, switches, links and virtual memory channels were created, aiming at a realistic descrip-

tion of network hardware dynamics. An extract from a file describing a NoC element (switch

input port) is reported below:

#include "debug.h"

class switch_port_in

id : integer

nswitches : integer

switch_t = [nswitches] switch_port_out

switches : switch_t

out_port :integer

mask : integer = -1

shift : integer = -1

read_size : integer = 0

read_time : integer = 0

write_size : integer = 0

write_time : integer = 0

send_time : integer = 0

send_count : integer = 0

reply_time : integer = 0

reply_count : integer = 0

read:(vid:integer, size:integer,route:integer) {

t : integer = timer()

// blockt(size * latency);

blockt(SWITCH_LAT);

out_port=port_select(route, nswitches);

VP(VNOC,("%s: sending read over noc, route: %d\n", whoami(), route));

VP(VNOC,("%s: using port: %d\n", whoami(), out_port));

7.2. EXTENDING SESAME TO SUPPORT NETWORK-ON-CHIP INTERCONNECTS 61

route = update_route(route, nswitches);

VP(VNOC,("%s: sending read over noc, route: %d\n", whoami(), route));

switches[out_port] !! read(vid,size,route);

read_time += timer() - t;

read_size += size;

}

write:(vid:integer, size:integer,route:integer) {

t : integer = timer()

// blockt(size * latency);

blockt(SWITCH_LAT);

out_port=port_select(route, nswitches);

route = update_route(route, nswitches);

switches[out_port] !! write(vid,size,route);

write_time += timer() - t;

write_size += size;

}

// parameters not right. need to pass source

send_request:(vchan:vchannel, src:integer, route:integer) {

t : integer = timer()

// blockt(size * latency);

blockt(SWITCH_LAT);

out_port = port_select(route, nswitches);

VP(VSEND,("%s: sending send_request over noc, route: %d\n", whoami(), route));

VP(VSEND,("%s: using port: %d\n", whoami(), out_port));

route = update_route(route, nswitches);

VP(VSEND,("%s: send_request updated route: %d\n", whoami(), route));

switches[out_port] !! send_request(vchan, src, route);

blockt(REQ_PACKET_LAT);

send_time += timer() - t;

send_count += 1;

}

62 CHAPTER 7. SESAME: HIGH-LEVEL SIMULATION FOR HETEROGENEOUS MPSOCS

The files containing the description are compiled by SESAME internal tools, producing a

simulator model. To proceed, user must provide an application to be mapped onto the ar-

chitectural model (a simple producer-consumer benchmark and an MJPEG implementation

were used), and a consistent mapping to specify which task should by executed by each of

the processors instantiated in the system.

7.2.4 Calibrating the NoC model

Described NoC model for SESAME simulator it’s not enough to prove it as an accurate way of

simulating complex applications with a high-level approach, rather than benchmarking the

platform through long and complex RTL simulations. As described earlier, initial calibration

was needed, so to obtain, for internal network operation latencies, a consistent value to be

inserted in the high-level model. Calibration involved two different types of operations:

• read-write operations, representing communication among NoC elements (e.g. flits

exchange);

• execute operations, representing computations performed (e.g. FIFO channels instan-

tiation, full/empty check).

To perform calibration, a simple producer-consumer application was chosen (see Figure

7.1): two different processors communicate through FIFOs, the first producing tokens while

the latter consumes them. The protocol is engineered so that consumer sends a request each

time its FIFO channel is empty, and the producer stops creating tokens once its FIFO is full.

Figure 7.1: Producer-Consumer application used for the calibration of the model

More in detail, a list of the latency elements identified during NoC blocks design is hereby

reported:

• delay in enabling/disabling interrupt - cycle of instructions needed to perform inter-

rupt toggling;

• delay in token receiving - calculated from last token arrival to first token copied in

FIFO;

• delay in transfer request - computation time needed to produce a request from CPU;

• delay in checking if FIFO is empty;

7.2. EXTENDING SESAME TO SUPPORT NETWORK-ON-CHIP INTERCONNECTS 63

• delay in checking if FIFO is full;

• delay in copying a byte from memory to FIFO - only for producer;

• delay in copying a byte from FIFO to memory - only for consumer;

• delay in memory access for producer - independent of transfer size;

• delay in memory access for consumer - independent of transfer size.

