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Abstract

Owing to the strict relationship between protein structure and function, the

prediction of protein tertiary structure has become one of the most impor-

tant tasks in recent years. Despite recent advances, building the complete

protein tertiary structure is still not a tractable task in most cases; in the

absence of a clear homology relationship the problem is often decomposed

into smaller sub tasks, including the prediction of the secondary structure.

Notwithstanding the large variety of different strategies proposed over the

years, secondary structure prediction is still an open problem, and few ad-

vances in the field have been made in recent times.

In this thesis, the problem of secondary structure prediction is firstly ana-

lyzed, identifying five different information sources related to the biological

essence of the problem, in order be exploited in a learning system. After

describing a general software architecture and framework aimed at dealing

with the issues related to the engineering and set up of prediction systems

applied to real-world problems, different techniques based on the encod-

ing and decoding of biological information, together with custom software

architectures, are presented.

The different proposals are assessed experimentally. The best improvements

are consistent with the recent advances in the field (about 1-2% in the last

ten years), confirming the validity of the assumption that the correlation

sources identified can be further exploited to improve predictions.
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Chapter 1

Introduction

Bioinformatics is a general name given to the application of computer science techniques

to biology. It encompasses a lot of different problems and methodologies, whenever the

world of living things meets statistics and computation. A more concrete definition

relates bioinformatics with the application of computationally intensive techniques to

the problems rising from molecular biology, the discipline which studies biological phe-

nomena at molecular level.

The need to store and analyze vast volumes of data, related to recent advances

in automatic biological data sequencing, has been the main reason for the birth of a

distinct multidisciplinary science. Bioinformaticians have the challenging mission of

blending together the knowledge belonging to the vast fields of computer science and

biology, in order to use this great amount of data for practical applications in biological

studies and medicine.

Research in bioinformatics comprehends many different fields, including genome,

sequence, and evolutionary analysis, systems biology, gene expression and structural

bioinformatics. In particular, structural bioinformatics is interested in one of the great

open problems of biology: the prediction of protein structure from sequence. Since no

theoretical models are able to give this relationship are available, techniques coming

from the field of machine learning are typically applied to the problem.

Lots of techniques and tools have been proposed in the prediction of the structure of

proteins; although good predictions can be obtained when homologues are available, we

are still far from obtain good results for ab initio applications. The best advances are
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1. INTRODUCTION

limited to restricted sub-problems. The prediction of secondary structure is one, and

probably the most studied, of the sub-problems related to protein structure prediction.

Secondary structure prediction is a fascinating field of application for pattern recog-

nition and machine learning techniques. In the course of the development of predictors,

it is important to consider all relevant information sources related to biological aspects

of the problem: that requires devising proper statistical analysis to extract the infor-

mation and suitable software architectures to exploit it.

Structure of the Thesis

This thesis work can be interpreted from two different perspectives. From the purely

bioinformatics point of view, which gives the structure and the title to the document,

it analyzes the different issues and my contribution around the problem of secondary

structure prediction. From a more engineering-oriented perspective, it can be viewed

as a compound of different applications of a general architecture and framework I have

developed to a “real world” problem.

Chapter 2 is an overview of the general concepts of molecular biology needed to

understand the domain of application of the techniques presented in the paper. Starting

from the basic dogma of molecular biology, which postulates the genesis of proteins from

genetic code, the concept of evolution is introduced. The basic components of the cells,

home of all the main mechanisms of life, are then described. The final, and more

detailed, introductory section is related to proteins and their structure.

Chapter 3 introduces the relevant techniques pertaining to the field of structural

bioinformatics. Public sequence and structure databases, which constitute the main

source of information of many further analyses, are firstly introduced. Secondly, the

fundamental methods for sequence alignment are described. Thirdly, the most im-

portant methods and tools for searching in sequence databases are presented. Then,

artificial neural networks are introduced; although they cannot be properly considered

a method specifically devised for bioinformatics, they are widely used in prediction

problems and allow to introduce some of the main issues related to the application of

machine learning methods to bioinformatics problems. Finally, the problem of protein

structure prediction is introduced, and the main approaches adopted in the field are

presented.
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Chapter 4 is dedicated to the problem of secondary structure prediction (SSP).

The problem is described from a computational point of view and from a historical

perspective. The standard issues related to the assessment of the performance of pre-

dictors are discussed as well. The problem is then analyzed from a new perspective

which considers the relevant correlations observed in sequences and structures – namely

(i) sequence-to-structure, (ii) inter-sequence, (iii) inter-structure (iv) intra-sequence,

and (v) intra-structure. Finally, some well known techniques are reinterpreted accord-

ing to the foregoing analysis.

Chapter 5 presents GAME, a general software architecture and framework which

supports the design and the release of predictors. The main insights behind the general

architecture are firstly explained. In addition, the implementation of the framework,

paying attention to all the details deemed relevant for its practical use, is described.

Then, the realization of GAME for secondary structure prediction is described, with

most of the details pertaining to the experiments described in the following chapters.

Three case studies related to secondary structure prediction are finally presented.

The three final chapters are related to different researches proposed to highlight

and exploit the correlations present in the SSP problem, following the philosophy of

the GAME architecture. Chapter 6 deals with inter-structure correlation exploring

new ways to encode the position-specific information contained in multiple alignments.

Chapter 7 presents two different novel researches aimed at exploiting intra-structure

correlation with the use of specific output encoding methods together with proper

prediction architectures. Chapter 8 presents an innovative approach to the exploitation

of inter-structure relationships in the decoding phase of a prediction algorithm.

Appendix A presents a novel method for pairwise sequence alignment in presence

of a template, able to take into account the information provided by a beta-contact

predictor.

Contribution

I contributed to the field of bioinformatics proposing a novel input encoding method (3),

and architectures related to the exploitation of alternative output encoding techniques

(4; 5; 6) for secondary structure prediction. In addition, I developed a beta-contact

predictor and a pairwise sequence alignment algorithm which uses this predictions in
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1. INTRODUCTION

its scoring function (7). The different systems have been realized with the help of a

general architecture and framework especially devised to deal with real world prediction

problems (8; 9).
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Chapter 2

Preliminary Concepts of

Molecular Biology

Molecular biology is the discipline which studies biological phenomena at molecular

level. In particular, it is interested in the relationship between genes and their func-

tional counterparts, proteins. This relationship is given by the processes of replication,

transcription and translation, as stated by the central dogma of molecular biology (Sec-

tion 2.1). The central dogma, as well as most of the outcomes of molecular biology, are

valid for all forms of life, which share the basic mechanisms which permit living things

to exist and replicate. This explanation for this great similarity is that all creatures

appear to be evolved from a common ancestor (Section 2.2). The basic processes of life

happen inside cells (Section 2.3), with the help of specialized proteins and organelles.

Many other functions inside cells are carried out with the help of proteins (Section 2.4),

complex organic compounds constituted by chains of simpler compounds, the amino

acids. A protein’s chain composition, commonly referred as primary structure, is deter-

mined by the gene which encode for it; the primary structure determines the protein’s

three-dimensional structure, which in turn determines the protein’s function. The rela-

tionship between protein chain and structure is the result of a free energy minimization

process at molecular level, which cannot be solved nor simulated just with the applica-

tion of the physics and mathematics determine it. Computational techniques are then

usually applied to protein structure prediction and many other problems of molecular

biology, giving birth to the discipline of bioinformatics.
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2. PRELIMINARY CONCEPTS OF MOLECULAR BIOLOGY

2.1 The Central Dogma of Molecular Biology: from geno-

type to phenotype

The central dogma of molecular biology states that:

• DNA acts as a template to replicate itself,

• DNA is also transcribed into RNA,

• RNA is translated into protein.

In the majority of organisms, DNA constitutes the genetic material, and determines

the genotype. It can be seen as the model for potential development and activity of

any individual.

DNA molecules are long, linear, chain of nitrogenous bases containing sequential

information in a four-letter alphabet. Its structure as a self-complementary double-

helix (see Figure 2.1) is the basis of a complex mechanism of self-replication. DNA

replication allows inheritance and development of complex organisms. Imperfections in

replication are the foundation of evolution.

Figure 2.1: The DNA double helix.

The genetic information is implemented through the synthesis of RNA and proteins.

However, in most organisms not all of the DNA is expressed as proteins or RNAs. Some

regions of the DNA sequence are devoted to control mechanisms, and a substantial

amount of the genomes of higher organisms does not appear to have any clear function

(‘junk’ DNA).
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2.2 Evolution and Homology

Proteins are the molecules responsible for much of the structure and activities of

organisms. An exon is a stretch of DNA which translates into protein. An intron is

a region between two exons. Cellular machinery recognizes and splices together the

proper segments, based on signal sequences within the genome. In the synthesis of

proteins, successive triplets of letters (codons) from the DNA sequence specify succes-

sive amino acids and the boundaries of the protein within the code; stretches of DNA

sequences encipher amino acid sequences of proteins. The correspondence between

codons and aminoacids is called the ‘genetic code’; there is a standard well-known code

for all organism which can differ in part for some distant forms of life. Since the pos-

sible triplets are 43 = 64 and the number of aminoacids plus start/stop codons are

22, different codons encode the same aminoacid. An exon is transcripted into mRNA,

which is then translated into a protein with the help of ribosomes. Figure 2.2 shows

the trascription and translation process, which comprehends the synthesis of a protein

starting from a fragment of DNA.

Figure 2.2: The transcription and translation process from the DNA to protein sequence.

2.2 Evolution and Homology

There are so many different kinds of life, and they live in so many different ways.

But when we look at the inner mechanisms of life, we can see a great uniformity.
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2. PRELIMINARY CONCEPTS OF MOLECULAR BIOLOGY

The reason for all this uniformity is that all organisms appear to have evolved from a

common ancestor (see Figure 2.3).

Figure 2.3: Phylogenetic tree of life; all forms of life appear to be generated from a

common ancestor.

Evidence of evolution can be seen both looking at the phenotype and genotype. The

first phylogenetic trees where constructed just on the basis of anatomical observations,

and these relationships have been in great part confirmed by the modern studies on

the gene sequences. From a simplified view, the process of evolution can be seen as

if, starting from a common ancestor, multiple mutations (substitutions, insertions and

deletions of one or more bases) occur, thus generating new genes and proteins. A

mutation on a gene affects the sequence of the translated protein where it generates a

non-synonymous codon. Although mutations can be considered in principle random,

the selective pressure controls it, keeping the mutations from affecting the functionality

of genes.

Genes (or proteins) are called homologous when there is evidence that they descend
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2.3 Cells

from the same common ancestor. We can also distinguish two main different kinds of

homology: orthology and paralogy. Two genes are orthologous when they belong to

different species and originated from a common ancestor (speciation event). Ortholo-

gous proteins usually have similar structure and same or similar function. Two genes

are paralogous when they are the result of a duplication of a gene in a specie (gene du-

plication event). Duplicated genes may evolve with different selective pressures, which

sometimes lead to a differentiation in function.

Homology can be verified through the comparison of gene sequences, aligned in or-

der to put in evidence the similarities (see Section 3.2). It is worth noting that although

measurements such as percent sequence identity or similarity scores in a sequence align-

ment are usually adopted to verify homology, it is wrong to use expressions such as

“percent homology” or “homology score”: two genes or proteins can just be homologues

or not homologues.

2.3 Cells

Cells are the home of all the main basic life mechanisms. All cells contain cytoplasm

and genetic material, are enclosed in a membrane and have the basic mechanisms for

translation.

Membrane is the boundary between a cell and the outside world. Membranes are

made of phospholipids: the presence of a hydrophobic (repelled by water) lipid with

a hydrophilic (attracted to water) phosphate group gives a natural orientation ti the

membrane, keeping water and other materials from getting through the membrane,

except through special pores or channels.

Nuclei are the defining feature of eucaryotic cells. The nucleus is separated from

the rest of the cell by a nuclear membrane.

Cytoplasm is the gel-like collection of substances inside the cell. The cytoplasm

contains a wide variety of different substances and structures.

Ribosomes are large molecular complexes, composed of several proteins and RNA

molecules. The function of ribosomes is to assemble proteins.

Mitochondria and chroloplasts are cellular organelles involved in the production

the energy that powers the cell. Mitochondria use oxygen to obtain energy from food.

They are in fact distinct organisms which have estabilished a symbiotic relationship with
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2. PRELIMINARY CONCEPTS OF MOLECULAR BIOLOGY

eucaryote organisms. Chloroplasts are the equivalent of mithocondria for eucaryotic

plant cells.

There are other organelles found in eucaryotic cells: the endoplasmic reticulum the

Golgi apparatus, Lysosomes. Some cells have other structures, such as vacuoles of lipids

for storage.

There are more than 200 different specialized cell types in a typical vertebrate. Yet

despite all of this variation, all of the cells in a multicellular organism have exactly the

same genetic code. Gene expression determines whether or not the product a gene codes

for is produced, and how much is produced in a cell, so determining its peculiarity.

2.4 Proteins

Proteins are the primary components of living things, and carry out most of the cell

functions. Proteins provide structural support and the infrastructure that holds a

creature together; they are enzymes that make the chemical reactions necessary for

life possible; they are the switches that control gene expression; they are the sensors

that see and taste and smell, and the effectors that make muscles move; they are the

detectors that distinguish self from nonself and create an immune response. Most of

the proteins are ‘globular’, in the sense that they assume a globe-like shape in their

natural water environment. An important class of non-globular proteins are membrane

proteins, which shape depends on the interaction with cell membrane.

Proteins are complex molecules composed by linear sequences of smaller molecules

called amino acids. There are twenty naturally occurring amino acids. Protein chains

may contain from some dozens to thousands amino acids assembled by a peptide bond.

Peptide bonds occur between the nitrogen atom at the end of one amino acid and the

carbon atom at the carboxyl end of another. The portion of the original amino acid

molecule integrated into the protein is often called a residue.

2.4.1 Amino Acids

There are 20 naturally synthesized amino acids. Each amino acid shares a basic struc-

ture, consisting of a central carbon atom (C), an amino group (NH3) at one end, a

carboxyl group (COOH) at the other, and a variable sidechain (R), as shown in Figure

2.4. The composition of the side chain determines the shape, the mass, the volume and
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2.4 Proteins

Figure 2.4: The general structure of an amino acid.

the chemical properties of an amino acid. According to the properties of the side chain

amino acids are classified as:

• Polar/non-polar : the degree that its electrons are distributed asymmetrically.

A non-polar molecule has a relatively even distribution of charge. Some polar

aminoacids are positively or negatively charged in solution.

• Hydrophobic/Hydrophilic: hydrophobic residues tend to come together to form

compact core that exclude water. Because the environment inside cells is aqueous

(primarily water), these hydrophobic residues will tend to be on the inside of a

protein, rather than on its surface.

• Aromatic: an aromatic amino acid forms closed rings of carbon atoms with al-

ternating double bonds (like the simple molecule benzene)

• Aliphatic: aliphatic amino acids side chain contains only carbon or hydrogen

atoms

Figure 2.5 shows a representation of the amino acids and their properties. Amino

acids nomenclature have been standardized by IUPAC, and comprehends four alterna-

tives (Table 2.1).

2.4.2 Primary Structure

The sequence of amino acid residues that form a protein is called the protein’s primary

structure. Similarly as the DNA, the primary structure can be represented as a sequence

using the 1-letter IUPAC nomenclature for amino acids. More general representation

11
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Trivial name 3-letter 1-letter Systematic name

Alanine Ala A 2-Aminopropanoic acid

Arginine Arg R 2-Amino-5-guanidinopentanoic acid

Asparagine Asn N 2-Amino-3-carbamoylpropanoic acid

Aspartic acid Asp D 2-Aminobutanedioic acid acid

Cysteine Cys C 2-Amino-3-mercaptopropanoic acid

Glutamine Gln Q 2-Amino-4-carbamoylbutanoic acid

Glutamic acid Glu E 2-Amino-3-carbamoylpropanoic acid

Glycine Gly G Aminoethanoic acid

Histidine His H 2-Amino-3-(1H-imidazol-4-yl)-propanoic acid

Isoleucine Ile I 2-Amino-3-methylpentanoic acid

Leucine Leu L 2-Amino-4-methylpentanoic acid

Lysine Lys K 2,6-Diaminohexanoic acid

Methionine Met M 2-Amino-4-(methylthio)butanoic acid

Phenylalanine Phe F 2-Amino-3-phenylpropanoic acid

Proline Pro P Pyrrolidine-2-carboxylic acid

Serine Ser S 2-Amino-3-hydroxypropanoic acid

Threonine Thr T 2-Amino-3-hydroxybutanoic acid

Tryptophan Trp W 2-Amino-3-(lH-indol-3-yl)-propanoic acid

Tyrosine Tyr Y 2-Amino-3-(4-hydroxyphenyl)-propanoic acid

Valine Val V 2-Amino-3-methylbutanoic acid

Unspecified Xaa X -

Table 2.1: The IUPAC nomenclature for amino acids.
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2.4 Proteins

Figure 2.5: Amino acid properties (Taylor’s Venn diagram (1)).

of the primary structure is given by profiles: in a general meaning, we can see a profile

as a matrix which associates a vector to each amino acid of a protein (see Section 6).

Issues about the representation of a primary structure are further discussed in Section

4.4.2.

2.4.3 Secondary Structure

Secondary structure refers to local conformations of amino acid residues that are seen

repeatedly in proteins. Secondary structures are stabilized by hydrogen bonds (rela-

tively weak bonds between an electro-negative atom and a hydrogen). There are two

main kinds of secondary structure:

α-helices are corkscrew-shaped conformations where the amino acids are packed

tightly together.

β-sheets (also called β-pleated sheets) are made up of two or more adjacent strands

of the molecule, extended so that the amino acids are stretched out as far from each

other as they can be. Each extended chain is called a β-strand. Two or more β-strands

are held together by hydrogen bonds to form a β-sheet. There are also two main

categories β-sheet: if strands run in the same direction we have a parallel β-sheet. If

they run in the opposite direction we have an anti-parallel β-sheet.

Other kinds of secondary structure have been defined: The 310-helix and π-helix,

are less common helix patterns. Strands formed by isolated residues are also called β-
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2. PRELIMINARY CONCEPTS OF MOLECULAR BIOLOGY

Figure 2.6: An example of spatial arrangements of amino acid backbones occurring in

α-helices and β-sheets. Dotted lines indicate the hydrogen bonds.

bridges. Tight turns and loose, flexible loops link the more ‘regular’ secondary structure

elements. The conformations that are not associated with a regular secondary structure

are called random loops or coils.

The secondary structure of a protein can thus be represented by the sequence of

annotations for each of its residues. The Dictionary of Secondary Structure of Proteins

(DSSP) is the most widely used set of annotations for secondary structures. The

output categories of DSSP are H, G, I, E, B, T, S, and C (the latter is actually a

“none” assignment represented by white space). In SSP, a simplified version of DSSP ,

say DSSPHEC , is typically adopted, which maps each of the eight initial categories to

alpha-helix (H), beta-strand (E), or coil (C). DSSPHEC is related to DSSP throughout

a look-up table. The most acknowledged correspondence is reported below:

DSSP H G I E B T S C

DSSPHEC H H H E E C C C
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2.4.3.1 Automatic Secondary Structure Assignment

Secondary structure is usually obtained by an automatic assignment from the tertiary

structure coordinates. The most commonly used programs are DSSP (10) and STRIDE

(11). DSSP performs its sheet and helix assignments on the basis of the detection

of backbone-backbone hydrogen bonds. An alpha-helix assignment (DSSP state ’H’)

starts when two consecutive amino acids have (i, i+4) hydrogen bonds, and ends likewise

with two consecutive (i-4, i) hydrogen bonds. This definition is also used for 310-

helices (state ’G’ with (i, i+3) hydrogen bonds) and for π-helices (state ’I’ with (i, i+5)

hydrogen bonds) as well. A minimal size helix is set to have two consecutive hydrogen

bonds in the helix, leaving out single helix hydrogen bonds, which are assigned as turns

(state ’T’). beta-sheet residues (state ’E’) are defined as either having two hydrogen

bonds in the sheet, or being surrounded by two hydrogen bonds in the sheet. This

implies three sheet residue types: anti-parallel and parallel with two hydrogen bonds or

surrounded by hydrogen bonds. Isolated residues fulfilling this hydrogen bond criterion

are labelled as β-bridge (state ’B’). The remaining two DSSP states ’S’ and ” (space)

indicate a bend in the chain and unassigned/other, respectively.

STRIDE uses an empirically derived hydrogen bond energy and phi-psi torsion

angle criteria to assign secondary structure, and it is reported to be more similar to

annotations provided by expert christallographers than DSSP.

Both DSSP and STRIDE are freely distributed programs, and both output a plain

text file with the annotations and additional details. Public data banks collecting the

output for the secondary structures obtained for all the PDB are available(for example,

at the EBI ftp service).

It must be noticed that there is some grade of uncertainty in the assignment of

secondary structures: crystallographers often disagree in their assignment, and the

mobility of proteins does not help having a unambiguous assignment. The automatic

programs greatly depend on the thresholds used; DSSP and STRIDE agree in 96% of

all residues with 64% of the disagreements related to the helix assignment for the same

PDB file. For an in-depth examination about secondary structure assignment, see (12).
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2.4.4 Tertiary Structure

Proteins fold up to form particular three dimensional shapes, which give them their

specific chemical functionality. The link between amino acids provided by the peptide

bond has two degrees of rotational freedom, the φ and ψ angles. The conformation of

a protein backbone (i.e. its shape when folded) can be described as a series of φ/ψ

angles, using the Cartesian coordinates of the central backbone atom (the alpha carbon,

written Ca), or using various other representational schemes. The position of the atoms

in a folded protein is called its tertiary structure (Figure 2.7).

Figure 2.7: A common representation of tertiary structure.

In a protein’s structure can be usually identified one or more active sites, which

are directly related to its function. Some proteins bind to other proteins or groups of

atoms that are required for them to function: for example, the heme group permits

hemoglobin to bind oxygen. Often, several structural domains, i.e. parts of the protein

that can evolve, function, and exist independently of the rest of the protein chain, can

be also identified. Moreover, protein structures are not static: they can move and flex

in constrained ways, and that can have a significant role in their biochemical function.

2.4.4.1 From Sequence to Structure: the Levinthal’s Paradox

The tertiary structure of a protein and, therefore, its biological activity and function, is

determined by its amino acid sequence (13). Exactly how the properties of the amino

acids in the primary structure of a protein interact to determine the protein’s ultimate

conformation remains unknown. Although the features of amino acids play some role in

protein folding, there are few absolute rules. The conformation a protein finally assumes

16



2.4 Proteins

will minimize the total ‘free’ energy of the molecule. For example, packing several large

side chains near each other increases the local free energy, but may reduce the energy

elsewhere in the molecule. According to the experiments performed by Levinthal (14),

the folding process has on average 3300 degrees of freedom, which generates a number of

alternatives still intractable in computer simulations. This enormous difference between

the actual speed of the folding process and the computational complexity for evaluating

the corresponding model is also called Levinthal’s paradox.

Molecular simulators1 that use some heuristics for reducing the search space have

been developed, but the uncertainty about the degree of approximation of the actual

structure limits their use only to very short chains or small perturbations around a

known structure.

Given the limits of molecular simulators, in most cases a protein structure must be

determined experimentally, or, where possible, with the help of predictors.

2.4.4.2 Experimental Determination of Tertiary Structure

The majority of protein structures are solved with the experimental technique of X-

ray crystallography, which typically provides data of high resolution but provides no

time-dependent information on the protein’s conformational flexibility. A second com-

mon way of solving protein structures uses NMR, which provides somewhat lower-

resolution data in general and is limited to relatively small proteins, but can provide

time-dependent information about the motion of a protein in solution. More is known

about the tertiary structural features of soluble globular proteins than about membrane

proteins because the latter class is extremely difficult to study using these methods.

2.4.5 Supersecondary Structure

Rao and Rossmann (16) observed structural motifs comprising a few alpha-helices or

beta-strands which were frequently repeated within structures. They call them “su-

persecondary structures” being intermediate to secondary and tertiary structure and

suggested that these structures might be due to evolutionary convergence. A variety of

recurring structures were subsequently recognised, such as the “Helix-loop-helix” and

the “Greek key” (Figure 2.8). Some of these structural motifs can be associated with a

1For a general survey about molecular simulators, see (15).
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Figure 2.8: Some common structural motifs.

particular function while others have no specific biological function alone but are part

of larger structural and functional assemblies.

2.4.6 Quaternary Structure

Quaternary structure is an active conformation of multiple protein chains in one larger

complex. A chain may bond with copies of itself or with other proteins to cooperate.

Examples of proteins with quaternary structure include hemoglobin (see Figure 2.9),

DNA polymerase, and ion channels.

Figure 2.9: The quaternary structure of hemoglobin.
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Chapter 3

Resources and Methods for

Bioinformatics

Development in the field of bioinformatics is obtained by the sharing of knowledge and

the development and use of software tools based on methodologies from lots of different

fields related to statistics and computation (see Figure 3.1). Research in bioinformatics

encompasses lots of different tasks, which can be clustered into two main aspects:

• functional: representation, storage, and distribution of data;

• analytical: developing tools to discover new knowledge in data.

The functional aspect is related to the sharing of knowledge about biological data,

usually coming from experiments run in laboratories all over the world. This knowl-

edge is shared in public databases and data banks (Section 3.1), maintained by specific

public institutions or universities. The adaptation of standard computer science tech-

niques for storage and querying is not trivial: a lot of challenges arise, related to the

big amount of data and the distributed and varied nature of the data which is sub-

mitted. For example, the same protein structure may be studied by different teams in

different experiments run in different times by different laboratories equipped with dif-

ferent machineries with different resolution: the result would be distinct and in either

cases imperfect, and one team may not know of the experiment of the other, so giving

unrelated identifiers to their structures. In addition, the definition of what is “same”

and what is “different” may relevantly change the sense of a query. We may say that

two proteins with identical sequences are same, but this would even exclude proteins
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Figure 3.1: Biology and technology (from (2))

from the same specie, which can also be affected by some mutation. The definition

of “same” and “different” depends in fact on what we are interested in. Measures of

similarity are then needed, and taking into account the evolution process is essential

to relate the measure to the biological relationship. Scoring matrices (Section 3.2.1)

and sequence alignment techniques (Section 3.2) are used together to perform relevant

biological comparison of protein and nucleotide sequences. Owing to the computa-

tional limits of sequence alignments, heuristic techniques, such as FASTA and BLAST

(Section 3.3.2), are generally adopted while searching for similarities in big sequence

databases. BLAST is actually the most used tool by bioinformaticians, and the paper

presenting it is one of the most cited in all fields of science (33,867 citations according

to Google Scholar!).
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The analytical aspect of bioinformatics, which can be considered the more purely

“scientific”, develops computational techniques mainly based on statistics and artifi-

cial intelligence. The large amount of available data is analyzed, filtered, transformed

and integrated, with the purpose of discovering the sense beyond this data. In this

process, one of the great open problems is the prediction of phenotype from genotype.

Phenotype (structural) data is indeed much harder (and expensive) to determine ex-

perimentally than genotype (sequential) data, and the knowledge of both is needed

for advanced applications: structures are directly related with functionality, while se-

quences are easier to compare and synthesize.

Understanding the implication between the genetic code and life could have virtually

infinite applications, from ad-hoc drug synthesis to the creation of forms of life with

the desired characteristics, but we are still far from that. Research in this direction is

still at its first steps, and one of the biggest open problems today is the prediction of

protein structures (Section 3.5). Since theoretical models able to relate sequence and

structure are still not available, comparative techniques and machine learning systems

constitute nowadays the best alternatives.

3.1 Public Databases

3.1.1 DNA Sequence Databases

Sequencing DNA has become a routine task in the molecular biology laboratory. Since

the first automatic sequencer invented by Leroy Hood in the 1980, lots of advances

have been made: the first whole human genome was sequenced in 2003 and we already

have companies which offer personal genome sequencing.

Investigators every day submit newly obtained sequences from every form of life to

public databases, such as the National Center for Biotechnology Information (NCBI),

which manages GenBank1 (17); the DNA Databank of Japan (DDBJ) 2; or the Eu-

ropean Molecular Biology Laboratory (EMBL)/EBI Nucleotide Sequence Database3.

GenBank, EMBL, and DDBJ have now formed the International Nucleotide Sequence

Database Collaboration 4, which acts to facilitate exchange of data on a daily basis.

1http://www.ncbi.nlm.nih.gov.
2http://www.ddbj.nig.ac.jp.
3http://www.embl-heidelberg.de.
4http://www.ncbi.nlm.nih.gov/collab.
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The accuracy of the sequences collected in the databases can vary mainly depending

on the laboratory which performed the sequencing. Also, the databases are by them-

selves redundant, in the sense that no effort is made to limit the submission of the same

sequence multiple times. A non-redundant (nr) database is provided at the NCBI as a

synthesis of Gen- Bank, EMBL and DDBJ databases.

3.1.2 Protein Sequence Databases

A variety of protein sequence databases exist, ranging from simple sequence repositories,

which store data with little or no manual intervention in the creation of the records,

to expertly curated databases in which the original sequence data are enhanced by the

manual addition of further information in each sequence record.

UniProtKB/Swiss-Prot is a curated protein sequence database providing a high

level of annotation (such as the description of the function of a protein, its domains

structure, post-translational modifications, variants, etc.). UniProtKB/TrEMBL is an

automatically annotated database, derived from EMBL and complementary to swiss-

prot. The UniProt Reference Clusters (UniRef ) databases provide clustered sets of

sequences from the UniProtKB and selected UniProt Archive records to obtain complete

coverage of sequence space at several resolutions while hiding redundant sequences. For

instance, UniRef90 comprehends protein sequences with a maximum sequence identity

of 90% one each other. Also the NCBI provides a non-redundant database of proteins

(nr).

3.1.3 Protein Structure Databases: The Protein Data Bank

Searching in public databases is the first thing that a researcher in structural bioinfor-

matics usually does while looking for a protein structure. The most important of these

databases is the Protein Data Bank (PDB) (18), which collects X-ray crystallography

or NMR spectroscopy structures of proteins and nucleic acids submitted by laboratories

from around the world. As shown in Figure 3.2 The number of structures stored in the

PDB has grown exponentially in the last 20 years.

The contents, stored as plain text files (in the ‘PDB’ format) are freely accessible

and can be downloaded via the websites of its member organizations. The PDB format

specifies a set of mandatory and optional records, in which along with information

about the experiment and the compounds analyzed, the coordinates of every visible
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Figure 3.2: Number of protein structures on the PDB since 1990.

atom are given. Many different programs allow to open, visualize and analyze PDB

files, such as RASMOL(19) and PYMOL(20).

3.1.4 Protein Structure Classification

Protein structures can be classified according to their folding. The most known classi-

fication resources are CATH (21) and SCOP (22).

