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Abstra
t

This thesis is 
on
erned with 
onsensus algorithms, 
onvergen
e, and stability of

multi-agent systems with time-delays. The main obje
tives of the thesis are

• Utilize and de�ne distributed 
onsensus proto
ols for multi-agent systems with

�rst- or se
ond-order dynami
s so that the 
onsensus state is rea
hed.

• Analyze the stability behavior of the designed system in the presen
e of delays

in the system, with fo
us on 
ommuni
ation delays. The stability of the whole

system must be determined in a distributed manner, i.e., it must rely only on

some general properties of the 
orresponding 
ommuni
ation network topology

of system su
h as algebrai
 
onne
tivity.

• Redu
e the amount of the 
ommuni
ations between the pairs of the agents by

using a sampled-data 
ommuni
ation strategy. We suppose that the samplings

are aperiodi
, and we provide some proofs for the stability and 
onsensus of the

system.

For that purpose, this thesis is divided is three main parts:

• The �rst part, in
luding Chapters 2, 3, and 4, aims at providing a su�
iently

detailed state of the art of the representation and stability analysis of 
onsensus

problems, time-delay systems, and sampled-data systems.

• The se
ond part, in
luding Chapters 5, 6, 7, and 8 
onsists in a presentation of

several results that demonstrate the main 
ontributions of this thesis.

• Finally, the third part, in
luding Chapter 9 
on
ludes the thesis and addresses

the future dire
tions and the open issues of this resear
h.
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1

Introdu
tion and stru
ture of the

thesis

�Coming together is a beginning; Keeping together is progress; Working to-

gether is su

ess.�

� Henry Ford

In the following 
hapter, we introdu
e the 
hallenges that we fa
e in distributed


ontrol systems under di�erent information ex
hange regimes. In Se
tion 1.1, multi-

agent systems are introdu
ed. In Se
tion 1.2, we dis
uss power networks and dis-

tributed lightning systems as two motivating appli
ations. Finally, in Se
tion 1.3, we

outline the thesis.

1.1 Multi-agent systems

During the last de
ades, inspired by advan
es in small size 
omputation, 
ommuni-


ation, sensing, and a
tuation, a growing interest of the 
ontrol theory 
ommunity in

distributed 
ontrol has witnessed. Re
ent developments in 
ontrol engineering, em-

bedded 
omputing, and 
ommuni
ation networks, have made it feasible to have a large

group of autonomous systems working 
ooperatively to perform 
omplex tasks. These

te
hnologi
al advan
es require new ways of managing and de
ision making over the

17



information �ow generated by the single units. Espe
ially, the design of 
ontrol sys-

tems, i.e. a de
ision making pro
ess, has shifted from 
entralized approa
hes, where

all the information available is �ooded in the network in a neighbor-to-neighbor data

ex
hange in some point of time and spa
e and then de
isions are dispat
hed through

the network, to de
entralized and distributed approa
hes, where the information lo-


ally gathered by the units (agents) is pro
essed in lo
us and 
ontrol de
isions are

taken 
ooperatively by the agents with no supervision. Figure 1-1 illustrates how

the information �ows through the units in 
entralized, de
entralized, and distributed

networked systems.

In order to des
ribe the intera
tions among the di�erent units in large s
ale sys-

tems, the notion of multi-agent systems(MASs) has been introdu
ed. Ea
h agent,

indeed, is assumed to have some pe
uliar dynami
s, and the network or inter
onne
-

tions among the agents are then des
ribed by a graph 
alled 
ommuni
ation topology

graph(CTG). In a CTG ea
h vertex indi
ates an agent, and the two agents that


an ex
hange information are being 
onne
ted by an edge. Cooperative MASs 
an

be found in numerous appli
ations like air
raft and satellite formations, intelligent

transportation infrastru
tures, �exible stru
tures, and forest �re monitoring. A basi



ommon feature of multi-agent 
ontrol systems is that they are 
omposed of several

subsystems 
oupled through their dynami
s, de
ision-making pro
ess, or performan
e

obje
tives. When designing these systems, it is often ne
essary to adopt a distributed

ar
hite
ture, in whi
h the de
ision maker (e.g., 
ontroller, network manager, so
ial

planner) is 
omposed of several inter
onne
ted units. Ea
h lo
al de
ision maker 
an

only a

ess a subset of the global information (e.g., sensor measurements, model pa-

rameters) and a
tuate on a subset of the inputs in its neighborhood. This distributed

ar
hite
ture is typi
ally imposed sin
e the 
entral de
ision maker with full a

ess to

information might be
ome very 
omplex and not possible to implement, or be
ause

di�erent subsystems may belong to 
ompeting entities that wish to retain a level of

autonomy.

Generally, the studies of MASs are oriented in the following dire
tions:

1. Consensus and the like problems (syn
hronization and rendezvous).

18



2. Distributed formation and the like (�o
king).

3. Distributed optimization.

4. Distributed estimation and 
ontrol.

The above problems are not independent but a
tually may have overlapping in some


ontexts.

One of the most attra
tive problems that appears in distributed 
ontrol of MAS,

espe
ially in 
oordination-type problems, is the 
onsensus problem. The study of dis-

tributed 
ontrol of MASs was �rst motivated by the work in distributed 
omputing

(Lyn
h et al., 2008), management s
ien
e (DeGroot, 1974), and statisti
al physi
s

(Vi
sek et al., 1995). For example, robots need to arrive at an agreement so as to

a

omplish some 
ompli
ated tasks. Flo
ks of birds tend to syn
hronize during mi-

gration in order to resist aggression and rea
h their destinations. Investigations of

su
h problems are of signi�
an
e in both theory and engineering appli
ations. A


riti
al problem for 
oordinated 
ontrol is to design appropriate proto
ols and algo-

rithms su
h that the group of agents 
an rea
h 
onsensus on the shared information.

The idea behind 
onsensus serves as a fundamental prin
iple for the design of dis-

tributed multi-agent 
oordination algorithms. The aim is, given initial values (s
alar

or ve
tor) of agents, establish 
onditions under whi
h, through lo
al intera
tions and


omputations, agents asymptoti
ally agree upon a 
ommon value, or rea
h a 
onsen-

sus. Due to its broad spe
trum of appli
ations, in the past years, a large attention

has been devoted to the 
onsensus problem in MAS (Qin et al., 2011; Ren et al.,

2005a; Yu et al., 2010; Zareh et al., 2013a). Sensor networks (Yu et al., 2009; Olfati-

Saber and Shamma, 2005), automated highway systems (Ren et al., 2005a), mobile

roboti
s (Khoo et al., 2009), satellite alignment (Ren, 2007a) and several more, are

some of the potential areas in whi
h a 
onsensus problem is taken into a

ount. In

the other words, Consensus is a state of a networked MAS in whi
h all the agents

rea
h agreement on a 
ommon value by only sharing information lo
ally, namely with

their neighbors. Several algorithms, often 
alled 
onsensus proto
ols, have been pro-

posed that lead a MAS to 
onsensus. As an illustrative example, the 
oordination

19



Figure 1-1: A s
hemati
 view of di�erent 
ommuni
ation networks in MASs.

problem of mobile robots �nds several appli
ations in the manufa
turing industry in

the 
ontext of automated material handling. The 
onsensus problem in the 
ontext

of mobile robots 
onsists in the design of lo
al state update rules whi
h allow the

network of robots to rendezvous at some point in spa
e or follow a leading robot

exploiting only measurements of speeds and relative positions between neighboring

robots. To bridge the gap between the study of 
onsensus algorithms and many phys-

i
al properties inherited in pra
ti
al systems, it is ne
essary and meaningful to study


onsensus by 
onsidering many pra
ti
al fa
tors, su
h as a
tuation, 
ontrol, 
om-

muni
ation, 
omputation, and vehi
le dynami
s, whi
h 
hara
terize some important

features of pra
ti
al systems. This is the main motivation to study 
onsensus. An

overview of the resear
h progress in the study of 
onsensus is given in the next se
tion

regarding sto
hasti
 network topologies and dynami
s, 
omplex dynami
al systems,

delay e�e
ts, and quantization, whi
h they were published mainly after 2006. Several

milestone results prior to 2006 
an be found in Olfati-Saber and Murray (2004); Jad-

babaie et al. (2003); Moreau (2005); Tsitsiklis et al. (1986); Fax and Murray (2004);

Ren et al. (2005b); Lin et al. (2005). A full review of the related works is given in

the next 
hapters.

Time-delays exist in many real world pro
esses due to the period of time it takes

for the events to o

ur. Delays are parti
ularly evident in networks of inter
onne
ted

systems, su
h as supply 
hains and systems 
ontrolled over 
ommuni
ation networks.

In these 
ontrol problems, taking the delays into a

ount is parti
ularly important

for performan
e evaluation and 
ontrol system's design. It has been shown, indeed,

that delays in a 
ontrolled system (for instan
e, a 
ommuni
ation delay for data

20



a
quisition) may have a very 
ompli
ated nature: they may stabilize the system, or,

in the 
ontrary, they may lead to deterioration of the 
losed-loop performan
e or

even instability, depending on the delay value and the system parameters. It is a fa
t

that delays have stabilizing e�e
ts, but this is 
learly 
on�i
ting for human intuition.

Therefore, spe
i�
 analysis te
hniques and design methods are to be developed to

satisfa
torily take into a

ount the presen
e of delays at the design stage of the 
ontrol

system. On the other hand, time delay is ubiquitous in biologi
al, physi
al, 
hemi
al,

and ele
tri
al systems (Bliman and Ferrari-Tre
ate, 2008; Tian and Liu, 2008). In

biologi
al and 
ommuni
ation networks, time delays are usually inevitable due to

the possible slow pro
ess of intera
tions among agents. It has been observed from

numeri
al experiments that 
onsensus algorithms without 
onsidering time delays

may lead to unexpe
ted instability. In Bliman and Ferrari-Tre
ate (2008); Tian and

Liu (2008), some su�
ient 
onditions are derived for the �rst-order 
onsensus in

delayed multi-agent systems. In Mazen
 and Maliso� (2014), framework to prove

stability for nonlinear systems that may have delays and dis
ontinuities, is studied.

In this thesis, we try to mathemati
ally formulate the e�e
ts of su
h time-delays in

distributed 
ontrol of 
omplex networked systems.

In MAS, heavy 
omputational loads 
an interrupt the sampling period of a 
ertain


ontroller. A s
heduled sampling period 
an be used to deal with this problem. In

su
h a 
ase robust stability analysis with respe
t to the 
hanges in the sampling time

is ne
essary. For interesting 
ontributions in this area we address the reader to A
k-

ermann (1985); Fridman (2010); Zutshi et al. (2012) and the referen
es therein. We

also mention the work by Fridman et al. (2004) who exploited an approa
h for time-

delay systems and obtained the su�
ient stability 
onditions based on the Lyapunov-

Krasovskii fun
tional method. Seuret (2012) and Fridman (2010) proposed methods

with better upper bounds to the maximum allowed sampling. Shen et al. (2012) stud-

ied the sampled-data syn
hronization 
ontrol problem for dynami
al networks. Qin

et al. (2010) and Ren and Cao (2008) studied the 
onsensus problem for networks of

double integrators with a 
onstant sampling period. In the latter two papers, even

though the authors use the sampled-data notion to introdu
e their novelty, they sup-
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pose that the 
ommuni
ation and the lo
al sensing o

ur simultaneously and this

simpli�es the problem into a dis
rete state 
onsensus problem. Xiao and Chen (2012)

and Yu et al. (2011) studied se
ond-order 
onsensus in multi-agent dynami
al systems

with sampled position data. A 
omprehensive review of the works published in the

framework of 
onsensus problems is given in the next 
hapter.

Now we give some examples to illustrate the importan
e of 
onsensus problems in

pra
ti
e.

1.2 Illustrative Examples

In this se
tion we brie�y introdu
e some examples to demonstrate the main problems


onsidered in the thesis. We revisit these examples in the subsequent to illustrate the

importan
e of the theoreti
al �ndings whi
h will be developed in this thesis.

Commer
ial Lighting Control

In this se
tion we introdu
e an example proposed by Sandhu et al. (2004). The appli-


ation of wireless sensor networks to 
ommer
ial lighting 
ontrol provides a pra
ti
al

appli
ation that 
an bene�t dire
tly from arti�
ial intelligen
e te
hniques. This ap-

pli
ation requires de
ision making in the fa
e of un
ertainty, with needs for system

self-
on�guration and learning. Su
h a system is parti
ularly well-suited to the eval-

uation of multi-agent te
hniques involving distributed learning. Generally, two-thirds

of generated ele
tri
ity is for 
ommer
ial buildings, and lighting 
onsumes 40 per-


ent of this. An additional 45 per
ent energy savings are possible through the use

of o

upant and light sensors (Wen and Agogino, 2008). The goal in this domain

is to leverage wireless sensor networks to 
reate an intelligent, e
onomi
al solution

for redu
ing energy 
osts, and overall so
ietal energy usage, while improving indi-

vidual lighting 
omfort levels. There are also so many works in intelligent lighting


ontrol involving building 
ontrol that fo
uses on HVAC (heating, ventilation, and

air-
onditioning), se
urity or other aspe
ts of building management. Several groups

have examined the use of MAS for building 
ontrol.
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The proposed system 
onsists of wireless sensor nodes lo
ated throughout the

physi
al environment for purposes of sensing (light, temperature, and o

upan
y),

a
tuation, and 
ommuni
ation. Multiple sensors per node may be ne
essary for pra
-

ti
al deployment; sin
e a parti
ular node may not need to use all sensors, or be
ause

it may simply a
t as a 
ommuni
ation relay - dynami
 resour
e allo
ation may be

needed. All a
tuation will o

ur in 
eiling-mounted, dimmable lighting ballasts. Pri-

mary design requirements are the in
lusion of individual user preferen
es and the

ability for the user to override the intelligent system. The most desirable automati


daylighting systems 
ontrol overhead lighting but allow users to manually adjust desk-

top lighting (Yozell-Epstein, 2003). In order to maintain a pra
ti
al system it will

be ne
essary to en
ode user preferen
es into the system and provide methods for

modifying these preferen
es.

The overall system for a building will fun
tionally be de
omposed into many

smaller pseudo-stati
 subnets sin
e only lo
al sensing a�e
ts lo
al lighting a
tuation

(Figure 1-2). With a single agent per node, these subnets still present multi-agent


oordination problems. Within this framework, single nodes may belong to multiple

adja
ent subnets. While mu
h sensor network literature predi
ts future networks on

the order of hundreds or thousands of nodes, pra
ti
al solutions to the presented

problem 
an be a

omplished with tens of nodes per subnet. At the same time that

this s
ale makes the problem presently tra
table, it also provides barriers to su

essful

use of probabilisti
 te
hniques.

The primary goal of an MAS-based approa
h is to emulate the su

ess of the de-


isions in a distributed manner. In parti
ular, the intera
tion among the agents must

emulate sensor validation and fusion te
hniques. Additionally, the de
ision making

pro
ess must a

ount for fa
tors su
h as user preferen
es and variable ele
tri
ity pri
-

ing. There are many 
hallenges to the design and implementation of a su

essful MAS

for this appli
ation. Many of the stated 
hallenges are more generally appli
able to

designing MAS solutions for wireless sensor network problems. Simple agents are

ne
essary be
ause of the limited memory and pro
essing asso
iated with ea
h sensor

node. Limited radio 
ommuni
ation among the nodes is ne
essary to 
onserve power.

23



Lo
ation awareness and re
on�guration are ne
essary aspe
ts of a robust system.

The system must be able to handle laten
y and time asyn
hroni
ity gra
efully, due

to 
ommuni
ation 
onstraints.

Agent intera
tion is an essential aspe
t of this ar
hite
ture. Be
ause of the 
om-

muni
ation and power 
onstraints of sensor networks, agent intera
tion must be highly

e�
ient. Multiple agents will 
ontribute to the 
ontrol of a given lighting a
tuator. In


ontinuous domains su
h as this, 
ontrol 
an be a
hieved by averaging agent a
tions

or taking the median of their a
tions. Additionally, 
on�den
e values 
an be used to

attenuate the global e�e
ts of aberrant lo
al a
tions. When it is only ne
essary for

the a
tuator to take on a �xed number of values 
ontrol 
an be a
hieved by voting

on what a
tion to take. These methods allow a solution to be formed based on in-

formation from multiple sensors in disparate lo
ations. They also add redundan
y

and noise redu
tion allowing the system to over
ome faulty sensors. Many have used

online learning te
hniques in automated building 
ontrol systems, though the solu-

tions tend to require signi�
ant 
omputation and 
onsequently 
entralized support

(See for example Barnes (1995); Sharples et al. (1999); Chang and Mahdavi (2002)).

In order to avoid the need for 
entralization, this system must be able to learn in a

distributed manner; depending on the information available to the agents, supervised

and reinfor
ement learning are the two major 
lasses of learning that apply to this

environment.

