
Università degli Studi di Cagliari

Dipartimento di Matematica e Informatica
Dottorato di Ricerca in Informatica

Ciclo XXV

Ph.D. Thesis

A theory of agreements and protection

S.S.D. INF/01

Candidate

Tiziana Cimoli

Supervisor PhD Coordinator

G. Michele Pinna G. Michele Pinna

Final examination academic year 2011/2012
June 3, 2013





Abstract

In this thesis we propose a theory of contracts. Contracts are modelled as interacting
processes with an explicit association of obligations and objectives. Obligations are
specified using event structures. In this model we formalise two fundamental notions
of contracts, namely agreement and protection.

These notions arise naturally by interpreting contracts as multi-player concurrent
games. A participant agrees on a contract if she has a strategy to reach her objectives
(or to make another participant sanctionable for a violation), whatever the moves of
her counterparts. A participant is protected by a contract when she has a strategy
to defend herself in all possible contexts, even in those where she has not reached
an agreement.

When obligations are represented using classical event structures, we show that
agreement and protection mutually exclude each other for a wide class of contracts.

To reconcile agreement with protection we propose a novel formalism for mod-
elling contractual obligations: event structures with circular causality.

We study this model from a foundational perspective, and we relate it with
classical event structures. Using this model, we show how to construct contracts
which guarantee both agreement and protection.

We relate our contract model with Propositional Contract Logic, by establishing
a correspondence between provability in the logic and the notions of agreement and
strategies.

This is a first step towards reducing the gap between two main paradigms for
modelling contracts, that is the one which interprets them as interactive systems,
and the one based on logic.



4



Contents

List of Figures 9

Glossary of notation 11

1 Introduction 13
1.1 Motivations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
1.2 Contract-oriented computing . . . . . . . . . . . . . . . . . . . . . . . 14
1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.4 Synopsis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

I Background 19

2 Basics 21

3 Event structures 23

4 Propositional Contract Logic 29

5 Contracts: a brief survey 35
5.1 Compliance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
5.2 Conformance and subcontracts . . . . . . . . . . . . . . . . . . . . . . 38
5.3 Contract monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
5.4 Negotiation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
5.5 Contract-oriented computing . . . . . . . . . . . . . . . . . . . . . . . 41

II A theory of agreements and protection 43

6 Contracts 45
6.1 An event-based model of contracts . . . . . . . . . . . . . . . . . . . 47

6.1.1 Contract plays . . . . . . . . . . . . . . . . . . . . . . . . . . 48
6.1.2 Some examples . . . . . . . . . . . . . . . . . . . . . . . . . . 49
6.1.3 Payoff functions . . . . . . . . . . . . . . . . . . . . . . . . . . 50



6 CHAPTER 0. CONTENTS

6.1.4 Contract composition . . . . . . . . . . . . . . . . . . . . . . . 54
6.2 Agreements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.2.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . 56
6.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2.3 Composition of strategies . . . . . . . . . . . . . . . . . . . . . 59
6.2.4 Agreements for Offer-Request payoffs . . . . . . . . . . . . . . 61

6.3 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
6.3.1 Protection for Offer-Request payoffs . . . . . . . . . . . . . . . 64
6.3.2 Agreement and protection cannot coexist . . . . . . . . . . . . 65

7 Event structures with circular causality 69
7.1 Basic definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.2 Basic results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.2.1 Basic results on traces . . . . . . . . . . . . . . . . . . . . . . 74
7.2.2 Basic results on configurations . . . . . . . . . . . . . . . . . . 80
7.2.3 Quasi-families of configurations . . . . . . . . . . . . . . . . . 82

7.3 Reachable events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
7.3.1 Reachability for conflict-free CES . . . . . . . . . . . . . . . . 86

7.4 An LTS semantics of CES . . . . . . . . . . . . . . . . . . . . . . . . 90
7.4.1 Adding events to a trace . . . . . . . . . . . . . . . . . . . . . 91
7.4.2 LTS of a CES . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

7.5 Traces with shallow past . . . . . . . . . . . . . . . . . . . . . . . . . 94
7.6 Urgent events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

7.6.1 Urgency for conflict-free CES . . . . . . . . . . . . . . . . . . 100

8 Reconciling agreement and protection 103
8.1 Prudence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
8.2 Agreements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8.3 Protection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

9 A logical view of contracts 117
9.1 Reachability via logic . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
9.2 Configurations via logic . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.3 Urgency via logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128
9.4 Contract agreements via logic . . . . . . . . . . . . . . . . . . . . . . 134

10 Discussion 137
10.1 Contracts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
10.2 Circularity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

11 Conclusions 141
11.1 Main results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
11.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142



0.0. CONTENTS 7

Bibliography 145

List of definitions 151

List of event structures 155



8 CHAPTER 0. CONTENTS



List of Figures

1.1 A contract broker collects the contracts advertised by participants. . . 15

3.1 Graphical representation of ES. . . . . . . . . . . . . . . . . . . . . . 24

4.1 Natural deduction rules for IPC. . . . . . . . . . . . . . . . . . . . . . 30
4.2 Natural deduction for PCL (rules for �). . . . . . . . . . . . . . . . . 30
4.3 Genzten-style proof system for IPC. . . . . . . . . . . . . . . . . . . . 31
4.4 Genzten-style proof system for PCL (rules for �). . . . . . . . . . . . 32

6.1 A contract with an indefinitely delayed obligation. . . . . . . . . . . . 50
6.2 Obligations for two CCS-like contracts. . . . . . . . . . . . . . . . . . 51
6.3 An Offer-Request payoff which is not a Büchi payoff. . . . . . . . . . 53
6.4 Joining an infinite set of winning strategy is not a winning strategy. . 60

7.1 Graphical representation of CES. . . . . . . . . . . . . . . . . . . . . 72
7.2 Transforming a single 
 into a ` makes all events unreachable. . . . . 73
7.3 Minimal credit when removing events from a trace. . . . . . . . . . . 78
7.4 Concatenating traces may reduce the overall credits. . . . . . . . . . . 80
7.5 Conflicts and reachable events. . . . . . . . . . . . . . . . . . . . . . . 86
7.6 The LTS of CES E7 (left), and its urgent LTS (right). . . . . . . . . 94
7.7 An event structure E (left) and the LTS −⇀UE

(right). . . . . . . . . . 100

9.1 Basic relations between CES and PCL. . . . . . . . . . . . . . . . . . 119
9.2 Encoding reachable events in Horn PCL theories. . . . . . . . . . . . 119
9.3 Encoding configurations in Horn PCL theories. . . . . . . . . . . . . . 122
9.4 Atom e is reachable in E iff e is provable in the PCL theory [E]R . . . 123
9.5 Encoding urgent events in Horn PCL theories. . . . . . . . . . . . . . 128



10 LIST OF FIGURES



Glossary of notation

# binary conflict relation (p. 23)

` enabling (p. 24)


 circular enabling (p. 70)

−→E LTS semantics of an ES E (p. 25)

−→E LTS semantics of a CES E (p. 92)

−⇀UE
LTS of urgent events (p. 98)

ε empty sequence (p. 21)

| interleaving operator between sequences (p. 21)

σ set of elements of a sequence (p. 21)

σ↓ sequence σ with duplicate events removed (p. 75)

〈e0e1 . . .〉 sequence (p. 21)

Γ(σ) least credit of trace σ (p. 76)

Γ+(C,X, e) credit when adding event e to X-trace with events C (p. 91)

Γ−(C,X, e) credit when removing an event e to X-trace with events C (p. 77)

� contractual implication (p. 29)

[E]F PCL encoding for configuration derivation of a CES E (p. 120)

[E]R PCL encoding for reachable-events derivation of a CES E (p. 117)

[E]U PCL encoding for urgent-events derivation of a CES E (p. 126)

Con set of the finite conflict-free subsets of E (p. 23)

CES event structure with circular enabling (p. 70)



12 LIST OF FIGURES

CF(X) predicate true iff X is conflict-free (p. 23)

DF (σ) sequence σ is duplicate-free (p. 21)

E event structure (p. 24)

E(F) the event structure obtained by the set F (p. 27)

E(Φ) conflict-free CES generated from the payoff function Φ (p. 111)

Ê(F) the CES obtained by the set F (p. 83)

ES event structure (p. 24)

FE set of set of events of the ES or CES E, called configurations (p. 71)

FPE (X) trace with past P and credit X (p. 95)

FE(X) set of set of events of the ES or CES E, called configurations (p. 71)

LTS labelled transition system (p. 22)

PX prudent events with past X (p. 106)

℘fin(X) set of all finite subsets of X (p. 21)

℘≤1
fin (X) set of all finite subsets of X of cardinality at most 1 (p. 21)

PCL propositional contract logic (p. 29)

RC
E (X) reachable events with past C and credit X (p. 96)

RE set of reachable events of E (p. 85)

R̂(X) set of X-reachable event in a conflict-free CES (p. 86)

TCE (X) trace with past C and credit X (p. 95)

TE set of all the traces of the CES E (p. 71)

TE(X) set of all the X-traces of the CES E (p. 71)

UC
E (X) set of urgent events in (C,X) (p. 97)

ÛC
E (X) set of urgent events in (C,X) (p. 101)



Chapter 1

Introduction

1.1 Motivations

Many of today human activities, from business and financial transactions, to collab-
orative and social applications, run over complex interorganizational systems, based,
for instance, on service-oriented computing (SOC) and cloud computing technolo-
gies. These technologies foster the implementation of complex software systems
through the composition of basic building blocks, called services. Ensuring reliable
coordination of these components is fundamental to avoid critical, possibly irrepara-
ble problems, ranging from economic losses in case of commercial activities, to risks
for human life in case of safety-critical applications.

Ideally, in the SOC paradigm an application is constructed by dynamically dis-
covering and composing services published by different organizations. Services have
to cooperate to accomplish the overall tasks, while at the same time they have to
compete to achieve the specific goals of their stakeholders. These goals may be con-
flicting, and likely they are in the case of mutually distrusted organizations. Thus,
services must play a double role: while cooperating together, they have to protect
themselves against other service’s misbehavior (either unintentional or malicious).

The lack of precise guarantees about the reliability and security of services is a
main deterrent for industries wishing to move their applications and business to the
cloud. Quoting from [A+10]:

“absent radical improvements in security technology, we expect that
users will use contracts and courts, rather than clever security engi-
neering, to guard against provider malfeasance”.

A key problem is then how to drive safe and fair interactions among distributed
participants which are possibly mutually distrusted, and have possibly conflicting
individual goals. In addition to the well-known difficulties of distributed software
systems (distribution, concurrency, heterogeneity, mobility, etc.), services, cloud
components and infrastructures are often under the governance of different providers,
possibly competing among each other.



14 CHAPTER 1. INTRODUCTION

Analysis and verification techniques cannot completely solve these issues, as
they can only be applied to the software components under one’s control, while no
assumptions can be made about the components made available by other providers.
Therefore, standard compositional techniques have to be adapted to cope with the
situation where providers fail to keep the promises made, or even choose not to.

Furthermore, services and cloud applications are increasing in size, and the larger
an application, the greater the probability that some of its components deviates from
the expected behaviour (either because of unintentional bugs, or maliciousness of a
competing organization).

To sum up, since services act in a competitive, possibly adversarial setting, the
possibility that a service behaviour may diverge from the expected one is quite real-
istic. To protect themselves against possible misconducts, services should postpone
actual collaboration until reaching an agreement on the mutually offered behaviour.
This requires a preliminary step, where each service declares her promised behaviour,
i.e. her contract.

1.2 Contract-oriented computing

We believe that contracts can play an important role in the specification and imple-
mentation of reliable and secure distributed systems.

We envision a contract-oriented computing paradigm [BTZ12a], where interac-
tions are driven by contracts which formalise Service-Level Agreements. Contracts
specify the behavior of a software component, from the point of view of the inter-
actions it may participate in, and the goals it tries to reach. Differently from most
of the approaches based on behavioural types [HYC08], which use contracts only
in the “matchmaking” phase, a contract-oriented component is not supposed to be
honest, in that it may not keep the promises made.

In a contract-oriented application, participants advertise their contracts to some
contract brokers, which are the contract-oriented analogous of service repositories in
the Web Service paradigm (see e.g. Fig. 1.1). Participants wait until the contract
broker finds an agreement among the contracts in its hands. An agreement is a
property of contracts which guarantees that each honest participant may reach her
objectives, provided that the other participants cooperate honestly. If an honest
participant does not reach her objectives, then some other participant can be blamed.
When an agreement is found, a session is created among the participants involved
in the contract, so that they can interact.

An external judge may inspect the contract and the status of the session. In the
case a violation is found, the judge will eventually provide the prescribed compen-
sations/punishments.

The underlying assumption of this paradigm is that participants trust the con-
tract broker. In a context populated by attackers, it may happen that a dishonest
contract broker creates a fraudulent session, making participants interact in the ab-



1.3. CONTRIBUTION 15

BBAA

CC

Contract 
BrokerC

A

C
C

C
B

Figure 1.1: A contract broker collects the contracts advertised by participants.

sence of an agreement. In this way, the contract broker may swindle an unaware
participant, possibly with the cooperation of an accomplice. Note that the broker
or his accomplice may perform this scam while adhering to their contracts, and so
they will not be liable for violations.

A crucial problem is then how to devise contracts which protect participants from
malicious contract brokers, while at the same time allowing honest brokers to find
agreements. A good contract should allow a participant to reach her goals in con-
texts where the other participants are cooperative, and prevent her from performing
imprudent actions which could be exploited by malicious participants.

1.3 Contribution

In this thesis we propose a foundational model for contracts which uses event struc-
tures (ES [Win86]) to specify participants’ obligations. By abstracting away from
the concrete details of contract languages, our model is a first step towards a unifying
framework for reasoning about contracts, in the same spirit that event structures can
be used as an underlying semantics for a variety of concrete models of concurrency.

Event structures can provide a basic semantic model for assume/guarantee rules,
by interpreting the enabling b ` a as the contract clause: “I will do a after you have
done b”. However, event structures do not capture a typical aspect of contracts, i.e.
the capability of reaching an agreement when the assumptions and the guarantees
of the parties mutually match. For instance, in the event structure with enablings
b ` a and a ` b, none of the events a and b are reachable, because of the circularity
of the constraints. An agreement would still be possible if one of the parties is
willing to accept a weaker contract. Of course, the contract “I will do b” (modelled



16 CHAPTER 1. INTRODUCTION

as ` b) will lead to an agreement with the contract b ` a, but it offers no protection
to the participant who offers it, e.g. it can be stipulated without having anything in
return.

We provide a formal definition for the two key notions intuitively introduced
above, i.e. agreement and protection. To do that, we borrow techniques from game
theory, by interpreting contracts as multi-player concurrent games.

A participant agrees on a contract if she has a strategy to reach her objectives
(or make another participant chargeable for a violation), whatever the moves of her
adversaries. A participant is protected by a contract when she has a strategy to
defend herself in all possible contexts, even in those where she has not reached an
agreement. A first result is that agreement and protection cannot coexist for a broad
class of objectives. That is, if we are given the objectives of a set of participants,
it does not exits a contract which protects them all, and at the same time admits
an agreement. Roughly, the problem is that, when the offers of the participants
mutually depend on their requests, the participant which risks in doing the first
step is not protected.

To overcome this negative result, we extend event structures with a new relation
of causality 
, called circular causality. The contract a 
 b (intuitively, “I will
do a if you promise to do b”) reaches an agreement with the dual contract b 
 a,
while protecting the participant who offers it. While in classical event structures an
action a which causally depends on an action b can only be performed after b; in an
event structure with circular causality (CES), the new relation 
 allows a to happen
before b, under the (legally binding) promise that b will be eventually performed.
CES are a conservative extension of ES. We prove that the family of configurations
of an ES can be generated by a CES by exploiting only the new circular enabling.

Using this refined model for contracts, we devise a technique that, stating from
the participants payoffs, constructs a set of contracts which protect their partici-
pants, and still admit an agreement.

We then establish a connection between our contract model and Propositional
Contract Logic (PCL [BZ10a]), an extension of intuitionistic logic which allows for
circular reasoning. To do that, we first reduce the problem of deciding agreeements
in (conflict-free) contracts to provability in PCL. Then we show how to construct
winning strategies through a suitable encoding of contracts into PCL formulae.

1.4 Synopsis

This dissertation presents both unpublished material, and some published one. We
briefly describe below its organization.

Chapter 2: Basics introduces some of the basic notions and the notations used
throughout our subsequent technical development.



1.4. SYNOPSIS 17

Chapter 3: Event structures reviews some basic definitions and results about
general event structures (ES). These notions will be used in Chapter 6 to
provide the foundations for our model for contracts, and later on in Chapter 7
to study an extension of ES which allows for a form of circular reasoning.

Chapter 4: Propositional Contract Logic summarizes the main definitions
and results of Propositional Contract Logic. These will be used in Chapter 9
to develop some relations between our contract model and PCL.

Chapter 5: Contracts: a brief survey presents some related work in the area
of contracts.

Chapter 6: Contracts presents our model for contracts, where event structures
are used to express obligations. The notions of agreement and protection are
formalised in a game-theoretic setting. The main result is that agreement and
protection cannot coexist for a wide class of contracts.

Part of this material borrows from [BCZ13].

Chapter 7: Event structures with circular causality extends events struc-
tures with a new enabling relation which allows for dealing with circular con-
straints. This new model (CES) is investigated in a foundational way, by
describing its main properties and discussing its relations with standard ES.

Part of this material borrows from [BCPZ12a] and [BCPZ13].

Chapter 8: Reconciling agreement and protection extends the contract
model in Chapter 6, by allowing obligations to be expressed as CES, and by
accordingly revisiting the notions of agreement and protection. The main
result is that agreement and protection can now coexists.

Part of this material borrows from [BCZ13].

Chapter 9: A logical view of contracts show that the notions of agreement
and winning strategies in the contract model of Chapter 8 are related to that
of provability in PCL. This is obtained through three encodings of CES into
PCL, which establish strong equivalences between provability in PCL and con-
figurations, reachable events 9.1, and urgent events.

Part of this material borrows from [BCPZ12b] and [BCGZ13].

Chapter 10: Discussion compares our framework with other related approaches.

Chapter 11: Conclusions contains a summarized view of our work, and proposes
some directions for further work.



18 CHAPTER 1. INTRODUCTION



Part I

Background





Chapter 2

Basics

In this chapter we introduce some basic notation, to be used in the later chapters of
this thesis. We assume the reader to be already familiar with the basic definitions of
sets, relations, functions, partial orders, and graphs, as well as with the basic theory
of formal languages and their abstract syntax.

Sets For a set X and a predicate P , we denote with {x ∈ X | P (x)} the set of
elements x of X for which P (x) is true. We denote with ℘(X) the set of all subsets
of X, i.e. ℘(X) = {Y | Y ⊆ X}, with ℘fin(X) the set of all finite subsets of X, and
with ℘≤1

fin (X) the set of all finite subsets of X of cardinality at most 1.

Sequences We denote with 〈e0 e1 . . .〉 the (possibly infinite) sequence of elements
e0, e1, . . .. We typically use lowercase greek letters, e.g. σ, η, . . . to refer to sequences.
For a sequence σ, we write σ for the set of events in σ. We write σi for the sub-
sequence 〈e0 . . . ei−1〉. If σ = 〈e0 . . . en〉 is finite, we write σ e for the sequence
〈e0 . . . en e〉. The empty sequence is denoted by ε. The predicate DF (σ) is true
whenever σ = 〈e0e1 . . .〉 has no duplicates, i.e. for all i ≤ n, ei 6∈ σi.

For a set S, we denote with S∗ the set of finite sequences over S, and with Sω

the set of finite and infinite sequences over S.

Interleaving We denote with σ0|σ1 the set of all the sequences obtained by mixing
the element of σ0 with the element of σ1 and preserving the internal order of the
sequences. Formally: for all σ, σ′, η, η′ ∈ E∗, a, b ∈ E, we inductively define operator
| as follows:

σ | η =


{η} if σ = ε

{σ} if η = ε

{〈a(σ′ | η)〉, 〈b(σ | η′)〉} if σ = aσ′ and η = bη′

For instance, let σ = 〈a0a1〉 and η = 〈b0b1〉. Then we have:

σ | η = {〈a0a1b0b1〉, 〈a0b0a1b1〉, 〈a0b0b1a1〉, 〈b0a0a1b1〉, 〈b0a0b1a1〉, 〈b0b1a0a1〉}



22 CHAPTER 2. BASICS

Partial functions We denote with A ⇀ B a partial function from A to B. We
use the symbol ⊥ to denote an undefined value.

Transition systems A labelled transition system (LTS) is a triple 〈Γ,Λ,−→〉,
where Γ is a set of states, Λ is a set of labels, and −→⊆ Γ × Λ × Γ is the transition

relation. We write γ
a−→ γ′ when 〈γ, a, γ′〉 ∈−→, and γ

λ−→ γ′ when λ = 〈a0 . . . an〉 and

∃γ0, . . . , γn−1. γ
a0−→ γ0

a1−→ γ1
a2−→ · · · an−1−−−→ γn−1

an−→ γ′

Also, we write γ −→∗ γ′ when there exists λ such that γ
λ−→ γ′.

An LTS is deterministic when, for all γ ∈ Γ and for all a ∈ λ,

γ
a−→ γ′ ∧ γ

a−→ γ′′ =⇒ γ′ = γ′′

An initial labelled transition system is a tuple 〈Γ,Λ,−→, I〉, where 〈Γ,Λ,−→〉 is an
LTS and I ⊆ Γ is the set of initial states.

A state γ′ of an initial LTS is reachable from a state γ if and only if

∃λ ∈ Λ∗. γ
λ−→ γ′

A state γ is reachable if and only if γ is reachable from an initial state.
Hereafter, when clear from the context we shall just call LTS an initial LTS.



Chapter 3

Event structures

Event structures (ES) are a model for concurrency. introduced in [NPW81].
Since [Win86], ES are considered one of the classical model for concurrency
(see [WN95] for an account on the relationships among various classical concurrency
models). Notwithstanding the variety of ingredients appeared in the literature, event
structures are at least equipped with a relation (written ` in [Win86]) modelling
causality, and another one modelling non-determinism (usually rendered in terms
of conflicts # or consistency).

Extensions to ES often use other relations to model other kind of dependen-
cies that may arise among various events. We recall here the relation ↗⊆ E × E
of [BCM01] modeling a weak causal dependency among events which can be used to
model asymmetric conflicts, or the relation ◦̀ ⊆ ℘≤1

fin (E)×E×℘fin(E) introduced in
[BBCP04] and used to model both disjunctive causality and asymmetric conflicts,
or the bundle relation (℘fin(E) × E) introduced in [Lan93] to take into account
disjunctive causality.

Event structures have a rich theory, which we will not review here. In this
chapter we only report some basic definitions and results which will be needed in
our later technical development.

Assume a denumerable universe of events, ranged over by a, b, e, . . . etc. To
represent sets of events which can occur together in a computation we use a binary
conflict relation # ⊆ E × E, similarly to [Win88]. Namely, if a#b then there is
no computation which contains both a and b. This is somehow less general than
the approach of [Win86], where the consistent combinations of events which can
occur together are defined through a predicate Con ⊆ ℘fin(E). However, the binary
relation is adequate for our purposes in the later chapter of this thesis, where we
shall mainly use it to model internal/external choices.

Definition 3.1 (Conflict-free and consistent sets). For a set of events X, the pred-
icate CF (X) (for “X is conflict-free”) and the set Con are defined as:

CF (X) , ∀e, e′ ∈ X : ¬(e#e′)

Con = {X ⊆fin E | CF (X)}



24 CHAPTER 3. EVENT STRUCTURES

a b

E1

a b

E2

a
c

b
d

e

E3

a
c

b
d

e

E4

e0 e1 e2 e3

E5

Figure 3.1: Graphical representation of ES.

Definition 3.2 (Event structure). An event structure is a triple E = 〈E,#,`〉,
where

• E is a set of events,

• # ⊆ E × E is an irreflexive and symmetric relation, called conflict relation,

• ` ⊆ Con × E is the enabling relation. We assume ` saturated, i.e.

∀X ⊆ Y ∈ Con. X ` e =⇒ Y ` e

We say that E is finite when E is finite; we say that E is conflict-free when the
conflict relation is empty.

Notation 3.3 (Shorthands). With some abuse of notation, we will often write e ∈ E

to mean that e is an event of E. We adopt the following conventions:

• ` e. Shorthand for ∅ ` e;

• a ` b. Shorthand for {a} ` b.

• X ` Y . For a finite, conflict free set X, this means that for ∀e ∈ Y. X ` e.
For an infinite, conflict-free X, X ` Y is a shorthand for ∃X0 ⊆fin X. X0 ` Y .

Notation 3.4. We adopt the following graphical notation for depicting ES: they are
denoted as directed hypergraphs, where nodes stand for events. An hyperedge from a
set of nodes X to node e denotes an enabling X ` e. A conflict a#b is represented
by a wavy line between a and b.

A configuration C is a “snapshot” of the behaviour of the system: a set of
events C (possibly infinite) is a configuration whenever for each event e ∈ C it is
possible to find a trace for e in C, i.e. a finite sequence of events containing e, which
is closed under the enabling relation.

Definition 3.5 (Configuration). For an ES E = 〈E,#,`〉, we say that C ⊆ E is a
configuration of E iff CF (C), and

∀e ∈ C. ∃σ = 〈e0, . . . , en〉. e ∈ σ ⊆ C ∧ ∀i ≤ n. σi ` ei

The set of all configurations of an ES E is denoted by FE.



25

Example 3.6. Consider the five ES in Fig. 3.1. We have that:

• E1 has enablings ` a and a ` b, and we have FE1 = {∅, {a}, {a, b}}.

• E2 has enablings a ` b and b ` a, and we have FE1 = {∅}.

• E3 has enablings ` a, ` b, a ` c, b ` d, and {c, d} ` e. Since e is enabled by
both a and b, graphically we have two arrows joining in the middle, from a,b
to e. The configurations of E3 are ∅, {a}, {b}, {a, c} and {b, d}. Note that e
never occurs in a configuration, because the conflict a#b prevent it to happen.

• E4 has enablings ` a, ` b, a ` c, b ` d, c ` e and d ` e. The configurations of
E4 are ∅, {a}, {b}, {a, c}, {b, d}, {a, c, e} and {b, d, e}.

• E5 has configurations
⋃
i<k{ei}, for all k. Also, the infinite set {e0, e1, . . .} is

a configuration of E5.

The notion of enabling naturally induces an LTS which represents the possible
computations of an ES. The states of this LTS represent the events fired so far; a
transition X

e−→ Y models the event e being fired from state X, and Y is the reached
state. We focus on finite configurations, hence the states of the LTS associated to
an ES are finite subsets of events. The set of initial states is the set containing the
empty configuration.

Definition 3.7 (LTS of an ES). For all ES E, we define the labelled transition
system LTSE = 〈℘fin(E), E,→E〉 as follows:

C
e−→E C ∪ {e} iff C ` e, e 6∈ C and CF (C ∪ {e})

The relations among LTSE and FE are illustrated by the two lemmata below.

Lemma 3.8 (LTS and Configurations). For all ES E, and for all C ⊆ E:

C ∈ FE ⇐⇒ ∀D ⊆fin C. ∃C0. D ⊆ C0 ⊆fin C. ∅ →∗E C0

An obvious consequence of this lemma is that each finite configuration is a reach-
able state of the associated LTS.

Lemma 3.9. For all C,C ′ ⊆fin E, and for all e ∈ E such that CF (C ′ ∪ {e}):

C
e−→E ∧ C ⊆ C ′ ∧ e 6∈ C ′ =⇒ C ′

e−→E

We recall now some properties of configurations, as done in [Win86] and [Win88].

Definition 3.10 (Pairwise compatibility). Let F be a family of sets. We say a
subset A of F is pairwise compatible if and only if

∀e, e′ ∈
⋃
A. ∃C ∈ F. e, e′ ∈ C



26 CHAPTER 3. EVENT STRUCTURES

Note that the above definition differs from Winskel’s (Def. 3.4 in [Win88]). There,
a set A ⊆ F is pairwise compatible iff for all C,C ′ ∈ A, there exists D ∈ F such
that C ∪ C ′ ⊆ D. Clearly, Winskel’s pairwise compatibility implies ours, while the
converse is not true. For instance, consider the family of sets:

A = {∅, {e0}, {e1}, {e0, e1}, {e0, e2}, {e1, e2}} (3.1)

Then, A is pairwise compatible according to Def. 3.10, while it is not according to
Winskel’s, because e.g. there exists no D ∈ F such that {e0} ⊆ D and {e1, e2} ∈ D.
Clearly, both definitions imply that if A is pairwise compatible, then

⋃
A is conflict-

free.
We deviate from Winskel’s definition in order to make Theorem 3.14 below (The-

orem 3.7 in [Win88]) holds also in the case of an event structure defined by conflicts
and not by an extensional set of consistency sets.

Definition 3.11 (Families of configurations). For a set of sets F we define the
following three properties:

Coherence If A is a pairwise compatible subset of F, then
⋃
A ∈ F.

Finiteness
∀C ∈ F. ∀e ∈ C. ∃C0 ∈ F. e ∈ C0 ⊆fin C

Coincidence-freeness

∀C ∈ F. ∀e, e′ ∈ C.
(
e 6= e′ =⇒ (∃C ′ ∈ F. C ′ ⊆ C ∧ (e ∈ C ′ ⇐⇒ e′ 6∈ C ′)

)
A set F is a family of configurations iff it satisfies coherence, finiteness and
coincidence-freeness, and in that case, F is called a family of configurations of E
when

⋃
F = E.

A basic result of [Win88] is that the set of configurations of an ES forms a family
of configurations.

Theorem 3.12. For all ES E, the set FE is a family of configurations.

Proof. For coherence, let A ⊆ FE be pairwise compatible in FE. Let e, e′ ∈ A. By
Def. 3.10, exists C ∈ FE such that e, e′ ∈ C. Since C ∈ FE then CF (C), hence ¬(e#e′)
and so CF (

⋃
A). We now prove

⋃
A ∈ FE. Let e ∈

⋃
A, then there exists C ∈ A such

that e ∈ C. Since A ⊆ FE, then C ∈ FE and so by Def. 3.5 there exists a sequence σ of
events of C which contains e and is closed under the `-enabling. Since C ⊆

⋃
A, then σ

is a sequence for e in
⋃
A and so by Def. 3.5 we can conclude that

⋃
A ∈ F.

Finiteness is straightforward by Def. 3.5, since for all e ∈ C ∈ F, there exists a finite
trace σ closed under the `-enabling such that e ∈ σ ⊆fin C is a configuration in F.

Coincidence-freeness is straightforward by Def. 3.5.



27

Definition 3.13 (E(F)). Let F be a family of configurations of a set E. We define
the ES E(F) = (E,#,`) as follows:

(a) e#e′ ⇐⇒ ∀C ∈ F. e /∈ C ∨ e′ /∈ C

(b) X ` e ⇐⇒ CF (X) ∧X is finite ∧ ∃C ∈ F. e ∈ C ⊆ X ∪ {e}

Our definition of E(F) differs from Winskel’s one in [Win88] in two points.
First, in item (a) we say that e is not in conflict with e′ iff there exists C ∈ F

such that e, e′ ∈ C, while in [Win88] the condition is that e ∈ C ⇐⇒ e′ ∈ C for
some C ∈ F. We argue that the latter definition is not correct, since it implies that
no events are in conflict. Indeed, by taking C = ∅, we have that e 6∈ C and e′ 6∈ C
for all e, e′, and so by definition e and e′ cannot be in conflict.

Second, our notion of pairwise compatibility differs from Winskel’s, as remarked
after Def. 3.10. Indeed, Winskel’s definition seems to invalidate Theorem 3.14.
A counterexample is given by the set A in (3.1), which is a family of configura-
tions according to Winskel’s. By construction, the ES E(A) has no conflicts and
{e0, e1, e2} ∈ FE(A) — so contradicting the theorem, because {e0, e1, e2} 6∈ A. Our
definition of pairwise compatibility solves this problem, because A is not a family
of configuration according to Def. 3.10. Indeed, for being a family of configurations,
by coherence A should also comprise the set {e0, e1, e2}.

We can then easily prove the following theorem:

Theorem 3.14. For all families of configurations F, we have FE(F) = F.

Proof. Let F be a family of configurations. For (⊆), let C ∈ FE(F). By Def. 3.5 we have
CF (C), and that for all e ∈ C there exists a finite sequence σe = 〈e0 . . . en〉 of elements of
C which contains e and such that for all i ≤ n, σei ` ei. Hence, by Def. 3.13(b),

∀ei ∈ σe. ∃Di ∈ F. ei ∈ Di ⊆ σei ∪ {ei}

Since
⋃
{Di | ei ∈ σe} = σe, the set {Di | ei ∈ σe} is pairwise compatible in F, hence by

Theorem 3.12 (coherence) we have that
⋃
{Di | ei ∈ σe} ∈ F. Again, the set {σe | e ∈ C}

is pairwise compatible in F, therefore by coherence C =
⋃
{σe | e ∈ C} ∈ F.

For (⊇), let C ∈ F. By the definition of conflict in Def. 3.13(a), it must be CF (C).
By Theorem 3.12 (finiteness) for all e ∈ C there exists Ce ∈ F such that e ∈ Ce ⊆fin C.
By Theorem 3.12 (coincidence-freeness and coherence) we can find a finite sequence of
configurations C0 ⊂ C1 . . . ⊂ Cn such that C0 = ∅ and Cnk = Ce and

∀i ∈ 1 . . . n. ∃ei. Ci \ Ci−1 = {ei}

Thus, by Def. 3.13(b) it follows that Ci ` ei. Therefore for each e ∈ C, we have found a
sequence σe = 〈e0 . . . en〉 closed under `-enabling such that e ∈ σe = Ce ⊆ C. By Def. 7.5,
we conclude that C ∈ F

Ê(F).



28 CHAPTER 3. EVENT STRUCTURES



Chapter 4

Propositional Contract Logic

In this chapter we review an extension of intuitionistic logic (IPC), called Propo-
sitional Contract Logic (PCL [BZ10a]). PCL features a “contractual” form of im-
plication, denoted by �. The intuition is that a formula p � q entails q not only
when p is provable, like standard intuitionistic implication, but also in the case
that a “compatible” formula is assumed. This compatible formula can take dif-
ferent forms, but the archetypal example is the (somewhat dual) q � p. While
(p → q) ∧ (q → p) → p ∧ q is not a theorem of IPC, (p � q) ∧ (q � p) → p ∧ q is
a theorem of PCL. The logic PCL is decidable. Except when stated otherwise, all
the results in this chapter have been proved in [BZ10a].

The syntax of PCL extends that of IPC. It includes the standard connectives
∧,∨,→, and contractual implication �. We assume a denumerable set a, b, . . . of
prime (atomic) formulae. PCL formulae are denoted with the letters p, q, r, s, . . ..

Definition 4.1 (Syntax of PCL). The formulae of PCL are defined as:

p ::= ⊥ | > | a | p ∨ p | p ∧ p | p→ p | p� p

where ⊥ is false and > is true.
The proof theory of PCL has been studied through three different calculi: an

Hilbert-style calculus (Def. 4.2), a Gentzen-style system (Def. 4.5), and a natural
deduction system (Def. 4.3). The first two have been introduced and proved equiva-
lent in [BZ10a], while the last has been introduced in [BCGZ13], and therein proved
equivalent to the others.

Definition 4.2 (Hilbert-style axiomatisation of PCL). The Hilbert-style axiomati-
sation of PCL extends that of IPC with the following axioms:

>� >
(p� p)→ p

(p′ → p)→ (p� q)→ (q → q′)→ (p′ � q′)



30 CHAPTER 4. PROPOSITIONAL CONTRACT LOGIC

(Id)
∆, p ` p ∆ ` ⊥

(⊥E)
∆ ` p

∆, p ` q
(→I)

∆ ` p→ q
∆ ` p→ q ∆ ` p

(→E)q

∆ ` p ∆ ` q
(∧I)

∆ ` p ∧ q
∆ ` p ∧ q

(∧E1)
∆ ` p

∆ ` p ∧ q
(∧E2)

∆ ` q

∆ ` p
(∨I1)

∆ ` p ∨ q
∆ ` q

(∨I2)
∆ ` p ∨ q

∆ ` p ∨ q ∆, p ` r ∆, q ` r
(∨E)

∆ ` r

Figure 4.1: Natural deduction rules for IPC.

∆ ` q
∆ ` p� q

(�I1)

∆ ` p′ � q′ ∆, p ` p′ ∆, q′ ` q
∆ ` p� q

(�I2)

∆ ` p� q ∆, q ` p
∆ ` q

(�E)

Figure 4.2: Natural deduction for PCL (rules for �).

Definition 4.3 (Natural deduction system of PCL). The natural deduction system
of PCL extends that of IPC (Fig. 4.1) with the rules in Fig. 4.2. In all the rules,
∆ is a set of PCL formulae, and ∆, p is equivalent to ∆ ∪ {p}.

Provable formulae are contractually implied, according to rule (�I1). Rule (�I2)

provides � with the same weakening properties of →. The crucial rule is (�E),
which allows for the elimination of �. Compared to the rule for elimination of →
in IPC, the only difference is that in the context used to deduce the antecedent p,
rule (�E) also allows for using as hypothesis the consequence q.

Example 4.4. Let ∆ = a → b, b � a. A proof of ∆ ` a in the natural deduction
system is:

∆ ` b� a
∆ ` a→ b ∆, a ` a

∆, a ` b
(→E)

∆ ` a
(�E)



31

∆, p ` p
(Id)

∆ ` p ∆, p ` q

∆ ` q
(Cut)

∆, p ∧ q, p ` r

∆, p ∧ q ` r
(∧L1)

∆, p ∧ q, q ` r

∆, p ∧ q ` r
(∧L2)

∆ ` p ∆ ` q

∆ ` p ∧ q
(∧R)

∆, p ∨ q, p ` r ∆, p ∨ q, q ` r

∆, p ∨ q ` r
(∨L)

∆ ` p

∆ ` p ∨ q
(∨R1)

∆ ` q

∆ ` p ∨ q
(∨R2)

∆, p→ q ` p ∆, p→ q, q ` r

∆, p→ q ` r
(→L)

∆, p ` q

∆ ` p→ q
(→R)

∆,⊥ ` p
(⊥L)

∆ ` >
(>R)

∆ ` ⊥
∆ ` p

(WeakR)

Figure 4.3: Genzten-style proof system for IPC.

Definition 4.5 (Gentzen-style system of PCL). The Gentzen-style sequent calculus
of PCLis defined by the rules in Fig. 4.3 (the IPC calculus) plus those in Fig. 4.4.
In all the rules, ∆ is a set of PCL formulae. and ∆, p is equivalent to ∆ ∪ {p}.

The style of the rules follows that in [Pfe00]. Rule (Fix) is the left rule for �. It
is almost the same as the left rule for →, except that (in a “circular” fashion) the
formula r can be used to deduce p in the first rule premise. Rule (Zero) introduces
� on the right of a sequent (similarly e.g. to #R of lax logic [FM97]), while rule
(PrePost) introduces � on the right, and eliminates it on the left (similarly e.g. to
#L of [FM97]).

Example 4.6. Let ∆ = a → b, b � a. A proof of ∆ ` a in the Gentzen-style
system is:

(Id)
∆, a→ b, a ` a

(Id)
∆, a, b ` b

(→L)
∆, b� a, a ` b

(Id)
∆, a ` a

(Fix)
∆ ` a

Theorem 4.7. ∆ ` p is provable in natural deduction iff the sequent ∆ ` p is
provable in the Gentzen-style calculus.



32 CHAPTER 4. PROPOSITIONAL CONTRACT LOGIC

∆ ` q

∆ ` p� q
(Zero)

∆, p� q, p′ ` p ∆, p� q, q ` q′

∆, p� q ` p′ � q′
(PrePost)

∆, p� q, r ` p ∆, p� q, q ` r

∆, p� q ` r
(Fix)

Figure 4.4: Genzten-style proof system for PCL (rules for �).

Proof. See [BCGZ13].

PCL is consistent (see proof in [BZ09a]). Also, negation-free formulae do not
lead to inconsistencies.

Theorem 4.8 (Consistency of PCL). PCL is consistent, i.e. 6` ⊥. Also, if p is
⊥-free, then 6` p→ ⊥.