In CATH proteins are chopped into structural domains and assigned into a hi-

erarchical classification of homologous superfamilies. The classification uses a main

four-level structural annotation (class, architecture, topology, homology), and five finer

levels of sequence identity within a family. For example, at the third level a domain may

be of class α/β, Sandwich architecture, β-lactamase topology (see Figure 3.3). CATH

uses a combination of automated and manual techniques which include computational

algorithms, empirical and statistical evidence, literature review and expert analysis.

SCOP proposes a classification based on full proteins instead of domains. The hier-
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Figure 3.3: A sample CATH hierarchy (class, architecture, topology levels).

archy proposed by SCOP also has four levels: class, fold, superfamily, family. Although

similar in principles with the CATH’s levels, the different definition of each level re-

sults in a quite distinct hierarchy. The SCOP classification is mostly based on human

expertise.

3.2 Sequence Alignment

Sequence alignment is a fundamental concept in bioinformatics, as it is the base of

many further analyses. Since the nucleic acid fragments and protein primary structures

data is represented with sequences, related each other by the process of evolution, the

alignment of such sequences is necessary to compare genotypes.

The conceptual rule of sequence alignment algorithms is to revert the evolution

process in order to put in evidence any conservations and substitutions occurred in

the evolution process. In addition, sequence alignment can highlight similarities due

to structural or functional reasons. Two sequences are aligned by writing them in two

rows:

QVQLQESG-AEVMKPGASVKISCKATG---YTFSTYWIEWVKQRPGHGLEWIGEILPGSGSTYYNEKFKG-K

VLMTQTPLSLPVSLGDQASISCKSSQSIVHSSGNTYFEWYLQKPG----QSPKLL----IYKVSNRFSGVPD
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Characters (i.e. nucleic acids or amino acid residues) placed in the same column rep-

resent conservations and substitutions. Gaps (character ‘-’) represent either insertions

or deletions.

An alignment algorithm is defined by two components: (i) the score function i.e. a

scoring scheme used to evaluate an alignment; (ii) the alignment strategy, i.e. a strategy

which gives the succession of substitutions, insertions and deletions which maximize the

score.

A scoring scheme’s aim is to favour those substitutions, insertions and deletions

which have been selected by evolution. Since a lot of factors may participate in the

evolutionary selection, finding the correct scoring scheme is still an open problem, which

greatly affects the reliability of sequence alignments, especially for distantly related

proteins. The most commonly used scoring schemes rely on substitution matrices,

which are based on the statistical observation of the substitutions occurred in sets of

homologous proteins. In addition to substitution matrices, usually two different costs

for gap creation and extension are part of a scoring system, in order to reproduce the

fact that a new insertion/deletion is less probable to occur than a yet existing one to

be extended (affine gap penalties).

Alignment strategies may have a global or local scope, and different strategies apply

when a couple of sequences (pairwise alignments) or sets of related sequences (multiple

alignments) are considered. Global strategies attempt to align every residue, and are

suitable when the sequences are similar and of roughly equal size. Local alignments are

more useful for dissimilar sequences that are suspected to contain regions of similarity

within their larger sequence context.

3.2.1 Substitution Matrices

The PAM (Point Accepted Mutation) matrices, or Dayhoff Matrices (23), are calculated

by observing the substitutions in closely related proteins. The PAM1 matrix estimates

what rate of substitution would be expected if 1% of the amino acids had changed.

The PAM1 matrix is used as the basis for calculating other PAM matrices by assuming

that repeated mutations would follow the same pattern as those in the PAM1 matrix,

and multiple substitutions can occur at the same site. Using this logic, Dayhoff derived

matrices as high as PAM250. Usually the PAM30 and the PAM70 are used.
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BLOSUM matrices (24) are based on the analysis of substitutions observed within

conserved blocks of aligned protein sequences belonging to different protein families.

Like PAM matrices, BLOSUM matrices can be derived at different evolutionary dis-

tances. The measure of evolutionary distance is the percentage identity of the aligned

blocks in which the substitutions are counted. For instance, the widely used BLO-

SUM62 matrix is based on aligned blocks of proteins where on average 62% of the

amino acid substitutions are identical. This is approximately equivalent to PAM150.

In order to permit a simple use in scoring systems, substitution matrices are nor-

mally given in log-odd format: the odds are used instead of probabilities to take into

account the different occurrence of amino acids. The use of logarithms is a conve-

nience to obtain the score of an alignment from the sum of the scores for the single

substitutions.

Many matrices alternative to PAM and BLOSUM have been proposed; for a review

and assessment of substitution matrices, see (25).

3.2.2 Pairwise Sequence Alignment

A pairwise alignment can be represented by a path in matrix, in which one of the

sequences represents the rows and the other the columns. A crosswise movement rep-

resents a substitution and horizontal and vertical movements represent gaps. The

dot-matrix sequence comparison is a technique which permits to visually detect the

regions of similarities between two sequences.

The Needleman and Wunsch algorithm (26) is the standard technique for global

pairwise sequence alignment. It is based on dynamic programming, an optimization

technique which relies on the fact that the solution for the whole problem can be

obtained by the solutions for its subproblems. The Needleman and Wunsch algorithm

finds the path in the matrix, by storing the optimal score for each cell incrementally.

The Smith and Waterman algorithm(27) is the reference local alignment method

and it is also based on dynamic programming. The main difference with the Needleman

and Wunsch algorithm is the adoption a breaking threshold when the score for the

alignment goes below a certain score while building the matrix.

Both the Needleman and Wunsch and the Smith and Waterman algorithm are suited

to be used with substitution matrices and affine gap costs.
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3.2.3 Multiple Sequence Alignment

Multiple alignments can be used to evidence conserved regions in a set of proteins.

They are often used to perform phylogenetic analyses on protein families.

Dynamic programming techniques can be extended for multiple sequences, but they

are not usually purely adopted for sequence alignments with more than a handful of

sequences, due to the explosion of the memory and time cost, which grows exponentially

with the number of sequences.

Progressive techniques are an effective compromise, and can be scaled to deal with

great numbers of sequences. The main idea behind progressive techniques is to start

from the most related sequences then and add the other sequence one at a time. The

most famous progressive method are CLUSTALW (28) and MUSCLE (29). T-Coffee

(30) is another progressive method which also allows to combine results obtained with

several alignment methods.

Multiple alignments are often expressed as Hidden Markov Models or Position-

Specific Scoring Matrices to describe protein families or motifs.

Figure 3.4: A multiple sequence alignment.

3.2.4 Position-Specific Scoring Matrices

Analysis of multiple sequence alignments for conserved blocks of sequence leads to

production of the position-specific scoring matrix, or PSSM. PSSMs are used to search a

motif in a sequence, to extend similarity searches, or as sequence encoding for prediction

algorithms. A PSSM can be constructed by a direct logarithmic transformation of a
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matrix giving the frequency of each amino acid in the sequence. If the number of

aligned residues in a particular position is large and reasonably diverse, the sequences

represent a good statistical sampling of all sequences that are ever likely to be found.

For example, if a given column in 20 sequences has only isoleucine, it is not very likely

that a different amino acid will be found in other sequences with that motif because

the residue is probably important for function. In contrast, another column from the

same 20 sequences may have several amino acids represented by few residues. Hence, if

the data set is small, unless the motif has almost identical amino acids in each column,

the column frequencies in the PSSM may not be highly representative of all other

occurrences of the motif.

The estimates of the amino acid frequencies can be improved by adding extra amino

acid counts, called pseudocounts, to obtain a more reasonable distribution of amino acid

frequencies in the column (31):

pca =
nca · bca
Nc ·Bc

(3.1)

where nca and bca are the real counts and pseudo-counts, respectively, of amino

acid a in column c, Nc and Bc are the total number of real counts and pseudo-counts,

respectively, in the column.

Knowing how many counts to add is not trivial; relatively few pseudo-counts should

be added when there is a good sampling of sequences, and more should be added when

the data are more sparse. Substitution matrices (e.g. BLOSUM or PAM) provide

information on amino acid variation. Then, bca may be estimated from the total number

of pseudo-counts in the column by:

bca = Bc ·Qi (3.2)

where Qi =
∑

i qia. qia is the frequency of substitution of amino acid i for amino acid

a in the substitution matrix.

3.3 Searching in Sequence Databases

3.3.1 Database queries

Web pages or services allow queries to be made of the major sequence databases. For in-

stance, a program called ENTREZ (http://www.ncbi.nlm.nih.gov/Entrez) is available
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at NCBI. ENTREZ accesses information such as the sequence included with the se-

quence entry, accession or index number, name and alternative names for the sequence,

names of relevant genes, types of regulatory sequences, the source organism, refer-

ences, and known mutations, thus allowing rapid searches of entire sequence databases

for matches to one or more specified search terms. These programs also can locate

similar sequences (called ‘neighbors’ by ENTREZ) on the basis of previous similarity

comparisons.

3.3.2 Similarity Searches

Sequence similarity searching is a crucial step in analyzing newly determined protein

sequences. A common reason for performing a database search with a query sequence

is to find a related gene in another organism; large databases are scanned to identify

statistically significant matches.

Similarity can be in principle assessed by scoring sequence alignments between the

query sequence and the sequences in a database. However, pairwise similarities (espe-

cially if confined to very short regions) can also reflect convergent evolution or simply

coincidental resemblance. Hence, percent identity or alignment score should not be

used as a primary criterion for homology; matches which have a low probability of

occurrence by chance are more correctly interpreted as likely to indicate homology

instead.

The p-value indicates the probability to encounter a given score (or higher) by

chance. The e-value (expectation value), is conceptually similar to the p-value: it

estimates the probability to find a particular hit score or higher by chance by searching

in the current database. For example, should a hit have an e-value of 0.02, there is

a one in fifty chance that an alignment of the same or better quality would occur by

chance alone. E-value is usually the choice to evaluate similarity searches.

Given the big size of sequence databases, heuristic algorithms for sequence compar-

ison like FASTA (32) or BLAST (33) are usually preferred to dynamic programming

algorithms. PSI-BLAST (34) is an iterative version of BLAST which uses PSSMs to

find remote homologues. Other tools use HMMs instead of PSSMs to perform similarity

searches (35).

Similarity search programs are nowadays the most widely used class of tools by

bioinformaticians, and are available to use from the main bioinformatics portals.
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3.3.2.1 FASTA

FASTA provides a rapid way to find short stretches of similar sequence between a

query sequence and any sequence in a database. Each sequence is broken down into

short words a few sequence characters long, and these words are organized into a table

indicating where they are in the sequence. If one or more words are present in both

sequences, and especially if several words can be joined, the sequences must be similar

in those regions.

3.3.2.2 BLAST and PSI-BLAST

BLAST (Basic Local Alignment Search Tool) was developed as a new way to perform

a sequence similarity search by an algorithm that is faster than FASTA while being as

sensitive. Like FASTA, the BLAST algorithm increases the speed of sequence alignment

by searching first for common words or k-tuples in the query sequence and each database

sequence. Whereas FASTA searches for all possible words of the same length, BLAST

confines the search to the words that are the most significant. For proteins, significance

is determined by evaluating these word matches using log odds scores in substitution

matrix (typically, BLOSUM62). For the BLAST algorithm, the word length is fixed

by default at 3 for proteins. The words considered as significant are then merged,

expanded, and finally aligned with the Smith-Waterman algorithm.

PSI-BLAST iteratively applies BLAST for a number of iterations (usually set to

2-3). The first iteration is a normal BLAST run. After each iteration, a PSSM is

extracted from the multiple alignment previously generated, and it used to score the

next iteration instead of a simple scoring matrix. The use if a PSSM makes PSI-BLAST

more sensitive to remote homologues compared to BLAST.

BLAST and PSI-BLAST can be used from a web interface or downloaded for per-

sonal use from the NCBI site. A web interface is also provided by the EBI.

3.4 Artificial Neural Networks

Artificial Neural networks (ANNs) are adaptive statistical models based on an analogy

with the structure of the brain. ANNs are made of basic units (the neurons), which

propagate signals to the other connected units. ANNs can be viewed as general input-

output relationship estimators; the estimation is achieved after a learning process from
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3.4 Artificial Neural Networks

a set of examples, commonly referred as training set. For this reason, ANNs are in fact

machine learning algorithms and are commonly used in classification, regression and

clustering. This section briefly describes the characteristics of neural networks, with

particular emphasis on the training of multi-layer perceptron, which is widely recalled

in the following chapters. The interested reader could find further examination in Abdi

et al. (36), Bishop (37), Duda et al. (38).

3.4.1 The base units: connections, weights, activation function

A neuron (see Figure 3.5) propagates information to other neurons by weighted con-

nections called synapses.

Figure 3.5: A neural network unit.

Information may be provided by other units or by external sources (for input neu-

rons). Synaptic weights multiply (i.e., amplify or attenuate) the input information. An

activation function, which operates on the sum of the input signals (the activation),

determines the output of the neuron.

Formally, if each input is denoted xi, and each weight wi, then the activation is

equal to aj =
∑
xi · wij , and the output yj is obtained as yj = f(aj). Any function

whose domain is the real numbers can be used as a transfer function. The most used

activation function is the logistic sigmoid :

sigm(x) =
1

1 + e−x
(3.3)

The logistic sigmoid has the useful properties of mapping the real numbers into the

interval [-1 + 1] and having a derivative which is easily computed, which is useful for

the learning process.
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3.4.2 Network Architectures

ANNs usually organize their units into several layers. The first layer is called the input

layer, the last one is the output layer. The intermediate layers (if any) are called the

hidden layers. The information to be analyzed is fed to the neurons of the first layer

and then propagated to from layer to layer until the output layer , from which the

output is taken. The pattern of connectivity of the neurons determines the architecture

of a network. The behaviour of a network is completely specified by its architecture,

the activation functions and the synaptic weights.

A simple and very popular architecture is the multi-layer perceptron (MLP). MLPs

are feed-forward neural networks with multiple layers, and can be represented with a

directed acyclic graph, in which every neuron of the ith layer is connected (only) to the

neurons of the (i+ 1)th layer (see Figure 3.6).

Figure 3.6: A multi-layer perceptron.

MLPs are very popular because they can be now reliably trained, and they can

be theoretically used with any regression or classification problem. In particular, with

sigmoid activation functions a 3 layer net can approximate any multivariate function

relating the input to the output to arbitrary accuracy(39). A limit of MLPs is that they

are constructed to deal with static data: they expect a vector of fixed length (the length

being the number of the neurons in the input layer) as input, and the length of the

output vector is also fixed by the number of output neurons. Still, meta-architectures

with sliding windows can permit to use MLPs to deal with dynamic data (such as

signals).

Many other neural networks architectures have been proposed in the literature,

including recurrent neural networks (40; 41), self-organizing maps (42).
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3.4.3 Training Process

The training of a neural network is achieved by modifying the connection weights be-

tween its units. In statistical terms, connection weights are parameters to be estimated.

The values of the parameters (i.e., the synaptic weights) can change iteratively

as a function of the performance obtained by the network. These changes are made

according to learning rules which can be supervised (when a desired output is known

and used to compute an error signal) or unsupervised (when no such error signal is

used). The Widrow-Hoff (also known as gradient descent or Delta rule) is the most

widely known supervised learning rule:

∆wji = η(tj − yj)f ′(aj)xi. (3.4)

The difference between the actual output yj of the neuron and the desired output tj

are here used as an error signal for units in the output layer1. η is a scalar parameter

called learning rate.

The error signal for the hidden layers is estimated as a function of the error of the

units in the following layer. This adaptation of the Widrow-Hoff learning rule is known

as error backpropagation (BP, (43)). The BP algorithm was originally developed to

be used with MLPs and has been successfully adapted to other network architectures.

Training with BP is usually implemented by repeating the backpropagation steps for

all the examples in the training set. The examples are resubmitted iteratively, until

a stop condition is reached. Simple stop conditions can be a threshold to the error

on the training set, or to the number of iterations. The learning rate is a crucial

parameter: high values of η may speed up the training, but may also forbid a fine

tuning around the minimum. For this reason, a dynamic value of η is often preferred,

which decreases during the iterations so having bigger values in the first iterations

when the solution is plausibly far and vice-versa. A common adaptation of the delta

rule includes a momentum term, which adds inertia to the gradient in order to avoid

oscillations around local minima.

1The given formula is valid for the commonly used square-error function
∑
j

1
2
(tj − yj)

2. Other

forms of the delta-rule apply for different error functions.
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3.4.4 Design of MLP systems

The proper design of a system based on MLPs is usually a manual and iterative pro-

cess, which requires intuition and expertise in order to obtain the best performance.

In particular, a ANN must learn as much as possible from the training examples while

avoiding “overfitting”. Overfitting is a well-known phenomenon which occurs when

learning too much details about training examples causes to lose generalization ca-

pabilities (i.e. fitting on unknown data). One reason for overfitting is that training

data can be affected by measurement or labeling errors. This is common in real-world

problems, and it is particularly evident with biological data. Another interpretation of

overfitting refers to the Occam’s Razor principle: overfitting occurs when the proposed

solution is too complicated for the given problem. That explains why the phenomenon

occurs also when the training data is not affected by measurement errors.

The dimension of the hidden layer Nh is an important parameter to consider when

designing a MLP. There is no general rule which tells us the best dimension for the

hidden layer. What we can infer from the Occam’s Razor is that the number of hidden

neurons should depend on the complexity of the function we want to estimate. Few

hidden neurons are good for simple problems, more neurons are better for harder prob-

lems. We also know the the number of hidden neurons should be proportional to the

input and output neurons. In fact, the expressive capability of a network is related

with the number of parameters to be estimated, i.e. the number of weights:

Nw = Ni ·Nh ·No, (3.5)

where Ni is the number of input neurons No is the number of output neurons. In ad-

dition, the number of training instances should be considered: the number of examples

should be bigger than the number of parameter we want to estimate. As a rule of

thumb, at least a dozen examples for each weight is often a sensible choice.

Acting on the activation functions may be useful or even necessary for some prob-

lems. While the logistic sigmoid works well for most of the problems, it can deal only

with data normalized in the range [-1,1]. For example, linear activation function in the

input and output layers allows to deal with every range of values. It may also be the

best choice if we are sure that the function to be estimated can be well approximated

as a linear combination of hyperplanes.
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Monitoring the error on an unrelated validation set permits to adopt a robust stop

criterion, optimizing the training while avoiding overfitting. A representative part of

the training examples (e.g., a random 10%) must be in this case sacrificed to have a

proper validation set. Validation tests can be performed regularly (for instance, at

the end of each training iteration), and, after a first phase in which training error

and validation error decrease together, the error on the validation error begins to rise,

while the training error continues to decrease. Monitoring the validation error allows

to detect the point of minimum error on the validation set. A simple criterion is to

stop the training when the error begins to rise. A more robust choice, especially for

hard problems in which the error could have many oscillations, is to store the weights

when a minimum is encountered and let the training go until a safe point of no return

is reached.

Encoding of the input data, although conceptually distinct from the design of the

network, is probably the most crucial task for real-world problems. There are infinite

ways the same information can be expressed in a vector of features, and they can be

more or less suited for the proper training of the network. Input encoding should be

defined by an expert of the problem, including all the information which is relevant for

the input/output relationship. According to the Occam’s Razor, less is better also in

this case (the number of elements in the input vectors determines Ni), providing that

no relevant information is lost. We know that the input data should be, explicitly or

implicitly, correlated with what we want to predict. Unfortunately, also in this case,

we don’t have a general measure or rule which says us what is the best choice.

In conclusion, the design and training of a system based on multi-layer perceptrons

involves the set up of some parameters and strategies which cannot be determined

univocally. A common approach is to combine experiments and set-up, trying different

parameters and architectures and choosing the best according to the experimental

evidence.

3.5 Protein Structure Prediction

Predicting protein structure from sequence is one of the biggest open research issues

in (computational) biology. In principle, the Anfinsen’s dogma (13) makes us confi-

dent about the fact that the primary structure of a protein, i.e., the corresponding
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sequence of amino acids, is all we need to infer the folding (at least for a globular pro-

tein). Molecular simulation of the folding process, which essentially consists of energy

minimization in a water environment, seems to be a straightforward way to solve the

problem. Unfortunately, according to the experiments performed by Levinthal (14),

the folding process has on average 3300 degrees of freedom, thus generating a number

of alternatives still intractable in computer simulations. This enormous difference be-

tween the actual speed of the folding process and the computational complexity for

evaluating the corresponding model is also called Levinthal’s paradox. Ab initio pre-

dictors that use some heuristics for reducing the search space have been developed, but

the uncertainty about the degree of approximation of the actual structure limits their

use only to very short chains or small perturbations around a known structure.

To overcome the absence of a deep model able to solve the folding problem, with

modeling at the molecular level still intractable, searching in public databases, such as

the PDB, is the first thing that a researcher usually does while looking for a protein

structure. Unfortunately, the chances of finding the target protein listed in the PDB

are not so high. In fact, notwithstanding the increase in experimental data on protein

structures, the gap between known sequences (about 13 millions entries in UniProt in

April 2010) and known tertiary structures (over 60,000 entries in PDB in May 2010)

is exponentially increasing. As a consequence, the researcher can rely on different

tools/techniques for protein structure prediction that have been developed to fill this

gap (for a comprehensive review, see (44)). Given a target protein, the choice about

which technique should be adopted to deal with the folding problem is mainly related

to the observed evolutionary relationship with known structures. When no clear or

reliable homology relationship can be detected, most methodologies, mostly pertaining

to the field of fold recognition, make use of intermediate results, including secondary

structure prediction.

3.5.1 Comparative Modelling

The difference between the number of protein sequences translated from sequences

held in GenBank and the number of protein structures held by the PDB is vast. Only

recently have high throughput methods started to be put in place to solve protein

structure. Comparative modelling(45) offers a way to bridge the gap between the

number of sequences and structures.
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Comparative modelling generally relies on knowing the structure of a homologous

protein and using that as a template to build the structure of a protein of known se-

quence but, unknown structure. The process can be divided into seven major steps:

(i) identify homologous ‘parent’ structures to use in the modelling, (ii) align the tar-

get sequence with the parent or parents, (iii) identify structurally conserved regions

(SCRs) and structurally variable regions (SVRs), (iv) copy the SCRs from the parent

structure(s), (v) build the SVRs either by database search (e.g. SLoop(46; 47)) or ab

initio methods (e.g. CONGEN(48)), (vi) build the sidechains(49; 50; 51; 52; 53; 54),

(vii) optimize (e.g. energy minimization or molecular dynamics using software such

as CHARMM(55) or NAMD(56)), evaluate (e.g. using PROSA II (57)) and refine

the model. Methods such as COMPOSER(58; 59; 60) and SwissModel(61; 62) au-

tomate some of these steps. Another popular and effective method is MODELLER(63;

64) which combines stages (iii–vi) with optimization using restraints derived from

the parents. There are many other methods including 3D-JIGSAW(65), FAMS(66),

ESyPred3D(67) and RAPPER(68).

However, the limiting factor in all these methods is obtaining the correct alignment.

This is the most important stage of comparative modelling(69; 70), but unfortunately,

particularly at low sequence identity, it can be the most difficult to get right. The

sequence alignment one wishes to achieve is the alignment that would be obtained by

performing a structural alignment and reading off the resulting sequence alignment.

While multiple alignment can help in obtaining the correct alignment, the structural

alignment can often differ from the alignment obtained by performing global or local

sequence alignment.

3.5.2 Fold Recognition

Fold-recognition (often, but not always properly, referred also as threading) methods

are applied when no homologous protein can be reliably identified; the typical case is

that the best match in the PDB is below 25% sequence identity. The main assumption

of fold-recognition is that the number of protein folds (i.e. spatial arrangement of

secondary structure elements) is relatively small (71; 72). Typically, a fold-recognition

program is based on four main components:
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1. Representation of the template structures. This is usually achieved through a

search in the PDB (Section 3.1.3) or some classification of protein structures,

such CATH or SCOP (Section 3.1.4).

2. Evaluation of the compatibility between the target sequence and a template fold.

This is achieved by defining and applying a objecting function.

3. Alignment between the target sequence and the template structures with the

chosen fold. Dynamic programming or other alignment techniques can be used

for this task.

4. Select the best alignment (ranking) according to the objective function and build

the model by atom substitution.

Many fold recognition methods have been proposed in the literature. The main dis-

tinction is between those that detect sequence similarity and those that detect structure

similarity. A simple sequence-only fold recognition operation is to use BLAST or PSI-

BLAST to search the PDB for proteins that exhibit significant sequence similarity to

the target protein. Modern sequence-based fold-recognition methods utilize the evolu-

tionary information available both for the target and the template (73; 74).

Structure-based fold-recognition, often (in this case properly) referred to as thread-

ing, utilizes the experimentally determined structural information from the template.

The target sequence can be enhanced by including predicted structural features of the

target, including secondary structure elements, solvent accessibility, polarity of the side

chain environment and local backbone conformation (75; 76; 77; 78; 79; 80; 81; 82; 83;

84; 85).

Rosetta (86) is an effective hybrid de-novo/fold-recognition method based on the

distribution of conformations of fragments of three-and nine-residue segments.

3.5.3 Ab initio Prediction

Ab initio –or de novo– predictors tries to obtain folding conformation without the use

of other structure templates. In order to predict tertiary structure, protein folding en-

ergetics or statistical tendencies can be used to build target functions to be minimized.

Owing to the vast conformational space to be explored, ab initio techniques require high

computational resources thus limiting their use to small sequences. Generally, rather
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than trying to directly model the tertiary structure, ab initio prediction is reduced to

the prediction of (i) one-dimensional features, such as solvent accessibility (87; 88), dis-

ordered regions (89), secondary structure (see Chapter 4) (ii) two dimensional features,

such as residue contact maps (90; 91). Recent promising advances in the prediction

of tertiary structure have been obtained with the use of coarse-grained protein models

growing in their native environment and secondary structure prediction (92).
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Chapter 4

Secondary Structure Prediction

The knowledge of the secondary structure has proven to be a useful starting point for

investigating further the problem of protein tertiary structure (see Section 3.5), function

(93; 94), and to improve sequence alignments (95). In this chapter, the problem of

secondary structure prediction (SSP) is presented and analyzed. The characteristics of

the SSP problem are first described from a computational point of view (Section 4.1),

and the literature in the field is presented from a historical perspective (Section 4.2)

.Then, the standard evaluation measures and assessment criteria are detailed (Section

4.3). Finally, the SSP problem is analyzed: five different sources of information are

identified and discussed (Section 4.4), and some well known techniques are reinterpreted

with this new insight (Section 4.5).

4.1 Characteristics of the SSP problem

From a computational point of view, predicting a protein secondary structure consists

of assigning a secondary structure label to each residue of a given protein chain:

M
E
R
P
Y
A
C
P
V
E
…

C
C
C
C
E
E
C
C
H
H
…

Prediction

41



4. SECONDARY STRUCTURE PREDICTION

We can see a primary structure as a signal to be decrypted to know the structure

signal. In the absence of a model able to unveil the relationship between this two

signals, methods relying on statistical properties, typically belonging to the fields of

machine learning and pattern recognition, are generally applied to SSP. As a machine

learning problem, the most notable characteristics of SSP are as follows:

• Great input space: In a typical setting, i.e., sliding window of length 15 with a

PSSM encoding, the input dimension is 15× 21 = 3151.

• Large training set: PDB available structures are about 60,000. Upon the removal

of homologous sequences, a typical dataset contains about 5000 proteins. As-

suming an average length of 250 residues per protein, the overall number of data

samples is more than 1 million, and many more should be needed to properly

represent the prediction space. The dimension of the training set is clearly a

limitation for some computational methods: predictors that require all samples

to be stored in memory at the same time cannot be trained with all the available

data.

• Low input/output correlation: Although increased by injecting information about

multiple alignments (in the representation of inputs), the correlation is still very

difficult to identify. See Section 4.4.

• Discrepancy between training set and test set: One of the main postulates of

machine learning is that training inputs must be highly representative of the

whole input space; the higher the representativeness, the better the expected

performance of a classifier or predictor is. However this assumption must be

neglected to some extent because for SSP, in ab initio contexts we are only proteins

whose structure is not related from any other known structure are considered.

• Labeling noise: Owing to protein mobility, measurement and/or automatic label-

ing errors introduce some aleatory behavior superimposed on the “correct” data

used for learning (see Section 2.4.3.1).

1The additional value (21 instead of 20) comes from the fact that an extra input is typically used

to encode positions that lay outside the sequence. See Section 4.4.2
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4.2 Secondary Structure Predictors: History and State-

of-the-art

Secondary Structure Prediction is one of the historical problems in bioinformatics; the

first attempts date back to the half sixties (96), and a plethora of methods have been

proposed to tackle the problem from then on. After a peak of interest and innovations

during the nineties, a reasonable (but still not really satisfying for many applications)

accuracy has been reached by the state-of-the-art. In early times, although the interest

in the field has lowered (mainly for the lack of important performance improvements),

research in the field is still active. The history of secondary structure predictors is

generally divided into three phases, or generations.

4.2.1 First Generation Predictors

Early prediction methods rely on the propensity of amino acids to belong to a given

secondary structure. Relevant methods proposed were the Chou-Fashman(97) and the

GOR (98) .

In the Chou-Fashman method, the relative frequencies of each amino acid in each

secondary structure of known protein structures are used to extract the propensity

of the appearance of each amino acid in each secondary structure type. Propensities

are then used to predict the probability that a given sequence of amino acids would

form a helix, a beta strand, or a turn in a protein. alpha-helices and beta-strands

are predicted by setting a cut off for the total propensity for a slice of four residues.

A similar, but more sophisticated, criterion is adopted for turns. The original Chou-

Fashman parameters were derived from a very small sample of protein structures due

to the small number of structures available at the time of the work. It reached about

50% accuracy.

The GOR method is another propensity-based method which introduces the condi-

tional probability of immediate neighbor residues in the computation. It uses a window

of 17 residues and it is based on Bayesian theory. The method has been refined several

times, finally reaching about 64% accuracy (99).
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4.2.2 Second Generation Predictors

A second generation of predictors exhibit better performance by exploiting protein

databases as well as advanced statistical and machine learning techniques. Several

methods exist in this category that can be classified according to: (i) the underly-

ing approach, including statistical information (100), graph-theory (101), multivariate

statistics (102), K-Nearest Neighbors (103), and ANNs (104; 105; 106); (ii) the kind of

information actually taken into account, including physic-chemical properties (107) and

sequence patterns (108); The accuracy of second generation predictors is approximately

in the range 63-68%.

4.2.3 Third Generation Predictors

The turning point to third generation methods was the idea of exploiting evolutionary

information to feed learning systems. Multiple alignments encoded as frequency profiles

or hidden markov models proved successful with ANNs: (109; 110; 111; 112; 113; 114).

Other techniques have also been experimented, including bidirectional recurrent ANNs

(115; 116), linear discriminants (117; 118), nearest-neighbours (119; 120), HMMs (35;

121), Support Vector Machines (SVMs) (122; 123). Hybrid approaches include meta-

predictors (124), populations of hybrid experts (125), ANNs combined with GOR and

linear discriminants (126), a knowledge base (127), dynamic Bayesian networks (128).