Syn
hronization in Power Networks

Consider the power network 
omposed of two generators shown in Figure 1-3 from

Kundur et al. (1994) and Ghandhari (2000). We 
an model this power network as

δ̇1(t) = ω1(t),

ω̇1 =
1

M1

[

(P1(t) + ω1(t))−K−1
12 sin(δ1(t)− δ2(t))−K−1

1 sin(δ1(t))−D1ω1(t)
]

(1.1)
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Figure 1-2: A subnet may rely on sensors that simultaneously belong to neighboring

subnets. Ea
h subnet is 
hara
terized by an MAS 
ontrolling a dimmable lighting

ballast.

Figure 1-3: S
hemati
 diagram of the power network

and

δ̇2(t) = ω2(t),

ω̇2 =
1

M2

[

(P2(t) + ω2(t))−K−1
12 sin(δ2(t)− δ1(t))−K−1

2 sin(δ1(t))−D2ω2(t)
]

(1.2)

where δi(t), Pi(t), and ωi(t) are the phase angle of the terminal voltage, the

rotation frequen
y, the input me
hani
al power, and the exogenous input of generator

i, respe
tively. We assume that P1(t) = P01 + M1v1(t) and P2(t) = P02 + M2v2(t),

where v1(t) and v2(t) are the 
ontinuous-time 
ontrol inputs of this system, and P01
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and P02 are 
onstant referen
es. Now, we 
an �nd the equilibrium point (δ∗1, δ
∗
2) of

the system and linearize it around this equilibrium. Furthermore, let us dis
retize

the linearized system by applying Euler's 
onstant step s
heme with sampling time

∆T , whi
h results in

x(k + 1) = Ax(k) +Bu(k) +Hω(k), (1.3)

where

x(k) =

















∆δ1(k)

∆ω1(k)

∆δ2(k)

∆ω2(k)

















u(k) =





u1(k)

u2(k)



 ω(k) =





ω1(k)

ω2(k)





A =



















1 ∆T 0 0

a21 1− ∆TD1

M1

a23 0

0 0 1 ∆T
a23M1

M2
0 a21



















,

where

a21 =
−∆T (K−1

12 cos(δ∗1 − δ∗2) +K−1
1 cos(δ∗1))

M1

,

a23 =
∆TK−1

12 cos(δ∗1 − δ∗2)

M1

.

and

B =

















0 0

1 0

0 0

0 1

















H =

















0 0

1/M1 0

0 0

0 1/M2

















.

Here, ∆δ1(k), ∆δ2(k), ∆ω1(k) and ∆ω2(k) denote the deviation of the 
orresponding

parameters from their equilibrium points at time instan
es t = k∆T .

It is interesting to a
hieve the optimal 
ontrol of this power network. Whenever

we restri
t our 
onsiderations to linear time-invariant 
ontrollers, the 
losed-loop per-
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forman
e measure is given by

J = ‖Tyω(z)‖22,

where Tyω denotes the 
losed-loop transfer fun
tion from the exogenous input ω(k) to

output ve
tor y(k) = [x(k)T u(k)T ]T in whi
h z is the symbol for the one time-step

forward shift operator. Through minimizing su
h a 
ost fun
tion, we guarantee that

the frequen
y of the generators stays 
lose to its nominal value without wasting too

mu
h energy. For the design of nonlinear 
ontrollers, we 
onsider the 
ost fun
tion

J = lim
T→∞

T−1
∑

k=0

x(k)Tx(k) + u(k)Tu(k).

This 
ost fun
tion is equal to the H2-norm of the 
losed-loop transfer fun
tion

for linear time-invariant systems ex
ited by exogenous inputs that are elements of

a sequen
e of independently and identi
ally distributed Gaussian random variables

with zero mean and unit 
ovarian
e.

Let us assume that the impedan
e of the lines that 
onne
t ea
h generator to the

in�nite bus in Figure 1-3 varies over time. De�ne αi, i = 1, 2, as the deviation of the

admittan
e K−1
i from its nominal value. Noti
e that αi only appears in the model of

subsystem i. When designing the 
ontrol laws, assume that the information regarding

the value of parameter αi is only available in the design of 
ontroller for subsystem i.

One motivation for this 
an be that the generators are physi
ally far apart from ea
h

other.

The syn
hronization of 
oupled nonlinear power generators is a 
losely related

topi
 to the 
onsensus of MASs. In the pioneering work by Pe
ora and Carroll (1990),

the syn
hronization phenomenon of two master-slave 
haoti
 systems was observed

and applied to se
ure 
ommuni
ations. Pe
ora and Carroll (1990) and Pe
ora and

Carroll (1998) addressed the syn
hronization stability of a network of generator by

using the master stability fun
tion method. Due to nonlinear dynami
s, usually, only

su�
ient 
onditions 
an be given for verifying the syn
hronization.
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1.3 Organization of the Dissertation

The dissertation is organized as follows: In Chapter 2, we study the 
onsensus prob-

lem of multi-agent systems. A 
omprehensive review of the related works up to the

present is given. We dis
uss the �rst-order, the se
ond-order, and the higher-order


onsensus problems separately, and an overview to some more 
ompli
ated problems

is also given. Some main results and progress in distributed multi-agent 
oordina-

tion, fo
using on papers published in major 
ontrol systems and roboti
s journals

sin
e 2006. Distributed 
oordination of multiple vehi
les, in
luding unmanned aerial

vehi
les, unmanned ground vehi
les, and unmanned underwater vehi
les, has been

a very a
tive resear
h subje
t studied extensively by the systems and 
ontrol 
om-

munity. The re
ent results in this area are 
ategorized into several dire
tions, su
h

as 
onsensus, formation 
ontrol, optimization, and estimation. After the review, a

short dis
ussion se
tion is in
luded to summarize the existing resear
h and to propose

several promising resear
h dire
tions along with some open problems that are deemed

important for further investigations.

The purpose of Chapter 3 is to survey the re
ent results developed to analyze

the asymptoti
 stability of time-delay systems. Both delay-independent and delay-

dependent results are reported in this 
hapter. Spe
ial emphases are given to the

issues of 
onservatism of the results and 
omputational 
omplexity. Conne
tions of


ertain delay-dependent stability results are also dis
ussed.

In Chapter 4, we 
onsider the problem of stability of sampled-data systems.

Sampled-data systems are a form of hybrid model whi
h arises when dis
rete mea-

surements and updates are used to 
ontrol 
ontinuous-time plants. In this 
hapter,

we use a re
ently introdu
ed Lyapunov approa
h to derive stability 
onditions for

both the 
ase of �xed sampling period (syn
hronous) and the 
ase of a time-varying

sampling period (asyn
hronous). This approa
h requires the existen
e of a Lyapunov

fun
tion whi
h de
reases over ea
h sampling interval. To enfor
e this 
onstraint, we

use a form of sla
k variable whi
h exists over the sampling period, may depend on

the sampling period, and allows the Lyapunov fun
tion to be temporarily in
reasing.
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The resulting 
onditions are enfor
ed using a new method of 
onvex optimization of

polynomial variables known as Sum-of-Squares.

In Chapter 5, we address the problem of deriving su�
ient 
onditions for asymp-

toti
 
onsensus of se
ond order multi-agent systems with slow swit
hing topology and

time delays. A PD-like proto
ol is proposed based on lo
al intera
tion proto
ol and

the stability analysis is based on the Lyapunov-Krasovskii fun
tional method. The

approa
h is based on the 
omputation of a set of parameters that guarantee stability

under any network topology of a given set. A signi�
ant feature of this method is

that it does not require to know the possible network topologies but only a bound on

their se
ond largest eigenvalue (algebrai
 
onne
tivity).

In Chapter 6, we study the stability property of a 
onsensus on the average al-

gorithm in arbitrary dire
ted graphs with respe
t to 
ommuni
ation/sensing time-

delays. The proposed algorithm adds a storage variable to the agents' states so that

the information about the average of the states is preserved despite the algorithm

iterations are performed in an arbitrary strongly 
onne
ted dire
ted graph. We prove

that for any network topology and 
hoi
e of design parameters the 
onsensus on the

average algorithm is stable for su�
iently small delays.

In Chapter 7, 
onsensus in se
ond-order multi-agent systems with a non-periodi


sampled-data ex
hange among agents is investigated. The sampling is random with

bounded inter-sampling intervals. It is assumed that ea
h agent has exa
t knowl-

edge of its own state at all times. The 
onsidered lo
al intera
tion rule is PD-type.

The 
hara
terization of the 
onvergen
e properties exploits a Lyapunov-Krasovskii

fun
tional method, su�
ient 
onditions for stability of the 
onsensus proto
ol to a

time-invariant value are derived.

Chapter 8 studies 
onsensus in se
ond-order multi-agent systems with a non-

periodi
 sampled-data ex
hange among agents is investigated in this 
hapter. Sam-

pling is random with bounded inter-sampling intervals, and ea
h agent has exa
t

knowledge of its own state at any time instant. A 
onstant 
ommuni
ation delay

among agents is also 
onsidered. A lo
al PD-type proto
ol is used to bring the sys-

tem into an agreement state. Under the assumption that only the 
onne
tivity of the
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graph modeling the network topology is known, su�
ient 
onditions for the stability

of the 
onsensus proto
ol to a time-invariant value are derived based on LMIs.

Chapter 9 summarizes the 
ontributions and explains the open issues.

In Appendi
es, the eigenvalue properties of Lapla
ian matrix, perturbation bounds

on matrix eigenvalues, and the eigenvalue properties of weighted adja
en
y matrix is

addressed
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2

Consensus problems

�Those who know that the 
onsensus of many 
enturies has san
tioned the


on
eption that the earth remains at rest in the middle of the heavens as its


enter, would, I re�e
ted, regard it as an insane pronoun
ement if I made

the opposite assertion that the earth moves.�

� Ni
olaus Coperni
us

At the �rst glan
e, the word 
onsensus may bring politi
al issues into mind.

A

ording to Merriam-Webster, 
onsensus, is a general agreement about something,

an idea or opinion that is shared by all the people in a group. So two key features

determine the de�nition of it: �rst it happens among a group, and se
ond shared

opinions among the group are ne
essary. We see that in the systems framework, the

same features must be held.

In this 
hapter, the 
onsensus problem is introdu
ed. In the following se
tion we

introdu
e the main de�nitions of a 
onsensus problem. In Se
tion 2.2, we review the

existing literature of 
onsensus problem in systems whose dynami
al equations are of

�rst-order. Similarly in Se
tion 2.3, 
onsensus problems in systems with se
ond-order

dynami
s, and in Se
tion 2.4 systems with dynami
s of an order higher than two,

are reviewed. In Se
tion 2.5, 
onsensus in systems with 
omplex dynami
s (generally


omplexity indi
ates nonlinearity), is skimmed.

31



2.1 Introdu
tion

By the help of embedded 
omputational resour
es in autonomous vehi
les, many 
ivil-

ian and military appli
ations pro�t enhan
ed operational 
apability and greater e�-


ien
y through 
ooperative teamwork 
ompared to those in whi
h the vehi
les perform

single tasks. Some examples of su
h appli
ations in
lude spa
e-based interferometers,

surveillan
e, and re
onnaissan
e systems, and distributed sensor networks. In order

to 
over all these appli
ations, various 
ooperative 
ontrol 
apabilities need to be de-

veloped, rendezvous, attitude alignment, �o
king, foraging, task and role assignment,

payload transport, air tra�
 
ontrol, and 
ooperative sear
h. Generally, 
ooperative


ontrol for MAS 
an be 
ategorized as either formation 
ontrol problems like the


ontrol proto
ols used for mobile robots, unmanned air vehi
les (UAVs), autonomous

underwater vehi
les (AUVs), satellites, spa
e
raft, and automated highway systems,

or non-formation based 
ooperative 
ontrol problems su
h as task assignment, role

assignment, air tra�
 
ontrol, timing, and sear
h. There are several 
hallenges in the-

oreti
al and pra
ti
al in implementation of 
ooperative 
ontrol in MAS. An e�e
tive


ooperative 
ontrol strategy must take into a

ount numerous issues, in
luding the

de�nition and management of shared information among a group of agents to fa
ili-

tate the 
oordination of these agents. Generally the shared information may take the

form of 
ommon obje
tives, 
ommon 
ontrol algorithms, relative position and velo
ity

information, or an image. Information ex
hange among the agents, whi
h is ne
essary

for 
ooperation, 
an be shared in a variety of ways, e.g., relative position sensors may

enable vehi
les to 
onstru
t state information for other vehi
les, knowledge may be


ommuni
ated between vehi
les using a wireless network, or joint knowledge might

be preprogrammed into the vehi
les before a mission begins. Obviously, several un-

predi
ted issues may disturb the system, and hen
e in an e�e
tive 
ooperative 
ontrol

strategy, a team of agents must be able to respond to the new 
onditions that are

sensed as a 
ooperative task. As the environment 
hanges, the agents on the team

must be in agreement as to what 
hanges took pla
e.

Cooperative 
ontrol of multiple autonomous vehi
les poses signi�
ant theoreti
al
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and pra
ti
al 
hallenges. First, the resear
h obje
tive is to develop a system of sub-

systems rather than a single system. Se
ond, the 
ommuni
ation bandwidth and 
on-

ne
tivity of the team are often limited, and the information ex
hange among vehi
les

may be unreliable. It is also di�
ult to de
ide what to 
ommuni
ate and when and

with whom the 
ommuni
ation takes pla
e. Third, arbitration between team goals

and individual goals needs to be negotiated. Fourth, the 
omputational resour
es

of ea
h individual vehi
le will always be limited. Re
ent years have seen signi�
ant

interest and resear
h a
tivity in the area of 
oordinated and 
ooperative 
ontrol of

multiple autonomous vehi
les (e.g.,Anderson and Robbins (1998); Bal
h and Arkin

(1998); Beard et al. (2001)). Mu
h of this work assumes the availability of global

team knowledge, the ability to plan group a
tions in a 
entralized manner, and/or

perfe
t and unlimited 
ommuni
ation among the vehi
les. A 
entralized 
oordination

s
heme relies on the assumption that ea
h member of the team has the ability to 
om-

muni
ate to a 
entral lo
ation or share information via a fully 
onne
ted network. As

a result, the 
entralized s
heme does not s
ale well with the number of vehi
les. The


entralized s
heme may result in a 
atastrophi
 failure of the overall system due to

its single point of failure. Also, real-world 
ommuni
ation topologies are usually not

fully 
onne
ted. In many 
ases, they depend on the relative positions of the vehi
les

and on other environmental fa
tors and are therefore dynami
ally 
hanging in time.

In addition, wireless 
ommuni
ation 
hannels are subje
t to multi- path, fading and

drop-out. Therefore, 
ooperative 
ontrol in the presen
e of real-world 
ommuni
ation


onstraints be
omes a signi�
ant 
hallenge.

When multiple vehi
les agree on the value of a variable of interest, they are said

to have rea
hed 
onsensus. Information 
onsensus guarantees that vehi
les sharing

information over a network topology have a 
onsistent view of information that is 
rit-

i
al to the 
oordination task. To a
hieve 
onsensus, there must be a shared variable

of interest, 
alled the information state, as well as appropriate algorithmi
 methods

for negotiating to rea
h 
onsensus on the value of that variable, 
alled the 
onsen-

sus algorithms. The information state represents an instantiation of the 
oordination

variable for the team. Examples in
lude a lo
al representation of the 
enter and shape
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of a formation, the rendezvous time, the length of a perimeter being monitored, the

dire
tion of motion for a multi-vehi
le swarm. By ne
essity, 
onsensus algorithms are

designed to be distributed, assuming only neighbor-to-neighbor intera
tion between

vehi
les. Vehi
les update the value of their information states based on the infor-

mation states of their neighbors. The goal is to design an update law so that the

information states of all of the vehi
les in the network 
onverge to a 
ommon value.