The Gentzen-style calculus of PCL enjoys cut elimination (see proof in [BZ09a]).
A cut on a formula p is replaced by cuts on strict subformulae of p, and cuts on p
having a shorter proof tree.

Theorem 4.9 (Cut Elimination). If p is provable in PCL, then there exists a proof
of p not using the (Cut) rule.

The subformula property holds in PCL (see proof in [BZ09a]). Cut-free proofs
only involve subformulae of the sequent at hand.

Theorem 4.10 (Subformula Property). Let π be a cut-free proof of ∆ ` p. Then,
the formulae occurring in π are subformulae of those occurring in ∆ and p.

Decidability of PCL it established in [BZ10a] by exploiting cut elimination
and the subformula property of Gentzen-style proof system. Indeed, theorems 4.9
and 4.10 allow for exhaustively searching the proof space, so implying decidability.

Theorem 4.11 (Decidability of PCL). The logic PCL is decidable.

In the later chapters of this dissertation we will mainly consider the Horn frag-
ment of PCL, which comprises atoms, conjunctions, and non-nested intuitionis-
tic/contractual implications.

Definition 4.12 (Horn PCL theory). A Horn PCL theory is a set of clauses of
the form α→ a or α� a, where α is a possibly empty conjunction of atoms.

The clause a is a shorthand for > → a. We denote with α the set of atoms in α.



33

Example 4.13. Consider the following Horn PCL theory ∆?:

∆? = {(e0 ∧ e1)� e6, e6 → e3, e6 → e4, e3 → e0,

(e4 ∧ e5)� e7, e7 → e1, e7 → e2, e2 → e5}

It is possible to prove that ∆? ` ei for all i ∈ 0..7. Note that, were any one of the
� in ∆? replaced with a →, then no atoms would have been provable.

For proving atoms (or their conjunctions) in Horn PCL theories, a strict subset
of the Gentzen rules suffices.

Lemma 4.14. Let ∆ be a Horn PCL theory. If ∆ ` α in the Gentzen system, then
a proof of ∆ ` α exists which uses only the rules (Id), (∧L1), (∧L2), (∧R), (→L), (Fix).

Proof. By induction on the depth of a Gentzen proof π of ∆ ` α. Since cut elimination
holds for PCL, w.l.o.g. we can choose π cut-free. The last rule used in π can be only (Id),
(∧L1), (∧L2), (∧R), (→L), or (Fix). The base case (Id) is trivial. For the inductive case, since
∆ is a Horn PCL theory then in the premise of the last rule of π we can only have sequents
of the for ∆′ ` α′, where ∆′ is a Horn PCL theory and α′ is a conjunction of atoms. Then,
the induction hypothesis concludes.

Given a Horn PCL theory ∆, we can partition its clauses in two sets: those which
are needed to deduce some atom in ∆, and those which are useless in deducing any
atom. For a clause α → a in ∆ of the first kind, we have that both α and a are
provable in ∆.

Lemma 4.15. For a Horn PCL theory ∆, and for ◦ ∈ {→,�}:

∆, α ◦ a ` b =⇒ ∆ ` b ∨ ∆, α ◦ a ` α, a, b

Proof. See [BTZ12a].



34 CHAPTER 4. PROPOSITIONAL CONTRACT LOGIC



Chapter 5

Contracts: a brief survey

The term “contract” is used to denote very different concepts. In general, a contract
is considered as a property that a computational entity promises to satisfy, possibly
giving evidence of this as a proof or a certificate.

Contracts have been investigated using a wide variety of models, and for a wide
variety of different purposes. We identify two main paradigms for representing
contracts:

• contracts-as-processes. In this paradigm, contracts are modelled as interacting
processes. A common choice is to fix the observable events in the execution
of the process (e.g. method invocations or message exchanges) and to define
a contract as the set of sequences of events that respect the properties we
want to model. Typical contract models in this paradigm use and extend, e.g.
process algebras, Petri nets, timed automata, concurrent games, etc.

• contracts-as-formulae. In this paradigm, contracts are specified in some for-
mal logics. The complexity of real-world scenarios, where several concepts like
principals, authorizations, delegation, mandates, regulations, etc. are inex-
tricably intermingled, have led to a steady flourishing of new logics over the
years. These take inspiration and extend e.g. classical, modal, intuitionistic,
deontic, default and defeasible logics. Each logic is designed to represent some
particular aspect of contracts, e.g. obligations, permissions and prohibitions
in deontic logics, violation of contracts in default and defeasible logics, etc.

We devise the following taxonomy of approaches to contracts, where we distin-
guish the purpose of making use of contracts (rather than focusing on how contracts
are modeled). So, the main purposes contracts are used, are:

• detecting when two or more contracts are compliant;

• checking when an implementation conforms to a contract (also, when a con-
tract refines another one);



36 CHAPTER 5. CONTRACTS: A BRIEF SURVEY

• monitoring contracts to detect violations and assign liabilities;

• negotiating clauses before agreeing on a contract;

• disciplining the interactions among services (contract-oriented computing).

We briefly discuss below some of the main approaches to contracts, organising
them according to the above-mentioned taxonomy.

5.1 Compliance

Contracts are modelled in [CGP09] in a fragment of CCS which includes prefixing (.),
external choice (+), internal choice (⊕), and recursion. The contract α.σ describes
a service which will perform the action α and then will continue as σ. The contract
σ+τ describes a service which lets the client to choose between σ or τ , but not both.
The contract σ⊕ τ describes a service which chooses either to do σ or to do τ , as a
consequence of some internal decision which is not seen and it is not predictable by
the client. Actions can be of two kinds: input actions (e.g. a) and output actions
(e.g. ā); an input synchronizes with the corresponding output (e.g. a with ā). A
client contract complies with a service contract if they can interact (possibly forever),
until the client chooses to terminates. For instance, a client contract ā complies with
a service contract a + b, (written ā a a + b) since they can both synchronize on a.
Instead it is not true that ā a a ⊕ b since a ⊕ b may internally decide to do b, and
so the interaction gets stuck.

The notion of compliance proposed in [CP09] is “boolean”: either the client
contract is compliant with the service contract, or it is not. An enhancement is
proposed in [CP09], where contracts which are not compliant may become such by
reordering their actions. This is done through an orchestrator, which acts as an
adapter between the client and the service. Other approaches which use process
algebras for defining contracts include e.g. [BZ07, CL06, BTZ12a].

On the contracts-as-formulae side, in [PS12] a decidable logic for contracts is pre-
sented, which combines deontic logic (to reason about obligations, permissions and
prohibitions) with propositional dynamic logic (to reason about what happens after
some actions have occurred, like for instance “after the notification he must...” ).
Conditional obligations, permissions and prohibitions can be of two different kinds.
The first kind is represented by [σ]O(α), which may be read as “after performing σ,
one is obliged to do α”. The second kind uses the implication operator: C → O(α)
is read as “if C holds then one is obliged to perform α”. If an enabled obligation is
not immediately performed at its time, it is considered as a violation. To avoid most
of the classical paradoxes of deontic logic, in [PS12] all the three deontic modalities
are primitive, and none of them can be defined in terms of the others (differently
from what happens in other deontic logics). The three modalities are applied over



5.1. COMPLIANCE 37

actions instead of over propositions. Every action is considered deterministic accord-
ing to the fact that in legal contracts, the outcome of an action is deterministic. The
logic features some standard action combinators, such as + and . (for choice and
sequence); a conflict relation # which represents the fact that two actions cannot
be done at the same time, and a concurrency operator × to model that two actions
must be done at the same time. A global clock is used to synchronize actions, and
it is assumed that at each time-step all the possible actions must be performed. If
an enabled obligation is not performed in time, it is considered a violation. The
logic explicitly represents reparations in case of violations. For instance, the obli-
gation modality OC(α) states two facts: that α is an obligation, and that if α is
not performed, then the reparation C must occur. The prohibition modality FC(α)
states that the action α is forbidden; in case the prohibition is violated, then the
reparation C is enforced. Permissions have no reparations associated, because they
cannot be violated: they can only be exercised.

PCL [BZ10a] can be viewed as a contract model, too. Compliance can be de-
fined in terms of provability of a certain formula, which models the objective of
participants. For instance, the contracts a � b and b � a are compliant with the
objective a ∧ b, since a� b, b� a ` a ∧ b in the proof system of PCL. Differently
from [CGP09], PCL allows for a “multi-level” notion of compliance, encompassing
more than two contracts. For instance, consider the contracts-as-formulae:

A : (pay→ ship) ∧ (coupon→ gift)

B1 : pay

B2 : pay ∧ coupon

The contract of A is compliant with both the contracts of B1 and B2. When coupled
with B2, the contract of A entails both the obligations ship and gift for A. When
coupled with B1, we obtain a weaker agreement, since only the obligation ship is
entailed. Although both levels of agreement are possible, in some sense the contract
of B2 yields a tighter Service-Level Agreement than that of B1.

A finer-grained notion of compliance can be obtained by exploiting information
about the past interactions among participants. Such kind of information can be
obtained e.g. by reputation systems, where parties rate each other to express satis-
faction about their respective behaviour. For instance, a buyer may rate the seller
for the quality of the items provided, for the adherence to deadlines, etc. This rating
guides other participants’ decisions when, e.g. they wish to buy some items from
the same seller. An additional side effect of this rating system is to disincentive
bad behaviour, which has a positive effect on the general quality of the interactions.
In [KNS08] a logical framework for reputation systems is proposed, where reputation
ratings about participants are built up by analyzing past interactions. Reputation
can be used by the parties to decide whether to interact or not. Causality between
events is modelled through (prime) event structures. An event may happen only
after some specific events have already happened; an event may be in conflict with



38 CHAPTER 5. CONTRACTS: A BRIEF SURVEY

some others, so that its happening may exclude the occurrence of others. A judg-
ment about the past behaviour of participants can be obtained by verifying formulae
(expressed in a temporal logic with past operators) over the sequences of events ob-
served throughout different running sessions. These formulae can be interpreted as
contracts; compliance is intended as the history of past interactions respecting a
given formula.

5.2 Conformance and subcontracts

Several papers address the issue of determining whether an implementation conforms
to a contract. In some approaches the formalism used to specify the implementation
and the contract is the same, and in such cases conformance can be seen as a
“subcontract” relation.

A typical scenario for studying conformance checking is that of choreography-
based specification of interorganizational processes. A choreography is a global spec-
ification of the behavior of a process to be projected into a set of local views, which
specify the behavior expected from each service involved in the whole process. The
local views can be interpreted as the service contracts: if the actual implementation
of each service respects its contract, then the overall application is guaranteed to
behave correctly.

In [vdALM+10] both global and local views are modelled as open Petri nets. An
open Petri net is a Petri net with some special places called interfaces that are used
to interact with other nets. The intended scenario involves some parties agreeing
upon a global contract, partitioning it, and then distributing the responsibility of
implementing its parts. Each of these parts is called public view, while the imple-
mented part is called private view. Once all the implemented parts are ready, they
are put together to interact. To ensure proper interactions, every private view must
conform to the corresponding public view. This guarantees the global correctness of
the overall process. Correctness is rendered as weak termination,a property which
ensures that in the composed net each non-final marking has at least one successor
(there are no deadlocks), and that in the composed network each cycle of non-final
markings can be left to reach a final marking (there are no livelocks). A private
view conforms with its public view if it has the same interface of the public one,
and if it has at least all the feasible partners as the public one. A technique is then
devised to automatically check conformance. The overall result of [vdALM+10] is a
compositional criterion to check weak termination of applications. One starts from
a choreography, projects it into a set of local views, and then refines each of them
into a service implementation. These services can be verified independently (for re-
finement), and it is guaranteed that their composition still enjoys weak termination.

Several papers address the problem of defining subcontract relations for various
calculi of contracts, e.g. [CGP09, BZ07, CL06, CP09, Pad09, CCLP06, BZ09b]. A
common definition of subcontracts is that a contract σ is a subcontract of τ if every



5.3. CONTRACT MONITORING 39

contract which complies with σ also complies with τ . In [CGP09], the property of
subcontract is expressed with the relation σ v τ . For instance, a ⊕ b v a means
that every client which is ready to do either a or b (on the service discretion) is also
able to deal with a service offering only a. The relation a v a + b tells that every
client which is ready to do a can obviously also interact with a service which leaves
the client the possibility to choose between a and b. When σ v τ , it is possible
to replace a service (with contract σ) with another one with contract τ , without
compromising the possibility of interaction with already deployed clients.

5.3 Contract monitoring

A way to check if an interaction between participants satisfies the declared contract
is that of analyzing the history of events since the interaction has started. The goal
is to detect contract violations and to identify culpable participants.

In [Hen11], contracts are modelled as zero-sum games, which assign penalties
and rewards to participants, with the constraint that a participant must not receive
more than what the others pay. The goal of each participants is to maximise its
rewards, and to minimise its penalties.

The behaviour of participants is modelled in [HKZ12] as sets of histories, record-
ing sequences of time-stamped actions. Histories are analysed to detect contract
breaches and violations. These two notions are kept distinct: a breach is a sanc-
tionable violation. The participant which first breaches the contract is blamed.
Contracts specify how to blame participants, by indicating if a trace conforms to a
contract, or otherwise by indicating which parties have breached it.

In [RSE08] contracts are represented as timed automata [AD94]. The correctness
(or the violation) of an execution is verified by checking its inclusion in the language
accepted by the automaton. An execution over an automaton is represented as a
timed word, i.e. a pair (σ, τ) where σ is a word of the automaton and τ is a timed
sequence such that every move of the automaton σ[i] happened at the time τ [i].
Some patterns of violations are considered, e.g. latency in a response, and counting
the number of acceptable errors/requests in a time window.

A technique to monitor contract executions through timed automata is also
proposed in [LPSS11]. While in [RSE08] a contract violation makes the execution to
abort, in [LPSS11] it is possible to recover after a violation. A predictive approach
is developed to warn agents when entering in a state which could potentially lead
to a violation.

[M+11] studies how to assign liability to software components. This is done by
analysing log files to detect contract violations. A problem is how to specify and
manipulate logs in order to use them as evidence in a court of law. For instance,
recording personal information of users may be considered as a privacy violation,
hence it may result in invalidating the logs.

[GHM00] proposes an XML encoding for legal contracts. Contract terms and con-



40 CHAPTER 5. CONTRACTS: A BRIEF SURVEY

ditions are modelled using Event-Condition Actions from active databases [UW97].
A policy is like: when a condition takes place, then the related action must happen,
unless the deadline is not already expired, otherwise a compensation is provided.
Events trigger actions when certain conditions are met. A contract monitor is imple-
mented by storing actions in a SQL databases, and by composing triggers to detect
contract violations.

5.4 Negotiation

In competitive settings, participants have their own goals, needs and viewpoints,
and they are only concerned about their own benefits or losses. It is then unlikely
that participants can stipulate a contract which exactly matches all their original
requests. A preliminary phase, called negotiation, allows participants to reach an
agreement on their respective behaviour, possibly by weakening their original re-
quests or by strengthening their offers.

There are different kinds of negotiation [Kra01], which differs by what partic-
ipants aim at obtaining. In [PE10] agents negotiate to share resources in a way
called strategic negotiation. Agents take turn to make offers to others agents. The
interaction lasts until a termination condition is met. An agent behaviour is guided
by a negotiation strategy, which specifies what to offer in each turn, and what to
respond to an offer. An offer may be accepted, rejected, or an agent may exit the
negotiation. A way to devise better strategies is searching for resource allocations
which are Pareto optimal, i.e. the ones where no other allocation is more profitable
for an agent without damaging someone else.

Another kind of negotiation is incentive contracting, where an agent may try to
convince another self-interested agent to do something for it, by promise of reward.
A framework for automated incentive contracting is that of Contract Net [DS03]. In
this framework a manager agent asks for a task. All the agents which are potentially
interested evaluate it, and submit bids. Then, the manager chooses the offering agent
which maximizes the manager goals.

In [BM07, BM08, BM11] a process calculus is proposed to model negotiation
of Service Level Agreements. Negotiation is subject to constraints (modelled as
c-semirings) that clients and services might require. The calculus manipulates con-
straints through primitives inspired by Concurrent Constraint Programming [Sar93].
and by calculi with name passing, like e.g. the π-calculus [MPW92]. In particular,
the calculus proposed in [BM07] allows for telling, asking, checking, and retracting
constraints. Only two parties may simultaneously synchronise, and this can happen
only provided that they share a pre-agreed name, and that the constraints they have
required are consistent.



5.5. CONTRACT-ORIENTED COMPUTING 41

5.5 Contract-oriented computing

Contract-oriented computing is a software design paradigm which fosters the use
of contracts to discipline the interaction between clients and services. The life-
cycle of a contract-oriented service is composed of three phases. In the first phase,
the participants negotiate the required and offered behaviour. Upon finding an
agreement, contracts are stipulated, and the terms of service they prescribe become
legally binding. In the third phase, services execute their contracts (or choose not
to). At run-time, services may query the contracts they have stipulated, e.g. to
know their obligations and what has to be expected by their counterparts. Contract
violations are handled automatically by the service infrastructure, which can provide
suitable compensations and sanctions.

To the best of our knowledge, the first contract-oriented calculus has been pro-
posed in [BZ10a]. The calculus combines features from concurrent constraints and
calculi for multiparty sessions, and it uses the logic PCL as the underlying contract
model. Some extensions and enhancements of this calculus have since then been
proposed, e.g. [BZ10b, BTZ11, BTZ12b, BTZ12a].

In particular, [BTZ12a] develops CO2, a contract-oriented calculus which ab-
stracts from the actual contract model. Indeed, CO2 relies on a few common no-
tions about contracts, e.g. a transition system which models their evolution, and a
relation which blames participants in the states where they violate contracts. Dif-
ferently from the calculus in [BZ10a], CO2 does not assume a global constraint
store: to reduce the gap towards a realistic distributed implementation, it uses more
concrete communication primitives, based on sessions.

A distinguished feature of CO2 is that processes are neither supposed to respect
their contracts, nor are they bound to them by any enforcing mechanism. Quite
realistically, dishonest processes may avoid to perform some actions promised in
their contracts. This may happen either intentionally, e.g. a malicious participant
which tries to cheat the system, or unintentionally, e.g. an implementation bug
(possibly exploited by an attacker). In both cases, the infrastructure can determine
which process has caused the violation, and adequately sanction it.

A fundamental problem is how to guarantee that a process will behave honestly,
in all possible contexts where it may be executed. If such guarantees can be given,
then the process is protected both against bugs, and against (apparently honest)
adversaries which try to make it sanctioned. A negative result in [BTZ12b] is that
the problem of determining if a process is honest is undecidable. This has been
proved for the class of contracts introduced in [CCLP06, CGP09].

In [BSTZ12] a type system has been proposed to safely over-approximate honesty.
If a process is typeable, then it is guaranteed to respect the contract it advertises,
in all possible contexts.



42 CHAPTER 5. CONTRACTS: A BRIEF SURVEY



Part II

A theory of agreements and
protection





Chapter 6

Contracts

In this chapter we introduce a model for contracts. Before formalising this notion,
we give the overall intuition and fix some terminology.

The commonly accepted meaning of the word “contract” is that of some entity
which has been concretised after a process of “agreement”, and which has after then
become “legally binding”. For instance, some standard references define the word
“contract” as:

a written or spoken agreement, especially one concerning employment,
sales, or tenancy, that is intended to be enforceable by law.

— Oxford English Dictionary Online

a legal document that states and explains a formal agreement between
two different people or groups, or the agreement itself.

— Cambridge English Dictionary Online

an agreement between two or more parties, to perform a specific job or
work order, often temporary or of fixed duration and usually governed
by a written agreement.

— Wiktionary

Our notion of contract slightly departs from this commonly accepted meaning.
While we adhere to the principle that contracts are “legally binding”, we do not
assume that a contract may only exist after all the involved parties have reached
an agreement. For instance, in our view a contract may be the (legally binding)
statement made by a service through its Service Level Agreement — which indeed
is a concrete entity even before any agreement is established.



46 CHAPTER 6. CONTRACTS

To further motivate this choice, consider the terminology used in the domain
of process algebras. There, both the atomic entities and their compositions are
modelled as processes. For instance, both

P = ā〈v〉. b(x) (an output of v on channel a followed by an input on b)

Q = a(y). b̄〈y + 1〉 (an input on a followed by an output on b)

are processes, as well as their composition P | Q.
Now, assume that somehow there is an agreement between contracts P and Q.

Then, P | Q can be interpreted as a contract according to the standard meaning,
hence a contract theory will provide tools (e.g. a model checker) to reason about it.

If we were going to accept the principle that contracts exist only after they have
been agreed upon, then a process P | Q′, where e.g. Q′ = a(x). c̄〈x+ 1〉 (the output
is on the “wrong” channel) would not even exist as a contract, and so no contract
theory will be able to reason about it. Such a contract theory would be like a process
algebra which gives meaning to P | Q but not to P | Q′ — which would be rather
inelegant, if not useless at all. Indeed, in process algebras when P is “connected” to
a system through the channel a, P must do the output, regardless of which is the
component listening at the other end of the channel, and of what its behaviour will
be. There is no “agreement” phase which precedes the actual interaction: e.g., P
cannot decide to avoid interactions with Q′.

In our theory, we want to be able to reason about contracts before, or even in the
absence of, an agreement. This will allow us to understand what happens when a
service advertises its contract in an environment populated by malicious adversaries
which try to exploit its weaknesses. Section 1.2 outlines our scenario, where un-
trusted contract brokers may establish sessions among participants, independently
of the contract they agreed on. The ability of reasoning about a contract before
it is composed with others is useful also when the contract broker is trusted. For
instance, one can devise analysis techniques to detect when a contract can substitute
for another one [CGP09].

Basic notions In our model, a contract specifies the behaviour promised and
expected by a participant or set of participants. Contracts coming from different
participants can be composed together. In our view, agreement is a property of
composed contracts, which — very roughly — ensures an acceptable interaction to
each participant in the composition.

Our model builds upon four principal notions:

Events are the atomic actions observed by contracts. For instance, “Alice gives an
apple to Bob” is modelled as an event (say, a) in our formalism. We assume
that each event is unique, i.e. it cannot occur twice in the same computation.
Thus, if Alice has to give two apples to Bob, we assume two distinct events
a0, a1.



6.1. AN EVENT-BASED MODEL OF CONTRACTS 47

Participants are the entities which advertise contracts, and are legally bound to
perform the events they prescribe. We assume that each event is associated
with a unique participant. That is, if both Alice and Carol have to give an
apple to Bob, we assume two distinct events, aA (for Alice) and aC (for Carol).

Obligations make explicit the causal dependency between the events performed
by a participant, and those to be done in return by the others. For instance,
Alice’s contract clause “I will give an apple to Bob after I have received a
banana” induces an obligation for her to do event a after event (say) b has
been performed, since she has promised to do it. Event structures are a natural
model for obligations, e.g. by interpreting the above clause as the enabling
b ` a.

Objectives express the degree of “satisfaction” of a participant in any play of the
contract. Contracts associate each participant to an objective function, which
in turn associates each play with a numerical payoff. We shall be quite liberal
about objectives: actually, we allow for modelling them as arbitrary functions.

Chapter overview The rest of this chapter is organised as follows. In Section 6.1
we present our model for contracts, and illustrate it through some examples; in
Section 6.2 we define a notion of agreement; finally, in Section 6.3 we introduce
the concept of protection, and we show the main result of this chapter, i.e. that
agreement and protection cannot coexist for a wide class of contracts.

6.1 An event-based model of contracts

A contract (Def. 6.1) specifies the obligations and the objectives of a set of partic-
ipants (ranged over by A,B, . . .). The atomic entities of a contract are the events,
which are uniquely associated with participants through a labelling π.

Obligations are modelled as an event structure, and constrained by the enabling
relation ` of [Win88]. Intuitively, an enabling X ` e models the fact that, if all
the events in X have happened, then e is an obligation for participant π(e). Such
obligation may be discharged only by performing e, or by performing any event in
conflict with e. For instance, consider an internal choice between two events a and
b. This is modelled by an ES with enablings ` a, ` b and conflict a#b. After the
choice (say, of a), the obligation b is discharged.

Objectives are modelled as a function Φ, which associates each participant A
and each trace of events σ to a payoff ΦAσ. We assume a rather coarse notion of
payoffs: we only have three possible outcomes which represent, respectively, success
(1), failure (-1), and tie (0).

Definition 6.1 (Contract). A contract C is a 4-tuple (E,A, π,Φ), where:



48 CHAPTER 6. CONTRACTS

• E = 〈E,#,`〉 is an event structure;

• A is a set of participants;

• π : E → A associates each event with a participant;

• Φ : A⇀ Eω → {−1, 0, 1} associates each participant and trace with a payoff.

and where for all X ` e in E, Φπ(e) 6= ⊥.

The last row in Def. 6.1 imposes that contracts respect one basic requirement,
namely for all X ` e in E, we ask that Φπ(e) is defined (as ⊥ denotes undefined).
Note that Φ is a partial function (denoted with the symbol ⇀), hence a contract does
not need to define payoffs for all the participants in A: typically, when A advertises
her contract, she will not speculate about the objectives of B. This constraint asks
that if a contract defines some obligations for A, then A must also declare in C her
payoffs.

6.1.1 Contract plays

To define the semantics of a contract C = 〈E,A, π,Φ〉, we interpret it as a nonzero-
sum concurrent multi-player game. The game involves the players in A concurrently
performing events in order to reach the objectives defined by Φ.

A play of C is a (finite or infinite) sequence of events of E. We postulate that
only the obliged events are permitted. More precisely, the permitted moves after
a (finite) sequence of steps σ are exactly the events enabled by E in σ, i.e. e is
permitted in σ iff σ

e−→E in LTSE.

Definition 6.2 (Play). A play of a contract C = 〈E,A, π,Φ〉 is a (finite or infinite)
sequence σ of events of E such that ∅ σ−→E.

The following lemma establishes the obvious relation among plays and the con-
figurations of the ES of the contract.

Lemma 6.3. The events σ of a play σ form a configuration of E.

Proof. Trivial by Lemma 3.8.

Each participant can choose a strategy to decide which of her events has to be
done in each state. A strategy can prescribe to only perform the events that are
enabled by the already occurred ones.

Definition 6.4 (Strategy). A strategy Σ for A is a function which associates with
each finite play σ = 〈e0 · · · en〉 a set of events of A (possibly empty), such that if
e ∈ Σ(σ) then σe is still a play.

When a participant acts as suggested by the strategy, the resulting play is said
to be conform to that strategy.

Definition 6.5 (Conformance to a strategy). A play σ conforms to a strategy Σ for
A if for all i ≥ 0, if ei ∈ π−1(A), then ei ∈ Σ(σi).



6.1. AN EVENT-BASED MODEL OF CONTRACTS 49

6.1.2 Some examples

Example 6.6. Suppose there are two kids who want to play together. Alice has
a toy airplane, while Bob has a bike. Both kids are willing to share their toys,
but they do not trust each other. Thus, before starting to play they advertise the
following contracts. Alice will lend her airplane only after Bob has allowed her ride
his bike. Bob will lend his bike unconditionally. We model the events “Alice lends
her airplane” and “Bob lends his bike” as a and b, respectively. The obligations of
Alice and Bob are modelled by the following ES:

EA : b ` a EB : ` b

The objectives of the two kids are modelled by the functions ΦA (which establishes
Alice’s payoff) and ΦB (for Bob). Alice has a positive payoff in those traces where b
has been performed, while she has a negative payoff when she performs a while not
obtaining b in return. The payoffs of Bob are dual. Formally:

ΦAA = λσ.


1 if b ∈ σ
0 if a, b 6∈ σ
−1 otherwise

ΦBB = λσ.


1 if a ∈ σ
0 if b, a 6∈ σ
−1 otherwise

Summing up, the contracts of Alice and Bob are CA = 〈EA,A, π,ΦA〉 and CB =
〈EB,A, π,ΦB〉, respectively, where A = {A,B}, π(a) = A, and π(b) = B.

Intuitively, the contract resulting by the composition of CA and CB admits an
agreement. We shall state this formally later on in Section 6.2.

Example 6.7. Suppose Bob lends his bike to Alice (event b), and requires Alices’s
toy airplane in exchange. However, Alice does not promise to lend her airplane
immediately. She can either lend it in the same day (event a0), or one day after
(event a1), or two days after (a2), etc. If Alice decides not to lend the airplane at
day n, she fires the event ãn#an. The obligations of Alice and Bob are modelled by
the following ES:

EA : b ` a0, b ` ã0 {ãi ` ai+1, ãi ` ãi+1 | i ≥ 0} {ãi#ai | i ≥ 0}
EB : ` b

The overall obligations of Alice and Bob are represented in Fig. 6.1, and their payoffs
are given by:

ΦAσ =


1 if b ∈ σ
0 if b 6∈ σ and σ ∩ A = ∅
−1 otherwise

ΦBσ =


1 if σ ∩ A 6= ∅
0 if b 6∈ σ and σ ∩ A = ∅
−1 otherwise

where A = {ai | i ≥ 0}. Intuitively, A agrees on the composed contract, while B does
not: indeed, A can indefinitely delay the lending of her airplane.



50 CHAPTER 6. CONTRACTS

b

ã0

a0

ã1

a1

ã2

a2

Figure 6.1: A contract with an indefinitely delayed obligation.

Example 6.8. In [CGP09] contracts are modelled in a variant of CCS which in-
cludes prefixing, internal/external choice, and recursion. Consider e.g. a server A
which repeatedly offers to her clients a choice between two actions a and b. The client
B internally chooses one of his (co-)actions a and b. This is modelled in [CGP09]
as follows:

cA = rec X. (a.X + b.X) cB = rec Y. (a.Y ⊕ b.Y )

In our theory we model cA and cB as the contracts CA and CB, defined below. For
all i ≥ 0, let ai, bi be events of A, and let ai, bi be events of B. The event structures
of A and B are shown in Fig. 6.2 and have the following enablings and conflicts, for
all i ≥ 0:

EA : ai ` ai, bi ` bi, ai#bi

EB : ` a0, ` b0, ai ` ai+1, ai ` bi+1, bi ` ai+1, bi ` bi+1, ai#bi

The payoff of a participant P ∈ {A,B} is positive in a finite play σ if P has no
obligations in σ.

ΦfinPσ =

{
1 if @e ∈ π−1(P ). σ

e−→EP

−1 otherwise
(σ finite)

For an infinite play, to have a positive payoff P require that, from any step i in the
play, there exists a future step j ≥ i where P has no obligations. Otherwise, if P
is eventually definitely “culpable” (i.e. if ∃i. ∀j ≥ i. ΦfinPσj < 0) then her payoff is
negative.

ΦPσ =

{
1 if ∀i. ∃j ≥ i. ΦfinPσj > 0

−1 otherwise

Intuitively, the composed contract admits an agreement; we shall prove this formally
in Section 6.2.

6.1.3 Payoff functions

The definition of payoff functions in the definition of contract Def. 6.1 is quite
liberal. Indeed, it also allows for uncomputable functions, which are of little use in



6.1. AN EVENT-BASED MODEL OF CONTRACTS 51

a0

b0

a1

b1

a2

b2

a3

b3

a4

b4

Figure 6.2: Obligations for two CCS-like contracts.

doing anything with a contract. One may then be interested in considering relevant
subclasses of payoff functions, in the same spirit of the rich classification of winning
conditions in game theory [CH12]. Here we shall only focus on a few subclasses of
payoff functions, which are relevant in the realm of contracts.

Büchi payoffs A function Φ is a Büchi payoff for A if it says that A succeeds in
all infinite traces where she visits a success state infinitely often, i.e. ΦAσi = 1 for
an infinite number of finite prefixes σi of σ.

Definition 6.9 (Büchi payoff). We say that Φ is a Büchi payoff for A if for all
infinite plays σ:

ΦAσ =


1 if ∀i. ∃j ≥ i. ΦAσj > 0

−1 if ∃i. ∀j ≥ i. ΦAσj < 0

0 otherwise

For instance, the payoffs in Example 6.8 are Büchi payoffs for A and B.

Reachability payoffs We now consider the class of payoffs which neglect the
order in which events are performed.

Definition 6.10 (Reachability payoff). A function Φ is a reachability payoff for A
if ΦAσ = ΦAη whenever σ = η.

Alternatively, Φ is a reachability payoff for A when there exist two predicates
ϕ0, ϕ1 ⊆ ℘(E) such that

ΦAσ =


1 if σ ∈ ϕ1

0 if σ ∈ ϕ0

−1 otherwise

For instance, the payoffs in Examples 6.6 and 6.7 are reachability payoffs.

Offer-Request payoffs We now introduce another class of payoff functions, called
Offer-Request payoffs. Intuitively, these are used by participants which want to be
paid for each provided service. Each participant A has a set {O0

A, O
1
A, . . .} of sets

of events (the offers), and a corresponding set {R0
A, R

1
A, . . .} (the requests). To be

successful, whenever A performs in a play some offer Oi
A (in whatever order), the



52 CHAPTER 6. CONTRACTS

play must also contain the corresponding request Ri
A, and at least one of the requests

has to be fulfilled. Clearly, Offer-Request payoffs are also reachability payoffs.

Definition 6.11 (Offer-Request payoff). Let π : E → A. We say that Φ is an
Offer-Request payoff for A iff there exist a (possibly infinite) sequence (Oi, Ri)i such
that for all i, Oi ⊆ π−1(A), ∅ 6= Ri ⊆ E \ π−1(A), and for all σ:

ΦAσ =


1 if (∃i. Ri ⊆ σ) ∧ (∀j. Oj ⊆ σ =⇒ Rj ⊆ σ)

0 if (∀i. Ri 6⊆ σ ∧ Oi 6⊆ σ)

−1 otherwise

A contract C = 〈E,A, π,Φ〉 has O-R payoffs iff Φ is an O-R payoff for all A ∈ A.
If, additionally, all the sets Oi (resp. Ri) are finite for all A ∈ A, we say that C has
finite offers (resp. finite requests). If Φ has a finite number of finite offers-request,
then Φ is finite.

For instance, the payoff functions ΦA and ΦB in Example 6.6 are O-R payoffs for
A and B. The offers and the requests of A and B are, respectively O0

A = {a} = R0
B

and, dually, O0
B = {b} = R0

A. Instead, the payoff of B in Example 6.7 is not an O-R
payoff: indeed, the offer b must be followed by (at least) one of the events ai.

Some remarks about O-R payoffs follow.

• A play σ has a negative payoff for a participant A if A has already done what
she offered (Oi ⊆ σ ) and she has not received what she wanted (Ri 6⊆ σ).

• If the O-R payoff for A offers nothing for a non-empty set of requests, e.g.:

O0
A = ∅ R0

A 6= ∅

then in the play ε where no events have been performed, A has a negative
payoff. Indeed, O0

A = ∅ ⊆ ε but R0
A 6⊆ ε.

• Specifying the same offer set towards differents request sets (for instance
({a}, {b}),({a}, {c})) is equivalent to specifying only the single clause
({a}, {b, c}), as the plays with positive/negative playoff are the same.

The following example shows that not every O-R payoff is also a Büchi payoff.

Example 6.12. Let CA = 〈EA,A, π,ΦA〉 and CB = 〈EB,A, π,ΦB〉 be two contracts,
and let Φ be the (infinite) O-R payoff for A defined by:

(Oi, Ri) = ({oi}, {ri}) ∀i ≥ 1

Let A = {A,B}, and let π(oi) = A, and π(ri) = B, for all i ≥ 1.



6.1. AN EVENT-BASED MODEL OF CONTRACTS 53

o1 o2

r1

o3

r2

o4

r3

(Oi, Ri) = ({oi}, {ri}) ∀i ≥ 1

Figure 6.3: An Offer-Request payoff which is not a Büchi payoff.

Let the ES of A and B be defined by the following enablings:

EA : ` o1, o1 ` o2, ri ` oi+2 ∀i ≥ 1

EB : oi ` ri−1 ∀i ≥ 2

The only play σ where ΦAσ = 1 is the infinite one:

σ = 〈o1 o2 r1 o3 r2 o4 r3 . . .〉

Since, for all i, the play up to ri contains a non-matched oi+1, it is not possible to
find an index i where ΦAσi > 0. Therefore ΦA is not a Büchi payoff.

Circular Offer-Request payoffs We now consider a relevant subclass of Offer-
Request payoffs, where the requests of all participants mutually depend on their
offers. An O-R payoff is circular when it is not possible to satisfy requests from
all participants without each participant doing some offer (item (6.1)), and each
combination of the requests is covered by a set of offers (item (6.2)).

For instance, the payoffs of Alice and Bob in Example 6.6 are circular, because
their requests (e.g. a and b, respectively) match exactly their offers.

Definition 6.13 (Circular Offer-Request payoff). An O-R payoff Φ for participants
A is circular when:

∀J : A→ N. ∃L : A→ N.
⋃

A∈AO
LA
A ⊆

⋃
A∈AR

JA
A (6.1)

∀J : A→ N. ∃L : A→ N.
⋃

A∈AO
LA
A ⊇

⋃
A∈AR

JA
A (6.2)

We anticipate here a key feature of finite circular payoffs, which will be proved
later on in Lemma 6.47. In each play where all participants “win”, at some point
there exists a participant A which has performed all the offers in Oi

A before having
obtained all the requests in Ri

A.

Example 6.14. Consider two participants A, B with the following O-R payoff:

i Oi
A Ri

A

0 {a0} {b0}
1 {a0, a1} {b0, b1}
2 {a0, a1, a2} {b0, b1, b2}

i Oi
B Ri

B

0 {b0} {a0}
1 {b1, b2} {a0, a1}
2 {b0, b1, b2} {a0, a2}



54 CHAPTER 6. CONTRACTS

There are 32 possible choices for the function J : A → {0, 1, 2}. For each of these
choices, we have that:

{a0, b0} ⊆
⋃
A∈A

RJA
A ⊆ {a0, a1, a2, b0, b1, b2}

Therefore, we can satisfy (6.1) by choosing L = {A 7→ 0,B 7→ 0}, and (6.2) by
choosing L = {A 7→ 2,B 7→ 2}. By Def. 6.13, we conclude that the payoffs of A and
B are circular.

Note that in any play where A and B have a positive payoff, there is a prefix
of the play where one of the participants has performed all her offers, but has not
received the corresponding requests. For instance, for the play σ = 〈a0 b0〉, A has
done all her offers O0

A in the prefix 〈a0〉, but there she has not already received R0
A.

If we remove the clause (O0
A, R

0
A), then the payoff is no longer circular. In this

case, we find a play η = 〈a0 b0 b1〉 where both participants have a positive payoff
(because R1

A ∪R0
B ⊆ η), but there exists no prefix of η where one of the participants

has performed all her offers before receiving the corresponding requests.

Example 6.15 (Dining retailers [BZ10a]). Around a table, n cutlery retailers are
about to have dinner. At the center of the table, there is a large dish of food. Despite
the food being delicious, the retailers cannot start eating right now. To do that, and
follow the proper etiquette, each retailer needs a complete cutlery set, consisting of
n pieces of different kinds. Each of the n retailers owns a distinct set of n pieces
of cutlery, all of the same kind. The retailers start discussing about trading their
cutlery, so that they can finally eat.

We formalise the retailers payoffs as follows. Each retailer Ai initially owns n
pieces of kind i. For all j 6= i, the event ei,j models Ai giving a piece of cutlery to
retailer Aj. Thus, π−1(Ai) = {ei,j | j 6= i}. Retailer Ai offers n − 1 pieces of his
cutlery of kind i in exchange for n− 1 pieces of cutlery of the other kinds.

Oi = {ei,j | j 6= i} Ri = {ej,i | j 6= i}

By Def. 6.13, the payoff Φi of each retailer is a finite O-R circular payoff. Indeed:⋃
i∈1..n

Oi = {ei,j | i 6= j} =
⋃
i∈1..n

Ri

6.1.4 Contract composition

Given two contracts C,C′, we denote with C | C′ their composition. We assume that
whenever two contracts are composed, they both agree about events’ names: same
name mean same event.

If C′ is the contract written by an adversary of C, then a näıve composition of
the two contracts could easily lead to an attack, e.g. when Mallory’s contract says
that Alice is obliged to give him her airplane. To prevent from such kinds of attacks,



6.1. AN EVENT-BASED MODEL OF CONTRACTS 55

contract composition is a partial operation: for a contract composition of C and C′

to be defined, we require the following two conditions:

1. the contracts agree on the association between events and participants;

2. if one of the contracts defines a payoff for participant A, then the other contract
cannot define payoffs for A.