Third generation predictors have an accuracy ranging 72% to 80%, depending on

the method, the training and the test datasets.

4.2.4 Secondary Structure Prediction Servers

Secondary structure predictors, as well as most bioinformatics tools, are often made

available as servers. Table 4.1 shows some of the most famous secondary structure

prediction servers.

4.3 Performance Assessment

Performance assessment of secondary structure predictors has been a main and, for a

long time, controversial issue. In this section, the different aspects related to this issue

are examined. In particular, the most relevant standard measures, testing issues, and

expected improvements in the field, are discussed in the next paragraphs.
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Program Reference URL

Three-state prediction

APSSP2 G.P. Raghava (unpubl.) www.imtech.res.in

HMMSTR Bystroff et al. (121) www.bioinfo.rpi.edu

JPRED3 Cuff et al. (129) www.compbio.dundee.ac.uk

NNSSP Salamov and Solovyev (119) bioweb.pasteur.fr

PHD Rost et al. (109) cubic.bioc.columbia.edu

PORTER Pollastri and McLysaght (116) distill.ucd.ie

PRED2ARY Chandonia and Karplus (110) www.cmpharm.ucsf.edu

PREDATOR Frishman and Argos (120) ftp://ftp.ebi.ac.uk

PROF Ouali and King (126) www.aber.ac.uk

PSIPRED Jones (113) bioinf.cs.ucl.ac.uk

SSPRO Pollastri et al. (115) www.igb.uci.edu

Table 4.1: Relevant secondary structure prediction servers.

4.3.1 Kinds of Errors and Standard Evaluation Measures

Prediction errors can be divided in two main categories: (i) local errors, which oc-

cur when a residue is wrongly predicted, and (ii) structural errors, which occur when

the structure is globally altered. The most unwanted errors are the latter, with sec-

ondary structure segments as the basic components of the three-dimensional structure

of a protein. In particular, errors that alter the function of a protein should be avoided

whenever possible. Unfortunately, they cannot be easily identified; thus, local measures

or generic segment superposition measures are usually adopted. Q3 and Matthews Cor-

relation Coefficients (Ch, Ce, Cc) are commonly used measures of local errors, whereas

the Segment Overlap Score (SOV ) is the most well known measure for structural er-

rors. These measures have been adopted in the context of CASP (130) and EVA (131).

They will be reported as follows for the sake of completeness (e, h, and c stand for

alpha-helices, beta-sheets, and coils, respectively).

• Q3. It is a measure of accuracy, is largely used for its simplicity, and accounts for

the percent amino acids correctly predicted. It is defined as follows:

Q3 =

∑
i=h,e,cQ3i

3
(4.1)
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Q3i = 100
tp i
Ni
, i ∈ {h, e, c} (4.2)

where Ni is the number of residues observed for structure category i, and tpi (i.e.,

true positives) is the corresponding number of correctly predicted residues.

• SOV. The Segment OVerlap score (132) accounts for the predictive ability of a

system by considering the overlapping between predicted and actual structural

segments. It is able to consider structural errors where predictions deviate from

experimental segment length distribution. The definition of the SOV measure for

class i is as follows:

SOVi =
1

Ni

∑
si

minOV (s1, s2) + δ(s1, s2)

maxOV (s1, s2)
. (4.3)

Here, s1 and s2 are the observed and predicted secondary structure segments in

the i state; Si is the number of all segment pairs (s1, s2), where s1 and s2 have

at least one residue in i state in common, minOV (s1, s2) is the length of the

actual overlap of s1 and s2 and maxOV (s1, s2) is the length of the total extent

for which either of the segments s1 or s2 has a residue in i state. Ni is the total

number of elements observed in the i conformation. The definition of δ(s1, s2)

is as follows:

δ(s1, s2) = min


maxOV (s1, s2)−minOV (s1, s2)
minOV (s1, s2)
int (0.5× len(s1))
int (0.5× len(s2)).

(4.4)

The total SOV measure can then be obtained by taking the average for the three

classes h, e, c weighted with the number of residues belonging to each class.

• Ch, Ce, Cc. Defined in (133), the Matthews Correlation Coefficient (MCC) relies

on the concept of confusion matrix (Table 4.2). Confusion matrix is a general

method to visualize classification errors generally adopted in supervised learning.

A table represents the results of a binary classification: columns represent the

predicted class, while rows represent the actual class. One benefit of confusion

matrices is that they make it easy to see when the system is confusing two classes

(i.e., commonly mislabeling one as another).

The MCC is a synthesis of the information contained in the confusion matrix,

able to take into account the ability of the evaluated system in not confusing
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class predicted positive predicted negative

positive true positives (tp) false negatives (fn)

negative false positives (fp) true negatives (tn)

Table 4.2: Confusion Matrix. Elements on the main diagonal represent correct classifica-

tions, elements out of the diagonal represent errors.

a class with the other. Evaluated on a specific secondary structure, MCCs are

defined as follows:

Ci =
tpitni − fpifni√

(tpi + fpi)(tpi + fni)(tni + fpi)(tni + fni)
, i ∈ {h, e, c} (4.5)

where tpi represents the number of true positives, tni the true negatives, fpi the

false positives, and fni the false negatives. Note that MCC is not defined in the

event that no occurrences of class i are found.

4.3.2 SSP Testing: Which Proteins Should be Used to Test SSP

Sytems?

Another fundamental issue is about which protein sets should be used to test the

predictors. The machine learning theory suggests that test samples must be different

from the training samples, which in turn are expected to represent “well” the concept to

be learned. This definition only partially fits the requirements that apply to SSP. The

presence of homologous proteins may alter the perceived performance, being predictors

used when no homologous templates are available. If a homologue is available for the

target protein, its structure can be usually assigned without the need for a secondary

structure predictor. Hence, a secondary structure predictor should be tested with

proteins that are not homologue with any of those used for training. In principle, this

definition requires the analysis of protein families, throughout resources for structural

classification (see Section 3.1.4). Usually a safe threshold of 25% sequence identity

against proteins used in the training set is applied while building the test set. This

concept has become clear during CASP, the annual conference whose purpose is to

assess the advances in protein prediction. After CASP4, automated testing has been

considered to be more appropriate for secondary structure predictors, giving birth to

the EVA server, which automatically asks well-known prediction servers to predict

target proteins before their actual structure is made publicly available.
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4.3.3 Presentation of Results: Macro vs. Micro Averaging

While reporting experimental results, an average for Q3, SOV , and MCCs on a given

test set is usually reported. Two kinds of averages can be computed: (i) by chain, in

which measures are computed for every single chain and then averaged on the test set,

and (ii) by residue, in which measures are computed for the whole test set, as if they

were a big single chain (alternatively, it can be considered an average-by-chain weighted

by chain length).

The average-by-chain usually leads to lower scores, when short proteins are more

difficult to predict. Further problems may arise while evaluating SOV and MCCs.

Average-by-residue scoring does not make sense for the SOV measure, although it

may be equivalently computed as a by-chain average, weighted with the length of the

sequences.

As for MCC, the average-by-chain has to be interpreted with care: when the MCC

is not defined, the maximum value (1.0) is usually taken, leading to an average whose

absolute value does not reflect the real performance for the different structure cate-

gories. In particular, when average-by-chain is applied, the Ce may be larger than

the Ch value, giving the impression that the beta-sheets are easier to predict than the

alpha-helices. However, this is only a distortion due to the fact that the Ce value is

undefined with an occurrence higher than Ch.

4.3.4 Asymptotic Limit and Expected Improvement

Rost (134) asserted that the limit on the maximum Q3 obtainable in SSP is about

88%. This limit is mainly due to the intrinsic uncertainty about structure labeling,

which in turn is related to the dynamics of the target protein structure and to the

thresholds used by standard programs (e.g., DSSP (10)) to perform the labeling task.

While significant improvements have been obtained since the first predictors, no relevant

steps forward have been made in the last 10 years to reach the cited limit. Obtain

improvements of even a fraction of a percent has become challenging. Current state-

of-the-art predictors claim a performance of about 77%–80% Q3 and 73%–78% SOV ,

depending on the dataset adopted for testing. As for the structures to be predicted,

alpha helices (Ch = 0.7 ÷ 0.77) generally appear to be far easier to predict than beta

strands (Ce = 0.64÷ 0.68).
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4.4 Informative Sources in the SSP Problem

The success of a modern predictor depends on its ability to exploit the correlation

between the sequence and the structure. Owing to the great variability in the pos-

sible configurations of sequences, and also to problems related to the representation

of variable-length sequences, only relying on intrinsic sequence-to-structure correlation

is a poor strategy to obtain good predictions. Fortunately, other kinds of correlation

hold in protein sequence and structure, and finding the way to exploit the related in-

formation determines the success of a modern predictor. In the following analysis, five

different kinds of correlations are identified, showing how they are exploited in actual

prediction systems.

4.4.1 Sequence-to-Structure

Sequence-to-structure correlation is related to the probability of observing a structure

S in the contest of a given sequence P .

The correlation between a sequence –considered in its entirety– and its correspond-

ing structure is clearly high: Anfinsen’s dogma (13) states that the tertiary structure

of a globular protein is completely determined by its primary structure. One limit to

its use in the prediction task is related to the high specificity of protein sequences:

sequences can vary both in length and composition, leading to a virtually infinite1 set

of alternatives, each one –at least in principle– with its own structure. Looking at real

proteins the number is critically lower, because only a small part of the theoretically

possible sequences are actually likely to fold, and not all possible protein folds have

been chosen by evolution. In any case, the number of possible sequences is still high;

about 12 million sequences are known, and the number is increasing exponentially. The

known structures, i.e. patterns usable to extract statistics or train learning algorithms,

are about three orders of magnitude lower, and mostly concentrated on small clusters

of proteins of high biological or medical interest.

The variable length of the protein chains also makes the sequence-to-structure in-

formation difficult to exploit, since most known algorithms deal with data of fixed

length (most pattern recognition and machine learning methods are based, directly or

1There are 20l theoretically possible sequences of length l, where l can range from some dozens to

a few thousands residues.
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indirectly, on a distance measure in the input space, represented with vectors). For-

tunately, sequence-to-structure correlation is also conserved in fragments of sequence,

permitting these methodologies to be applied to local fragments.

A weak correlation can be observed between the type of a residue and the secondary

structure to which it belongs, and the first propensity-based prediction methods relied

on this assumption. A stronger correlation holds between a fragment of chain and

the corresponding structure; for this reason, most predictors consider the surroundings

of the residue to be predicted. Slices of primary structure (extracted with a sliding

window) can be then considered to represent the primary information in a suitable

format. Enlarging slices may be assumed to facilitate the task of learning the actual

I/O relation, but larger slices do not necessarily entail better predictions. Whereas

a larger slice may actually highlight the correlation between input and output, the

generalization capability of a predictor may be negatively affected (for further discussion

about slice size, see (135)). Usually, sliding windows of 5-21 residues are considered

depending on the underlying algorithm.

Many different machine learning or pattern recognition techniques have been ap-

plied to estimate the relationship between primary and secondary structure. Any clas-

sification algorithm can be used to predict a SS elements from encoded slices; among

all, multi-layer perceptrons have been shown to be particularly effective. Alternative

techniques have been proposed: for example, the recurrent neural network architecture

proposed by Baldi et al. is able to take into account far sequence-structure relationships

(see Section 4.5.3).

4.4.2 Inter-Sequence

Given two sequences P1 and P2, the inter-sequence correlation is related to their sim-

ilarity, measured for example counting the percentage of identical residues, or more

generally applying a scoring function on their pairwise alignment.

Basically, inter-sequence relationships are the result of evolution, which have se-

lected the most useful sequences according to their folding. Taking into account the

evolutionary relationships (the lower the evolutionary distance, the higher the correla-

tion), families of proteins with similar sequences can be identified.

In order to be exploited by a prediction algorithm, the inter-sequence correlation can

be included in the representation of the sequence: encoding based on multiple alignment
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(e.g. substitution frequency or HMM profiles) is a fundamental technique aimed at

highlighting this kind of correlation, exploiting the available sequence databases. From

the point of view of the predictor we can see the representation of protein families as

a way of clarifying the distance relationships between proteins. In other words, inter-

sequence relationships give us a new representation space in which proteins belonging

to the same family become nearer, while unrelated proteins become more distant to

one another.

Note that not all encoding alternatives are equivalent, owing to the loss of the

original information contained in the multiple alignment during the encoding process.

For instance, PSI-BLAST PSSM (34) is usually preferable to the raw frequency count,

and other encoding methods can also be devised. A new way to encode multiple

alignment information is presented in Chapter 6. The introduction and improvement

of encoding techniques based on multiple-alignment is acknowledged to be the most

important innovation in modern predictors (about +9% Q3 improvement from the

first systems based on ANNs to PSIPRED). Nowadays, almost every fold recognition

method and secondary structure predictor makes use of encoding based on multiple

alignment.

4.4.3 Inter-Structure

Similarly to inter-sequence correlation, inter-structure correlation is prevalently ob-

served in presence of homology. Correlation among structures is more conserved than

the one occurring for sequences, so further explaining the effectiveness of multiple align-

ments in describing protein families. In particular, closely related homologous proteins

have very similar structure. Figure 4.1 shows the structural similarity averagely found

in relationship with evolutionary relationship observed between sequences.

Comparative modeling techniques effectively exploit inter-structure information in

presence of homology. Without clear homology relationships, inter-structure correla-

tions still exist: it has been argued that very few actual folding templates have been

observed compared with the number of unrelated protein families (71) and it is con-

firmed by structure classification resources such as CATH and SCOP. Fold recognition

techniques make use of this kind of inter-structure correlation to predict the folding of

new proteins.
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Figure 4.1: Evolutionary relationship vs. structure similarity. The values have been

obtained searching for 100 unrelated proteins in the PDB for similar sequences, and then

aligning their secondary structures according to the alignment provided by BLAST. The

BLAST e-value has been taken as measure of evolutionary relationship, structural identity

is normalized in [0,1]. It can be noticed that sequence identity steeply decreases for e-values

below 10−5.

Being secondary structure prediction acknowledged to be an ab initio technique,

‘proper’ predictors should not make use templates to build their predictions. For this

reason, the absence of a clear homology relationship with any known structure is nor-

mally considered a pre-condition for a fair evaluation of SS predictors. Furthermore,

when an evolutionary related template can be found, it is probably more effective to

assign the structure directly from the template rather than using that information to

train a learning algorithm. Pollastri et al. (136) showed that using information of

remote homologues, when available, can improve the accuracy in secondary structure

prediction.

Correlation between structures can be also seen without looking for a template.

Various preferences can be seen in the distribution of SS elements and structural fea-

tures. This preferences can be exploited in prediction; for example, local preferences

are indirectly taken into account by structure-to-structure (S2S) modules used by many

predictors, and they have been used to build statistical models, such as HMMs and dy-
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namic Bayesian networks, used in predictors.

A statistical analysis of inter-structure correlations observed in known proteins, and

a proposal to exploit information found in structure distribution is presented in Chapter

8.

4.4.4 Intra-Sequence

Intra-sequence correlation, or ‘auto-correlation’ of the primary structure, is related to

the possibility of guessing a protein’s residue, given a subsequence of that protein.

In principle, a high intra-sequence correlation would greatly restrict the possible

protein sequence configurations and, as suggested by information theory, would raise

the possibility of having more compact representations of protein sequences. Unfor-

tunately, although a compact representation is usually desirable in machine learning

and pattern recognition algorithms (as the Occam’s Razor principle suggests), the ob-

servable intra-sequence correlation is very low (137), and does not appear to have any

direct application in any actual prediction technique.

4.4.5 Intra-Structure

Just as for primary sequence data, an auto-correlation of secondary structure labels

can also be considered. A strong correlation holds within secondary structure elements

and between beta-strands; it depends on the mutual interactions holding between the

amino-acids along the protein, including the hydrogen bonds involved in the formation

of secondary structure. Also when the interactions are local, this principle of locality

is not necessarily observable at the sequence level.

Residues that belong to the same helix or to the same strand are –by definition–

very close to each other also at the sequence level. Conversely, residues that belong to

the same sheet but occur in different strands are typically not close at the sequence

level. Taking advantage of this kind of correlation is not easy due to the local scope of

prediction algorithms.

Refinement processing is a successful way to exploit the correlation within struc-

tures. Using a structure-to-structure (S2S) prediction module is a relevant alternative

proposed in different actual systems able to deal with intra-structure correlations. Ac-
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cording to our experiments1, S2S refinement generally improves the accuracy of a SS

predictor by about 0.5-1.5%.

Statistical models such as dynamic Bayesian networks and HMMs incorporate by

construction some sequential intra-structure correlation.

We believe that actual systems are using only a small part of the information con-

tained in intra-structure interactions. Alternative ways to use this kind of information

dealing with output representation and prediction architectures are presented in Chap-

ter 7.

4.5 Notable Predictors

4.5.1 PHD

PHD is an archetype for a successful family of systems based on ensembles. Each com-

ponent of the ensemble is a pipeline of two transformations (both implemented by an

ANN): primary-to-secondary prediction (P2S) and secondary-to-secondary prediction

(S2S). The overall transformation (i.e., P2S-S2S) is depicted in Figure 4.2. In P2S, the

Figure 4.2: PHD: a schematic view of a P2S-S2S transformation

ANN is trained with slices extracted throughout a sliding window of fixed length from

an input profile, which in turn is obtained by encoding the multiple alignment that

1Evidence can be seen comparing Figures 6.3 and 6.4.
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represents the target sequence. PHD adopted frequency profiles obtained by the HSSP

databank (138), and turned to alignments obtained with BLAST in later versions. It

should be noted here that the prediction problem is actually turned into a classification

problem due to the splitting of the target protein in fixed-length slices obtained using

the sliding window. Thus, the central amino acid of a slice can be labeled in isolation,

yielding a preliminary prediction obtained by annotating each amino acid of the target

sequence with the results (position by position) of the classification.

In S2S, the ANN is trained with fixed-length slices generated by the P2S module

(again, through the use of a sliding window). The S2S transformation is also called

refinement. In so doing, the problem is moved back from classification to prediction; in-

formation about the correlation that holds amino acids belonging to the same secondary

structure is taken into account, to some extent, while performing S2S refinement.

Figure 4.3: PHD: Overall architecture

As multiple P2S-S2S transformations are involved in a prediction (to enforce diver-

sity), further level of combination is performed on the outputs of the P2S-S2S available

pipelines. The actual prediction is issued by decoding the resulting (averaged) output

profile with a maximum-a-posteriori probability (MAP) criterion. PHD adopts a jury

decision after performing an average-by-residue on output profiles. A schematic view of

the overall architecture (with some details about the use of sliding windows) is shown

in Figure 4.3.

In sum, the encoding process, the P2S transformation, and the S2S transformation

can be considered successful attempts to deal with sequence-to-sequence, sequence-to-

structure, and structure-to-structure correlation, respectively. Furthermore, at least in
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our view, the PHD architecture performs a two-level unfolding of a fixed-point strategy

for secondary structure prediction.

4.5.2 PSIpred

PSIpred (113) is widely acknowledged as one of the most effective secondary structure

predictors, inspired to PHD. The main innovation of PSIpred was to use the stan-

dard PSSM matrices used by PSIBLAST to encode proteins. Its success can be then

explained with the new effective way to use inter-structure correlation information.

Protein PSSM 
Enc.

Uniref 90
protein database

PSI-Blast

P2S MLP 1

P2S MLP 4

P2S MLP 3

P2S MLP 2

Output
Recomb.

S2S
Enc. S2S MLP Decode

(H, E, C)

Predictions 
3xL

Final
smoothingPrediction*

Prediction
3xL

Figure 4.4: PSIpred architecture

Figure 4.4 sketches the architecture of PSIpred1. A sliding window of 15 positions is

used to feed the networks with the information found in the PSSM profile. In particular,

four MLPs are independently trained to predict a 3-bit vector, used to assert the label of

the central residue of the sliding window (primary-to-secondary structure prediction).

Their predictions are then combined by means of a suitable MLP, entrusted to issue

the final prediction (secondary-to-secondary structure prediction). The input of this

second-layer expert is constructed upon the average of the predictions issued by the

first-layer predictors. A training input for the S2S layer includes additional global

information: the average of the predictions given for each structure type, the protein

length and the relative position of the sliding window within the chain.

1Compliant with the version 2.6 of PSIPRED, as downloaded from

http://bioinf.cs.ucl.ac.uk/downloads/psipred/
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In the post-processing, some biologically-inspired rules are used to find and revise

parts of the prediction that are in fact not likely or impossible to occur. For example,

single helices are removed, and single structures in general are disfavored. Following

the analysis proposed in Section 4.4, this kind of post-processing can be viewed as a

way to exploit the auto-correlation within structures.

4.5.3 SSPRO

SSPRO (115) is a predictor whose distinctive characteristic is the use of bidirectional

recurrent neural networks (BRNN). BRNNs are adopted in order to overcome the limits

of MLPs in considering only a window of fixed size to perform the prediction. This

is achieved with three components (Figure 4.5): the central component is related the

Figure 4.5: The BRNN architecture adopted by SSPRO.

residue to be predicted, the other two components are related to the forward and the

backward rest of the protein chain, represented by a BLAST or PSI-BLAST profile.

Eleven BRNN, trained separately with different parameters, are then combined to

obtain the final prediction.

The approach adopted by SSPRO can be viewed as an attempt to enhance the

sequence-to-structure correlation: the presence of the forward and backward nets per-

mits to take into account a wider context than permitted by a simple sliding window.

On the other hand, the improvements obtained with the use of BRNN are limited by a

more difficult training. In fact, according to the EVA automatic evaluation, although
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cutting-edge, the performance of SSPRO did not really overtaken other simpler neural

network methods like PSIPRED. Porter (116) is an evolution of SSPRO with enhanced

input encoding, output filtering, bigger ensembles and, in later version, structure as-

signment from homologues (where available)(136). Porter is the system reported to

have the best performance in the EVA experiments1.

1It is worth noting that the assessment of the performance of Porter is in part controversial due to

the use of the structural assignment: the exploitation of inter-structure information is in fact excluded

by the competitors (see Section 4.4).
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Chapter 5

GAME: a Generic Multiple

Expert Architecture for

Real-World Prediction Problems

Machine learning is a branch of artificial intelligence concerned with the design and

development of algorithms trained on empirical data. Machine learning techniques can

be adapted to a wide variety of prediction problems related to the fields of data mining

and pattern recognition. A particularly challenging category of problems are “real

world” problems, i.e. problems arising from real measures in a real environment.

Real-world problems (RWPs from now on) may be related to human activities,

like text categorization or natural language processing, and/or interaction with the

environment, like obstacle detection for automatic driving or robot movement. Many

RWPs arise from biometrics and bioinformatics.

RWPs are opposed to “toy” problems (TPs), which may be games or abstractions

of real world problems. Typical TPs classification problems define a hyperspace of

features and two or more subspaces within it that have to be recognized one from

each other. The same definition is also appropriate for RWPs classification problems,

after a first phase of feature extraction and labeling, with the difference that the exact

boundaries of these subspaces are unknown.

More than the intrinsic complexity what distinguishes RWPs from TPs is the knowl-

edge of the environment, which can be known with infinite precision in TPs. In RWPs

measurement and labeling are uncertain, the amount of available examples is limited
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and the distribution of the examples is not controlled. Then, the main issues are differ-

ent: the prediction/classification algorithm is the central issue in TPs, whereas feature

extraction and labeling are often the most critical issues for RWPs. The limited train-

ing data available –and its sampling– is another issue in the design of ML systems for

RWPs.

Given a set of labeled data, many machine learning algorithms are able to give an

estimation of the input-output relationship, and some algorithms –or combinations of

them– may be more suited than others depending on the characteristics of the space

of features. For example, a binary classification can be dealt with Bayesian classifiers,

multi-layer perceptrons (Section 3.4), support vector machines (139), nearest-neighbors,

decision trees and many other techniques1. Meta learning techniques, like bagging(140)

and boosting(141), are general techniques for building ensemble classifiers from base

classifiers. ECOC decomposition (142) permits to build ensembles for multi-class clas-

sification from binary classifiers.

What algorithm is the best is not known a priori, and most algorithms have to

be properly configured to work at their best. Human expertise must be often inte-

grated with iterative optimization, training and evaluating the system with different

parameters (“test and select” approach (143; 144)). Specific software tools help running

different algorithms and configuration and assessing them with a graphical or scripting

interface.

Widely acknowledged tools of this kind are WEKA (145) and RAPIDMINER (146).

The MATLAB R© ( c© the MathWorks) environment, with the help of specific toolboxes,

is also widely used within the data mining and pattern recognition communities. All

these tools provide wide support for the algorithmic part of the work, and almost every

known algorithm is made available. They can load data in various formats, provide data

pre-processing facilities and allow to build ensembles graphically, programmatically, and

through meta-learning algorithms.

A limit of these tools is that they operate at a level in which both the feature ex-

traction and labeling tasks have been accomplished. This can be a big limitation in all

these cases in which the input features are obtained after a complex extraction from

structured data, such as texts, signals, images, or sequences. All kinds of data that we

commonly see in real-world problems. In this cases, other pieces of software must be

1See Duda et al. (38) for a comprehensive guide about pattern classification.
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written separately do deal with feature extraction, using specific techniques or general

approaches like extraction with sliding windows or similar. Although may not necessar-

ily be bad having a separate pre-processing that builds the datasets needed, it may be

a big limitation when the pre-processing have to be designed and tested together with

the rest of the system. The feature extraction task is frequently more difficult and with

more open question than the prediction itself. With a uniform approach feature and

labeling may be parametrized in order to take advantage of comparative experiments

together with the prediction task. The presence of a separate pre-processing can be

also annoying when a released of the prediction system is required, for example as a

stand-alone application, an independent API, a web service or a server.

Another limitation is related to the explosion of memory requirements caused by

the duplication of data due to the extraction with sliding windows from structured

data. In fact, the cited tools deal with vectors of features which are loaded statically,

and running out of memory is quite common. For example, a single 250 × 250 image

encoded with 8 bits goes from the original 62.5 KB up to 4 MB occupied using 8 × 8

sliding windows, and thousands of such images may be available for the training.

Secondary structure prediction, previously described in Section 5.3, is one of those

problems which unveil the limitations of common machine learning tools and can take

advantage of a new approach tailored for real-world problems. In particular, studies

about input encoding, output encoding and prediction architecture can take advantage

of a modular architecture which allows to experiment all of the related issues in the

same framework. These needs, together with the need of release prediction servers and

stand-alone programs, leaded to the development of a new software architecture and

framework, GAME.

GAME is a software architecture and a framework written in Java that supports

rapid prototyping and testing of classifiers and predictors for real-world problems,

from a multiple-expert perspective. It provides a graphical environment that allows

to configure and connect automated experts (i.e., classifiers or predictors), so that non-

experienced users can easily set up and run actual systems. The version of GAME

described in this document is 2.0, an evolution of the first release described in (8) and

(9). The main features of GAME are:

61



5. GAME: A GENERIC MULTIPLE EXPERT ARCHITECTURE FOR
REAL-WORLD PREDICTION PROBLEMS

• Plug-in Architecture. Critical modules, described by simple interfaces, can be

loaded and interchanged at runtime, with the help of a graphical user interface

XML descriptors.

• Support for real-world problem modeling. GAME allows to model the overall

transformation required to solve a given problem from raw data to a readable

prediction. Data are loaded, coded with one of the available (or created ad-hoc)

modules, processed, and then decoded in a usable format.

• Support for comparative experiments. A graphical interface allows to incremen-

tally set up of batteries of experiments whose results are automatically logged for

separate analysis.

• Support for expert combination. Experts are defined as autonomous entities.

They can be combined in multiple ways, making it easier to devise and implement

actual systems characterized by complex software architectures. GAME allows

to devise various software architectures, recursively combining together and/or

refining experts defined separately.

• Just in time dataset construction. The possibility of defining just-in-time dataset

iteration prevents a system from running out of memory also with large amounts

of structured data. A caching mechanism prevents the useless performance wors-

ening. Just-in-time datasets permit also to implement training strategies with

synthetic or resampled data which changes at every iteration.

• Portability. Portability is guaranteed with the use of the Java language and strict

design requirements. A system built with GAME does not require any kind of

installation, and can be directly run from a simple unpack and run bundle.

• Support for final release. Data is handled in its natural format. As consequence,

prediction systems built with GAME are ready to be deployed and used in a real

environment with very few adaptations. Furthermore, any component of a system

built with GAME can be serialized and loaded with both XML and the Java-

integrated serialization API. Thanks to these features and to the full portability

the release of a prototype is straightforward for all the common operative systems.
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5.1 The Generic Architecture

5.1.1 GAME Approach to Prediction

The core prediction machinery of GAME is based on the decomposition of a problem

in five independent actors (Figure 5.1), which define a problem by its input and output

Input
Data

Instance
data

Output
Data

Prediction/
Classification

Machine learning system

Formatting/
extraction

Input
Encoding

Output
EncodingLabelling

Learning
AlgorithmSource

Figure 5.1: A generic prediction problem decomposition.

data types. The actors are:

• Input Data – represents an instance of data to be predicted. No limits are given

to its definition: for instance, it could be a vector, a text, a pointer to a file, a

protein primary structure, a signal or an image.

• Output Data – represents an instance of what we are predicting, and has a twofold

value; in the training phase, it represents the target data. In the prediction phase,

it represents the predicted data.

• Instance Data – defines an instance of data in terms of input/output, the loading

format, the iteration and evaluation policies. An Instance Data contains an Input

Data and Output Data. The type of Instance Data is a general parameter, unique

for the whole system.

• Input Encoder – Encoders are the interface between data and learning algorithms.

Input Encoders apply a transformation on an input data, returning an Encoding

object. An Encoding is a stream of training instances, i.e. normalized vectors

of fixed size directly usable to feed a learning algorithm. For atomic data, the

input encoding applies a single transformation on the target data. For structured
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data, an Encoding typically wraps a matrix in which the the different training

instances can be extracted with sliding windows or other mechanisms.

• Output Encoder – applies a transformation on an output data, returning an En-

coding. Output Encoders apply a reversible transformation, so that the original

output data which originated an encoded instance can be obtained from it.

Some encoders may be data-specific, others may be suitable for classes of data. For

instance, nominal data can always be managed by one-hot transformation, whereas

PCA transformations are quite a general way to reduce a vectorial input space. The

decomposition proposed in GAME promotes the reuse of learning methods, Encoders

techniques and data types, with the development of hierarchies in the same object-

oriented framework.

A Predictor is an object able to return a (predicted) Output Data from an Input

Data. It is composed by an Expert and a Decoder. Experts are the central comput-

ing element in GAME; they give a prediction from an Input Data. Predictions have

an encoded form, which can be reverted back to the human-interpretable data which

originated it with the help of a Decoder (see Chapter 7 for an example of output

encoding/decoding for secondary structure prediction).