Consensus algorithms have a histori
al perspe
tive by Borkar and Varaiya (1982);

Chatterjee and Seneta (1977); DeGroot (1974); Gilardoni and Clayton (1993); Lyn
h

(1996); Tsitsiklis et al. (1986), to name a few, and have re
ently been studied exten-

sively in the 
ontext of 
ooperative 
ontrol of multiple autonomous vehi
les (Fax and

Murray, 2004; Jadbabaie et al., 2003; Lin et al., 2004; Moreau, 2005; Olfati-Saber

and Murray, 2004; Ren et al., 2005b). Some results in 
onsensus algorithms 
an be

understood in the 
ontext of 
onne
tive stability (�iljak, 1974). Consensus algorithms

have appli
ations in rendezvous (Beard et al., 2006; Dimarogonas and Kyriakopoulos,

2007; Lin et al., 2004; Lin and Jia, 2011; Mart�nez et al., 2005; Sinha and Ghose, 2006;

Smith et al., 2005, 2007), formation 
ontrol (Fax and Murray, 2004; La�erriere et al.,

2005; Lawton et al., 2003; Lin et al., 2005; Marshall et al., 2006; Por�ri et al., 2007;

Ren, 2007b), �o
king (Cu
ker and Smale, 2007; Dimarogonas et al., 2006; Lee and

Spong, 2007; Moshtagh and Jadbabaie, 2007; Olfati-Saber, 2006; Regmi et al., 2005;

Tanner et al., 2007; Veerman et al., 2005), attitude alignment (Lawton and Beard,

2002; Ren, 2007a,
; Ren and Beard, 2004), perimeter monitoring (Casbeer et al.,

2006), de
entralized task assignment (Alighanbari and How, 2005), and sensor net-

works (Yang et al., 2008; Olfati-Saber, 2005; Olfati-Saber and Shamma, 2005; Spanos

et al., 2005; Xiao et al., 2005). The basi
 idea of a 
onsensus algorithm is to impose

similar dynami
s on the information states of ea
h vehi
le. If the 
ommuni
ation

network among vehi
les allows 
ontinuous 
ommuni
ation or if the 
ommuni
ation

bandwidth is su�
iently large, then the information state update of ea
h vehi
le

is modeled using a di�erential equation. On the other hand, if the 
ommuni
ation

data arrive in dis
rete pa
kets, then the information state update is modeled using a

di�eren
e equation.
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2.2 First-order Consensus

This se
tion overviews fundamental 
onsensus algorithms in whi
h a s
alar infor-

mation state is updated by ea
h vehi
le using, respe
tively, a �rst-order di�erential

equation and a �rst-order di�eren
e equation.

Suppose that there are n vehi
les in the team. The team's 
ommuni
ation topology


an be represented by dire
ted graph G = (V, E) where V = {1, . . . , n} is the set of

nodes (vehi
les) and E ⊆ {V×V} is the set of edges. An edge (i, j) ∈ E exists if there is

a 
ommuni
ation 
hannel between vehi
les i and j. Self loops (i, i) are not 
onsidered.

The set of neighbors of agent i is denoted by Ni = {j : (j, i) ∈ E ; j = 1, . . . , n}. Let
δi = |Ni| be the degree of agent i whi
h represents the total number of its neighbors.

The topology of graph G is en
oded by the so-
alled adja
en
y matrix, an n × n

matrix Ad whose (i, j)-th entry is equal to 1 if (i, j) ∈ E , 0 otherwise. Obviously in

an undire
ted graph matrix Ad is symmetri
.

We denote ∆ = diag(δ1, . . . , δn) the diagonal matrix whose non-null entries are

the degrees of the nodes. Denote ∆in and ∆out, 
orresponding to in- and out- degree

matri
es respe
tively, in a dire
ted graph. We now de�ne the Lapla
ian matrix as

L = ∆ − A. The in-Lapla
ian and out-Lapla
ian matri
es of a dire
ted graph are

de�ned as Lin = ∆in − Ad and Lout = ∆out − Ad. Due to the Gershgorin Cir
le

Theorem applied to the rows of the in-Lapla
ian or the 
olumns of the out-Lapla
ian

it is possible to show that both matri
es have eigenvalues with non-negative real

part for any graph G. By 
onstru
tion matri
es Lin and Lout have at least one null

eigenvalue be
ause either the row sum or the 
olumn sum is zero. Furthermore, let

1n and 0n be respe
tively the n-elements ve
tors of ones and zeros, then Lin1 = 0

and 1
TLout = 0

T
. If G is strongly 
onne
ted, i.e., there exists a dire
ted path that


onne
ts any pair of nodes in V, then the algebrai
 multipli
ity of the null eigenvalue

of both Lin and Lout is one. More details about the 
hara
teristi
s of Lapla
ian matrix

is given in Appendix A.

Let xi be the information state of the i th agent. The information state repre-

sents information that needs be 
oordinated among agents (Ren et al., 2005a). The
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information state may be agent position, velo
ity, os
illation phase, de
ision variable

The system 
onsidered in this se
tion is similar to the one presented by Ren et al.

(2005b). There are n agents ea
h with state ve
tors xi ∈ R. for agents i = 1, . . . , n

having single integrator dynami
s:

ẋi(t) = ui(t). (2.1)

As des
ribed by Olfati-Saber and Murray (2004), a 
ontinuous-time 
onsensus

proto
ol 
an be summarized as

ẋi(t) = ui(t) = −
∑

j∈Ni(t)

γij(t) (xi(t)− xj(t)) (2.2)

where Ni(t) represents the set of agents whose information is available to agent i

at time t and γij(t) denotes a positive time-varying weighting fa
tor. In other words,

the information state of ea
h agent is driven toward the states of its (possibly time-

varying) neighbors at ea
h time. Note that some agents may not have any information

ex
hange with other agents during some time intervals. The 
ontinuous-time linear


onsensus proto
ol (2.2) 
an be written in matrix form as ẋ(t) = −Lx(t), where L is

the graph Lapla
ian and x = [x1, . . . , xn]
T
.

Similarly, the dis
rete-time form of the equation, as used by Ren (2007a) 
an be

given as

xi(k + 1) = −
∑

j∈Ni(k)∪i

βij(k)xj(k) (2.3)

where

∑

j∈Ni(k)∪i
βij(k) = 1, and βij > 0 for j ∈ Ni(k) ∪ i. In other words, the next

state of ea
h agent is updated as the weighted average of its 
urrent state and the


urrent states of its (possibly time-varying) neighbors. Note that an agent simply

maintains its 
urrent state if it has no information ex
hange with other agents at a


ertain time step. The dis
rete-time linear 
onsensus proto
ol (2.3) 
an be written in

matrix form as x(k+1) = P (k)x(k) , where P (k) is a sto
hasti
 matrix with positive

diagonal entries.
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A MAS with n agents is said has rea
hed 
onsensus if lim
t→∞

‖xi(t)−xj(t)‖ → 0, for

∀i 6= j.

In the following se
tion a review of some �rst-order 
onsensus problems with

di�erent 
onditions, are reviewed and the 
onvergen
e properties are given.

Convergen
e Analysis

Below, we brie�y review the existing results on well known �rst order 
onsensus

problems.

• Time-invariant Information Ex
hange Topology

Under a time-invariant information ex
hange topology, it is assumed that if

one agent 
an a

ess another agent's information at one time, it 
an obtain

information from that agent all the time. For the 
ontinuous-time 
onsensus

proto
ol (2.2), it is straightforward to see that L1 = 0 and all eigenvalues of

the Lapla
ian matrix L have non-negative real parts from Gershgorin's dis


theorem. If zero is a simple eigenvalue of L , it is known that x(t) 
onverges

to the kernel of L , that is, span{1}, whi
h in turn implies that lim
t→∞

‖xi(t) −
xj(t)‖ → 0.

It is well-known that zero is a simple eigenvalue (Chung, 1997). However, this

is only a su�
ient 
ondition rather than a ne
essary one. We have the formal

statement that zero is a simple eigenvalue of the Lapla
ian matrix if and only if

its digraph has a spanning tree. This 
on
lusion was shown by Ren et al. (2005a)

by an indu
tion approa
h while the same result is proven independently by Lin

et al. (2005) by a 
onstru
tive approa
h. As a result, under a time-invariant

information ex
hange topology, the 
ontinuous-time proto
ol a
hieves 
onsensus

asymptoti
ally if and only if the information ex
hange topology has a spanning

tree.

For the dis
rete-time 
onsensus proto
ol (2.3), it 
an be shown that all eigen-

values of D that are not equal to one are within the open unit 
ir
le from

Gershgorin's dis
 theorem. If one is a simple eigenvalue of P and all other
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eigenvalues have module less than one, it is known that lim
k→∞

P k = 1νT
, where

ν is a 
olumn ve
tor. This implies that lim
k→∞

‖xi(k)− xj(k)‖ → 0.

The well-known Perron-Frobenius theorem states that one is a simple eigenvalue

of a sto
hasti
 matrix if the graph of the matrix is strongly 
onne
ted. Similar

to the 
ontinuous-time 
ase, this is only a su�
ient 
ondition rather than a ne
-

essary one. Horn and Johnson (2012) showed that for a nonnegative matrix with

identi
al positive row sums, the row sum of the matrix is a simple eigenvalue

if and only if the digraph of the matrix has a spanning tree. In other words, a

matrix may be redu
ible but retains its spe
tral radius as a simple eigenvalue.

Furthermore, if the matrix has a spanning tree and positive diagonal entries,

it is shown that the spe
tral radius of the matrix is the unique eigenvalue of

maximum modulus. We have the formal statement that one is a unique eigen-

value of modulus one for the sto
hasti
 matrix P if and only if its digraph has

a spanning tree (La�erriere et al., 2005). As a result, under a time-invariant

information ex
hange topology, the dis
rete-time proto
ol a
hieves 
onsensus

asymptoti
ally if and only if the information ex
hange topology has a spanning

tree.

• Time-varying Information Ex
hange Topology

Consider an MAS of n agents that 
ommuni
ate with ea
h other and need to

agree upon a 
ertain obje
tive of interest or perform syn
hronization. Due to

the fa
t that the nodes of the network are moving, it is easy to imagine that

some of the existing 
ommuni
ation links 
an fail simply due to the existen
e

of an obsta
le between two agents. The opposite situation 
an arise when new

links between two agents are 
reated be
ause the agents 
ome to an e�e
tive

range of dete
tion with respe
t to ea
h other. In terms of the network topology,

this means that a 
ertain number of edges are added or removed from the graph.

Here, we are interested to investigate this in 
ase of a network with swit
hing

topology G, whether it is still possible to rea
h a 
onsensus, or not.

Based on a valid 
ommon Lyapunov fun
tion for the disagreement dynami
s,
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Olfati-Saber and Murray (2004) proved that, for any arbitrary swit
hing signal,

solution of the swit
hing system (2.2) globally asymptoti
ally 
onverges to the

average of the initial value (i.e., average-
onsensus is rea
hed).

• Communi
ation delay

In the 
ase that information is ex
hanged between agents through 
ommuni
a-

tions, time delays of the 
ommuni
ation 
hannels need to be 
onsidered. Let

τij denote the time delay for information 
ommuni
ated from agent j to agent

i. The 
ontinuous-time 
onsensus proto
ol is now denoted by:

ẋi(t) = ui(t) = −
∑

j∈Ni(t)

γij(t) (xi(t− τii)− xj(t− τij)) . (2.4)

As it is shown by Olfati-Saber and Murray (2004), in the 
ase τij = τii = τ ∈
R>0

, if the 
ommuni
ation topology is �xed, undire
ted, and 
onne
ted, average-


onsensus is a
hieved if and only if τ ∈ [0,
π

2δmax
], where δmax denote the

maximum degree of the 
orresponding 
ommuni
ation topology graph. Consider

another 
ase where the time delay only a�e
ts the information state that is

being transmitted. This implies that τii = 0 in (2.4). Now if τij = τ ∈ R>0
,

and the 
ommuni
ation topology is dire
ted and swit
hing, the 
onsensus result

for swit
hing topologies des
ribed previously is still valid for an arbitrary time

delay τ .

2.3 Se
ond-Order Consensus

All the previously mentioned referen
es fo
us on 
onsensus proto
ols that take the

form of �rst-order dynami
s. In reality, equations of motion of a broad 
lass of vehi-


les require se
ond-order dynami
 models. For example, some vehi
le dynami
s 
an

be feedba
k linearized as double integrators, e.g. mobile robot dynami
 models. In

the 
ase of �rst-order 
onsensus proto
ols, the �nal 
onsensus value is a 
onstant. In


ontrast to the 
onstant �nal 
onsensus value, it might be proper to derive se
ond-
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order 
onsensus proto
ols su
h that some information states 
onverge to a 
onsis-

tent value (e.g. position of the formation 
enter) while others 
onverge to another


onsistent value (e.g. velo
ity of the formation 
enter). However, the extension of


onsensus proto
ols from �rst order to se
ond order is nontrivial. In the paper of

Ren (2007
), formation keeping algorithms taking the form of se
ond-order dynami
s

are addressed to guarantee attitude alignment, agreement of position deviations and

velo
ities, and/or 
ollision avoidan
e in a group of vehi
les.

In a very general form, a se
ond-order MAS 
an be des
ribed by the following

dynami
s:

ẋi(t) = vi(t)

v̇i(t) = ui(t).
(2.5)

Se
ond-order 
onsensus in the multi-agent system (2.5) is said to be a
hieved if

for any initial 
onditions it holds:

lim
t→∞

|xi(t)− xj(t)| = 0

lim
t→∞

|vi(t)− vj(t)| = 0
∀i 6= j. (2.6)

2.4 Higher-order 
onsensus

Re
ently, in
reasing interest has turned to MASs with high-order or/and heteroge-

neous dynami
al agents. Wang et al. (2008) and Seo et al. (2009) dis
ussed the

solvability of the 
onsensus seeking problem for systems of identi
al agents in net-

works without 
ommuni
ation delays, and proved that for su
h systems the 
onsensus

problem is solvable if the inter
onne
tion topology has a globally rea
hable node. Ar-


ak (2007) developed a general framework based on passivity theory for the design

of group 
oordination 
ontrol of systems with nonlinear dynami
al agents. Using the

small-gain method, Lee and Spong (2006) proposed a su�
ient 
onsensus 
ondition

for high-order heterogeneous systems with diverse 
ommuni
ation delays.

Based on the general Nyquist stability 
riteria and an S-hull te
hnique, Lestas

and Vinni
ombe (2010) also 
onsidered high-order heterogeneous systems with di-
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verse 
ommuni
ation delays, and proposed frequen
y-domain 
onditions whi
h are

less 
onservative than small-gain-like or passivity-like results. It should be noted that

only the 
onstant-
onsensus problem has been 
onsidered in the above-mentioned ref-

eren
es on high-order heterogeneous MASs, and the main fo
us of these referen
es is

on the stability instead of the existen
e of the set of 
onsensus solutions. A
tually,

the existen
e of a 
onstant 
onsensus depends only on the 
onne
tivity of the inter-


onne
tion topology of MASs (Ren et al., 2005a). The values of self delays introdu
ed

by agents in 
onsensus proto
ols may lead to instability of the 
onsensus solution (see

Papa
hristodoulou et al. (2010)) but they do not in�uen
e the existen
e of a 
onstant


onsensus solution.

However, it is possible for se
ond-order or high-order MASs to rea
h not only


onstant 
onsensus solutions but also dynami
al 
onsensus solutions. Su
h dynami
al


onsensus solutions will be also 
alled high-order 
onsensus solutions in this se
tion.

An interesting problem for high-order MASs is under whi
h 
ondition the high-order


onsensus solution exists. The problem has not been fully addressed in 
urrently

existing literature. It 
an be shown that an inappropriate value of self-delay may lead

to the in-existen
e of a high-order 
onsensus solution. To guarantee the existen
e of

high-order 
onsensus solutions, 
urrently existing 
onsensus proto
ols introdu
e self-

delays whi
h are exa
tly equal to the 
orresponding 
ommuni
ation delays (see, e.g.,

Hu et al. (2007)). In pra
ti
e, however, 
ommuni
ation delays 
an be estimated only

approximately. Therefore, a high-order 
onsensus proto
ol whi
h does not depend on

exa
t values of 
ommuni
ation delays is of great importan
e for pra
ti
al appli
ation

of the 
onsensus theory.

2.5 Consensus in Complex systems

In the mathemati
al modeling of physi
al systems, it is an unavoidable dilemma: use a

more a

urate model whi
h is harder to manage, or work with a simpler model whi
h

is easier to manipulate but with less 
on�den
e? A 
omplex system is a damped,

driven system (for example, a harmoni
 os
illator) whose total energy ex
eeds the
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threshold for it to perform a

ording to 
lassi
al me
hani
s but does not rea
h the

threshold for the system to exhibit properties a

ording to 
haos theory.

A topi
 that is 
losely related to the 
onsensus of MAS, is the syn
hronization of


oupled nonlinear os
illators. In the pioneering work by Pe
ora and Carroll (1990),

the syn
hronization phenomenon of two master-slave 
haoti
 systems was observed

and applied to se
ure 
ommuni
ations. Lu and Chen (2006) and Pe
ora and Carroll

(1998) addressed the syn
hronization stability of a network of os
illators by using the

master stability fun
tion method. Re
ently, the syn
hronization of 
omplex dynam-

i
al networks, su
h as small world and s
ale-free networks, has been widely studied

(see Chen (2008); Duan et al. (2009); Ko
arev and Amato (2005); Lu et al. (2008);

Por�ri et al. (2008); Wang and Chen (2002); Wu et al. (2009)) and the referen
es

therein). Due to nonlinear node dynami
s, usually, only su�
ient 
onditions 
an be

given for verifying the syn
hronization.

Below, we present some examples whi
h show some appli
ations of 
onsensus

algorithms in 
omplex dynami
al systems.