To perform this tuning, the approach can be described in the following sequence of steps

(algorithm 2):

ALGORITHM 2: Calibration of NoC building blocks

Input: a set of calibration applications; a set of network topologies

for topology, application do
port the application on SESAME framework using the described topology;

port the application on the RTL hardware model onto an equivalent topology;

execute RTL simulation of the application;

for latency element do
extract the latency value from RTL simulation through counting of clock ticks;

set the corresponding SESAME latency element to this value;
end

end

RTL simulation were performed with ModelSim on a Intel Quad-Core workstation. Cal-

ibration was performed by means of accurate clock ticks evaluation for each operation, ob-

tained from waveform simulation coupled with the help of disassembled code, in order to

know at each instant the operation performed by the CPU. Once calibration phase has been

completed, focus can be moved on validating the correctness of proposed method, through

a typical use case of this setup, as described in the next section.

7.2.5 Use case

To demonstrate the validity of this approach, the calibrated model has been used to obtain

performances of an MJPEG implementation, mapped onto different processors and inter-

connect network topologies, and comparing the results of the high-level simulation with

those coming from RTL simulation of the very same application.

More in detail, the MJPEG application has been partitioned into different tasks, parti-

tioned onto four MicroBlaze processors instantiated through the SHMPI system builder:

• video_in task, managing input sample acquisition - mapped on CORE0;

• DCT, discrete cosine transform - mapped on CORE1;

• Q, quantization - mapped on CORE2;

• VLE, variable-length encoding - mapped on CORE3;

• video_out task, transferring output image to external memory - mapped on CORE3.

64 CHAPTER 7. SESAME: HIGH-LEVEL SIMULATION FOR HETEROGENEOUS MPSOCS

To stimulate different conditions of work, three interconnect topologies were developed,

each one with a different number of switches (one, two, three): thanks to this, different net-

work congestion situations were introduced, allowing to extensively evaluate the behavior

of the proposed high-level simulation model. As an example, Figure 7.2 describes the three-

switches topology used to execute MJPEG application.

Figure 7.2: MJPEG application mapped on 4 cores, 3 switches network topology

In Figure 7.3 is shown the graph containing minimum, maximum and average unac-

curacy of the high-level simulation model, for the MJPEG application (single frame run),

mapped onto the different architectures. Results can be considered very promising, since

the error rate is not heavily affected by the change of topology interconnect, and its average

is under 2%, confirming that obtained latency numbers are quite dependable even com-

pared to the exact, clock-precise latency values obtained from RTL simulation.

7.2. EXTENDING SESAME TO SUPPORT NETWORK-ON-CHIP INTERCONNECTS 65

Figure 7.3: Min, max and avg error for latency values

Chapter 8

Conclusions

In this work, a novel approach to the application-driven design, configuration and program-

ming of multi-ASIP systems, based on a combination of trace-based high-level simulation

performed by SESAME framework and FPGA-based emulation, is presented and evaluated.

The main point of strength of the proposed approach relies on the complementarity of the

high-level simulation and the FPGA evaluation methods. While simulation, once duly cali-

brated, is capable of exploring vast design spaces in reasonable times, FPGAs, if the overhead

related with on-hardware implementation is adequately reduced, are a convenient platform

for rapidly evaluating sets of design points with component-level detail and complete ac-

curacy. To reduce the amount of time needed for standard FPGA exploration flows, it has

been shown how to exploit both an automatic hardware module instantiation or manipula-

tion of the application binaries to obtain different VLIW ASIP architectures being emulated

on-hardware by mapping them via software on a larger worst case configuration.

Furthermore, the SESAME simulation framework has been enriched with support for Network-

on-Chip interconnects, broadening the range of systems that can be evaluated through this

methodology. In addition to the classic functional metrics (e.g. execution time, access rate,

IPC, resource congestion), the presented framework has been proven to be able to produce

physical metrics (e.g. area obstruction, leakage static power, dynamic power and energy con-

sumption) for a prospective implementation of the ASIP system. Each approach has been

evaluated with use cases that helps to validate the usefulness of the entire framework as an

effective support to quantitative design space exploration or simply as an environment for

rapid prototyping of complex ASIP-based platforms. Future developments of this work will

go towards the provision, by extending and improving the fundamental mechanisms pre-

sented in this article, of support for adaptiveness and on-line fault tolerance techniques in

ASIP single- and multi-core platforms. Also, significant improvements can be obtained by

developing more accurate models for the collection of interesting functional metrics, such

as those presented before, allowing designers to be presented with a comprehensive and ac-

curate benchmark over each configuration they intend to evaluate for a prospective ASIC

implementation.