A Learner is an Expert with learning capabilities. A base Learner contains a Learn-

ing Algorithm (a generic wrapper of a learning algorithm) an Input Encoder, an Output

Encoder. These modules can be chosen from the palette of available modules for the

actual Instance Data. A Learner can be trained by a Meta Learner, which may build

a single learner or an ensemble of learners. A Learning Algorithm knows how to train

itself from a training set, in the form of Dataset Iterator. A Dataset Iterator gives the

training instances at request, abstracting from the encoding phase. Dataset Iterators

can be constructed from Datasets, which represent collection of instances, by specifying

the Input and Output Encoders to be applied to every instance.

5.1.2 Expert Interaction

A notable characteristic of GAME is the native support for handling the interac-

tion among software experts. Multiple experts have been mainly adopted in the

evolutionary-computation and in the connectionist communities. In the former, the

focus is on devising suitable architectures and techniques able to enforce an adaptive
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behavior on a population of individuals, e.g., Genetic Algorithms (GAs) (147), Learning

Classifier Systems (LCSs) (148), and eXtended Classifier Systems (XCSs) (149). In the

latter, the focus is mainly on training techniques and output combination mechanisms;

in particular, let us recall the pioneer work of Jordan’s Mixtures of Experts (150) and

Weigend’s Gated Experts (151). Further investigations are focused on the behavior of

a population of multiple (heterogeneous) experts with respect to a single expert (152).

Expert interaction is realized through has-a relationships. In particular, an expert may

belong to one of the following categories:

• Ground Expert: A ground expert is an independent expert, able to output its

classification or prediction without resorting to any other expert. Among the

ground experts, let us particularly recall (i) Learners, (ii) Wrappers. Learners,

which represent the core of GAME, are concerned with the adoption of machine

learning techniques or strategies. Available supervised techniques include MLPs

and Bayes classifiers. Principal component analysis is also available among un-

supervised techniques. Wrappers allow the embedding of external classifiers or

predictors, including available web services or external programs that one wants

to use. They also allow the implementation of specific (hand-crafted) behaviors.

• Refiner: Refiners are the technological solution adopted in GAME for implement-

ing sequential combinations of experts (i.e., pipelines). A Refiner is an Expert

that can embed another Expert. A pipeline of Experts can be easily created by

repeatedly applying refinement. Once generated, a pipeline becomes a compound

Expert entrusted with processing available data that flow along the pipeline.

Each Expert in the pipeline, while processing information output by the previous

expert, can be optionally supplied with additional information.

• Combiner: Combiners are the technological solution adopted in GAME for im-

plementing parallel combinations of experts. A combiner is an Expert that can

embed other Experts. A custom ensemble of Experts can be easily created using

a Combiner. Once generated, an ensemble can be considered a compound Expert

in which the Combiner collects and processes the output of other experts.The

following output combination policies have been implemented so far:
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Figure 5.2: GAME experts: is-a and has-a view

– Averaging (AVG). The prediction is given by averaging over the set of in-

volved experts (separately for each residue).

– Weighted-Averaging (WAVG). A variant of averaging, where the contribu-

tion of each expert is measured in accordance with the reliability enveloped

in the prediction.

– Elite Averaging (EA). A variant of averaging, where only a given percent-

age of experts are allowed to participate to averaging. Experts are ranked

according to their reliability and selected for averaging until the given per-

centage is reached.

– Majority Voting (MAJ). Each expert issues a single vote and then the most

successful label is selected.

– Elite Majority Voting (EM). A variant of majority voting, where only experts

with a reliability that overwhelm a given percentage are allowed

– Stacking (STK). A learner is trained on the outputs provided by the set of

involved experts upon several training inputs.

Mixture of Experts can be also realized, thanks to the possibility to specify gating

functions to individual experts together with a combination policy.

5.2 GAME Framework: Implementation Details and

Standard Modules

The GAME software is completely written in Java 6.01 with the integrated development

environment NetBeans2. From a design-oriented perspective, the “divide et impera”,

1http://www.java.com
2http://netbeans.org
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the object-oriented programming polymorphism and code refactoring (153) principles

have been widely applied. The Model View Controller pattern (154) has been applied at

different levels to separate the logic of the system from its configuration. System logic

is based on the interaction of a hierarchy of system interfaces that represent pluggable

modules. In order to guarantee the maximum independence between modules, only

system interfaces and standard types are allowed as parameters of exported operations.

A module in GAME is a Java class in a specific package which implements a specific

interface. Implementing a new module, with the proper use of inheritance from the

standard modules available, usually requires the implementation of just a few methods.

Hierarchies of standard modules provide support for configuration and implement

the main low-level operations and commonly used operations. These modules deal with

configuration with automatic field inspection and annotations, and can be configured by

graphical interface or by XML descriptors. XML descriptors, or alternatively the Java

serialization API, permit to store and retrieve the system configuration and modules

from run to run. Both the possibilities are given because each type of serialization

has its good points and drawbacks. While the serialization API generates compact

and fast object representations, it is more sensitive to changes in the implementation

than a more abstract descriptor. XML descriptors give also the possibility to edit the

configuration manually, so giving the possibility to rapidly diversify experiments with

text editors’ search/replace or copy/paste features.

The GUI is the easiest way to generate configurations. It is implemented using the

standard Java Swing lightweight library and it is based on a mixture of ad-hoc and

automatically generated configuration windows.

5.2.1 Defining and Running Experiments

The most important use of GAME is defining experiments. An Experiment is a module

which is configured by choosing and configuring other modules. The configuration can

be carried out by editing an XML file or, more easily, with the graphical user interface

provided. Different modules contribute to defining an Experiment, the most important

being the type of Instance Data considered and the main Predictor. Figure 5.3 shows

the modules involved in the configuration of an Experiment.

In GAME, Experiments are runnable modules which define the computation flow.

An experiment generally initializes and tests a Predictor according to its configuration.
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Figure 5.3: Experiment definition. A dotted line stands for the instantiation and/or

configuration of a module, a ‘multiple sheet’ box indicates a palette of alternative modules

to choose from.

A Settings Manager is devoted to the configuration of the type of data and general

settings, such as logging, caching, dataset resource files. A Module Manager, designed in

accordance with the Factory design pattern, is responsible for system module handling.

Figure 5.4 shows the main experiment configuration GUI. Different experiments can be

configured and launched in the same session.

5.2.2 Defining GAME modules

All modules in GAME have some common properties, which permit them to be con-

figured and serialized in the same way. All modules must implement the standard

Java interfaces Cloneable and then provide a public clone method, with deep copy

implementation. They must also implement Serializable, in order to be saved and

reloaded with the standard Java serialization API. Other custom interfaces required to

GAME modules are:

• Configurable. Defines the configuration with a Map-like interface, with
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Figure 5.4: The main configuration window of GAME. It permits to define and run

experiments.

key-value properties. The method getOptions gives the map of key-values,

getOption returns a value for a key, setOptions and setOption allow to

modify the configuration.

• XMLConfigurable. Defines getXMLSettings, which returns an XML descriptor of

the configuration, and loadSettingsFromXML, which can load the configuration

from an XML descriptor. In addition, methods for default configuration loading

and saving are defined.

• XMLLoadable. Defines methods for XML serialization.

Although configuration and serialization may seem redundant definitions at first they

are two very distinct concepts: configuration is thought to be user-friendly and defines

the initial state of an object (for example, before a training process), while serialization

can define any state.

Different implementation may be given which satisfy all the listed requirements,

the simple one being to inherit from the class GAMEModule. Almost all the standard
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modules inherit, directly or indirectly, from it1.

A GAMEModule object considers all its public fields as part of the configuration

(i.e. values of the map returned by getOptions), and implements all the constraints

cited above without the need of any further configuration. All the standard types

and modules are handled through automatic introspection of the fields. XML config-

uration is implemented with a recursive approach, while XML serialization uses the

external library XStream2. The method clone is implemented resorting to Java se-

rialization. The method getDocumentation automatically builds the documentation

for the module. The method getClassDescription can be overridden to specify a

general description for a module, while the annotation Description on a parameter

field permits to add a documentation for that parameter.

Another way to provide the documentation, together with safe validation controls,

to a configuration value is to define it as a Value Holder. Value holders are wrappers

of simple and more complex types which wrap a value. The value can be set only with

a specific method, which can perform all the validation controls needed.

A further requirement which is requested to some modules is to be inside a specific

package; in particular, modules which could be substituted each other should be in the

same package. Standard packages are fixed for the standard modules, but one could

define her hierarchy of replaceable modules and choose the package for that modules

at her own will. If all the requirement are followed when implementing a module, the

graphical user interface of GAME includes it in the list of selectable modules, permits

to read the documentation provided and automatically generates a configuration panel,

with facilities to load and save the configuration for that module.

Let us see an example code:

public class MyModule extends GAMEModule {

@Description(description="My first parameter")

public int par1 = 0;

public boolean par2 = true;

public InstanceData par3 = new CSVData();

private double hiddenState = 0;

1In most of the rest of the document the inheritance from GAMEModule and the implementation of

the cited interfaces is not indicated for the sake of clarity.
2http://xstream.codehaus.org/.

70

http://xstream.codehaus.org/


5.2 GAME Framework: Implementation Details and Standard Modules

@Override

protected String getClassDescription() {

return "My first module";

}

}

The above code is all it’s needed to create a documented module named MyMod-

ule, with three parameters par1, par2, par3, and with an additional variable defining

the state. The framework automatically creates a configuration and a documentation

window for that module, both displayed in Figure 5.5. That window is opened auto-

Figure 5.5: Screenshot of an automatically generated configuration and documentation

windows for a GAME module.

matically at need if the module is part of the configuration of a module recognized by

the system; otherwise, it can be displayed with the statement new OptionsDialog(new

MyModule()).setVisible(true). From the menu file of the configuration window is

possible to save and load the state and the configuration. The XML configuration

descriptor for MyModule is:

<mymodule class="game.MyModule" >

<par1>0</par1>

<par2>true</par2>

<par3>

<csvdata class="game.datahandling.dataenvelopes.CSVData" >

</csvdata>
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</par3>

</mymodule>

While the XML configuration descriptor is:

<object-stream>

<game.MyModule>

<par1>0</par1>

<par2>true</par2>

<par3 class="game.datahandling.dataenvelopes.CSVData">

<id>NOT-INITIALIZED</id>

<input class="game.datahandling.dataenvelopes.base.VectorData">

<encoder>

<size>-1</size>

</encoder>

<value class="double-array"/>

</input>

<target class="game.datahandling.dataenvelopes.base.VectorData">

<encoder>

<size>-1</size>

</encoder>

<value class="double-array"/>

</target>

</par3>

<hiddenState>0.0</hiddenState>

</game.MyModule>

</object-stream>

5.2.3 Standard Modules for Prediction an Learning

Defining modules related to prediction and learning is the most important use of the

GAME framework. This section is a reference for the user of the framework who wants

to start the study of a new prediction problem.

As shown in Figure 5.6, each module described in Section 5.1.1 is defined by an

interface in the framework. A hierarchy of interfaces and subclasses starts from each

interface. Classes which implement these interfaces, located in the proper sub-package

of the package of the interface, constitute the plugins that are automatically handled
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Figure 5.6: Base GAME prediction and learning system modules: UML class diagram

(built by code reverse engineering with UML plugin for NetBeans 6.7).

by the framework. The user who wants to create a new module must implement one

of those interfaces, usually extending one of the existing general implementation, and

putting it in the proper package.

The main task in the definition of a new problem is the definition of a module for the

Instance Data. This is done by implementing the interface InstanceData. An Instance

Data contains two instances of Data, representing the input and the target. Different

off-the-shelf general Data modules are available to choose which can be directly used or

extended to implement distinctive features of the problem. In a typical case, a new type

of input Data must be defined for a new problem, while one of the available modules

can be generally found which properly adapts to the target data.

Experimenting different ways to encode data by defining different input and output

Encoders is the best way to exploit GAME. Encoders are parametrized for a Data type

or a hierarchy of Data types, and return an instance of Encoding. It is not usually

required to define a new type of Encoding, as well as it is not required to define a new

Dataset or Dataset Iterator.
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Standard Experts and Learners are generally used as they are. Defining a new Ex-

pert may be useful to implement an ad-hoc algorithm (for example a naive algorithm to

be compared with other techniques), to experiment new post-processing or combination

techniques between experts, or to wrap external programs or web services.

Ad-hoc algorithms can also be realized by implementing the simple interface

PredictAlgorithm. Implementing the interface LearningAlgorithm permits to add a

new Learning Algorithm to the system.

In the following sections, all the interfaces introduced above are explained, and the

standard general modules available for each one are described.

5.2.3.1 Instance Data

Defining an Instance Data requires the implementation of the interface InstanceData,

which main methods are1:

• getInput – returns the input Data for the instance. The straightforward imple-

mentation is a getter of a inputData attribute; more advanced implementations

can generate the data instance just-in-time, for example loading it from an ex-

ternal resource or compute it to generate synthetic data, or load a random Data

from a set of similar Data.

• getTarget – returns the target Data for the instance. The same observations of

getInput are valid for getTarget.

• loadDataset – returns a Dataset for the current Instance Data type, loading

data by parsing a file. It is semantically a class method, but it is implemented as

an instance method due to the limitations of the Java language, which does not

allow to specify class methods.

• getDatasetIterationPolicy – returns a DatasetIterationPolicy, a factory of

DatasetIterators. Changing the iteration policy is the best way to handle per-

sonalized sampling of data instances or, for sequential data, the order of window

extraction.

1Implementation of other methods than the ones indicated can be required; standard Java methods

such as equals, hashCode, toString and clone, as well as methods whose implementation is straight-

forward or not necessary are not indicated here and in the next sections for the sake of brevity.
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• getEvaluator – returns the evaluation module to be used to test the Predictor,

as an instance of Evaluator (see Section 5.2.5 for more information).

Two main types of Instance Data are available as abstract classes, which define

getInput and getTarget with two attributes for input and target Data, and give a

default implementation of getDatasetIterationPolicy:

• AtomicInstanceData – uses by default a static sequential dataset iteration policy

(FastAtomicDataDatasetIterator, see Section 5.2.3.7).

• StructuredInstanceData – uses by default a sequential iteration over instances

and windows (StructuredDataDatasetIterator, see Section 5.2.3.7).

Instance Data modules are required to be located inside the package

game.datahandling.dataenvelopes in order to be recognized from the system A

general-purpose implementation of Instance Data is CSVData. It reads data from a

CSV file and interpret the values as vectors of floating points (VectorData, see Section

refsec:data).

5.2.3.2 Base Data

Data types are statically defined within the main Instance Data type. Although they are

not pluggable modules, their definition is not different from other standard modules,

except the fact that they do not require any save/load machinery. Data types are

described by the interface Data, which requires the implementation of the following

methods:

• getClassNumber. The number of possible different values for that data. The value

1 is interpreted as if infinite values are allowed. Knowing the number of possible

classes allows to use general purpose encoding methods for multiclass data.

• getDefaultEncoder. Returns an instance if the default Encoder for that data.

Many kinds of Data are available off-the-shelf. The most important ones are shown

in Figure 5.7. At the first level, four different types of Data are defined:

• AtomicData. Represents a simple data embedded in an AtomicInstanceData.
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Figure 5.7: Hierarchy of data types in UML.

• StructuredData. Represents data embedded in an StructuredInstanceData.

Structured Data can be expressed as a sequence of other data. The method

length returns the number of element contained, and the method get returns a

data element at a specified position.

• MultiClassData. Represents data whose class number is defined. Atomic and

Structured Data can also be multi-class.

The cited types are specialized according to the type of data which they represent.

SingleElementData embed a single –non multi-class– value, such as a floating point

(FPData) or a vector (VectorData).

Common types of multi-class data are integers (IntegerMultiClassData), booleans

(BinaryData), characters (CharacterMulticlassData).

Structured Data are distinguished according to the type of data contained. For

example, StringData contain CharacterMulticlassData, while SignalData contain

VectorData.

AutoEncodeData represent data which embeds multiple values. Its subclasses

can express auto-encoding values by specifying fields marked with the annotation

AutoEncode.

76



5.2 GAME Framework: Implementation Details and Standard Modules

5.2.3.3 Encoders and Encodings

Defining Encoders is a common operation while working with the GAME framework.

Encoders can be defined by implementing the interface Encoder, which is parametrized

with the Data which encodes, Din. The main methods of the interface Encoder are:

• encode: returns an instance of Encoding for the Data given in input.

• isEncodable: returns true if the data given as input can by dealt with this

Encoder. In practice, it verifies whether the type of the parameters is subtype of

Din1.

in the definition of a new module, the interface Encoder is never implemented directly;

one of the derived interfaces is implemented instead, according to the role of the Encoder

in the System.

• InputEncoder: a marker interface, indicating an Input Encoder. An Input En-

coder is not require to return a reversible Encoding. The automatic configu-

ration system automatically recognizes Input Encoders located in the package

game.encode.input.

• OutputEncoder: indicates an Output Encoder, which returns a reversible En-

coding and defines the method decode. The method decode is able to reverse

the method encode and it is also able to decode an Expert’s output. New Out-

put Encoders should be put inside the package game.encode.output. Then, the

simplest Decoder is a module that just calls decode on Expert’s output.

• RefinementEncoder: used by Refiner Experts to implement pipelines. A Refiner

Encoder may apply some transformation to the Encoding produced by the Expert

embedded in the Refiner. Refinement Encoders are expected to be located inside

the package game.encode.refinement.

Some Encoders can be suited both for input and output; in this case, they should

implement both InputEncoder and OutputEncoder. This input/output encoders are

located in the package game.encode.generic.

Figure 5.8 shows the standard hierarchy of Encoders. Being Encoders and Data

1An explicit implementation is required as soon the Java language does not provide a way to control

the parametrized type of an object at runtime.
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Figure 5.8: Hierarchy of base Encoders in UML.

types bound one each other, the hierarchy of Encoders partially resembles the hierarchy

of Data.

Multi-class data can be always dealt with a CodeMatrixEncoder. Code matrix

is a general reversible method to associate a vector data with a limited number of

instances. It can be used to implement simple binary codes or more complex error-

correcting output codes, and decoding is performed with a minimum Hamming distance

criterion.

One-hot coding (OneHotEncoder and StreamOneHotEncoder) is a widely special

case of code matrix coding: a binary vector, with length equal to the number of classes,

is used, and the position i the vector is high to indicate the ith class.

Encoders for Structured Data are based on Profiles, which are matrices in which

each column is related to a Data sub-element. They are implemented with the module

ProfileEncoder. A Profile Encoder produces a WindowProfileEncoding, which ex-

tracts sliding windows from the profile (Figure 5.9). The size of the window is specified

by the parameter windowSize.

A sliding window for position j of size nw includes all profile columns in the range

[j− nw
2 , j+ nw

2 ] For the positions out from the profile an additional input can be added

78



5.2 GAME Framework: Implementation Details and Standard Modules
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Data
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getWindow(4)
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ProfileEncoder

windowSize:3 
inOutadditionalBit:true

globalEnhancements:false

windowMirror:false

Figure 5.9: Example sliding window extraction.

(parameter inOutPositionAdditionalBit) to indicate whether the position is inside or

out the profile. As for the values, two alternatives are given – (i) set all the out of

bounds elements to zero, (ii) mirror values, i.e. taking j + nw
2 when j − nw

2 is out and

vice-versa.

Global values for the full profile can be appended to each window enabling the

parameter globalEnhancements and specifying the method initializeGlobalInfo.

ProfileEncoder derives from CachingEncoder, which implements a mechanism to

cache the Encodings when calculated the first time. Caching is based on dictionaries

of soft references, in order to automatically be safe from memory leaks.

A separate attention deserve Refinement Encoders. DirectRefinementEncoder

is a proxy of the embedded Expert’s output and is suited for all kinds of data.

RefinementProfileEncoder can be used for Structured Data when the Output

Encoder of the embedded Expert is a Profile Encoder. A new Profile is constructed

based on the Profile of the Expert’s output, and new global values can be computed

and added to the windows. HybridRefinementProfileEncoder appends an input

Encoding (produced by an InputProfileEncoder selected among the available

modules) to the embedded Expert’s output profile.

The interface Encoding embeds the result of the encoding process performed by an

Encoder. The main method is getWindow, which gives an encoded instance as fixed-size

array of floating point numbers, and it is called to get the training instances by Dataset

Iterators. The method getWindowNumber specifies the number of windows that can be

extracted from an Encoding. Typically, the number is 1 for Atomic Data, and coincides

with the value returned by the method length for Structured Data.
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Every Encoding knows the Encoder which produced it; Figure 5.10 shows the stan-

dard Encoding classes hierarchy. ArrayEncoding and SingleWindowProfileEncoding

Figure 5.10: UML class diagram of standard Encoding modules.

are normally used for Atomic Data, whereas WindowProfileEncoding is used for Struc-

tured Data encoded with a ProfileEncoder.

5.2.3.4 Decoders

Decoder modules are located inside the package game.decoders described by the in-

terface PredictionDecoder. Since Output Encoders are able to decode their output,

the standard module which applies that conversion (SimpleDecoder) is suited for all

properly defined Output Encoders. Further Decoders should be implemented where

custom policies or post-processing operations are desired.

5.2.3.5 Experts

Defining Experts is one of the central purposes of GAME, and facilities to define, train,

test, configure, save and load Experts are all provided by the graphical interface. On

the framework side, defining a new type of Expert is not the kind of operation that is

expected to be done frequently while defining a new problem with GAME. New Experts

may be defined to implement wrappers, ad-hoc prediction or combination techniques.

The interface Expert declares three main operations:

• predict: returns an instance of OutputEncoding, which embeds the result of the

prediction.
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An Output Encoding is returned instead of the predicted data directly to use

it for further pipelines and combination and avoid the any unnecessary loss of

information caused by a decoding process.

The method predict may return a null value in the case that the Expert is not

expected to predict anything.

• getCompetence: returns a value in the range [0, 1], meaning the relative compe-

tence of the Expert for the Data given.

The value can be used in combinations, and may be a static value derived from

the knowledge of the competence of the technique applied.

Competence may be obtained with rules deriving from partition of the Data or

may simply be the performance of a validation set used during a training phase.

• canPredict: says whether the given Data can be predicted or not by this Expert.

The three main types of Expert, as described in Section 5.1.2, are represented by the

interfaces GroundExpert, RefinerExpert, CombinerExpert. Every Expert is expected

to implement one of those three interfaces. An Expert can also be a Learner (interface

Learner), or a Wrapper (interface WrapperExpert), which is a term to indicate an

independent ground Expert.

A Wrapper could “wrap” a prediction system running outside GAME, or any ad-

hoc implementation. The user of the framework can define new Wrappers inside the

package game.experts.ground.wrappers, and the GUI gives the possibility to select

and configure the defined Wrappers.

The user could also define and use its own Combiners by implementing the interface

CombinerExpert inside the package game.experts.combine. As well as other modules,

implementation of Combiners is made easier a hierarchy of general-purpose Experts.

Figure 5.11 shows a view of the main Expert hierarchy (Learners are excluded here

for the sake of clarity).

The most important implementation of Expert is EncodingBaseExpert, which fol-

lows the generic decomposition shown in Section 5.1.1, and implements a Gating Func-

tion, which defines the domain of competence of the Expert. A Gating Function can

be specified by configuring a suitable module subclass of GatingFunction (see Section

5.2.3.8). AlgorithmExpert allows to use generic and ad-hoc modules for prediction
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Figure 5.11: UML class diagram of the main hierarchy of Experts (Learners excluded).

which implement the interface PredictAlgorithm (Section 5.2.3.6), while using the

input Encoder modules.

As for Learners, two different hierarchies are defined in GAME, one simpler to con-

figure (Figure 5.12) and one more flexible thanks to the use of Meta Learners (Figure

5.13). LearningExpert and LearnerExpert are the main implementations of the

Figure 5.12: UML class diagram of the basic Learner modules.

interface Learner. Both use an input Encoder, an output Encoder and a Learning Al-

gorithm, which can be selected and configured separately. The only practical difference
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Figure 5.13: The meta-learning hierarchy of Experts (UML class diagram).

between the two is that the second needs a Meta Learner to complete its training.

Available Meta Learners include implementations of stacking(155), bagging(140),

boosting(141), rotation forests(156), ECOC decomposition (142). The class

MetaExpert handles all the mechanisms behind meta-learning, which is the

application of a Meta Learner to a Learner that produces an Expert. It is worth

noting that although most meta-learning techniques produce ensembles, the result of

their application does not produce a Combiner. This choice has been made because

the prediction units produced by meta-learners are in most of cases not independent:

their proper combination is part of the meta-learning algorithm.

5.2.3.6 Prediction Algorithms

A Prediction Algorithm applies a transformation Rni → Rno , where ni and no represent

the dimension of the input and output Encoding window, respectively. The abstrac-

tion provided by the input and output encoders allows to define problem-independent

algorithms.

Prediction Algorithms are modules which implement the interface

PredictAlgorithm and are located within the package game.algorithms. The

interface is maintained really simple, the only important method to be implemented
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being interrogate, which takes as input and output parameters simple arrays of

floating point numbers. No any knowledge of the framework is needed to implement

a Prediction Algorithm for GAME. As shown in Figure 5.14, there are processing

and learning algorithm modules. General purpose processing algorithms are feature

Figure 5.14: Hierarchy of the main generic algorithms in UML.

selection (FeatureSelectionNet) and Fourier transforms (not available yet).

Supervised and unsupervised are the two different categories of Learning Algo-

rithms. Supervised algorithms are multi-layer perceptrons (an implementation be-

ing BPNeuralNetwork) and (naive) Bayes classifiers (modules BayesClassifiers and

NaiveBayesClassifier). Unsupervised techniques include clustering (not available

yet) and principal-component analysis ((157), module PCANet). All learning algorithms

are trained resorting to a Dataset Iterator, whose implementation details can be com-

pletely ignored at this level.

Developing many different algorithms has not been been a priority in the devel-

opment of the GAME; the available algorithms cannot be compared with the wide

choice provided by tools like WEKA and RAPIDMINER. In any case, a wrapper of

the WEKA algorithms could be easily provided. On the other hand, using the al-

gorithms from WEKA would suffer of the same memory problems with big training
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sets; directly using WEKA may be a better choice where a wide comparison between

learning algorithms is wanted. An export utility is provided from the main GUI menu

allows to export a Dataset Iterator to a CSV file, choosing the desired input and output

Encoders.

5.2.3.7 Datasets

Datasets are needed to train and test predictors. Two dataset levels are considered

in GAME, in order to handle the decomposition of structured data. The first level,

represented by the interface Dataset, is a collection of Instance Data, regardless of its

specific type. The second level is represented by the interface DatasetIterator, which

wraps a Dataset iterating on the single instances obtained after the encoding phase.

Dataset Iterators are using during a training process, while Datasets are directly used

for testing purposes.

The interface Dataset extends the standard Java interfaces Iterable and

Iterator, parametrized for Instance Data. Other exported methods are:

• getCurrent – returns the current Instance Data.

• reset – resets to the initial state; the first Instance will be given by getCurrent.

• shuffle – randomly changes the order of iteration and resets the Dataset.

• join – merges the content with another dataset, avoiding duplications.

• size – returns the number of elements of the Dataset.

• getFirsts – gives a new dataset with first percent elements. For instance,

getFirsts(0.5) returns a dataset on the first half elements.

• getLasts – the twin of getFirsts for the last elements.

• iterator – given input and output Encoders, returns a Dataset Iterator over

itself.

The standard implementation of Dataset is ArrayDataset, which uses an array to

store the elements contained.

The interface DatasetIterator resembles the interface of Dataset. Being a Dataset

Iterator a wrapper of a Dataset, the method reset, shuffle, getFirsts, getLasts

85



5. GAME: A GENERIC MULTIPLE EXPERT ARCHITECTURE FOR
REAL-WORLD PREDICTION PROBLEMS

should be delegated to the embedded Dataset. The standard iteration methods hasNext

and next are also defined, with the main difference that next goes to the next element

of the iteration without returning it, to improve efficiency. The distinctive methods of

DatasetIterator are:

• getInput – returns the current input as a floating point array.

• getOutput – returns the current input as a floating point array.

• getDimension – returns the number of elements of an iteration, i.e. the number

of times that next can be called after a reset before hasNext becomes false. The

size of an iteration is constant, but may not be related to the number of elements

of the embedded Dataset.

An example use of Dataset Iterators to train a Learning Algorithm is:

class MyAlgorithm extends GAMEModule implements LearningAlgorithm{

...

public double train(DatasetIterator d) {

for (d.reset(); d.hasNext(); d.next()) {

double [] predOutput = this.interrogate(d.currentInput());

double [] obsOutput = d.currentOutput();

... //training step

}

}

}

Dataset Iterators can be composed following the Decorator pattern, which is a

common way to adding behaviors to existing objects dynamically. For example, sub-

sampling and oversampling, commonly used techniques to balance classes in learning

classification problems, can be implemented by embedding a sequential Dataset Itera-

tor and defining the method next such that next of the embedded is called a random

number of times which depends on the value of getOutput. A big advantage of this

dynamic implementation is that it fairly returns all the elements of the embedded

Dataset Iterator during the iterations, a possibility forbidden by the commonly used

static samplings. As shown in Figure 5.15, different Dataset Iterators are provided.
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Figure 5.15: Hierarchy of standard Dataset Iterators in UML.

The main different types of dataset are AtomicDataDatasetIterator, which handles

Atomic Data, whereas StructuredDataDatasetIterator handles Structured Data.

The implementation for Atomic Data is straightforward: iteration is

completely delegated to the embedded Dataset, and encoding methods are

dynamically applied to the current target to obtain the input and output windows.

FastAtomicDataDatasetIterator is a faster static implementation which stores the

input and output windows in an array instead of computing them dynamically at

each iteration.

The implementation for Structured Data uses two level of iteration: the first on

the embedded dataset, the second on the windows of the current Instance’s Encoding.

Windows are extracted sequentially in the base implementation, whereas a random

number are “picked” up by each encoding by RandomPickDatasetIterator. Each

Data provides only a subset of its inputs, according to a random choice performed

in accordance with a specific parameter, say n. In particular, a random value k is

extracted in the range [0, n − 1], then the inputs with index k, k + n, k + 2n and so

on are provided to the learning algorithm. This implementation allows to efficiently

simulate a complete random shuffling of the input values.

FileDatasetIterator directly reads data from a CSV file, and is used to directly

test Learning Algorithms on pre-encoded datasets. Other implementations are general-
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purpose decorators, and can be applied over any other Dataset Iterator.

BootstrapDatasetIterator is dynamically implements random bootstrap, which

returns a specified random percentage (with duplicates), different at every iteration.

WeightedRandomDatasetIterator allows to associate a weight to each element of

the embedded Dataset Iterator, which determines the probability of extraction of that

element during an iteration.

OversampleDatasetIterator implements the oversampling technique described

above, and finally ClassSelectiveDatasetIterator is a degenerate case of subsam-

pling which iterates only on elements of a given class.