Example 2.1 (Bullo et al., 2009) The following models of 
ontrol systems are 
om-

monly used in roboti
s, beginning with the early works of Dubins (1957), and Reeds

and Shepp (1990). Figure 2-1(left) show a two-wheeled vehi
le and a four-wheeled

vehi
le, respe
tively. The two-wheeled planar vehi
le is des
ribed by the dynami
al

system

ẋ(t) = v cos θ(t) ẏ(t) = v sin θ(t) θ̇(t) = ω(t), (2.7)

with state variables x ∈ R, y ∈ R and θ ∈ S
1
des
ribing the planar position and

orientation of the vehi
le, and with 
ontrols v and ω, des
ribing the forward linear

velo
ity and the angular velo
ity of the vehi
le.

A group of su
h robots as shown in Figure 2-1 (right), is an example of MAS. �

Example 2.2 (Bullo et al., 2009) Communi
ation 
ongestion: Omni-dire
tional wire-

less transmissions interfere. Clear re
eption of a signal requires that no other signals
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Figure 2-1: Two-wheeled robots in a plane in Example 2.2 (left). A multi-robot

networked system (right).

are present at the same point in time and spa
e. In an ad ho
 network, node i re
eives

a message transmitted by node j only if all other neighbors of i are silent. In other

words, the transmission medium is shared among the agents. As the density of agents

in
reases, so does wireless 
ommuni
ation 
ongestion. The following asymptoti
 and

optimization results are known.

First, for ad ho
 networks with n uniformly randomly pla
ed nodes, it is known

(Gupta and Kumar, 2000) that the maximum-throughput 
ommuni
ation range r(n) of

ea
h node de
reases as the density of nodes in
reases; in d dimensions, the appropriate

s
aling law is r(n) ∈ Θ(((log(n)/n)))
1

d
. This is referred to as the 
onne
tivity regime

in per
olation theory and statisti
al me
hani
s. Using the k-nearest neighbor graph

over uniformly pla
ed nodes, the analysis by Xue and Kumar (2004) suggests that the

minimal number of neighbors in a 
onne
ted network grows with log(n). Se
ond, a

growing body of literature (Santi, 2005; Lloyd et al., 2005) is available on topology


ontrol, that is, on how to 
ompute transmission power values in an ad ho
 network so

as to minimize energy 
onsumption and interferen
e (due to multiple sour
es), while

a
hieving various graph topologi
al properties, su
h as 
onne
tivity or low network

diameter. �

Several authors have devised new strategies to address di�erent 
onsensus prob-

lems, but still there are so many open problems left in this area. In this thesis, we

study �rst- and se
ond-order MASs. Our fo
us is espe
ially on 
onsensus problems in
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systems with time-delays and sampled-data 
ommuni
ations. We study both dire
ted

and undire
ted 
ommuni
ations. In the next two 
hapters, we study the time-delay

systems and sampled-systems and we des
ribe the tools we use in order to analyze

the MASs.

2.6 Con
lusions

In this 
hapter we reviewed di�erent existing 
onsensus problems and 
hara
terized

some important notions in multi agent system 
ontrol framework. The agreement

and stability 
onditions for a diversity of 
onditions in �rst order, se
ond order, and

high order and 
omplex systems were skimmed. Some illustrative example showed

the appli
ations and importan
e of MASs.
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3

Time-delay systems

�You may delay, but time will not.�

� Benjamin Franklin

Delay, is de�ned as a situation in whi
h something happens later than it should in

Merriam-Webster. Delay is unavoidable in almost every real-world phenomena. It is

well known that even a very small delay may 
ause big disasters. Some millise
onds

of delay would be enough to happen a big 
ar 
rash in highway. Delay, also 
an

have stabilizing e�e
ts. For example, in wild water 
anoeing, the athlete should not

immediately rea
t to every sudden 
hange. Instead, his or her rea
tions must be with

a delay so that the water's behavior is better predi
table. It is now 
lear that why

delay analysis is so important. In this 
hapter, we provide useful tools to analyze the

stability of time-delay systems.

3.1 Introdu
tion

Time-delay systems (TDSs) belong to the 
lass of fun
tional di�erential equations, as

opposed to ordinary di�erential equations, and represent a 
lass of in�nite-dimensional

systems widely used to des
ribe propagation and transport phenomena or population

dynami
s. They are also 
alled hereditary or with memory, deviating arguments, af-

tere�e
ts, post a
tions, dead-time, or time-lag (Hammarstrom and Gros, 1980). Time
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delays exist in various engineering systems su
h as long transmission lines in pneu-

mati
 systems, nu
lear rea
tors, rolling mills, hydrauli
 systems and manufa
turing

pro
esses. In e
onomi
s, delays appear in a natural way due to de
isions and e�e
ts

(investment poli
y, 
ommodity markets evolution: pri
e �u
tuations, trade 
y
les) are

separated by some (needed analysis) time interval. In 
ommuni
ation, data transmis-

sion is always a

ompanied by a non-zero time interval between the initiation- and

the delivery-time of a message or signal. In other 
ases, the presen
e of a delay in a

system may be the result of some essential simpli�
ation of the 
orresponding pro
ess

model.

A famous example of the TDSs 
an be seen in regulating hot water on the shower.

Suppose that someone is under the shower aiming at having a pleasant water temper-

ature Td. Due to the dynami
s, it would take a while until the guy 
an see the e�e
t

of fau
et 
hange on the temperature after few se
onds. Indeed the person re
eives

the information with a delay and this 
an 
ause some unwanted a
tions like too warm

or too 
old water, or , if we look at it as a system theory, this may lead the system

to an unstable 
ondition. A simple solution to en
ounter this spe
i�
 problem, 
an

be to wait for few se
onds. However, generally in more 
omplex systems, some more


omprehensive might be needed to avoid instability. Let T (t) denote the water tem-

perature in the mixer output and let τ̄ be the 
onstant time needed by the water

to go from the mixer output to the person's head . Assume that the 
hange of the

temperature is proportional to the angle of rotation of the handle, whereas the rate

of rotation of the handle is proportional to T (t) − Td. At time t the person feels

the water temperature leaving the mixer at time t− τ , whi
h results in the following

equation with the 
onstant delay τ :

Ṫ (t) = −k(T (t− τ)− Td), k ∈ R. (3.1)

Due to its 
omplexity, the problem of stability analysis and 
ontrol of TDS has

attra
ted mu
h attention during the past years, whi
h is of both pra
ti
al and theo-

reti
al importan
e. Various types of TDS have been investigated and a great number
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of results on TDSs have been reported in the literature (see, e.g. Chen and Lat
h-

man (1995), Chu (1997), Hui and Hu (1997), Cao et al. (1998a), Su and Chu (1999),

Hmamed (2000), Shi et al. (2000), Park (2001),Fridman and Shaked (2002), Lu et al.

(2003),Niu et al. (2005), Zhou and Li (2005), Chen et al. (2006), Shi et al. (2007),

Chen et al. (2010a), Gouaisbaut and Ariba (2011),Goebel et al. (2011),Chesi et al.

(2012), Bekiaris-Liberis and Krsti
 (2013a,b), Feyzmahdavian et al. (2014), Mazen


and Maliso� (2014), and the referen
es 
ited therein).

In the following se
tion, we brie�y des
ribe a history about TDSs whi
h has been

taken mainly from S
hoen (1995).

3.2 History

Studying retarded elasti
ity e�e
ts, Boltzman in 1874, presented one of the earliest

studies of TDS. His publi
ation, however, did not point out 
learly the need of the

past states for a realisti
 modeling of retarded elasti
ity e�e
ts. In the early 1900's

a 
ontroversy arose over the ne
essity of spe
ifying the earlier history of a system

in order to predi
t its future evolution. This view stood in 
ontradi
tion with the

Newtonian tradition whi
h 
laimed that the knowledge of the present values of all

relevant variables should su�
e for predi
tion. Pi
ard in 1907 took the view that the

past states are important for a realisti
 modeling. He analyzed a system with essential

hidden variables, not themselves a

essible to observation. He 
laimed that the pre-

di
tion of that system requires also the knowledge of the earlier values of the hidden

variables. His paradigm for that situation was a pendulum 
lo
k whose des
ending

weight is en
ased. As long as we 
annot observe the present position of the weight

and its rate of des
ent, a predi
tion of the future motion of the 
lo
k hand requires

the knowledge of when the 
lo
k was last wound. Systemati
 work with mathemati
al

models on medi
ine and biology began with the epidemiologi
al studies of Ross in

1911. Ross was laying the equations. His results were extended and improved in the

1920's. The need for delays was emphasized both by Sharpe and Lotka (1978), who

dis
ussed the dis
rete delays due to the in
ubation times in the Ross malaria epidemi
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model. From the very beginning of their e
ologi
al investigations, Lotka realized that,

in order to a
hieve some degree of realism, delayed e�e
ts had to be expli
itly taken

into a

ount. Lotka's main previous interest had been in physi
al 
hemistry, with

spe
ial emphasis on the os
illations of 
hemi
al rea
tions. He had also dealt with

demographi
 problems and with evolutionary theory. Volterra's previous interests

were mostly in me
hani
s, in
luding irreversible phenomena and elasti
ity. The latter

had led him to develop the theory of fun
tionals and integral-di�erential equations,

for whi
h he be
ame well known. He also attempted to introdu
e a 
on
ept of energy

fun
tion to study the asymptoti
 behavior of the system in the distant future. Mi-

norsky (1943) pointed out very 
learly the importan
e of the delay 
onsiderations in

the feedba
k me
hanism. The great interest in 
ontrol theory during those and later

years has 
ertainly 
ontributed signi�
antly to the rapid development of the theory

of di�erential equations with dependen
e on the past state.

While it be
ame 
lear a long time ago that retarded systems 
ould be handled

as in�nite dimensional problems, the paper of Myshkis (1949) gave the �rst 
orre
t

mathemati
al formulation of the initial value problem. Furthermore he later intro-

du
ed a general 
lass of equations with delayed arguments and laid the foundation

for a general theory of linear systems.

Subsequently, several books appeared whi
h presented the 
urrent knowledge on

the subje
t and whi
h greatly in�uen
ed later developments. In their monograph at

the Rand Corporation (Bellman et al., 1953) pointed out the diverse appli
ations of

equations 
ontaining past information to other areas su
h as biology and e
onomi
s.

They also presented a well organized theory of linear equations with 
onstant 
oe�-


ients and the beginnings of stability theory. A more extensive development of these

ideas is 
ontained in the book of Bellman and Cooke (1963). Some important results

were supplied also by Krasovskii, who studied stability and optimal 
ontrol problems

for time-delay systems (Krasovskii, 1962). Further important works have been writ-

ten by Elsgolts and Norkin (1973) and Hale (1971). In re
ent years several books

have been published on this topi
 (Hino et al., 1991; Ma
Donald and Ma
Donald,

2008; Hammarstrom and Gros, 1980; Neude
ker and Magnus, 1988; Stépán, 1989).
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The stability analysis for TDSs 
an be divided into two main groups: Eigenvalue-

based analysis and Lyapunov or energy-based methods. Eigenvalue-based methods,

using the 
hara
teristi
 equation of the system, usually provide a ne
essary and suf-

�
ient 
onditions under whi
h a TDS remains stable. Basi
ally, these methods are

used when a 
onstant delay exist, aiming to �nd the interval/s in the delay spa
e

where the stability of the system is guaranteed. Lyapunov-based methods provide

su�
ient 
onditions for the stability of TDSs. Even though, it is not always so

trivial to �nd the ne
essary 
onditions for the stability of su
h systems. The Lya-

punov based tools are typi
ally used to investigate the stability of su
h systems. Out

of them Lyapunov-Razumikhin theory, Lyapunov-Krasovskii theory are used widely.

The Lyapunov based methods 
an be also 
lassi�ed into two types: delay-dependent

and delay-independent stability 
onditions; the former in
lude the information on

the size of the delay, while the latter do not. Generally speaking, delay-independent

stability 
onditions are simpler to apply, while delay-dependent stability 
onditions

are less 
onservative espe
ially in the 
ase when the time delay is small. The main

obje
tives of the study of the delay-dependent stability problem are:

• to develop delay-dependent 
onditions to provide a maximal allowable delay as

large as possible,

• to develop delay-dependent 
onditions by using as few as possible de
ision vari-

ables while keeping the same maximal allowable delay.

However, none of these basi
 
on
epts represents appli
able stability tests in terms

of the system matri
es. The stability tests obtained 
an be 
ategorized into four

groups, depending on how mu
h information 
on
erning the delays is required for

these tests:

• Delay-independent stability 
riteria: The length of the delay need not be known

for the appli
ation of these stability tests. The delays may be state-dependent

and/or time variable. The only assumption needed is that the delays are 
on-

tinuous and bounded.
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• Stability 
riteria independent of 
onstant delays: In the se
ond group it is

assumed that the delays of the system are 
onstant; no further information on

the delays is ne
essary.

• Stability 
riteria independent of a delay 
onstant: This type of stability 
riteria

presumes that the delays are 
onstant and that the ratios of size of the delays

are known.

• Delay-dependent stability 
riteria: This group in
ludes exa
t algebrai
 stabil-

ity 
riteria depending on the delay and on the system 
onstants and stability


riteria whi
h yield an upper bound of the admissible delay. The need for delay-

independent (and related) stability tests is obvious, sin
e in pra
ti
e the delays

are di�
ult to estimate, espe
ially those that are time variable and state de-

pendent. While algebrai
 stability tests independent of delays are suitable to

apply, exa
t algebrai
 stability 
onditions depending on the delay and the sys-

tem 
onstants are known only in some spe
ial 
ases. In this 
ontext a method

is presented to a
hieve some extensions. The method permits the investiga-

tion of the stability of systems whi
h are general enough to demonstrate the

di�eren
es among the four types of stability tests. The stability of general,

linear time-delay systems, however, 
an be 
he
ked exa
tly only by eigenvalue


onsiderations.

In the literature, various approa
hes have been proposed to obtain delay-dependent

stability 
onditions, among whi
h the linear matrix inequality (LMI) approa
h is the

most popular and has played an important role due to the fa
t that LMIs 
an be


ast into a 
onvex optimization problem whi
h 
an be handled e�
iently by resorting

to re
ently developed numeri
al algorithms for solving LMIs (Boyd et al., 1994).

Another reason that makes LMI 
onditions appealing is their frequent readiness to

solve the 
orresponding synthesis problems on
e the stability (or other performan
e)


onditions have been established, espe
ially when state feedba
k is employed.

In the following se
tion, we study di�erent methods of analyzing TDSs.

50



3.3 Stability analysis

Before stating these methods, some notations must be introdu
ed.

For a given s
alar τ̄ > 0, let Cn = C([−τ̄ , 0],Rn) be the Bana
h spa
e of 
ontinuous

ve
tor fun
tions mapping the interval [−τ̄ , 0] into Rn
. For any φ ∈ Cn

, its norm is

de�ned by

‖φ‖c = sup
−τ̄≤s≤0

‖φ(s)‖, (3.2)

where ‖φ(s)‖ denotes the Eu
lidean norm of φ(s) ∈ Rn
. De�ne a set

Ca
n = {φ ∈ Cn|‖φ‖c < a},

for some a > 0.

In a general form, a TDS 
an be illustrated by the following di�erential- di�eren
e-

di�eren
e equation:

ẋ(t) = f(t, xt), t ≥ t0, (3.3)

where x(t) ∈ Rn
is the state ve
tor, and xt is de�ned as:

xt = x(t + θ), −τ̄ ≤ θ ≤ 0.

Assume that the fun
tion f : R+ × Cn → Rn
is 
ontinuous and f(t, 0) = 0 holds

for all t ∈ R. The initial 
ondition of the system is given by the following equation:

xt0(θ) = φ(θ), −τ̄ ≤ θ ≤ 0. (3.4)

We assume that for any φ ∈ Cn and for any t0 ∈ R, the system in (3.3) with the

initial 
ondition (3.4) has a unique solution. We also assume that f(t, 0) = 0, whi
h

guarantees that (3.3) possesses a trivial solution x(t) ≡ 0.
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Eigenvalue based methods

In this part, we dis
uss linear TDSs, 
hara
teristi
 equations, and lo
ation of eigen-

values of the system, as well as e�e
ts of delays on stability.

Consider a s
alar retarded TDS

ẋ(t) = ax(t) + bx(t− τ̄ ), (3.5)

with real 
onstant 
oe�
ients and 
onstant delay τ̄ > 0. Substituting x(t) = est into

(3.5) we �nd that the solution satis�es the equation if s is the root of the 
hara
teristi


equation

∆(s) = s− a− be−τ̄ s
(3.6)

Dissimilar to systems without delays, the trans
endental equation ∆(s) = 0 gener-

ally, has an in�nite number of solutions. This also re�e
ts the in�nite-dimensional

nature of TDSs. However, sin
e ∆(s) is an entire fun
tion,

1

it 
annot have an in�nite

number of zeros within any 
ompa
t set |s| ≤ M, ∀M > 0. Therefore, most of the


hara
teristi
 roots go to in�nity. To understand the lo
ation of the 
hara
teristi


roots, i.e., of the solutions of the 
hara
teristi
 equation we note that

|s| ≤ |a|+ |b|e−τ̄Re(s)
(3.7)

When |s| → ∞, the left-hand side of the above equation approa
hes to ∞, thus, the

right-hand side, i.e., e−τ̄Re(s)
approa
hes in�nity as well. This means that

lim
|s|→∞

Re(s) = −∞.