67

Bibliography

[1] Multicube. www.multicube.eu. [cited at p. 8]

[2] F. Angiolini, Jianjiang Ceng, R. Leupers, F. Ferrari, C. Ferri, and L. Benini. An integrated open

framework for heterogeneous mpsoc design space exploration. In Design, Automation and Test

in Europe, 2006. DATE ’06. Proceedings, volume 1, pages 1 –6, march 2006. [cited at p. 8]

[3] Eduardo Argollo and et al. COTSon: Infrastructure for Full System Simulation. SIGOPS Oper.

Syst. Rev., 43(1):52–61, 2009. [cited at p. 6]

[4] G. Ascia, V. Catania, M. Palesi, and D. Patti. A system-level framework for evaluating area/per-

formance/power trade-offs of vliw-based embedded systems. In Design Automation Conference,

2005. Proceedings of the ASP-DAC 2005. Asia and South Pacific, volume 2, pages 940 – 943 Vol. 2,

jan. 2005. [cited at p. 6]

[5] Todd Austin, Eric Larson, and Dan Ernst. Simplescalar: An infrastructure for computer system

modeling. Computer, 35:59–67, February 2002. [cited at p. 6]

[6] Luca Benini, Davide Bertozzi, Alessandro Bogliolo, Francesco Menichelli, and Mauro Olivieri.

Mparm: Exploring the multi-processor soc design space with systemc. J. VLSI Signal Process.

Syst., 41:169–182, September 2005. [cited at p. 6]

[7] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali Saidi, Arkaprava

Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh Sardashti, Rathijit Sen, Korey

Sewell, Muhammad Shoaib, Nilay Vaish, Mark D. Hill, and David A. Wood. The gem5 simulator.

SIGARCH Comput. Archit. News, 39:1–7, August 2011. [cited at p. 6]

[8] Stefan Bleuler, Marco Laumanns, Lothar Thiele, and Eckart Zitzler. Pisa: A platform and pro-

gramming language independent interface for search algorithms. In EMO, pages 494–508, 2003.

[cited at p. 8]

[9] Emanuele Cannella, Onur Derin, and Todor Stefanov. Middleware approaches for adaptivity of

kahn process networks on networks-on-chip. In DASIP’11: Proceedings of the Conference on De-

sign and Architectures for Signal and Image Processing, pages 1–8, Tampere, Finland, November

2-4 2011. [cited at p. 40]

[10] Joseph R. Cavallaro and Predrag Radosavljevic. Asip architecture for future wireless systems:

Flexibility and customization, 2004. [cited at p. 5]

[11] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil A. Patil, William H. Reinhart, Darrel Eric John-

son, Jebediah Keefe, and Hari Angepat. Fpga-accelerated simulation technologies (fast): Fast,

full-system, cycle-accurate simulators. In MICRO, pages 249–261, 2007. [cited at p. 7]

69

70 BIBLIOGRAPHY

[12] Joseph E. Coffland and Andy D. Pimentel. A software framework for efficient system-level perfor-

mance evaluation of embedded systems. In Proceedings of the 2003 ACM symposium on Applied

computing, SAC ’03, pages 666–671, New York, NY, USA, 2003. ACM. [cited at p. 7, 38]

[13] P.G. Del Valle, D. Atienza, I. Magan, J.G. Flores, E.A. Perez, J.M. Mendias, L. Benini, and

G. De Micheli. Architectural exploration of mpsoc designs based on an fpga emulation frame-

work. 2006. [cited at p. 7, 8]

[14] Alessandro G. Di Nuovo, Maurizio Palesi, Davide Patti, Giuseppe Ascia, and Vincenzo Catania.

Fuzzy decision making in embedded system design. In Proceedings of the 4th international con-

ference on Hardware/software codesign and system synthesis, CODES+ISSS ’06, pages 223–228,

New York, NY, USA, 2006. ACM. [cited at p. 6]

[15] A. Falcon, P. Faraboschi, and D. Ortega. Combining simulation and virtualization through dy-

namic sampling. Performance Analysis of Systems and Software, IEEE International Symposium

on, 2007. [cited at p. 6]

[16] N. Genko, D. Atienza, G. De Micheli, L. Benini, J.M. Mendias, R. Hermida, and F. Catthoor. A

novel approach for network on chip emulation. In Circuits and Systems, 2005. ISCAS 2005. IEEE

International Symposium on, pages 2365–2368 Vol. 3, May 2005. [cited at p. 7]

[17] Tony Givargis, Frank Vahid, and Jörg Henkel. System-level exploration for pareto-optimal con-

figurations in parameterized systems-on-a-chip. In Proceedings of the 2001 IEEE/ACM interna-

tional conference on Computer-aided design, ICCAD ’01, pages 25–30, Piscataway, NJ, USA, 2001.