5.2.3.8 Gating Functions

Gating Functions define the domain of competence of an Expert. Gating Function

modules are located in the package game.gatingfunctions and implement the inter-

face GatingFunction, which exports the method isIn, which says whether a given

Data is in the domain of competence of an Expert or not.

EncodingBasedExpert (and subclasses, including Learners) have a Gating Func-

tion; the method predict returns a null value if the input Data is not in the domain

of competence. Combiners do not consider the null values, thus allowing to implement

simple Mixture of Experts in which subsets of experts are specialized in different do-

mains. A Learner filters the training set in order not to include the Data out of its

domain of competence in the training.

The user could implement her own Gating Functions specialized on the type of

the input Data considered. For the cases in which the gating feature is not desired,

TrueCondition is a general-purpose Gating Function which includes all the Data in

the domain.

PythonLambdaCondition is a flexible general-purpose solution which uses a Jython

interpreter 1 to allow the definition of custom lambda function as inclusion condition

for a given data. The lambda function is in the form:

lambda d: (boolean_expression)

1http://www.jython.org

88

http://www.jython.org


5.2 GAME Framework: Implementation Details and Standard Modules

in which the boolean expression can make use of all the public methods and attributes

of the actual input data. For example, should the current data define an attribute

length, the condition could be the application of a threshold of the length:

lambda d: d.length < 10

The drawback for the great flexibility of lambda conditions is a consistent loss of ef-

ficiency; for this reason, the definition of custom Gating Functions is suggested while

working with big datasets.

5.2.4 Experiments

Experiment modules define the setup, training and test of a prediction technique. Ev-

ery Experiment contains the configuration of a Predictor, which is a wrapper of an

Expert which returns output in its natural format with the help of a Decoder, and a

SettingManager, which defines general options such as logging, caching and the default

Instance Data.

The interface Experiment defines the method runSimulation, which is launched

when an Experiment is run. An Experiment is usually divided in three logic parts:

• setup – defines the general settings and the Predictor. It is usually carried out

through the main GUI.

• initialization – initializes the Predictor. The predictor may be loaded from a file,

and a training process may be started, if needed.

• test – the Predictor is tested, according to the Experiment policy and the type

of Instance Data (further details are given in Section 5.2.5).

Experiments can be defined as modules located inside the package

game.controllers. Figure 5.16 shows the available Experiment modules. A simple

example of Experiment module is:

public class MyExperiment extends AbstractExperiment{

public SettingsManager xmlsettings;

public Predictor predictor;
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Figure 5.16: UML class diagram of the standard Experiment modules.

...

@Override

public void runSimulation() {

//Global options initialization

SettingsManager.setInstance(xmlsettings);

//initialize predictor (training, if any, is made

//automatically at the first prediction)

Dataset testSet = ModuleManager.getInstance().getTestSet();

predictor.predict(testSet.getCurrent());

//test

ModuleManager.getEvaluator().testDataset(predictor, testSet);

}

}

The code above is basically the code of the module SimpleExperiment, excluding log-

ging and exception handling. Other types of experiments may operate on the predictor

or the test set, the current training set (which can be set on the Module Manager), or

the Predictor.

KFoldExperiment defines a k-fold cross validation test by creating custom training

and test set dividing the initial training set in subsets and initializing and testing

different predictors with the same given configuration with them.

IncrementalTestExpertsExperiment iteratively builds and tests Predictors whose

embedded Expert is a Combiner, adding an Expert to the Combiner at each iteration.
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RepetitionExperiment repeats the same base Experiment a number of times, and

displays the details of each experiment and the average of the result for all experiments.

5.2.5 Evaluation

Experiment modules evaluate predictors with Evaluators, which are modules able to

test a Predictor on a single Instance Data or on a Dataset. Evaluators are located

inside the package game.evaluators, and implement the interface Evaluator, which

exports two methods:

• getScore – takes a Predictor and an Instance Data, and returns the score for

that Instance as a floating point.

• testDataset – takes a Predictor and a Dataset, and returns the average result as

a structured structure of type Score. A score implements some basic arithmetic

operations with other objects of the same type, and can be printed out in a

readable format.

Logging is an important operation carried out during the evaluation: the class Msg

provides standard methods to display and log different types of result, in order to be

retrieved and visualized once the experiment is terminated.

Three implementations of Evaluator are available in GAME 2.0:

• ConfusionMatrixEvaluator – implements evaluation based on confusion matrix

(see Section 4.3.1. It can be applied to all AtomicMulticlassData, and its score

displays the values of the confusion matrix together with standard measures of

accuracy, precision, recall and Matthews Correlation Coefficient.

• StructuredDataConfusionMatrixEvaluator – implementation of confusion ma-

trix for StructuredMulticlassData. Structured Data is considered as a sequence

of AtomicMulticlassData.

• ContinueOutputEvaluator – can be applied to floating-point based Data (i.e.

DoubleData and VectorData); measures the performance as Mean Absolute Er-

ror (MAE), Mean Square Error (MSE) and, for a Dataset, with the Pearson’s

correlation coefficient, considering the target and predicted output as two differ-

ent signals.
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5.3 GAME for Secondary Structure Prediction

In this section, the implementation of the problem of secondary structure prediction

with GAME is detailed. Firstly, how the problem have been defined by its custom Data

types, representing a protein with its primary and secondary structure, is described.

Secondly, the alternative input, output and refinement encoding modules are presented.

Thirdly, the standard prediction architecture and parameters, from which are built

the prediction systems described in the following Chapters, is exemplified. Two case

studies are finally presented: a reproduction of the predictor PSIpred and a comparison

of combining policies.

5.3.1 Problem Definition

The module HECProtein describes the Instance Data type for SSP. As shown in Figure

5.17, Input Data is realized with the type PrimaryStructure, while Output Data is

realized with the type SecondaryStructure.

Figure 5.17: UML class diagram of the classes involved in the definition of the SSP

problem.

Both primary and secondary structure are subclasses of StringData, parametrized
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with atomic Data types derived from CharacterMulticlassData: AminoacidData and

SecondaryStructureElementData. Subclasses of CharacterMulticlassData are re-

quired to define the alphabet of competence, which is ‘ARNDCQEGHILKMFPST-

WYV’ for amino acids and ‘HEC’ for secondary structure elements.

The iteration policy of HECProtein is regulated by the parameter

randomPickSkip. When the value is 1, a StructuredDataDatasetIterator is used.

A RandomPickDatasetIterator is adopted otherwise, and randomPickSkip is passed

to it as parameter. The random pick iteration in order to avoid possible skewness due

to the related of consecutive encoding windows. A random pick value of 10 have

shown to speed up the training of MLPs with backpropagation.

Although the StructuredDataConfusionMatrixEvaluator is perfectly suited, a

custom Evaluator (SSPTester) is used to evaluate SSP, in order to adopt all the stan-

dard evaluation metrics (as described in Section 4.3.1).

5.3.2 Input Encoders

Input Encoders for SSP can be implemented as subclasses of InputProfileEncoder,

parametrized for the PrimaryStructure Data type. Although general encoders such as

StructuredDataOneHotEncoder and CodeMatrixEncoder are perfectly suitable, best

performances are obtainable with custom techniques exploiting evolutionary informa-

tion (see Section 4.4).

The following input encoding methods have been implemented so far:

• PR – PrimaryStructureOneHotEncoder is an alias of the standard

StreamOneHotEncoder for primary structures. Each amino acid is associated to

a bit in a vector with 20 elements.

• SM – ScoreMatrixEncoder encodes the k-th position of the target sequence with

the k-th row of a substitution matrix (see Section 3.2.1).

• APP – AminPropertiesProteinEncoder encodes an amino acid with a four-

value vector indicating the properties: hydrophobicity, volume, charge, number

of atoms in the side chain (see Section 2.4.1).

• CHE – ChemicalPropertiesEncoder considers an amino acid as belonging to

one of the eight chemical classes (see Section 2.4.1).
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• FR – FrequenciesEncoder encodes the k-th position of the target sequence with

the substitution frequencies (in the range [0, 1]) estimated in accordance with the

k-th position of a corresponding multiple alignment.

• ( OCC) – OccurrencesEncoder profile elements are calculated as substitution

occurrences instead of frequencies. Basically, it is a Frequency Encoder with a

different normalization criterion.

• PSSM – PSSMEncoder represents the standard position-specific scoring matrix

(PSSM) computed by PSI-BLAST (see Section 3.2.4).

• SB – SumBlosumEncoder implements the encoding method proposed in MASSP3

(158), which linearly combines rows of a BLOSUM matrix, weighting them in

accordance with the frequencies of the multiple alignment.

• SLB – similar to the SB, SumLinearBlosumEncoder linearly normalizes the scor-

ing matrix before making the sum. See Chapter 6.

• RSLB, WSLB, BPSLB – RankSumLinearBlosumEncoder,

WeightedSumLinearBlosumEncoder and BandPassLinearBlosumEncoder

represent variants of SLB that use different threshold criteria on the e-value

to select proteins to be included in the count of frequencies. These encoding

methods are useful to study the impact of the inclusion of proteins at different

evolutionary distances in the encoding.

The classes involved in the implementation of Input Encoders for SSP are shown in

Figure 5.18.

Encoders based on multiple alignment derive from PSIBlastEncoder, which dele-

gates the extraction of multiple alignments and PSSMs to a specific Aligner module.

The proposed implementation IASCPSIBLASTWebAppAligner uses a web-app interface

to PSI-BLAST (see 3.3.2.2) provided by an apposite web application. Further details

about the implementation of the web application are given in Section 5.3.5.1.

5.3.3 Output Encoders

Output Encoders for SSP can be also be implemented as Profile Encoders. As

for primary structures, general encoders such as StreamOneHotEncoder and
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Figure 5.18: UML class diagram for the implementation of input Encoders for secondary

structure prediction.

CodeMatrixEncoder can be used to encode secondary structures. These additional

output Encoders have been implemented so far:

• HEC – HECEncoder is an alias of StructuredDataOneHotEncoder for secondary

structures.

• TR – HECTransitionEncoder uses two additional bits to encode structural tran-

sitions. Implements the “Transition” coding described in Chapter 7.

• BS – BetaSegmentsEncoder is specifically devised to include the length and the

position position of the beta-strand a beta-residue belongs to. Implements the

“Beta Segments” coding described in Chapter 7.

Further details and experiments about the cited techniques are given in Section 7.1 and

Appendix 5.3.7.

5.3.4 Refinement Encoders

The general-purpose modules RefinementProfileEncoder and

HybridRefinementProfileEncoder can be directly used and adapted to refine SSP

Experts.

Two custom alternative have been implemented:

• PSIPREDS2SEncoder is a RefinementProfileEncoder which implements global

information as in PSIpred’s secondary-to-secondary processing (see Section 4.5.2).
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• BIOInfoRefinementEncoder is another RefinementProfileEncoder which adds

biological information regarding amino-acids and proteins. The information to

be added can be selected as parameters.

5.3.5 Standard Setup for a Secondary Structure Predictor

Given the leap in performance achieved by PSIpred, we assumed that any architecture

based on the same principles should be capable of high performance. After imple-

menting a PSIpred-like architecture and performing some preliminary experiments, the

system has shown a performance comparable with state-of-the-art predictors and was

therefore chosen as reference for all other experiments.

The P2S prediction is performed by a LearningExpert module1, with MLP as pre-

diction algorithm (module BPNeuralNetwork of GAME, with hidden layer set to 75

neurons). Input sliding window length was fixed at 15 positions. As for the output En-

coder, one-hot coding with three values (HEC, GAME module HECEncoder) is normally

used.

The S2S prediction is implemented with a RefinementLearningExpert module

containing the P2S Expert. The hidden layer consists here of 55 neurons. A

PSIPREDS2SEncoder module is assigned to the refinement encoding.

Combination, where applied and unless otherwise stated, is made with an AVG

combination policy (module AveragingCombinerExpert).

5.3.5.1 Encoding Implementation Details

Experiments have been performed with the following encoding methods: SLB, PSSM,

and FR2.

Frequency profiles and PSSM have been obtained with the IASC-BLAST, a web

interface for PSI-BLAST3. IASC-BLAST permits to select the inclusion threshold, the

number of iterations and the dataset in which to perform the search. The standard

values are used for the rest of the parameters. The application, written in Python4, runs

a stand-alone executable of PSI-BLAST blastpgp version 2.2, as downloaded from the

1The LearnerExpert is used instead where a meta-learning technique is applied.
2See Section 5.3.2 for the details about the implementation of encoding techniques within the

framework.
3http://iasc.diee.unica.it/blast/.
4http://www.python.org
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NCBI ftp server. Frequency profiles are extracted by parsing the file resulting from the

-Q switch, while the PSSM is obtained passing the parameter -C and using the utility

makemat. The result is given in the standard BLASTXML format, modified in order

to include PSSM and frequency profiles. The PDB, uniref50 and uniref90 (see Section

3.1) datasets are available. uniref50 and uniref90 filtered versions, say uniref50filt and

uniref90filt, are also available. Filtering has been carried out as in PSIpred with Jones’

program PFILT (159) to remove trans-membrane proteins and simple sequence regions.

SLB and FR make use of the frequencies provided by PSI-BLAST. SLB is im-

plemented in accordance with the pseudo-code reported in Figure 1, while the FR

encoding is obtained by simply normalizing the frequency given by PSI-BLAST in the

range [0, 1]1.

The PSSM encoding algorithm has been implemented in accordance with

the PSIpred paper and reverse-engineering the relevant code found in a recent

implementation.

5.3.5.2 Training Technique and Parameter Setting

In the MLPs used in the P2S and S2S modules, learning rate is set to 0.001 (initial

value) and momentum to 0.1. The learning rate is adjusted between iterations with an

inverse-proportion law.

With the goal of improving the ability of the training algorithm to escape from local

minima, at each iteration the training set is randomly “shuffled”, so that the learning

algorithm is fed with the same set of proteins given in a different order. Furthermore,

a “Random pick” iteration criterion (n = 10, see Section 5.2.3.7) is adopted in order

to efficiently randomize the training within single proteins.

To prevent the training process from stopping with a local oscillation of accuracy

(evaluated on a validation set consisting of 10% of the training proteins), the following

strategy has been adopted: weights are recorded when a minimum on the validation set

is encountered, but the training continues until the error on the validation set exceeds

a dynamic threshold that decreases as the iterations proceed. A separate test set is

used for all final assessment of results.

1In the event that no alignment is found at position i of the target protein (namely, freq[i, ] is set

to all zeroes), freq[i, j] is set to 1, j being the index of the amino acid that actually occurs at position

i in the target protein.
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5.3.6 Case Studies

5.3.6.1 Implementing PSIpred with GAME

All choices made to design and implement PSIpred can be reproduced by customizing

the GAME generic architecture. Figure 5.19 illustrates a feasible realization of it.

In particular, PSIpred can be reproduced by customizing a Refiner (the structure-to-

structure expert), which in turn encapsulates a Combiner made up of four experts,

each one entrusted with performing a sequence-to-structure prediction (input: PSSM,

output: HEC). The combiner adopts the Averaging output-combination policy. A

P2S
Expert

AveragingCombinerExpert

P2S
Expert

P2S
Expert

P2S
Expert

S2S
ExpertPrimaryStructure Output 

Encoding SecondaryStructure

GenericPredictorGenericPredictor

PSIPREDPPDecoder

LearningExpertLearningExpert
inputEncoder: PSSMEncoder
outputEncoder: HECEncoder
learningAlgoorithm: BPNeuralNet

RefinementLearningExpertRefinementLearningExpert
inputEncoder: PSIPREDS2SEncoder
outputEncoder: HECEncoder
learningAlgoorithm: BPNeuralNet

S2S ExpertP2S Expert

Figure 5.19: PSIPRED with GAME

custom decoding module, PSIPREDPPDecoder, must be implemented in order to apply

the custom post-processing performed by PSIpred on the prediction.

5.3.6.2 Combiners comparative study

Here two comparative examples for the problem of secondary structure prediction car-

ried out with GAME are presented. Results for different combining strategies are

compared, maintaining the rest of the system unchanged. Merging policies are: major-

ity voting (MAJ), averaging (AVG), weighted averaging (WAVG), elite averaging with
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25% of predictions (EA25), elite averaging with 50% of predictions (EA50), elite ma-

jority with 25% of predictions (EM25), elite majority with 50% of predictions (EM50),

and stacking by means of an MLP trained on a dataset of 2000 proteins (NEU).

The first test compares the different combination policies for 14 homogeneous ex-

perts. Each Expert, realized with a LearningExpert with PSSM encoding and MLP

as Learning Algorithm, is trained with a different set of 250 proteins with a similarity

not greater than 25%. Experts have been first trained within the same AVG Combiner

using the meta-learning technique DatasetSubsetMetaLearner, which have been seri-

alized in XML format and then reloaded for the other experiments. All Experiments

automatically save the XML serialized Predictor and inner Expert after initialization is

concluded. The Expert can be loaded from the graphical interface at any point of the

Expert tree, and it can be further configured within the GUI. In the case of combiners,

Experts can be added and deleted freely before running another experiment.

Figures 5.20 and 5.20 show the configuration steps needed to reproduce this exper-

iment using the GAME GUI.

Figure 5.20: Setting up an experiment with 14 experts trained with different dataset

subsets.

Figure 5.22 shows the result for the homogeneous comparison. It is noticeable a

general equivalence of the different techniques, with a slight prevalence of stacking.

Figure 5.23 reports a similar experiment, performed with a set of experts in which

the selected input encoding method varies. This recalls the input encoding variation

studied in (114). In particular, different sets of 14 experts have been trained using

standard PSSM, FR and SLB; then, all these experts have been combined. Also here,
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Figure 5.21: Loaded and reconfiguring a previously trained Combiner in order to change

the combination policy.

the different combining techniques show quite similar result for all the relevant metrics.

It can be noticed an average improvement of the performances in the latter experiment,

which may be related to the heterogeneity injected from the use of different encoding

techniques, or more simply to the increased number of Experts combined.

5.3.7 Experimenting Error-Correcting Output Codings for

Eight-Class SSP

Error-correcting output codes decomposition (160) is a general technique which permits

to build ensembles for multiclass classification from binary classifiers. According to the

information theory, properly adding extra information to a coded message permits to

obtain codewords with error-correcting capabilities. In particular, the original message

can be reconstructed in presence of a number of errors at the receiver lower than the

minimum hamming distance for that code.

The idea of ECOC decomposition is to exploit the error-correcting capability in

classification problems, by using redundant codes to represent the different classes. For

a problem with ω classes, up to 2ω−1 − 1 elements can be used to compose a non-

synonym codewords for that classes. The resulting codes can then be used to build

ensembles of binary classifiers, each one predicting an element of the binary word.

As no proper ECOC can be devised for 3-classes problem, a predictor for the 8-

classes problem (according to the DSSP set of annotations) has been devised and exper-

imented with ECOC decomposition. The problem with eight different classes is much
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Figure 5.22: Prediction results obtained by using different combination strategies.
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Figure 5.23: Prediction results obtained by using different merging strategies (with dif-

ferent encoding methods)
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less studied than the three-class version, and very poor results have been obtained

(about 63% Q8 was claimed by a specific version of SSPRO).

The dense-random strategy (142) has been used to obtain a coding matrix with

code words of 30 elements1:

H: 111011010000101010010011110011

G: 010000010111111100000110010100

I: 011110001011101010110100010111

E: 100001000001011000010100100000

B: 010001001110000011101111110111

T: 001110011000011111100101110001

S: 010111111101101001011100100100

C: 101101101110011111100010100100

This matrix was used to build a predictor based on an ensemble of 30 experts. The

predictor was implemented with the GAME framework, applying the ECOC decom-

position meta-learning technique (ECOCDecompositionMetalearner) to a P2S module

configured in accordance with the standard setup given in Section 5.3.5, with output

encoding being delegated to the CodeMatrixProfileEncoder module. The ECOC pre-

dictor has been compared with a single S2S Expert (SINGLE ) and with a PHD-like

system combining 10 S2S Experts (AVG10 ). Table 5.1 shows the result for a 3-fold

cross validation experiment in a training set of 3500 unrelated proteins. Unfortunately,

Method Q8(µ) Q8(σ)

SINGLE 63.900 0.800

AVG10 64.667 0.850

ECOC 64.633 0.971

Table 5.1: 3-fold cross validation results for a dataset of 3500 unrelated proteins.

although cutting-edge, the performance for the ECOC predictor did not show any in-

crement respect to the standard PHD-like system. This is not enough to assess the

success for the ECOC technique, since it requires much more computational resources

than its acknowledged counterpart. This missed increment may be related to the lack

of the refinement step, which is known to be able to boost prediction performance.

1A special thanks to Nima, who provided the matrix to use in the experiments.
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Further work may be related to the use of a refinement step together with an ECOC

architecture, and to the experimentation of alternative error-correcting codings.

5.4 Perspectives

“Real world” applications give birth to challenging problems that can take advantage

of machine learning techniques. Different widely acknowledged tools make the process

of training and evaluating a ML technique, and comparing it to other techniques, really

fast and easy. Unfortunately, the well-known existing tools for ML do not help in the

feature extraction and labeling tasks, which can be critical especially when dealing with

structured data typical of RWPs, such as texts, signals, images, or sequences. With the

desire of realizing a system without this limitation, revealed during the first attempts

at building secondary structure prediction systems, I have developed a new software

architecture and framework, called GAME. GAME permits to easily implement and

compare different modules performing the same task, and provides a graphical environ-

ment that assist the user setting up experiments involving custom configuration and

connection of different automated experts (i.e., classifiers or predictors).

The funding principles of the architecture have been presented, and their imple-

mentation in the framework has been described. Then, the standard modules available

have been described, explaining how they can be composed and extended to build an

actual prediction system. Finally, the application of the framework to the problem of

secondary structure prediction has been detailed, presenting two different case studies

as examples.

GAME is now at its second release. With this release, after three years of develop-

ment and adaptations, GAME can now be easily used for a wide variety of problems

belonging to various application fields. At present, GAME has been applied to different

prediction problems, mostly belonging to the field of bioinformatics. Other than sec-

ondary structure predictors, have been realized with GAME: (i) an antibody packing

angle predictor (ii) a simple optical character recognition system1 (iii) a beta-contact

predictor (described in Appendix A) (iv) a predictor of disease-causing single amino

acid polymorphisms.

1Realized by Alberto Malerba. NO WAYYYY PINCHE PENDEJOOOOOOO
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The weaker points are related some accessory mechanisms, such as logging and

result presentation, that could be better integrated with the rest of the system. As

for stability of the software, very few issues still arise sometimes, mainly related to old

modules that have missed to follow some of the numerous re-engineering steps.

The main future objective is the realization of new problems and new modules,

in order to make the use of the tool more appealing. With this in mind, GAME has

been released with open source license1, with the hope that it will be adopted by the

community. GAME home page is http://iasc.diee.unica.it/GAME/.

1http://game2.sourceforge.net/
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Chapter 6

Exploiting Inter-Sequence

Information in Secondary

Structure Prediction

Input representation (also called pre-processing or input encoding) is essential to repre-

sent the sequence-to-structure and inter-sequence information contained in the primary

structure in a form directly usable by the underlying predictor.

A protein sequence can be represented by a profile1, which may encode amino acids

in two ways: (i) position independent, which means that the same amino acid is always

represented in the same way regardless of its position, and (ii) position specific, which

typically exploits the evolutionary information contained in multiple alignments.

The capability of exploiting evolutionary information was the main innovation in-

troduced in the 1990s for representing proteins. Homologous proteins share a common

three-dimensional structure, and this is reflected in the similarity between primary se-

quences (inter-sequence correlation). As a result, given a protein sequence, a multiple

alignment obtained from a set of similar sequences found in a sequence database is

expected to contain the information about the substitutions that occurred within the

protein family during its evolution without compromising the structure.

To predict the secondary structure, the substitution frequencies extracted from

a multiple alignment considered representative of the target sequence in hand have

1The term ‘profile’ is generally used in the literature as a synonym of PSSM, but is intended here

in the more general sense of a matrix which associates a vector to each element of the protein chain.
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proven to be effective inputs. The i -th position of a target protein being encoded

with a real vector of 20 elements (each one approximating the probability that a given

amino acid occurs at position i in the family to which the target protein belongs), a

protein of length M can be represented by an array of M x 20 real-values. Substitution

frequencies are a notable example of position-specific encoding, as the same amino acid

may be represented in different ways, depending on its position within the protein being

encoded.

Analyzing the history of secondary structure predictors, most of the reported im-

provements are related to input representation. The use of evolutionary information

in the task of SSP dates back to 1976 (161) and was applied in 1987 by Zvelebil et

al. (162). PHD (109), the first system able to break the barrier of 70% Q3, used mul-

tiple alignment frequencies obtained from the HSSP databank (138) to encode target

proteins.

After PHD, frequency-based encoding based on multiple alignment has become

the standard de-facto of any input representation for SSP. A further improvement in

PHD performance, specifically, from 70% to 72% Q3 (163), was obtained by adopting

BLAST (Section 3.3.2.2) as the search algorithm and CLUSTALW (28) as the alignment

algorithm. PSIpred (113), inspired by PHD, has been able to reach an accuracy of 76%

by directly using Position-Specific Scoring Matrices (PSSM, see Section 3.2.4) built by

PSI-BLAST, the iterative version of BLAST. The improvement obtained by PSIpred

depends also on the fact that the database containing proteins has been filtered by

removing the potential causes of the drift: redundant sequences, simple sequences, and

transmembrane regions.

Since PSIpred, PSSM has been acknowledged to be the most effective encoding

method available for SSP and has also been used by other software architectures and

systems (e.g., SSPRO (115), (123)).

Predictors that exploit different encoding methods and formats have also been de-

vised. For instance, Karplus et al. (35) used an encoding built upon Hidden Markov

Models (HMMs) (164), whereas Cuff and Barton (114) assessed the impact of com-

bining different encoding methods in the task of secondary structure prediction. We

contributed to the encoding topic by proposing Sum-Linear Blosum (SLB) (3).

An up-to-date position-specific input representation task typically involves the fol-

lowing activities: search, alignment, and encoding.
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6.1 Encoding and Slice Decomposition

A target sequence is typically turned into fixed-length vectors to make it easier for

the adoption of well-known learning techniques to operate on fixed-length inputs. As

sketched in Figure 6.1, sliding windows are the most common technique for obtaining

fixed-length real-valued vectors (slices hereinafter) from input profiles. It is worth

noting that, while generating slices for the first amino acids, part of the sliding window

actually points outside the input profile. For a window with length = 7, the first,

second, and third amino acids require a specific treatment. The same problem occurs

while encoding the amino acids at position M − 1, M − 2, and M − 3. A typical

solution to this problem consists of adding an additional input entrusted with making

the border-line conditions explicit.

Figure 6.1: Using sliding windows to extract fixed-length slices from input profiles: a

window centered on the fifth amino acid of the target sequence.

6.2 Encoding Multiple Alignments

Profiles are a way of representing multiple sequence alignment information, a profile

being represented by a matrix with M rows (one for each position of the target sequence)

and 20 columns (one for each amino acid). Profiles typically may encode (i) position-

independent information, (ii) position-specific information, or (iii) both. Profiles that

embed position-specific information are also called Position-Specific Scoring Matrices

(PSSMs).
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“One-hot” is a relevant position independent representation typically used to en-

code data which represent multi-class values. A vector of 20 bits is required to encode a

specific residue occurring in a protein; thus, a protein of length M can be represented by

a profile of M x 20 bits. Another position-independent representations of amino-acids

may consider their chemical or functional properties; a one-hot coding may be applied

after a clustering of amino acids according to their chemical or functional properties.

Physical values such as mass, volume, number of atoms in the side-chain, hydrophobic-

ity, charge, pK values can all be used to encode a residue. General substitution matrices

rows, intending the row j as the propensity for the amino acid j to be substituted by

other amino acids, can be also used as position-independent encodings.

A typical example of a profile that embeds only position-specific information is the

frequency-based encoding (FR hereinafter) used in PHD. Here the relevant biological

information comes from a multiple alignment of the target protein with evolutionary

related proteins found after a similarity search in a sequence database. Assuming that a

multiple alignment ranges over M positions (from 0 to M−1) and contains L sequences

(from 0 to L− 1), the encoding process can be thought of as a function that maps the

alignment to a profile:

encode : Alignment[M,L]→ Profile[M, 20] (6.1)

In the absence or deficiency of position-specific information (i.e. when the search did

not find a sufficient number of significant hits), FR encoding may not work as expected.

In this case, improvements can be obtained by integrating both kinds of information.

The PSI-BLAST PSSM is the most widely acknowledged example in this category. As

well as providing a multiple alignment at the end of a similarity search, PSI-BLAST may

optionally output the characteristics of the family to which the target protein belongs in

the form of a PSSM. Any such PSSM contains both position-independent and position-

specific information, the former taken from “pseudo-counts” extracted from BLOSUM

substitution matrices, and the latter taken from frequency counts. Here, the relevant

biological information is contained in the SM adopted for encoding the amino acids

that occur in the target protein and in the multiple alignment. Hence, in this case,

the encoding process can be thought of as a function that maps the alignment and the

scoring matrix to a profile:

encode : SM [20, 20]×Alignment[M,L]→ Profile[M, 20] (6.2)
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Depending on the quality of the result (and on relevant parameters of the algorithm),

the final PSSM given by PSI-BLAST may actually contain different “quantities” of the

two kinds of information: the fewer significant hits found in the search, the greater

the amount of position-independent information embedded into the PSSM. The PSI-

BLAST PSSM encoding is widely acknowledged as one of the best encoding method.

Unless otherwise stated, “PSSM” will refer to PSI-BLAST PSSMs hereinafter.

After agreeing that any modern encoding method should integrate different kinds

of information, our claim is that more effective encoding methods might be devised for

particular predictors. This claim is supported by the fact that PSSM was originally

optimized for an iterative search procedure, which gives priority to speed rather than

precision. Its use in encoding tasks is a kind of side effect, although one at which it is

remarkably effective.

6.3 SLB: A Novel Encoding Method

The starting point of our work was the SUM-BLOSUM procedure used by MASSP31

(125), called SB hereinafter. To summarize this method, which integrates position-

independent with position-specific information, recall that the encoding is performed

row-by-row over the matrix, A, that represents the alignment.

We will represent as A[i, ] the i -th row of the multiple alignment, which contains the

elements: A[i, j], j = 0, 1, ..., L− 1 (where L is the number of sequences). Hence, given

A[i, ], for each j = 0, 1, ..., L− 1, the row of the BLOSUM80 matrix that corresponds

to the amino acid found at position A[i, j] is added to the current profile. The overall

profile is obtained by repeating this operation for i = 0, 1, ...,M − 1 (where M is the

length of the alignment) and normalizing by the number of proteins (L) that occur in

the alignment.

As SB did not show any advantage over the standard PSSM, we have focused on the

task of improving the SB encoding –with the goal of embedding it in the next release

of MASSP3.