Hen
e, ∀α ∈ R there is a �nite number of 
hara
teristi
 roots with real parts

greater than α. Therefore, the lo
ation of the 
hara
teristi
 roots has a ni
e property

1

In 
omplex analysis, an entire fun
tion, also 
alled an integral fun
tion, is a 
omplex-valued

fun
tion that is holomorphi
 over the whole 
omplex plane. Typi
al examples of entire fun
tions are

polynomials and the exponential fun
tion, and any sums, produ
ts and 
ompositions of these, su
h

as the trigonometri
 fun
tions sine and 
osine and their hyperboli
 
ounterparts sinh and cosh, as

well as derivatives and integrals of entire fun
tions su
h as the error fun
tion.
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Figure 3-1: Roots of 
hara
teristi
s equation.

that the number of the roots on the right hand side of any verti
al line, is �nite.

Figure 3-1 depi
ts this property.

An LTI system with N dis
rete delays and with a distributed delay has a form:

ẋ(t) =
N
∑

k=0

Akx(t− τk) +

∫ 0

−τd

A(θ)x(t + θ)dθ, (3.8)

with the initial 
ondition

x(t0 + θ) = φ(θ), θ ∈ [τ̄ , 0], φ ∈ C[τ̄ , 0], (3.9)

where 0 = τ0 < τ1 < . . . < τN , x(t) ∈ R, Ak are 
onstant matri
es and A(θ) is an

integrable matrix fun
tion, and τ̄ = max{taud, τN}. The 
hara
teristi
 equation of

this system is given by

det

[

sI −
N
∑

k=0

Ake
−sτk −

∫ 0

−τd

A(θ)esθ

]

= 0. (3.10)

Equation (3.10) is trans
endental having in�nite number of roots. Similar to what

was said about the s
alar 
ase in (3.5), sin
e here the left hand side of (3.10) is

an entire fun
tion, it 
annot have an in�nite number of zeros within any 
ompa
t

set |s| < M, ∀M > 0. The LTI system has exponential solutions of the form estν,
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where s is a 
hara
teristi
 root and ν ∈ Rn
is an eigenve
tor of the matrix inside

the determinant in (3.10). The latter 
an be veri�ed by substituting estν into (3.10).

Moreover, if s is a 
hara
teristi
 root of multipli
ity m, then tmestν is the solution of

(3.10). Hen
e, solutions of (3.10) are given by x(t) =
∑

l pl(t)e
slt
, where sl are the


hara
teristi
 roots and pl(t), are polynomials.

As mentioned above, the lo
ation of the 
hara
teristi
 roots has a ni
e property:

there is a �nite number of roots to the right of any verti
al line. Using this fa
t, the

following statement holds (Hale, 1993; Bellman and Cooke, 1963).

Theorem 3.1 (Fridman, 2014) For any α ∈ R, there are only a �nite number of


hara
teristi
 roots (poles) with real parts greater than α. Let si be 
hara
teristi


roots and α0 = maxiℜ(si). Then ∀α > α0 there exists K ≥ 1 su
h that for any

φ ∈ C[−τ̄ , 0] the solution of (3.10) with x0 = φ satis�es the inequality

|x(t)| ≤ Keαt‖φ‖c, t ≥ 0. (3.11)

TDS (3.10) is 
alled exponentially stable if for any φ ∈ C[−τ̄ , 0] there exist α < 0 and

K ≥ 1 su
h that the solution initialized by (3.9) satis�es (3.11).

Corollary 3.1 Retarded TDS in (3.8) is exponentially stable i� all the roots of its


hara
teristi
 quasi-polynomial in (3.10) have negative real parts.

Stability of single delay 
hara
teristi
 equation

Note that the for the 
ase of having a single delay, Equation (3.10) be
omes

det

[

sI −
1
∑

k=0

Ake
−sτk

]

= 0, (3.12)

where τ0 = 0 and τ1 = τ > 0. By manipulating, one 
an get the following quasi-

polynomial equation

L(s) = P (s) +Q(s)e−sτ = 0, (3.13)
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where P and Q are polynomials

P (s) = sn + an−1s
n−1 + . . .+ a0,

Q(s) = bms
m + bm−1s

m−1 + . . .+ a0, n > m.

It is assumed that P andQ have no 
ommon imaginary roots jω ∀ω ∈ R (otherwise

L(jω) = 0), and that a0+b0 6= 0 (otherwise L(0) = 0). The key property of the quasi-

polynomial (3.13) is the 
ontinuity of its roots as fun
tions of positive τ . This means

that as τ 
hanges, the 
hara
teristi
 roots may transit from the LHP to the RHP

(i.e., be
ome unstable) and vi
e versa (i.e., be
ome stable) by 
rossing the imaginary

axis only. Thus, the analysis steps are as follows: lo
ate the roots of P (s) + Q(s),

in
rease τ and 
he
k for the imaginary axis 
rossings of roots (for the 
orresponding


rossing frequen
ies ωc ).

If at some τ roots of L(s) 
ross the imaginary axis, we have P (jω)+Q(jω)e−jωτ = 0

and, thus, P (jω) 6= 0 sin
e otherwise P (jω) = Q(jω) = 0, whi
h 
ontradi
ts the

assumption that P and Q have no 
ommon imaginary roots jω for all ω ∈ R. Hen
e

−Q(jω)/P (jω) = ejωτ

This leads to phase equations as follows

ωτ = arg(−Q(jω)

P (jω)
) + 2πk, k = 0, 1, . . . , (3.14)

and the magnitude equation as

|P (jω)|2 − |Q(jω)|2 = 0, (3.15)

respe
tively, where (with no loss of generality) we assume that arg(.) ∈ [0, 2π). The

magnitude equation (3.15) is delay-independent and 
an be rewritten as

P (jω)P (−jω)−Q(jω)Q(−jω) = 0 (3.16)
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whi
h is polynomial equation in ω2
. As a 
onsequen
e, a �nite number of 
rossing

frequen
ies may be determined by solving this equation. It is 
lear that for any

positive real solution ωc of (3.15) there always exists a τ > 0 (a
tually, a family of

delays of the form τ0+
2π

ωc

k) su
h that (3.14) holds for ω = ωc as well. If there are no

positive real solutions of (3.15), no poles migrate from left to right or vi
e versa as

τ varies and the stability (or instability) of the roots of (3.13) is delay-independent

(does not depend on τ). Thus, if (for τ = 0) P (s) +Q(s) is stable and

∣

∣

∣

∣

Q(jω)

P (jω)

∣

∣

∣

∣

< 1, ∀ω > 0 (3.17)

the 
hara
teristi
 quasi-polynomial is delay-independently stable. Note that

∣

∣

∣

∣

Q(jω)

P (jω)

∣

∣

∣

∣

> 1, ∀ω > 0 (3.18)

does not hold sin
e n > m. Another possibility for delay-independent stability is the

stability of P (s) (
orresponding to τ = ∞) together with (3.17).

Now, we introdu
e some useful de�nitions that determine the behavior of the roots

and in turn the stability of an LTI TDS.

De�nition 3.1 Root tenden
y (RT): At ea
h 
rossing frequen
y ωc, is de�ned as

RT = sign

(

Re(
ds

dτ
)

)

(3.19)

�

Indeed, RT indi
ates that the root lo
i of (3.13) tends to either LHP (RT < 0) or to

RHP (RT > 0) at the 
rossings when τ in
reases.

De�nition 3.2 (Fridman, 2014) The sensitivity fun
tion is de�ned as

σ(ωc) =
d

dω

(

|P (jω)|2 − |Q(jω)|2
)

ω=ωc
, ωc > 0, (3.20)

whi
h is independent of τ . �
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Proposition 3.1 (Fridman, 2014) If σ(ωc) > 0, a root 
rosses the axis from left

to right(RT > 0); if σ(ωc) < 0, a root 
rosses from right to left(RT < 0); and, if

σ(ωc) = 0 there is a tou
h of the roots with the imaginary axis.

Example 3.1 Consider a s
alar TDS

ẋ(t) = −x(t− τ). (3.21)

The system without delay is stable and its quasi-polynomial is given by L(s) = s+e−τs
.

Then, the magnitude equation (3.15) ω2−1 = 0 has a unique positive solution ωc = 1,

where the sensitivity fun
tion

σ(ωc) =
d

dω
[ω2 − 1]ωc

= 2,

is positive, whi
h indi
ates that the 
hara
teristi
 roots 
rossing at ωc = 1 move from

LHP to RHP. The phase equation (3.14) has the form

τk = arg(−1/j) + 2πk = π/2 + 2πk, k = 0, 1, . . . .

Therefore, the equation is (exponentially) stable for τ ∈ [0, π
2
) and is unstable for

τ > π
2
. Moreover, for ea
h k ≥ 0 two 
hara
teristi
 roots move to RHP at τ = τk.

Now, time 
onsider

ẋ(t) = −bx(t− τ), b > 0. (3.22)

by 
hanging the time t̄ = bt we get,t− τ = (t̄− bt)/b, and denoting x̄(t) = x(t̄/b), we

arrive at

˙̄x(t̄) = −x̄(t̄− bτ), b > 0.

whi
h is exponentially stable for bτ < π
2
and unstable for bτ > π

2
.

�
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Example 3.2 Consider a TDS

ẋ(t) = −ax(t)− bx(t− τ), a+ b > 0. (3.23)

The system without delay is stable and its quasi-polynomial is given by

L(s) = s+ a+ be−τs.

Sin
e a+ b > 0, the system is stable at τ = 0. The magnitude equation has the form

ω2 + a2 − b2 = 0.

It may have a nontrivial solution only when |a| < |b|, yielding the positive 
rossing
frequen
y ωc =

√
b2 − a2. Clearly, this is possible only when either a > 0, b > 0, or

a < 0, b > 0. Moreover, the sensitivity fun
tion

σ(ωc) =
d

dω
[ω2 + a2 − b2]ω=ωC

= 2ωc > 0,

indi
ates that the 
hara
teristi
 roots 
rossing at ωc =
√
b2 − a2 move to RHP If

a > 0, b > 0,

√
b2 − a2τk = arg(− b

j
√
b2 − a2

+ a) + 2πk

= arg(a− j
√
b2 − a2) + 2πk

= π − arccos(
a

b
) + 2πk, k = 0, 1, . . . .

As a result, the �rst 
rossing happens at

τ0 =
π − arccos(b/a)√

b2 − a2
,

whi
h implies the exponential stability for τ ∈ [0, τ0) and instability for τ > τ0.
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If a < 0, b > 0, then

√
b2 − a2τk = arg(− b

j
√
b2 − a2

+ a) + 2πk

= arccos(
a

b
) + 2πk, k = 0, 1, . . . .

and thus, the system is stable for τ ∈ [0, τ0) and unstable for τ > τ0 with

τ0 =
arccos(b/a)√

b2 − a2
.

On the other hand, the system is delay-independently exponentially stable if and

only if a ≥ |b| (provided a + b > 0), i.e., i� a ≥ b > 0 or a > −b ≥ 0. Indeed, the


ondition a ≥ |b| guarantees that
∣

∣

∣

∣

Q(jω)

P (jω)

∣

∣

∣

∣

=

∣

∣

∣

∣

b

jω + a

∣

∣

∣

∣

< 1, ∀ω > 0

. �

Lyapunov based methods

This se
tion presents generalizations of the dire
t Lyapunov method to TDSs. First,

for general TDSs, the stability notions are de�ned, and Lyapunov-Krasovskii and

Lyapunov-Razumikhin stability theorems are stated. Then delay-independent and

delay-dependent stability 
onditions for linear TDSs are derived. Su�
ient 
onditions

are derived in terms of LMIs. Some of the presented ideas may be useful in the

nonlinear 
ase and Lyapunov-based ne
essary stability 
onditions for LTI retarded

TDSs.

Note that the dire
t Lyapunov method is also 
alled the se
ond Lyapunov method,

whereas the �rst one establishes the stability of a nonlinear system on the basis of the

exponential stability of the linearized system. In order to have a better understanding

of the notations, following de�nition of the 
on
ept of stability is given

De�nition 3.3 The trivial solution of (3.3) is
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• uniformly (in t0) stable if ∀t0 ∈ R and ∀ǫ > 0, there exists a δ = δ(ǫ) > 0 su
h

that ‖xt0‖c < δ(ǫ) implies |x(t)| < ǫ for all t ≥ t0;

• uniformly asymptoti
ally stable if it is uniformly stable and there exists a δa > 0

su
h that for any η > 0 there exists a T (δa, η) su
h that ‖xt0‖C < δa implies

|x(t)| < η for all t ≥ t0 + T (δa, η) and t0 ∈ R.

• globally uniformly asymptoti
ally stable if δa 
an be an arbitrary large, �nite

number.

The system is uniformly asymptoti
ally stable if its trivial solution is uniformly asymp-

toti
ally stable. �

Note that the stability notions are not di�erent from their 
ounterparts for systems

without delay (Khalil and Grizzle, 2002).

Now, we are in a position to present the method of Lyapunov-Krasovskii fun
-

tionals.

Theorem 3.2 Krasovskii Stability Theorem:(Hale, 1971) Suppose that the fun
tion

f in (3.3) takes bounded sets of Cn in bounded sets of Rn
, and u, v, w: R+ → R+

are


ontinuous, non-de
reasing fun
tions satisfying u(0) = v(0) = 0 and u(s), v(s) > 0

for s > 0. If there exists a 
ontinuous fun
tion V : R × Cn → R+
su
h that

(a) u(|x|) ≤ V (t, xt) ≤ v(|xt|c).

(b) The derivative of V (t, xt) along the solution of (3.3) and (3.4), de�ned as

V̇ (t, xt) = lim
s→0+

sup
1

s
(V (t + s, xt+s)− V (t, xt)),

satis�es V̇ (t, xt) ≤ w(|x|), then the trivial solution x = 0 of the time-delay system

in (3.3) and (3.4) is uniformly stable.

If lim
s→∞

u(s) = ∞, the solutions of the time-delay system in (3.3) and (3.4) are

uniformly bounded.

If w(s) = 0 for s = 0, then the solution x = 0 is uniformly asymptoti
ally stable.
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Example 3.3 (Fridman, 2014) Consider the nonlinear autonomous s
alar equation

ẋ(t) = −ax3(t)− bx3(t− h); a > 0; b ∈ R. (3.24)

Let |b| < a and 
onsider the following fun
tional

V (φ) =
φ4(0)

2a
+

0
∫

−h

φ6(s)ds,

in whi
h, φ is the initial fun
tion as de�ned in (3.4). Then

V (φ) =
x4(t)

2a
+

0
∫

−h

φ6(t+ s)ds =
x4(t)

2a
+

0
∫

t−h

φ6(s)ds.

derivation gives

V̇ (xt) = d
dt
V (xt) =

2x3(t)

a
ẋ(t) + x6(t)− x6(t− h)

= −[x6(t) + 2b
a
x3(t)x3(t− h) + x6(t− h)]

= [x3(t) x3(t− h)][
−1 − b

a

− b
a

−1
] ≤ α|x(t)|6.

for some α > 0. Thus, the system is delay-independently asymptoti
ally stable if

|b| < a. Note that the linear equation

ẋ(t) = −ax(t) − bx(t− h), a+ b > 0

is delay-independently asymptoti
ally stable i� |b| < a. �

We now re
all one of the widely used theorems in TDSs.

Theorem 3.3 Razumikhin Stability Theorem:(Fridman, 2014) Suppose that the fun
-

tion f in (3.3) takes bounded sets of Cn in bounded sets of Rn
and suppose that

u, v, w : R+×R+
are 
ontinuous, nonde
reasing fun
tions, u(s), v(s), w(s) are positive
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Figure 3-2: The idea of Razumikhin approa
h

for s > 0, u(0) = v(0) = 0. Let p : R+ ×R+
be a 
ontinuous non-de
reasing fun
tion

satisfying p(s) > s for s > 0. If there exists a 
ontinuous fun
tion V : R× R+ × R+

su
h that

(a) u(|x|) ≤ V (t, x) ≤ v(|x|), ∀t ∈ R, x ∈ Rn
.