IEEE Press. [cited at p. 7]

[18] Matthias Gries. Methods for evaluating and covering the design space during early design de-

velopment. Integr. VLSI J., 38:131–183, December 2004. [cited at p. 8]

[19] Silicon Hive. Silicon hive sdk reference manual and tim developer’s guide, 2010. [cited at p. 11]

[20] Antoine Jalabert, Srinivasan Murali, Luca Benini, and Giovanni De Micheli. xpipesCompiler:

A Tool for Instantiating Application Specific Networks on Chip. In Proceedings of the Design,

Automation and Test in Europe Conference (DATE), volume 2, 2004. [cited at p. 59]

[21] Z.J. Jia, T. Bautista, A. Nunez, C. Guerra, and M. Hernandez. Design space exploration and per-

formance analysis for the modular design of cvs in a heterogeneous mpsoc. In Reconfigurable

Computing and FPGAs, 2008. ReConFig ’08. International Conference on, pages 193 –198, dec.

2008. [cited at p. 8]

[22] Gilles Kahn. The semantics of simple language for parallel programming. In IFIP Congress, pages

471–475, 1974. [cited at p. 57]

[23] K. Keutzer, A.R. Newton, J.M. Rabaey, and A. Sangiovanni-Vincentelli. System-level design: or-

thogonalization of concerns and platform-based design. Computer-Aided Design of Integrated

Circuits and Systems, IEEE Transactions on, 19(12):1523 –1543, dec 2000. [cited at p. 8]

[24] B. Kienhuis, E. Deprettere, K. Vissers, and P. Van Der Wolf. An approach for quantitative analy-

sis of application-specific dataflow architectures. In Application-Specific Systems, Architectures

and Processors, 1997. Proceedings., IEEE International Conference on, pages 338 –349, jul 1997.

[cited at p. 8]

[25] Alex Krasnov, Andrew Schultz, John Wawrzynek, Greg Gibeling, and Pierre yves Droz. Ramp

blue: a message-passing manycore system in fpgas. In In 2007 International Conference on Field

Programmable Logic and Applications, FPL 2007, pages 27–29, 2007. [cited at p. 7]

BIBLIOGRAPHY 71

[26] Yana E. Krasteva, Francisco Criado, Eduardo de la Torre, and Teresa Riesgo. A fast emulation-

based NoC prototyping framework. In RECONFIG ’08: Proceedings of the 2008 International

Conference on Reconfigurable Computing and FPGAs, pages 211–216, Washington, DC, USA,

2008. IEEE Computer Society. [cited at p. 7]

[27] Choonseung Lee, Sungchan Kim, and Soonhoi Ha. A systematic design space exploration of mp-

soc based on synchronous data flow specification. J. Signal Process. Syst., 58:193–213, February

2010. [cited at p. 8]

[28] Slobodan Lukovic and Leandro Fiorin. An automated design flow for NoC-based MPSoCs on

FPGA. In RSP ’08: Proceedings of the 2008 The 19th IEEE/IFIP International Symposium on

Rapid System Prototyping, pages 58–64, Washington, DC, USA, 2008. IEEE Computer Society.

[cited at p. 7, 8]

[29] Jan Madsen, Thomas K. Stidsen, Peter Kjaerulf, and Shankar Mahadevan. Multi-objective design

space exploration of embedded system platforms. In DIPES, pages 185–194, 2006. [cited at p. 8]

[30] P.S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg, F. Larsson,

A. Moestedt, and B. Werner. Simics: A Full System Simulation Platform. Computer, 35(2):50–58,

Feb 2002. [cited at p. 6]

[31] P. Meloni, S. Pomata, G. Tuveri, S. Secchi, L. Raffo, and M. Lindwer. Enabling fast asip design

space exploration: an fpga-based runtime reconfigurable prototyper. VLSI Design, 2012(Article

ID 580584), February 2012. [cited at p. 9]

[32] P. Meloni, S. Secchi, and L. Raffo. An FPGA-based framework for technology-aware prototyping

of multicore embedded architectures. Embedded Systems Letters, IEEE, 2(1):5 –9, march 2010.