SLB, the proposed encoding method, is a straightforward variant of SB. The main

differences between SLB and SB are: (i) the substitution matrix is not in log-odds

1MASSP3 stands for Multi-agent Secondary Structure Predictor with Post Processing.
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format, such that summation occurs in the domain of odds rather than log-odds1, (ii)

SLB uses frequencies rather than the underlying multiple alignment while repeatedly

summing up rows of a substitution matrix, and (iii) the normalization is performed

using a logistic sigmoid function.

As shown in Listing 1, the SLB encoding function takes as input the target sequence

and the multiple alignment frequencies (freq) computed by PSI-BLAST, normalized in

[0, 1]. Its output is the corresponding profile (profile). To perform the encoding, first

def SLB(seq, freq):

"""

Sum-Linear-BLOSUM Encoding Procedure:

IN = target sequence x frequencies,

OUT = profile

"""

profile = Profile(rows=len(seq), cols=20, fillWith=0)

substMatrix = BLOSUM(load=’blosum62’, format=’raw’)

substMatrix.adjust() #use one-hot encoding for columns with gaps only

substMatrix.pow(2) #use squared values

for i in range(len(seq)):

for j in len(AMINOACIDS): #AMINOACIDS = ’AR...VY’

profile[i][j] = profile[i][j] + freq[i] * substMatrix[j]

profile.normalize() #normalize the profile with a sigmoid

return profile

Listing 1: The pseudo code concerning the proposed encoding method (in a Python-like

syntax).

the BLOSUM62 substitution matrix is loaded and converted from log-odds to odds,

then an empty profile is created. The main iteration proceeds along the protein by

progressively setting up each row of the profile. In particular, given the i -th row,

the inner iteration sums up the j -th row of the BLOSUM62 matrix (j=0, 1, .., 19),

weighted with freq[i, j] –namely the frequency of the j -th amino acid measured at the

1A real-valued BLOSUM62 representation (i.e. without the limit due to the 4-bit representation

adopted in the PSSM and SB encodings), namely blosum.sij, is available from the BLOCKS database

site http://blocks.fhcrc.org/.
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i -th position. Finally, the profile is normalized with the following function:

f(x) = sigm(−x) =
1

1 + ex
(6.3)

6.4 Experimental Results

Experiments have been realized with the GAME framework (see Chapter 5 and in par-

ticular Section 5.3 for modules specifically related to secondary structure prediction).

Figure 6.2: The GAMESSP benchmarking architecture.

As shown in Figure 6.2, GAMESSP embodies (and combines the output of) several

prediction units. Each unit performs two kinds of transformations, which occur in

a pipeline: primary-to-secondary (P2S) and secondary-to-secondary (S2S) structure

prediction. The P2S and S2S modules have been implemented according to the standard

setup shown in Section 5.3.5. The selected data repository was PSI-BLAST searches

is uniref50filt with the inclusion threshold set to 10−5 and the number of iterations set

to 3. In the system used for benchmarking, 14 of such units are used in parallel and

results are combined.
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The main output of GAMESSP is denoted in Figure 6.2 as “Test Comb”. For

benchmarking purposes, the system has been equipped with additional outputs, namely

“Test P2S” and “Test S2S”, which have been provided to give further information about

the statistical significance of the experimental results. In particular, the former gives

information about the (average) behavior of the P2S modules, whereas the latter gives

information about the (average) behavior of the S2S modules.

The current release of the GAMESSP predictor is freely usable through the online

web interface at http://iasc2.diee.unica.it/ssp.

6.4.1 Benchmarking Issues

To assess the effectiveness of our encoding method we performed experiments against

other relevant methods. In order to guarantee the statistical significance of experi-

mental results, we adhered to the following policy: (i) the same boundary conditions

must be guaranteed for any encoding method, ensuring that no advantage is given to

a particular method, (ii) an encoding method must be tested in different operational

contexts, (iii) experimental results must show statistical significance.

As for the first issue, the same alignments and frequencies have been used for

feeding all selected methods. The second issue has been dealt with by performing

several experiments with different sets of training proteins of different sizes. Statistical

variance has been controlled by using 14 prediction units, separately trained.

6.4.2 Ensuring Statistical Significance of Experimental Results

As previously stated, to ensure statistical significance of the experimental results, 14

prediction units have been independently trained on different subsets of randomly-

selected inputs.

The dataset used for benchmarking purposes was extracted from the nrDSSP

dataset (127), consisting of proteins with similarity ≤ 25% and length ≥ 80 residues.

The whole dataset, including 3925 proteins (available in the DSSP database during

September 2004), was randomly shuffled and then training, validation, and test sets

were extracted from it. In particular, 3500 proteins were used to build 14 distinct

subsets of 250 proteins (numbered from 1 to 14).
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Using a variable number of training proteins, say N = 25, 50, 75, ..., 250, different

test runs have been performed by repeatedly selecting training and validation sets (for

each prediction unit ei, i = 1, 2, ..., 14) according to the following rule:

• i-th training set. The first N proteins are extracted from the i -th subset,

• i-th validation set. The (1 + i mod 14)th set is used as the i -th validation set

(consisting, in any case, of 250 proteins).

The rest of the available proteins (i.e. 425 proteins) has been used as a test set in all

experiments.

6.4.3 Experimental Results

The impact of encoding has been assessed for both the P2S (Figure 6.3) and the S2S

(Figure 6.4) transformations. For the sake of brevity, only the Q3 performance index is

reported. To see the potential of SLB in a real context, the impact of encoding on the

Figure 6.3: Average performance of P2S prediction units, given in terms of Q3, obtained

by using different encoding methods.

performance of the overall secondary structure predictor is also assessed (see Figure 6.5
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Figure 6.4: Average performance of prediction units, given in terms of Q3, obtained by

using different encoding methods.

and Figure 6.6 for Q3 and SOV , respectively). Furthermore, Figure 6.7 reports the

average performance of the backpropagation algorithm on the validation set.

Table 6.1: Some results obtained by running the GAMESSP online predictor on relevant

data sets.

Test Set Q3 SOV Q3h Q3e Q3c Ch Ce Cc

RS126 80.70 76.17 83.40 72.56 82.98 0.770 0.677 0.631

CB513 81.31 78.69 88.27 73.16 80.62 0.771 0.688 0.641

ALL EVA (2217 prots.) 80.69 78.39 84.28 71.78 82.32 0.762 0.689 0.629

Table 6.1 reports the performance of the the GAMESSP online predictor on some

well-known test sets1. Although compliant with the architecture illustrated in Figure

6.2, the online predictor actually embodies 7 prediction units –obtained by running a

7-fold cross-validation on the reference data set (i.e. nrDSSP). In particular, at the end

of each cross-validation step, the best configuration found by the training algorithm

1Although these sets were not used to train the predictor, the separation between the training set

and these set was not assessed. Average performance on new proteins is expected to be lower.
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Figure 6.5: Overall system performance, given in terms of Q3, obtained by using different

encoding methods.

has been recorded. In so doing, together with the average result, the cross-validation

process actually yielded the configuration of the above prediction units.

6.4.4 Discussion

Experiments show that the improvement is more evident with a limited number of

training proteins: the smaller the number of proteins the greater the difference be-

tween SLB vs. PSSM or FR. In particular, the outputs drawn from P2S and S2S (see

Figure 6.3 and Figure 6.4) show a difference of about 1.5% between SLB and its best

competitor, i.e. PSSM. The difference between SLB and other encoding methods is less

evident when the output is taken after the combination stage. This can be explained

thinking that the positive effects of unit combination tend to hide the benefit of encod-

ing. Nevertheless, even after combination, there is a small improvement (about 0.5%

over PSSM in the worst case) between the performance obtained by adopting SLB vs.

other encoding methods.

On the basis of experimental results, our current hypothesis about the superiority

of SLB lies in the conjecture that it is able to perform a better generalization, which is
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Figure 6.6: Overall system performance, given in terms of SOV , obtained by using

different encoding methods.

more evident when the number of training proteins decreases. Further, to investigate

the conjecture about the generalization ability, we reported in Figure 6.7 the trend of

the Mean-Square-Error for both training and validation set for SLB and PSSM over

100 steps (evaluated over a training set of 250 proteins and on a validation set of 250

proteins). Training and validation sets do not share proteins with similarity > 25%.

The graph suggests that SLB avoids overfitting, which results in slower, but more

effective, training.
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Figure 6.7: Comparing the behaviors of SLB and PSSM encoding methods during the

training activity.

117



6. EXPLOITING INTER-SEQUENCE INFORMATION IN
SECONDARY STRUCTURE PREDICTION

118



Chapter 7

Exploiting Intra-Structure

Information in Secondary

Structure Prediction

Output encoding determines what the system is currently predicting, and is the primary

way to incorporate intra-structure information in a predictor. Once a protein sequence

is annotated, several choices can be made about the actual encoding. As for primary

structures, also secondary structures can be represented by a profile, using position-

independent and position-specific information. The most common specific-independent

encoding uses a one-hot representation, with H =< 1, 0, 0 >, E =< 0, 1, 0 >, and

C =< 0, 0, 1 >. This encoding will be called HEC hereinafter. With this choice, a real-

valued prediction can be decoded by choosing the label with maximum value. Supposing

that values in fact estimate the probability of the residue to belong to that specific

secondary structure class, the class chosen with this criterion maximizes the a-posteriori

probability (APP) of a residue to belong to (MAP criterion). It has been statistically

proven that predictors based on ANNs are in fact a-posteriori probability estimators

when used as classifiers1, and also the output of algorithms that are not naturally

APP estimators can be remapped in the space of APP. For example, Platt et al. (165)

proposed a heuristic mapping for support vector machines. In this case, obtaining a

1ANN estimate the a-posteriori probability of the classes they see during their training. Should the

a-priori probability of the classes in the training set not be representing of the real distribution of the

classes, it must be taken into account during the decoding phase.
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measure of reliability for every single prediction in a simple way is also possible. The

reliability can be expressed through a confidence value χ (also called reliability index),

defined as follows (109):

χi = b10 ∗ (max(Ṽi)− next(Ṽi))c

where a) Ṽi is a triple representing the output of a predictor at position i that is expected

to approximate the adopted one-hot encoding, b) max(Ṽi) and next(Ṽi) denote the

maximum and its closest value in the triple Ṽi.

In (110) was adopted an alternative position-independent coding for {H,E,C}, with

H =< 1, 0 >, E =< 0, 1 >, and C =< 0, 0 >. According to the given definition, coil

is implicitly asserted during a prediction when none of the values in the output pair

exceeds a given threshold. Other position-independent alternative may be proposed

exploiting the concept of code matrix (see Appendix 5.3.7). A notable encoding with

position-specific information has been proposed by Petersen et al. (166), and considers

three adjacent positions, i.e., a window of width 3 along an HEC profile.

In this chapter, two different ways to exploit intra-structure information through

output encoding are presented. Firstly, with two different custom encodings with

position-specific information are introduced, and two different combination techniques

are proposed and experimented. Secondly, a novel method based on multi-faceted

pipelines which use different encoding methods at different levels of the pipeline is

presented.

7.1 Combining Heterogeneous Output Encodings

We here propose two alternative ways to encode secondary structures:

• Transitions. A two-bit representation that encodes transitions between zones

belonging to different structures. The underlying semantics is the following: the

first bit indicates an up transition (i.e., the current residue is the first residue of

any structure) and the second bit a down transition (i.e., the current residue is

the last residue of any structure). For example, the sequence CCECH would be

represented with:

10111

01111
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• Beta-Segments. A seven-bit representation that encodes the length of beta struc-

ture segments. Each bit corresponds to a range position: 1, 2, 3, 4-5, 6-7, 8-10,

11+. The bit of the corresponding range is set to 1. This coding tries to represent

segments that have lengths which would make unlikely folding (beta segments are

used to fold in groups that have similar length).

The proposed encodings are not by themselves “proper” output encodings, as they do

not represent reversible transformations. They can be made reversible by adding the

lacking information. The straightforward way to do that is to append the HEC coding

to the representation of a residue. Preliminary experiments have been made to assess

the performance with these techniques. Since no direct improvement was seen from the

direct application of the proposed techniques, we proposed to combine them in order

to exploit the possible heterogeneity in the predictions. To our best knowledge, no

attempts have been proposed in combining heterogeneous output encoding techniques,

therefore proper combining methods need to be devised. Two combination approaches

are presented and experimented: transducer- and stacking-based.

7.1.1 The Proposed Combination Approaches

The former approach, depicted in Figure 7.1, adopts refiner experts as transducers de-

vised to convert any output encoding into a final common encoding (HEC). Although

HOM
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PREDICTION
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2

P2S Expert
OE1

S2S Expert
HEC
OEANNRef.

Enc.

P2S Expert
OE2

S2S Expert
HEC
OEANNRef.

Enc.

P2S Expert
OEN

S2S Expert
HEC
OEANNRef.

Enc.

Figure 7.1: Transducer-based output combination

the combination is actually homogeneous, the original information should be preserved
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Figure 7.2: Stacking-based output combination

after the refinement step. The latter approach, depicted in Figure 7.2, adopts the stack-

ing output combination technique to heterogeneous outputs. Let us recall that, as far

as stacking is defined, a learner is trained on the outputs provided by the set of experts

involved in the predictions. The stacking combination does not require homogeneous

inputs nor semantics to be respected.

7.1.2 Experimental Results

Experiments have been performed comparing the proposed heterogeneous output com-

bination techniques with homogeneous combination and the single experts. Five neural

experts for every encoding from HEC, Transitions (TR), and Beta-Segments (BS) have

been trained, resorting to a five-fold cross-validation process on 3500 independent pro-

teins from nrDSSP dataset (127). The remaining 425 proteins are used as test set

(T-nrDSSP, hereinafter). Main experts and refiners are defined as in 5.3.5.1, with only

the Output Encoder module changing. Finally, 120 hidden neurons are used for the

stacking expert. T-nrDSSP dataset has been used for testing to ensure that no related

proteins are shared with training sets, and statistical significance is ensured by the

reasonable dimension of the dataset (about 9% of the unrelated proteins available).

Table 7.1 show the results as follows: the first three rows represent the average

results of single experts for the different encodings, after the refinements activity; the

subsequent three rows represent homogeneous combination results; and the last two
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rows represent the results of the proposed combination techniques.

System Q3 SOV Q3h Q3e Q3c Ch Ce Cc

HEC (single avg.) 79.38 77.15 85.05 69.52 79.40 0.738 0.664 0.604

TR (single avg.) 79.22 77.01 83.20 69.18 80.83 0.739 0.659 0.603

BSEG (single avg.) 79.51 77.31 83.77 70.02 80.59 0.741 0.666 0.607

HEC (hom. comb.) 80.11 78.08 85.53 70.44 80.26 0.749 0.677 0.618

TR (hom. comb.) 80.19 78.07 83.83 70.20 82.08 0.752 0.677 0.620

BSEG (hom. comb.) 80.18 78.03 84.15 70.54 81.59 0.751 0.678 0.620

Transducer 80.33 78.18 84.64 70.51 81.53 0.753 0.679 0.622

Stacking 79.88 77.41 84.04 70.41 81.02 0.744 0.669 0.614

Table 7.1: Results for dataset T-nrDSSP

Results show a slight increase in performance while using the transducer-based

combination technique compared to the homogeneous combinations. Performances do

not appear equally promising for the stacking-based technique. It is worth considering

that, in the case of stacking, the combination is done without other refinement modules.
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7.2 Exploiting Intra-Structure Information with Multi-

faceted Pipelines

We here present an abstract software architecture –called SSP2– based on the combina-

tion of pipelines in which the different levels differ for the kind of encoding used. Then,

a suitable predictor –called GAMESSP2– has been implemented and tested with the use

of the framework GAME, compliant with the SSP2 abstract architecture. GAMESSP2

implements output encoding variation by changing the number of around residues con-

sidered in the representation of a secondary structure element at different levels of the

pipeline.

7.2.1 Introducing the SSP2 Architecture

The SSP2 architecture extends the PHD architecture pointing to the most effective

ways for exploiting the intra-structure correlation information. Forcing the output

coding to add information about the surrounding of a residue is a way to obtain this

desirable effect. This operation should be dealt with carefully, as adding too-specific

information tends to make the learning process more difficult. We propose to introduce

the intra-structure information step-by-step, at different levels of a pipeline. Adopting

a transducer-based combination policy, previously described in Section 7.1.1, allows to

put together systems which adopt different output encoding alternatives.

According to these assumptions, the SSP2 architecture specifies a set of constraints

to be fulfilled by any compliant system:

• ensemble. At the most abstract view, a secondary structure predictor consists of

an ensemble of pipelines. Each pipeline is expected to output its own prediction,

with a degree of reliability that depends on the overall performance of the pipeline

–measured on a suitable validation set. The choice about which blending policy

should be adopted is left to the designer, jury decision being the default.

• pipelines. Each pipeline is expected to be defined in accordance with a k-step

iterative strategy, each step of the being dealt with by a suitable software mod-

ule. Heterogeneous pipelines are permitted, provided that the pipeline is able to

take into account intra-structure correlation (through a suitable choice for output

encoding of at least one of its modules).
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• modules. Each module in a pipeline may be characterized by a specific technology

(such as ANNs or SVMs) and uses specific input and output encoding methods,

as well as parameter settings.

Figure 7.3 shows two specific examples of pipelines: the first performs a 2-step un-

folding and the second a 3-step unfolding (the encoding process, as well as intermediate

profiles have been disregarded for the sake of simplicity). It is worth pointing out that

the 2-step generic pipeline resembles the P2S-S2S pipeline reported in Figure 4.2 for

PHD, the main difference being that PHD does not use information about the pri-

mary sequence at the second step. Alternative pipelines are feasible, depending on the

Figure 7.3: An SSP2 architecture with 2- and 3-levels of unfolding.

number of steps and on the kind of encodings one decides to apply.

To give additional degrees of freedom while promoting diversity, changes in the ac-

tual encoding and/or decoding methods are also permitted along the pipeline. In so

doing, the possibility of making alternative implementation choices at each step gives

rise to a great number of architectural alternatives. Since a thorough investigation of

all systems compliant with the SSP2 abstract architecture is not feasible, we concen-

trated our efforts on the output representation, because it is less studied and thus more

promising for further improvements.

Implementation (GAMESSP2)

GAMESSP2 is a realization of the SSP2 abstract architecture, implemented with

GAME. The feasible variations of the SSP2 architecture being virtually infinite, we
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concentrated our experiments on a significant subset for performance assessment. Im-

plementing a system compliant with the SSP2 abstract architecture with GAME is

straightforward. The first element of each pipeline is realized with a P2S Expert, fur-

ther elements use a S2S Expert. The P2S and S2S modules, as well as the combination

of them, have been implemented according to the standard setup shown in Section

5.3.5. Multiple alignments are obtained running PSI-BLAST on the data repository

uniref90filt, with the inclusion threshold set to 10−3 and the number of iterations set

to 3.

GAMESSP2 implements output encoding variation by changing the size of the

output encoding window at different levels of the pipeline. The different benchmarking

systems were built manually using the graphical interface of GAME. The Parameter

windowSize, defined for all profile Encoders, was used to modify window size.

7.2.2 Results and Discussion

Tests have been performed with two main datasets, according to the guidelines stated

in the context of the automatic assessment EVA (131). The former tests have the main

purpose of assessing the performance among different SSP2 pipelines. These tests have

been performed on the SD576 dataset, based on the SCOP database (22) definitions.

The same 7-fold assessment proposed in (128) has been used to permit a fair comparison

with the DBNN technique, which has shown to be very effective in the field of SSP. The

latter tests have been performed on the EVA common 6 dataset (EVAC6), consisting

of 212 proteins in total, divided into six subsets so as to include as many predictors as

possible in the evaluation. The training set used in these experiments, i.e. EVAtrain,

is composed of proteins with sequence identity less than 25% with any of the EVAC6

proteins.

7.2.2.1 SD576 Experiments (aimed at identifying best-performing

pipelines).

Different pipelines (see Figure 7.4) have been tested and compared. In this setting,

relevant parameters are the type of encoding (PSSM, SLB (3), or none) 1 and the

length of the output window Wout (from 1 to 11). To avoid misunderstandings about

1Specifying the value none as a encoding method for a refiner, means that the refiner uses only the

inputs provided by the previous expert in the pipeline.
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which expert a window length refers to, by convention the parameters j and k will be

used hereinafter to denote the length of the output window that refers to the first and

the second expert in a pipeline (the output window of the third step has length = 1 in

all experiments).

Figure 7.4 shows that two kinds of parameters are actually taken into account:

the encoding method and the length of the output window. Experimental results are

Figure 7.4: Two example pipeline configurations, with 2- and 3-level unfolding, parame-

terized using the encoding method (ENC) and the length of the output window (Wout).

reported according to the selected encoding method(s), while varying the length of the

output window(s). In particular, four different kinds of pipelines have been tested:

• 2-step pipelines: a) ENC =< PSSM,none > or b) ENC =< SLB, none >;

• 3-step pipelines: a) ENC =< PSSM,none, none > or b)

ENC =< PSSM,SLB, none >.1

Tables 7.2 and 7.3 report results obtained by running implementations of the above

pipelines on the SD576 dataset, while varying the length of the output window. For

each table, the best experimental results for Q3 and SOV are highlighted in bold. It is

worth noting that the SLB encoding worsens when enlarging the output windows. For

this reason, it has not been used as a primary encoding method.

The four best-performing kinds of pipelines, in terms of Q3 and SOV , adopt a

three-step unfolding (the best results are in bold in Table 7.3):

1Recall that using “none” implies the absence of encoding for data inputs, i.e., the corresponding

module actually disregards inputs coming from multiple aligment.
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• pipeline #1. The first step uses PSSM and provides an output window of length

j = 3, while the second step disregards inputs from multiple alignment and

provides an output window of length k = 7 (i.e., ENC =< PSSM,none, none >

and Wout =< 3, 7, 1 >);

• pipeline #2. The first step uses PSSM and provides an output window of length

j = 5, while the second step disregards inputs from multiple alignment and

provides an output window of length k = 7 (i.e., ENC =< PSSM,none, none >

and Wout =< 5, 7, 1 >);

• pipeline #3. The first step uses PSSM and provides an output window of length

j = 3, while the second step uses SLB and provides an output window of length

k = 7 (i.e., ENC =< PSSM,none, none > and Wout =< 3, 7, 1 >);

• pipeline #4. The first step uses PSSM and provides an output window of length

j = 5, while the second step uses SLB and provides an output window of length

k = 7 (i.e., ENC =< PSSM,none, none > and Wout =< 5, 7, 1 >).

The four best-performing pipelined experts identified with the SD576 experiments

have been combined (with jury decision) to give rise to the final GAMESSP2 configu-

ration. The result for the 7-fold cross validation on the SD576 dataset, compared with

the same test performed on DBNN, is given in Table 7.4.

7.2.2.2 EVA Common Set Experiments (aimed at performing benchmark-

ing).

GAMESSP2 has been trained with the EVAtrain dataset, tested on the five EVA com-

mon sets,1 and compared with different state-of-the-art algorithms. Tables 7.5, 7.6 and

7.7 report the results obtained by testing GAMESSP2 on EVA common sets.

The majority of experimental results report the best SOV for GAMESSP2. This

noticeable result points to the ability of GAMESSP2 to take into account the intrinsic

correlation that holds at the secondary step among amino acids that belong to the same

secondary structure. This result experimentally confirms the conjecture that injecting

information about the intra-structure correlation while performing error backpropaga-

tion permits one to obtain better results.

1See http://cubic.bioc.columbia.edu/eva/sec/common3.html.
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System Q3 SOV Ch Ce Cc

j = 1 79.66 76.68 0.75 0.67 0.61

j = 3 80.07 77.59 0.75 0.67 0.61

j = 5 80.18 78.12 0.76 0.67 0.62

j = 7 80.20 78.12 0.76 0.67 0.62

j = 9 79.99 78.02 0.75 0.67 0.62

j = 11 79.98 78.10 0.75 0.67 0.62

(a) ENC =< PSSM,none >, Wout =< j, 1 >

System Q3 SOV Ch Ce Cc

j = 1 79.60 75.88 0.74 0.66 0.61

j = 3 80.08 77.98 0.75 0.67 0.61

j = 5 79.78 77.45 0.74 0.66 0.61

j = 7 79.46 76.52 0.74 0.66 0.61

j = 9 79.01 76.32 0.73 0.65 0.60

j = 11 79.01 76.32 0.73 0.65 0.60

(b) ENC =< SLB, none >, Wout =< j, 1 >

Table 7.2: Tests on SD576: Results for 2-step pipelines.
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System Q3 SOV Ch Ce Cc

j = 1, k = 1 79.70 77.31 0.74 0.67 0.61

j = 1, k = 3 79.71 77.46 0.75 0.67 0.61

j = 1, k = 5 79.79 78.00 0.75 0.67 0.61

j = 1, k = 7 79.80 78.14 0.75 0.67 0.61

j = 1, k = 9 79.78 77.70 0.75 0.67 0.61

j = 3, k = 5 80.17 78.37 0.75 0.67 0.61

j = 3, k = 7 80.14 78.87 0.75 0.67 0.62

j = 3, k = 9 80.02 78.21 0.75 0.67 0.61

j = 5, k = 7 80.38 78.45 0.76 0.68 0.62

j = 5, k = 9 80.13 78.55 0.76 0.67 0.62

j = 7, k = 9 80.23 78.65 0.76 0.67 0.62

(a) ENC =< PSSM,none, none >, Wout =< j, k, 1 >

System Q3 SOV Ch Ce Cc

j = 1, k = 1 79.70 77.31 0.74 0.67 0.61

j = 1, k = 3 79.66 77.43 0.74 0.66 0.61

j = 1, k = 5 79.95 77.67 0.75 0.67 0.61

j = 1, k = 7 80.09 77.79 0.75 0.67 0.62

j = 1, k = 9 79.97 77.97 0.75 0.67 0.62

j = 3, k = 5 80.11 78.00 0.75 0.67 0.62

j = 3, k = 7 80.34 78.29 0.76 0.67 0.62

j = 3, k = 9 80.12 78.24 0.75 0.67 0.61

j = 5, k = 7 80.17 78.78 0.75 0.67 0.62

j = 5, k = 9 80.14 78.54 0.76 0.67 0.62

j = 7, k = 9 80.06 78.47 0.75 0.67 0.62

(b) ENC =< PSSM,SLB, none >, Wout =< j, k, 1 >

Table 7.3: Tests on SD576: Results for 3-step pipelines.

System Q3 SOV Ch Ce Cc

GAMESSP2 81.22 80.03 0.77 0.69 0.63

DBNN 80.0 78.1 0.77 0.68 0.63

Table 7.4: Results for the best GAMESSP2 combination on the SD576 dataset.
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System Q3 SOV Ch Ce Cc

PHDpsi 73.37 69.54 0.64 0.68 0.52

PSIpred 76.79 75.44 0.67 0.73 0.55

PROFking 71.63 67.74 0.62 0.68 0.51

SAMt99sec 77.16 74.58 0.66 0.71 0.59

PROFsec - - - - -

DBNN 78.80 74.80 0.72 0.64 0.62

GAMESSP2 78.66 78.09 0.71 0.78 0.60

(a) Common set 1 (80 chains)

System Q3 SOV Ch Ce Cc

PHDpsi 74.32 70.60 0.66 0.68 0.52

PSIpred 77.37 75.34 0.68 0.72 0.56

PROFking 71.70 66.87 0.62 0.68 0.49

SAMt99sec 77.17 74.53 0.66 0.71 0.57

PROFsec 76.21 74.91 0.67 0.71 0.55

DBNN 77.30 71.90 0.71 0.64 0.57

GAMESSP2 77.62 75.65 0.69 0.76 0.58

(b) Common set 2 (175 chains)

Table 7.5: Results for EVA common sets 1 and 2.
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System Q3 SOV Ch Ce Cc

PHDpsi 74.34 70.37 0.66 0.68 0.52

PSIpred 77.28 75.29 0.68 0.73 0.55

SAMt99sec 77.10 74.35 0.66 0.71 0.56

PROFsec 76.40 74.93 0.67 0.71 0.56

DBNN 77.3 71.9 0.71 0.64 0.57

GAMESSP2 77.69 75.66 0.69 0.76 0.58

(a) Common set 3 (179 chains)

System Q3 SOV Ch Ce Cc

PHDpsi 74.99 70.87 0.66 0.69 0.53

PSIpred 77.76 75.36 0.69 0.74 0.56

PROFsec 76.70 74.76 0.68 0.72 0.56

SAMt99sec - - - - -

DBNN 77.8 72.4 0.71 0.65 0.58

GAMESSP2 78.34 76.17 0.70 0.76 0.59

(b) Common set 4 (212 chains)

Table 7.6: GAMESSP2: Results for EVA common sets 3 and 4.

System Q3 SOV Ch Ce Cc

PHDpsi 73.46 69.50 0.66 0.67 0.50

PSIpred 76.00 72.52 0.68 0.68 0.53

PROFking 70.92 65.13 0.64 0.66 0.47

SAMt99sec 76.38 73.13 0.67 0.68 0.54

PROFsec 75.43 73.25 0.69 0.69 0.53

DBNN 76.4 72.4 0.73 0.67 0.59

GAMESSP2 76.95 73.27 0.70 0.70 0.56

Table 7.7: GAMESSP2: Results for EVA common set 5 (73 chains).
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7.2.3 Conclusions

A high accuracy for GAMESSP2 has been reported in standard tests performed on pro-

teins characterized by no, or very far, evolutionary relationships with respect to those

used for training. Comparisons with state-of-the-art predictors, made in accordance

with the typical guidelines used for SSP performance assessment, put GAMESSP2

at the top of current state-of-the-art secondary structure predictors in almost all the

experiments. In particular, the performance improvement is consistent with the re-

cent advances in the field (about 1-2% in the last ten years). The best improvements

have been obtained for the SOV measure: it can be explained with the capability of

GAMESSP2 to take into account the intrinsic correlation within secondary structures.

The experiments confirm the validity of the assumption that intra-structure correla-

tion can be further exploited to improve predictions. The simple approach proposed,

based on sliding windows, concentrates on local correlations; this suggests that further

improvements could be achieved by devising output coding techniques able to exploit

more distant relationships.

GAMESSP2 has been released as a web server and stand alone application. The

main page is http://iasc.diee.unica.it/ssp2.
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Chapter 8

Exploiting Inter-Structure

Information in Secondary

Structure Prediction

Correlation among secondary structures, evident when looking at homologous proteins,

can be seen also in absence of clear evolutionary relationships. The space of actual

folding alternatives is limited to some thousands despite the much greater variabil-

ity observed in protein relationships (71). Tendencies in the formation of secondary

structures can be evidenced looking at the distribution of structural features.

As shown in Figure 8.11, about 30% of helices have length 3 or 4, and while longer

helices are in general less probable than shorter ones, finding an helix of length 10 is

more probable than finding one with 5 residues. As for beta strands (Figure 8.2),

single bridges constitute the most common beta structure type, and preference short

segments are generally preferred, although strands of length 4 and 5 appear to be

preferred to strands of length 2 and 3. Figures 8.3 and 8.4 show similar tendencies in

the distribution of observed sheets within a protein and of the number of strand within

a sheet, respectively.