(b) The derivative of V (t, x) along the solution of (3.3) and (3.4), de�ned as

V̇ (t, xt) = lim
s→0+

sup
1

s
(V (t + s, xt+s)− V (t, xt)),

satis�es

V̇ (t, xt) ≤ w(|x|)

if

V (t+ θ, xt+θ) < p(V (t, xt)), ∀θ ∈ [−h, 0].

then the trivial solution x = 0 of the time-delay system in (3.3) and (3.4) is

uniformly stable. Furthermore, if u(s) → ∞ as s → ∞, then the trivial solution

is globally uniformly asymptoti
ally stable.

The idea of the Razumikhin method 
an be explained as follows for the typi
al 
hoi
e

of (quadrati
) Lyapunov fun
tions of the form V (x) = xTPx, P > 0 (see Fig. 3-2).

If a solution begins inside the ellipsoid V (t + θ, xt+θ) = xT
t+θPxt+θ < δ, ∀θ ∈ [−h 0],

and not for any x(t + θ). This guarantees the stability of the system.
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So, the solution will not leave the ellipsoid xT (t)Px(t) ≤ δ if d
dt
V (x(t)) < 0 along

ẋ(t) = f(t, xt) for all xt = x(t+ θ), θ ∈ [−h 0] satisfying the Razumikhin 
ondition

V (x(t + θ)) ≤ V (x(t)), θ ∈ [−h 0]

The following theorem also plays an important role in the stability analysis of

time-delay systems.

Theorem 3.4 Halanay theorem(Xu and Lam, 2008) Consider that s
alars k1 and k2

satisfy k1 > k2 > 0, and x(t) governed by equation (3.3) is a non-negative 
ontinuous

fun
tion on [t0 − τ, t0] satisfying

ẋ(t) ≤ −k1x(t) + k2x̄(t), (3.25)

for t ≥ t0, where τ ≥ 0 and

x̄(t) = sup
t−τ≤s≤t

x(s)

Then, for t > t0, we have

x(t) ≤ x(t0)e
−α(t−t0),

where α > 0 is the unique solution to the following equation:

α = k1 − k2e
ατ

Both Theorems 3.3 and 3.4 
an be used to derive stability 
onditions for the 
ase

when the delay is time-varying, whi
h is 
ontinuous but not ne
essarily di�erentiable.

It is also worth pointing out that Theorem 3-2 
an be used to obtain delay-dependent

stability 
onditions for time-delay systems, whi
h will be shown in the next se
tion.

3.4 An LMI Approa
h to Stability

The dire
t Lyapunov method for linear ordinary di�erential equations leads to sta-

bility 
onditions in terms of LMIs. Most of the earlier works on stability of linear
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systems via Lyapunov method were formulated in terms of Lyapunov equations and

algebrai
 Ri

ati equations. This is mostly be
ause of the unavailability of e�
ient

numeri
al algorithms for the general form of LMI. Solutions of some matrix inequal-

ities have appeared in 1960 (see, e.g., Fridman (2014)). The realization that LMI

is a 
onvex optimization problem and the development of the e�
ient interior point

method led to formulation of many 
ontrol problems and their solutions in the form

of LMIs (Boyd et al., 1994). The LMI approa
h is 
apable to provide the desired

stability/performan
e analysis and design in spite of signi�
ant model un
ertainties.

Among the model un
ertainties may be, e.g., un
ertain delays.

There are e�
ient numeri
al methods to determine whether an LMI is feasible ,

or to solve a 
onvex optimization problem with LMI 
onstraints. Many optimization

problems in 
ontrol theory, system identi�
ation and signal pro
essing 
an be formu-

lated using LMIs. Also LMIs �nd appli
ation in Polynomial Sum-Of-Squares. The

prototypi
al primal and dual semide�nite program is a minimization of a real linear

fun
tion respe
tively subje
t to the primal and dual 
onvex 
ones governing this LMI.

The solution of LMIs is a part of 
onvex programming. There exist various pa
kages

that provide e�
ient solutions to LMIs, e.g., MATLAB provides an LMI toolbox.

We will review the LMI te
hniques in deriving stability results for the single-delay


ase. However, the LMI te
hniques presented in the following 
an be extended to the

multiple-delay 
ase in a straightforward manner. We 
onsider a 
lass of TDSs with

time-varying delays as follows

ẋ(t) = Ax(t) +Bu(t− τ(t)) (3.26)

x(t) = φ(t), ∀t ∈ [−τ̄ 0] (3.27)

where x(t) ∈ Rn
is the state; φ(t) is the 
ontinuous initial 
ondition. τ(t) is the

time-varying delay of system (3.26), whi
h is assumed to be 
ontinuous and satis�es

0 < τ(t) ≤ τ̄ , (3.28)
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A and B are known real 
onstant matri
es.

Note that stability results on (3.26) with a 
onstant delay obtained by the method

of Lyapunov-Krasovskii fun
tionals 
an be easily extended to systems with di�eren-

tiable time-varying delays. Considering this, time-delay systems with di�erentiable

time-varying delays are not 
onsidered, and attention will be fo
used on the review of

the LMI te
hniques in deriving both delay independent and delay-dependent stability


onditions for the time-delay systems with 
onstant and time-varying delay.

Generally, the fun
tionals whi
h are used as 
andidate Lyapunov ones are a
hieved

by summing up the following terms (Ri
hard, 2003)

V1(x(t)) = xT (t)Px(t),

V2(xt) = xT (t)

∫ 0

−τi

Qix(t+ θ)dθ,

V3(xt) =

∫ 0

−τi

xT (t+ θ)Six(t + θ)dθ,

V4(xt) =

∫ 0

−τi

∫ t

t+θ

xT (θ)Rix(θ)dθds,

V5(xt) = xT (t)

∫ 0

−τi

Pi(η)x(t + η)dη,

V6(xt) =

∫ 0

−τi

∫ 0

τi

Pi(η, θ)x(θ)dηdθ,

(3.29)

Delay-Independent Conditions for Linear TDSs

For the time-delay system (3.26) with a 
onstant time delay τ(t) = τ̄ , by 
hoosing a

Lyapunov-Krasovskii fun
tional as

V (t, xt) = xT (t)Px(t) +

t
∫

t−τ̄

xT (s)Qx(s)ds (3.30)

and putting it into Theorem 3.2, the following stability 
ondition 
an be obtained

Theorem 3.5 (Ri
hard, 2003) The TDS (3.26) is asymptoti
ally stable if there exist

matri
es P > 0 and Q > 0 su
h that
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



PA+ ATP +Q PB

∗ −Q



 < 0. (3.31)

Remark 3.1 Hereafter,

∗
in ij-element indi
ates the transpose of the ji-element of

the same matrix.

Note that for the general 
ase in (3.26), sin
e the time-varying delay τ(t) may not be

di�erentiable, the Lyapunov-Krasovskii fun
tional similar to (3.30) as

V (t, xt) = xT (t)Px(t) +

t
∫

t−τ(t)

xT (s)Qx(s)ds, (3.32)


annot be used to derive a stability 
ondition. If we suppose that τ(t) is a di�eren-

tiable fun
tion with τ̇(t) < dτ < 1, Fridman (2014) provided the following theorem.

Theorem 3.6 The TDS (3.26) is asymptoti
ally stable if there exist matri
es P > 0

and Q > 0 su
h that





PA+ ATP +Q PB

∗ −(1− dτ)Q



 < 0. (3.33)

If τ(t) is not di�erentiable, however, we 
an use Theorem 3.3 to give a delay

independent stability 
ondition. Here, we 
hoose a Lyapunov fun
tion as

V (t, xt) = xT (t)Px(t), (3.34)

By setting the following 
onditions

p(s) = δs, w(s) = ǫs, (3.35)

where δ > 1 and ǫ > 0 are s
alars, we have the following result.
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Theorem 3.7 TDS in (3.26) is asymptoti
ally stable if there exists a matrix P > 0

su
h that





PA+ ATP + P PB

∗ −P



 < 0. (3.36)

It is easy to see that the LMI 
ondition in Theorem 3.7 is a spe
ial 
ase of that in

Theorem 3.5. Thus, Theorem 3.7 is more 
onservative than Theorem 3.5. However,

it is worth pointing out that Theorem 3.7 
an be applied to the 
ase when the delay

is time-varying and 
ontinuous, whi
h may not be di�erentiable, while in the time-

varying delay 
ase, the use of Theorem 3.5 usually requires the 
onsidered delay being

di�erentiable.

Now, we introdu
e some useful inequalities for TDS. Noti
e that from (3.26) one

has ẋ(t) − Ax(t) + Bu(t − τ(t)) = 0. Therefore, for any matri
es Y , W and S with

appropriate dimensions, the following equalities hold:

ẋT (t)Y [ẋ(t) = Ax(t) +Bu(t− τ(t))] = 0 (3.37)

xT (t)W [ẋ(t) = Ax(t) +Bu(t− τ(t))] = 0 (3.38)

xT (t− τ(t))S[ẋ(t) = Ax(t) +Bu(t− τ(t))] = 0 (3.39)

Indeed the above equations add some degrees of freedom to the equations and

provide a wider de
ision variable spa
e. By noting these and using the Lyapunov

fun
tion (3.34), we 
an obtain the following delay-independent stability result for the

time-delay system (3.26) and (3.27).

Theorem 3.8 The time-delay system (3.26) is asymptoti
ally stable if there exist

matri
es P > 0, Y , W , and S su
h that











WA+ ATW T WB + ATST ATY T + P −W

∗ SB +BTST BT
1 Y

T − S

∗ ∗ −Y − Y T











< 0 (3.40)
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Delay-dependent stability 
onditions

In this se
tion we 
onsider the linear TDSs (3.26) and (3.27). The feasibility of

the delay-independent 
onditions in (3.33) and (3.36) implies that A and A ± B

are Hurwitz. It means that these 
onditions 
annot be applied for stabilization of

unstable plants by a feedba
k with delay. For su
h systems, the stability depends on

the delay.

In this se
tion, LMI te
hniques in deriving delay-dependent stability 
onditions

will be reviewed. Generally, these te
hniques 
an be divided into two main groups, i.e.,

the model transformation te
hniques and the bounding te
hniques. The aim of using

these transformations and boundings is to a
hieve some LMIs that are dependent on

delay. Now, we introdu
e some usual transformation and bounding te
hniques.

Transformations and boundings

One of the most used te
hniques in delay-dependent LMIs is Newton-Leibniz trans-

formation. Using Newton-Leibniz formula, one gets

x(t− τ̄) = x(t)−
t
∫

t−τ̄

ẋ(s)ds,

= x(t)−
t
∫

t−τ(t)

[Ax(s) +Bx(t− τ(t))]ds

Repla
ing x(t− τ̄ ) in (3.26) gives us

ẋ(t) = (A+B)x(t)−B

t
∫

t−τ

[Ax(s) +Bx(t− τ)]ds (3.41)

Note that the asymptoti
 stability of the TDS in (3.41) implies that of the system

in (3.26) and (3.27). For this reason, we now turn to study the stability of (3.41). For

a 
onstant time-delay τ = τ̄ , we 
hoose a Lyapunov-Krasovskii fun
tional 
andidate
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as follows:

V (t, xt) = xT (t)P−1x(t) +

0
∫

−τ̄

t
∫

t+θ

xT (s)BTQ−1
1 Bx(s)dsdθ

+xT (t)P−1x(t) +

0
∫

−τ̄

t
∫

t−τ̄+θ

xT (s)BTQ−1
2 Bx(s)dsdθ

(3.42)

in whi
h P,Q1, Q2 > 0. Then, by Theorem 3.2, the stability 
ondition for (3.41) is

obtained in the following theorem.

Theorem 3.9 (Cao et al., 1998b) The TDS in (3.41) is asymptoti
ally stable for any

delay τ satisfying 0 < τ ≤ τ̄ if there exist matri
es P > 0, Q1 > 0 and Q2 > 0 su
h

that











Ψ τ̄PAT τ̄PBT

∗ −Q1 0

∗ ∗ −Q2











, (3.43)

where Ψ = (A+B)P + P (A+B)T +B(Q1 +Q2)B
T .

Using the Lyapunov fun
tion in (3.34) a system with a time varying delay τ(t),

the following result is a
hieved.

Theorem 3.10 (Cao et al., 1998a) The time-delay system in (13) is asymptoti
ally

stable for any delay τ(t), satisfying 0 < τ(t) < τ̄ if there exist matri
es X1, X2, X3 > 0

su
h that

(A+B)X1 +X1(A+B)T + τ̄B(X2 +X3)B
T + 2τ̄X1 < 0,





X1 X1A
T

∗ X2



 ≥





X1 X1B
T

∗ X3



 ≥ 0.
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By the Newton-Leibniz formula, we 
an also 
hange system (3.26) to

ẋ(t) = (A +B)x(t)− B

∫ t

t−τ̄

ẋ(s)ds, (3.44)

and

d

dt

[

x(t) +B

∫ t

t−τ̄

x(s)ds

]

= (A +B)x(t.) (3.45)

Remark 3.2 All the time-delay systems in (3.41), (3.44), and (3.45) are transformed

from the time-delay system in (3.26) by using the Newton-Leibniz formula. However,

all of them are not equivalent to (3.26). Compared with (3.26), additional dynami
s

are introdu
ed in (3.41), (3.44), and (3.45) (Gu (2000); Kharitonov and Mel
hor-

Aguilar (2003a,b)), whi
h may 
ause 
onservatism as the delay-dependent 
onditions

are derived based on the transformed systems.

One of the main purposes in the study of delay-dependent stability for time-

delay systems is to �nd methods to redu
e 
onservatism of existing delay-dependent

stability 
onditions. It is known that the �nding of better bounds on some weighted


ross produ
ts arising in the analysis of the delay-dependent stability problem plays

a key role in redu
ing 
onservatism. Note that the delay-dependent stability results

reported by Li and De Souza (1997) and Cao et al. (1998a,b) were obtained by using

the well-known inequality on upper bound for the inner produ
t of two ve
tors, that

is,

− 2aT b ≤ aTXa + bTX−1b, (3.46)

where a, b ∈ Rn
and X ∈ Rn×n

. In order to redu
e the 
onservatism in the delay-

dependent stability results of Li and De Souza (1997) and Cao et al. (1998a,b), an

improved inequality was proposed by Park (1999) whi
h is re-stated as follows:

Lemma 3.11 (Park's Inequality)(Park, 1999) Assume that a(α) ∈ Rna
, andb(α) ∈

Rnb
are given for α ∈ Ω. Then, for any X ∈ Rna×na

with X > 0 and any matrix

M ∈ Rna×na
, we have
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−2
∫

Ω
aT (α)b(α)dα

≤
∫

Ω





a(α)

b(α)





T 



X XM

MTX (MTX + I)X−1(MTX + I)T





×





a(α)

b(α)



 dα

(3.47)

Now, we present another important inequality, whi
h is also e�e
tive in the deriva-

tion of delay-dependent stability 
onditions.

Lemma 3.12 Jensen's Inequality (Gu, 2000): For any 
onstant matrix M ∈ Rm×m

with M > 0, s
alars b > a, ve
tor fun
tion ω : [a, b] → Rm
su
h that the integrations

in the following are well-de�ned, then

(b− a)
∫ b

a
ωT (β)Mω(β)dβ

≥
[

∫ b

a
ω(β)dβ

]T

M
[

∫ b

a
ω(β)dβ

]T

.
(3.48)

3.5 Con
lusions

In this 
hapter, we reviewed the stability analysis of TDSs. Eigenvalue-based methods

give quite pre
ise and satisfying results when the delay is 
onstant and the system is

LTI. However, when the delay be
omes time-varying these methods 
annot be used

easily. Instead, Lyapunov-based methods 
an provide some su�
ient 
onditions for

the stability of TDSs. Nevertheless, one has to use these methods is most 
ases.

Among the Lyapunov based-methods, the delay-independent ones are usually 
an-

not be straightforwardly a
hieved. Many resear
hes have been devoted to improve

the 
onservativeness of the delay-dependent methods at the expense of in
reased 
om-

plexity of the resulting LMIs.

Due to its importan
e in our work, in the next 
hapter, we separately study

sampled-data systems as a spe
ial 
ase of time-varying TDSs.

71



72



4

Sampled-data systems

�Equipped with his �ve senses, man explores the universe around him and


alls the adventure S
ien
e.�

� Edwin Powell Hubble, The Nature of S
ien
e, 1954

In this 
hapter we 
onsider sampled-data systems (SDS) with zero-order hold

(ZOH). We start with preliminaries on main approa
hes to sampled-data 
ontrol. We

also review some re
ent time-dependent Lyapunov fun
tionals in the framework of the

delayed system approa
h. Indeed, the 
orresponding TDS to SDS 
an be 
onsidered

as a system with a pie
ewise-
ontinuous time-varying delay.