The conditions which allow two contracts C, C′ to be composed are formalised
in Def. 6.16 below.

Definition 6.16 (Composition of compatible contracts). Two contracts C =
〈E,A, π,Φ〉 and C′ = 〈E′,A′, π′,Φ′〉 are compatible whenever:

∀e, e′ ∈ E ∩ E′. e = e′ =⇒ π(e) = π′(e) (6.3)

∀A ∈ A ∪A′. Φ(A) = ⊥ ∨ Φ′(A) = ⊥ (6.4)

If C, C′ are compatible, we define their composition as:

C | C′ = 〈E t E′,A ∪A′, π ∪ π′,Φ ∪ Φ′〉

where E t E′ = (E ∪ E ′, ` ∪ `′, # ∪#′).

Two contracts which both assign obligations to A are not compatible.

Lemma 6.17. If C = 〈E,A, π,Φ〉 and C′ = 〈E′,A′, π′,Φ′〉 are compatible, then for
all e, e′, X,X ′, we have:

X ` e ∈ E ∧ X ′ ` e′ ∈ E′ =⇒ π(e) 6= π′(e′) ∧ e 6= e′

Proof. Let X ` e ∈ E and X ′ ` e′ ∈ E′.

We first prove that e and e′ belong to different participants. Let us assume by contra-
diction that π(e) = π′(e′) = A. By Def. 6.1 we have that ΦA 6= ⊥ and Φ′A 6= ⊥, which
contradicts condition (6.4) in Def. 6.16.

Let us now assume by contradiction that e = e′. By condition (6.3), we have that
π(e) = π′(e′), but this leads to a contradiction, as shown above.

Example 6.18. The contracts CA and CB in Example 6.6 are compatible, and their
composition is the contract C = CA | CB = 〈E,A, π,Φ〉 defined as follows:

E : ` b, b ` a
A : {A,B}
π : {a 7→ A, b 7→ B}

ΦP =

{
ΦAA if P = A

ΦBB if P = B



56 CHAPTER 6. CONTRACTS

6.2 Agreements

A crucial notion on contracts is that of agreement. Intuitively, when Alice agrees on
a contract C, then she can safely initiate an interaction with the other participants,
and be guaranteed that the interaction will not “go wrong” — even in the presence
of attackers. This does not mean that Alice will always succeed in all interactions:
in case Bob is dishonest, we do not assume that an external authority (e.g. Bob’s
mother) will lend the bike to Alice. We intend that Alice agrees on a contract where,
in all the interactions where she does not succeed, then some other participant must
be found dishonest. That is, we consider Alice satisfied if she can blame another
participant. In real-world applications, a judge may provide compensations to Alice,
or impose a punishment to the participant who has violated the contract. Here, we
shall not explicitly model the judge, and we only focus on how to formalise the
agreement property.

6.2.1 Basic definitions

Recall from Def. 6.2 that we interpret a contract as a multi-player game, where
participants concurrently perform events in order to reach their objectives. The plays
of this game are the conflict-free sequences of events, with the further requirement
that an event e can be fired in a play σ only if e is obliged (i.e., enabled) in σ. The
behaviour of each participant A is specified by a strategy ΣA, defining which events
of A can be done at each state of a play.

As usual in concurrency, we shall only consider those fair plays where an event
infinitely often enabled is eventually performed. Indeed, contracts would make little
sense in the presence of unfair plays, because an honest participant willing to perform
a promised action could be perpetually prevented (by an unfair scheduler) from
keeping her promise.

Technically, we define fairness with respect to the strategy of a participant. A
play is fair for a strategy Σ (say, of A) when the other participants cannot prevent
A from doing some action persistently promised by Σ.

Definition 6.19 (Fair play). We say that a play σ = 〈e0 e1 · · ·〉 is fair for Σ iff:

∀i ≤ |σ|. ∀e.
(
∀j : i ≤ j ≤ |σ|. e ∈ Σ(σj)

)
=⇒ ∃h. i ≤ h < |σ|. eh = e

Lemma 6.20. A play σ = 〈e0 e1 · · ·〉 is fair for Σ iff:

∀i ≤ |σ|. @e. ∀j : i ≤ j ≤ |σ|. e ∈ Σ(σj)

Proof. For a play σ = 〈e0 e1 · · ·〉 let the predicates P (e, i) and Q(e, i) be defined as:

P (e, i) , ∀j : i ≤ j ≤ |σ|. e ∈ Σ(σj)

Q(e, i) , ∃h ≥ i. eh = e



6.2. AGREEMENTS 57

Then, Def. 6.19 can be rewritten as: ∀i ≤ |σ|. ∀e. P (e, i) =⇒ Q(e, i).
When Q(e, i) is true, there exists h ≥ i such that eh = e, hence σh e = σh+1 6

e−−→. Thus,
by Def. 6.4 it must be e 6∈ Σ(σh+1), which implies P (e, i) to be false.

Therefore, since ¬P (e, i) is true whenever Q(e, i) is true, we have that in both cases
¬P (e, i) is true, from which the thesis follows:

σ is fair ⇐⇒ ∀i ≤ |σ|. ∀e. ¬P (e, i) ⇐⇒ ∀i ≤ |σ|. ¬∃e. P (e, i)

During a play, if a participant eventually performs all the events that become
enabled, then she is said to be innocent. The only way for not performing an enabled
event, and still be considered innocent, is to perform an event which conflicts with
it. If there exists even a single event of A which is enabled by the play but has not
been performed (nor there is some conflict which prohibits it) then A is culpable.

Definition 6.21 (Innocence). We say that A is innocent in σ iff:

∀i ≥ 0. ∀e ∈ π−1(A).
(
σi

e−→E =⇒ ∃j ≥ i. ej#e ∨ ej = e
)

A strategy Σ for A is innocent iff A is innocent in all fair plays which conform to Σ.

If A is not innocent in σ, then we say she is culpable in σ.

Not all strategies are innocent. For instance, the one which always prescribes
A to do nothing is innocent only in case A really has nothing to do. There always
exist strategies which guarantee A to be innocent in every (fair) play.

We say that a strategy Σ is greater than the strategy Σ′, if for all plays σ, we
have that Σ′σ ⊆ Σσ. The greatest of such strategies is the eager strategy, which
prescribes A to do all her enabled events.

Definition 6.22 (Eager strategy). We define the eager strategy Σe
A for A as follows:

Σe
A(σ) = {e ∈ π−1(A) | σ e−→ }

Since the eager strategy Σe
A prescribes A to do all her enabled events, and since

A is innocent if she performs all the events she has to, it is easy to see that A is
innocent in every fair play which conforms to Σe

A.

Lemma 6.23. Σe
A is the greatest innocent strategy for A.

We now define when a participant wins in a play. If A is culpable, then she loses.
If A is innocent, but some other participant is culpable, then A wins. Otherwise, if
all participants are innocent, then A wins if she has a positive payoff in the play.
This is formalised as the function W in Def. 6.24 below.

Definition 6.24 (Winning play). Define W : A⇀ Eω → {1, 0,−1} as:

WAσ =


ΦAσ if all participants are innocent in σ

−1 if A is culpable in σ

+1 otherwise

For a participant A and a play σ, we say that A wins (resp. loses) in σ iff WAσ > 0
(resp. WAσ < 0).



58 CHAPTER 6. CONTRACTS

Note that in the last case, A is innocent but there exists some B 6= A culpable in σ.

Definition 6.25 (Winning strategy). A strategy Σ is winning (resp. losing) for A
iff A wins (resp. loses) in every fair play conform to Σ.

Whenever A has a strategy Σ which allows her to win in all fair plays conform
to Σ, then she agrees on that contract.

Definition 6.26 (Agreement). A participant A agrees on a contract C = 〈E,A, π,Φ〉
if and only if A has a winning strategy in C. A contract C admits an agreement
whenever all the participants in A agree on C.

Indeed, if A agrees on a contract, in any interaction regulated by that contract,
she will win.

6.2.2 Examples

Example 6.27. The contract C of Ex. 6.18 admits an agreement. The winning
strategies for A and B are, respectively:

ΣA(σ) =

{
{a} if b ∈ σ and a 6∈ σ
∅ otherwise

ΣB(σ) =

{
{b} if b 6∈ σ
∅ otherwise

For A, the only plays fair and conform to ΣA are ε and 〈b a〉. B is culpable in ε,
while in 〈b a〉 the payoff of A is positive. For B, the only fair plays conform to ΣB

are 〈b〉 and 〈b a〉. A is culpable in 〈b〉, while in 〈b a〉 the payoff of B is positive.

Example 6.28. Let C be the contract resulting from the composition of the contracts
of A and B in Example 6.7. We have that A agrees on C, while B does not. A winning
strategy for A is:

ΣA(σ) =

{
{ãi} if σ

ãi−→
∅ otherwise

There are only two fair plays conforming to ΣA: the empty one (where B is culpable),
and the infinite one σ = 〈b ã0 ã1 · · ·〉. In the play σ, A has a positive payoff, while B
has a negative one.

Example 6.29. The contract resulting from the composition of the contracts of A
and B in Example 6.8 admits an agreement. Indeed, the eager strategies for A and
B are winning.

Σe
A(σ) =

{
{ai} if σ

ai−→
{bj} if σ

bi−→
Σe

B(σ) = {ai, bi} if |σ| = i

To prove that Σe
A is winning for A, consider any fair play σ conform to Σe

A. If σ is
empty, B is culpable in σ. If σ is finite and non-empty, it terminates with either ai
or bi (events of A), and so B is culpable. Otherwise, if σ is infinite, then ΦAσ = 1.



6.2. AGREEMENTS 59

To prove that Σe
B is winning for B, consider any fair play σ conform to Σe

A. If σ
is finite, then it terminates with either ai or bi, hence A is culpable in σ. Otherwise,
if σ is infinite, then ΦBσ = 1.

Example 6.30. The eager strategy Σe
A is not always winning for A. For instance,

consider the contract with ` a, ` b, a#b, π−1(A) = {a, b}, and ΦAσ = 1 iff a ∈ σ.
We have that Σe

A(ε) = {a, b}, but A is losing in the fair play σ = 〈b〉. However, A

agrees on C, because the strategy (λσ. if σ
a−→ then {a} else ∅) is winning for A.

Definition 6.31 (Union of strategies). Let Σa and Σb be two strategies, then we
define their union as:

Σ = λσ.Σa(σ) ∪ Σb(σ)

Example 6.32. The union of two winning strategies is not necessarily a winning
strategy. For instance, consider the contract with enablings ` a, ` b, {a} ` a′,
{b} ` b′, and conflicts a#b′, a′#b and where all the events belong to A. Let:

Σa(σ) =


{a} if σ

a−→
{a′} if σ

a′−→
∅ otherwise

Σb(σ) =


{b} if σ

b−→
{b′} if σ

b′−→
∅ otherwise

and let ΦAσ be positive if either a, a′ ∈ σ, or b, b′ ∈ σ. Both Σa and Σb are
winning strategies for A in C, but their union Σ = λσ.Σa(σ) ∪ Σb(σ) is not. Indeed
Σ(a) = {a′, b}, and so σ = 〈a b〉 is a fair play conform to Σ, such that ΦAσ ≤ 0.
Therefore, Σ is not winning for A in σ.

6.2.3 Composition of strategies

We now define the composition t of a set of strategies. Unlike for the union of win-
ning strategies, their finite t-composition is guaranteed to be winning (Lemma 6.35).

Definition 6.33 (Composition of strategies). For a set of strategies S, we define
the strategy

⊔
S as:

(
⊔

S)(σ) =
⋃
{Σ(σ) | Σ ∈ S ∧ σ conforms to Σ}

Lemma 6.34. For all sets of strategies S, and for all σ, if σ conforms to Σ for
some Σ ∈ S, then σ conforms to

⊔
S.

Proof. Trivial by Def. 6.33

Lemma 6.35. Let S be a finite set of strategies for participant A. Then:

(a) If a play σ conforms to
⊔

S, then there exists Σ ∈ S such that σ conforms to Σ.

(b) If each Σ ∈ S is winning for A in C, then
⊔
S is a winning strategy for A in C.



60 CHAPTER 6. CONTRACTS

e1 e2 e3

e′1

a

e′2

a

e′3

a

Figure 6.4: Joining an infinite set of winning strategy is not a winning strategy.

Proof. For item (a), we prove the contrapositive. Assume that σ does not conform to any
Σ ∈ S. By Def. 6.5, this means that:

∀Σ ∈ S. ∃iΣ ≥ 0. π(eiΣ) = A ∧ eiΣ 6∈ Σ(σiΣ) (6.5)

Clearly, if σiΣ does not conform to Σ, and so for all j ≥ iΣ, σj does not as well.
Since S is finite, we can take the maximum of the indices iΣ obtained in (6.5) i.e. let:

k = max{iΣ | Σ ∈ S}

By construction of k, π(ek) = A, but σk does not conform to any Σ ∈ S. Then, by
Def. 6.33, σ does not conform to

⊔
S.

To prove (b), let σ be a play conforming to
⊔
S. By (a), there exists Σ ∈ S such that

σ conforms to Σ. Since by hypothesis Σ is winning, then A wins in σ. So
⊔
S is a winning

strategy for A.

Unfortunately, Lemma 6.35(a) cannot be applied when the set of strategies is
infinite. Indeed, for each event ei of an infinite play σ fair and conforming to

⊔
S,

there may exists a different Σi ∈ S to whom each σi conforms, but not a single Σ
to which the whole σ conforms. So, even if all the strategies in S are winning,

⊔
S

may not be winning, as shown in the following example.

Example 6.36. Let CA = 〈EA,A, π,ΦA〉 be a contract with the following payoff:

ΦAσ =

{
1 if a ∈ σ
−1 otherwise

Let EA be the ES with the following enablings and conflicts (see Fig. 6.4):

`: { ` e1} ∪ {ei ` ei+1 | i ≥ 1} ∪ {ei ` e′i | i ≥ 1} ∪ {e′i ` a | i ≥ 1}
# : {e′i#ei+1 | i ≥ 1}

Let A = {A}, and let π(a) = π(ei) = π(e′i) = A, for all i ∈ N.
For all i > 0, let Σi be the strategy for A which prescribes to wait i + 1 events

before performing a. Formally:

Σi(σ) =


{e′i} if |σ| = i and σ

e′i−→
{a} if |σ| = i+ 1 and σ

a−→
{ej} if |σ| < i and σ

ej−→
∅ otherwise



6.2. AGREEMENTS 61

For all i, the strategy Σi is winning. Indeed, each play σ fair and conforming to Σi

has the form 〈e1 e2 · · · ei e′i a〉. For instance, 〈e1 e
′
1 a〉 is a fair play conforming to

Σ1 and 〈e1 e2 e
′
2 a〉 is a fair play conforming to Σ2. In the play σ, the payoff of A is

positive, hence Σi is winning for A.
Now, let S =

⊔
{Σi | i ≥ 0}, and let σ∞ = 〈e1 e2 e3 . . .〉 be a play (actually, this

is the only infinite play allowed in this ES). We have that:

• σ∞ is fair for
⊔

S. Indeed, there does not exist an event e ∈ (
⊔
S)σ∞j for all

i and all j ≥ i. Thus, Lemma 6.20 states σ∞ is fair.

• σ∞ conforms to
⊔

S, since for all i, σ∞i conforms to every Σj with j > i.

• A loses in σ∞, since she will never perform the event a.

Summing up, we have found a fair play that conforms to
⊔
S where A is not winning:

therefore,
⊔

S is not a winning strategy.

6.2.4 Agreements for Offer-Request payoffs

The following theorem gives a necessary condition for reaching an agreement on a
contract with O-R payoffs. The ES must have a configuration containing at least a
request set, and where all the offers are matched by the respective requests.

Lemma 6.37. Let C = 〈E,A, π,Φ〉 be a contract with O-R payoff ΦA = λσ. φ(σ)
for A. If A agrees on C, then there exists C ∈ FE such that φ(C) > 0.

Proof. Assume that A agrees on C. By Def. 6.26, A has a winning strategy in C, be it
ΣA. By Def. 6.25, A wins in every fair play which conforms to ΣA. Among all these plays,
there must exist at least one where all the participants are innocent (e.g. the play where
all B 6= A adopt the eager strategy Σe

B), call it σ. Since A wins in σ, by Def. 6.24 we have
ΦAσ > 0. To conclude, it suffices to observe that by Lemma 6.3 for all plays σ, the set σ
is a configuration of E.

The following example shows that the converse of Lemma 6.37 does not hold.
Indeed, it is not enough to require that φ(C) > 0 for some C ∈ FE to agree on a
contract: in some cases a conflict may prevent us from reaching a positive payoff.

Example 6.38. Let C be a contract with O-R payoffs, defined as follows:

π : {a 7→ A, a′ 7→ A, b 7→ B, b′ 7→ B}
` : ` a ` a′ ` b ` b′

# : a # a′ b # b′

ΦA : O0
A = {a} R0

A = {b} O1
A = {a′} R1

A = {b′}

Even though there exist two configurations, {a, b} and {a′, b′}, where A has a positive
payoff, there are also some plays, e.g. 〈a, b′〉 and 〈a′, b〉, where she has a negative
payoff, and hence she loses. Since A has no innocent strategy to avoid these plays,
A does not agree on the contract C.



62 CHAPTER 6. CONTRACTS

The following theorem establishes a sufficient condition for reaching agreements
in conflict-free contracts with O-R payoffs. If there exists a configuration C in C

which contains all the requests of A, then A agrees on C. Since the ES of C is
conflict-free, if the strategy of A prescribes to do all her enabled events in C, then
the other participants are obliged to do their events in C. Eventually, either some
participant B 6= A is culpable, or a state is reached where the payoff of A is positive.

Theorem 6.39. Let C be a contract with O-R payoff for A. If E is conflict-free and⋃
iR

i
A ⊆ C for some C ∈ FE, then A agrees on C.

Proof. We will prove that the eager strategy Σe
A is winning for A in C. Let γ be a fair

play of C which conforms to Σe
A.

By contradiction, assume that A is not winning in γ. By Lemma 6.23, A is innocent
in γ. Thus, by Def. 6.24 it follows that all participants are innocent and, ΦAγ ≤ 0. By
Def. 6.11, this means that either there exist some i such that OiA ⊆ γ and RiA 6⊆ γ (in case
A loses), or that for all i, OiA 6⊆ γ and RiA 6⊆ γ (in case A ties). In both case, there exists
at least one i such that RiA 6⊆ γ.

Let i be such that RiA 6⊆ γ, and let e be such that e ∈ RiA \ γ. By hypothesis, there
exists C ∈ FE such that

⋃
iR

i
A ⊆ C; hence e ∈ C.

Since C is a configuration, and since every family of configurations enjoy finiteness, by
Lemma 3.12 there exists C ′ ⊆fin C such that C ′ ∈ FE and e ∈ C ′. By Lemma 3.8, there

exists a play σ such that ∅ σ−→E σ, and e ∈ σ = C ′.
We will prove that σ ⊆ γ by induction on the length of σ. The base case σ0 = ε

is trivial. For the inductive case, we have to prove that σi+1 = σi ∪ {ei} ⊆ γ. By the
induction hypothesis, σi ⊆ γ for i < |σ|, hence it is enough to prove that ei ∈ γ.

By contradiction, assume that ei 6∈ γ. Let γk be the shortest prefix of γ such that
σi ⊆ γk. Since σi ` ei, by Lemma 3.9 it follows that γh

e−→E for all h ≥ k. Since all
participants are innocent in γ, and since E is conflict-free, by Def. 6.21 there exists j > k
such that the j-th event of γ is ei — contradiction.

Summing up, we have proved that
⋃
iR

i
A ⊆ γ for all fair plays γ. Therefore, A has a

winning strategy (Σe
A) in C, from which we conclude that A agrees on C.

Note that the conflict-freeness requirement in Theorem 6.39 cannot be dropped.
Actually, in the presence of conflicts, Example 6.38 shows that there exists a con-
figuration containing all the requests of A, but A does not agree on the contract.

Some events in a contract may be immaterial in reaching agreements. For in-
stance, consider an ES with the following enablings and conflicts (all events are of
A):

{ ` ei | i ∈ I} {ei#e0 | i ∈ I}
If the set I is infinite, participant A can perpetually prevent e0 from being fired,
while remaining innocent. Note instead that if the set I is finite, B could conflict
the events in I, except e0, and then A would be obliged to do it, or become culpable.
Therefore, if I is infinite event e0 cannot play any role in reaching an agreement.
We call these events internal, and hereafter we assume that contracts are free from
internal events.



6.3. PROTECTION 63

Definition 6.40 (Internal events). We say an event e is internal in a contract C

iff, for all C′ compatible with C, there exists an innocent strategy Σ for π(e) such
that, for all plays of C | C′ conforming to Σ, e never occurs in σ.

6.3 Protection

In contract-oriented interactions, mutually distrusted participants advertise their
contracts to a contract broker. The broker composes contracts which admit an
agreement, and then establishes a session among the participants involved in them.
When a participant agrees on a contract, she is guaranteed that — even in the
presence of malicious participants — no interaction driven by the contract will ever
go wrong. At worst, if A does not reach her objectives, then some other participant
will be culpable of a contract infringement.

This model of interaction works fine under the hypothesis that contract brokers
are honest, i.e. they never establish a session in absence of an agreement among all
the participants.

Suppose Alice is willing to lend her airplane in exchange of Bob’s bike. In her
contract, she could promise to lend the airplane (unconditionally), and declare that
her objective is to obtain the bike. A malicious contract broker could construct an
attack by establishing a session between Alice and Mallory, whose contract just says
to take the airplane and give nothing in exchange. Mallory is not culpable, because
her contract declares no obligations, and so Alice loses.

In this scenario, the contract broker may play the role of an attacker. More
precisely, our adversarial model is the following:

• the contract broker may be malicious: it can put together in a session con-
tracts which do not admit an agreement. Note that the semantics of [BTZ12b]
disallows this kind of misbehaviour, while [BTZ12a] permits it.

• a judge can only inspect the obligations declared in a contract (i.e. the event
structure), and neglects the payoffs. This is reasonable since in some works,
goals were not decided by participants themselves ( e.g. in [BTZ12a] where
the “payoffs” are decided by the contract broker).

Formally, a contract CA protects A if, whatever contract C is composed with CA,
A has a way to (if not win) at least non-lose in the composed contract.

Definition 6.41 (Protection). A contract CA protects participant A if and only if,
for all contracts C compatible with CA, A has a non-losing strategy in CA | C.

Note that if A agrees with C, then not necessarily C protects A. For instance,
Mallory could join C with her contract CM, and prevent Alice from borrowing Bob’s
bike in C | CM. A sufficient (yet hardly realistic) criterion for protection is to declare
nonnegative payoffs for all σ. Less trivially, the following example shows a contract
with possible negative payoffs which still offers protection.



64 CHAPTER 6. CONTRACTS

Example 6.42. The contract CB of Example 6.6 does not protect Bob. To prove
that, consider e.g. the attacker contract C′ = 〈E′,A, π,ΦC′〉, where A and π are as
in Example 6.6, while we define E′ with no enablings, and ΦC′ is not relevant except
for being undefined on B (otherwise C′ and CB would not be compatible). Consider
then the contract C′ | CB. There are only two possible strategies for B:

ΣB = λσ. ∅ Σ′B = λσ.

{
{b} if b 6∈ σ
∅ otherwise

The strategy ΣB is losing for B, because B is not innocent under ΣB. The strategy
Σ′B is losing as well, because in the play σ = 〈b〉 (fair and conform to ΣB), no
participant is culpable (according to C′ | CB) and ΦBσ = −1. Hence by Def. 6.41, B
is not protected by CB.

Instead, the contract CA protects Alice. To show that, consider a contract C

compatible with CA. Let ΣA be the following strategy for A:

ΣA = λσ.

{
{a} if b ∈ σ and a 6∈ σ
∅ otherwise

Let σ be a play in C | CA fair and conform to ΣA. There are two cases:

• b ∈ σ. Since σ is fair for ΣA, either a ∈ σ, or there exists some e ∈ σ such
that e#a. In both cases, A is innocent in σ. Furthermore, ΦAσ = 1.

• b 6∈ σ. By definition of CA, and since C is not specifying any further obligations
for A (otherwise it would not be compatible with CA), then A is not culpable
in σ. Also, since b 6∈ σ and a 6∈ σ, then ΦAσ = 0.

In both cases, ΣA is non-losing for A. Therefore, CA protects A.

6.3.1 Protection for Offer-Request payoffs

We now discuss protection in case the contract has Offer-Request payoffs.
A necessary condition to being protected is to specify non-empty offers sets. In

fact if A were specifing an empty set of offers, she would lose in an empty play.
Intuitively, A is saying that she wants something by doing nothing in exchange.
This means that when nothing is done, she expects her requests to be satisfied. So
even in the case of an empty set of obligations, A is protected only if she specifies
non-empty offer sets.

Example 6.43. Assume CA has an empty set of offers and a non-empty set of
requests:

O0
A = ∅ R0

A 6= ∅
In the case where the contract of B prescribes to B to do nothing, in the play where
no events have been performed, B is innocent and A loses. Hence CA does not protect
A, as correctly predicted by Lemma 6.44 below.



6.3. PROTECTION 65

Lemma 6.44. If the contract CA = 〈E,A, π,Φ〉 with O-R payoffs for A protects A,
then ∀h. Oh

A 6= ∅

Proof. By Def. 6.41, for every contract C compatible with CA, A has a non-losing strategy
Σ in CA | C.

Let C have no enabling for any of the events in Ri for all i, and let σ be a fair play of
CA | C conform to Σ.

Since C has no enablings for any Ri, there exist no h such that RhA ⊆ σ.
According to Def. 6.11, the only way for A to lose is to have OiA ⊆ σ and RiA 6⊆ σ for

some i. So, since A does not lose in σ, then for all i, OiA 6⊆ σ, and we conclude that OiA 6= ∅
for all i.

A sufficient condition for A to be protected is to promise to do what she offers in
the O-R contract, only after the other participants have fulfilled her requests. More
precisely, A is protected if, whenever she enables an offer Oi

A, the corresponding
request Ri

A has been already satisfied. However in the case of circular payoffs, if
every participant tries to protect himself in this way then no one will be willing to
do the first move, an so no agreement will ever be reached.

Theorem 6.45. A contract CA = 〈E,A, π,Φ〉 with O-R payoffs for A protects A if

∀i, Y. Y ` Oi
A =⇒ Ri

A ⊆ Y (6.6)

Proof. Let CA be a contract with O-R payoffs for A such that (6.6) holds. Let C be a
contract compatible with CA. We will prove that Σe

A is a non-losing strategy for A in
CA | C. Let σ be a fair play of CA | C conform to Σe

A.
By contradiction, assume that A loses in σ, i.e. by Def. 6.24 and by Def. 6.11:

∃i. OiA ⊆ σ ∧ RiA 6⊆ σ (6.7)

Since OiA ⊆ σ, then for all e ∈ OiA it must be σ ` e, that is, σ ` OiA. By (6.6) it follows
that RiA ⊆ σ — which contradicts (6.7).

Example 6.46. The condition in Theorem 6.45 is not necessary to have protection.
Indeed, in a contract for A with no obligations and non-empty offers, A would be
protected, since she could do nothing and non-lose. Also, in case A offers an un-
reachable event, A is protected since she will never obliged to do what she offers.

6.3.2 Agreement and protection cannot coexist

A remarkable feature of finite circular payoffs is that, in each play where all partic-
ipants win, at some point there exists a participant A which has performed all the
offers in Oi

A before having obtained all the requests in Ri
A. Intuitively, the participant

A which makes this “first step” is not protected.

Lemma 6.47. Let C be a contract with finite circular O-R payoffs. If σ is a winning
play for all participants in A, then there exists a prefix η of σ and a participant A ∈ A

such that ΦAη < 0.



66 CHAPTER 6. CONTRACTS

Proof. Since σ is a winning play for A, by Def. 6.24 it must be ΦAσ > 0 for all A. Let η e
be the shortest prefix of σ such that all the participants have strictly positive payoffs (of
course, a winning play must have strictly positive length). We shall prove that ΦBη < 0,
for some participant B.

By contradiction, assume that there exists no A ∈ A such that ΦAη < 0. Since not
all participants are winning in η, there should then exist some participant B such that
ΦBη = 0, for all j, RjB 6⊆ η. Since η e is winning for A (and in particular for B), let iB
be such that e ∈ RiBB ⊆ η ∪ {e}, and for all A 6= B let iA be such that RiAA ⊆ η ∪ {e}.
Since Φ is circular, by Def. 6.13 there exists a function J : A → N such that η ∪ {e} ⊇⋃

A∈AR
iA
A ⊇

⋃
A∈AO

JA
A . Therefore, OJB

B ⊆ η ∪ {e}. Since e ∈ RiBB , by Def. 6.13 it must be

e 6∈ OJB
B (because by Def. 6.11, Oi ∩Ri = ∅ for all i), hence OJB

B ⊆ η. Since by hypothesis

the payoff of B is zero in η, it must be OJB
B 6⊆ η — contradiction.

Lemma 6.47 does not hold if the payoff is non-circular, as illustrated by the
following example.

Example 6.48. Consider the following non-circular payoff for A, B, C:

O1
A = {a, a′, a′′} O1

B = {b} O1
C = {c}

R1
A = {b, c} R1

B = {a, a′} R1
C = {b}

In the play σ = 〈a a′ b c〉 every participant is winning, but no one is losing any prefix
of σ. In particular:

• in σ2 = 〈a a′〉 (and its prefixes) no participant has done all her offers.

• in σ3 = 〈a a′ b〉, A and C have not done all her offers, and B has obtained his
requests.

The main result of this chapter follows. It states that if a set of contracts with
finite circular O-R payoffs admits an agreement, then some of the participants is
not protected, and vice versa.

Theorem 6.49. Let C1, . . . ,Cn be contracts with circular finite O-R payoffs for
A1, . . . ,An, respectively. Then, at most one of the following statements is true:

(a) C1 | · · · | Cn admits an agreement;

(b) for all i ∈ 1..n, Ci protects Ai.

Proof. Assume that the statement (a) is true, i.e. all the participants agree on the contract
C = C1 | · · · | Cn. By Def. 6.26, each Ai ∈ {A1, . . . ,Ak} = A has a winning strategy Σi

in C. Let σ be a fair play of C conform to all the Σi. Since all the participants win in σ,
by Lemma 6.47 there exists k ∈ 1..n and a finite prefix η of σ such that ΦAkη < 0. By
Def. 6.11, this amounts to say that there exists h such that Ohk ⊆ η and Rhk 6⊆ η.

We now prove that Ck does not protect Ak. To do that, we construct a contract C′ =
〈E′,A, π′,Φ′〉 such that Ak does not have a non-losing strategy in C′ | Ck. The functions π′



6.3. PROTECTION 67

and Φ′ in C′ are almost immaterial: we just require that they make C′ compatible with Ck.
The ES E′ comprises a set of events Ẽ disjoint from the events of C and such that ẽ ∈ Ẽ
for all event e in C. The enablings and conflicts of E′ are the following:

{ ` e | e ∈ η \ π−1(Ak)} ∪ { ` ẽ | e ∈ π−1(Ak)}
{e#ẽ | e ∈ π−1(Ak) \ η}

Intuitively, C′ enables all the events of A \ {Ak} in η, and also all the events ẽ in conflict
with some event of Ak, except for the events in η. The goal of C′ is to force Ak to do Ohk ,
and then stop before Rhk is reached. To implement this goal, C′ must also be innocent in η.

By contradiction, assume that Σ is a non-losing strategy for Ak in C′ | Ck. Assume that
C′ adopts the eager strategy Σe

C′ , i.e. all the enabled events are in its strategy. By fairness,
there must exist a fair play ν of C′ | Ck which conforms to Σ and Σe

C′ , and where (1) all
the participants are innocent (recall that the eager strategy is innocent, by Lemma 6.23)
and (2) all the events ẽ in conflict with the events of Ak not in η have been performed
before any other event of Ak not in η. By (1), Ak is innocent in ν, hence by Def. 6.21:

∀i ≥ 0. ∀e ∈ π−1(Ak).
(
νi

e−→ =⇒ ∃j ≥ i. ej#e ∨ ej = e
)

(6.8)

By (2), there cannot be events in conflict with those in η ∩ π−1(Ak). We can then rewrite
equation (6.8) as follows:

∀i ≥ 0. ∀e ∈ Ohk .
(
νi

e−→ =⇒ ∃j ≥ i. ej = e
)

Summing up, there exists a fair play ν of C′ | Ck which conform to Σ, and where Ohk ⊆ ν.
Furthermore, Rhk 6⊆ ν, because the ES E′ only enables the events in η, while η does not
contain all the events in Rhk . By Def. 6.11, WAkν = ΦAkν < 0, i.e. Ak loses in ν —
contradiction.

Example 6.50. Consider the contract CA with enabling b ` a and the finite circular
O-R payoff O0

A = {a}, R0
A = {b}, and the contract CB with enabling a ` b and payoff

O0
B = {b}, R0

B = {a}.
Every participant is protected by her own contract, but the composed contract

CA | CB does not admit an agreement, as correctly predicted by Theorem 6.49.

Agreement and protection can coexist in contracts with infinite circular O-R
payoffs, as shown by the following example. Intuitively, when an infinite offer OA

has to match an infinite request RB, participants A and B may take turns in doing
event in OA ∪ RB. This strategy is winning for both participants (hence they have
an agreement), and protection follows because no participant completes her offer
before receiving the corresponding request.

Example 6.51. Let CA = 〈EA,A, π,ΦA〉 and CB = 〈EB,A, π,ΦB〉 be contracts with
circular O-R payoffs (with infinite offers/requests) defined as follows:

OA = {ei | i ∈ N} = RB RA = {ei | i ∈ N} = OB



68 CHAPTER 6. CONTRACTS

and let A = {A,B}, π(ei) = A, π(ei) = B for all i ∈ N. Let the ES EA and EB be
defined by the following enablings (and no conflicts):

EA : {` e0} ∪ {ei ` ei+1 | i ≥ 0} EB : {ei ` ei | i ≥ 0}

The contract C = CA | CB admits an agreement. We prove separately that A and B
agree on C. Let Σe

A be the eager strategy for A. Let σ be a fair play of C conform to
Σe

A. We prove that A wins in σ. By Lemma 6.23, the strategy Σe
A makes A innocent

in σ. There are two subcases. If B is not innocent in σ, then A wins. Otherwise,
the play σ must be infinite, i.e. σ = {ei}i∈N ∪ {ei}i∈N. Therefore, RA ⊆ σ, and so A
wins. To prove that B has a winning strategy in C we proceed similarly, by choosing
the eager strategy Σe

B for B.
We now show that CA protects A. Let C′ be compatible with CA. The eager

strategy Σe
A is non-losing for A. Indeed, in every fair play σ conform to Σe

A, if there
exists ei ∈ RA 6⊆ σ then ei+1 ∈ OA 6∈ σ, and so ΦAσ ≥ 0. To prove that CB protects
B, we proceed similarly, by choosing the eager strategy Σe

B for B.



Chapter 7

Event structures with circular
causality

Circular reasoning often appears in the compositional modelling and verification
of concurrent systems [AL93, AP93, Mai03, VV01]. Circularity is also a frequent
situation when reasoning about contracts [BZ10a]. A task may depend on others
which have already been executed (dependencies in the past), but also on behalf
that some other tasks will be performed in the future. Circularity arises when two
or more tasks mutually rely on the guarantees provided by each other (circular
dependencies).

As already noted, extensions to ES often use other relations to model other kind
of dependencies. ES can provide a basic semantic model for assume/guarantee rules,
by interpreting the enabling b ` a as the promise: “I will do a after you have done
b”. However, circularity is usually prohibited in ES, either at the syntactic level,
like in Winskel’s prime event structures, or at the semantic level, like in Boudol’s
flow event structures [Bou90]. Indeed, the classical notion of causality among events
only captures dependencies in the past. For instance, in the ES with enablings b ` a
and a ` b, none of the events a and b is reachable, because of the circularity of the
constraints.

We propose here an extension of Winskel’s event structures with a new circu-
lar causality relation (
). The ES prescribing b 
 a (intuitively, “I will do a if
you promise to do b”) together with the other prescription b 
 a has a config-
uration where both a and b have happened, despite of the circular dependencies.
We stress that, to the best of our knowledge, differently from other extensions to
event structures, circular dependencies are always solved when considering configu-
rations, which is not our case. The configurations of these new ES do still enjoy the
finiteness and finite-completeness properties of classical ES, thought they are not
coincidence-free, which is correct from our point of view because of the presence of
circular dependencies.



70 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

Chapter overview The rest of this chapter is organised as follows. In Section 7.1
we formally define CES and their configurations. We introduce a more general notion
of configuration, called X-configuration, and we illustrate it with some examples.
Then we present some basic results for traces (Section 7.2.1) and for configurations
(Section 7.2.2). In Section 7.2.3 we study coherence, finiteness and coincidence-
freeness in CES, and we prove that the family of configurations of an ES can be
generated by a CES with circular enablings, only. In Section 7.3 we study reach-
able events, i.e. those events which belong to some configuration. For conflict-free
CES we characterise reachability through an inductive definition, equivalent to the
original one. In Section 7.4 we define an LTS for CES, and we relate it with config-
urations. In Section 7.5 we reconsider the above definitions, to deal with the case
that credits done in the past can be discharged. In Section 7.6 we study urgent
events, i.e. those events which are either `-enabled by the past, or can be taken on
credit, on the guarantee that such credit will be honoured in the future.

7.1 Basic definitions

Definition 7.1 (CES). An event structure with circular causality ( CES) is a
quadruple E = (E,#,`,
) where:

• E is a set of events,

• # ⊆ E × E is an irreflexive and symmetric relation, called conflict relation.
We say that a set X ⊆ E is conflict-free (CF (X) in symbols) whenever ∀e, e′ ∈
X.¬(e#e′). We denote with Con the set {X ⊆fin E | CF (X)},

• ` ⊆ Con × E is the enabling relation,

• 
 ⊆ Con × E is the circular enabling relation,

The relations ` and 
 are saturated, i.e. for all X, Y ∈ Con and for ◦ ∈ {`,
}:

X ◦ e ∧ X ⊆ Y =⇒ Y ◦ e

We say that E is finite when E is finite; we say that E is conflict-free when the
conflict relation is empty.

Notation shortcuts introduced for `, also holds for 
.

Notation 7.2. We adopt the following conventions: 
 e stands for ∅ 
 e; we
write a 
 b for {a} 
 b. For a finite, conflict free set X, we write X 
 Y for
∀e ∈ Y. X 
 e. For an infinite, conflict-free X, we write X 
 Y as a shorthand for
∃X0 ⊆fin X. X0 
 Y .



7.1. BASIC DEFINITIONS 71

We refine the notion of configuration in [Win88] to deal with circular causality.
Intuitively, for all events ei in the sequence 〈e0 . . . en〉, ei can either be `-enabled by
its predecessors, or 
-enabled by the whole sequence, i.e:

Recalling the notation for sequences introduced in page 21, we denote with
〈e0 e1 . . .〉 the (possibly infinite) sequence of elements e0, e1, . . . and we write σi for
the subsequence 〈e0 . . . ei−1〉.

Definition 7.3 (Configuration). For a CES E = 〈E,#,`,
〉, we say that C ⊆ E
is a configuration of E iff CF (C), and

∀e ∈ C. ∃σ = 〈e0 . . . en〉. e ∈ σ ⊆ C ∧ ∀i ≤ n.
(
{e0, . . . , ei−1} ` ei ∨ σ 
 ei

)
The set of all configurations of a CES E is denoted by FE.

Clearly, configurations of a CES without 
-enablings are also configurations in
the sense of [Win88], hence CES are a conservative extension of Winskel’s ES.

Theorem 7.4. Let E = 〈E,#,`〉 be an ES. Then Ẽ = 〈E,#,`, ∅〉 is a CES.

Consider E7 in Fig. 7.1, with enablings a ` b and b 
 a. Its only non empty
configuration is the set {a, b}. Indeed, the sequence 〈a b〉 is closed under 
 (since a
is enabled by the whole sequence) and under ` (since b is enabled by its predecessor
a). Note that there are no configurations containing only the event a. This is a
peculiar difference respect to ES: if C is a finite configuration of a CES, and σe is a
sequence for all the events in C closed under ` and 
, then not necessarily C \ {e}
is a configuration.