These distributions, although extracted from inter-structure relationships, actually

express “soft” intra-structure preferences, and may be exploited for SSP in the refine-

ment or decoding phase. The S2S prediction modules of PHD-like predictors, although

1Distributions have been computed from a set of 8300 secondary structures of unrelated or distantly

related proteins.
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Figure 8.1: Observed length distribution of helices.

merely working at an intra-structure level, are able to take into account some local pref-

erences in some way. We may say that this is due to the fact that the adopted learners

can “see” the distribution of the examples used during their training process. Yao

et al. (128) used the distribution of segment lengths to model the dynamic Bayesian

network model used by their predictor. Following in this Chapter, the first results of

an ongoing work about a completely novel proposal to exploit the information coming

from structural feature distribution in the decoding phase is presented.

8.1 Decoding Secondary Structure Predictions

Structural classes are typically assigned by taking the maximum a-posteriori probability

class independently for every residue, according to the estimations given by the under-

lying algorithm. Calling this criterion MAPlocal, it is applied to single assignments ωr

to generate a predicted structure Ŝ:

MAPlocal : arg max
Ŝ

P̂local = arg max
ωr

P̂r(ωr), ∀r ∈ chain, (8.1)

where P̂r(ωr) is the estimated a-posteriori probability for the class ωr. A merely local

approach cannot consider any intra-structural constraint: for instance, there is no way

to take into account the distributions seen in Figures 8.1 and 8.2 with a MAPlocal

criterion, and even helices with length 1 are allowed.
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Figure 8.2: Observed length distribution of beta strands.

Should we be able to estimate the a-posteriori probability for a whole structure

Pglobal, we may apply the MAP criterion to the full protein structure. Unfortunately,

no algorithm in hand is able to give such as an estimation reliably enough to predict

the structure. What we may concretely do is to search for inter-structure correlations

that give us the statistical likelihood for a given structure to appear in a real pro-

tein. Even if this feeble estimation cannot be used to predict structure, it may be

useful in combination with standard local techniques. Assuming that such obtained

global estimations are independent from the local estimations given by a standard clas-

sification algorithm1, the global MAP criterion may be expressed separating the two

contributions:

MAPtotal : arg max
Ŝ

P̂total = arg max
Ŝ

(P̂local(S) · P̂global(S)) (8.2)

Different interpretations may be given about the local probability formulation re-

ferred to the whole structure P̂local. A possibility is to consider the single estimations

as independent:

P̂local(S) =
∏

r∈chain
P̂r(ω), (8.3)

1Independence may be a very strong approximation in some cases, as global and local estimations

asymptotically approach one each other as prediction improves. On the other hand, in this specific

context we are more interested to not very good predictions.
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Figure 8.3: Observed distribution of the number of beta sheets within a protein.

The probability maximization may be obtained by using a search algorithm, moving

around the prediction given by the MAPlocal criterion. In other words, the idea is to

perturb the initial annotated solution around the less safe local estimations.

Calling Ŝ the prediction obtained with MAPlocal, the problem can then be formu-

lated with the maximization of the probability for a structure Ŝ′ around Ŝ:

MAPtotal : arg max
S′

(P̂local(S
′ | Ŝ) · P̂global(S

′ | Ŝ)) (8.4)

The conditional local probability for a structure element r can be expressed as the

difference for the probabilities for the classes ω and ω′ for that position, as assigned

respectively in S and S′:

P̂r(ω
′ | ω′) = P̂r(ω)− P̂r(ω

′), (8.5)

As for the global term, to exploit the statistical properties of the space of structures is

necessary to first detect and measure them.

The usual sequential representation of secondary structure does not permit to detect

statistical properties usable to detect inter-sequence correlations. SS sequences can

differ both in length and composition: also highly similar structures are distinguishable

in a such defined space of structures. Considering the intersection between the space

S of real structures and the space of predicted structures Ŝ, only a handful of points of

contact could be seen between the two. This does not mean that predictions are not
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Figure 8.4: Observed distribution of the number of beta strands within a sheet.

significant: it rather shows that one-to-one comparison with the chosen representation is

not able to detect any structural similarity in absence of an exact (although significant)

matching. Adopting a soft-match criterion, for example using a threshold on structure

sequence alignment percent identity, could appear as a possible solution. Although

such criterion would increase the overlap between the two spaces, it would not permit

to extract a distribution usable to estimate Pglobal.

A possible solution is to change of the space of representation, by defining a transfor-

mation T : S→ R mapping a structure S into a representation R suitable for extracting

statistically relevant features (Figure 8.5.

An ideal transformation T should highlight the statistical differences of interest

while reducing the space. That would permit to experimentally extract and compare the

distributions of predicted and real structures with sufficient reliability. This qualitative

definition can be expressed quantitatively considering the properties of superposition

of the distributions for R and R̂, obtained applying the chosen transformation to S and

Ŝ respectively.

Once defined DT,S as the the distribution resulting from a transformation T on the

space S, a good transformation T should satisfy the following soft metrics-conditions:

• Mpd – Prediction-diversity: DT,S should be different from DT,Ŝ. This is represen-

tative of the fact that the distribution T is able to highlight prediction errors.
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Figure 8.5: Example ideal mapping from the space of secondary structures to an alter-

native space.

• Mss – Self-similarity : DT,Si should be similar to DT,Sj , where Si and Sj are any

two different realizations of the same space. Self-similarity is needed to reliably

estimate the distribution.

These principles are in fact complementary: the former requires the important infor-

mation related to the structure to be preserved. The latter requires the structure space

to collapse into a smaller, abstract space.

Given a transformation T with the desired characteristics, the global term P̂global

from Equation 8.4 can be approximated in the transformed space considering the di-

vergence between the distributions observed in the space of the predicted structures

Ŝ:

P̂global

(
S′ | Ŝ

)
∼ P̂

(
T (S) | T (Ŝ)

)
− P̂

(
T (S′) | T (Ŝ)

)
. (8.6)

Distributions can be estimated experimentally by enumerating the representations

obtained for actual sets of predictions and real structures. The next steps consist of

finding the proper transformation setting up the proper search algorithm.
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8.2 Evaluating Structure Transformations

A good transformation should be able to evidence the global errors in a local predictor’s

estimation.

Manually determining a good representation which fulfills both the prediction-

diversity and self-similarity conditions is not an intuitive task; the approach here pro-

posed consists of generating a large set of different transformations and selecting the

most promising ones according to the adopted criteria.

Both (prediction-diversity and self-similarity) conditions can be verified adopting a

similarity measure between distributions. Similarity between two distributions can be

measured by their euclidean distance:

d(D1, D2) =
∑
i

(D1i −D2i)
2, i D1 ∨ i D2. (8.7)

Then, prediction-diversity can be evaluated with the euclidean distance between the

distributions of predicted structures S and real structures Ŝ. Analogously, self-similarity

can be evaluated with the euclidean distance between the distribution between com-

plementary subsets of S (lower the distance, higher the self-similarity)1.

8.3 Determining Structure Transformations

In order to obtain our set of transformations we can eliminate or relax some constraints

or definitions from the starting representation. This is coherent with the self-similarity

criterion, which requires a representation to be more abstract than the original SS

representation. Relaxing constraints allows originally distinct structures to merge into

the same representation. The following constraints/definitions are considered:

• Residue position.

• Segment length: The length can be omitted (i.e. leaving only the alternation

of segments) or discretized (e.g. long, medium, short segments can be grouped

together).

1To be rigorous, the distribution for all the possible different couples of subsets should be considered,

but a sensible number of instances should permit to give a proper estimation of the distance.
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• Structural features: the number of symbols can be increased by identifying similar

structural features.

The following representations have been identified (in order of increasing abstraction):

• Segment sequence and length (SSL): represents the structure as a sequence of

segments. E ’perfectly equivalent to the representation of departure. Example:

EEEEHHH → E4H3.

• Segment sequence (SEG): as SSL, omitting the length.

• Segment sequence – no coils (SEG-C): as SEG, omitting coil segments.

• Segment count (SC): count the segments of the same type, so giving a triplet.

Example: CCCCHHHHHHHCHHCCEEECCECCCCHHHHEECCCC →
(3, 5, 3)

• Segment count normalized (SCN): as SC, divided by the total number of residues,

and discretized in 0-100.

Example: CCCHHHCCHCCHCECEECHHCCC → (17, 26, 8)

• Segment count Discretized length (SCNx): same as SCN, discretized in 0-x

• Segment count segment normalized (SCSN): as SC, divided by the total number

of segments, and discretized in 0-10.

Example: CCCHHHCCHCCHCECEECHHCCC → (3, 5, 1)

• Grouped H segments (GSH): starting from SS-C, all sequences of consecutive

segments of type H are compacted into a single H.

Example: CCCCHHHHHHHCHHCCEEECCECCCCHHHHEECCCC →
HEEH.

• Grouped segments (GS): starting from the SS-C, all sequences are compacted

segments of the same type.

Example: CCCCHHHHHHHCHHCCEEECCECCCCHHHHEECCCC →
HEHE.

• Segment number (SN): counts the number of segments.
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• Segment number normalized (SNN): the number of segments is divided by the

total number of residues.

• Segment number Discretized (SNx): Number of segments discretized into x values.

8.4 Results

The cited metrics Mpd and Mss have been assessed for all the specified transforma-

tions, using a euclidean distance measure for realizations of the distributions in the

transformed space (Equation 8.7) .

Mpd can be calculated by computing the euclidean distance on the distributions of

secondary structures and predictions obtained from a set of 8300 proteins with 80%

or less sequence identity, say PDB80. The dataset was obtained using the PISCES

culling server (167), and predictions were calculated with the predictor GAMESSP2

(see Chapter 7).

As for the self-similarity measure, it has been estimated with:

Mss = lim
K→∞

1

K

∑
k

d(Dr,Pk , Dr,P′k
) (8.8)

Pk and P′k being two random complementary realizations of the same protein set.

The different datasets have been obtained by randomly shuffling the PDB80 and divid-

ing each time the set in two subsets Pk and P′k. With k set to 5, no significant variation

under different runs was seen for the metric value.

Table 8.1 shows the resulting values for the Mpd and Mss in the transformations

identified in Section 8.3. The transformations SCN, SCN5, SCSN, GS, SNN gave the

best result.

Preliminary experiments have been made with these transformations with a

weighted A* search algorithm (168). No relevant improvements have been still

obtained with the use of the cited transformations.

8.5 Perspectives

After discussing the evidence in the presence of inter-structure information not related

to the presence of homologues to be used as templates, a completely original proposal

to deal with this kind of information in the decoding of a standard prediction has
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Representation Mss Mpd ∆

SSL 0.999320680984 1.0 0.000679319015631

SEG 0.879753177584 0.842547770701 -0.0372054068836

SEG-C 0.862600480621 0.815796178344 -0.0468043022771

SC 0.527681838788 0.468535031847 -0.0591468069411

SCN 0.155341798121 0.462165605096 0.306823806975

SCN5 0.0612574559351 0.227515923567 0.166258467632

SCSN 0.0378466115145 0.167133757962 0.129287146447

GSH 0.720115891876 0.643566878981 -0.0765490128952

GS 0.0955727163881 0.165605095541 0.0700323791533

SN 0.238241220652 0.175541401274 -0.0626998193782

SNN 0.028792515426 0.24127388535 0.212481369924

Table 8.1: Result for the metrics Mpd and Mss on the defined distributions. The trans-

formations with potentially useful information are evidenced in bold.

been presented. Then, the theoretical aspects related to the introduction of a global

estimation the in decision process have been analyzed. That permitted to conclude

that, at least for really wrong predictions, an optimization process could be devised

accounting separately for the local estimation normally given by a standard predictor

and a global estimation with inter-structure information. With the goal of finding

a proper estimation for the global term, the adoption of a transformation from the

original space of structures has been proposed. Two different metrics have been also

presented in order to evaluate the capability of a transformation for the purpose of

prediction.

A preliminary set of eleven possible transformations have been proposed and eval-

uated according to the proposed metrics, finding five possible candidates for the use

inside an optimization algorithm. Unfortunately, we are still not able to assess with

certainty the validity of the proposed approach. Only very preliminary results are

available for the optimization part; finding the proper definition for the global part

of the cost function from the estimated probability should permit to obtain consis-

tent improvements in prediction. More effective transformation functions may be also

identified with the help of an expert of protein structures.
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Conclusions and Perspectives

Bioinformatics is an interdisciplinary field that requires to blend together the knowl-

edge belonging to the vast fields of computer science and biology. Coming from an

engineering background, the most difficult aspect was to become familiar with a field

of science of which I only had some resemblances from high school biological studies

(not my favourite subject, I must admit!).

During these years as a PhD student, I have approached this new field like a miner

who seeks the light digging at the edges of the heading. With the first attempts with

protein secondary structure, I realized that the problem, like the best games, was much

harder than suggested by its simple definition. There was no answer to the thousands

of questions coming up after every failed experiment. With the purpose of reducing

the time passed between a failed experiment and the other, I developed a system to

plug in and configure different modules and run the experiments. After some time, and

with the need to study different problems related to prediction in bioinformatics, that

system became part of the research itself, and thus had a name, GAME.

Currently, GAME is a general software architecture and framework able to support

the design and the release of predictors, explicitly devised real world problems.

In this thesis, the preliminary concepts about bioinformatics have been firstly pre-

sented, and the problem of secondary structure prediction has been analyzed in depth.

After describing GAME, different contributions to the field of secondary structure pre-

diction have been presented, from the perspective of the different biological information

sources that can be exploited in a learning system. The proposed techniques are based

on the encoding and decoding of this information, together with custom software ar-

chitectures.

Not all the researches I have made in these years have found their proper place

in this thesis. Among all, let me cite two still open researches, the prediction of the

145
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packing angles of antibodies and and the prediction of disease-causing single amino acid

polymorphisms in human proteins. A novel method for enhancing sequence alignment

in the presence of templates has been presented in the appendix.

Different perspectives are open beyond the research related to secondary structure

prediction. In recent years, the interest in the field has lowered due to the lack of

really important improvements, probably also exhausted by the plethora of alterna-

tive solution published anywhere during the nineties. Conversely, the problem of ab

initio prediction is still very actual and there is about 8% of accuracy that can be

gained somewhere for the three class problem, and much more for the eight class prob-

lem. Methods used for secondary structure prediction can be also adopted for many

other more specific prediction problems related to protein structure, and prediction of

sequences in general.

As for GAME, the framework may be exploited for many other different problems,

and may be enhanced with the addition of new alternative plugins.
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Appendix A

Using a Beta Contact Predictor

to Guide Pairwise Sequence

Alignments for Comparative

Modelling

A.1 Introduction

There are numerous methods for performing structural alignment which often differ

in the precise details of their results (e.g. CE(169), SSAP(170), STRUCTAL(171),

DALI(172), MATRAS(173), VAST(174), SSM(175)). Since there are many different

ways to superimpose two or more protein structures, if the proteins are not identical (or

at least extremely similar), then there can be no single optimal superposition(176). For

our purposes, we have chosen the alignment produced by SSAP as the gold standard,

‘correct’ alignment.

1ap2A0 DIVMTQSPSSLTVTAGEKVTM

1igmH0 Sequence alignment EVHLLESGGNL-VQPGGSLRL

1igmH0 Structural alignment EVHLLESG-GNLVQPGGSLRL

****

Figure A.1: An example of an SSMA found between 1igmH0 and 1ap2A0. The SSMA is

indicated with asterisks.
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Figure A.2: The relationship between the percentage correct sequence alignment and

the percentage sequence identity. Each pair of NRep domains in each CATH homologous

family has been structurally aligned by SSAP and sequence aligned using a Needleman

and Wunsch global alignment. The structural alignment is taken as the correct alignment.

Twelve outlying points have been removed after being identified as occurring owing to

errors in the CATH database.

Thus misalignment between a target and a parent sequence is the largest cause of

error in comparative modelling. The most extreme types of misalignment (Misleading

Local Sequence Alignments, MLSAs) are areas of protein alignment where structural

similarity is clear and where the optimal sequence similarity is substantially higher than

that seen in the structure alignment(177). In other words, the sequence alignment for

a region is very clear, yet it does not match the structure-derived alignment. We define

less extreme misalignments, where the sequence and structural alignments do not agree,

as SSMAs (‘Sequence-Structure MisAlignments’). For example, Figure A.1 shows the

sequence and structural alignment of a region from 1igmH0 and 1ap2A0 (a human and

mouse antibody heavy chain variable region respectively).

In their analysis of the CASP2 comparative modelling section, Martin et al.(69)
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showed that there was a relationship between the percentage of correctly aligned

residues and the sequence identity (Figure 2 of their paper). We have reproduced

that analysis using approximately 56,000 pairs of homologous protein domains from

CATH(178; 179), each of which was aligned on the basis of structure using SSAP and

on sequence using a Needleman and Wunsch sequence alignment(26). Figure A.2 clearly

shows that if there is a high sequence identity between two sequences, then the sequence

alignment is likely to match the structural alignment. However as the sequence iden-

tity decreases, particularly below 30%, the accuracy of the alignment decreases and

the sequence-based alignment can be completely different from that derived from the

structural alignment. If we can predict regions where mis-alignment occurs then we

can hope to improve the alignment in these regions and therefore improve the model.

In this paper, we concentrate on improving the alignment in beta sheets.

Previous work by Fooks et al.(180), Lifson & Sander(181), Wouters & Curmi(182)

and Hutchinson et al.(183) has shown clear residue pairing preferences between adjacent

beta strands. With this in mind, we believe that some sequence mis-alignments can

be detected and corrected by detecting errors in the assignment of beta contacts. In

practice, given a pair of beta strands (which we refer to as a ‘beta pair’) assigned to

a target from a template after initial sequence alignment, a measure of the likelihood

of that pairing being formed in a real protein can be used as part of a scoring system

of an alignment algorithm. On this basis, we have developed BCeval, a beta-contact

evaluator based on a mixture of neural networks able to predict whether a pair of beta-

strands is in the correct register. In addition, a pairwise sequence alignment method

(BCalign) has been developed capable of automatically taking into account the beta

contact evaluations while building the alignment. A search algorithm controlled by

an iterative procedure is adopted to find the alignment instead of a classical dynamic

programming technique such as Needleman and Wunsch. The score of a substitution

in the alignment will also depend on the mutual register with another substitution

along the sequence (because the register will affect the beta pairing), thus breaking

the basic assumption of dynamic programming. In other words, while searching for

the best alignment, the contacts of the template are assigned to the target; the scoring

system then takes into account both the assigned beta strands at the same time, so

that the substitutions within a strand cannot be scored without taking into account

the information about the neighbouring strand.
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A.2 Methods

When two sequences (the homology modelling target and template) are aligned, the

structural characteristics of the template are assigned to the target. Thus the secondary

structure and the relative position within the structure (including interactions with

other residues) are immediately known for the target sequence. A mis-alignment (i.e.

an incorrect substitution suggested by the sequence alignment) will lead to a wrong

structure assignment: the bigger the shift from the correct position, the greater the

distance from the correct structure. Thus we are able to examine contacts between

residues in adjacent beta strands assigned in the target protein in an attempt to detect

mis-alignments. In particular, we estimate the likelihood of an assigned beta pair being

correct using an evaluator based on machine learning (BCeval).

At first glance, including these evaluations in the scoring system of a typical dy-

namic programming algorithm seems a straightforward way to use the new information.

Unfortunately, the main dynamic programming assumption (that the optimal solution

of the problems should depend on the optimal solution of its sub-problems) is broken.

In order to overcome this limitation, we propose a technique which adopts a heuristic

search algorithm (BCalign).

A.2.1 Developing the Beta Contact Evaluator (BCeval)

The evaluation of beta contacts can be tackled as a prediction problem, similar to

contact map prediction. We must (i) define the training data, (ii) find a suitable

representation of the input and output data and (iii) set up a proper architecture

and learning algorithm(s). All the described modules have been implemented using

the GAME framework(8), written in Java 6.0. Following the philosophy of GAME,

the experiments and the combination of experts have been set up using the graphical

interface. The resulting system is called BCeval.

A.2.1.1 Why not use a Generic Contact Map Predictor?

In principle, it might be possible to use a generic contact predictor to evaluate a contact

between beta strands. Various contact predictors have been proposed, such as those

by Cheng & Baldi(90) and Tegge et al.(91). However, the accuracy of these tools

in not high, owing to the difficulty of predicting all possible contacts occurring in a
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----AA-----AA------BBBB-----CCCCC-----CCCCC-------BBBB------

----12-----12------1234-----12345-----54321-------4321------

QSPVDIDTHTAKYDPSLKPLSVSYDQATSLRILNNGHAFNVEFDDSQDKAVLKGGPLDGT

CCCCEECCCCCEECCCCCCEEEECCCCCEEEEEECCCCEEEEECCCCCCCEEEECCCCCC

Figure A.3: An example chain indicating the residues in contact. The letters in the first

line indicate the beta strand pairs. The numbers in the second line indicate the residues in

contact within the same pair. For example, the two residues labelled B1 form a contact.

protein (including between α-helices). Even more specific predictors specialized in beta

contacts report accuracies below 50%(184).

Fortunately, rather than the general problem of predicting contacts between β-

strands, we already know which strands are in contact and we can concentrate on

small shifts around a given position. Thus, we developed a new system specialized

in recognizing a contact from the ‘shifted’ versions that could be identified from an

alignment procedure.

A.2.1.2 Data Representation

The beta-pairs must be represented in a fixed-length vector in order to obtain an input

suitable for a neural network. The main requirement for the input vector is to contain

the residues of the two strands involved in the pairing. Additionally, the shifted versions

of the same pair must be clearly recognizable.

Figure A.3 shows an example fragment of protein chain, in which the contacting

residues belonging to different beta strands are indicated. Clearly the length of the β-

segments is variable, while a fixed-length vector is needed for the data representation.

Choosing to encode a window of N residues, that window would be perfectly suited to

strands of length N , while information would necessarily be lost for pairings of longer

strands. On the other hand, using larger windows would include residues which are not

involved in contacts.

In addition, one must account for correct pairing of residues in both parallel and

anti-parallel strands. For instance, taking a window of four residues along the anti-

parallel B strands in Figure A.3, the data representation must indicate that the leucine

at the first position in the first strand is in contact with the glycine in the last po-

sition of the second strand and not the valine in the first position. The different
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hydrogen-bonding patterns observed in parallel and anti-parallel sheets also result in

different propensities in the contacts between residues, as shown by Fooks et al.(180)

and Hutchinson et al.(183). For these reasons, a ‘mixture of experts’ approach has been

adopted: one expert deals with only strands of one type, without any adjustment in

the encoding phase.

Profiles, obtained after three iterations of a PSI-BLAST search on the whole protein,

have been used to encode the residues in the window. PSI-BLAST is run against the

data repository uniref90 1, with the inclusion threshold set to 10−3 and the number of

iterations set to 3. The default values of the NCBI stand-alone version of blastpgp were

used for the remaining parameters.

A simple position-independent coding of the residues was also tried, but profiles

lead to better performance.

A.2.1.3 The Architecture

The core of BCeval consists of a mixture of 13 neural networks, each one specialized

for a specific length (1,2,3,4,5,6,7+) and type (parallel or anti-parallel) of beta pair-

ing. Figure A.4 shows the architecture of BCeval. The 13 experts (bridge contacts of

one residue do not distinguish between parallel and anti-parallel) are combined at the

first level and constitute a ‘core evaluation module’. The window length includes all

(and only) the residues involved in each pairing, such that each neural network has a

fixed-length vector as input, representing the residues involved in the contact. Simpler

architectures with only one neural network and fixed input length (1, 2, 3) were tried

first, but the described architecture improved accuracy. The final output is obtained

by averaging three core evaluation modules trained separately.

A.2.1.4 Training data Composition

The composition of the training examples determines the ability of the trained machine

learning system to fit the problem. A reference test set, TESTDOM, was built by

selecting 10% of the total codes in the CATH database(21) at the homologue level, and

taking the corresponding domains. A subset of the domains in TESTDOM, prevalently

far homologues, have been used to build a set of pairs of domains to be aligned. The

1http://www.pir.uniprot.org/database/nref.shtml
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Figure A.4: The BCeval architecture. The guarding functions ensure that only one neural

network is activated at a time. The ‘parallel’ guard is able to distinguish between parallel

and anti-parallel strand pairs, while the ‘length’ guard dispatches based on the length.

In the example, an anti-parallel pair of length 3 is given so activating the path shown in

bold. Three core units consisting of independently trained neural networks are averaged

to obtain the final evaluation.

resulting set, TESTALIGN, consists of 743 proteins, which have been used to test

the alignment algorithms. A set of protein chains, TRAINCH, consisting of protein

chains from a dataset with identity < 25%1, selected in order not to include any chain

containing the domains in TESTDOM, was used as a starting point to obtain contacts;

whole chains were preferred to domains in order to use DSSP(185) outputs from the

EBI2 directly. Contacts included in the training of BCeval have been obtained from

within the chains of TRAINCH by parsing the DSSP files, which include the position of

the contacts between pairing residues in β-strands. Negative examples (i.e. pairings not

observed to be in a beta contact) have been obtained by a synthetic sampling around the

actual contacts. A Gaussian distribution (µ = 0, σ =
√

5) around the positive examples

was used to perform the sampling. The negative and positive samples are balanced (half

1http://bio-cluster.iis.sinica.edu.tw/~bioapp/hyprosp2/dataset_8297.txt
2ftp://ftp.ebi.ac.uk/pub/databases/dssp/
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positive, half negative), without taking into account the observed distribution. As seen

in Figure A.2, the extent of the observed shifts depends greatly on the sequence identity,

making it hard to model the observed distribution correctly and, in any case, balanced

inputs generally result in better learning. This partial synthetic sampling has been

preferred to sampling the real data in order to obtain more, and more varied, samples.

In practice, the negative data are randomly generated at each training iteration, so

improving the diversity given to the training algorithm.

A.2.1.5 Training Technique and Parameter Setting

Each expert is based on a 3-layer feed-forward neural network, trained with a variant of

the back-propagation algorithm, with learning rate = 0.001 (initial value) and momen-

tum = 0.1. The learning rate is adjusted between iterations with an inverse-proportion

law. The number of hidden neurons is 75 for each neural network. The number of input

neurons is 20 · N , where N is the size of the input window. A single output neuron

indicates whether the given input is a contact or not. With the goal of improving the

ability of the training algorithm to escape from local minima, the training set is ran-

domly shuffled at each iteration, so that the learning algorithm is fed with the same set

of proteins given in a different order. Furthermore, each protein provides only a subset

of its inputs, according to a random choice performed in accordance with a specific

parameter, n. In particular, a random value k is extracted in the range [0, n − 1] and

the inputs with index k, k + n, k + 2n, . . . are provided to the learning algorithm.

To prevent the training process from stopping with a local oscillation of accuracy

(evaluated on a validation set consisting of a 10% of TRAINCH, not used in the back-

propagation process), weights are recorded when a minimum is encountered on the

validation set, but the training continues until the error on the validation set increases

for 10 consecutive iterations.

A.2.2 Developing the Pairwise Sequence Alignment (BCalign)

The definition of an alignment algorithm includes two separate parts: (i) the cost

function i.e. a scoring scheme used to evaluate an alignment; (ii) the alignment strategy,

i.e. a strategy which gives the succession of substitutions, insertions and deletions which

minimize the cost function. In the first part of this section, we describe a cost function

154



A.2 Methods

which includes the evaluation of beta pairings made by BCeval. In the second part, an

alignment strategy suitable for use with the given cost function, is presented.

A.2.2.1 Defining the Cost Function

Given a pairwise sequence alignment, A, between a template and a target sequence

(the structure of the template being known), its cost,1 c(A,Stpl), in BCalign consists

of the sum of three main contributions (Equation A.1):

cbcalign(A,Stpl) = cnw(A) + cbetaindel(A,Stpl) + cbceval(A,Stpl) (A.1)

where Stpl is the structure of the template sequence.

The component cnw is essentially the result of the application of a classical Needle-

man and Wunsch scoring scheme: the sum of the costs of all substitutions, insertions,

and deletions occurring in the alignment. The cost of the substitutions is obtained

from a similarity scoring matrix Ms (e.g. BLOSUM62), reversed so as to obtain a cost

matrix Mc = −(Ms − max(Ms)). The cost of insertions and deletions is the same,

and is described by an affine gap penalty: the cost of opening of a new gap (cgapop) is

greater than extending a gap that has already been opened (cgapext):

cnw(A) = cgapop · ngapop + cgapext · ngapext +
∑
i,j

Mc(Ptpli , Ptgtj ) (A.2)

where i and j indicate the position of the substituted residues, ngapop the number of

gap openings, ngapext the number of gap extensions, all according to the alignment A.

The term cbetaindel in Equation A.1 is given by the total number of gaps within the

beta strands in the template. Including this contribution is similar to the approach

adopted in PIMA(186), with the exception that here only beta strands are included.

This component has been included in order to increase the number of beta pairs avail-

able for the evaluation: the larger costs help to avoid insertions and deletions inside

beta strands, which rarely occur during evolution. If ngapβ is the number of gaps within

beta strands, the cost is given by:

cbetaindel = ngapβ · cgapβ (A.3)

1Note that scores, usually preferred in the scoring systems of sequence alignments, can also be

viewed as the opposite of costs.
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where cgapβ is β-specific gap penalty.

The last term in Equation A.1, cbceval, results from the evaluation of beta pairs in

the target sequence, assigned from the template. This has two different effects:

• to increase the cost of beta pairs that appear to be mistakenly assigned (i.e.

shifted),

• to decrease the cost of beta pairs that appear to be assigned correctly.

The first of these changes the equilibrium of the alignment space, moving away from

the solutions suggested by the other two terms that lead to wrong beta pair assignments.

The second, although not directly permitting us to improve the alignment, prevents

drifts when correct assignments are found with the standard scoring scheme. In fact,

the change of a pair of assignments may affect the solution in many different places

within the alignment.

Considering p̃(bptgt) as the estimation of the probability (in this case given by

BPEVAL) of the beta pair bptgt being formed, it is reasonable that the cost c(bptgt)

should be proportional to −p̃(bptgt). It is also reasonable that the value of the cost

should be large enough to allow the overall cost function to escape from the misleading

minima obtained with the standard scoring system. For this reason, the cost should

also be proportional to the number of residues involved in the pairing (nbp). After

trying different options, the following quadratic formula appeared to give the best

stable performance:

cevabs(bptgt) =

{
(0.5− p̃(bptgt))2 · nbp if p̃(bptgt) ≤ 0.5,

−(0.5− p̃(bptgt))2 · nbp if p̃(bptgt) > 0.5.
(A.4)

Considering the stochastic nature of the evaluator an extra term has been included,

in order to stabilize the algorithm in the presence of wrong estimations. This extra

contribution also takes into account the corresponding beta pair in the template (bptpl),

for which the estimation error is known to be 1 − p̃(bptpl). The requirement for this

term derives from the assumption that the errors in the estimation of p on the template

and the target are correlated. Therefore, in the presence of a confident prediction

(p̃(bptgt) > 0.5), if p̃ for the template is significantly larger than for the target, we have

a strong indicator of a probable error in the alignment. This relative contribution is

given by:
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cevrel(bptgt, bptpl) =

{
(p̃(bptpl)− p̃(bptgt))2 · nbp if p̃(bptpl)− p̃(bptgt) > 0.1

0 otherwise.
(A.5)

The total cost for a single beta pair is then:

cev(bptgt, bptpl) = γabs · cevabs(bptgt) + γrel · cevrel(bptgt, bptpl) (A.6)

where γabs and γrel are given as parameters.