Introdu
tion

SDSs have been extensively studied over the past years (Chen and Lat
hman (1995);

Fridman (2010); Liu and Fridman (2012) and the referen
es therein). Two main

approa
hes have been used for the sampled-data 
ontrol of linear un
ertain systems

leading to 
onditions in terms of Linear Matrix Inequalities (LMIs) (Boyd et al.,

1994). The �rst one is the input delay approa
h, where the system is modeled as a


ontinuous-time system with the delayed 
ontrol input (Miheev et al., 1988). The

se
ond approa
h is based on the representation of the sampled-data system in the

form of impulsive model (see e.g., Hespanha et al. (2008)). The input delay approa
h
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be
ame popular in the networked 
ontrol systems literature, being applied via time-

independent Lyapunov-Krasovskii fun
tionals or Lyapunov-Razumikhin fun
tions to

analysis and design of linear un
ertain systems under un
ertain sampling with the

known upper bound on the sampling intervals (Fridman et al., 2004; Gao et al., 2008).

In this 
hapter, we are going to fo
us on the delayed system approa
h.

Modern 
ontrol employs digital te
hnology for implementation. SDSs are dynami-


al systems that involve both a 
ontinuous-time dynami
s and a dis
rete-time 
ontrol.

Consider the linear system

ẋ(t) = Ax(t) + B̄u(t) (4.1)

where A and B̄ are 
onstant matri
es. The 
ontrol signal is assumed to be gener-

ated by a zero-order hold (ZOH) fun
tion

u(t) = u(tk), tk ≤ t ≤ tk+1 (4.2)

with a set of hold times {t0, t1, . . .}

0 < t0 < t1 < . . . < lim
k→∞

tk = ∞, (4.3)

where ud is a dis
rete-time ZOH 
ontrol signal. The sampling interval 
an be

either 
onstant tk+1 − tk = τ̄ or variable with time-varying tk+1 − tk = τ̄ . In the


ontext of NCSs (e.g., due to pa
ket dropout) the sampling interval may be variable

and un
ertain. Hereafter, we assume that the samplings happen in a bounded time,

i.e.,

tk+1 − tk ≤ τ̄ , τ̄ ∈ R, k ∈ Z+.

Consider a state-feedba
k 
ontroller u(tk) = Kx(tk). Regarding (4.1) and (4.2),

we arrive at

ẋ(t) = Ax(t) +Bx(tk), tk ≤ t < tk+1, (4.4)

where B = B̄K. For the periodi
 sampling 
ase with tk+1 − tk = T , the solution is
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a
hieved

x(t) = eA(t−tk)x(tk) +

∫ t

tk

eA(t−θ)Bx(tk)dθ, tk ≤ t < tk+1, k ∈ Z
+. (4.5)

Finding the value of x(tk+1) leads us to the following dis
rete-time system

x(tk+1) = Dx(tk), D = eAT +

∫ T

0

eAτ̄Bdθ, k ∈ Z
+, (4.6)

System (4.4) is asymptoti
ally stable i� the eigenvalues of D are lo
ated inside the

unitary 
ir
le (S
hur stable matrix). Under variable sampling, the 
losed-loop system

(4.4) is 
onverted into a linear time-varying dis
rete-time system

x(tk+1) = Dkx(tk), Dk = eATk +

∫ Tk

0

eATkBdθ, k ∈ Z+, (4.7)

Assuming Tk = tk+1 − tk ≤ τ̄ , the following bound follows from (4.6):

|x(t)| ≤ γ|x(tk)|, tk ≤ t ≤ tk+1, k ∈ Z+ (4.8)

where

γ = max
θ∈[0,τ̄ ]

|eAθ|+max lim
θ∈[0,τ̄ ]

∫ θ

0

eAζdζ,

Therefore, the stability of the dis
rete-time linear system (4.7) is equivalent to the

stability of the 
ontinuous-time system (4.4).

4.1 Stability analysis

SDS in (4.4) 
an be 
onsidered as a 
ontinuous-time system with a pie
ewise-linear

time-varying delay as (3.3)

ẋ(t) = Ax(t) + B̄x(t− τ(t)), τ(t) = t− tk, tk ≤ t < tk+1. (4.9)

See Fig. 4-1 for the plot of a sawtooth delay 
orresponding to a variable sampling.
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Figure 4-1: Looking an SDS systems as a time-varying TDS with τ̄ = 1.

As for the general time-varying delay with τ(t) ≤ τ̄ , if the LTI system without delay

(i.e., the 
ontinuous-time system) is asymptoti
ally stable, then for small enough τ̄

the sampled-data system preserves the stability.

Example 4.1 Consider a simple system as follows

ẋ(t) = −x(tk), tk ≤ t < tk+1, k = 0, 1, . . . . (4.10)

The 
orresponding 
ontinuous-time system ẋ(t) = −x(t) is exponentially stable.

It is well known (see Fridman and Shaked (2003); Fridman (2014)) that the equation

ẋ(t) = −x(t − τ(t)) with a 
onstant delay τ is asymptoti
ally stable for τ < π
2
and

unstable for τ > π
2
, whereas for the fast varying delay it is stable for τ(t) < 1.5 and

there exists a destabilizing delay with an upper bound greater than 1.5.

For the 
onstant periodi
 sampling 
ase, D in the 
orresponding dis
rete-time

system (4.6) is given by D = 1 − T . Sin
e the eigenvalues of D must be inside the

unitary 
ir
le, the system remains asymptoti
ally stable for all 
onstant samplings

less than 2 and be
omes unstable for samplings greater than 2. Consider now the

variable sampling with tk+1 − tk = Tk, where the 
orresponding dis
rete-time system

is given by (4.6) with Dk = 1 − Tk. For any small ǫ > 0 and Tk ≤ 2 − ǫ we have

|Dk| = |1 − Tk| ≤ 1 − ǫ. Hen
e, the dis
rete-time (and, thus, the 
ontinuous-time
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SDS) system is asymptoti
ally stable for Tk ≤ 2− ǫ ∀ǫ > 0. �

In the above example, the maximum interval for the sampling that preserves the

asymptoti
 stability is the same under the 
onstant and the variable sampling in-

tervals. Usually a maximum upper bound on the un
ertain variable sampling that

preserves the stability is smaller than the one for the 
onstant sampling.

Example 4.2 (Constant and time-varying sampling)

Consider System in (4.4) with

A =





1 3

2 1



 , B =





−1 −6

−0.6 −3.6



 .

Note that, for a 
onstant delay, τ , if x(tk) is 
hanged by x(t−τ), the above 
losed-

loop system is asymptoti
ally stable for the 
onstant delay τ < 0.19 and be
omes

unstable for τ > 0.19 (using the phase (3.14) and the magnitude equation (3.15), and


onsidering that all the eigenvalues of the system must be lo
ated in the LHP). In

the 
ase of a 
onstant sampling, the equivalent dis
rete-time system is asymptoti
ally

stable for the 
onstant sampling interval tk+1− tk = T for T ∈ [0 0.5937]. Therefore,

for the 
onstant sampling intervals T1 = 0.18 or T2 = 0.54 the system is asymptoti
ally

stable (see Figures 4-2, 4-3). However, if we sample using a sequen
e of sampling

intervals T1 → T2 → T1 → . . . the system be
omes unstable (see Figure 4-4 with the

plot of the state).

In the se
ond 
ase, the equivalent dis
rete-time system over two sampling instants


an be presented as

xk+2 = Dk+1Dkxk, k = 0, 1, 2, l . . . ,

One 
an see that the system be
omes LTV, and therefore the analysis for LTI

systems are not valid anymore. Using the Razumikhin approa
h and 
onvex embed-

dings, Fiter et al. (2012) found the following upper bound on the variable sampling

was a
hieved τ̄ = 0.4683.

�
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Figure 4-2: The system in Example 4.2 with a 
onstant sampling T1 = 0.18.
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Figure 4-3: The system in Example 4.2 with a 
onstant sampling T1 = 0.54.
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Figure 4-4: The system in Example 4.2 with a swit
hed sampling T1 → T2 → T1 . . ..
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Generally, three main approa
hes are used for the SDSs, i.e., the dis
rete-time,

the time-delay, and the impulsive/hybrid system approa
h.

In the dis
rete-time approa
h the system is dis
retized (I
hikawa and Katayama,

2001). If the SDS is linear time invariant, the dis
retization is a
hieved from (4.6) that

leads to the dis
rete-time system (4.6). The advantage of the above dis
retization is in

the simpli
ity of the stability 
onditions. Moreover, for LTI systems these 
onditions

are ne
essary and su�
ient for the stability under the 
onstant and known sampling

rate. However, it be
omes 
ompli
ated for systems with un
ertain matri
es or/and

un
ertain variable sampling period. The main drawba
k is that dis
retization loses the

knowledge about the inter-sampling behavior. It 
an hardly be used to performan
e

analysis, to 
ontrol and tra
king of nonlinear systems. A spe
ial lifting te
hnique

was introdu
ed by Yamamoto (1990) and Bamieh et al. (1991) for sampled-data H∞


ontrol.

The se
ond approa
h, 
onverts an SDS to a system with an input delay so that

(4.4) is modeled as a 
ontinuous-time system (4.9) with the delayed 
ontrol input

(Fridman, 2014; Seuret, 2009). Robust 
ontrol of SDS was started by Fridman et al.

(2004) via Lyapunov-Krasovskii fun
tionals proposed by Fridman and Shaked (2003)

for systems with fast-varying delays (here τ̇ = 1 almost everywhere). The time-

delay approa
h be
ame popular in NCSs, being applied to un
ertain systems under

un
ertain sampling and network indu
ed delay (Gao et al., 2008; Kim et al., 2010).

The third one is impulsive system approa
h whi
h has been des
ribed by Naghshtabrizi

et al. (2008, 2010). In this thesis this approa
h is not being utilized in this thesis,

and we only mention it to 
omplete the dis
ussion.

Consider the augmented system state ξ(t) = [xT (t) uT (t)], and

u̇(t) = 0, t 6= tk, u(tk) = Kx(t−k ),
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With this we arrive at the following impulsive model

ξ̇(t) =





A B

0 0



 ξ(t), t 6= tk,

ξ(t) =





x(t−k )

Kx(t−k )



 , t = tk.

(4.11)

The impulsive approa
h was extended to the 
ase of variable sampling with a

known upper bound, where a dis
ontinuous Lyapunov fun
tion method was intro-

du
ed (Naghshtabrizi et al., 2008). The latter method improved the existing results,

based on the input delay approa
h via time-independent Lyapunov fun
tionals, and

gave an insight to time-dependent Lyapunov fun
tionals suggested by Fridman (2010).

In the next se
tion stability analysis based on Lyapunov fun
tional is dis
ussed.

4.2 Lyapunov based time-dependent methods

One of the earliest works in this framework is the paper of Fridman et al. (2004),

in whi
h Lyapunov fun
tionals for stability analysis of (4.4) with external distur-

ban
e and in the 
ase of fast-varying delay is addressed. Naghshtabrizi et al. (2008)

introdu
ed a Lyapunov fun
tion whi
h depends on tk for the 
orresponding �nite-

dimensional system with jumps. Following Fridman (2010), we employ below a time-

dependent Lyapunov fun
tional whi
h may be dis
ontinuous in time, but it is not

allowed to grow in the jumps.

Lemma 4.1 (Fridman, 2014) Consider a general SDS (4.9). Assume that there exist

positive numbers α, β and a fun
tional V : R+ × W [−τ̄ , 0] × L2(−τ̄ , 0) → R+
su
h

that

α|φ(0)|2 ≤ V (t, φ, φ̇) ≤ β‖φ‖W , (4.12)

where φ indi
ates the spa
e of fun
tions φ : [τ̄ , 0] → R, whi
h are absolutely 
ontinuous

on [τ̄ , 0), have a �nite lim
θ→0−

φ(θ) = 0, and have square integrable �rst order derivatives
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Figure 4-5: Dis
ontinuous Lyapunov fun
tional

is denoted by W [a, b) with the norm

‖φ‖W = max
θ∈[a,b]

|φ(θ)|+
[
∫ b

a

φ̇2(s)ds

]1/2

. (4.13)

Consider the fun
tion V̄ (t) = V (t, xt, ẋt), whi
h is 
ontinuous from the right for

x(t) satisfying (4.9), lo
ally absolutely 
ontinuous on t ∈ [tk, tk+1), k = 1, 2, . . . and

whi
h satis�es

lim
t→t−

k

V̄ (t) ≥ V̄ (tk), (4.14)

This has been shown in Figure 4-5. Given α, if along (4.9)

d

dt
V̄ (t) + 2αV̄ (t) ≤ 0, (4.15)

for almost all t, then (4.9) is exponentially stable with a de
ay rate α.

In the next se
tion, we introdu
e the looped-fun
tional method for SDSs.
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4.3 Looped fun
tional Method

Looped-fun
tionals have been introdu
ed by Briat and Seuret (2012a), Seuret (2012)

and Seuret et al. (2014) for the analysis of sampled-data systems. The main aim was

to reformulate a dis
rete-time 
ondition into another 
ondition devoid of exponential

terms, allowing then for the 
onsideration of un
ertain time-varying systems and

nonlinear systems (Peet and Seuret, 2014). They have been further 
onsidered for

the analysis of impulsive systems (Briat and Seuret, 2014; Hespanha et al., 2008). The

key idea behind the use of looped-fun
tionals is to en
ode a dis
rete-time stability


ondition in a 
ondition that is 
onvex in terms of the matri
es of the systems. Due to

the 
onvexity property, the resulting 
onditions 
an be extended to un
ertain systems

and linear time-varying systems, unlike the dis
rete-time stability 
onditions that are

non-
onvex in the matri
es of the system due to the presen
e of exponential terms.

In the papers of Briat and Seuret (2012b, 2013), the 
onsidered looped-fun
tional

led to su�
ient 
onditions for the feasibility of a 
ertain dis
rete-time stability 
ri-

terion 
hara
terizing the stability of impulsive and swit
hed systems. They show

here that this very same looped-fun
tional is 
omplete in the sense that the result-

ing 
riterion is a
tually equivalent to the dis
rete-time stability 
ondition aimed to

be represented in a 
onvex way. This result is proved for a larger 
lass of systems,

referred to as pseudo-periodi
 systems, en
ompassing periodi
 systems, impulsive sys-

tems, sampled-data systems and swit
hed systems, proving then the su�
ien
y and

the ne
essity of the 
onditions obtained by Briat and Seuret (2013).

The de�nition of a looped-fun
tional is given below (Briat and Seuret, 2012a).

De�nition 4.1 (Looped-fun
tional) A fun
tional f : [0, T2]×K[T1, T2]×[T1, T2] → R,

where ǫ ≤ T1 ≤ T2 ∞, ǫ > 0, is said to be a looped fun
tional if the following 
onditions

are satis�ed

(i) the equality f(0, z, T ) = f(T,Z, T ) holds for all fun
tions Z ∈ C([0, T ],Rn) ⊂
K[T1, T2] and all T ∈ [T1, T2], and

(ii) it is di�erentiable with respe
t to the �rst variable with the standard de�nition
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of the derivative.

The idea for proving stability of (4.9) is to look now for a positive de�nite quadrati


fun
tion, su
h that the dis
rete sequen
e is monotoni
ally de
reasing. This is formal-

ized as the following theorem.

�

Theorem 4.2 Let 0 < T1 ≤ T2 be two s
alars and V : Rn → R+
be a di�erentiable

fun
tion for whi
h there exist positive s
alars µ1 < µ2 and p su
h that

∀x ∈ R
n, µ1|x|p ≤ V (x) ≤ µ2|x|p. (4.16)

Then the following statements are equivalent.

(i) The absolute value of the Lyapunov fun
tion stri
tly de
reases ∀k ∈ N and

Tk ∈ [T1, T2], or equivalently

∆V (k) = V (x(tk))− V (x(0)) < 0

(ii) There exists a 
ontinuous and di�erentiable fun
tional V0 : [0, T2] × K → R

whi
h satis�es for all z ∈ K

∀T ∈ [T1, T2] V0(T, z(.)) = V0(0, z(.)), (4.17)

and su
h that, ∀t ∈ [0Tk],

W0(τ, x(tk)) =
d

dt
[V (x(tk)) + V0(t, x(tk))] < 0. (4.18)

If one of the above statements is satis�ed, then the the system in (4.9) is asymp-

toti
ally stable.

Now we introdu
e Wirtinger's inequality, whi
h has a very important role in de-

termining a less 
onservative upper bound in Lyapunov based methods in SDSs. This
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inequality allows the Lyapunov fun
tionals to have a negative term.

4.4 Wirtinger based Lyapunov fun
tionals

In mathemati
s, histori
allyWirtinger's inequality for real fun
tions was an inequality

used in Fourier analysis. It was named after Wilhelm Wirtinger. It was used in 1904

to prove the isoperimetri
 inequality. A variety of 
losely related results are today

known as Wirtinger's inequality.

Wirtinger's inequality is an alternative of Jensen's inequality in delay-dependent

stability analysis of linear systems with 
onstant dis
rete and distributed delays or

with dis
rete time-varying delays via Lyapunov fun
tionals.