[cited at p. 7]

[33] Paolo Meloni, Simone Secchi, and Luigi Raffo. An fpga-based framework for technology-aware

prototyping of multicore embedded architectures. Embedded Systems Letters, IEEE, 2(1):5–9,

2010. [cited at p. 59]

[34] J.E. Miller, H. Kasture, G. Kurian, C. Gruenwald, N. Beckmann, C. Celio, J. Eastep, and A. Agarwal.

Graphite: A distributed parallel simulator for multicores. pages 1 –12, jan. 2010. [cited at p. 6]

[35] H. Nikolov and et al. Daedalus: Toward Composable Multimedia MP-SoC Design. In DAC ’08:

Proceedings of the 45th annual Design Automation Conference, pages 574–579, New York, NY,

USA, 2008. ACM. [cited at p. 8]

[36] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. A flexible framework for fast multi-

objective design space exploration of embedded systems. In PATMOS, pages 249–258, 2003.

[cited at p. 8]

[37] Gianluca Palermo, Cristina Silvano, and Vittorio Zaccaria. Multi-objective design space explo-

ration of embedded systems. J. Embedded Comput., 1:305–316, August 2005. [cited at p. 7]

[38] Andy D. Pimentel, Cagkan Erbas, and Simon Polstra. A systematic approach to exploring em-

bedded system architectures at multiple abstraction levels. IEEE Trans. Comput., 55(2), 2006.

[cited at p. 22]

[39] Andy D. Pimentel and Roberta Piscitelli. Design space pruning through hybrid analysis in

system-level design space exploration. In Design, Automation and Test in Europe, 2012. DATE

’12. Proceedings. [cited at p. 22]

72 BIBLIOGRAPHY

[40] V. Reyes, T. Bautista, G. Marrero, P.P. Carballo, and W. Kruijtzer. Casse: a system-level modeling

and design-space exploration tool for multiprocessor systems-on-chip. In Digital System Design,

2004. DSD 2004. Euromicro Symposium on, pages 476 – 483, aug.-3 sept. 2004. [cited at p. 8]

[41] SiliconHive. Hivelogic configurable parallel processing platform, 2010. [cited at p. 46]

[42] T. Stefanov, E. Deprettere, and H. Nikolov. Multi-processor system design with espam. In Hard-

ware/Software Codesign and System Synthesis, 2006. CODES+ISSS ’06. Proceedings of the 4th In-

ternational Conference, pages 211–216, 2006. [cited at p. 58]

[43] Zhangxi Tan, Andrew Waterman, Rimas Avizienis, Yunsup Lee, Henry Cook, David Patterson,

and Krste Asanović. RAMP gold: an FPGA-based architecture simulator for multiprocessors. In

Proceedings of the 47th Design Automation Conference, DAC ’10, pages 463–468, New York, NY,

USA, 2010. ACM. [cited at p. 7]

[44] L. Thiele, I. Bacivarov, W. Haid, and Kai Huang. Mapping applications to tiled multiprocessor

embedded systems. In Application of Concurrency to System Design, 2007. ACSD 2007. Seventh

International Conference on, pages 29 –40, july 2007. [cited at p. 8]

[45] K.D. Underwood and K.S. Hemmert. Closing the Gap: CPU and FPGA Trends in Sustainable

Floating-Point BLAS Performance. In Field-Programmable Custom Computing Machines. FCCM

2004. 12th Annual IEEE Symp. on, pages 219–228, 2004. [cited at p. 7]

[46] John Wawrzynek, Mark Oskin, Christoforos Kozyrakis, Derek Chiou, David A. Patterson, Shih

lien Lu, James C. Hoe, and Krste Asanovic. Ramp: Research accelerator for multiple processors.