To allow for adding an event at time, and reasoning about sets of events which are
not configurations, we introduce the auxiliary notion of X-configuration in Def. 7.5
below. In an X-configuration C, the set C can contain an event e even in the
absence of any justification for it (either ` or 
), provided that e belongs to the
set X. We shall say that the events in X have been taken “on credit”, to remark
the fact that they may have been performed in the absence of a causal justification.
Configurations (i.e. ∅-configurations) represent those sets of events where all the
events have found a justification, i.e. where all the credits have been “honoured”.

Definition 7.5 (Traces and X-configurations). Let E = (E,#,`,
) be a CES, and
let X ⊆ E. A conflict-free sequence σ = 〈e0 . . . en〉 ∈ E∗ without repetitions is an
X-trace of E iff:

∀i ≤ n. (ei ∈ X ∨ σi ` ei ∨ σ 
 ei) (7.1)

For all C,X ⊆ E we say that C is an X-configuration of E iff CF (C) and:

∀e ∈ C. ∃σ X-trace. e ∈ σ ⊆ C (7.2)

The set of all X-traces (resp. X-configurations) of E is denoted by TE(X) (resp.
FE(X)), abbreviated as TE (resp. FE) when X = ∅.



72 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

a b

E6

a b

E7

a b

E8

c

b

a

E9

c

db

a

E10

b

c

a

E11

Figure 7.1: Graphical representation of CES.

Notation 7.6. We adopt the following graphical notation for depicting CES: they
are denoted as directed hypergraphs, where nodes stand for events. An hyperedge
from a set of nodes X to node e denotes an enabling X ◦ e, where ◦ = ` if the edge
has a single arrow, and ◦ = 
 if the edge has a double arrow. A conflict a#b is
represented by a waved line between a and b.

Example 7.7. Consider the six CES in Fig. 7.1.

• E6 has enablings ` a, b 
 b, and conflict a#b. By Def. 7.5, ∅, {a}, {b} ∈ FE6,
but {a, b} 6∈ FE6.

• E7 has enablings a ` b and b 
 a. Here, ∅, {a, b} ∈ FE7, while neither {a}
nor {b} belong to FE7. Furthermore, we have FE7({b}) = {∅, {b}, {a, b}}, and
FE7({a}) = {∅, {a}, {a, b}}.

• E8 has enablings a 
 b and b 
 a. The configurations are the same as in the
previous item.

• E9 has enablings {a, b} ` c, c 
 a, and c 
 b. The only non-empty configura-
tion of E9 is {a, b, c}.

• E10 has enablings {a, b} 
 c, {a, b} 
 d, c ` a, and d ` b. We have that
{a, b, c, d} ∈ FE10. Note that, were one (or both) of the 
 turned into a `, then
the only configuration would have been ∅.

• E11 has enablings a ` b, a ` c, b 
 a and c ` a, and conflict b#c. We have that
{a, b} ∈ FE11 while {a, c} is not a configuration, but it is an {a}-configuration.

Example 7.8 (Dining retailers). Recall the dining retailers scenario from Exam-
ple 6.15. We formalise the obligations in this scenario as follows. Each retailer Ai
initially owns n pieces of kind i. For all j 6= i, the event ei,j models Ai giving a piece
of cutlery to retailer Aj. Retailer Ai offers n− 1 pieces of his cutlery (of kind i) in
exchange for n− 1 pieces of cutlery of the other kinds.



7.1. BASIC DEFINITIONS 73

e0 e1 e2

e3 e4 e5

e6

e7

E12

e0 e1 e2

e3 e4 e5

e6

e7

E13

Figure 7.2: Transforming a single 
 into a ` makes all events unreachable.

The behaviour of retailer Ai is modelled by the following n− 1 enablings:

Ai : {ej,i | j 6= i} 
 ei,k for all k 6= i

In the CES containing the enablings of all retailers, the set of events

E = {ei,j | i, j ∈ 1..n and i 6= j}

is a configuration, hence each retailer eventually eats. Note, instead, that any strict
subset of E (except the empty one) is not a configuration. This models the fact
that, once the retailers have started exchanging their cutlery, they are committed to
continue until everyone eats.

Example 7.9. Consider the two CES E12 and E13 in Fig. 7.2. The only difference
is that one of the 
-enablings in E12 has been turned into a `-enabling in E13.

In E12, the traces with empty credits have the form

(e6 (e4 | e3 e0)) | (e7 (e1 | e2 e5))

where | denotes interleaving, as defined in page 21. Therefore, the set of all events
E = {ei | i ∈ 0..7} is a configuration in FE12.

Instead, in E13 there are no traces with empty credits, except for the empty one.
Therefore, the only configuration in FE13 is ∅.

Following [Win88], we assume the axiom of finite causes, that is, we always
require an event to be enabled by a finite chain of events. Consider the event
structure:

· · · en → · · · e3 → e2 → e1 → e0

for e0 to happen, an infinite number of events must have happened before it. As
in [Win88], we do not consider the set {ei | i ≥ 0} as a configuration, because a
justification of e0 would require an infinite chain. Similarly, in the CES:

a0 � a1 � a2 � a3 · · · � an · · ·

where, for a0 to happen, an infinity of events must happen either before or after it,
the set {ai | i ≥ 0} is not a configuration according to Def. 7.5, because a justification
of a0 would require an infinite chain. This choice is motivated by the following (less
abstract) example and formalized in Lemma 7.11.



74 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

Example 7.10 (Money lender). Suppose Bob has an old debt of e1 with Alice, but
he has no money. Hence he asks Alice to lend him e1 to honour his debt. Alice
agrees, provided that for this e1, Bob will give her back e2. When Bob receives the
money, he honours his old debt, but now he owes Alice e2. Since he has no money,
he asks again Alice to lend him e2. Alice agrees, provided that Bob will give her
back e3. Every time he asks Alice to lend him ei, Alice requires him to give back
e(i + 1). We can model this scenario as a CES with events ai and bi (for i ≥ 1),
where ai represents Alice lending i euros to Bob, and bi represents Bob giving i euros
to Alice. The enablings are bi+1 
 ai and ai ` bi, for all i ≥ 1. Graphically:

b1 ← a1 � b2 ← a2 � b3 · · ·

An infinite execution σ∞ could have the form 〈a1 b1 a2 b2 a3 b3 a4 b4 . . .〉. Note that
in σ∞, for each event ai it is possible to find a finite prefix σ = 〈a1 b1 . . . ai bi ai+1 bi+1〉
of σ∞ which 
-enables ai. However σ is not a trace, because ai+1 is not justified:
indeed, no finite subsequence σ of σ∞ allows Bob to honour all the debts in σ. In
the same spirit of [Win88], Def. 7.5 requires for each event in a configuration a
finite justification, either in the past or in the future. Accordingly, σ∞ is not a
configuration.

Lemma 7.11. Let C ∈ F(X). For all e ∈ C \X, there exists C0 ⊆fin C such that
C0 \ {e} ` e, or C0 
 e.

Proof. Let C ∈ F(X), and let e ∈ C \X. By Def. 7.5, there exists σ = 〈e0 . . . en〉 ∈ T(X)
such that σ ⊆ C and ei = e for some i ≤ n. By (7.1), we have that:

e ∈ X ∨ σi ` e ∨ σ 
 e

The case e ∈ X can be excluded by the choice of e. If e has been justified by σi ` e, then
C0 = σi = C0 \ {e} yields the thesis. Otherwise, if e has been justified by σ 
 e, then
C0 = σ yields the thesis.

7.2 Basic results

In this section we study some basic properties of event structures with circular
causality. Unless stated otherwise, in all the statements below in this section we
assume a CES E = (E,#,`,
). When clear from the context, we will omit the
index E from FE(X) and TE(X).

7.2.1 Basic results on traces

For all sequences σ, we denote with σ↓ the sequence obtained by eliminating from
σ all the duplicate events. This is formalised in Def. 7.12 below.



7.2. BASIC RESULTS 75

Definition 7.12 (Removal of duplicates). For all σ ∈ E∗, e ∈ E, we inductively
define the sequence σ↓ as follows:

σ↓ =


ε if σ = ε

σ′ ↓ if σ = σ′e and e ∈ σ′

σ′ ↓ e if σ = σ′e and e 6∈ σ′

In Lemma 7.13 below, we state some basic properties of traces: every trace σ
trivially belongs to T(σ), which intuitively means that we can take every event on
credit without worrying about ` and 
; and the concatenation of two X-traces
(modulo eliminating duplicated events) is an X-trace.

Lemma 7.13. For all X, Y ⊆ E, and for all σ, η ∈ E∗:

(a) σ ∈ T(σ)

(b) X ⊆ Y =⇒ T(X) ⊆ T(Y )

(c) σ ∈ T(X) ∧ σ′ ∈ T(X) ∧ CF (σσ′) =⇒ (σσ′)↓ ∈ T(X)

(d) σ ∈ T(X) ∧ σ′ ∈ T(X) ∧ CF (σσ′) =⇒ (σ | σ′)↓ ∈ T(X)

Proof. All the items (a), (b), (c), (d) are direct consequences of (7.1).

Since every event in a (possibly infinite) configuration is justified by a (finite)
trace, for each finite subset C0 of a configuration we can concatenate the traces of
all the events in C0, and still obtain a trace.

Lemma 7.14. For all C,X ⊆ E:

C ∈ F(X) ⇐⇒ ∀C0 ⊆fin C. ∃σ ∈ T(X). C0 ⊆ σ ⊆ C

Proof. (⇒) Let C ∈ F(X), and let C0 ⊆fin C. By Def. 7.5, we see that CF (C), and:

∀e ∈ C0. ∃σe ∈ T(X). e ∈ σe ⊆ C

Since C0 is finite, we can concatenate all the (finite, conflict-free) sequences σe obtained
above. Let σ′ be the result of such operation, and let σ = σ′ ↓. By iterating 7.13(c) |C0|
times, σ ∈ T(X). Also, by construction we have that C0 ⊆ σ ⊆ C, from which the thesis
follows.

(⇐) Assume that ∀C0 ⊆fin C. ∃σ ∈ T(X). C0 ⊆ σ ⊆ C, and let e ∈ C. By the
hypothesis, since {e} ⊆ C, there exists σe ∈ T(X) such that e ∈ σe ⊆ C. It remains
to prove that CF (C). By contradiction, assume that ¬CF (C). Then, there would exist
C0 ⊆fin C such that ¬CF (C0), and so by hypothesis there would also exist some σ ∈ T(X)
with C0 ⊆ σ. By (7.1), it must be CF (σ), which contradicts ¬CF (C0).

The following result is a simple corollary of Lemma 7.14. In case the set C is
finite, to test if C is an X-configuration it suffices to find an X-trace which covers
all the events of C.



76 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

Corollary 7.15. Let C ⊆fin E be a finite set of events. We have that C ∈ F(X) iff
there exists σ ∈ T(X) such that σ = C.

If we interpret T as a function from sets of events to sets of traces, we observe that
T is monotonic, i.e. for each X ⊆ Y we have T(X) ⊆ T(Y ). Informally, this means
that we can arbitrarily enlarge the credit set of a trace. On the contrary, we cannot
reduce the credit set while preserving the traces; for instance in the CES ` a, a ` b,
we have that 〈ba〉 is a {b}- trace but not a ∅-trace.

For each trace σ there exists a least set X such that σ ∈ T(X). This set is
constructed as shown below.

Definition 7.16 (Least credit of a trace). For all σ = 〈e0 e1 · · ·〉, we define the set
of events Γ(σ) as:

Γ(σ) = {ei ∈ σ | σi 6` ei ∧ σ 6
 ei}

Lemma 7.17. Let σ = 〈e0 e1 . . . en〉 ∈ E∗ be a conflict-free sequence without rep-
etitions. Then Γ(σ) is the least credit for σ, i.e. σ ∈ T(Γ(σ)) and for all Y such
that σ ∈ T(Y ), we have Γ(σ) ⊆ Y .

Proof. Let σ = 〈e0 . . . en〉, and let X = Γ(σ) = {ei ∈ σ | σi 6` ei ∧ σ 6
 ei}. By Def. 7.5,
we have that σ ∈ T(X). We will prove that X ⊆ X ′ whenever σ ∈ T(X ′). Assume by
contradiction that there exists e ∈ X such that e 6∈ X ′. By construction we have that
X ⊆ σ, thus there exists i such that ei = e. Since σ ∈ T(X ′), by Def. 7.5 it follows that
σi ` ei or σ 
 ei, which contradicts the hypothesis.

Note that e 6∈ Γ(σ) iff either e is `-enabled by the past events σi, or it is 
-
enabled by the whole trace.

The credit on a trace may be redundant, and may be reduced in three ways:
by eliminating from it all those events that are not present in the trace; by elim-
inating all those events that are `-enabled by the previous one in the trace; and
by eliminating all those events that are 
-enabled by the whole trace. For instance
let E = a 
 b, b ` a: the trace σ = 〈ba〉 belongs to T(X) with X = {a, b, c, d}.
By eliminating from X all those events that are not present in σ, we have that
σ ∈ T({a, b}); furthermore we can also eliminate a since 〈b〉 ` a and b since σ 
 b,
obtaining σ ∈ T(∅).

Lemma 7.18. For all X, Y ⊆ E, and for all σ = {e0 . . . en} ∈ E∗:

(a) σ ∈ T(X ∪ Y ) ∧ Y ∩ σ = ∅ =⇒ σ ∈ T(X)

(b) σ ∈ T(X ∪ ei) ∧ σi ` ei =⇒ σ ∈ T(X)

(c) σ ∈ T(X ∪ Y ) ∧ σ 
 Y =⇒ σ ∈ T(X)

Proof. All the items (a), (a) and (c) are direct consequences of (7.1).



7.2. BASIC RESULTS 77

Let us observe what happens when the last event of an X-trace σ = σ′ e is
removed. Assuming that X is the least credit for σ, in general it is not true that
X is still the least credit for σ′. It may happen e.g. that e is in X but not in σ′,
and so e might be removed from the credit set. Furthermore, some events in σ′

might require e to be 
-enabled. For instance, consider the CES with enablings
e 
 e0, . . . , e 
 en, and let σ = 〈e0 . . . en e〉 ∈ T(∅). By removing e from σ we obtain
σ′ = 〈e0 . . . en〉 ∈ T({e0, . . . , en}), and there exists no X ⊂ {e0, . . . , en} such that
σ′ ∈ T(X).

In Def. 7.19 below we define how the credit set of a trace changes when removing
the last event. When the set X in Def. 7.19 is the least credit of σ, then Lemma 7.20
will guarantee that Γ−(σ,X, e) is the least credit of σe.

Definition 7.19 (Credits when removing events). For all X ⊆ E, for all σ =
〈e0 . . . en〉, and for all e ∈ E, we define:

Γ−(σ,X, e) = (X \ {e}) ∪ {ei ∈ σ | σe 
 ei ∧ σ 6
 ei ∧ σi 6` ei} (7.3)

Lemma 7.20. Let σ = σ′e = 〈e0 . . . en〉, with en = e. Then,

σ ∈ T(X) =⇒ σ′ ∈ T(Γ−(σ′, X, e))

Moreover, if X is the least credit for σ′, then Γ−(σ′, X, e) is least credit for σ.

Proof. Let σ = σ′e = 〈e0 . . . en〉 ∈ T(X), with en = e. Since σ ∈ T(X), by eq. (7.1) we
have that:

CF (σ) ∧ DF (σ) ∧ ∀i ≤ n. (ei ∈ X ∨ σi ` ei ∨ σ 
 ei)

Since σ′ is a prefix of σ then CF (σ′) and DF (σ′). Moreover, e only occurs in the last
position, hence:

∀i ≤ n− 1. (ei ∈ (X \ {e}) ∨ σ′i ` ei ∨ σ 
 ei) ∧ (e ∈ X ∨ σ′ ` e ∨ σ 
 e) (7.4)

Let us define the set D as:

D = {ei ∈ σ′ | σ 
 ei ∧ σ′ 6
 ei ∧ σ′i 6` ei} (7.5)

We will prove that σ′ ∈ T(R), with R = (X \ {e}) ∪D. Let i ≤ n− 1. By (7.4), we have
three cases:

• ei ∈ X. Since ei 6= e for all i < n, then ei ∈ X \ {e} ⊆ R.

• σi ` ei. Since σ′ is a prefix of σ, for all i < n it holds that σ′i ` ei.

• σi 6` ei and σ 
 ei. If σ′ 
 ei, then ei is justified in σ′. Otherwise, we have
ei ∈ D ⊆ R.



78 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

a b c

E14

a

c
b

d

E15

a b

c

E16

a b

c

E17

Figure 7.3: Minimal credit when removing events from a trace.

We have then proved that σ′ ∈ T(R).

We now prove that R is a minimal credit for σ′. By contradiction, assume that there exists
some Y ⊂ R such that σ′ ∈ T(Y ). Pick an ei ∈ σ′ such that ei ∈ R \ Y . By hypothesis,
σ′ ∈ T(Y ), so it must be:

σ′i ` ei ∨ σ′ 
 ei

We have two cases:

• σ′i ` ei. Since ei ∈ R \ Y , we have two cases: ei ∈ X \ {e} or ei ∈ D. Note that
by (7.5), it cannot be ei ∈ D. If ei ∈ X \ {e}, then we would have σ ∈ T(X \ {ei}),
which contradicts the hypothesis that X is a minimal credit for σ.

• σ′ 
 ei. As above we have two cases: ei ∈ X \ {e} or ei ∈ D. Note that by (7.5),
it cannot be ei ∈ D. If ei ∈ X \ {e}, then we would have σ ∈ T(X \ {ei}), which
contradicts the hypothesis that X is a minimal credit for σ.

In both cases we have a contradiction; thus R is a minimal credit for σ, and by Lemma 7.17,
A is a least credit.

Example 7.21. Consider the four CES in Fig. 7.3.

• In E14, we have σ = 〈abc〉 ∈ T. Note that, were the requirement σ′i 6` ei missing
from (7.3), then we would have had R = {b}, which is not the least credit for
σ′ = 〈ab〉 ∈ T.

• In E15, we have σ = 〈abcd〉 ∈ T. Note that if we substitute σ′ 6` ei for
σ′i 6` ei in (7.3), then we would incorrectly have R = ∅, while σ′ = 〈abc〉 ∈
T({b}) ∩ T({c}).

• In E16, we have σ = 〈abc〉 ∈ T({c}). Note that, were {e} not removed from
X in (7.3), then Lemma 7.20 would have predicted that {c} is least credit for
σ′ = 〈ab〉, while σ′ ∈ T.

• In E17, we have σ = 〈abc〉 ∈ T({c}) Note that, were {e} not removed from X
in (7.3), then Lemma 7.20 would have predicted that {e, a, b} is least credit for
σ′ = 〈ab〉, while σ′ ∈ T({a, b}).



7.2. BASIC RESULTS 79

In Lemma 7.48 we have seen how the credit set changes when appending an event
to a trace. Now we study how the credit changes when appending a whole trace. By
Lemma 7.13(c), we know that the concatenation is closed under X-credit; so that
the concatenated trace is still an X-trace. Concatenating a trace to another, which
provides a justification for some of the events in the credit set, will make the credit
set redundant.

Lemma 7.22. Let X, Y ⊆ E, and let σ, η ∈ E∗ be such that η ∈ T(X ∪ Y ) and
CF (η σ). Then:

(a) σ ∈ T(X) ∧ (Y ⊆ σ ∨ σ ` Y ∨ σ 
 Y ) =⇒ (σ η)↓ ∈ T(X)

(b) σ ∈ T(X ∪ η) ∧ σ 
 Y =⇒ (η σ)↓ ∈ T(X)

Proof. For item (a), let σ = 〈e0 . . . en〉, and let

χ = (σ η)↓ = σ 〈en+1 . . . em〉

where {en+1, . . . , em} = η \ σ. By Def. 7.5 we have to prove that, for all i ≤ m,

ei ∈ X ∨ χi ` ei ∨ χ 
 ei

We have the following two cases:

• 0 ≤ i ≤ n. Here we can justify ei in χ as it has been justified in σ.

• n < i ≤ m. Here the only relevant case is when ei has been justified by ei ∈ Y \X.
Indeed, in all the other cases we can justify ei in χ as it has been justified in η, by
noting that χi ⊇ ηi−n and that the operator ↓ preserves the order of events. By
hypothesis we have Y ⊆ σ or σ ` Y or σ 
 Y . In the first case, by definition of ↓ it
cannot be the case that ei ∈ Y for any i > n. In the second case, ei can be justified
by σ ` Y ; in the third case, ei can be justified by σ 
 Y .

For the item (b), Let η = 〈e0 . . . en〉, and let

χ = (η σ)↓ = η 〈en+1 . . . em〉

where {en+1, . . . , em} = σ \ η. By Def. 7.5 we have to prove that, for all i ≤ m,

ei ∈ X ∨ χi ` ei ∨ χ 
 ei

We have the following two cases:

• 0 ≤ i ≤ n. If ei ∈ Y , since by hypothesis σ 
 Y , then by saturation we have χ 
 Y .
In the other cases we can justify ei in χ as it has been justified in η.

• n < i ≤ m. The only relevant case is when ei has been justified by some events in
η\X. However, ei ∈ η cannot happen for any i > n, because {en+1, . . . , em} = σ\η.
In all the other cases we can justify ei in χ as it has been justified in σ, by noting
that χi ⊇ σi−n and that the operator ↓ preserves the order of events.



80 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

a b c d

e

E18

a b c d

e

E19

Figure 7.4: Concatenating traces may reduce the overall credits.

Example 7.23. To illustrate Lemma 7.22, let us consider the two CES depicted in
Figure 7.4.

• For Lemma 7.22(a), let us consider E18, and let η = 〈acd〉 ∈ T(a, c). Then if
we choose σ = 〈ab〉 ∈ T(a), we have that σ ` c and so ση ∈ T(a). Otherwise,
if we choose σ = 〈a, e〉 ∈ T(a), we have that σ 
 c and so ση ∈ T(a).

• For Lemma 7.22(b), let us consider E19, and let η = 〈abce〉 ∈ T(a, e). If we
choose σ = 〈acd〉, we have that σ ∈ T(η) and σ 
 e; hence, ησ ∈ T(a).

7.2.2 Basic results on configurations

We now study properties of configurations. Some of them derive immediately
from analogous properties of traces. Every set of conflict-free events X is an X-
configuration; if F is interpreted as a function from sets of events to sets of sets of
events, then F is monotonic, i.e. F(X) ⊆ F(Y ) whenever X ⊆ Y .

Lemma 7.24. For all C,C ′, X, Y ⊆ E:

(a) CF (X) =⇒ X ∈ F(X)

(b) X ⊆ Y =⇒ F(X) ⊆ F(Y )

Proof. For (a), for all e in X, let σe = 〈e〉. It is immediate to check that σe ∈ T(X) and
e ∈ σe ⊆ X, and so X ∈ F(X).

For (b), since X ⊆ Y , then each event e justified with e ∈ X in equation (7.1) can also be
justified with e ∈ Y , hence the thesis.

Differently from what happens in traces, in general for configurations there exists
no least set X such that C ∈ FE(X), as a single configuration may have many
different minimal credit set. For instance, in a CES E with enablings a ` b, b ` a,
we have that {a, b} ∈ FE({a}) and {a, b} ∈ FE({b}), but {a, b} 6∈ FE(∅). The sets
{a} and {b} are minimal credits for {a, b}, but there exists no least credit.

Definition 7.25 (Configuration minimal credit). For all C,X ⊆ E we say that X
is a minimal credit for C iff C ∈ F(X) and @Y ⊂ X. C ∈ F(Y ).



7.2. BASIC RESULTS 81

Trivially, if X is a minimal credit for C, then X ⊆ C.

Lemma 7.26. For all C,X, Y ⊆ E, we have that C ∈ F(X ∪ Y ) ∧ C 
 Y =⇒
C ∈ F(X).

Proof. Let e ∈ C. Since C ∈ F(X ∪ Y ), there exists η ∈ T(X ∪ Y ) such that e ∈ η ⊆ C.
Since C 
 Y , using Notation 7.2 there exists a finite subset Z of C such that Z 
 Y . Since
Z ⊆fin C ∈ F(X ∪ Y ), by Lemma 7.14 there exists σ ∈ T(X ∪ Y ) such that Z ⊆ σ ⊆ C.
Let χ = (σ η)↓. By Lemma 7.13(c), χ ∈ T(X ∪ Y ). By saturation, since Z 
 Y and Z ⊆ χ
we also have that χ 
 Y . By Corollary c, it follows that χ ∈ T(X). Since e ∈ χ ⊆ C, we
have the thesis.

The following lemma allows for simplifying the credit set when joining two con-
figurations. In item (a), we have an X-configuration C and an (X∪C)-configuration
C ′. We can then prove that C∪C ′ is an X-configuration: intuitively, the events in C ′

that were taken on credit from C can be justified with the credit set X alone, since
C ∈ F(X). In item (b), we have an X-configuration C and an (X∪Y )-configuration
C ′ where C ` Y . We can then prove that C ∪ C ′ is an X-configuration: in a trace,
to justify an event e taken on credit from Y , we can posticipate e after the suitable
subset of C which entails it. Since C ∈ F(X), this only requires to take on credit
the set X. Item (c) is similar to the previous one, except that now we deal with a
circular enabling. We have an X ∪C ′-configuration C and an (X ∪Y )-configuration
C ′ where C 
 Y . We can then prove that C ∪ C ′ is an X-configuration: all the
events in Y will be justified by C, and since C is justified by C ′, C∪C ′ only requires
to take on credit the set X.

Lemma 7.27. For all C,C ′, X, Y ⊆ E such that CF (C ∪ C ′):

(a) C ∈ F(X) ∧ C ′ ∈ F(X ∪ C) =⇒ C ∪ C ′ ∈ F(X)

(b) C ∈ F(X) ∧ C ′ ∈ F(X ∪ Y ) ∧ C ` Y =⇒ C ∪ C ′ ∈ F(X)

(c) C ∈ F(X ∪ C ′) ∧ C ′ ∈ F(X ∪ Y ) ∧ C 
 Y =⇒ C ∪ C ′ ∈ F(X)

Proof. Assume C,C ′, X, Y as in the statement.

For item (a), let e ∈ C ′. Since C ′ ∈ F(X ∪ C), Def. 7.5 prescribes that there
exists σe = 〈e0 . . . en〉 ∈ T(X ∪ C) such that e ∈ σe ⊆ C ′, i.e.:

CF (σe) ∧ DF (σe) ∧ ∀i ≤ n. (ei ∈ X ∪ C ∨ σei ` ei ∨ σe 
 ei)

Let Ze be the set of ei in σe for which the hypothesis ei ∈ C \X has been used, i.e.:

Ze = {ei ∈ σe | ei ∈ C \X ∧ σei 6` ei ∧ σe 6
 ei}

Observe that σe ∈ T(X ∪ Ze). Since Ze ⊆fin C ∈ F(X), by Lemma 7.14 there
exists η ∈ T(X) such that Ze ⊆ η ⊆ C. Let χ = (η σe)↓. Since χ ⊆ C ∪ C ′



82 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

and CF (C ∪ C ′) by hypothesis, then CF (χ̄). Since Ze ⊆ η, Lemma 7.22(a) gives
χ ∈ T(X). Since e ∈ χ ⊆ C∪C ′, we have then proved (7.2), from which we conclude
that C ∪ C ′ ∈ F(X).

For item (b), let e ∈ C ∪ C ′. We have two cases. If e ∈ C, then the hypothesis
C ∈ F(X) directly gives a trace which satisfies equation (7.1). So, let e ∈ C ′.
Since C ′ ∈ F(X ∪ Y ), Def. 7.5 prescribes that there exists σe ∈ T(X ∪ Y ) such that
e ∈ σe ⊆ C ′. Note that σe ∈ T(X ∪ (Y ∩ σe)). Since C ` Y , then C ` Y ∩σe. Then,
using Notation 7.2 there exists a finite subset Z of C such that Z ` Y ∩ σe. Since
Z ⊆fin C ∈ F(X), by Lemma 7.14 there exists η ∈ T(X) such that Z ⊆ η ⊆ C. By
saturation, since Z ` Y ∩ σe and Z ⊆ η we also have that η ` Y ∩ σe. Therefore,
Lemma 7.22(a) gives that (η σe)↓ ∈ T(X). Since e ∈ (η σe)↓ ⊆ C ∪C ′, we conclude
that C ∪ C ′ ∈ F(X).

For item (c), Lemma 7.24(b) yields C ∈ F(X ∪ Y ∪ C ′). Since CF (C ∪ C ′), by
item (a) it follows that C ∪ C ′ ∈ F(X ∪ Y ). Since C ∪ C ′ 
 Y , by Lemma 7.26 we
conclude that C ∪ C ′ ∈ F(X).

7.2.3 Quasi-families of configurations

Analogously to what Winskel does in [Win88], we study the properties of the
configurations of a CES. In [Win88], sets of configurations are called F and we will
show that those sets are equivalent to our sets of configurations with empty credit
F; so we do hope that using the same symbol does not induce confusion.

Recall that coherence, finiteness and coincidence-freeness are properties of a set
of sets of events (let call it F) (3.11): coherence means that the union of every
pairwise compatible subsets of F still belongs to F; finiteness means that for each
event in C ∈ F, there always exists a finite subset of C, which belong to F and
which contains the event; and coincidence-freeness means that for every two events
in C ∈ F, there always exists a subset of C, which belong to F and which contains
only one of them.

Definition 7.28 (Quasi-families of configurations). We say that a set of sets of
events F is a quasi-family of configurations iff it satisfies coherence and finiteness.

A basic result of [Win88] is that the set of configurations of an ES forms a family
of configurations. On the contrary, the set of configurations of a CES does not
satisfy coincidence-freeness. A counterexample is the CES E7 in Fig. 7.1, where
{a, b} ∈ F, but there exists no configuration including either the single event a or b.
Indeed, the absence of coincidence-freeness is a peculiar aspect of circularity: if two
events are circularly dependent, each configuration that contains one of them must
contain them both

Theorem 7.29. For all CES E, and for all X ⊆ E, the set FE(X) is a quasi-family
of configurations.



7.2. BASIC RESULTS 83

Proof. For coherence, let A ⊆ F(X) be pairwise compatible in F(X). By Def. 3.10:

∀e, e′ ∈
⋃

A. ∃C ∈ F(X). e, e′ ∈ C

Since C ∈ F(X) implies CF (C), it follows that ¬(e#e′) for all e, e′ ∈
⋃
A, and so CF (

⋃
A).

To demonstrate that
⋃
A ∈ F(X), let e ∈

⋃
A. Since A ∈ F(X), there exists C ∈ A such

that e ∈ C. Since C ∈ F(X), by Def. 7.5 there exists σ ∈ T(X) such that e ∈ σ ⊆fin C.
Since C ⊆

⋃
A, by Def. 7.5 we can conclude that

⋃
A ∈ F(X).

Finiteness is straightforward by Def. 7.5, since for all e ∈ C ∈ F(X), the set of elements
of the (finite) sequence σ ∈ T(X) such that e ∈ σ ⊆fin C is a configuration in F(X).

Lemma 7.30 below states that, for all C ⊂ C ′ in a family of configurations, one
can pass from C to C ′ by “hops” made of exactly one event. It is essentially the same
as Lemma 3.6 in [Win88], except for the different notion of pairwise compatibility
used. Note that Lemma 7.30 requires coincidence-freeness, so it is not always true
for the sets of configurations generated by CES.

Lemma 7.30. Let F be a family of configurations. For all C,C ′ ∈ F:

C ⊂ C ′ =⇒ ∃e ∈ C ′ \ C. C ∪ {e} ∈ F

Proof. The proof is essentially that of Lemma 1.1.11 in [Win86], the only difference being
that pairwise compatibility is used instead of finite completeness.

Despite faithfully representing the legitimate states of a system where all the
credits are honoured, sets of configurations are not as informative as we would like
or need. Indeed, they are not able to discriminate among substantially different
CES, e.g. like the following:

E : a 
 b, b 
 a E′ : a ` b, b 
 a E′′ : a 
 b, b ` a

The sets of X-configurations of E,E′,E′′ coincide, for all X. This contrasts with the
different intuitive meaning of ` and 
, which is revealed instead by observing the
traces:

TE = {〈ab〉, 〈ba〉} TE′ = {〈ab〉} TE′′ = {〈ba〉}

To substantiate our feeling that configurations alone are not sufficiently discrimi-
nating for CES, in Theorem 7.32 we show that for all CES E there exists a CES
E′ without `-enablings which has exactly the same configurations of E. Therefore,
the meaning of `, that is the partial ordering of events, is completely lost by just
observing configurations.

Definition 7.31 (Ê(F)). Let F be a quasi-family of configurations of a set E. We

define the CES Ê(F) = (E,#, ∅,
) as follows:

(a) e#e′ ⇐⇒ ∀C ∈ F. e /∈ C ∨ e′ /∈ C



84 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

(b) X 
 e ⇐⇒ CF (X) ∧X is finite ∧ ∃C ∈ F. e ∈ C ⊆ X ∪ {e}

Theorem 7.32. For all quasi-families of configurations F, we have FÊ(F) = F.

Proof. Let F be a quasi-family of configurations. For (⊆), let C ∈ F
Ê(F). By Def. 7.5 we

have CF (C), and for all e ∈ C there exists Ce such that e ∈ Ce ⊆fin C, and the elements

of Ce can be ordered as a trace in T
Ê(F). Since Ê(F) has circular enablings only, it must

be ∀a ∈ Ce. Ce 
 a. Hence, by Def. 7.31(b),

∀a ∈ Ce. ∃Da ∈ F. a ∈ Da ⊆ Ce ∪ {a} = Ce

Since
⋃
{Da | a ∈ Ce} = Ce, the set {Da | a ∈ Ce} is pairwise compatible in F, hence

by Theorem 7.29 (coherence) we have that Ce =
⋃
{Da | a ∈ Ce} ∈ F. Again, the set

{Ce | e ∈ C} is pairwise compatible in F, therefore by coherence C =
⋃
{Ce | e ∈ C} ∈ F.

For (⊇), let C ∈ F. By the definition of conflict in Def. 7.31(a), it must be CF (C).
By Theorem 7.29 (finiteness) for all e ∈ C there exists Ce ∈ F such that e ∈ Ce ⊆fin C.
For all a ∈ Ce, we have that a ∈ Ce ⊆ Ce ∪ {a} = Ce. Thus, by Def. 7.31(b) it follows
that Ce 
 a. Since this holds for all a ∈ Ce, by Def. 7.5 any ordering σe of the elements
of Ce is a trace in T

Ê(F). Therefore, for all e ∈ C we have found a trace σe ∈ T
Ê(F) such

that e ∈ σe = Ce ⊆ C. By Def. 7.5, we conclude that C ∈ F
Ê(F).

Remark 7.33. Theorem 7.32 is the CES counterpart of Theorem 3.7 in [Win88],
which states that for all families of configurations F, there exists an ES E(F) such

that F = FE(F) (see also Th. 3.14). The definition of E(F) differs from our Ê(F) in
Def. 7.31 in three points. First, obviously, ` is used in item b in place of 
.

Second, in item (a) we say that e is not in conflict with e′ iff there exists C ∈ F

such that e, e′ ∈ C, while in [Win88] the condition is that e ∈ C ⇐⇒ e′ ∈ C for
some C ∈ F. We argue that the latter definition is not correct, since it implies that
no events are in conflict. Indeed, by taking C = ∅, we have that e 6∈ C and e′ 6∈ C
for all e, e′, and so by definition e and e′ cannot be in conflict.

Third, our notion of pairwise compatibility differs from Winskel’s, as remarked
after Def. 3.10.

7.3 Reachable events

Knowing that an event belongs to a configuration, may be useful for contract pur-
poses. For instance, let us consider E7 in Fig. 7.1, and assume that the event a
belongs to Alice. Before performing a, Alice wants to know if her event will ever be
honoured; i.e. if there exists a ∅-configuration which contains it. In this example, the
answer is positive since {a, b} is a configuration. Now, modify that CES eliminating
the ` enabling and only keeping the b 
 a enabling. Now there does not exist any-
more a configuration containing a: in fact a belongs only to a a-configuration and
this means that the event a will never be honoured. In this case Alice should con-
sider to not perform her event. Moreover there does not exists any X-configuration
for b, which means that the event b will never happen.



7.3. REACHABLE EVENTS 85

We define as reachable events, all those events which belong to a configuration.
More precisely, an event is X-reachable when some X-configuration contains it.

Definition 7.34 (Reachable events). For all X ⊆ E, we define:

RE(X) =
⋃

FE(X)

We say an event e X-reachable whenever e ∈ RE(X); we say e reachable when
e ∈ RE(∅). When clear from the context, we will omit the index E from RE(X).

Example 7.35. Consider the CES E7 in Fig. 7.1, with enablings a ` b and b 
 a.
Since {a, b} is a configuration, then R(∅) = {a, b}. Consequently, both a and b are
X-reachable for all X.

Note that there may not exist a least X such that e ∈ R(X). For instance, in
the CES with enablings a ` b, b ` a, we have that a is both {a}-reachable and
{b}-reachable, but it is not ∅-reachable.

The function R enjoys the following basic properties:

Lemma 7.36. For all X, Y,C ⊆ E:

(a) X ⊆ R(X)

(b) X ⊆ Y =⇒ R(X) ⊆ R(Y )

(c) C ⊆ R(X) ∧ CF (R(C ∪X)) =⇒ R(X) = R(C ∪X).

Proof. For (a), let e ∈ X. Since CF ({e}), by Lemma 7.24(a) it follows that {e} ∈
F({e}). By Lemma 7.24(b), we also have {e} ∈ F(X). Thus, by Def. 7.34 it follows
that e ∈ R(X).

For (b), let e in R(X). By Def. 7.34, there exists C ∈ F(X) such that e ∈ C. Since
X ⊆ Y , by Lemma 7.24(b) we also have C ∈ F(Y ). Hence, e ∈ R(Y ).

For (c), the inclusion ⊆ follows directly by item (b). For the inclusion ⊇, let e ∈
R(C ∪X), and let C = {ei}i ⊆ R(X). By Def. 7.34, there exists C ′ ∈ F(C ∪X)
such that e ∈ C ′, and for all events ei ∈ C, there exists Ci ∈ F(X) such that
ei ∈ Ci. Let A = {Ci | ei ∈ C}, and let Cj, Ck ∈ A. By Def. 7.34, Cj, Ck ⊆ R(X).
Since CF (R(X)) follows by hypothesis, then CF (Cj ∪ Ck), and so by Theorem 7.29,
Cj ∪ Ck ∈ F(X). Thus, by Def. 3.10, the family of X-configurations A is pairwise
compatible. By Theorem 7.29, F =

⋃
A ∈ F(X). Since F ⊆ R(X) and C ′ ⊆

R(C ∪X), then F ∪ C ′ ⊆ R(C ∪X), and thus CF (F ∪ C ′) follows by the premise
of (c). By Lemma 7.24(b), since C ′ ∈ F(C ∪X) and C ⊆ F , then C ′ ∈ F(F ∪X).
Therefore, by Lemma 7.27(a), e ∈ F ∪ C ′ ∈ F(X), and so e ∈ R(X).

Example 7.37. Consider the three CES in Fig. 7.5.



86 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

a b c

E20

a

c

b

E21

a

b c

d e

f

E22

Figure 7.5: Conflicts and reachable events.

(1) Note that if we weaken the conflict-freeness requirement in Lemma 7.36(c), and
only require that CF (C ∪X), then the thesis in Lemma 7.36(c) would not hold.
Take e.g. the CES E20, and let C = {a, b} and X = {a}. We have that
R(X) = {a, b} and R(C ∪X) = {a, b, c}, which is not conflict-free. Hence
Lemma 7.36(c) does not apply, and in fact R(X) 6= R(C ∪X).

(2) In E21, we have that R({a}) = {a, b, c}. In this case we see that the conflict-
freeness requirement in Lemma 7.36(c) is sufficient but not necessary, since
{a, b, c} is not conflict-free, but nevertheless R({a}) = R(R({a})) = {a, b, c}.

(3) In E22, R({a}) = {a, b, c, d, e} is not conflict-free. Then, Lemma 7.36(c) does
not apply and, indeed R({a} ∪ {c, e}) = {a, b, c, d, e, f} ) R({a}).