The total cost for a given alignment is given by the sum of cev, for all the beta pairs

resulting from the assignment of the template structure Stpl to the assigned target

structure S̃tgt:

cbceval(A,Stpl) =
∑

cev(bptgt, bptpl),∀bptpl ∈ Stpl, bptgt ∈ S̃tgt (A.7)

A.2.2.2 Minimizing the Cost Function

Dynamic programming techniques, such as Needleman and Wunsch, are generally

adopted to minimize a cost function for sequence alignments. These algorithms are

the best choice when the best solution for the whole problem can be built incremen-

tally by calculating the best solution for its sub-problems. When adopting the proposed

cost function, this assumption is broken, since the cost of a substitution is related to

other substitutions along the sequences. A natural generalization of the Needleman

and Wunsch algorithm is represented by search algorithms, which allow us to evaluate

the path dynamically. A search algorithm is completely defined by:

• The search problem. This is defined by the tuple (S0, operator-set, goal-test, f),

where S0 is the start state; operator-set defines the set of states that can be

reached from a given state; goal-test can say whether a given state is the goal or

not; f is an evaluation function which gives a score (or a cost) for a given path

(sequence of states).

• The search strategy. This determines the order in which the nodes are expanded.

In global search strategies, a node corresponds to a state in the tree. For instance,

a best-first strategy always expands a node with the best value of f .
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In other words, using a global-search algorithm, the best alignment can be found by

searching for the path in a tree with minimum f , leading to the end of the sequences,

in which each node of the tree is generated by the operations of insertion, deletion,

or substitution. Figure A.5 gives an example of a simple alignment, equivalent to

A G T C
0 -1 -2 -3 -4

A -1 1 0 -1 -2
T -2 0 -1 1 0
C -3 -1 -2 0 2

[0,0]
0

[1,1]
1

[0,1]
-1

[1,0]
-1

       A/A A/--/A

[2,2]
-1

[1,2]
0

[2,1]
0

      G/T  G/-   -/T

[2,3]
-2

[1,3]
-1

[2,2]
-1

      G/C G/-  -/C

[3,2]
1

[2,2]
-1

[3,1]
-1

      T/T T/--/T

[4,3]
2

[3,3]
0

[4,2]
0

       C/C C/--/C

Figure A.5: An example of alignment performed with a search algorithm. The search

can be represented by a tree, in which the edge score is given by a simple scoring system

(-1 for gaps, 1 match, -2 mismatch). Each circle represents a node, indicating the position

in the two sequences and the path score. With a best-first search (i.e. the most promising

nodes are opened first), the nodes shown with solid lines are expanded. Also nodes outside

the solution path (in dashed lines) are explored, according to the local score. On the left,

the corresponding Needleman and Wunsch matrix is indicated: note that the values in the

Needleman and Wunsch matrix correspond to the scores of a node only when the best path

to that node is followed.

Needleman and Wunsch, performed with a best-first search strategy.

The pay-off for the greater flexibility of search algorithms is a possible explosion

of the computational cost. For instance, in the example of Figure A.5, a blind (brute-

force) search strategy is adopted, with the consequence that many nodes could be

expanded before ending with the solution. The expected number of expanded nodes
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grows exponentially with the length of the path, which in turn grows linearly with the

length of the sequences. The number of expanded nodes is greatly reduced by adopting

a heuristic search algorithm (for example, A*(168)). In A* the path cost of a given

node n is the sum of two terms:

f(n) = g(n) + h(n) (A.8)

g being a path cost function, and h being a heuristic function, expected to estimate the

cost from that node to the solution. If the cost increases monotonically along the path

and the heuristic function is admissible (i.e. it is an underestimation of the real cost of

the solution) the A* algorithm is guaranteed to find the path with minimum cost. The

complexity becomes linear if the estimation given by the heuristic function is exact.

Using the cost function defined in the previous section as g(n), a heuristic function

can be devised able to estimate exactly the first two terms of the cost. Unfortunately,

an exact estimation cannot be given for cbceval(A,Stpl), so that the complexity rapidly

increases with the length of the sequences to be aligned. In order to control the run time,

rather than dynamically apply the evaluator during the search, an iterative procedure

has been used: at the i-th iteration, the pairings found in all i − 1 previous iterations

are evaluated, until a reasonable trade-off is found.

def bc_align(template_seq, target_seq, template_str):

c_pairs=set()

for x in range(MAX_ITERATIONS):

solution = bc_search(template_seq, target_seq, c_pairs)

new_c_pairs = c_pairs + get_c_pairs(solution, template_str)

if len(new_c_pairs) > len(c_pairs):#no new pair found

c_pairs = new_c_pairs

else:

break

return solution

Listing 2: The iterative algorithm pseudo-code, in Python-like syntax.

Listing 2 presents the pseudo code for the iterative procedure. The function

bc search performs a search, applying the costs for the pairs obtained for the
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beta-pairs encountered in the solutions of previous iterations. The iterations continue

until convergence, or the maximum number of iterations is reached.

The A* evaluation function has been used in the alignment search algorithm, with

the Iterative-Deepening A* (IDA*)(187) search strategy, which has been preferred for

its better use of memory. In accordance with the example in Figure A.5, a search state

is indicated by S = [i, j]. i and j represent the relative position in the sequences, and

can also be viewed as coordinates in a Needleman and Wunsch-like cost matrix. Given

the definition of the search state, the heuristic search problem is given by:

• S0 (start state): [0, 0]

• goal-test: [i0, j0], i0 = length(P1) ∧ j0 = length(P2)

• operators: [i0, j0] → {[i0 + 1, j0 + 1], [i0 + 1, j0], [i0, j0 + 1]} (substitution, in-

sertion, and deletion respectively). Each operation is defined provided that

i <= length(P1) ∨ j <= length(P2).

• g (cost function): depends on the path from the start state to the current state.

It includes the costs for the substitutions and gaps along the path, and the costs

arising from beta-pair evaluations. The cost function is basically the cbcalign as

defined in Section A.2.2.1; for performance reasons, the values are rounded to the

nearest integer.

• h (heuristic function): the heuristic function is the estimated cost for the

remaining part of the sequences from the current state. A matrix HP1,P2 gives

the estimation: h([i, j]) = HP1,P2(i, j). The matrix H is constructed similarly

to a Needleman and Wunsch matrix, minimizing the sum of the terms cnw and

cbetaindel.

A.3 Results

A.3.1 BCeval

Table A.1 shows the accuracy, specificity, and Matthews correlation coefficient(133)

obtained after a 7-fold cross validation experiment on the dataset TRAINCH.

Tests were performed in order to evaluate the usefulness of BCeval in the evaluation

of alignments, i.e. the possibility of using metrics obtained from the evaluator to choose

160



A.3 Results

Fold Accuracy Precision Recall MCC†

1 0.781 0.765 0.807 0.563

2 0.783 0.774 0.797 0.565

3 0.795 0.777 0.821 0.592

4 0.784 0.777 0.802 0.568

5 0.784 0.768 0.812 0.569

6 0.790 0.764 0.840 0.582

7 0.778 0.770 0.797 0.556

AVG 0.785 0.771 0.811 0.571

Table A.1: Results for BCeval in a 7-fold cross validation test on the dataset TRAINCH.

† MCC = Matthews’ Correlation Coefficient.

the best alignment among a set of alternatives. In particular, the correlation between

the actual performance for a series of alignments and an evaluation metric for that

alignment was analyzed. Alignments were obtained with the Needleman and Wunsch

algorithm, scored with the BLOSUM62 matrix and gap opening/extension penalty

of 2/12. The performance of an alignment was measured using the ‘SSMA distance’

(SSMAD), i.e. the average distance from a reference structural alignment Astr, obtained

using SSAP(170) for each substitution in the sequence alignment Aseq:

SSMAD =
N∑
i

∣∣Astri −Aseqi

∣∣/N (A.9)

where i indicates a substitution, N is the number of substitutions, Ai indicates the

position of the substitution in alignment A. The mean of the evaluations for the target

protein p̃(bptgt) has been taken as a metric. Figure A.6 plots the correlation between

this metric and SSMAD on dataset TESTALIGN while Figure A.7 plots the correlation

between the metric and RMSD of the models obtained for the same alignments with

MODELLER(63; 64)1 (used in fully automatic mode once supplied with the alignment).

The Pearson’s correlation coefficient is −0.386 for SSMAD and −0.520 for the RMSD.

1Only 637 models were obtained from the alignments owing to problems in the automatic process

which extracted the indexes for the domains from the PDB files. The problem is often caused by

domains which include non-consecutive parts of sequence.
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Figure A.6: BCeval score vs. SSMAD.

A.3.1.1 BCalign

A first set of experiments was run to find the best parameter set for the alignment al-

gorithm. The set of parameters which gave the best results was cgapop = 22, cgapext = 9

cgapβ = 6, γabs = 75 and γrel = 5. The substitutions are scored using BLOSUM45. The

algorithm appears to be better suited to distant homologues, since for sequence align-

ments between close homologues a standard sequence alignment is usually sufficiently

reliable, and usually very few SSMAs are detected. If a different substitution matrix

is used, all the parameters should be adjusted so as to obtain the best performance.

The maximum number of iterations was set to 5. In order to restrict the time of the

experiments, a limit of one minute was imposed on the search algorithm at each itera-

tion. The experiments were run on a laptop with an Intel SU9600 CPU. The main code

of the alignment algorithm was written in Java and experiments were scripted using

Python via the Jython 2.5 interpreter1, which supports calling Java routines natively.

On the TESTALIGN dataset, BCalign shows a relative improvement2 of 6.2%

(0.661 vs. 0.703 average) in the percent of correct substitutions against the same tech-

1http://www.jython.org.
2Relative improvements are calculated with RI(a, b) = a−b

(a+b)/2
· 100

162

http://www.jython.org


A.3 Results

Figure A.7: BCeval score vs. RMSD (Å).

nique without the use of the evaluator (γabs = 0, γrel = 0). The latter configuration is

referred to as NOBCalign. The SSMAD improvement is 15.6% (2.19 vs. 1.87 average).

The average RMSD is 5.99Å for BCalign and 6.40Å for NOBCalign, an improvement of

6.59% as a result of using the BCeval predictor. The large values of RMSD result from

the fact that the majority of the alignments in the test set have sequence identity below

25%. In addition, as seen in Figure A.7, a few models have extremely large RMSDs,

greatly influencing the mean value.

In addition, BCalign has been compared with the multiple alignment technique,

MUSCLE(29). MUSCLE was run with standard parameters, and all the homologous

sequences in TESTDOM (according to the CATH definitions) were included in the

multiple alignments. BCalign shows an average number of correct substitutions which

is slightly better (+1.4%) than MUSCLE in the test; on the other hand, on average

it does somewhat worse than MUSCLE in SSMAD and RMSD (−2.1% and −2.6%,

respectively).

Better results are obtained by restricting comparisons to data for which we expect

BCalign to perform well. Taking only the all-β and α/β domains (92% of the total in the

test set, thus excluding the all-α domains where BCeval provides no useful information)
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the RMSD improves by +6.78% with respect to NOBCalign. For the structures with

at least 8 beta pairs (58% of the alignments) the RMSD improvement is 8.83% over

NOBCalign, and 1.22% over MUSCLE.

Figure A.8: Average improvement in SSMAD and RMSD with different inclusion thresh-

olds. The threshold consists of the difference in the BCeval score between alignments ob-

tained with BCalign and MUSCLE. The percent of included alignments at each threshold

is also shown.

Further, the BCeval scores can be used to select those cases where BCeval makes

confident predictions. Figure A.8 and A.9 show the average relative improvement in the

RMSD and SSMAD between BCalign pairwise alignment and MUSCLE multiple align-

ment, when varying an inclusion threshold based on the improvement in the assignment

of beta pairs when comparing MUSCLE and BCalign alignments, as evaluated using

BCeval. The graphs clearly show that using an inclusion threshold of less than −0.3

(thus including up to 20% of alignments), substantial improvements in SSMAD and

RMSD can be obtained.
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Figure A.9: Average improvement in SSMAD and RMSD with different inclusion thresh-

olds, with number of beta pairs ≥ 8. The threshold consists of the difference in the BCeval

score between alignments obtained with BCalign and MUSCLE. The percent of included

alignments at each threshold is also reported.

A.4 Discussion

The prediction of protein tertiary structure has become one of the most important tasks

in bioinformatics. Although building complete protein tertiary structures de novo is

mostly not a tractable task, comparative modelling techniques are able to provide ac-

curate models by assigning the structure from a template. Sequence alignment with

the template protein is the most critical task in comparative modelling: a strong corre-

lation holds between the RMS deviation of models and the occurrence of errors in the

alignment.

In order to improve alignments in this context, we have exploited the likelihood of

a given pairing between beta strands being correct. Since the location of beta strands

is known for the template it can be assigned to the target sequence after the alignment.

We have presented a beta contact evaluator, BCeval, which estimates the likelihood of

assigned beta pairings occurring in real proteins by using a mixture of neural networks.

BCeval is then actively exploited with a novel sequence alignment technique, called
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BCalign. We firstly proposed a scoring system, which modifies a normal system based

on a substitution matrix by using the contribution of the evaluator. Since it is not pos-

sible to use standard dynamic programming with this scoring system, BCalign resorts

to search algorithms, guided by an external loop to control the maximum run time.

Our experiments show a considerable correlation between the evaluations made by

BCeval and the correctness of the assigned pairings. In particular, the quality of an

alignment, measured by the average distance of substitutions from the correct position

(SSMAD), is negatively correlated with a BCeval metric, consisting of the sum of the

evaluations for each pair assigned from the template structure. This fact suggests

that BCeval is indeed useful for choosing the best alignment from a set of alternatives

obtained with different techniques and/or parameters.

Experiments confirm the validity of the approach: BCeval predictions show a con-

siderable correlation with correct beta pair assignments and alignments obtained with

BCalign show that the evaluation of assigned beta pairs can be successfully exploited

to enhance pairwise sequence alignments.

Overall, BCalign showed a considerable improvement in pairwise alignments of

15.6% in SSMAD on a set of 743 alignments of domains not showing any homology

with the data used to train the evaluator. Three-dimensional models obtained from

the alignments with the same proteins show an average RMSD improvement of 6.6%

compared with standard Needleman and Wunsch sequence alignments. Also, BCeval

results are, on average, comparable with multiple alignments obtained with MUSCLE.

However, choosing the 20% best scoring alignments according to the evaluator, models

obtained with BCalign show a considerable improvement in the RMSD of about 10%

over MUSCLE.

A.5 Conclusions

In conclusion, BCalign appears to perform best when used in a mixed environment,

in which different techniques compete while taking into account the scores assigned by

BCeval. Figure A.8 shows that restricting the use of BCalign to those cases where it

makes the most confident predictions of an improvement in beta-strand pairing over

MUSCLE, greatly increases its effectiveness. If only the best 20% of improved align-

ments (as predicted by BCeval) are used, the RMSD of the models was about 10%
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better than multiple alignments generated using MUSCLE. Even including the best

50% of the alignments shows BCalign to be a good strategy (5% improvement over

MUSCLE).

Finally, given that a number of novel techniques have been introduced together, the

implementation of the algorithms can probably be further improved. The computation

is still not sufficiently efficient, frequently reaching the time limit for long sequences. Of

course longer sequences will, on average, have more beta-strands which can be exploited

by the method and therefore are likely to show the best improvements. Clearly increas-

ing the run-time limit or using faster machines may lead to further improvements, but

more consistent improvements could be obtained by enhancing the search algorithm (in

particular, a better heuristic function could greatly decrease the explored alternative

paths). Another approach may be to devise a better control loop able to include the

evaluations without overloading the search algorithm. Alternatively, stochastic local

search algorithms, including genetic algorithms, could also be tried in order to have

better control over the run time while using the same scoring systems.

Both BCeval and BCalign have been released as web servers and stand alone pro-

grams. Servers and executable can be accessed from http://iasc.diee.unica.it/

bcserver.
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”OÓ, and Ó.Ø. ÓÑ. Probabilistic outputs for sup-

port vector machines. Bartlett P. Schoelkopf B.

Schurmans D. Smola, AJ, editor, Advances in Large Mar-

gin Classifiers, pages 61–74. 119

[166] T.N. Petersen, C. Lundegaard, M. Nielsen, H. Bohr,

J. Bohr, S. Brunak, G.P. Gippert, and O. Lund. Predic-

tion of protein secondary structure at 80% accu-

racy. Proteins, 41:17–20, 2000. 120

[167] G. Wang and R.L. Dunbrack. PISCES: a protein se-

quence culling server. Bioinformatics, 19(12):1589,

2003. 143

[168] P.E. Hart, N.J. Nilsson, and B. Raphael. A Formal Ba-

sis for the Heuristic Determination of Minimum

Cost Paths. Systems Science and Cybernetics, IEEE

Transactions on, 4(2):100 –107, jul. 1968. 143, 159

[169] I. N. Shindyalov and P. E. Bourne. Protein Struc-

ture Alignment by Incremental Combinatorial

Extension (CE) of the Optimal path. Protein Eng.,

11:739–747, 1998. 147

[170] W. R. Taylor and C. A. Orengo. Protein Structure

Alignment. J. Mol. Biol., 208:1–22, 1989. 147, 161

[171] S. Subbiah, D. V. Laurents, and M. Levitt. Structural

Similarity of DNA-binding Domains of Bacterio-

phage Repressors and the Globin core. Curr. Biol.,

3:141–148, 1993. 147

[172] L. Holm and C. Sander. Protein Structure Compar-

ison by Alignment of Distance Matrices. J. Mol.

Biol., 233:123–138, 1993. 147

[173] Takeshi Kawabata. MATRAS: A Program for Pro-

tein 3D Structure Comparison. Nuc. Ac. Res.,

31:3367–3369, 2003. 147

[174] J. F. Gibrat, T. Madej, and S. H. Bryant. Surprising

Similarities in Structure Comparison. Curr. Opin.

Struct. Biol., 266:540–553, 1996. 147

174

http://www.cs.waikato.ac.nz/ml/weka/
http://www.cs.waikato.ac.nz/ml/weka/
http://rapid-i.com/component/option,com_docman/task,doc_download/gid,25/Itemid,62/
http://rapid-i.com/component/option,com_docman/task,doc_download/gid,25/Itemid,62/
http://www.doc.ic.ac.uk/~xh1/Referece/combining-classifiers/Stacked-Generalization.pdf


REFERENCES

[175] E. Krissinel and K. Henrick. Secondary-structure

Matching (SSM), a new tool for fast Protein

Structure Alignment in Three Dimensions. Acta

Crystallogr., 60:2256–2268, 2004. 147

[176] M. Novotny, D. Madsen, and G. J. Kleywegt. Evalua-

tion of Protein fold Comparison Servers. Proteins:

Struct., Funct., Genet., 54:260–270, 2004. 147

[177] M. A. S. Saqi, R. B. Russell, and M. J. E. Sternberg. Mis-

leading local sequence alignments: implications

for comparative modelling. Protein Eng., 11:627–

630, 1998. 148

[178] C. A. Orengo, A. D. Michie, S. Jones, D. T. Jones, M. B.

Swindells, and J. M. Thornton. CATH–a Hierar-

chic Classification of Protein Domain Structures.

Structure, 5:1093–1108, 1997. 149

[179] Frances Pearl, Annabel Todd, Ian Sillitoe, Mark Dib-

ley, Oliver Redfern, Tony Lewis, Christopher Bennett,

Russell Marsden, Alistair Grant, David Lee, Adrian Ak-

por, Michael Maibaum, Andrew Harrison, Timothy Dall-

man, Gabrielle Reeves, Ilhem Diboun, Sarah Addou, Ste-

fano Lise, Caroline Johnston, Antonio Sillero, Janet

Thornton, and Christine Orengo. The CATH Do-

main Structure Database and Related Resources

Gene3D and DHS Provide Comprehensive Do-

main Family Information for Genome Analysis.

Nuc. Ac. Res., 33:D247–D251, 2005. 149

[180] H. M. Fooks, A. C. R. Martin, D. N. Woolfson, R. B.

Sessions, and E. G. Hutchinson. Amino acid Pairing

Preferences in Parallel Beta-sheets in Proteins.

J Mol Biol, 356:32–44, 2006. 149, 152

[181] S. Lifson and C. Sander. Specific Recognition in the

Tertiary Structure of Beta-sheets of Proteins. J

Mol Biol, 139:627–639, 1980. 149

[182] M. A. Wouters and P. M. Curmi. An Analysis of

side Chain Interactions and pair Correlations

Within Antiparallel Beta-sheets: the Differences

Between Backbone Hydrogen-bonded and Non-

hydrogen-bonded Residue Pairs. Proteins, 22:119–

131, 1995. 149

[183] E. G. Hutchinson, R. B. Sessions, J. M. Thornton, and

D. N. Woolfson. Determinants of Strand Register

in Antiparallel Beta-sheets of Proteins. Protein

Sci, 7:2287–2300, 1998. 149, 152

[184] Marco Lippi and Paolo Frasconi. Prediction of pro-

tein ?-residue contacts by Markov logic networks

with grounding-specific weights. Bioinformatics,

25(18):2326–2333, 2009. 151

[185] W. Kabsch and C. Sander. Dictionary of Pro-

tein Secondary Structure: Pattern Recognition

of Hydrogen-bonded and Geometrical Features.

Biopolymers, 22:2577–2637, 1983. 153

[186] R. F. Smith and T. F. Smith. Pattern-induced multi-

sequence alignment (PIMA) algorithm employ-

ing secondary structure-dependent gap penalties

for use in comparative protein modelling. Protein

Eng., 5:35–41, 1992. 155

[187] R.E. Korf. Depth-First iterative-deepening: An

optimal admissible tree search. Artificial Intelli-

gence, 27(1):97–109, 1985. 160

175

http://bioinformatics.oxfordjournals.org/content/25/18/2326.abstract
http://bioinformatics.oxfordjournals.org/content/25/18/2326.abstract
http://bioinformatics.oxfordjournals.org/content/25/18/2326.abstract


REFERENCES

176



List of Publications Related to

the Thesis

Published papers

Journal papers

• F. Ledda, L. Milanesi, and E. Vargiu. GAME: A Generic Architecture based

on Multiple Experts for Predicting Protein Structures. International Journal

Communications of SIWN, 3:107–112, 2008. Relation to Chapter 5.

• G. Armano, F. Ledda, and E. Vargiu. Sum-Linear Blosum: A Novel Protein

Encoding Method for Secondary Structure Prediction. International Journal

Communications of SIWN, 6:71–77, 2009. Relation to Chapter 6.

Book Chapters

• G. Armano, F. Ledda, and E. Vargiu. SSP2: A Novel Software Architecture for

Predicting Protein Secondary Structure. Sequence and Genome Analysis: Methods and

Application, in press. Relation to Chapter 7.

Conference papers

• G. Armano, F. Ledda, and E. Vargiu. GAME: a Generic Architecture based

on Multiple Experts for bioinformatics applications. In BITS Annual Meeting

2009, Genova (Italy), 2009. Relation to Chapter 5.

• F. Ledda and E. Vargiu. Experimenting Heterogeneous Output Combination

to Improve Secondary Structure Predictions. In Workshop on Data Mining and

Bioinformatics, Cagliari (Italy), 2008. Relation to Chapter 7 .

Submitted papers

• G. Armano and F. Ledda. Exploiting Intra-Structure Information for Sec-

177



REFERENCES

ondary Structure Prediction with Multifaceted Pipelines. submitted September

2010. Relation to Chapter 7.

• Filippo Ledda, Giuliano Armano, and Andrew C.R. Martin. Using a Beta

Contact Predictor to Guide Pairwise Sequence Alignments for Comparative

Modelling. submitted October 2010. Relation to Appendix A.

178



Declaration

I herewith declare that I have produced this paper without the prohibited assistance

of third parties and without making use of aids other than those specified; notions

taken over directly or indirectly from other sources have been identified as such.

This paper has not previously been presented in identical or similar form to any

examination board.

The thesis work was conducted from January 2007 to December 2010; this docu-

ment was completed in January 2011.

Cagliari, February 16th, 2011

Filippo Ledda


	List of Figures
	List of Tables
	1 Introduction
	2 Preliminary Concepts of Molecular Biology
	2.1 The Central Dogma of Molecular Biology: from genotype to phenotype
	2.2 Evolution and Homology
	2.3 Cells
	2.4 Proteins
	2.4.1 Amino Acids
	2.4.2 Primary Structure
	2.4.3 Secondary Structure
	2.4.3.1 Automatic Secondary Structure Assignment

	2.4.4 Tertiary Structure
	2.4.4.1 From Sequence to Structure: the Levinthal's Paradox
	2.4.4.2 Experimental Determination of Tertiary Structure

	2.4.5 Supersecondary Structure
	2.4.6 Quaternary Structure


	3 Resources and Methods for Bioinformatics
	3.1 Public Databases
	3.1.1 DNA Sequence Databases
	3.1.2 Protein Sequence Databases
	3.1.3 Protein Structure Databases: The Protein Data Bank
	3.1.4 Protein Structure Classification

	3.2 Sequence Alignment
	3.2.1 Substitution Matrices
	3.2.2 Pairwise Sequence Alignment
	3.2.3 Multiple Sequence Alignment
	3.2.4 Position-Specific Scoring Matrices

	3.3 Searching in Sequence Databases
	3.3.1 Database queries
	3.3.2 Similarity Searches
	3.3.2.1 FASTA
	3.3.2.2 BLAST and PSI-BLAST


	3.4 Artificial Neural Networks
	3.4.1 The base units: connections, weights, activation function
	3.4.2 Network Architectures
	3.4.3 Training Process
	3.4.4 Design of MLP systems

	3.5 Protein Structure Prediction
	3.5.1 Comparative Modelling
	3.5.2 Fold Recognition
	3.5.3 Ab initio Prediction


	4 Secondary Structure Prediction
	4.1 Characteristics of the SSP problem
	4.2 Secondary Structure Predictors: History and State-of-the-art
	4.2.1 First Generation Predictors
	4.2.2 Second Generation Predictors
	4.2.3 Third Generation Predictors
	4.2.4 Secondary Structure Prediction Servers

	4.3 Performance Assessment
	4.3.1 Kinds of Errors and Standard Evaluation Measures
	4.3.2 SSP Testing: Which Proteins Should be Used to Test SSP Sytems?
	4.3.3 Presentation of Results: Macro vs. Micro Averaging
	4.3.4 Asymptotic Limit and Expected Improvement

	4.4 Informative Sources in the SSP Problem
	4.4.1 Sequence-to-Structure
	4.4.2 Inter-Sequence
	4.4.3 Inter-Structure
	4.4.4 Intra-Sequence
	4.4.5 Intra-Structure

	4.5 Notable Predictors
	4.5.1 PHD
	4.5.2 PSIpred
	4.5.3 SSPRO


	5 GAME: a Generic Multiple Expert Architecture for Real-World Prediction Problems
	5.1 The Generic Architecture
	5.1.1 GAME Approach to Prediction
	5.1.2 Expert Interaction

	5.2 GAME Framework: Implementation Details and Standard Modules
	5.2.1 Defining and Running Experiments
	5.2.2 Defining GAME modules
	5.2.3 Standard Modules for Prediction an Learning
	5.2.3.1 Instance Data
	5.2.3.2 Base Data
	5.2.3.3 Encoders and Encodings
	5.2.3.4 Decoders
	5.2.3.5 Experts
	5.2.3.6 Prediction Algorithms
	5.2.3.7 Datasets
	5.2.3.8 Gating Functions

	5.2.4 Experiments
	5.2.5 Evaluation

	5.3 GAME for Secondary Structure Prediction
	5.3.1 Problem Definition
	5.3.2 Input Encoders
	5.3.3 Output Encoders
	5.3.4 Refinement Encoders
	5.3.5 Standard Setup for a Secondary Structure Predictor
	5.3.5.1 Encoding Implementation Details
	5.3.5.2 Training Technique and Parameter Setting

	5.3.6 Case Studies
	5.3.6.1 Implementing PSIpred with GAME
	5.3.6.2 Combiners comparative study

	5.3.7 Experimenting Error-Correcting Output Codings for Eight-Class SSP

	5.4 Perspectives

	6 Exploiting Inter-Sequence Information in Secondary Structure Prediction
	6.1 Encoding and Slice Decomposition
	6.2 Encoding Multiple Alignments
	6.3 SLB: A Novel Encoding Method
	6.4 Experimental Results
	6.4.1 Benchmarking Issues
	6.4.2 Ensuring Statistical Significance of Experimental Results
	6.4.3 Experimental Results
	6.4.4 Discussion


	7 Exploiting Intra-Structure Information in Secondary Structure Prediction
	7.1 Combining Heterogeneous Output Encodings
	7.1.1 The Proposed Combination Approaches
	7.1.2 Experimental Results

	7.2 Exploiting Intra-Structure Information with Multifaceted Pipelines
	7.2.1 Introducing the SSP2 Architecture
	7.2.2 Results and Discussion
	7.2.2.1 SD576 Experiments (aimed at identifying best-performing pipelines).
	7.2.2.2 EVA Common Set Experiments (aimed at performing benchmarking).

	7.2.3 Conclusions


	8 Exploiting Inter-Structure Information in Secondary Structure Prediction
	8.1 Decoding Secondary Structure Predictions
	8.2 Evaluating Structure Transformations
	8.3 Determining Structure Transformations
	8.4 Results
	8.5 Perspectives

	A Using a Beta Contact Predictor to Guide Pairwise Sequence Alignments for Comparative Modelling
	A.1 Introduction
	A.2 Methods
	A.2.1 Developing the Beta Contact Evaluator (BCeval)
	A.2.1.1 Why not use a Generic Contact Map Predictor?
	A.2.1.2 Data Representation
	A.2.1.3 The Architecture
	A.2.1.4 Training data Composition
	A.2.1.5 Training Technique and Parameter Setting

	A.2.2 Developing the Pairwise Sequence Alignment (BCalign)
	A.2.2.1 Defining the Cost Function
	A.2.2.2 Minimizing the Cost Function


	A.3 Results
	A.3.1 BCeval
	A.3.1.1 BCalign


	A.4 Discussion
	A.5 Conclusions

	References