2006. [cited at p. 7, 8]

[47] S. Wee, J. Casper, N. Njoroge, Y. Tesylar, D. Ge, C. Kozyrakis, and K. Olukotun. A Practical FPGA-

based Framework for Novel CMP Research. In FPGA ’07: Proceedings of the 2007 ACM/SIGDA

15th international symposium on Field programmable gate arrays, pages 116–125, New York, NY,

USA, 2007. ACM. [cited at p. 7]

[48] S. Wong, F. Anjam, and F. Nadeem. Dynamically reconfigurable register file for a softcore vliw

processor. In Design, Automation Test in Europe Conference Exhibition (DATE), 2010, pages 969

–972, march 2010. [cited at p. 7, 8]

List of Publications Related to the

Thesis

Published papers

Journal papers

• MELONI, P., S. POMATA, G. TUVERI, S. SECCHI, L. RAFFO, and M. LINDWER, Enabling fast

ASIP design space exploration: an FPGA-based runtime reconfigurable prototyper, VLSI De-

sign, vol. 2012, no. Article ID 580584: Hindawi, February, 2012.

Conference papers

• JOZWIAK, L., M. LINDWER, R. CORVINO, P. MELONI, L. MICCONI, J. MADSEN, E. DIKEN, D.

GANGADHARAN, R. JORDANS, S. POMATA, et al., ASAM: Automatic Architecture Synthesis

and Application Mapping, Digital System Design (DSD), 2012 15th Euromicro Conference on,

September, 2012.

• MELONI, P., S. POMATA, L. RAFFO, R. PISCITELLI, and A. PIMENTEL, Combining on-hardware

prototyping and high-level simulation for DSE of multi-ASIP systems, Proc. 12th International

Conference on Embedded Computer Systems (SAMOS-XII), 2012.

• POMATA, S., P. MELONI, G. TUVERI, L. RAFFO, and M. LINDWER, Exploiting binary translation

for fast ASIP design space exploration on FPGAs, Design, Automation Test in Europe Confer-

ence Exhibition (DATE), 2012, pp. 566 -569, March, 2012.

Posters with published proceedings

• POMATA, S., TUVERI, G., MELONI, P., LINDWER, M., Fast ASIP Design Space Exploration on

FPGAs through Binary Translation, ACACES 2011 HiPEAC Summer School, 2011.

• POMATA, S., TUVERI, G., SECCHI, S., MELONI, P., An FPGA-based runtime-reconfigurable

prototyper for ASIP-based structured multi-core architectures, DEPCP - Designing for Embed-

ded Parallel Computing Platforms: Architectures, Design Tools, and Applications (DATE 2011),

2011.

73

	Introduction
	Main objectives and thesis organization

	State of the art
	Application-Specific Instruction Set Processors (ASIPs): an overview
	Different approaches in speeding up execution
	Advantages in using custom ASIPs

	FPGA-based evaluation platforms for heterogeneous systems
	Cycle-accurate software simulation
	The role of FPGAs as prototyping platforms

	High-Level simulation techniques aimed to Design Space Exploration (DSE)
	System-Level DSE
	Introducing FPGAs to speed up DSE

	Intel reconfigurable ASIPs development platform
	HiveLogic
	Architectural template
	Processor description and specification: TIM language

	Retargetable software toolchain
	ANSI C Compiler
	Instruction scheduler
	C Debugger
	Host-Cell Runtime functions

	Multi-Processor systems instantiation

	Combining on-hardware prototyping and high-level simulation for DSE of MPSoCs
	General toolset description
	Design Space Exploration: search engine
	System-level simulation
	FPGA prototype

	An hardware-based FPGA flow to evaluate performances of ASIPs
	Fast ASIP DSE: an FPGA-based runtime reconfigurable prototyper
	Approach overview
	Reference architectural template and DSE strategy
	The reference design flow
	Area and Power/Energy models
	The proposed design flow
	The WCC synthesis algorithm
	Hardware support for runtime reconfiguration
	Software support for runtime reconfiguration
	Implementation degradation and overhead reduction techniques
	Use Cases

	Extending FPGA fast prototyping through binary manipulation
	FPGA-based prototyping platform
	The WCC synthesis algorithm
	The binary manipulation algorithm
	Software support for binary manipulation

	Interfacing the tools through co-simulation
	Use Case
	Extending binary manipulation techniques for fault-tolerance support
	Overview on fault-tolerance techniques
	Pearl and Pearl_FT processors
	Remapping algorithm

	SESAME: high-level simulation for heterogeneous MPSoCs
	General description
	Kahn Process Network paradigm
	Design point description generation

	Extending SESAME to support Network-On-Chip interconnects
	NoC interconnect architecture
	Topology file example
	SESAME NoC blocks
	Calibrating the NoC model
	Use case

	Conclusions
	Bibliography