7.3.1 Reachability for conflict-free CES

For conflict-free CES, we can inductively characterize the reachable events. This is
done in Def. 7.38 in the form of inference rules.

Unless stated otherwise, in the rest of this section we assume every CES is
conflict-free.

Definition 7.38 (Reachable events for conflict-free CES). For all X ⊆ E, we

inductively define the set R̂(X) as follows:

e ∈ X
e ∈ R̂(X)

(∈
R̂

)
R̂(X) ` e
e ∈ R̂(X)

(`
R̂

)
R̂(X ∪ {e}) 
 e

e ∈ R̂(X)
(


R̂
)

Recall that, by saturation of ` and by Notation 7.2, the premise R̂(X) ` e in

rule `
R̂

actually means that there exists a finite set of events e1, . . . , en ∈ R̂(X) such
that {e1, . . . , en} ` e (similarly for 


R̂
). More pedantically, rule `

R̂
actually stands

for the set of rules:

e1 ∈ R̂(X) · · · en ∈ R̂(X)

e ∈ R̂(X)
if {e1, . . . , en} ` e



7.3. REACHABLE EVENTS 87

Example 7.39. Consider the CES E7 of Fig.7.1. We have the following derivation:

b 
 a

a ` b
a ∈ {a}

a ∈ R̂({a})
(∈

R̂
)

b ∈ R̂({a})
(


R̂
)

a ∈ R̂(∅)
(`

R̂
)

then, since a ∈ R̂(∅), from rule `R̂ we also obtain b ∈ R̂(∅).

To give a rough intuition of the characterization in Def 7.38, one can say that
every event has the same reachability degree X of its enabling events (also said gen-
erators sets), since in absence of conflicts, the chain of generators can stay together
in an X-configuration. This consideration obviously does not hold if the CES has
conflicts. In general, one cannot say recursively that an event has the same degree of
its generators, because somewhere in the chain of enabling there may exist a conflict
which prevents the complete chain from staying in the same configuration.

Example 7.40. Consider the CES E14 in Fig.7.3. By rule `R̂, the event c is has the
same reachability degree of b, since b is its only way to be enabled. Indeed, if there
exists an X-configuration containing b, it will contain also c without augmenting the
credit set, and their reachability degree will be X.

The event b has two ways for being enabled, hence it has two sets of generators;
so it has both the same degree of a and c. Since a is ∅-reachable, then also b is
∅-reachable and since c has the same degree of b then also c is ∅-reachable.

Now consider the other way to calculate the reachability of b. By following the

-enabling of b we have that, b has the same reachability degree of c, and that —
again — c is as the degree of b. This seems to be stuck, but recall that the rule

R̂ says that we may discharge a 
-enabled event from its own the degree, if we
encounter it in a looping derivation.

To conclude a, b and c are all ∅-reachable.

The following lemma summarizes some basic properties of the operator R̂.

Lemma 7.41. For all X, Y ⊆ E:

(a) X ⊆ R̂(X)

(b) X ⊆ Y =⇒ R̂(X) ⊆ R̂(Y ).

(c) R̂(R̂(X)) = R̂(X)

Proof. Item (a) is straightforward by rule (∈
R̂

). Item (b) is by induction on the depth

of the derivation of e ∈ R̂(X). For item (c), the inclusion R̂(X) ⊆ R̂(R̂(X)) follows by
item (a). The other inclusion can be easily proved by induction on the depth of the proof
of e ∈ R̂(R̂(X)).



88 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

Lemma 7.42. For all X, Y ⊆ E, Y ⊆ R̂(X) =⇒ R̂(X ∪ Y ) = R̂(X).

Proof. The inclusion R̂(X ∪ Y ) ⊇ R̂(X) follows directly by Lemma 7.41(b). For the other
inclusion, by Lemma 7.41(b) and 7.41(c) we have:

Y ⊆ R̂(X) =⇒ R̂(Y ) ⊆ R̂(R̂(X)) = R̂(X)

By Lemma 7.41(a), Y ⊆ R̂(Y ). Since R̂(Y ) ⊆ R̂(X), then by Lemma 7.41(b) we have
R̂(X ∪ Y ) ⊆ R̂(X ∪ R̂(X)). By Lemma 7.41(a), X ⊆ R̂(X), and so R̂(X ∪ R̂(X)) =
R̂(R̂(X)). By Lemma 7.41(c), we have R̂(R̂(X)) = R̂(X), which concludes.

Lemma 7.43. For all X ⊆ E, Y ⊆fin E, R̂(X ∪ Y ) 
 Y =⇒ Y ⊆ R̂(X).

Proof. If Y = ∅, the statement holds trivially. Otherwise, let Y = {e0, . . . , ek}. For all
i ≤ k, we define Yi = {e0, . . . , ei}, and Y i = Y \ Yi = {ei+1, . . . , ek}. We shall prove that:

∀i ≤ k. Yi ⊆ R̂(X ∪ Y i) (7.6)

To prove (7.6), we proceed by mathematical induction.

• Base case i = 0.

By hypothesis, R̂(X ∪ Y ) 
 e0. Then:

R̂(X ∪ Y ) 
 e0

e0 ∈ R̂((X ∪ Y ) \ {e0})
(


R̂
)

So we have proved that {e0} = Y0 ⊆ R̂((X ∪ Y ) \ {e0}) ⊆ R̂(X ∪ Y 0).

• Inductive case. By the induction hypothesis, we have that Yi ⊆ R̂(X ∪ Y i). By
Lemma 7.42, R̂(X ∪ Y i ∪ Yi) = R̂(X ∪ Y i). By (∈R), we have ei+1 ∈ R̂(X ∪ Y ) =
R̂(X ∪ Y i ∪ Yi) = R̂(X ∪ Y i). By hypothesis, R̂(X ∪ Y i ∪ Yi) 
 ei+1, and so
R̂(X ∪ Y i) 
 ei+1. Hence we can apply rule (


R̂
) to obtain:

R̂(X ∪ Y i) 
 ei+1

ei+1 ∈ R̂(X ∪ Y i+1)
(


R̂
) (7.7)

We obtain the thesis of (7.6) as follows:

Yi+1 = Yi ∪ {ei+1} (by Def. Yi)

⊆ R̂(X ∪ Y i) ∪ {ei+1} (by the induction hypothesis)

= R̂(X ∪ Y i) (by ei+1 ∈ R̂(X ∪ Y i))

= R̂(X ∪ Y i+1 ∪ {ei+1}) (by Def. Y i)

= R̂(X ∪ Y i+1) (by Lemma 7.42 and (7.7))

Back to the main statement, just note that for i = k in (7.6), we obtain the thesis
Y = Yk ⊆ R̂(X).



7.3. REACHABLE EVENTS 89

Lemma 7.44. For all C,X ⊆ E, C ∈ F(X) =⇒ C ⊆ R̂(X).

Proof. We will first prove that ∀C0 ⊆fin C. ∀X. C0 ∈ F(X) =⇒ C0 ⊆ R̂(X). Let
C0 ⊆fin C, and assume that C0 ∈ F(X), for some X. By Corollary 7.15 we have that:

∃σ = 〈e0 . . . en〉 ∈ T(X). σ = C0

We proceed by induction on the size of C0. In the base case C0 = ∅ the thesis holds
trivially. For the inductive case, let us assume C0 6= ∅. Let en = e, let σ′ = 〈e0 . . . en−1〉
and let C ′ = σ′. We will prove that C ′ ⊆ R̂(X) and e ⊆ R̂(X). Let:

D = {ei ∈ σ′ | σ 
 ei ∧ σ′ 6
 ei ∧ σ′i 6` ei} (7.8)

By Lemma 7.20, σ′ ∈ T(X ∪D). By Lemma 7.15, C ′ ∈ F(X ∪D), and then by the
induction hypothesis, C ′ ⊆ R̂(X ∪D). Now, we will prove that e ∈ R̂(X ∪D). Since
e = en ∈ σ, by eq. (7.1), to justify e in σ we must have:

e ∈ X ∨ σ′ ` e ∨ σ 
 e

We have the following three cases:

• if e ∈ X, by (∈
R̂

) we have that e ∈ R̂(X) and by Lemma 7.24(b), e ∈ R̂(X ∪D).

• if σ′ ` e, since by the induction hypothesis C ′ ⊆ R̂(X ∪D) and C ′ ` e, then by
saturation R̂(X ∪D) ` e. Therefore by (`

R̂
) we have:

R̂(X ∪D) ` e
e ∈ R̂(X ∪D)

(`
R̂

)

• if σ 
 e, since by the induction hypothesis C ′ ⊆ R̂(X ∪D), then by Lemma 7.24(b),
C0 = C ′ ∪ {e} ⊆ R̂(X ∪D ∪ {e}). By saturation, σ = C0 
 e implies
R̂(X ∪D ∪ {e}) 
 e. Therefore, by (


R̂
) we have:

R̂(X ∪D ∪ {e}) 
 e
e ∈ R̂(X ∪D)

(

R̂

)

So we have proved that e ∈ R̂(X ∪D), hence C0 = C ′ ∪ {e} ⊆ R̂(X ∪D). Note that
by (7.8), we have that C0 
 D, and so by saturation R̂(X ∪D) 
 D. Therefore by
Lemma 7.43, D ⊆ R̂(X). By Lemma 7.42, it follows that R̂(X ∪D) = R̂(X), and the
thesis follows because C0 ⊆ R̂(X ∪D).

Back to the main statement, since C ∈ F(X) we have that for all e ∈ C, there exists
σe ∈ T(X) such that e ∈ σe ⊆fin C. Since σe ∈ F(X), we have proved above that

σe ⊆ R̂(X). Therefore, C =
⋃
{σe | e ∈ C} ⊆ R̂(X).

Finally, we can prove that the new characterization for reachable events is equiv-
alent to the original one 7.34 in the case of a conflict-free CES.



90 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

Theorem 7.45. For all X ⊆ E:

R(X) = R̂(X)

Proof. (⊆) Let e ∈ R(X). By Def. 7.34, there exists a configuration C ∈ F(X) such that
e ∈ C. By Lemma 7.44, e ∈ C ⊆ R̂(X).

(⊇) Assume that e ∈ R̂(X). We will prove that ∃C ∈ F(X) such that e ∈ C. By
Def. 7.34, this will allow to conclude e ∈ R(X). We proceed by induction on the depth of
the derivation of e ∈ R̂(X). According to the last rule used in the derivation, we have the
following three cases:

• case (∈
R̂

). We have that
e ∈ X

e ∈ R̂(X)
(∈

R̂
)

Since e ∈ X, by Lemma 7.24 we have that e ∈ {e} ∈ F(X).

• case (`
R̂

).

R̂(X) ` e
e ∈ R̂(X)

(`
R̂

)

The premise R̂(X) ` e implies that there exists D ⊆fin R̂(X) such that D ` e. By
the induction hypothesis, for all d ∈ D there exists Cd ∈ F(X) such that d ∈ Cd. Let
C =

⋃
d∈D Cd. Since E is conflict-free, by Theorem 7.29 it follows that C ∈ F(X).

Since D ⊆ C and D ` e, by saturation we have C ` e. By Lemma 7.24(a),
{e} ∈ F({e}). Therefore, by Lemma 7.27(b), C ∪ {e} ∈ F(X).

• case [

R̂

]

R̂(X ∪ {e}) 
 e
e ∈ R̂(X)

[

R̂

]

The premise R̂(X ∪ {e}) 
 e implies that there exists D ⊆fin R̂(X ∪ {e}) such that
D 
 e. By the induction hypothesis, for all d ∈ D there exists Cd ∈ F(X ∪ {e})
such that d ∈ Cd. Let C =

⋃
d∈D Cd. Since E is conflict-free, by Theorem 7.29 it

follows that C ∈ F(X ∪ {e}). By Lemma 7.24(a), {e} ∈ F(X ∪ {e}). Since D ⊆ C
and D 
 e, by saturation we have C 
 e. Therefore, Lemma 7.27(c) gives that
C ∪ {e} ∈ F(X).

7.4 An LTS semantics of CES

Similarly to what has been done for event structures, we now define a Labelled
Transition System (LTS) for CES.

In the LTS of events structures (Def. 3.7), an event can be fired if there are
no conflicts with the previously occurred events and if it is enabled by them. With



7.4. AN LTS SEMANTICS OF CES 91

these constraints, every state of the LTS is a configuration and every path to a state
is a sequence closed under `-enabling.

In CES, an event can always be fired: if it is not already ` nor 
-enabled, it
may be inserted in the credit set and still obtain some X-configuration. Note that
the credit set may grow up but it grows smaller by firing some event that 
-enables
some of the previously taken-on-credit occurred events.

Accordingly, every state of the LTS of a CES must remember not only the already
occurred events but also the credit set accumulated so far: so every state is a pair
(C,X) where C is an X-configuration and X is the least credit for C.

7.4.1 Adding events to a trace

We will first observe what happens when adding an event e to a trace σ ∈ T(X). It
is always true that σe ∈ T(X ∪ {e}), although X ∪ {e} may not be the least credit
for σe.

Def. 7.46 below establishes how the credits of a trace change when adding an
event. When Def. 7.46 is instantiated with C = σ and X is the least credit of σ,
then Lemma 7.48 guarantees that Γ+(C,X, e) is the least credit for σe. Intuitively,
in Def. 7.46 we first remove from X the set of credits which have been honoured by
performing e; then, we add e unless it is justified.

Definition 7.46 (Credits when adding events). For all C,X ⊆ E and for all e ∈ E,
we define:

Γ+(C,X, e) = (X \ {x ∈ X | C ∪ {e} 
 x}) ∪

{
{e} if C ∪ {e} 6
 e ∧ C 6` e
∅ otherwise

Example 7.47. Consider the CES E1, E2, E7 and E8 in Figures 3.1 and 7.1. For
the maximal traces 〈ab〉, 〈ba〉, we have the following computations:

E1 : (∅, ∅) a−→ ({a}, ∅) b−→ ({a, b}, ∅), (∅, ∅) b−→ ({b}, {b}) a−→ ({a, b}, {b}).

E2 : (∅, ∅) a−→ ({a}, {a}) b−→ ({a, b}, {a}), (∅, ∅) b−→ ({b}, {b}) a−→ ({a, b}, {b}).

E7 : (∅, ∅) a−→ ({a}, {a}) b−→ ({a, b}, ∅), (∅, ∅) b−→ ({b}, {b}) a−→ ({a, b}, {b}).

E8 : (∅, ∅) a−→ ({a}, {a}) b−→ ({a, b}, ∅), (∅, ∅) b−→ ({b}, {b}) a−→ ({a, b}, ∅).

In particular, for E7 the trace 〈a〉 belongs to T({a}), and {a} is its least credit.
Of course 〈a b〉 ∈ T({a, b}), but since b is `-enabled by {a}, it is not necessary to
take b on credit. Moreover, since b 
 a, we can also remove a from the credit set:
hence 〈a b〉 ∈ T. Indeed, the least credit for 〈a b〉 is computed through Def. 7.46 as
Γ+({a}, {a}, b) = {a} \ {a} ∪ ∅ = ∅.



92 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

Lemma 7.48. Let σ = σ′e, with e 6∈ σ′ and CF (σ). If σ′ ∈ T(X), then σ ∈
T(Γ+(σ′, X, e))). Moreover, if X is the least credit for σ′, then Γ+(σ′, X, e) is the
least credit for σ.

Proof. Let σ′ = 〈e0 . . . en〉 ∈ T(X ′), let σ = σ′e, and let X = Γ+(σ′, X ′, e). By equa-
tion (7.1) it follows that σ ∈ T(X). Let X ′ be the least credit for σ′. We prove that X is
the least credit for σ. By Def. 7.48:

X = Γ+(σ′, X ′, e) = (X ′ \ {x ∈ X ′ | σ′ ∪ {e} 
 x}) ∪

{
{e} if σ′ ∪ {e} 6
 e ∧ σ′ 6` e
∅ otherwise

By Lemma 7.17, X ′ = {ei ∈ σ′ | σ′i 6` ei ∧ σ′ 6
 ei}. Since σ′ ∪ {e} = σ, we have:

X = ({ei ∈ σ′ | σ′i 6` ei ∧ σ′ 6
 ei} \ {x ∈ X ′ | σ 
 x}) ∪

{
{e} if σ 6
 e ∧ σ′ 6` e
∅ otherwise

Since X ′ is the least credit for σ′, we have that X ′ ⊆ σ′. Hence:

X = ({ei ∈ σ′ | σ′i 6` ei ∧ σ 6
 ei} ∪

{
{e} if σ 6
 e ∧ σ′ 6` e
∅ otherwise

By renaming e as en+1, we have σ = 〈e0 . . . enen+1〉, hence

X = ({ei ∈ σ | σi 6` ei ∧ σ 6
 ei}

By Lemma 7.17, X is the least credit for σ.

As noticed in Example 7.47, adding events to a trace may reduce the credit set.
Also, observe that changing the order in which events are performed may change
the credit set. In particular when an event without 
-enablings is fired before its
`-justification, it will not be possible to remove it from the credit set by firing new
events. For instance, if in Example 7.47 we fire b before a, then we cannot remove b
from the credit set. This allows for correctly recording the events performed in the
absence of a causal justification.

Example 7.49. Consider the CES E17 in Fig. 7.3. The trace 〈ab〉 has least credit
{a, b}; by adding the event c, the least credit for 〈abc〉 becomes {c}.

7.4.2 LTS of a CES

We will now formally define our LTS.

Definition 7.50 (LTS of a CES). Given a CES E, we define its labelled transition
system LTSE = 〈S,E,→E〉, where S = Con × Con, and the relation →E is defined
as follows:

e /∈ C CF (C ∪ {e})
(C,X)

e−→E (C ∪ {e}, Γ+(C,X, e))

We say that (C,X) is a reachable state of LTSE iff (∅, ∅) →∗E (C,X). When clear
from the context, we will omit the index E from →E.



7.4. AN LTS SEMANTICS OF CES 93

We remark that if E has no circular enablings, then LTSE can be characterised in
a simpler form, i.e. (C,X)

e−→ (C∪{e}, X) if C ` e, and (C,X)
e−→ (C∪{e}, X∪{e})

if C 6` e. The subrelation of −→E containing only states with empty credits coincides
with the transition relation defined in [Win86].

By Def. 7.50 it immediately follows that, for all CES E, the relation →E is
deterministic, i.e. whenever (C,X)

a−→ (C ′, X ′) and (C,X)
a−→ (C ′′, X ′′), it must be

(C ′, X ′) = (C ′′, X ′′). Determinism is a very desirable property, e.g. in the context
of contracts, because it ensures that the events to be performed by a participant at
any given time are uniquely determined by the past actions.

Two immediate consequences of Def. 7.50 are reported in Lemma 7.51 below. In
item (a) we start from a state (C,X), from which we fire a sequence of events σ.
Then, we reach a state (C ′, X ′) where C ′ exactly comprises all the events in C ∪ σ,
and the events which are removed from the credits are circularly enabled by the
events in C ∪ σ. Item (b) states that the set X in a state (σ,X) is the least credit
for σ — and so X ⊆ σ for all reachable states (σ,X). Note that there may exist
different reachable states (C,X) with same the same C and uncomparable X. This
is because, in general, there exists no least credit for a set of events C.

Lemma 7.51. For all C,C ′, X,X ′ ⊆ E, and for all σ ∈ E∗:

(a) (C,X)
σ−→ (C ′, X ′) =⇒ σ = C ′ \ C ∧ C ∪ σ 
 X \X ′

(b) σ ∈ T(X) ∧ X least credit for σ ⇐⇒ (∅, ∅) σ−→ (σ,X)

Proof. Item (a) is straightforward by Def. 7.50.

For item (b⇒), let σ ∈ T(X). By induction on the length of σ = 〈e0 . . . en〉, we prove that

for all i ≤ n, if Yi is the least credit for σi, then (∅, ∅) σi−→ (σi, Yi). The base case is trivial,
since the minimal credit for σ0 = ε is Y0 = ∅. For the inductive case, by the induction
hypothesis assume that (∅, ∅) σi−→ (σi, Yi). Then, by Def. 7.50:

(σi, Yi)
ei−→ (σi+1,Γ

+(σi, Yi, ei))

By Lemma 7.48, Γ+(σi, Yi, ei) = Yi+1 is the least credit for σi+1.

For (b⇐), by an easy inductive argument on the length of σ (using Lemma 7.48 at each

step) it follows that, for all i ≤ n, if (∅, ∅) σi−→ (σi, Yi), then Yi is the least credit for σi.
This implies σ ∈ T(X).

Example 7.52. Recall the CES E7 from Fig. 7.1, with enablings a ` b and b 
 a.
According to its LTS (depicted in Fig. 7.6, left), in the initial state we can fire
either the event a or the event b, by taking it on credit. In the state ({a}, {a}) we
can perform the event b, and reach the state ({a, b}, ∅). Instead, when performing
a in the state ({b}, {b}) we reach the state ({a, b}, {b}). The event b cannot be
discharged from that credit set, since there does not exists any 
-enabling for it.



94 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

(∅, ∅)
({a}, {a})

({b}, {b})

b
({a, b}, ∅)

a
({a, b}, {a})

a

b (∅, ∅)
({a}, {a}) b

({a, b}, ∅)a

Figure 7.6: The LTS of CES E7 (left), and its urgent LTS (right).

The following theorem relates configurations with reachable states of the LTS. A
(possibly infinite) set C is an X-configuration iff for all finite subsets D of C there
exists a state with events containing D and with credits contained in X.

Theorem 7.53. For all CES E, for all C,X ⊆ E:

C ∈ F(X) ⇐⇒ ∀D ⊆fin C, ∃X0 ⊆fin X. ∃C0. D ⊆ C0 ⊆fin C. (∅, ∅)→∗ (C0, X0)

Proof. (⇒) Let C ∈ F(X), and let D ⊆fin C. By Lemma 7.14, there exists σ ∈ T(X)
such that D ⊆ σ ⊆ C. Let X0 ⊆fin X be the least credit for σ. By Lemma 7.51, we have

(∅, ∅) σ−→ (σ,X0). Therefore, the thesis follows by choosing C0 = σ.
(⇐) Let D ⊆fin C, and assume that (∅, ∅) σ−→ (C0, X0), for some σ and X0 such that

C0 = σ, D ⊆ C0 ⊆ C, and X0 ⊆ X. Assume that σ = 〈e0 . . . en〉, and that the trace has
the form:

(∅, ∅) e0−→ (σ1, Y1)
e1−→ (σ2, Y2)

e2−→ · · · en−→ (σ, Yn)

where Yn = X0. By Lemma 7.51(b), we have σ ∈ T(X0). Since X0 ⊆fin X, by
Lemma 7.13(b), it is also true that σ ∈ T(X). Therefore, by Lemma 7.14 we conclude
that C ∈ F(X).

This also gives an alternative way to characterise the reachable events, which
uses the notion of LTS.

Lemma 7.54. For all CES E, for all e ∈ E, and for all X ⊆ E:

e ∈ R(X) ⇐⇒ ∃C0 ⊆fin E, X0 ⊆fin X. (∅, ∅)→∗ (C0, X0) ∧ e ∈ C0

Proof. (⇒) Let e ∈ R(X). By Def. 7.34, there exists C ∈ F(X) such that e ∈ C.
Since C ∈ F(X), by Theorem 7.53 there exists X0 ⊆fin X and C0 such that (∅, ∅)→∗
(C0, X0) and e ∈ C0 ⊆fin C.

(⇐) Let σ be such that (∅, ∅) σ−→ (C0, X0), with e ∈ C0 and X0 ⊆fin X. By
Lemma 7.51(b), σ ∈ T(X0). Thus, e ∈ σ ∈ F(X0). By Lemma 7.24(b), σ ∈ F(X).
By Def. 7.34 we conclude that e ∈ R(X).

7.5 Traces with shallow past

In order to deal with suffixes of traces, we now introduce the notion of trace with
past. Traces with past are tightly bound with urgent events which will be the subject
of the following section (7.6).



7.5. TRACES WITH SHALLOW PAST 95

We want to characterize which sequences of events are possible from an already
reached state in the LTS: given a set of already happend events and a credit set, we
want to describe which sequences of actions can be done and which credit set we
will have at the end.

Definition 7.55 (Trace with past). For all C ⊆fin E, X ⊆ E, we say that σ =
〈e0 . . . en〉 ∈ E∗ is an X-trace with past C iff CF (C ∪ σ), C ∩ σ = ∅, DF (σ), and

∀i ≤ n. (ei ∈ X ∨ C ∪ σi ` ei ∨ C ∪ σ 
 ei) (7.9)

We denote with TCE (X) the set of X-traces with past C.

Note that, when X ⊆ C, we have TC(X) = TC .
The definition of trace with past is a bit more general that needed: in 7.55 it is

not required that X is a credit set for C; but since it will be used mostly for those
couple (C,X) which are state in the LTS, it that case we will have X as a least
credit set for C.

From the definition of trace with past, we obtain the definition of configuration
with past.

Definition 7.56 (Configuration with past). For all P,X ⊆ E we define the set
FPE (X) of X-configurations with past P as follows:

FPE (X) = {C ⊆ E \ P | CF (C) ∧ ∀e ∈ C. ∃σ ∈ TPE (X). e ∈ σ ⊆ C}

Traces with past enjoy some basic properties, which derive directly from traces
basic properties.

Lemma 7.57. Let C,C ′ ⊆ E, and let σ, σ′, η, η′ ⊆ E∗. Then :

(a) C ∩ σ = ∅ =⇒ σ ∈ TC(σ)

(b) X ⊆ Y =⇒ TC(X) ⊆ TC(Y )

(c) σ ∈ TC(X) ∧ σ′ ∈ TC(X) ∧ CF (σσ′) =⇒ (σσ′)↓ ∈ TC(X)

(d) σ ∈ TC(X) ∧ σ′ ∈ TC(X) ∧ CF (σσ′) =⇒ (σ | σ′)↓ ∈ TC(X)

Proof. Direct consequences of Def. 7.55 and of trace basic properties 7.18.

Since every event may happen only once, it is redundant to insert events already
happened into the credit set.

Lemma 7.58. Let X,C ⊆ E. Then, TC(X) = TC(X \ C)

Proof. Straightforward from Def. 7.55.

The following lemma states that composing an X-trace σ with a trace with past
σ, generates an X-trace.



96 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

Lemma 7.59. For all X,C ⊆ E, and σ, η ∈ E∗:

η ∈ T(X) ∧ σ ∈ TC ∧ η = C =⇒ ησ ∈ T(X)

Proof. Let σ = 〈e0 . . . en〉 ∈ TC . By Def. 7.55 we have CF (C ∪ σ), C ∩ σ = ∅,
DF (σ), and

∀i ≤ n. (C ∪ σi ` ei ∨ C ∪ σ 
 ei) (7.10)

Let η = 〈a0 . . . ak〉 ∈ T(X) be such that η = C. We have to prove that ν = ησ ∈
T(X), i.e. CF (ν), DF (ν) and

∀i ≤ k. (ai ∈ X ∨ νi ` ai ∨ ν 
 ai) ∧ (7.11)

∀k < i ≤ n. (ei ∈ X ∨ νi ` ei ∨ ν 
 ei) (7.12)

Since CF (C ∪ η) then CF (ν). Since C ∪ σ and DF (σ), we have DF (ν). Since
η ∈ T(X), (7.11) trivially holds. For (7.12), we have two further subcases, based on
how the event ei was justified in (7.10):

• C ∪ σi ` ei. Since i > k, we have C ∪ σi = νi, and then νi ` ei.

• C ∪ σ 
 ei. Since C ∪ σ = ν, we have ν 
 ei.

The following lemma relates traces with past with the LTS of E.

Lemma 7.60. Let (C,X) be a reachable state of LTSE. Then:

σ ∈ TC ⇐⇒ ∃X0 ⊆ X. (C,X)
σ−→ (C ∪ σ,X0)

Proof. (⇒) Let σ ∈ TC . Since (C,X) is reachable, there exists η such that (∅, ∅) η−→
(C,X) and η = C; so by Lemma 7.51, η ∈ T(X). By Lemma 7.59, ησ ∈ T(X). Let

X0 ⊆ X be the least credit of ησ. By Lemma 7.51 we have (∅, ∅) ησ−→ (ησ,X0). Since
LTSE is deterministic, therefore we conclude that (C,X)

σ−→ (C ∪ σ,X0). The thesis
follows because ησ = C ∪ σ.

(⇐) Since (C,X) is reachable, by Lemma 7.51 there exists η ∈ T(X) such that

η = C and (∅, ∅) η−→ (C,X). By hypothesis there exists X0 such that (C,X)
σ−→

(C ∪ σ,X0). Summing up, (∅, ∅) ησ−→ (C ∪ σ,X0). By Lemma 7.51, X0 is the
least credit for ησ. By Lemma 7.13(b), since ησ ∈ T(X0) and X0 ⊆ X, we have
ησ ∈ T(X). By Def. 7.55, we conclude that σ ∈ TC(X), and the thesis follows from
Lemma 7.58 because X ⊆ C.

Having defined traces and configurations with past, we are now ready to define
reachable events with past.

Definition 7.61 (Reachable events with past). For all C ⊆fin E and X ⊆ E, we
define:

RC
E (X) =

⋃
FCE (X)



7.6. URGENT EVENTS 97

The following lemma relates reachability with past to (plain) reachability. Note
that the inclusion R(X) ⊇ RC(X) ∪ C does not hold. For instance, in the event
structure with enabling {a} ` b and with C = {a}, we have that R(∅) = ∅, but
RC(∅) = {b}.

Lemma 7.62. For all C ⊆fin E and X ⊆ E, RC(X) ∪ C = R(C ∪X).

Proof. For (⊇), let e ∈ R(C ∪X). Then, there exists η ∈ T(C ∪X) such that
e ∈ η. If e ∈ C, we already have the thesis. Otherwise, assume e 6∈ C. Let η′ be
the sequence obtained by removing from η all the events in C, while preserving the
order of the other events. Then that η′ ∈ TC(X) and e ∈ η′, from which e ∈ RC(X).

For (⊆), let e ∈ RC(X) ∪ C. If e ∈ C, the thesis holds trivially. Otherwise,
there exists σ ∈ TC(X) such that e ∈ σ and σ ∩ C = ∅. Let σ′ = σC σ, where σC is
an arbitrary sequentialisation of the events in C. Then σ′ ∈ T(C ∪X), from which
e ∈ R(C ∪X).

7.6 Urgent events

Computations on LTSE are far too liberal: they allow us to fire an event either if
it is (` or 
)-enabled by the already fired events, or — by taking it on credit — if
it will be honoured in the future, or even if it will not. Except for the conflicting
events, any event can be fired, with the risk of keeping such event in the credit set
forever. Intuitively, one would like to perform those events only which guarantee to
eventually reach a state with empty credits. Such events will be called urgent.

For instance, in E7 the event a is urgent in the initial state (∅, ∅). In such state b
is not urgent, but it will be urgent in the state ({a}, {a}) where a has been performed
on credit.

We are assuming that non-deterministic choices are angelic, i.e. they are not
affected by the environment. For instance, if we extend E7 with the enabling a ` c
and the conflict b#c, we shall still say that a is urgent in the initial state: i.e.,
the environment cannot prevent a from being honoured by choosing the branch c.
The case of demonic non-determinism, that is ensuring that an event performed on
credit will always be honoured, can be better understood by setting up a suitable
adversarial model. This requires a quite more complex game-theoretic treatment,
and it is the subject of [BCZ13].

Definition 7.63 (Urgent events). For all e ∈ E, and for all C,X ⊆ E, we say that
e is urgent in (C,X) iff

∃σ. (C,X)
eσ−→E (C ∪ σ, ∅)

We denote with UC
E (X) the set of urgent events in (C,X).

Summing up, the events that are urgent in (C,X) are those already enabled by
C, or those which can be done on credit, on behalf that they will be honoured when
the right choices will be made in the future.



98 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

Example 7.64. Consider E7 and its LTS depicted in Fig. 7.6. Event a is urgent
in (∅, ∅), because there exists a path from ({a}, {a}) which leads to an empty credit
set. For the same reason, b is urgent in ({a}, {a}). On the contrary b is not urgent
in (∅, ∅), because whatever choices are made in the future, it would not be possible
to honour the credit {b}. Indeed, if a transition labelled b is taken from state (∅, ∅)
of LTSE7, then all future states will contain the credit b.

The following lemma provides an alternative characterisation of urgent events, in
terms of traces with past. An event e is urgent in (C,X) iff there exists a trace with
past C such that the first element of the trace is e, and the credit X is honoured by
the events in the trace together with those in C.

Lemma 7.65. For all e ∈ E, and for all reachable state (C,X) of LTSE,

e ∈ UC
E (X) ⇐⇒ ∃σ. eσ ∈ TC ∧ C ∪ eσ 
 X

Proof. Straightforward after Lemma 7.60 and Lemma 7.51(a).

Pruning away from an LTS all the transitions labelled by non-urgent events, we
obtain a new LTS, denoted by −⇀UE

. The crucial property of the −⇀UE
is that, by

following its transitions, one is always guaranteed to reach a state where all the
credits have been honoured (see Lemma 7.68 below). Fig. 7.6 (right) displays the
urgent LTS for E7.

Definition 7.66 (LTS of urgent events). We define the relation −⇀UE
as the largest

subset of −→E such that:

(C,X)
e−⇀UE

(C ′, X ′) iff (C,X)
e−→E (C ′, X ′) and e ∈ UC(X)

Note that in the absence of circularity the LTS −⇀UE
coincides with the LTS

defined in [Win86], where the component X is always empty. For instance, let us
consider an event structure without circular enablings, and let (C,X) be a reachable
state in its LTS. If X 6= ∅, then the credit X will never be honoured since there are
no circular enablings, hence no events will be urgent in (C,X). Otherwise, if X = ∅,
then the urgent events in (C, ∅) are exactly those events e such that C ` e. This is
because, by Def. 7.50, (C, ∅) e−→ (C ∪ {e}, ∅) if C ` e.

The following lemma relates the traces in TE with the traces in −⇀UE
. The traces

in TE are exactly those traces in −⇀UE
which lead to a state (C,X) with X = ∅.

Lemma 7.67.
σ ∈ TE ⇐⇒ (∅, ∅) σ−⇀UE

(σ, ∅)
Proof. To prove (⇒), we distinguish between two cases. If σ = ε, the statement holds
trivially. Otherwise, assume σ = νe, and let X be the least credit for ν ∈ T(X). Since
νe ∈ TE, by Lemma 7.51 it must be (∅, ∅) ν−→E (ν,X)

e−→E (νe, ∅). By Lemma 7.60, we have
that e ∈ Tν , and clearly νe 
 X. Therefore, by Lemma 7.65 we conclude that e ∈ Uν(X),
from which the thesis (∅, ∅) ν−⇀UE

e−⇀UE
.

The direction (⇐) follows from Lemma 7.60, since −⇀UE
⊆−→E.



7.6. URGENT EVENTS 99

The following lemma establishes a crucial property of the LTS −⇀UE
, that is the

ability to reach, starting from any state (C,X) reachable from (∅, ∅) and following
only −⇀UE

transitions, a state where all the credits have been honoured.

Lemma 7.68 (Progress). Let (C,X) be a reachable state of −⇀UE
. Then:

∃η. (C,X)
η−⇀UE

(C ∪ η, ∅)
Proof. We first prove the following technical result. For all C,X, σ:

(C,X)
σ−⇀UE

(C ′, ∅) ⇐⇒ (C,X)
σ−→E (C ′, ∅) (7.13)

The direction (⇒) of (7.13) follows because −⇀UE
⊆−→E. The other direction can be easily

proved by induction on the length of σ.
Back to the main statement, assume that (∅, ∅) σ−⇀UE

(σ,X), for some X. If X = ∅,
we conclude by choosing η = ε. Otherwise, let σ = 〈e0 · · · en〉, and let Ci = σi. Then,

(∅, ∅) e0−⇀U (C1, X1)
e1−⇀U (C2, X2)

e2−⇀U · · ·
en−⇀U (σ,X). By Def. 7.63, we have that for

all i ≤ n, ei ∈ UCi(Xi). In particular, for i = n we have that there exists η such that

(σ,X)
η−→ (ση, ∅). The thesis follows directly by (7.13).

The following lemma relates urgent events with reachability. Item (a) states that
urgent events in (C,X) are also X-reachable with past C. Note that the converse
inclusion does not hold, i.e. in the event structure with enablings {a} ` b and
{b} 
 a, both a and b are reachable, but only a is urgent in ∅. Item (b) states that
reachable events in E are exactly those events which label some transition in the
LTS −⇀UE

.

Lemma 7.69. For all CES E, and for all C,X ⊆ E:

(a) UC
E (X) ⊆ RC

E (X)

(b) RE = {e | ∃σ : (∅, ∅) σ−⇀UE

e−⇀UE
}

Proof. Item (a) is straightforward by Lemma 7.65 and Def. 7.61.

For ⊆ of item (b), by Lemma 7.67 it follows that for all σ, η, if ση ∈ TE, then (∅, ∅) σ−⇀UE
.

It is easy to check that this implies the thesis.

For ⊇, assume that (∅, ∅) σ−⇀U (σ,X). By Lemma 7.68, there exists η such that (σ,X)
η−⇀U

(ση, ∅). By Lemma 7.67, ση ∈ TE. Therefore, all the events in σ are comprised in RE.

A relevant question is whether, for any CES E, there exists a CES E′ without
circular enablings such that the LTS −⇀UE

equals to −→E′ . In other words, we wonder
whether the expressiveness with the urgent LTS is the same as that of the LTS of
Winskel’s ES. A negative answer is displayed in Fig. 7.7, which shows a CES E for
which there exists no ES the LTS of which corresponds to −⇀UE

. Indeed, ES cannot
distinguish between two states which only differ for the credits, like e.g. ({a, b}, ∅)
and ({a, b}, {b}) in Fig. 7.7. In Winskel’s ES, a transition from a state C only
depends on the events in C, and not on the order in which these events have been
fired. Instead, transitions in CES also depend on the credits accumulated in the
history of execution.



100 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY

a b

c d

(∅, ∅)
({a}, {a})

({b}, {b})

({a, b}, ∅)

({a, b}, {b})
({a, c}, {a})

({a, b, d}, ∅)

({a, b, c}, ∅)

a

b

b

c

a

d

c
b

c

Figure 7.7: An event structure E (left) and the LTS −⇀UE
(right).

7.6.1 Urgency for conflict-free CES

In this section we study urgent events in the special case of conflict-free CES. The
following lemma simplifies the characterisation of urgent events in terms of traces
given by Lemma 7.65. This simplified characterisation only holds for those states
(C,X) which are reachable in the LTS −⇀UE

. Under this hypothesis, it is no longer
needed to check that the credits in X are honoured: this is already guaranteed by
the fact that there exists a trace eσ in TC . Therefore, for conflict-free CES the LTS
−⇀UE

can be simplified by eliminating the component X from the states.

Lemma 7.70. For a a conflict-free CES E, and a reachable state (C,X) of −⇀UE
:

e ∈ UC
E (X) ⇐⇒ ∃σ. eσ ∈ TCE

Proof. The (⇒) direction is straightforward after Lemma 7.65. For (⇐), let σ be such that
(∅, ∅) σ−⇀U (C,X) and σ = C, and assume that eν ∈ TC , for some ν. By Lemma 7.68, there

exists η such that (C,X)
η−⇀U (ση, ∅). By Lemma 7.60, η ∈ TC , and by Lemma 7.51(a),

C ∪ η 
 X. By Lemma 7.57(c), since CF (eνη) then eνη ∈ TC . By Lemma 7.51(b),
σ ∈ T(X). Therefore, Lemma 7.59 gives that σeνη ∈ T(X), from which Lemma 7.18(c)

yields σeνη ∈ T. Finally, Lemma 7.67 gives that (C,X)
eνη−−⇀U , which concludes.

Note that, if the condition that (C,X) is reachable in −⇀UE
is false, then the

(⇐) direction of Lemma 7.70 may be false as well. For instance, in the CES with
enablings {a} ` b and {b} 
 a, consider the state ({b}, {b}), which is not reachable
in −⇀UE

. Then, 〈a〉 ∈ T{b}({b}), but a is not urgent in ({b}, {b}).

In the case of conflict-free CES, we provide in Def. 7.71 an alternative character-
isation of urgent events. Unlike UC(X), the set ÛC(X) also contains all the events
in C.

The relation between UC(X) and ÛC(X) is formalised in Lemma 7.72 below.

Definition 7.71 (Urgent events for conflict-free CES). For all C,X ⊆ E, we define

the set ÛC(X) as follows:

e ∈ C
e ∈ ÛC(X)

(∈
Û

)
C ` e

e ∈ ÛC(X)
(`

Û
)

R(C ∪X) 
 e

e ∈ ÛC(X)
(


Û
)



7.6. URGENT EVENTS 101

Lemma 7.72. For a a conflict-free CES E, and a reachable state (C,X) of −⇀UE
:

ÛC
E (X) = UC

E (X) ∪ C

Proof. For the inclusion (⊆), let e ∈ ÛC(X). If e ∈ C, we already have the thesis.
Otherwise, since (C,X) is a reachable state of −⇀UE

, by Lemma 7.70 it suffices to show

some σ such that eσ ∈ TC . We now proceed by cases on the rule used to deduce e ∈ ÛCE (X).

• (`
Û

). Let σ = ε. Then, eσ ∈ TC holds, because C ` e.

• (

Û

). Since R(C ∪X) 
 e, by Notation 7.2 there exists D ⊆fin R(C ∪X) such that

D 
 e. By Lemma 7.62, R(C ∪X) = RC(X)∪C. By Def. 7.61, RC(X) =
⋃
FC(X).

Since configurations with past enjoy coherence and E is conflict-free, then D\C ⊆fin

RC(X) ∈ FC(X). Thus, by Def. 7.56, there exists σ ∈ TC(X) such that σ ⊇ D \C.
Since X ⊆ C, this implies that σ ∈ TC . Since C∪eσ ⊇ C∪D 
 e, then we conclude
that there exists σ′ such that eσ′ = (eσ)↓ ∈ TC .

For the inclusion (⊇), let e ∈ UC(X) ∪ C. If e ∈ C, the thesis follows by rule (∈
Û

).

Otherwise, if e ∈ UC(X), by Lemma 7.70, there exists σ such that eσ ∈ TC . There are
the following two cases, according to how e was justified in eσ.

• C ` e. By rule (`
Û

), we conclude that e ∈ ÛC(X), for all X.

• C ∪ eσ 
 e. Since eσ ∈ TC , then eσ ∈ FC , and so by Def. 7.61, eσ ⊆ RC . By
Lemma 7.62, R(C) = RC ∪ C ⊇ eσ ∪ C 
 e. Thus, by rule (


Û
), we conclude that

e ∈ ÛC(∅).

Lemma 7.73. For a conflict-free CES E, and for all C,C ′, X, Y :

(a) C ⊆ C ′ ∧ X ⊆ Y =⇒ ÛC(X) ⊆ ÛC′(Y )

(b) Y ⊆ R(X) =⇒ ÛC(X ∪ Y ) ⊆ ÛC(X)

(c) ÛC(X) ⊆ R(C ∪X)

Proof. Item (a) is straightforward by Def. 7.71.

For item (b), assume that e ∈ ÛC(X ∪ Y ). We only have to consider rule (

Û

), since in
the other rules X is immaterial. By the rule premise, it must be R(C ∪X ∪ Y ) 
 e. By
Lemma 7.36 (c), R(C ∪X ∪ Y ) = R(C ∪X), and by applying rule (


Û
) we obtain the

thesis e ∈ ÛC(X).

For item (c), by Lemma 7.72, a and 7.62, we have:

ÛC(X) = UC(X) ∪ C ⊆ RC(X) ∪ C = R(C ∪X)



102 CHAPTER 7. EVENT STRUCTURES WITH CIRCULAR CAUSALITY



Chapter 8

Reconciling agreement and
protection

In Chapter 6 we have shown that agreement and protection cannot coexist in a
relevent class of contracts, namely the contracts with circular finite Offer-Request
payoffs (Theorem 6.49). As made evident by Theorem 6.45, to protect herself a
participant A must obtain all her requests Ri

A before doing all her offers Oi
A. If all

participants adhere to this principle, agreement is not possible.
For instance, Alice and Bob in Example 6.6 would be protected by contracts

with enablings a ` b and b ` a, but no agreement would be possible because nobody
risks doing the first step.

To reconcile agreements with protection, a participant (say, Alice) could relax
her contract, i.e. she could do a in change of the promise of Bob to do b. In this case
Alice can safely do the first step, because either Bob does b, or he will be culpable
of a contract violation.

To model this kind of “conditional” obligations, we shall use the theory of circular
event structures introduced in Chapter 7. A circular enabling b 
 a will be used
to model the obligation for Alice to perform event a, under the guarantee that Bob
will eventually be obliged to perform b (or be punishable if omitting to do that).

Chapter overview. The rest of this chapter is organised as follows. We conser-
vatively extend the theory of contracts introduced in Chapter 6, by allowing the
component E of a contract to be a CES. In Section 8.1 we set up the crucial notion
of prudence. Roughly, prudent events are those which can be fired on the guarantee
that the credits they create will be eventually honoured. In Section 8.2 we accord-
ingly review the notion of agreement. Finally, in Section 8.3 we show how CES allow
for reconciling agreement with protection. The main result of this chapter is that,
using the refined model for contracts, it is possible to overcome the negative result in
Theorem 6.49. More precisely, in Theorem 8.19 we show a synthesis technique that,
starting from the participant payoffs, constructs a set of contracts which protect all
the participants, and still admit an agreement.



104 CHAPTER 8. RECONCILING AGREEMENT AND PROTECTION

8.1 Prudence

In this chapter we assume that the definition of a contract C = (E,A, π,Φ) is the
same as in Def. 6.1, except that now the component E is a CES.

Recall from Def. 6.2 that a play of a contract C is a (finite or infinite) sequence
σ of events such that (∅, ∅) σ−→E. By Def. 7.50, each play σ = 〈e0 · · · ei · · ·〉 uniquely
identifies a computation in the CES E. This computation has the form:

(∅, ∅) e0−→ (σ1,Γ(σ1)) · · · ei−→ (σi+1,Γ(σi+1)) · · ·

The first element of each pair is the set of events occurred so far; the second element
is the least set of events done “on credit”, i.e. performed in the absence of a causal
justification. After Def. 7.16, for a play η we have Γ(η) = {ei ∈ η | ηi 6` ei ∧ η 6
 ei}.

The notions of strategy and conformance to a strategy are as in Section 6.1.
The key difference between ES-based and CES-based contracts is the notion of

innocence. In the ES-based model, a participant A is culpable in a play σ when
some event e of A is enabled in σ. Here, in addition to enabled events, we consider
obligations those events which can be done “on credit”, under the guarantee that
they will be eventually honoured, whatever events are done later on by the other
participants. These events are said prudent.

Before setting up the crucial notion of prudent events, we provide some under-
lying intuitions. The definition of prudent strategies and of innocent participants is
mutually coinductive. A participant A is considered innocent in a play σ when she
has done all her prudent events in σ (otherwise A is culpable). Hence, if a strategy
tells A to do all her prudent events, then in all fair plays these events must either
become imprudent, or be fired.

Given a finite play σ of past events, an event e is said prudent in σ whenever
there exists a prudent strategy Σ which prescribes to do e in σ. A strategy for A
with past σ (namely, conform to σ) is prudent whenever, in all fair extensions of σ
where all other participants are innocent, the events performed on credit by A are
eventually honoured; at most, the credits coming from the past σ will be left.

Similarly to the ES-based model, we neglect those unfair plays where an action
permanently enabled is not eventually performed. Indeed, in unfair plays an honest
participant could be perpetually prevented from performing a prudent action.

Definition 8.1 (Prudence). A strategy Σ for A with past σ is prudent if, for all
fair plays σ′ extending σ, conform to Σ, and where all B 6= A are innocent,

∃k > |σ|. Γ(σ′k) ∩ π−1(A) ⊆ Γ(σ)

An event e is prudent in σ if there exists a prudent strategy Σ with past σ such that
e ∈ Σ(σ).

A participant A is innocent in σ = 〈e0 e1 · · ·〉 iff:

∀e ∈ π−1(A). ∀i ≥ 0. ∃j ≥ i. e is imprudent in σj



8.1. PRUDENCE 105

Note that the empty strategy is trivially prudent. Also, the definition of in-
nocence for CES-based contracts conservatively extends that in Def. 6.21. More
precisely, in a CES without 
-enablings, a participants A is innocent in σ according
to Def. 8.1 iff A is such according to Def. 6.21, i.e. if σ 6` e, for all e ∈ π−1(A).

Example 8.2. Consider the obligations modelled by the CES E1, E2, E7, E8, E10 in
Figures 3.1 and 7.1, where π(a) = A and π(b) = π(c) = B:

• in E1, the only prudent event in the empty play is a, which is enabled by ∅, and
the only culpable participant is A. In 〈a〉, b becomes prudent, and B becomes
culpable. In 〈ab〉 no event is prudent and no participant is culpable.

• in E2, there are no prudent events in ε. Instead, event a is prudent in 〈b〉,
while b is prudent in 〈a〉: this is coherent with the fact that the prudence of an
event does not depend on the assumption that all the events done in the past
were prudent. In 〈ab〉 and 〈ba〉 no events are prudent.

• in E7, event a is prudent in ε: indeed, the only fair play aη where B is innocent
is 〈ab〉, where Γ(ab) = ∅. Instead, b is not prudent in ε, because b ∈ Γ(bη) for
all η. Event b becomes prudent in 〈a〉.

• in E8, both a and b are prudent in ε.

• in E11, a is not prudent in ε, because if B chooses to do c, then the credit a
can no longer be honoured. Actually, no events are prudent in ε, while both b
and c are prudent in 〈a〉, and a is prudent in both 〈b〉 and 〈c〉.

Recall from Def. 6.22 that the strategy Σe
A which obliges A to do all her `-enabled

events is innocent for A in the ES-based contract model. Here, the eager strategy is
no longer innocent, because some prudent events may exist which are not `-enabled
(e.g. event a in the empty play of E7). A strategy which is always guaranteed to be
innocent is the “ultra-eager” one, which prescribes to do all prudent events.

Definition 8.3 (Ultra-eager strategy). We define the ultra-eager strategy Σu
A for

A as follows:

Σu
A = λσ. {e ∈ π−1(A) | e is prudent in σ}

Lemma 8.4. Σu
A is an innocent strategy for A.

Proof. Straightforward by Def. 8.1.

Recall from Def. 7.61 that an event e is reachable with past X (in a CES E)
whenever e occurs in some trace with past X. After Lemma 7.60, this means that
e occurs in some play ση where the prefix σ is a linearization of X, and the overall
credits are contained in X (i.e., past debits need not be honoured).



106 CHAPTER 8. RECONCILING AGREEMENT AND PROTECTION

The set RX of reachable events with past X can then be alternatively charac-
terised as follows:

RX = {e 6∈ X | ∃σ, η : σ = X, e ∈ η, and Γ(ση) ⊆ X}

The following lemma shows that, for conflict-free contracts, the only plays where
all participants are innocent are those comprising exactly the reachable events of E.

Lemma 8.5. Let C = 〈E, · · ·〉 be a conflict-free contract, and let σ be a play of C

where all participants are innocent. Then, σ = RE.

Proof. Special case (for conflict-free CES) of Lemma 7.69(b).

Theorem 8.6 gives an alternative characterisation of prudent events for conflict-
free contracts. An event e is prudent for A in σ whenever e ∈ Pσ, which is the set
of events which are `-enabled by σ, or 
-enabled by σ ∪ Rσ. Indeed, this criterion
is much simpler than the mutually coinductive definition of prudence in Def. 8.1.

Theorem 8.6. For a set X ⊆ E, let

PX = {e 6∈ X |X ` e or X ∪ RX 
 e}

Then, e is prudent in σ iff e ∈ Pσ.

Proof. (⇐) We exploit the coinduction proof principle, by defining a functor F such that
gfpF is the coinductively defined set of prudent events. The coinduction proof principle
states that:

x v F (x) =⇒ x v gfpF

Intuitively, we will obtain the thesis if, taking for x the set Pσ we manage to prove that
x v F (x). More precisely, to fit the coinductive schema we consider an endofunctor F
with the following type:

F : ℘(E × E∗)× ℘(A× E∗)→ ℘(E × E∗)× ℘(A× E∗)

and we define (P, I) v (P ′, I ′) iff P ⊆ P ′ and I ⊇ I ′. Define the predicate φ as follows:

φ(σ, σ′,A) , ∃k > |σ|. Γ(σ′k) ∩ π−1(A) ⊆ Γ(σ)

Then, for P ⊆ E × E∗ and I ⊆ A× E∗, we define F (P, I) = (P ′, I ′) as follows:

P ′ = {(e, σ) | ∃Σ. σe conform to Σ ∧
∀σ′ = σ e η fair conform to Σ.

(
∀B 6= π(e). (B, σ′) ∈ I

)
=⇒ φ(σ, σ′,A)}

I ′ = {(A, σ) | ∀e ∈ π−1(A). ∀i ≥ 0. ∃j ≥ i. (e, σj) 6∈ P}

To apply the coinduction proof principle, let:

P = {(e, σ) | e ∈ Pσ}
I = {(A, σ) | Pσ ∩ π−1(A) = ∅}



8.1. PRUDENCE 107

The proof of (P, I) v F (P, I) proceeds then as follows.

We first show P ⊆ P ′. Let (e, σ) ∈ P , let σ = 〈e0 · · · en〉, and let A = π(e). The choice of
the strategy Σ in P ′ is made as follows. For all η, let:

ΣA(η) =

{
{ei} if η = σi and π(ei) = A

Pη ∩ π−1(A) otherwise

Note that, since the contract is conflict-free, then ΣA is well-defined; also, by construction
σ conforms to ΣA (in other words, ΣA has past σ). Let σ′ be a fair play extending σ,
conform to ΣA, and such that (B, σ′) ∈ I for all B 6= A. Since (e, σ) ∈ P , then e ∈ Pσ.
There are the following two cases:

• σ ` e. In this case we have Γ(σe) ⊆ Γ(σ), hence φ(σ, σ′,A) holds with k = |σ|+ 1.

• σ ∪ Rσ 
 e. Since the contract is conflict-free and for all B 6= A, (B, σ′) ∈ I, then

it must be Pσ
′ ∩ π−1(B) = ∅, for all B 6= A. Furthermore, since σ′ is fair for ΣA, by

definition of ΣA it must also be Pσ
′ ∩ π−1(A) = ∅. Summing up, Pσ

′
= ∅. We now

prove that σ∪Rσ ⊆ σ′. By contradiction, assume that there exists an event e1 such
that e1 ∈ σ ∪ Rσ but e1 6∈ σ′. Clearly, σ is a prefix of σ′, so it must be e1 ∈ Rσ.
By definition of Rσ, there exist η, η′ such that η = σ, e1 ∈ η′, Γ(ηη′) ⊆ η = σ
— and indeed η′ ⊆ Rσ. Let e0 be the first event in η′ such that e0 6∈ σ′. Then,
ηη′ = ηη0e0η1 for some η0, η1 such that η0e0η1 = η′. Clearly, ηη0 ⊆ σ′. We have the
following two sub-cases:

– ηη0 ` e0. If this were the case, we would have e0 ∈ Pσ
′
, which contradicts the

fact that Pσ
′

= ∅.
– ηη′ 
 e0. Since ηη′ ⊆ σ∪Rσ, then by saturation σ∪Rσ 
 e0. Hence we would

have e0 ∈ Pσ, which implies e0 ∈ Pσ
′

= ∅.

In both cases, we have deduced a contradiction — therefore Rσ ⊆ σ′. Summing
up, by saturation we have that σ′ 
 e, hence e 6∈ Γ(σ′) ∩ π−1(A). By repeating the
same argument for all the events in σ′, we obtain Γ(σ′) ⊆ Γ(σ). This proves that
φ(σ, σ′,A), from which we obtain the thesis P ⊆ P ′.

We now prove that I ⊇ I ′. Actually, we shall prove the contrapositive, i.e. whenever
(A, σ) 6∈ I, it must be (A, σ) 6∈ I ′. Let (A, σ) 6∈ I. By definition of I, there must exist some
e ∈ π−1(A) such that e ∈ Pσ. Let i = |σ| − 1. Then, for all j ≥ i, e ∈ Pσj (indeed, since
σi = σ we can only have j = i). By definition of P , this amounts to say that (e, σj) ∈ P .
In conclusion, we have found an event e ∈ π−1(A) for which there exists some i such that,
for all j ≥ i, (e, σj) ∈ P . By definition of I ′, this proves that (A, σ) 6∈ I ′.
(⇒) Assume that e is prudent for A in σ. We must prove that e ∈ Pσ. For all participants
B, consider the greatest prudent strategy Σp

B. Clearly, we can pick a fair trace σ′ = σ e ν
such that ν conforms to all the strategies ΣB. By fairness and by definition of innocence,
all participants are innocent in σ′. We now prove that Γ(σ′) ⊆ Γ(σ). Let σ′ = σ〈e0 · · · en〉.
By contradiction, assume that for some ei (say, of participant B), ei ∈ Γ(σ′) but ei 6∈ Γ(σ).
Since all events in e ν are prudent, then by Def. 8.1:

∃k > |σi|. Γ(σ′k) ∩ π−1(B) ⊆ Γ(σi) ⊆ σi 63 ei



108 CHAPTER 8. RECONCILING AGREEMENT AND PROTECTION

That is, each event taken on credit is eventually removed from the credits, and thus
contradicting ei ∈ Γ(σ′). By Γ(σ′) ⊆ Γ(σ) and by the definition of R, it follows that
eν ⊆ Rσ. Now there are two cases. If σ ` e, then we trivially have the thesis. Otherwise,
it must be the case that σ′ 
 e. Since σ′ = σeν ⊆ σ ∪Rσ, by saturation we conclude that
σ ∪ Rσ 
 e. Therefore, e ∈ Pσ.

In case of conflict-free contracts, the following lemma states that the events in
PXE are exactly the urgent events with past X.

Lemma 8.7. For all conflict-free contract C = (E, π,A,Φ), and for all X ⊆ E,

PXE = UX
E

Proof. By Lemma 7.72, UXE = ÛXE \X. The thesis follows directly from Def. 7.71.

The following lemma shows that the ultra-eager strategy Σu
A is prudent for

conflict-free contracts. Then, Theorem 8.6 provides us with a simple criterion for
constructing a prudent strategy: it suffices to perform in a state σ the events in Pσ.

Lemma 8.8. For a conflict-free contract C, the strategy Σu
A is prudent for A in C.

Proof. In a fair play σ = 〈e0 · · · en〉 where A does all her prudent events and all other
participants are innocent, also A is innocent. By Lemma 8.5, σ contains exactly the
reachable events R∅. By Theorem 8.6, for all i, ei is prudent in σi if either σi ` ei of
R∅ 
 ei. In the first case, ei does not augment the credits; in the second case, if ei is
taken on credit then the credit is eventually honoured, because σ = R∅. Therefore,
Γ(σ) = ∅.

Example 8.9. Consider the CES E11 and assume that all the events belong to the
same participant A. Event a is prudent in ε since A has a strategy to honour it, by
performing b. Both events b and c are prudent in 〈a〉 since they are `-enabled by
a. Nevertheless Σu

A is not a prudent strategy because there exists a play σ = 〈a c〉
conform to it, where a has not been honoured — hence Γ(σ) 6= ∅.

8.2 Agreements

We now refine the notion of winning strategy given in Def. 6.25. The items are similar
to the corresponding items in Def. 6.25, except that the definitions of innocence now
takes into account the events performed on credit.

Definition 8.10 (Winning play). Define the function W̃ as follows:

W̃Aσ =


ΦAσ A is credit-free and all participants are innocent in σ

+1 if A is innocent, and some B 6= A is culpable in σ

−1 otherwise



8.2. AGREEMENTS 109

where we say that A is credit-free in σ iff

∀e ∈ π−1(A). ∀i ≥ 0. ∃j ≥ i. e 6∈ Xσ
j

The notions of winning/losing play/strategy, agreement and protection are the

same as in Sect. 6.1, except that W̃ is now used in place of W.

Lemma 8.11. Let ΣA be a prudent strategy for A. For all fair plays σ conform to
ΣA, either A is credit-free in σ, or some B 6= A is culpable in σ.

Proof. Straightforward by Def. 8.1.

Example 8.12. Consider the contracts CEi
where the obligations are specified by

the CES E1, E2, E7, E8, E10 in Figures 3.1 and 7.1. Let the goals of A and B be as
follows: A is happy when she obtains b, while B is happy when he obtains a.

ΦA = {σ | b ∈ σ}
ΦB = {σ | a ∈ σ}

We have that:

• CE1 admits an agreement. The winning strategies for A and B are, respectively,

ΣA(σ) =

{
{a} if a 6∈ σ
∅ otherwise

ΣB(σ) =

{
{b} if a ∈ σ and b 6∈ σ
∅ otherwise

Roughly, the only fair play conform to ΣA and ΣB where both A and B are
innocent is σ = 〈ab〉. We have that A and B win in σ, because both participants
are credit-free in σ (see Ex. 7.47), and σ ∈ ΦA ∩ ΦB.

• CE2 does not admit an agreement. Indeed, there are no prudent events in ε,
hence both A and B are innocent in ε. If no participant takes the first step,
then nobody reaches her goals. If a participant takes the first step, then the
resulting trace is not credit-free. Thus, no winning strategy exists.

• CE7 admits an agreement. The winning strategies are as for C1 above: A first
does a, then B does b. While C1 and C3 are identical from the point of view of
agreements, they differ in that C3 protects A, while C1 does not. Intuitively,
the enabling ` a in C1 models an obligation for A also in those contexts where
no agreement exists, while b 
 a only forces A to do a when b is guaranteed.

• CE8 admits an agreement. In this case the winning strategies for A and B are:

ΣA(σ) =

{
{a} if a 6∈ σ
∅ otherwise

ΣB(σ) =

{
{b} if b 6∈ σ
∅ otherwise

That is, a participant must be ready to do her action without waiting the other
participant to make the first step.



110 CHAPTER 8. RECONCILING AGREEMENT AND PROTECTION

• CE11 does not admit an agreement. Since no events are prudent in ε, both
participants are innocent in ε, but if they cannot reach their goals by doing
nothing. If A does a, then B can b can choose to do c. This makes B innocent
(and winning), but then A loses, because not credit-free in 〈ac〉.

Recall from Def. 6.26 that, when a contract admits an agreement, all participants
have a winning strategy. A relevant question is then how to construct a winning
strategy for each participant. We answer this question in Theorem 8.13 below,
where we consider the strategy obtained by following the order of events in Pσ. This
strategy is prudent for A, and leads A to a winning play whenever A agrees on C.

Theorem 8.13. Let C = (E, π,A,Φ) be a conflict-free contract, and let the strategy
ΣA be defined as:

ΣA(σ) = PσE ∩ π−1(A)

Then, ΣA is a prudent strategy for A in C. Moreover, if Φ is a reachability payoff
and C admits an agreement, then ΣA is winning for A.

Proof. By Theorem 8.6, PσE contains all and only the prudent events in σ. Thus, by
Lemma 8.4, ΣA is a prudent strategy for A. For the second part, assume that C admits
an agreement, and that Φ is a reachability payoff induced by the predicate ϕ1, ϕ0. Let σ′

be a play where all the participants win: then, σ′ ∈ ϕ1. By Lemma 8.5, σ′ = R∅. Now,
let σ be a fair play conform to ΣA. If some B 6= A is culpable, then A wins. Otherwise, by
Lemma 8.5, Then, σ = R∅ = σ′ ∈ ϕ1, from which we conclude that A wins in σ.

8.3 Protection

In this section we show that CES-based contracts allow for both agreements and
protection in contracts with circular finite O-R payoffs. Before presenting the formal
results, we give some intuition through our working example.

Example 8.14. In Example 6.42 we have shown that the contract CA protects Alice,
while CB does not protect Bob. Suppose now to change Bob’s contract into a contract
C′B where Bob relaxes his requirements. The contract C′B differs from CB only in the
event structure E′B, which contains exactly one circular enabling: {a} 
 b. Similarly
to Example 6.27, the contract CA | C′B admits an agreement. To show that, let ΣA

and ΣB be the following strategies for A and B, respectively:

ΣA(σ) =

{
{a} if b ∈ σ and a 6∈ σ
∅ otherwise

ΣB(σ) =

{
{b} if b 6∈ σ
∅ otherwise

Roughly, the only fair play which conforms to ΣA and ΣB where both A and B are
innocent is σ = 〈ba〉, which gives rise to the following trace in LTSE:

(∅, ∅) b−→ ({b}, {b}) a−→ ({a, b}, ∅)



8.3. PROTECTION 111

We have that A and B win in σ, because W̃Aσ = 1 = W̃Bσ. Thus, ΣA and ΣB are
winning strategies for A and B, respectively, and so C admits an agreement.

Differently from the contract CB in Ex. 6.42, the contract C′B protects Bob. Let
C′ be a contract compatible (Def 6.16) with C′B. Consider the ultra-eager strategy Σu

B

for B (Def 8.3). Let ν be a fair play of C′B | C′ conform to Σu
B. By contradiction,

assume that B loses in ν. By Lemma 8.4, B is innocent in ν, and so it must be
ΦBν < 0. By definition, the payoff of B is negative only when b ∈ ν and a 6∈ ν.
Assume that ν = η b η′. By definition of Σu

B, the event b was prudent in η, and

we have the transition (η,X0)
b−→ (η ∪ {b}, X0 ∪ {b}). After B has performed b,

its only strategy is the empty one. By Def. 8.1, for all plays e0e1 · · · starting from
(η ∪ {b}, X0 ∪ {b}), there exists some k > 0 such that b 6∈ Xk. This means that b
has been honoured, and the only way to do that is to perform a. Therefore, a ∈ ν
— contradiction.

We now construct a CES from an O-R payoff with finite responses. For all
clauses (O,R), the CES contains the enablings R 
 O. Lemma 8.16 below reveals
a key feature of circularity: the CES obtained from a circular O-R payoff has a
configuration which comprises all the response sets for all the participants. Together
with Theorem 8.17, this will allow for constructing a contract which admits an
agreement. Theorems 8.17 and 8.18 are the CES counterpart of Theorems 6.39
and 6.45 for ES-based contracts, respectively.

Definition 8.15 (Synthesis of CES from O-R payoffs). For an O-R payoff Φ with
clauses (Oi, Ri)i and finite Ri, define E(Φ) as the conflict-free CES with (saturated)
enablings {Ri 
 Oi}i.

Lemma 8.16. Let Φ be a finite circular O-R payoff for A such that ΦA = λσ. φAσ
for all A ∈ A. Then, ∃C ∈ FE(Φ). ∀A ∈ A.

⋃
iR

i
A ⊆ C.

Proof. By Def. 8.15, the CES E(Φ) is conflict-free, and its minimal enablings have the
form RiA 
 O

i
A, for all A ∈ A and for all i. Consider the set C containing all and only the

events in the minimal enablings of E(Φ). Since Φ has a finite number of offers-requests,
and each of them is finite, then C is finite. We shall prove that C ∈ FE(Φ). Since C is
finite, by Lemma 7.15 it suffices to find some trace σ ∈ TE(Φ) such that σ = C. Consider
an arbitrary ordering σ of the events of C. For all e ∈ σ, we now prove that σ 
 e. By
Def. 7.5, this will allow to conclude that σ is a trace of E(Φ). Let e ∈ σ. We have the
following two cases:

• e ∈ OiA, for some i and A ∈ A. Since RiA 
 O
i
A ∈ E(Φ) and all events in RiA occur in

σ, then σ 
 e.

• e ∈ RiA, for some i and A ∈ A. By circularity (Def. 6.13), there exist j and B such

that e ∈ OjB. By Def. 8.15, RjB 
 OjB ∈ E(Φ), and the proof proceeds as in the
previous case.



112 CHAPTER 8. RECONCILING AGREEMENT AND PROTECTION

Summing up, we have found that C ∈ FE(Φ). By construction, C contains all the requests
RiA, for all i and A.

Theorem 8.17. Let C be a contract with O-R payoff for A. If E is conflict-free and
`-free, and

⋃
iR

i
A ⊆ C for some C ∈ FE, then A agrees on C.

Proof. Let C be a contract with O-R payoffs for A. Let C ∈ FE be such that
⋃
iR

i
A ⊆ C.

We will prove that the prudent strategy Σu
A is winning for A in C. Let γ be a fair play of

C which conforms to Σu
A.

By contradiction, assume that A is not winning in γ. By Lemma 8.4, A is innocent in
γ. By Lemma 8.11, A is credit-free in γ. Thus, by Def. 8.10 it follows that all participants
are innocent and ΦAγ ≤ 0. By Def. 6.11, this means that either there exists some i such
that OiA ⊆ γ and RiA 6⊆ γ (in case A loses), or for all i, OiA 6⊆ γ and RiA 6⊆ γ (in case A
non-loses). In both cases, there exists at least one i such that RiA 6⊆ γ.

Let i be such that RiA 6⊆ γ, and let e be such that e ∈ RiA \ γ. By hypothesis, there
exists C ∈ FE such that

⋃
iR

i
A ⊆ C, hence e ∈ C. Since C is a configuration, it enjoys

finiteness (Theorem 7.29), i.e. there exists C0 ⊆fin C such that e ∈ C0 ∈ FE. Since E is
`-free, it must be C0 
 C0, i.e. all the events in C0 are circularly enabled by C0 itself.

We will prove that C0 ⊆ γ. Let γ = 〈e0 e1 · · ·〉. Since all participants are innocent in
γ, by Theorem 8.6 it must be:

∀i ≥ 0. ∀e.
(
e ∈ RσiE =⇒ ∃j ≥ i. ej = e

)
(8.1)

Now, since e ∈ C0 ∈ FE, by definition of reachable events we have e ∈ R∅E, hence by (8.1)
it follows that e ∈ γ — contradiction.

Summing up, we have proved that
⋃
iR

i
A ⊆ γ for all fair plays γ. Therefore, A has a

winning strategy (Σu
A) in C, and so we conclude that A agrees on C.

Theorem 8.18. For a finite conflict-free CES E and an O-R payoff Φ for A, the
contract 〈E,A, π,Φ〉 protects A if:

∀i, Y. (∀e ∈ Oi
A. Y ` e ∨ Y 
 e) =⇒ Ri

A ⊆ Y

Proof. Let CA be a contract with O-R payoff for A such that:

∀i, Y. Y �OiA =⇒ RiA ⊆ Y (8.2)

where we write Y �OiA as a shorthand for:

∀e ∈ OiA. Y ` e ∨ Y 
 e

Let E be the CES of contract CA, and let C be a contract compatible (Def 6.16) with CA.
Choose for A the strategy Σu

A which enables all and only the prudent events. To prove
that CA protects A, we will prove that Σu

A is a non-losing strategy for A in CA | C. Let σ be
a fair play of CA | C conform to Σu

A. By Lemma 8.4, A is innocent in σ. By contradiction,
assume that A loses in σ, i.e. by Def. 6.25 and by Def. 6.11:

∃i. OiA ⊆ σ ∧ RiA 6⊆ σ (8.3)



8.3. PROTECTION 113

Since E is finite and conflict-free, then by Lemma 8.8 the strategy Σu
A is prudent. Let

σ = 〈e0 e1 · · ·〉, and let ej ∈ OiA. Since ej is prudent in σj , it must have been enabled by a
` or by a 
. There are the following two cases:

• Zj ` ej , for some Zj ⊆ σj . Then, σ ` ej .

• Zj 
 ej , for some Zj . Since Σu
A is prudent, then by Lemma 8.11 A is credit-free in

σ, and so Zj ⊆ σ.

Summing up,
⋃
{Zj | ej ∈ OiA} ⊆ σ � OiA Therefore, by (8.2) it follows that RiA ⊆ σ —

which contradicts (8.3).

Theorem 8.19 below states that agreement and protection can coexist in CES-
based contracts with circular finite O-R payoffs. Recall that Theorem 6.49 excluded
this possibility for ES-based contracts. Condition (8.4) in Theorem 8.19 is technical,
yet it makes the theorem applicable to a broad class of contracts with O-R payoffs
(e.g. the dining retailers scenario, see Ex. 7.8). When condition (8.4) is not satisfied,
Theorem 8.19 does not hold in general.

To give an example of the role played by condition (8.4), consider the following
O-R payoff ΦA of participant A defined by:

O0 = {a0, a1} O1 = {a1, a2} O2 = {a0, a2}
R0 = {b0} R1 = {b1} R2 = {b2}

for which condition (8.4) is not satisfied.

The event structure E(ΦA) obtained by this payoff contains the enablings {b0} 

{a0, a1}, {b1} 
 {a1, a2}, and {b2} 
 {a0, a2}.

This means that, were participant B performing b0 (respectively b1), then A were
asked to perform a0 and a1 (resp. a1, a2) in return; which is perfectly correct from
A’s point of view. Instead, were participant B performing both b0 and b1, then A
were obliged to do not only a0, a1 but also a2; which is not what A intended to do.
According to ΦA, by performing a0 and a2 A wanted to have b2 in return, which
is not the case: so A loses. What is wrong with a payoff of this kind is the fact
that an attacker can perform a particular set of actions to take advantage of the
other participant: we can conclude that such a payoff function do not allow A to be
protected.

Suppose now to change ΦA, by requiring R2 = {b0, b1}. The modified payoff now
satisfies condition (8.4) and the previous attack no longer apply. Indeed, the event
structure obtained by this payoff contains the enablings {b0} 
 {a0, a1}, {b1} 

{a1, a2}, and {b1} 
 {a0, a2}, and {b0} 
 {a0, a2}. Were participant B performing
b0 and b1, then A were asked to do a0,a1, and a2; which, according to ΦA, leads A
to win.



114 CHAPTER 8. RECONCILING AGREEMENT AND PROTECTION

Theorem 8.19. Let Φ1, . . . ,Φn be finite circular O-R payoffs for A1, . . . ,An, respec-
tively, and such that, for all A ∈ {A1, . . . ,An}:

∀P ⊆ N. ∀j. Oj
A ⊆

⋃
i∈P O

i
A =⇒ Rj

A ⊆
⋃
i∈P R

i
A (8.4)

Then, there exist contracts Ci = 〈Ei,A, π,Φi〉 for i ∈ 1..n such that:

(a) C1 | · · · | Cn admits an agreement;

(b) for all i ∈ 1..n, Ci protects Ai.

(c) for all plays σ of C1 | · · · | Cn, ∀e ∈ σ. ∃i. e ∈ Oi
π(e).

Proof. Let Φ1, . . . ,Φn be finite circular O-R payoffs for participants A1, . . . ,An, respec-
tively, such that, for all A ∈ A = {A1, . . . ,An} condition (8.4) holds, i.e.:

∀P ⊆ N. ∀j. OjA ⊆
⋃
i∈P

OiA =⇒ RjA ⊆
⋃
i∈P

RiA

For all i ∈ 1..n, let Ei = E(Φi) be the CES of contract Ci. Let C = C1 | · · · | Cn, and let
Φ = Φ1 t · · · t Φn. By construction, the CES of C is E(Φ) = E1 t · · · t En. We prove the
three items of Theorem 8.19 separately:

(a) By Lemma 8.16, we have that:

∃C ∈ FE(Φ). ∀Ap ∈ A.
⋃
i

RiAp
⊆ C

Since E(Φ) is conflict-free and `-free, by Theorem 8.17 it follows that each Ai agrees
with C. Therefore, C admits an agreement.

(b) We prove that Ci protects Ai by exploiting Theorem 8.18. Denote the offers-requests
of Ai just as (Oj)j and (Rj)j , respectively. Let Y be such that

Y ⊆
⋃
{X | X 
 e ∈ Ei ∧ e ∈ Oj} and Y 
 Oj

Let Oj = {e1, . . . , ep}. Recall that Y 
 Oj stands for ∀h ∈ 1..p. Y 
 eh. By
construction of E(Φi):

∀h ∈ {1..p}. ∃ih. eh ∈ Oih ∧ Rih ⊆ Y

Thus, Oj ⊆
⋃
k∈1..pO

ik . Since condition (8.4) holds by hypothesis, it must be:

Rj ⊆
⋃

k∈1..p

Rik ⊆ Y

We can then apply Theorem 8.18, and deduce that Ci protects Ai.

(c) Let σ be a play of C. Since plays are traces of LTSE(Φ), they can only contain events
e such that X ◦ e ∈ E(Φ), for some X and ◦ ∈ {`,
}. By Def. 8.15, all enablings
of E(Φ) have the form RiA 
 O

i
A. Therefore, each event e in σ belongs to Oiπ(e), for

some i.



8.3. PROTECTION 115

Example 8.20. Recall the dining retailers scenario from Ex. 6.15 and Ex. 7.8.
The payoff Φi of each retailer is a finite O-R circular payoff, and condition (8.4) is
trivially satisfied. Therefore, Theorem 8.19 allows for constructing contracts which
admit an agreement and protects all retailers. The CES of contract Ci of retailer Ai
has enablings {ej,i | i 6= j} 
 {ei,j | i 6= j}. The idea is simple: A1 offers his pieces of
cutlery, in exchange of the commitment of the other retailers to do the same. Since
all retailers commit to the analogous contract, we have an agreement.



116 CHAPTER 8. RECONCILING AGREEMENT AND PROTECTION



Chapter 9

A logical view of contracts

The literature proposes a wide and heterogeneous ecosystem of contract models,
as discussed in Chapter 5. This makes it hard to clearly establish the differences
and the analogies among different models. In particular, there is a gap between
the two main paradigms for modelling contracts, i.e. the one which interprets them
as interactive multi-agent systems, and the one where contracts are rendered as
formulae of suitable logics.

To contribute towards reducing this gap, in this chapter we relate the theory
of contracts proposed in Chapter 8 with a logic-based model of contracts. More
precisely, we establish a correspondence exists between the fundamental notions in
the first contract model (namely, agreements and winning strategies) and provability
in the logic-based model.

The logic model we consider is Propositional Contract Logic (PCL), the main
features of which have been reviewed in Chapter 4. PCL extends intuitionistic logic
with a new connective (�), called “contractual implication”. A first observation is
that, similarly to the circular enabling 
 of CES, this new connective allows for a
form of circular assume-guarantee reasoning.

Consider e.g. a participant A who promises to do a provided that she receives b
in exchange, and a participant B who, dually, promises to do b in exchange of a. In
our CES-based model, these obligations are represented by a CES with enablings:

b 
 a a 
 b

Given the intended payoff functions, this contract admits an agreement. The win-
ning strategies of A and B prescribe both participants to do their events (without
waiting the other to take the first step), so leading to a configuration {a, b} of the
CES. In the logical model, the scenario above is represented by the PCL formula:

(b� a) ∧ (a� b)

which entails both a and b in PCL. Hence, a connection seems to exist between the
agreement property in our contract model and provability in PCL.



118 CHAPTER 9. A LOGICAL VIEW OF CONTRACTS

In this chapter we formalise this connection, by relating the notions of agreement
and winning strategies in the game-theoretic model to that of provability in PCL.

Chapter overview. The rest of this chapter is organised as follows.

In Section 9.1 we prove that, for conflict-free CES, reachability can be reduced to
provability in PCL (Theorem 9.3). The proof exploits the inductive characterization
for reachable events defined in Section 7.3.1. In Section 9.2 we reduce the problem
of deciding if a set of events is a configuration in a CES (possibly with conflicts)
to provability in PCL (Theorem 9.9). In Section 9.3 we prove that, for conflict-
free CES, urgency can be reduced to provability in PCL (Theorem 9.17). Finally, in
Section 9.4 we exploit the above-mentioned reductions to relate contracts with PCL.
We show in Theorem 9.18 that agreement in conflict-free contracts corresponds to
provability in Horn PCL theories. Theorem 9.19 establishes that the sequences of
events respecting the order imposed by proofs in PCL can be projected to winning
strategies for all participants in the game-theoretic contract model.

9.1 Reachability via logic

In this section we investigate some basic relations between CES and PCL.

To do that, we shall mainly consider Horn PCL theories, which consist of sets of
clauses of the form α→ a or α� a, where α is a conjunction of atoms (Def. 4.12).

A first correspondence between CES and PCL can be observed in Fig. 9.1, where
we compare the three items of Lemma 7.27 with the rules (Cut), (→L) and (Fix) of the
Gentzen-style proof system of PCL.

Consider e.g. Lemma 7.27(a): for all sets of events C,C ′ and X such that the
union of C and C ′ is conflict-free, if C is an X-configuration and C ′ is an (X ∪ C)-
configuration, then the union of C and C ′ is an X-configuration. In other words,
we can discharge C from the credit set used to justify C ∪ C ′, provided that C
is justified by using only the credit set X. The symmetry with (Cut) rule is quite
evident: if we deduce p with hypothesis ∆ and we deduce q with hypotheses ∆, p,
we can deduce q with hypotheses ∆. The role of ∆ is played by the set X, while
the role of p is played by the set C.

Note that, under the hypotheses of Lemma 7.27, the stronger thesis C ′ ∈ F(X)
does not hold in general. For instance, consider the CES with enablings a 
 b, b 
 a,
a ` c. We have that C = {a, b} ∈ F and C ′ = {a, c} ∈ F(C). By Lemma 7.27(a), it
then follows that C ∪C ′ ∈ F, but C ′ alone is not a configuration. Similar examples
hold for items (b) and (c).

In Def. 9.1 we show an encoding of conflict-free CES into Horn PCL theories,
through which we show that the problem of deciding if an event is reachable can
be reduced to provability in the logic. The encoding is straightforward: an enabling



9.1. REACHABILITY VIA LOGIC 119

C ∈ F(X) C ′ ∈ F(X ∪ C)

C ∪ C ′ ∈ F(X)
7.27(a)

∆ ` p ∆, p ` q

∆ ` q
(Cut)

C ∈ F(X) C ′ ∈ F(X ∪ Y ) C ` Y
C ∪ C ′ ∈ F(X)

7.27(b)
∆ ` p ∆, q ` r p→ q ∈ ∆

∆ ` r
(→L)

C ∈ F(X ∪ C ′) C ′ ∈ F(X ∪ Y ) C 
 Y
C ∪ C ′ ∈ F(X)

7.27(c)
∆, r ` p ∆, q ` r p� q ∈ ∆

∆ ` r
(Fix)

Figure 9.1: Basic relations between CES and PCL.

[(Xi ◦ ei)i∈I ]R = {[Xi ◦ ei]R | i ∈ I}

[X ◦ e]R =
(∧

X
)

[◦] e
where [◦] =

{
→ if ◦ = `
� if ◦ = 


Figure 9.2: Encoding reachable events in Horn PCL theories.

X ` e is mapped to the clause (
∧
X) → e, while a circular enabling X 
 e is

mapped to the clause (
∧
X)� e.

Definition 9.1 (Encoding reachable events in PCL). For a conflict-free CES E =
〈E,#,`,
〉, the Horn PCL theory [E]R is defined in Fig. 9.2, where X ◦ e means
that X is a minimal set of events such that (X, e) ∈ ◦, for ◦ ∈ {`,
}.

The main result of this section is Theorem 9.3 below. It states that an event e
is reachable in a conflict-free CES E if and only if e is provable in the PCL theory
[E]R . Before stating the theorem, we introduce some notation which will be used
throughout the rest of this chapter.

Notation 9.2. For each event in e ∈ E, we assume an atom e in PCL. For a
conjunction of atoms α =

∧
i∈I ei, we write α for the set {ei | i ∈ I}. We extend

this notation to sets ∆ of conjunctions of atoms: we write ∆ for
⋃
{α | α ∈ ∆}, and

∆,∆′ for ∆ ∪ ∆′. Hereafter α will range over conjunctions of atoms, and ∆ will
range over sets of atoms.

Theorem 9.3. Let E be a finite, conflict-free CES. Then, for all e ∈ E:

e ∈ RE ⇐⇒ [E]R ` e

Proof. We prove the following statement. For a conflict-free CES E, for all α and ∆:

α ⊆ RE(∆) ⇐⇒ [E]R ,∆ ` α (9.1)



120 CHAPTER 9. A LOGICAL VIEW OF CONTRACTS

The proof of the main theorem then follows directly from (9.1), with X = ∅ and α = e.

To prove (9.1), note that by Theorem 7.45 we have RE(∆) = R̂E(∆). Consequently,
we will actually prove that α ⊆ R̂E(∆) iff [E]R , ∆ ` α.

(⇐) assume that [E]R , ∆ ` α.

By by Lemma 4.14, consider a proof tree Π of [E]R , ∆ ` α without occurrences of the
(Cut) rule, and containing only occurrences of the rules (Id), (∧L1), (∧L2), (∧R), (→L), and
(Fix). We proceed by induction on the depth of Π.

The base case concerns the axiom (Id), which gives:

α ∈ ∆

[E]R , ∆ ` α
(Id)

Since α ∈ ∆, then α ⊆ ∆, so by Lemmata 7.41(a) and 7.41(b) we have α ⊆ R̂(α) ⊆ R̂(∆).

For the inductive case, we proceed by cases on the last rule used in Π. There are the
following exhaustive cases:

• case (∧L1). We have that ∆ = ∆′, q ∧ r for some ∆′, so:

[E]R , ∆′, q ∧ r, q ` α

[E]R , ∆′, q ∧ r ` α
(∧L1)

By the induction hypothesis, α ⊆ R̂(∆ ∪ q) = R̂(∆).

• case (∧L2) similar to the previous one.

• case (→L). We have q → a ∈ [E]R for some conjunction of atoms q and atom a, and

[E]R , ∆, q → a ` q [E]R , ∆, a ` α

[E]R , ∆, q → a ` α
(→L)

By applying the induction hypothesis twice, we have q ⊆ R̂(∆), and α ⊆
R̂(∆ ∪ {a}).
Since q → a ∈ [E]R , by Def 9.1 it must be the case that q ` a ∈ E. By saturation,
R̂(∆) ` a. Thus by (`

R̂
):

R̂(∆) ` a
a ∈ R̂(∆)

(`
R̂

)

By Lemma 7.42, R̂(∆ ∪ {a}) = R̂(∆), from which we conclude α ⊆ R̂(∆).

• case (Fix). We have q � a ∈ [E]R for some conjunction of atoms q and atom a, and

[E]R , ∆, q � a, α ` q [E]R , ∆, a ` α

[E]R , ∆, q � a ` α
(Fix)

By applying the induction hypothesis twice, q ⊆ R̂(∆ ∪ α), and α ⊆ R̂(∆ ∪ {a}).
From the last inclusion, Lemma 7.42 yields R̂(∆ ∪ {a} ∪ α) = R̂(∆ ∪ {a}). Since
q ⊆ R̂(∆ ∪ α) ⊆ R̂(∆ ∪ {a} ∪ α), then we also have q ⊆ R̂(∆ ∪ {a}).



9.1. REACHABILITY VIA LOGIC 121

Since q � a ∈ [E]R , by Def 9.1, it must be the case that q 
 a ∈ E. Thus, by
saturation R̂(∆ ∪ {a}) 
 a. By rule (


R̂
), we have:

R̂(∆ ∪ {a}) 
 a
a ∈ R̂(∆)

(

R̂

)

By Lemma 7.42, R̂(∆ ∪ {a}) = R̂(∆), therefore α ⊆ R̂(∆).

(⇒) let α ⊆ R̂(∆), and let e ∈ α. We will prove that [E]R , ∆ ` e, which implies the
thesis. We proceed by induction on the depth of the derivation of e ∈ R̂(∆). According
to the last rule used, we have the following cases:

• case (∈
R̂

). The premise of rule (∈
R̂

) prescribes that e ∈ ∆. By suitable application
of rules (Id), (∧L1) and (∧L2) we obtain the thesis [E]R ,∆ ` e.

• case (`
R̂

). We have:

R̂(∆) ` e
e ∈ R(∆)

(`
R̂

)

Since R̂(∆) ` e, there must exists a minimal D ⊆fin R̂(∆) such that D ` e ∈ E. By
Def. 9.1, we have that (

∧
D)→ e ∈ [E]R . By the induction hypothesis we have that

for all d ∈ D, [E]R , ∆ ` d. Then:

I.H.

[E]R , ∆ `
∧
D [E]R ,∆, e ` e

(Id)

[E]R , ∆ ` e
(→L)

• case (

R̂

). We have:

R̂(∆ ∪ {e}) 
 e
e ∈ R̂(∆)

(

R̂

)

Since R̂(∆ ∪ {e}) 
 e, there must exist a minimal D ⊆fin R̂(∆ ∪ {e}) such that
D 
 e ∈ E. Then, by Def. 9.1, we have that (

∧
D) � e ∈ [E]R . By the induction

hypothesis we have that, for all d ∈ D, [E]R , ∆, e ` d. Then:

I.H.

[E]R , ∆, e `
∧
D [E]R , ∆, e ` e

(Id)

[E]R , ∆ ` e
(Fix)

Example 9.4. Suppose there are three kids who want to play together. Alice has a
toy airplane, Bob has a bike, and Carl has a toy car. Each of the kids is willing to
share his toy, but they have different constraints: Alice will lend her airplane only
after Bob has allowed her ride his bike; Bob will lend his bike after he has played
with Carl’s car; Carl will lend his car if the other two kids promise to eventually let
him play with their toys.

We formalise this scenario as follows. Let a be the event Alice lends her airplane;
b be the event Bob lends his bike, and c be the event Carl lends his car. These
constraints can be modelled in a CES Etoys with enablings: b ` a, c ` b, {a,b} 
 c.



122 CHAPTER 9. A LOGICAL VIEW OF CONTRACTS

[(Xi ◦ ei)i∈I ]F = {[Xi ◦ ei]F | i ∈ I}

[X ◦ e]F =
(
!e ∧ X ∧ !X

)
[◦] e where [◦] =

{
→ if ◦ = `
� if ◦ = 


[a # b]F = (!a ∧ !b)→ ⊥

Figure 9.3: Encoding configurations in Horn PCL theories.

By applying the encoding to Etoys, we obtain:

[Etoys]R = {[b ` a]R , [c ` b]R , [{a, b} 
 c]R}
= {b→ a, c→ b, (a ∧ b)� c}

All the events a, b, c are reachable, since {a, b, c} ∈ FEtoys. By Theorem 9.3, the atoms
a, b, c are provable in the Horn PCL theory [Etoys]R. For instance, in Fig. 9.4 we
show a derivation of [Etoys]R ` a.

9.2 Configurations via logic

In Def. 9.6 we show an encoding for finite CES into PCL formulae, through which
we show that the problem of deciding if a set of events is a configuration can be
reduced to provability in the logic.

Intuitively, we want to test if a set of events C is an X-configuration. To do that,
we first tag with a ! all the events in C, and then assume ∆ = [E]F , !C, X. The
encoding [·]F maps a conflict a#b to a formula (!a ∧ !b)→ ⊥. Therefore, if C is not
conflict-free then its encoding will deduce ⊥. Otherwise, we check if C is entailed
by ∆. The encoding of E will be a set of clauses of the form

(
!e ∧ X ∧ !X

)
[◦] e.

The !e on the left of the clause ensures that e can be proved only if it belongs to C.
Similarly, the !X ensures that the justifications of e belong to C as well.

Notation 9.5. For an event structure E = 〈E,#,`,
〉 and a set X ⊆ E, we denote
with !X the set {!e | e ∈ X}. We assume !E disjoint from E, i.e. !E ∩ E = ∅. For
a set X ⊆ E ∪ !E, we define X [ = X ∩ E, and X ! = {e ∈ E | !e ∈ X}.

After Notation 9.5, for all sets of atoms X, Y ⊆ E∪!E, we have (i) X = X [∪!X !,
and (ii) if X ⊆ Y , then X [ ⊆ Y [ and X ! ⊆ Y !.

Definition 9.6 (Encoding configurations in PCL). Let E = 〈E,#,`,
〉 be a finite
CES. The mapping [·]F from E into sets of PCL formulae is defined in Fig. 9.3.

Example 9.7. Recall the CES Etoys from Example 9.4. We have:

[Etoys]F = {[b ` a]R , [c ` b]R , [{a, b} 
 c]R}
= {(!a ∧ b ∧ !b)→ a, (!b ∧ c ∧ !c)→ b, (!c ∧ a ∧ b ∧ !a ∧ !b)� c}



9.2.
C

O
N

F
IG

U
R

A
T

IO
N

S
V

IA
L

O
G

IC
123

A =

∆, c ` c
(id)

∆, c, b ` b
(id)

∆, c, b, a ` a
(id)

∆, c, b ` a
(→L)

∆, c→ b, c ` a
(→ L)

∆, c→ b, c ` c
(id)

∆, c→ b, c, b ` b
(id)

∆, c→ b, c ` b
(→L)

∆, (a ∧ b)� c, c ` (a ∧ b)
(∧ R)

A
∆, c ` c

(Id)

∆, (a ∧ b)� c ` c
(Fix)

∆, b ` b
(id)

∆, b→ a, c→ b ` b
(→L)

∆, a ` a
(id)

∆, b→ a ` a
(→L)

Figure 9.4: Atom e is reachable in E iff e is provable in the PCL theory [E]R .



124 CHAPTER 9. A LOGICAL VIEW OF CONTRACTS

Lemma 9.8 establishes two basic properties of the encoding. Item (a) states
that if a !-atom is provable, then it must already be present in ∆ (i.e. it cannot be

generated by the encoding). Item (b) states that, under the hypothesis ∆
[ ⊆ ∆

!
, if

an atom e without ! is provable, then !e must belong to ∆. Intuitively, this is caused
by the fact that the encoding requires !e on the left of all clauses which produce e.

Lemma 9.8. For all sets of conjunctions of atoms ∆, and for all conjunctions of
atoms α such that [E]F , ∆ ` α:

(a) α ! ⊆ ∆
!

(b) ∆
[ ⊆ ∆

!
=⇒ α [ ⊆ ∆

!

Proof. Item (a) can be proved by a straightforward inductive argument on the depth of
the proof of [E]F , ∆ ` α.

For item (b), by Theorem 4.9 consider a proof tree Π of [E]F , ∆ ` α without occurrences
of the (Cut) rule. The RHS of each sequent in Π is a conjunction of atoms, and so Π
only contains occurrences of the rules (Id), (∧L1), (∧L2), (∧R), (→L), (Fix). We proceed by
induction on the depth of Π; there are the following exhaustive cases:

• (Id). The base case concerns the axiom (Id), which gives [E]F , ∆ ` α provided that

α ∈ ∆. We have that α [ ⊆ ∆
[ ⊆ ∆

!
.

• (∧L1), (∧L2), and (∧R). Straightforward by the induction hypothesis.

• (→L). We have p→ e ∈ [E]F for a conjunction of atoms p and atom e, and:

[E]F , ∆, p→ e ` p [E]F , ∆, e ` α
[E]F , ∆ ` α

(→L)

By applying item (a) on the leftmost premise of rule (→L) it follows that p ! ⊆ ∆
!
.

The formula p→ e ∈ [E]F must have been obtained as the encoding of an enabling
Z ` e in E. Thus, by Def. 9.6 it must be the case that p = !e ∧ Z ∧ !Z. We then

have e ∈ p ! ⊆ ∆
!
, and so since by hypothesis ∆

[ ⊆ ∆
!
:

(∆ ∪ {e}) [ = ∆
[ ∪ {e} ⊆ ∆

! ∪ {e} = ∆
!

We can then apply the induction hypothesis on the rightmost premise of rule (→L),

and obtain the thesis α [ ⊆ (∆ ∪ {e}) !
= ∆

!
.

• (Fix). We have that p� e ∈ [E]F for some conjunction of atoms p and atom e, and:

[E]F , ∆, p� e, α ` p [E]F , ∆, e ` α
[E]F , ∆ ` α

(Fix)

By applying item (a) to the leftmost premise of (Fix), we obtain p ! ⊆ ∆
! ∪ α !. The

formula p� e ∈ [E]F must have been obtained as the encoding of an enabling Z 
 e



9.2. CONFIGURATIONS VIA LOGIC 125

in E. Thus, by Def. 9.6 it must be the case that p = !e ∧ Z ∧ !Z. We then have

e ∈ p ! ⊆ ∆
! ∪α !. By applying item (a) to the rightmost premise of (Fix), we obtain

α ! ⊆ ∆
! ∪ {e} ! = ∆

!
. Summing up,

(∆ ∪ {e}) [ = ∆
[ ∪ {e} ⊆ ∆

! ∪ {e} ⊆ ∆
! ∪ p ! ⊆ ∆

! ∪ α ! ⊆ ∆
!

We can then apply the induction hypothesis on the rightmost premise of rule (Fix),

and obtain the thesis α [ ⊆ (∆ ∪ {e}) !
= ∆

!
.

The main result of this section is Theorem 9.9.

Theorem 9.9. Let E be a finite CES. Then, for all C ⊆ E:

C ∈ FE ⇐⇒ [E]F , !C ` C and [E]F , !C 6` ⊥

Proof. We first prove that, for all CES E, for all C ⊆ E and for all X ⊆ E:

C ∈ FE(X) ⇐⇒ [E]F , !C, X ` C and [E]F , !C, X 6` ⊥ (9.2)

The proof of the main statement follows directly from (9.2), with X = ∅.
For the (⇐) direction of (9.2), we shall first prove the following statement. For all sets

of conjunctions of atoms ∆, and for all conjunctions of atoms α:

[E]F , ∆ ` α ∧ ∆
[ ⊆ ∆

! ∧ CF (∆
!
) =⇒ ∃C ′ ∈ F(∆

[
). α [ ⊆ C ′ ⊆ ∆

!
(9.3)

By Theorem 4.9, consider a proof tree Π of [E]F , ∆ ` α without occurrences of the
(Cut) rule. The RHS of each sequent in Π is a conjunction of atoms, and so Π only contains
occurrences of the rules (Id), (∧L1), (∧L2), (∧R), (→L), (Fix). We prove (9.3) by induction on
the depth of Π.

The base case concerns the axiom (Id), which gives [E]F , ∆ ` α whenever α ∈ ∆.

Let C ′ = α [. Then we have C ′ = α [ ⊆ ∆
[ ⊆ ∆

!
. Since CF (∆

!
), then CF (C ′). By

Lemma 7.24(a) we have C ′ ∈ F(α [), and so Lemma 7.24(b) gives the thesis C ′ ∈ F(∆
[
).

For the inductive case, we analyse the last rule used in Π. There are the following
exhaustive cases:

• (∧L1) and (∧L2). Straightforward by the induction hypothesis.

• (∧R). For some conjunctions of atoms p and q such that α = p ∧ q:

[E]F , ∆ ` p [E]F , ∆ ` q
[E]F , ∆ ` p ∧ q

(∧R)

By applying the induction hypothesis on the two premises, we obtain:

∃C1 ∈ F(∆
[
). p [ ⊆ C1 ⊆ ∆

!
(9.4)

∃C2 ∈ F(∆
[
). q [ ⊆ C2 ⊆ ∆

!
(9.5)

Let C ′ = C1 ∪C2. Since C1, C2 ⊆ ∆
!

and CF (∆
!
), we also have CF (C ′). Then, by

Lemma 3.11, C ′ ∈ F(∆
[
). Furthermore, α [ = p [ ∪ q [ ⊆ C ′ ⊆ ∆

!
.



126 CHAPTER 9. A LOGICAL VIEW OF CONTRACTS

• (→L). We have p→ e ∈ [E]F for some conjunction of atoms p and atom e, and:

[E]F , ∆, p→ e ` p [E]F , ∆, e ` α
[E]F , ∆ ` α

(→L)

The formula p→ e ∈ [E]F must have been obtained as the encoding of an enabling
Z ` e in E. Thus, by Def. 9.6 it must be the case that p = !e ∧ Z ∧ !Z. Since
[E]F , ∆, p→ e ` p, by Lemma 9.8 it follows that p ⊆ ∆. Since p = !e ∧ Z ∧ !Z, we

then have e ∈ p ! ⊆ ∆
!
, and so since by hypothesis ∆

[ ⊆ ∆
!
:

(∆ ∪ {e}) [ = ∆
[ ∪ {e} ⊆ ∆

! ∪ {e} = ∆
!

Note also that CF (∆
!
) and CF ((∆ ∪ {e}) !

). We can then apply the induction
hypothesis twice on the two premises, and obtain:

∃C1 ∈ F(∆
[
). p [ ⊆ C1 ⊆ ∆

!
(9.6)

∃C2 ∈ F(∆
[ ∪ {e}). α [ ⊆ C2 ⊆ ∆

!
(9.7)

Let C ′ = C1 ∪ C2. Since C1, C2 ⊆ ∆
!

and CF (∆
!
), we also have CF (C ′). Since

Z ` e and Z = p [ ⊆ C1, then by saturation we also have that C1 ` e. Therefore,

Lemma b gives C ′ ∈ F(∆
[
). The thesis follows by α [ ⊆ α [ ∪ p [ ⊆ C ′ ⊆ ∆

!
.

• (Fix). We have that p� e ∈ [E]F for some conjunction of atoms p and atom e, and:

[E]F , ∆, p� e, α ` p [E]F , ∆, e ` α
[E]F , ∆ ` α

(Fix)

The formula p � e ∈ [E]F must have been obtained as the encoding of a circular
enabling Z 
 e in E. Thus, by Def. 9.6 it must be the case that p = !e ∧ Z ∧ !Z.

By applying Lemma 9.8 on the sequent [E]F , ∆ ` α we have α ⊆ ∆
!
. Therefore,

(∆ ∪ α)
[

= ∆
[ ∪ α [ ⊆ ∆

! ∪ α ⊆ ∆
!
, By applying Lemma 9.8 on the sequent

[E]F , ∆, α ` p, we have p ! ⊆ ∆
! ∪α ! ⊆ ∆

!
. Thus, (∆ ∪ {e}) [ ⊆ ∆

! ∪ p ! ⊆ ∆
! ∪ p ⊆

∆
!
.

Note also that, since α ! ⊆ ∆
!
, then CF (∆

! ∪ α !) holds, as well as CF (∆
! ∪ {e} !).

We can then apply the induction hypothesis twice on the two premises of rule (Fix):

∃C1 ∈ F(∆
[ ∪ α [). p [ ⊆ C1 ⊆ ∆

!
(9.8)

∃C2 ∈ F(∆
[ ∪ {e}). α [ ⊆ C2 ⊆ ∆

!
(9.9)

Let C ′ = C1 ∪C2. Since C1, C2 ⊆ C and CF (C), we also have CF (C ′). Since Z 
 e
and Z ⊆ p [ ⊆ C1, by saturation we have C1 
 e. Since α [ ⊆ C2, by (9.8) and

by Lemma 7.24(b) we have C1 ∈ F(∆
[ ∪ C2). Therefore, by Lemma c, we obtain

α [ ⊆ p [ ∪ α [ ⊆ C1 ∪ C2 = C ′ ∈ F(∆
[
).



9.2. CONFIGURATIONS VIA LOGIC 127

We now prove that (9.3) implies the thesis. Assume that [E]F , !C, X ` C, and
[E]F , !C, X 6` ⊥. Let Y = X ∩ C, let ∆ = !C ∪

∧
Y , and let α =

∧
C. Then,

∆
!

= α [ = C, and ∆
[

= Y . By contradiction, assume that ∆
!

is not conflict-free.

Since ∆
!
= C, there must exist a, b ∈ C such that a# b, and so by Def. 9.6 we would have

that [E]F , !C ` (!a∧ !b)→ ⊥. This would imply that [E]F , !C ` ⊥, which would contradict

the hypothesis of the lemma. Therefore, CF (∆
!
). Also, ∆

[
= Y ⊆ C = ∆

[
. We can

then apply (9.3), from which we find some C ′ ∈ F(X) such that α [ ⊆ C ′ ⊆ ∆
!
. Since

C = α [ ⊆ C ′ ⊆ ∆
!

= C, we have C ∈ F(Y ). Since Y ⊆ X, by Lemma 7.24(b) we obtain
the thesis C ∈ F(X).

For the (⇒) direction of (9.2), assume that C ∈ FE(X). Observe first that, since CF (C),
then for all choices of X ⊆ E it cannot be the case that [E]F , !C,X ` ⊥. By Lemma 7.15,
there exists σ = 〈e1 . . . en〉 ∈ T(X) such that σ = C. We proceed by induction on |C \X|.
For the base case |C \X| = 0, since C ⊆ X, by rule (Id) we have that [E]F , !C,X ` C. For
the inductive case, we assume that

C ∈ F(Y ) =⇒ [E]F , !C, Y ` C (9.10)

holds for all Y such that |C \ Y | < |C \X|. To do that, we prove the following statement,
which implies (9.10). Let Γ = [E]F , !C, Y ` C. Then:

∀i ≤ n. Γ ` ei (9.11)

To prove (9.11) we proceed by (strong) induction on i: assuming that (9.11) holds for
1..i − 1, we prove that it holds for i. We have the following three subcases, according to
the way ei has been justified in σ ∈ T(X).

• ei ∈ X. The thesis follows trivially by (Id).

• σi ` ei and ei 6∈ X. By the induction hypothesis of (9.11), Γ ` σi. By Def. 7.1,
there must exist a minimal Z ⊆ σi such that Z ` ei is an enabling in E. By Def. 9.6,
[E]F contains the formula p→ ei, with p = !e ∧ Z ∧ !Z. The sequent Γ ` σi can be
weakened as Γ ` Z, because Z ⊆ σi. Since e ∈ C, Z ⊆ C, and Γ contains !C, we
also have that Γ ` p. Therefore, by rule (→L) we obtain the thesis:

Γ, p→ ei ` p Γ, p→ ei, ei ` ei
Γ, p→ ei ` ei

• C 
 ei and ei 6∈ X. By Def. 7.1, there must exist a minimal Z ⊆ C such that
Z 
 ei is a circular enabling in E. By Def. 9.6, [E]F contains the formula p � ei,
with p = !ei ∧ Z ∧ !Z. Since ei ∈ C \X, we have that |C \X| > |C \ (X ∪ {ei})|.
Since C ∈ F(X), by Lemma 7.24(b) we also have that C ∈ F(X ∪ {e}). Thus, the
induction hypothesis on the statement (9.10) gives [E]F , !C,X, ei ` C. This sequent
can be weakened as Γ, ei ` Z, because Z ⊆ C. Since e ∈ C, Z ⊆ C, and Γ contains
!C, we also deduce that Γ, ei ` p. Therefore, by rule (Fix) we obtain the thesis:

Γ, p� ei, ei ` p Γ, p� ei, ei ` ei
Γ, p� ei ` ei



128 CHAPTER 9. A LOGICAL VIEW OF CONTRACTS

[(Xi ◦ ei)i∈I ]U = {[Xi ◦ ei]U | i ∈ I} ∪ {!e→Ue | e ∈ E} ∪ {Ue→ Re | e ∈ E}

[X ` e]U = {RX → Re, !X → Ue}

[X 
 e]U = {RX � Ue}

Figure 9.5: Encoding urgent events in Horn PCL theories.

Example 9.10. Recall the CES E7 from Fig. 7.1. We have that:

[E7] = {(!c ∧ !a ∧ !b ∧ a ∧ b)→ c, (!a ∧ !c ∧ c)� a, (!b ∧ !c ∧ c)� b}

Let C = {a, b, c}. We have that C ∈ FE7, and [E7], !C ` C. Note that, were the !-ed
atoms omitted in the premises of→ /�, then we would have, e.g., [E7], !a, !c ` a∧c,
from which Theorem 9.9 would have incorrectly given {a, c} ∈ FE7.

9.3 Urgency via logic

In Def. 9.12 we show an encoding for finite, conflict-free CES into PCL formulae,
through which we show that the problem of deciding if a set of events is a configu-
ration can be reduced to provability in the logic.

Unless stated otherwise, in the rest of this section we assume a finite, conflict-free
CES E = (E,#,`,
). For X ` e we shall mean that X is the minimal set of events
such that (X, e) ∈ ` (similarly for 
).

The main result of this section is Theorem 9.17.

Notation 9.11. Let ? ∈ {!, R, U}. We assume three injections ? : E → E, such that
!E, RE and UE are pairwise disjoint. For a set of events X ⊆ E, we denote with ?X
the theory {?e | e ∈ X}. We assume that the events occurring in E are disjoint from
?E. For a set X ⊆ !E ∪RE ∪UE, we define the projection X? = {e ∈ E | ?e ∈ X}.
When α = a1 ∧ · · · ∧ an, we write ?α = ?a1 ∧ · · · ∧ ?an. When n = 0, ?α = >.

Definition 9.12 (Encoding urgent events in PCL). Let E = 〈E,#,`,
〉 be a finite
CES. The mapping [·]U from E into PCL formulae is defined in Fig. 9.5.

Intuitively, the atoms of the form !e correspond to events already happened in the
past, the atoms Ue correspond to the urgent events (also including the past ones),
while the atoms Re are those actions which can be eventually reached by performing
the urgent events. The encoding of an enabling X ` e contains !X → Ue, meaning
that e becomes urgent when its preconditions X have been done, and RX → Re,
meaning that e is reachable whenever its preconditions are such. The encoding of
a circular enabling X 
 e contains RX � Ue, meaning that e is urgent when its
preconditions are guaranteed to be reachable.



9.3. URGENCY VIA LOGIC 129

Example 9.13. Recall the CES Etoys from Example 9.4. We have:

[Etoys]U = {[b ` a]R , [c ` b]R , [{a, b} 
 c]R}
= {Rb→ Ra ∧ !b→ Ua, Rc→ Rb ∧ !c→ Ub, {Ra ∧Rb} → Uc,

!a→ Ua, !b→ Ub, !c→ Uc, Ua→ Ra,Ub→ Rb, Uc→ Rc}

The following lemma states that the only way to derive !e having the mapping
[E]U and a set of hypothesis ∆ is to have it in the set of hypothesis ∆, since the
mapping itself does not provide any way to derive a !-event.

Lemma 9.14. For all sets of atoms ∆, and for all conjunctions of atoms α:

[E]U , ∆ ` α =⇒ α! ⊆ ∆
!

Proof. Straightforward induction on the depth of the proof of [E]U , ∆ ` α.

The following lemma confirms our intuition about the encoding [ ]U . In conflict-
free CES, checking provability of Re suffices for determining that e is reachable
(Lemma 9.15(a)). Also, checking Ue under the additional hypothesis !C suffices for
determining that e is urgent in C (Lemma 9.15(b)).

Lemma 9.15. For all C ⊆ E, and for all e ∈ E:

(a) e ∈ RE ⇐⇒ [E]U ` Re

(b) e ∈ ÛC
E ⇐⇒ [E]U , !C ` Ue

Proof. (⇐), we shall first prove the following statement. For all sets of conjunctions of
atoms ∆, and for all conjunctions of atoms α:

[E]U , ∆ ` α =⇒

{
αR ⊆ R(∆

!UR
) (9.12a)

αU ⊆ Û∆
!

(∆
UR

) ∪∆
U

(9.12b)

By Theorem 4.9, consider a proof tree Π of [E]U , ∆ ` α without occurrences of the
(Cut) rule. The RHS of each sequent in Π is a conjunction of atoms, and so Π only contains
occurrences of the rules (Id), (∧L1), (∧L2), (∧R), (→L), (Fix). We prove (9.12a) and (9.12b)
by induction on the depth of Π.

The base case concerns the axiom (Id), which gives [E]U , ∆ ` α whenever α ∈ ∆.

For (9.12a), we have αR ⊆ ∆
R ⊆ R(∆

R
) ⊆ R(∆

!UR
). For (9.12b), we have αU ⊆ ∆

U
.

For the inductive case, we analyse the last rule used in Π. There are the following
exhaustive cases:

• (∧L1) and (∧L2). Straightforward by the induction hypothesis.



130 CHAPTER 9. A LOGICAL VIEW OF CONTRACTS

• (∧R). For some conjunctions of atoms p and q such that α = p ∧ q:

[E]U , ∆ ` p [E]U , ∆ ` q
[E]U , ∆ ` p ∧ q

(∧R)

By applying the induction hypotheses of (9.12a) and (9.12b) on the two premises:

αR = (p ∧ q)R = pR ∪ qR ⊆ R(∆
!UR

)

αU = (p ∧ q)U = pU ∪ qU ⊆ Û∆
!

(∆
UR

) ∪∆
U

• (→L). We have p→ q ∈ [E]U for some conjunctions of atoms p and q, and:

[E]U , ∆, p→ q ` p [E]U , ∆, q ` α
[E]U , ∆ ` α

(→L)

According to Def. 9.12, the formula p→ q ∈ [E]U must have one of following forms:

– !e → Ue. We have that qU = {e}, while q!R = ∅. By applying the induction
hypothesis to the rightmost premise of the rule, we obtain:

αR ⊆ R(∆, q
!UR

) = R(∆
!UR ∪ {e})

αU ⊆ Û∆,q
!

(∆, q
UR

) ∪∆, q
U

= Û∆
!

(∆
UR ∪ {e}) ∪∆

U ∪ {e}

By the leftmost premise of the rule we have that [E]U , ∆ ` !e. Then, by

Lemma 9.14 it must be e ∈ ∆
!
.

For (9.12a), we have ∆
!UR ∪ {e} = ∆

!UR
, from which the thesis follows.

For (9.12b), by Def. 7.71 we have Û∆
!

(∆
UR ∪ {e}) = Û∆

!

(∆
UR

) and e ∈
Û∆

!

(X) for all X, from which the thesis follows.

– Ue → Re. We have that qR = {e}, while q!U = ∅. By applying the induction
hypothesis to both premises of the rule, we obtain:

e ∈ Û∆
!

(∆
UR

) ∪∆
U

(9.13)

αR ⊆ R(∆, q
!UR

) = R(∆
!UR ∪ {e}) (9.14)

αU ⊆ Û∆,q
!

(∆, q
UR

) ∪∆, q
U

= Û∆
!

(∆
UR ∪ {e}) ∪∆

U
(9.15)

From (9.13), Lemma 7.36 gives that e ∈ R(∆
!UR

) ∪ ∆
U

= R(∆
!UR

). By

applying Lemma 7.36(b) to (9.14), we have αR ⊆ R(∆
!UR ∪ R(∆

!UR
)).

Lemma 7.36(c) allows then to obtain the thesis of (9.12a), i.e. αR ⊆ R(∆
!UR

).

For (9.12b), we have that:

αU ⊆ Û∆
!

(∆
UR ∪ {e}) ∪∆

U
by (9.15)

= Û∆
!

(∆
!UR ∪ {e}) ∪∆

U
by Def. 7.71

⊆ Û∆
!

(∆
!UR

) ∪∆
U

by Lemma 7.73(b)

= Û∆
!

(∆
UR

) ∪∆
U

by Def. 7.71



9.3. URGENCY VIA LOGIC 131

– RX → Re. This has been generated because the enabling X ` e is in E. By
applying the induction hypothesis to both premises of the rule:

X ⊆ R(∆
!UR

) (9.16)

αR ⊆ R(∆
!UR ∪ {e}) (9.17)

αU ⊆ Û∆
!

(∆
UR ∪ {e}) ∪∆

U
(9.18)

For (9.12a), X ` e and (9.16) imply that e ∈ R(∆
!UR

). Then, we can apply

Lemma 7.36(c) to (9.17) and obtain the thesis αR ⊆ R(∆
!UR

).

For (9.12b), we have that:

αU ⊆ Û∆
!

(∆
UR ∪ {e}) ∪∆

U
by (9.18)

= Û∆
!

(∆
!UR ∪ {e}) ∪∆

U
by Def. 7.71

⊆ Û∆
!

(∆
!UR

) ∪∆
U

by Lemma 7.73(b)

= Û∆
!

(∆
UR

) ∪∆
U

by Def. 7.71

– !X → Ue. This has been generated because of an enabling X ` e in E. By
applying the induction hypothesis to the rightmost premise of the rule:

αR ⊆ R(∆
!UR ∪ {e})

αU ⊆ Û∆
!

(∆
UR ∪ {e}) ∪∆

U ∪ {e}

By the leftmost premise of the rule we have that [E]U , ∆ ` !X, and so by

Lemma 9.14 it must be X ⊆ ∆
!
. Therefore, ∆

! ` e, from which we conclude

that e ∈ R(∆
!
) ⊆ R(∆

!UR
). Lemma 7.36(c) gives the thesis for (9.12a).

For (9.12b), from ∆
! ` e it follows that e ∈ Û∆

!

(X), for all X. The thesis
follows from Lemmata 7.73(c) and 7.73(b).

• (Fix). We have that p� q ∈ [E]U for some conjunctions of atoms p and q, and:

[E]U , ∆, p� q, α ` p [E]U , ∆, q ` α
[E]U , ∆ ` α

(Fix)

By Def. 9.12, the formula p� q ∈ [E]U must have been obtained as the encoding of
a circular enabling X 
 e in E, which gives p = RX and q = Ue.

By applying the induction hypothesis to both premises of rule (Fix):

X ⊆ R(∆, α
!UR

) = R(∆
!UR ∪ α!UR) (9.19)

αR ⊆ R(∆, q
!UR

) ⊆ R(∆
!UR ∪ {e}) (9.20)

αU ⊆ Û∆
!

(∆
UR ∪ {e}) ∪∆

U ∪ {e} (9.21)



132 CHAPTER 9. A LOGICAL VIEW OF CONTRACTS

We have that:

X ⊆ R(∆
!UR ∪ α!UR) by (9.19)

⊆ R(∆
!UR ∪ αUR) by Lemma 9.14

⊆ R(∆
!UR ∪ αU ∪ R(∆

!UR ∪ {e})) by (9.20)

⊆ R(∆
!UR ∪ {e} ∪ αU ∪ R(∆

!UR ∪ {e})) by Lemma 7.36(b)

⊆ R(∆
!UR ∪ αU ∪ {e}) by Lemma 7.36(c)

⊆ R(∆
!UR ∪ Û∆

!

(∆
UR ∪ {e}) ∪∆

U ∪ {e}) by (9.21)

= R(∆
!UR ∪ Û∆

!

(∆
UR ∪ {e})) by Corollary 7.43

⊆ R(∆
!UR ∪ R(∆

!UR ∪ {e})) by Lemma 7.73(c)

= R(∆
!UR ∪ R(∆

!UR
)) by Corollary 7.43

= R(∆
!UR

) by Lemma 7.36(c)

For (9.12a), since X ⊆ R(∆
!UR ∪ {e}) 
 e, by Corollary 7.43 we obtain the thesis:

αR ⊆ R(∆
!UR ∪ {e}) = R(∆

!UR
)

For (9.12b), since X ⊆ R(∆
!UR

) 
 e, then e ∈ R(∆
!UR

) = R(∆
! ∪∆

UR
). By

Def. 7.71 it follows that e ∈ Û∆
!

(∆
UR

). Thus:

αU ⊆ Û∆
!

(∆
UR ∪ {e}) ∪∆

U ∪ {e} by (9.21)

= Û∆
!

(∆
!UR ∪ {e}) ∪∆

U ∪ {e} by Def. 7.71

⊆ Û∆
!

(∆
!UR

) ∪∆
U ∪ {e} by Lemma 7.73(b)

= Û∆
!

(∆
UR

) ∪∆
U ∪ {e} by Def. 7.71

= Û∆
!

(∆
UR

) ∪∆
U

since e ∈ Û∆
!

(∆
UR

).

We now prove that (9.12a) and (9.12b) imply 9.15(a) and 9.15(b), respectively.
For 9.15(a), assume that [E]U ` Re. Let ∆ = ∅ and α = Re. By (9.12a) we obtain:

{e} = αR ⊆ R(∆
!UR

) = R(∅) = RE

For 9.15(b), assume that [E]U , !C ` Ue. Let ∆ = !C, and let α = Ue. Then, ∆
!
= C,

∆
UR

= ∅, and αU = {e}. By (9.12b) we obtain:

{e} = αU ⊆ Û∆
!

(∆
UR

) ∪∆
U

= ÛC(∅) = ÛC

For the (⇒) direction of item (a), we prove the following stronger statement. For all X,
if e ∈ R(X) then [E]U , RX ` Re. Assume that e ∈ R(X). By Theorem 7.45, e ∈ R̂(X).
We proceed by induction on the derivation of e ∈ R̂(X). According to the last rule used
in the derivation, there are the following cases:



9.3. URGENCY VIA LOGIC 133

• (∈
R̂

). We have e ∈ X, from which the thesis follows trivially.

• (`
R̂

). We have R̂(X) ` e. Let C0 ⊆ R̂(X) be a minimal set such that C0 ` e. By
the induction hypothesis, [E]U , RX ` RC0. Also, by Def. 9.12, RC0 → Re ∈ [E]U .
Therefore, by rule (→L):

[E]U , RX, RC0 → Re ` RC0 [E]U , RX, Re ` Re
[E]U , RX ` Re

• (

R̂

). We have R̂(X ∪ {e}) 
 e. Let C0 ⊆ R̂(X ∪ {e}) be a minimal set such that
C0 
 e. By the induction hypothesis, [E]U , RX,Re ` RC0. Also, by Def. 9.12,
RC0 � Ue ∈ [E]U . Therefore, by rule (Fix):

[E]U , RX, RC0 � Ue, Re ` RC0 [E]U , RX, Ue ` Re
[E]U , RX ` Re

where the second premise has been obtained because Ue→ Re ∈ [E]U .

For the (⇒) direction of item (b), assume that e ∈ ÛC . We proceed by cases on the rule
used in the derivation.

• (∈
Û

). We have that e ∈ C. Therefore, [E]U , !C ` !e, and since !e → Ue ∈ [E]U we
obtain the thesis.

• (`
Û

). By the rule premise, it must be C ` e. Let C0 ⊆ C be a minimal set such that

C0 ` e. Then,
(
(RC0 → Re) ∧ (!C0 → Ue)

)
∈ [E]U . Since C0 ⊆ C, then !C0 → Ue

implies that !C → Ue. Therefore, [E]U , !C ` Ue.

• (

Û

). By the rule premise, it must be C ∪ RC 
 e. Let C0 ⊆ C ∪ RC be a minimal
set such that C0 
 e. By Def. 9.12, RC0 � Ue ∈ [E]U . Since the encoding [E]U
comprises !e → Ue and Ue → Re for all e, then [E]U , !C ` RC. By Lemma a,
[E]U , !C ` R(RC). Thus, [E]U , !C ` RC0. Then, we can weaken RC0 � Ue to
RC0 → Ue, and use rule (→L) to deduce [E]U , !C ` Ue.

Since in this encoding ([E]U) we can recognize which events are reachable, we
prove that those same events are recognized reachable also in the first encoding [E]R
of section 9.1.

Corollary 9.16. Let E be a finite, conflict-free CES, and let e ∈ E. Then:

[E]R ` e ⇐⇒ [E]U ` Re

Proof. Straightforward by Lemma 9.15(a) and Theorem 9.3.

In Theorem 9.17 we show that the LTS of urgent events in Def. 7.66 corresponds
to the LTS of the events recognized urgent through the logic.



134 CHAPTER 9. A LOGICAL VIEW OF CONTRACTS

Theorem 9.17. For a finite, conflict-free CES E, we define the LTS −→[E]U as:

C
e−→[E]U C ∪ {e} iff [E]U , !C ` Ue ∧ !C 6` !e

Then, −⇀UE
= −→[E]U .

Proof. For the inclusion (⊆) we shall prove that, for all σ and X, if (∅, ∅) σ−⇀UE
(σ,X), then

∅ σ−→[E]U σ. We proceed by induction on the length of σ. The base case is trivial. For the

inductive case, assume that (∅, ∅) η−⇀UE

e−⇀UE
. By the induction hypothesis, ∅ η−→[E]U η. Since

e ∈ Uη, by Lemma 7.72 it follows that e ∈ Ûη. Therefore, by Lemma 9.15, [E]U , !η ` Ue.
Since e 6∈ η, then !η 6` !e. Summing up, η

e−→[E]U η ∪ {e}.
For the inclusion (⊇) we shall prove that, for all σ, if ∅ σ−→[E]U σ then (∅, ∅) σ−⇀UE

(σ,X),
for some X. We proceed by induction on the length of σ. The base case is trivial. For the
inductive case, assume that ∅ η−→[E]U

e−→[E]U . By the induction hypothesis, (∅, ∅) η−⇀UE
(η,X),

where X is the least credit for η. Since η
e−→[E]U η∪{e}, then by definition of −→[E]U it must

be [E]U , !η ` Ue and !η 6` !e. By the former and by Lemma 9.15, e ∈ Ûη; by the latter, it
follows that e 6∈ η. Therefore, by Lemma 7.72 we conclude that e ∈ Uη.

9.4 Contract agreements via logic

In this sub-section we present our main results about the relation between contracts
and PCL. Theorem 9.18 shows that, for conflict-free contracts and reachability pay-
offs, we can characterise agreement in terms of provability in PCL. Finally, Theo-
rem 9.19 relates winning strategies with provable atoms in the encoding for urgent
events.

Recall from Def. 6.10 that reachability payoffs neglect the order in which events
are performed. In particular, a reachability payoff Φ for A is induced by two predi-
cates ϕ0, ϕ1 ⊆ ℘(E) such that

ΦAσ =


1 if σ ∈ ϕ1

0 if σ ∈ ϕ0

−1 otherwise

The following theorem gives a logical characterisation of agreements. A conflict-
free contract with CES E and with a reachability payoff induced by ϕ1, ϕ0 admits
an agreement whenever the set provable atoms in [E]R satisfies the predicate ϕ1.

Theorem 9.18. Let E be a conflict-free CES, and let Φ be a reachability payoff
defined by the predicates ϕ1, ϕ0. Then, the contract C = 〈E, π,A,Φ〉 admits an
agreement iff {e | [E]R ` e} ∈ ϕ1.



9.4. CONTRACT AGREEMENTS VIA LOGIC 135

Proof. (⇒) assume C has an agreement. Since E is conflict-free, each play σ where all
participants are innocent contains exactly the reachable events of E. Since all participants
are winning in σ, then ΦAσ = 1 for all A ∈ A. Hence, RE = σ ∈ ϕ1. By Theorem 9.3,
RE = {e | [E]R ` e}, from which we have the thesis.

(⇐) the proof proceeds similarly to the above.

Our last main result relates the winning strategies of a contract C = 〈E, π,A,Φ〉
with the encoding of urgent events in PCL. In particular, for all participants A we
construct a strategy that, in a play σ, enables exactly the events e of A for which
Ue is provable in the Horn PCL theory [E]U , !σ. This strategy is prudent for A, and
leads A to a winning play whenever A agrees on C.

Theorem 9.19. Let E be a conflict-free CES, and let the strategy ΣA be defined as:

ΣA(σ) = {e ∈ π−1(A) | [E]U , !σ ` Ue ∧ !σ 6` !e}

Then, ΣA is a prudent strategy for A in C = 〈E, π,A,Φ〉. Moreover, if Φ is a
reachability payoff and C admits an agreement, then ΣA is winning for A.

Proof. By Theorem 9.17, e ∈ ΣA(σ) iff e ∈ UσE. The thesis then follows from Theorem 8.13.



136 CHAPTER 9. A LOGICAL VIEW OF CONTRACTS



Chapter 10

Discussion

Here we relate our approach to others appeared in literature, some of which have
been briefly presented in Chapter 5.

10.1 Contracts

We have already noticed in Chapter 5 that the notion of agreement has already been
addressed in different ways. For instance, our notion of agreement is similar to the
notion of compliance in [CGP09] and conformance in [vdALM+10]. Instead to the
best of our knowledge, ours is the first formalization of the notion of protection.
Beside this, in our opinion, relevant difference, in the following we will pin point
some of the other peculiar differences.

In our model we have completely neglected time and deadlines. Thus, we can-
not obviously express contract constraints about events which need to be done
in time. Due to this lack, our notion of culpability is quite different from the
one considered in those models which monitor contracts to detect violations,
e.g. [Hen11, HKZ12, RSE08, LPSS11]. There, a participant is culpable for a contract
violation if something is not done before a deadline expires.

In [HKZ12], traces are analyzed to detect contract violations where only the first
one represents a breach. In the case that fulfilling only a part of a contract is enough
to fullfil the whole contract, then detecting which participant is culpable of a breach
may be difficult. Consider for instance the contract specifing that either Alice has to
fulfill an obligation by a time τ or that Bob has to fulfill another obligation by the
same time. In case neither Alice nor Bob have fulfilled her/his obligation, [HKZ12]
assigns blame non-deterministically to one of the involved parties. In our approach,
a participant becomes culpable as soon as her action is enabled, and innocence can
be regained as soon as that action is performed or conflicting with other actions.
So, in the previous case, where a contract proposes choosing between Alice’s and
Bob’s events, we would have modelled the choice with a conflict between the events.



138 CHAPTER 10. DISCUSSION

Before any event is performed, both Alice and Bob are culpable, but as soon as one
of them performs the event, they both become innocent.

Our notion of culpability may seem a bit draconian, in that a participant omitting
to perform a single due event in a play is considered culpable, regardless of the fact
that the other participants could equally be satisfied with that play. Establishing
finer-grained notions of causality between a violation and the resulting failure, as
done e.g. in [GMR10], seems a plausible extension of our work.

Similarly to [Hen11] we consider participants ad adversaries in a game, the plays
of which represent sequences of events, possibly representing contract violations.
In [Hen11] causality between events is inferred by analysing the timestamps associ-
ated to events. Instead, in our approach causality among events is defined through
the (classical/circular) enabling relations of event structures. While in our approach
contracts can be composed, in [Hen11] only a global contract is considered, with the
assumption that this is the contract agreed upon by all participants, The global
nature of contracts makes the notion of protection hardly definable. Another dif-
ference is that in [Hen11] the notion of strategy considers many contracts together,
and the payoff must be always positive for all participants (although they may on
purpose collect some penalties, if this is more profitable in terms of fulfilling goals
and global rewarding). In our work, each strategy is related to a single contract,
and the payoff may alternate between negative and positive values.

10.2 Circularity

In our work we deal with the issue of circularity of obligations. Circular rea-
soning often appears in the compositional modelling and verification of sys-
tems. Circularity issues have been investigated in assume-guarantee reason-
ing [AL93, AP93, Mai03, VV01], in models of workflow systems [HM10], in logic
programming [SMBG06, SBMG07]. Circularity arises also when reasoning about
contracts [BZ10a, BCZ13, BCP13]: circular dependencies arise when two or more
tasks mutually rely on the guarantees provided by each other. Below we briefly
discuss some of these approaches.

In [HM10] a generalization of prime event structures is proposed where a re-
sponse relation (denoted with •→) is used to characterise the accepting traces as
those where, for each a •→ b, if a is present in the trace, then b eventually occurs
after a. The response relation bears some resemblance with our 
 relation, but
there are some notable differences. First, having a 
 b does not necessarily im-
ply that a configuration containing a must also contain b (another enabling could
have been used), whereas a •→ b stipulates that once one has a in a configuration,
then also b must be present. Indeed, an enabling a 
 b can be neglected, whereas
a •→ b must be used. Also, augmenting the number of 
-enablings increases the



10.2. CIRCULARITY 139

number of configurations, while adding more response relations reduces the number
of configurations of the event structure.

The motivations underlying the circular enabling of CES seem related to those
introduced in [AP93] to compose assume-guarantee specifications [AL93]. There, the
idea is that a system will give some guarantee M1 about its behaviour, provided that
the environment it operates within will behave according to some assumption M2,
and vice versa. In [AP93], this is rendered as the judgment (M1 → M2) ∧ (M2 →
M1) ` M1 ∧ M2. However, since → is the usual intuitionistic implication, the
validity of this judgment (not valid in IPC) is subject to a side condition on the
interpretation of M1,M2 in the model. In our approach we obtain a similar goal
through the circular enabling: the CES with enablings m1 
 m2 and m2 
 m1 has
{m1,m2} as a configuration.

Some preliminary work on relating event structures with the logic PCL has been
reported in [BCPZ12b]. The model of [BCPZ12b] does not exploit game-theoretic
notions: payoffs are just sets of events, and agreement is defined as the existence
of a configuration in the CES which contains such set. In this simplified model,
it is shown that an event is reachable in a CES whenever it is provable in the
corresponding PCL theory. Hence, an agreement exists whenever all the events in
the participant payoffs are provable. Theorem 9.18 extends this result to a more
general (game-theoretic) notion of agreement and of payoff.

In this dissertation we have established a relation between the notions of winning
strategy in contracts and that of urgent events in CES (Lemma 8.7). As a follow-up
of this study, in [BCGZ13] we have related these notions to provability in PCL.
A key observation has been that each proof in Horn PCL induces a set of atom
orderings which are compatible with the proof. Each of these orderings is associated
with a sequence of atoms, called proof trace.

To give some intuition, consider the elimination rule for →:

∆ ` α→ a ∆ ` α
∆ ` a

(→E)

The rule requires a proof of all the atoms in α in order to construct a proof of a.
Accordingly, if σ is a proof trace of ∆ ` α, then σa if a proof trace of ∆ ` a.

Consider now the elimination rule for �:

∆ ` α� a ∆, a ` α
∆ ` a

(�E)

Here, the intuition is that α needs not necessarily be proved before a: it suffices to
prove α by taking a as hypothesis. Assuming that σ is a proof trace of ∆, a ` α,
the proof traces of ∆ ` a include all the interleavings between σ and a.

A main result in [BCGZ13] is that, for conflict-free contracts, proof traces cor-
respond to sequences of prudent events.



140 CHAPTER 10. DISCUSSION

In coinductive logic programming (CLP, [SBMG07]), both coinduction and in-
duction can be used to give semantics to logic programs, i.e. to sets of Horn clauses.
Intuitively, this can be related to CES in that ` has an inductive flavour, while 
 a
coinductive one. However, two main differences exist between the two frameworks
of CLP and CES. First, in CLP all the clauses for the same predicate have to share
their inductive/coinductive nature. That is, there is no equivalent for a1 ` b, a2 
 b
because b is used in both fashions. Second, CLP forbids circular dependencies be-
tween inductive and coinductive predicates, requiring stratification. For instance,
CLP allows for expressing a 
 b, b 
 a, as well as a ` b, b 
 c, while it forbids a ` b,
b 
 a because b would be inductive while a would be coinductive. Other approaches
mixing induction and coinduction (e.g. [LG09]) work under a similar stratification
assumption.

We believe that by assuming stratification one can find good connections between
CES and CLP. However, we think that (unconstrained) circularity is an essential
feature of concurrent systems, and in particular of contracts. For instance, the
system a ` b, b 
 a is an archetypal scenario in contracting systems, where we are
both expressing circularity between a and b, and a legitimate ordering between the
events, i.e. a must occur before b. In CES, we can encompass both aspects: in the
above example, {a, b} is a configuration, and the LTS of urgent events describes the
traces of events which respect the causal ordering imposed by `-enablings (while

 does not prescribe any order). Therefore, requiring stratification in CES would
seem to trivialize them. Note in passing that PCL requires no stratification, hence
it can be meaningfully related to CES.



Chapter 11

Conclusions

Contract-oriented computing is a promising paradigm which has started to emerge
in the last few years. Current approaches to the design and implementation of
distributed systems typically include some aspects of contracts, e.g. WSDL for de-
scribing syntactic constraints on the usage of services, and choreography languages
like WS-CDL [KBR+05], BPEL4Chor [DKLW07] and Scribble [HMB+11] for spec-
ifying the overall interaction protocol of a set of Web services.

However, none of the current proposals features a comprehensive framework for
the design of contract-oriented systems.

To make a step towards this direction, we have introduced a theory of contracts,
where the interactions (obligations) among the participants are represented using
event structures. We have characterised two relevant notions in contract-oriented
computing, namely agreement and protection.

Modelling obligations using standard event structures does not allow to guarantee
agreement and protection at the same time. Intuitively, the kind of obligations
expressible in event structures may be used to describe the willingness to do some
actions provided that someone else does some others actions, but not the dependence
on actions not performed yet (e.g., circular dependencies).

To solve this problem, we have extended event structures with a new enabling
relation, which allows for reasoning about circular dependencies among events. To
the best of our knowledge, the other event-based models appeared in the literature
do not consider circular dependencies in the same way as we do.

With this extension we are able to propose a contract model where it is possible
to obtain at the same time agreement and protection, which is in our opinion a
relevant feature of contract-based computations.

To substantiate our approach, we have related it with a logic-based model for
contracts. In particular, we have shown that the notion of agreement in our model
correspond to that of provability in Propositional Contract Logic.



142 CHAPTER 11. CONCLUSIONS

11.1 Main results

Here we summarize some of the main results obtained in this dissertation.

Agreement and protection We have proposed a model for contracts, through
which we have formalized the intuitive notions of agreement and protection. This
model builds over event structures (ES) to specify the obligations of participants.
In Theorem 8.19, we have proposed a technique to synthesize, starting from the
participants payoffs, a set of contracts which admit an agreement and at the same
time protect their participants. Theorem 6.49 excluded this possibility for contracts
based on (classical) event structures.

Circular causality We have introduced event structures with circular causality
(CES), featuring a new enabling relation 
 which allows for resolving circularity
among the causes of events (e.g. as in a 
 b, b 
 a). CES are a conservative
extension of Winskel’s ES (Theorem 7.4). Respect to `, the relation 
 imposes a
weaker constraint on the ordering of events in a trace. For instance, for an event
e to be justified in a trace σ, it suffices to have an enabling X 
 e, with the
events in X occurring somewhere in σ. We show that, starting from an arbitrary
family of configurations F, we can construct a CES Ê(F) without ` such that the

configurations of Ê(F) are exactly those in F (Theorem 7.32). This result strengthens
one in [Win88], where the above is obtained through an event structure (with `
only). Indeed, we have shown that the construction of Ê(F) in [Win88] does not
really exploit the notion of ordering imposed by `, but it just needs the weaker
notion given by 
.

A logical view of contracts We have established correspondences between two
fundamental notions of our model (namely, agreements and winning strategies) and
provability in a logic-based model. The logic model we have considered is Propo-
sitional Contract Logic (PCL [BZ10a]). Theorem 9.18 establishes that agreement
in conflict-free contracts corresponds to provability in Horn PCL theories. Theo-
rem 9.19 establishes that the sequences of atoms respecting the order imposed by
proofs in PCL can be projected to winning strategies for all participants in the
game-theoretic contract model.

11.2 Future work

Our formalisation of contracts builds upon a very abstract model of concurrent
computations, namely event structures and its extension with circular causality, to
provide general notions of agreement and protection.

We expect that specific formalisations of agreement, e.g. the one in [CGP09],
can be interpreted as instances of our general notion, in the same spirit that event



11.2. FUTURE WORK 143

structures can provide semantics to more concrete models of concurrency, e.g. CCS,
π-calculus and Petri nets [Win86]. Also, studying the notion of subcontracts and the
possibility of substituting a contract with an equivalent one would be an interesting
development of our approach.

Aiming at generality, we have almost neglected some relevant issues, e.g. devising
efficient decision procedures for agreements. Although in the most general setting
(infinite event structures, arbitrary payoff functions) we come up against the prob-
lem of undecidability, such kind of results can be obtained by considering suitable
subclasses of event structures/payoff functions (e.g. model checking temporal logic
on finite representations of infinite event structures, as in [Pen97]). In particular,
an efficient algorithm to compute reachable events in finite, conflict-free CES could
be used to decide provability in the Horn fragment of PCL(which would be useful,
since provability in full PCL is PSPACE complete).

Also, extending our contract model with temporal deadlines and, more in general,
with quantitative aspects (like e.g. probabilities) seems to be feasible, along the lines
of analogous extensions of events structures [Kat96].

A qualitative enhancement of the notion of agreement could consider reputation
information about participants: reaching an agreement may not be the only key to
decide which participant is the best partner.

In our work every single participant advertises her own unmodifiable contract,
and then matching contracts are searched to establish an agrement. It could be inter-
esting however, to considering a phase of negotiation, preliminary to the agreement-
phase, in order to reach a better agreement, or an agreement at all, by weaken-
ing/strengthening some constraints.

The issue of circular dependencies among events has been addressed also in the
Petri nets’ world. In [BCP13] a notion of lending Petri nets (LPNs) has been in-
troduced. In LPNs places are partitioned into two sets: lending places and normal
ones. A transition may be executed even if some of the lending places in the preset
are not marked, thus borrowing tokens from such places. A successful computa-
tion in an LPN is a computation where all the borrowed tokens are given back.
LPNs with some additional constraints, contract nets, have been then developed
as a concrete counterpart of logical contracts specified as Horn PCL formulae. A
correspondence between CES and contract nets can be established. Successful com-
putations in a contract net correspond to configurations in the associated CES and
vice versa. Indeed, borrowing tokens in contract nets is similar to firing events on
credit. However in a CES events may be taken on credit without any restriction,
whereas this is not possible in contract net, hence computations in contract nets
are somehow less liberal than in CES. We also conjecture that urgent actions in
LPNs, i.e. those actions which preserve the ability to reach an honoured marking,
correspond to urgent events in the associated CES.

Our notion of configuration (Def. 7.5) assumes the axiom of finite causes, i.e. it
requires that every event in a configuration has a finite justification, both in the
past (through both kinds of enablings), and in the future (through 
-enablings).



144 CHAPTER 11. CONCLUSIONS

An interesting variant of our theory could be obtained by dropping the axiom of
finite causes on the events taken on credit. Consider e.g. the CES:

e0 � e1 � e2 � e3 � e4 � · · ·

it might be arguable whether the set C = {ei | i ≥ 0} has to be considered a con-
figuration or not. For instance, if the CES models an ever-growing debit (similarly
to the money-lender scenario of Example 7.10) the borrower would reasonably not
consider C as a successful execution of the system. Indeed, Def. 7.5 rules out C as a
configuration, because, for all i, there exists no finite trace containing ei (hence the
only configuration there is the empty one). However, in some scenarios the ability
of honouring a debt “at the limit” could be acceptable. To drop the axiom of finite
causes on the events taken on credit, we should also allow for infinite traces, e.g.
〈e0 e1 . . .〉 in the example above. This modification would make the set C above a
configuration, at the cost of losing the finiteness property (Def. 7.28), and all the
properties deriving from it (e.g. Lemma 7.14). Furthermore, because of the presence
of infinite chains of 
-enablings, the rules defining reachable events for conflict-free
CES (Def. 7.38) must be interpreted coinductively, by allowing for infinite deriva-
tions. Note that not all infinite derivations are acceptable, e.g. an infinite path
of rules `R̂ would violate the axiom of finite causes for `-enablings. We conjecture
that reachable events are those for which there exists a derivation where each infinite
path contains an infinite number of occurrences of rule 
R̂ .



Bibliography

[A+10] Michael Armbrust et al. A view of cloud computing. Comm. ACM,
53(4):50–58, 2010.

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

[AL93] Mart́ın Abadi and Leslie Lamport. Composing specifications. ACM
Transactions on Programming Languages and Systems, 15(1), 1993.

[AP93] Mart́ın Abadi and Gordon D. Plotkin. A logical view of composition.
Theoretical Computer Science, 114(1), 1993.

[BBCP04] Paolo Baldan, Nadia Busi, Andrea Corradini, and G. Michele Pinna.
Domain and event structure semantics for petri nets with read and
inhibitor arcs. Theoretical Computer Science, 323(1-3):129–189, 2004.

[BCGZ13] Massimo Bartoletti, Tiziana Cimoli, P. Di Giamberardino, and
Roberto Zunino. Contract agreements via logic. Submitted. Avail-
able online at tcs.unica.it/papers/ces-pcl-long.pdf., 2013.

[BCM01] Paolo Baldan, Andrea Corradini, and Ugo Montanari. Contextual
Petri nets, asymmetric event structures, and processes. Inf. Comput.,
171(1):1–49, 2001.

[BCP13] Massimo Bartoletti, Tiziana Cimoli, and G. Michele Pinna. Lending
Petri nets and contracts. In Proc. FSEN, 2013.

[BCPZ12a] Massimo Bartoletti, Tiziana Cimoli, G. Michele Pinna, and Roberto
Zunino. Circular causality in event structures. In ICTCS, 2012.

[BCPZ12b] Massimo Bartoletti, Tiziana Cimoli, G. Michele Pinna, and Roberto
Zunino. An event-based model for contracts. In Proc. PLACES, 2012.

[BCPZ13] Massimo Bartoletti, Tiziana Cimoli, G. Michele Pinna, and Roberto
Zunino. Circular causality in event structures. Submitted. Available
online at tcs.unica.it/papers/ces-long.pdf. A preliminary ver-
sion of this paper has been presented at ICTCS 2012, 2013.



146 BIBLIOGRAPHY

[BCZ13] Massimo Bartoletti, Tiziana Cimoli, and Roberto Zunino. A theory
of agreements and protection. In Proc. POST, volume 7796 of LNCS.
Springer, 2013.

[BM07] Maria Grazia Buscemi and Ugo Montanari. CC-Pi: A constraint-based
language for specifying service level agreements. In ESOP, 2007.

[BM08] Maria Grazia Buscemi and Ugo Montanari. Open bisimulation for the
Concurrent Constraint Pi-Calculus. In Proc. ESOP, 2008.

[BM11] Maria Grazia Buscemi and Ugo Montanari. Cc-pi: A constraint lan-
guage for service negotiation and composition. In Results of the SEN-
SORIA Project, pages 262–281. 2011.

[Bou90] Gérard Boudol. Flow event structures and flow nets. In Semantics
of Systems of Concurrent Processes, volume 469 of Lecture Notes in
Computer Science, pages 62–95. Springer, 1990.

[BSTZ12] Massimo Bartoletti, Alceste Scalas, Emilio Tuosto, and Roberto
Zunino. Honesty by typing. CoRR, abs/1211.2609, 2012.

[BTZ11] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contracts
in distributed systems. In ICE, 2011.

[BTZ12a] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. Contract-
oriented computing in CO2 . Scientific Annals in Computer Science,
22(1):5–60, 2012.

[BTZ12b] Massimo Bartoletti, Emilio Tuosto, and Roberto Zunino. On the real-
izability of contracts in dishonest systems. In Proc. COORDINATION,
volume 7274 of Lecture Notes in Computer Science, pages 245–260.
Springer, 2012.

[BZ07] Mario Bravetti and Gianluigi Zavattaro. Towards a unifying theory
for choreography conformance and contract compliance. In Software
Composition, 2007.

[BZ09a] Massimo Bartoletti and Roberto Zunino. A logic for contracts. Tech-
nical Report DISI-09-034, University of Trento, 2009.

[BZ09b] Mario Bravetti and Gianluigi Zavattaro. A theory of contracts for
strong service compliance. Mathematical Structures in Computer Sci-
ence, 19(3):601–638, 2009.

[BZ10a] Massimo Bartoletti and Roberto Zunino. A calculus of contracting
processes. In Proc. LICS, 2010.



BIBLIOGRAPHY 147

[BZ10b] Massimo Bartoletti and Roberto Zunino. Primitives for contract-based
synchronization. In Proc. ICE, 2010.

[CCLP06] Samuele Carpineti, Giuseppe Castagna, Cosimo Laneve, and Luca
Padovani. A formal account of contracts for web services. In WS-
FM, volume 4184 of Lecture Notes in Computer Science. Springer,
2006.

[CGP09] Giuseppe Castagna, Nils Gesbert, and Luca Padovani. A theory of
contracts for web services. ACM Transactions on Programming Lan-
guages and Systems, 31(5), 2009.

[CH12] Krishnendu Chatterjee and Thomas A. Henzinger. A survey of
stochastic ω-regular games. J. Comput. Syst. Sci., 78(2):394–413,
2012.

[CL06] Samuele Carpineti and Cosimo Laneve. A basic contract language for
web services. In ESOP, 2006.

[CP09] Giuseppe Castagna and Luca Padovani. Contracts for mobile pro-
cesses. In Proc. CONCUR, 2009.

[DKLW07] G. Decker, O. Kopp, F. Leymann, and M Weske. BPEL4Chor: Ex-
tending BPEL for modeling choreographies. In Proc. ICWS, 2007.

[DS03] Randall Davis and Reid G. Smith. Negotiation distributed as a
metaphor for problem solving. In Communication in Multiagent Sys-
tems, pages 51–97, 2003.

[FM97] Matt Fairtlough and Michael Mendler. Propositional lax logic. Infor-
mation and Computation, 137(1), 1997.

[GHM00] Andrew Goodchild, Charles Herring, and Zoran Milosevic. Business
contracts for b2b. In ISDO, 2000.

[GMR10] Gregor Gößler, Daniel Le Métayer, and Jean-Baptiste Raclet. Causal-
ity analysis in contract violation. In Proc. RV, 2010.

[Hen11] Anders Starcke Henriksen. Adversarial Models for Cooperative Inter-
actions. PhD thesis, Department of Computer Science, University of
Copenhagen, 2011.

[HKZ12] Tom Hvitved, Felix Klaedtke, and Eugen Zălinescu. A trace-based
model for multiparty contracts. JLAP, 81(2):72–98, 2012.

[HM10] Thomas T. Hildebrandt and Raghava Rao Mukkamala. Declara-
tive event-based workflow as distributed dynamic condition response
graphs. In Proc. PLACES, volume 69 of EPTCS, pages 59–73, 2010.



148 BIBLIOGRAPHY

[HMB+11] Kohei Honda, Aybek Mukhamedov, Gary Brown, Tzu-Chun Chen,
and Nobuko Yoshida. Scribbling interactions with a formal foundation.
In Distributed Computing and Internet Technology, volume 6536 of
LNCS. Springer, 2011.

[HYC08] Kohei Honda, Nobuko Yoshida, and Marco Carbone. Multiparty asyn-
chronous session types. In POPL, 2008.

[Kat96] Joost-Pieter Katoen. Quantitative and qualitative extensions of event
structures. PhD thesis, University of Twente, 1996.

[KBR+05] N. Kavantzas, D. Burdett, G. Ritzinger, T. Fletcher, Y. Lafon, and
C Barreto. Web Services Choreography Description Language v. 1.0,
2005.

[KNS08] Karl Krukow, Mogens Nielsen, and Vladimiro Sassone. A logical
framework for history-based access control and reputation systems.
Journal of Computer Security, 16(1):63–101, 2008.

[Kra01] Sarit Kraus. Automated negotiation and decision making in multia-
gent environments. In EASSS, pages 150–172, 2001.

[Lan93] Rom Langerak. Bundle event structures: a non-interleaving semantics
for lotos. In FORTE ’92, volume C-10 of IFIP Transactions, pages
331–346. North-Holland, 1993.

[LG09] Xavier Leroy and Hervé Grall. Coinductive big-step operational se-
mantics. Inf. Comput., 207(2):284–304, 2009.

[LPSS11] Alessio Lomuscio, Wojciech Penczek, Monika Solanki, and Maciej
Szreter. Runtime monitoring of contract regulated web services. Fun-
dam. Inform., 111(3):339–355, 2011.

[M+11] Daniel Le Métayer et al. Liability issues in software engineering: the
use of formal methods to reduce legal uncertainties. Comm. ACM,
54(4):99–106, 2011.

[Mai03] Patrick Maier. Compositional circular assume-guarantee rules cannot
be sound and complete. In FoSSaCS, volume 2620 of Lecture Notes in
Computer Science, pages 343–357. Springer, 2003.

[MPW92] Robin Milner, Joachim Parrow, and David Walker. A Calculus of
Mobile Processes, I and II. Information and Computation, 100(1),
1992.



BIBLIOGRAPHY 149

[NPW81] Mogens Nielsen, Gordon D. Plotkin, and Glynn Winskel. Petri nets,
event structures and domains, part i. Theoretical Computer Science,
13:85–108, 1981.

[Pad09] Luca Padovani. Contract-based discovery and adaptation of web ser-
vices. In Proc. SFM, 2009.

[PE10] Daniele Porello and Ulle Endriss. Modelling multilateral negotiation
in linear logic. In ECAI, pages 381–386, 2010.

[Pen97] Wojciech Penczek. Model-checking for a subclass of event structures.
In Proc. TACAS, volume 1217 of Lecture Notes in Computer Science,
pages 145–164. Springer, 1997.

[Pfe00] Frank Pfenning. Structural cut elimination - I. intuitionistic and clas-
sical logic. Information and Computation, 157(1/2):84–141, 2000.

[PS12] Cristian Prisacariu and Gerardo Schneider. A dynamic deontic logic
for complex contracts. The Journal of Logic and Algebraic Program-
ming (JLAP), 81(4), 2012.

[RSE08] Franco Raimondi, James Skene, and Wolfgang Emmerich. Efficient
online monitoring of web-service slas. In SIGSOFT FSE, pages 170–
180, 2008.

[Sar93] Vijay Saraswat. Concurrent Constraint Programming. MIT Press,
1993.

[SBMG07] Luke Simon, Ajay Bansal, Ajay Mallya, and Gopal Gupta. Co-logic
programming: Extending logic programming with coinduction. In
Proc. ICALP, 2007.

[SMBG06] Luke Simon, Ajay Mallya, Ajay Bansal, and Gopal Gupta. Coin-
ductive logic programming. In Logic Programming, pages 330–345.
Springer, 2006.

[UW97] Jeffrey D. Ullman and Jennifer Widom. A First Course in Database
Systems. Prentice-Hall, 1997.

[vdALM+10] Wil M. P. van der Aalst, Niels Lohmann, Peter Massuthe, Christian
Stahl, and Karsten Wolf. Multiparty contracts: Agreeing and im-
plementing interorganizational processes. Comput. J., 53(1):90–106,
2010.

[VV01] Mahesh Viswanathan and Ramesh Viswanathan. Foundations for cir-
cular compositional reasoning. In ICALP, 2001.



150 BIBLIOGRAPHY

[Win86] Glynn Winskel. Event structures. In Advances in Petri Nets, pages
325–392, 1986.

[Win88] Glynn Winskel. An introduction to event structures. In REX Work-
shop, pages 364–397, 1988.

[WN95] Glynn Winskel and Mogens Nielsen. Models for concurrency. In Hand-
book of Logic in Computer Science, pages 1–148. Oxford University
Press, 1995.



List of definitions

3.1 Definition (Conflict-free and consistent sets) . . . . . . . . . . . . . . 23

3.2 Definition (Event structure) . . . . . . . . . . . . . . . . . . . . . . . 24

3.5 Definition (Configuration) . . . . . . . . . . . . . . . . . . . . . . . . 24

3.7 Definition (LTS of an ES) . . . . . . . . . . . . . . . . . . . . . . . . 25

3.10 Definition (Pairwise compatibility) . . . . . . . . . . . . . . . . . . . 25

3.11 Definition (Families of configurations) . . . . . . . . . . . . . . . . . . 26

3.13 Definition (E(F)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Definition (Syntax of PCL) . . . . . . . . . . . . . . . . . . . . . . . 29

4.2 Definition (Hilbert-style axiomatisation of PCL) . . . . . . . . . . . . 29

4.3 Definition (Natural deduction system of PCL) . . . . . . . . . . . . . 30

4.5 Definition (Gentzen-style system of PCL) . . . . . . . . . . . . . . . . 31

4.12 Definition (Horn PCL theory) . . . . . . . . . . . . . . . . . . . . . . 32

6.1 Definition (Contract) . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

6.2 Definition (Play) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.4 Definition (Strategy) . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

6.5 Definition (Conformance to a strategy) . . . . . . . . . . . . . . . . . 48

6.9 Definition (Büchi payoff) . . . . . . . . . . . . . . . . . . . . . . . . . 51

6.10 Definition (Reachability payoff) . . . . . . . . . . . . . . . . . . . . . 51

6.11 Definition (Offer-Request payoff) . . . . . . . . . . . . . . . . . . . . 52



152 LIST OF DEFINITIONS

6.13 Definition (Circular Offer-Request payoff) . . . . . . . . . . . . . . . 53

6.16 Definition (Composition of compatible contracts) . . . . . . . . . . . 55

6.19 Definition (Fair play) . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

6.21 Definition (Innocence) . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.22 Definition (Eager strategy) . . . . . . . . . . . . . . . . . . . . . . . . 57

6.24 Definition (Winning play) . . . . . . . . . . . . . . . . . . . . . . . . 57

6.25 Definition (Winning strategy) . . . . . . . . . . . . . . . . . . . . . . 58

6.26 Definition (Agreement) . . . . . . . . . . . . . . . . . . . . . . . . . . 58

6.31 Definition (Union of strategies) . . . . . . . . . . . . . . . . . . . . 59

6.33 Definition (Composition of strategies) . . . . . . . . . . . . . . . . . . 59

6.40 Definition (Internal events) . . . . . . . . . . . . . . . . . . . . . . . . 63

6.41 Definition (Protection) . . . . . . . . . . . . . . . . . . . . . . . . . . 63

7.1 Definition (CES) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

7.3 Definition (Configuration) . . . . . . . . . . . . . . . . . . . . . . . . 71

7.5 Definition (Traces and X-configurations) . . . . . . . . . . . . . . . . 71

7.12 Definition (Removal of duplicates) . . . . . . . . . . . . . . . . . . . . 75

7.16 Definition (Least credit of a trace) . . . . . . . . . . . . . . . . . . . . 76

7.19 Definition (Credits when removing events) . . . . . . . . . . . . . . . 77

7.25 Definition (Configuration minimal credit) . . . . . . . . . . . . . . . . 80

7.28 Definition (Quasi-families of configurations) . . . . . . . . . . . . . . 82

7.31 Definition (Ê(F)) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7.34 Definition (Reachable events) . . . . . . . . . . . . . . . . . . . . . . 85

7.38 Definition (Reachable events for conflict-free CES) . . . . . . . . . . . 86

7.46 Definition (Credits when adding events) . . . . . . . . . . . . . . . . 91

7.50 Definition (LTS of a CES) . . . . . . . . . . . . . . . . . . . . . . . . 92



LIST OF DEFINITIONS 153

7.55 Definition (Trace with past) . . . . . . . . . . . . . . . . . . . . . . . 95

7.56 Definition (Configuration with past) . . . . . . . . . . . . . . . . . . . 95

7.61 Definition (Reachable events with past) . . . . . . . . . . . . . . . . . 96

7.63 Definition (Urgent events) . . . . . . . . . . . . . . . . . . . . . . . . 97

7.66 Definition (LTS of urgent events) . . . . . . . . . . . . . . . . . . . . 98

7.71 Definition (Urgent events for conflict-free CES) . . . . . . . . . . . . 100

8.1 Definition (Prudence) . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

8.3 Definition (Ultra-eager strategy) . . . . . . . . . . . . . . . . . . . . . 105

8.10 Definition (Winning play) . . . . . . . . . . . . . . . . . . . . . . . . 108

8.15 Definition (Synthesis of CES from O-R payoffs) . . . . . . . . . . . . 111

9.1 Definition (Encoding reachable events in PCL) . . . . . . . . . . . . . 119

9.6 Definition (Encoding configurations in PCL) . . . . . . . . . . . . . . 122

9.12 Definition (Encoding urgent events in PCL) . . . . . . . . . . . . . . 128



154 LIST OF DEFINITIONS



List of event structures

a b
E1

a b

E2

a
c

b
d

e

E3

a
c

b
d

e

E4

e0 e1 e2 e3

E5

a b
E6

a b

E7

a b

E8

c

b

a

E9

c

db

a

E10

b

c

a

E11

e0 e1 e2

e3 e4 e5

e6

e7

E12

e0 e1 e2

e3 e4 e5

e6

e7

E13

a b c

E14

a

c
b

d
E15

a b

c

E16

a b

c

E17

a b c d

e

E18

a b c d

e

E19

a b c

E20

a
c

b

E21

a

b c

d e

f

E22


	List of Figures
	Glossary of notation
	Introduction
	Motivations
	Contract-oriented computing
	Contribution
	Synopsis

	I Background
	Basics
	Event structures
	Propositional Contract Logic
	Contracts: a brief survey
	Compliance
	Conformance and subcontracts
	Contract monitoring
	Negotiation
	Contract-oriented computing


	II A theory of agreements and protection
	Contracts
	An event-based model of contracts
	Contract plays
	Some examples
	Payoff functions
	Contract composition

	Agreements
	Basic definitions
	Examples
	Composition of strategies
	Agreements for Offer-Request payoffs

	Protection
	Protection for Offer-Request payoffs
	Agreement and protection cannot coexist


	Event structures with circular causality
	Basic definitions
	Basic results 
	Basic results on traces
	Basic results on configurations
	Quasi-families of configurations

	Reachable events
	Reachability for conflict-free CES

	An LTS semantics of CES
	Adding events to a trace
	LTS of a CES

	Traces with shallow past
	Urgent events
	Urgency for conflict-free CES


	Reconciling agreement and protection
	Prudence
	Agreements
	Protection

	A logical view of contracts
	Reachability via logic
	Configurations via logic
	Urgency via logic
	Contract agreements via logic

	Discussion
	Contracts
	Circularity

	Conclusions
	Main results
	Future work

	Bibliography
	List of definitions
	List of event structures