Lemma 4.3 (Liu and Fridman, 2012) For all absolutely 
ontinuous fun
tions ω :

[a, b] → Rn
with ω ∈ L2(a, b). and all n× n matri
es W > 0 the following holds

∫ b

a

ωT (θ)Wω(θ)dθ ≤ 4(b− a)

π2

∫ b

a

ω̇T (θ)Wdotω(θ)dθ. (4.19)

The Wirtinger's inequality 
an help to de
rease the 
onservativeness of the results

in the 
ontext of the stability analysis of time delay systems using dis
rete Lyapunov-

Krasovskii fun
tionals. In this way, the following additive term was suggested by Liu

and Fridman (2012) for SDSs with a 
onstant 
ommuni
ation delay η ∈ R+
:

VW = τ̄ 2
∫ t

tk

ẋT (s)Wẋ(s)ds− π2

4

∫ t−η

tk−η

[x(s)−x(tk−η)]TW [x(s)−x(tk−η)]ds, (4.20)

where W > 0, tk ≤ t ≤ tk+1. A

ording to Wirtinger's inequality, in spite of having a

negative term, we get VW ≥ 0 for tk ≤ t ≤ tk+1. By derivation with respe
t to time,

a negative term appears whi
h removes the e�e
t of some positive terms and redu
es

the 
onservativeness of the results.
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4.5 Con
lusions

In this 
hapter, some Lyapunov based stability 
onditions for the SDSs were studied.

Main dis
ussions in this 
hapter were based on time-dependent fun
tionals, looped-

fun
tionals, and Wirtinger based fun
tionals. The 
orresponding TDS to SDS was


onsidered as a system with a pie
ewise-
ontinuous time-varying delay.
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5

Consensus in se
ond-order

multi-agent systems with time-delay

and slow swit
hing topology

�The s
ientist is not a person who gives the right answers, he's one who asks

the right questions.�

� Claude Lévi-Strauss

In this 
hapter, based on the results of Zareh et al. (2013b), we investigate the

problem of deriving su�
ient 
onditions for asymptoti
 
onsensus of se
ond order

multi-agent systems with slow swit
hing topology and time delays. The proposed lo
al

intera
tion proto
ol is PD-like and the stability analysis is based on the Lyapunov-

Krasovskii fun
tional method. Our approa
h is based on the 
omputation of a set

of parameters that guarantee stability under any network topology of a given set.

A signi�
ant feature of this method is that it does not require to know the possible

network topologies but only a bound on their se
ond largest eigenvalue (algebrai



onne
tivity).
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5.1 Introdu
tion

As mentions in Chapter 2, in the past years a signi�
ant attention has been given

to the 
onsensus problem in multi-agent systems due to its broad spe
trum of ap-

pli
ations to sensor networks, automated highway systems, mobile roboti
s, satellite

alignment and several more. The obje
tive of a 
onsensus algorithm is to drive the

state variables of all the agents in a networked system toward a 
ommon value. This

parti
ular network state is 
alled 
onsensus state.

Motivated by the requirement to 
onsider more 
omplex agent dynami
s, some

resear
hers now study the 
onsensus problem for se
ond-order systems. This makes

the 
onsensus problem more 
omplex and its stability properties depend not only

on the inter
onne
tion topology, but also on the parameters of the lo
al intera
tion

proto
ols. In the work of Tian and Liu (2008), the 
ase of heterogeneous multi-

agent systems is investigated by means of frequen
y-domain analysis. Lin and Jia

(2009) proposed a 
ontrol strategy for 
onsensus over a group of agents with dis
rete-

time se
ond-order dynami
s, operating under a time delayed 
ommuni
ation/sensing

stru
ture.

Another 
hallenge of interest is the topology swit
hing problem 
aused by inter-

mittent and time-varying 
ommuni
ation links or sensing 
apabilities. A swit
hing

network topology may result in instability even if all the topologies produ
e stable

systems (Liberzon, 2003; Liberzon and Morse, 1999). Xie and Wang (2006); Jia et al.

(2011) investigated se
ond order multi-agent systems with swit
hing topology are .

Despite the 
onsiderable number of 
ontributions in se
ond order multi-agent sys-

tems where time delays and swit
hing topology are 
onsidered separately, to the best

of our knowledge very few works have investigated both issues simultaneously.

In this 
hapter we extend the results of Cepeda-Gomez and Olga
 (2011a) whi
h

deals with systems with 
ommuni
ation/sensing delay but stati
 topology, to sys-

tems with delay and slow swit
hing topology. We provide su�
ient 
onditions under

whi
h the 
onsensus state is rea
hed by agents modeled by double integrator dynam-

i
s a�e
ted by a 
ommuni
ation/sensing time delay for any network topology with
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algebrai
 
onne
tivity greater then a given bound. The proposed method is based on

the solution of a set of LMIs and allows to infer stability for slow swit
hing topolo-

gies by ensuring the existen
e of a minimum dwell time. The 
omputation of the

minimum dwell time that ensures 
onsensus will be the obje
t of our future resear
h

in this topi
.

The next se
tions ar organized as follows. In Se
tion 5.2 the problem statement

is formalized. In Se
tion 5.3 su�
ient 
onditions based on LMIs for stability of

se
ond-order multi-agent systems with time delays are given. In Se
tion 5.4 the main

results are presented. It is a method to solve the LMIs required to infer stability

of the networked system in su
h a way that they are independent from the network

topology, thus greatly redu
ing the 
omputational burden. In Se
tion 5.5 simulations

are presented to 
orroborate the theoreti
al results. In Se
tion 5.6 
on
luding remarks

are given and future works are dis
ussed.

5.2 Problem statement

Consider a group of n autonomous agents with double integrator dynami
s

ẍi(t) = ui(t), i = 1 · · ·n.

In the 
ase of mobile robots xi ∈ R 
an be 
onsidered as a s
alar position and ui ∈ R

as the 
ontrol law that governs their a

eleration.

For simpli
ity, the motion of ea
h agent is supposed to be one dimensional, but

sin
e the proto
ol makes use of only relative positions and velo
ities the results that

follow 
an be trivially extended to higher dimensions.

Obje
tive of the 
ontrol a
tion is to a
hieve the 
onsensus state asymptoti
ally,

i.e.,

lim
t→∞

‖xi(t)− xj(t)‖ = 0 ∀ i, j ∈ V.

Ea
h agent i is supposed to ex
hange information with a subset Ni ⊂ V of agents,


alled neighbors. The 
ardinality of Ni is denoted δi whi
h is referred to as the degree
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of agent i.

Let us assume that all the intera
tions between the agents have a 
onstant non-

null delay τ , thus agent i at the generi
 time t knows the position and the velo
ity of

its informers at time t− τ .

Finally, we assume a PD-like lo
al intera
tion 
ontrol logi
 that makes the dy-

nami
s of the generi
 i-th agent of the form:

ẍi(t) = ui(t) = kp

(

∑

j∈Ni

xj(t− τ)

δi
− xi(t)

)

+kd

(

∑

j∈Ni

ẋj(t− τ)

δi
− ẋi(t)

)

(5.1)

where kp, kd ∈ R+
are design parameters.

Cepeda-Gomez and Olga
 (2011a) provided 
onditions on kp, kd, τ ∈ R+
under

whi
h, if the network topology is 
onne
ted, all agents rea
h 
onsensus. Note that

their proto
ol di�ers from all previously proposed s
hemes, e.g., Gao et al. (2009); Luo

et al. (2010); Meng et al. (2010) in the fa
t that the time delay a�e
ts the information


oming from all the other agents, but not the state of the i-th agent itself.

In the next se
tion, we extend the results of Cepeda-Gomez and Olga
 (2011a)

and assume that the set of informers may 
hange during the system evolution, namely

the topology of the network is time-variant.

The following subse
tion re
alls some equivalen
e transformations that will be

useful in the rest of this 
hapter (Cepeda-Gomez and Olga
, 2011a).

Equivalen
e transformations

Let Ad be the n× n adja
en
y matrix the elements of whi
h are aij = aji = 1 if the


orresponding edge (i, j) ∈ E exists and aij = aji = 0 otherwise. Let ∆ be a diagonal

n × n matrix the elements of whi
h are ∆ii = δi the degrees of the 
orresponding

agents.

The network dynami
s of the multi-agent system, where ea
h agent has dynami
s

90



given in equation (5.1), 
an be written in a 
ompa
t form as:

ẋ(t) = Ax(t) +Bx(t− τ) (5.2)

where x(t) = [x1(t), ẋ1(t), · · · , xn(t), ẋn(t)] ∈ R
2n

is the state ve
tor,

A = In ⊗ A′, A′ =





0 1

−kp −kd



 ,

B = ∆−1Ad ⊗B′, B′ =





0 0

kp kd



 .

(5.3)

In (5.3), ⊗ denotes Krone
ker produ
t, Ad is the adja
en
y matrix of graph G and In

is the n-th order identity matrix.

Ad is a real symmetri
 matrix. If G is 
onne
ted then ∆ is invertible and ma-

trix ∆−1Ad, a weighted adja
en
y matrix, is symmetrizable (Sergienko et al., 2003).

Therefore, ∆−1Ad is diagonalizable and has n linearly independent eigenve
tors.

Thus, there exists a matrix T su
h that T−1(∆−1Ad)T = Λ, where Λ is a diago-

nal matrix whose non-zero entries are the eigenvalues of ∆−1Ad,

T−1(∆−1Ad)T = Λ =

















λ1 0 · · · 0

0 λ2 · · · 0
.

.

.

.

.

.

.

.

.

.

.

.

0 0 · · · λn

















. (5.4)

To a
hieve a diagonal realization we 
hoose as state transformation x(t) = (T ⊗
I2)ξ(t) in (5.2), with

ξ(t) =
[

ξ1(t), ξ̇1(t), · · · , ξn(t), ξ̇n(t)
]

.
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From (5.2) and (5.3), the system dynami
s in the new state 
oordinates be
omes:

ξ̇(t) = (T−1 ⊗ I2)
(

In ⊗A′
)

(T ⊗ I2) ξ(t)

+ (T−1 ⊗ I2)
(

∆−1Ad ⊗ B′
)

(T ⊗ I2) ξ(t− τ).
(5.5)

Using the features of the ⊗ operation, we obtain:

ξ̇(t) =
(

In ⊗A′
)

ξ(t) +
(

Λ⊗ B′
)

ξ(t− τ). (5.6)

Sin
e In and Λ are diagonal matri
es, equation (5.6) represents a set of n de
oupled

se
ond-order blo
ks of the form:

ẏi(t) = A′yi(t) + λiB
′yi(t− τ) (5.7)

where

yi(t) = [ξi(t), ξ̇i(t)]
T , i = 1, . . . , n.

Now, from basi
 integral properties, it holds:

∫ 0

−τ

ξ̇i(s+ t)ds = ξi(t)− ξi(t− τ)

or equivalently

ξi(t− τ) = ξi(t)−
∫ 0

−τ

ξ̇i(s+ t)ds. (5.8)

By substituting (5.8) in (5.7) we obtain:

ẏi(t) = Āiyi(t) + B̄iyi(t− τ) + C̄i

∫ 0

−τ

yi(s+ t)ds (5.9)
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where

Āi =





0 1

−kp(1− λi) −kd



 ,

B̄i =





0 0

0 kdλi



 , C̄i =





0 0

0 −kpλi



 .

(5.10)

Ea
h time fun
tion yi(t) is 
alled a mode of the system.

Using Gershgorin 
ir
le theorem on matrix ∆−1Ad it is easy to show that λi ∈
[−1, 1] and λi = 1 always exists be
ause the matrix is row sto
hasti
. Hen
eforth,

without loosing generality, in the following we 
onsider y1(t) as the mode 
orrespond-

ing to λi = 1.

Swit
hing dynami
s

We assume that the topology of the network is time-variant, 
onsequently the ad-

ja
en
y matrix and ∆ 
hange with time. As a 
onsequen
e, equation (5.2) 
an be

rewritten as:

ẋ(t) = Aσx(t) +Bσx(t− τ) (5.11)

where σ : R≥0 → Ω is the swit
hing signal and Ω = 1, · · · , N is the index set of all

possible topologies.

In the following the subs
ript σ is used everywhere to make expli
it the dependen
e

on σ. As an example the adja
en
y matrix be
omes a fun
tion of σ and is denoted

as Ad,σ. Analogously, the diagonal matrix ∆ be
omes ∆σ, matri
es Āi, B̄i, and C̄i

de�ned in (5.10) be
ome Āσ,i, B̄σ,i, and C̄σ,i, respe
tively. Finally, the i-th mode yi(t)

in equation (5.7) also be
omes a fun
tion of σ and is denoted yσ,i(t).

5.3 Stability analysis

In this se
tion we prove the main result of this 
hapter. In parti
ular, three are

the main steps towards the derivation of 
onditions on kp, kd and τ that guarantee
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onsensus to a 
ommon position in a �nite point of the state spa
e, under arbitrary

swit
hings, provided that swit
hings o

ur su�
iently slowly.

• Firstly, we prove that under appropriate 
onditions on kp, kd and τ , the mode


orresponding to the eigenvalue λ1 = 1, namely, y1(t) = yσ,1(t), 
ommon to all

topologies, regardless of the swit
hing signal σ, is a non os
illating stable mode.

• Se
ondly, we prove that under appropriate 
onditions on kp, kd and τ , all modes

yσ,i(t), for i = 2, . . . , n, are asymptoti
ally stable for any network topology with

algebrai
 
onne
tivity grater than a given bound. This implies that the stability

is also guaranteed for su�
iently slow swit
hing topologies. However, as already

pointed out in the Introdu
tion, the 
omputation of the minimum dwell time

that guarantees this, is still an open issue.

• Finally, we prove that if the 
onditions of the two items above are satis�ed, all

agents rea
h 
onsensus both in terms of position and velo
ity.

The above three points are dealt in the following three subse
tions separately.

Stability of the 
ommon mode

In this subse
tion we �rstly re
all some results for the stability analysis of time delayed

linear time invariant (LTI) systems that have been �rstly proved by Olga
 and Sipahi

(2002), and later used by Cepeda-Gomez and Olga
 (2011a, 2012) in the framework

of multi agent systems.

Consider a generi
 system whose dynami
s is expressed by equation (5.2). Its


hara
teristi
 equation is equal to:

det(sIn − A− Be−τs) = 0 (5.12)

or

n
∏

i=1

(

s2 + (kds+ kp)(1− λie
−τs)

)

= 0, (5.13)
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or even equivalently

s2 + kds+ kp − (kds+ kp)λie
−τs = 0 (5.14)

for i = 1, . . . , n. The above trans
endental equations obviously have an in�nite

number of roots.

Olga
 and Sipahi (2002) proved that the number of imaginary 
hara
teristi
 roots

are �nite. Let Ωc = {ωc1, ωc2, . . . , ωcm} be the set of 
rossing frequen
ies 
orresponding
to the roots on the imaginary axis. The number of su
h frequen
ies depends on

matri
es A and B. Moreover to ea
h of su
h frequen
ies there 
orrespond in�nitely

many values of τ that are periodi
ally spa
ed. We denote Υl = {τl0, τl1, . . . , τl∞} the

in�nite set of τ 's asso
iated with ωcl, l = 1, . . . , m.

A key parameter in this stability analysis is the root tenden
y de�ned as:

RTl = sign
(

Re
(ds

dτ

))

s=jωcl

where sign denotes the sign operator and Re the real part.

It represents the dire
tion of transition of the roots at ωcl as τ in
reases from

τlk − ε to τlk + ε, 0 < ε << 1, for any τlk ∈ Υl. In parti
ular, if RTl = −1, the root

jωcl moves to the left half plane, stabilizing the system, whereas if RTl = 1, the root

moves to the right half plane, 
ausing instability. Note that, sin
e Olga
 and Sipahi

(2002) proved that for ea
h 
rossing frequen
y ωcl, RTl is invariant with respe
t to

the element in the set Υl, Olga
 and Sipahi (2002) simply propose to analyze the

smallest value of τ for ea
h 
rossing frequen
y.

Now, the following equation provides an easy pro
edure to 
ompute the number

of unstable roots as τ varies from 0 to ∞, for a given 
ouple of kp and kd:

NU(τ) = NU(0) +
m
∑

l=1

Γ
(τ − τl

∆τl

)

U(τ, τl0)RTl (5.15)

where NU(τ) denotes the number of unstable roots 
orresponding to a generi
 delay

τ , NU(0) is equal to the number of unstable roots for τ = 0, τl0 indi
ates the smallest
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positive delay related to ωl, the fun
tion Γ(x) gives the smallest integer greater than

or equal to x, ∆τl =
2π

ωcl

, and U(τ, τl0) is the step fun
tion in τ with the step taking

pla
e at τl0:

U(τ, τl0) =



















0 0 < τ < τl0

1 τ > τl0 and ωcl = 0

2 τ > τl0 and ωcl 6= 0

Now, the following 
onsiderations and results 
an be a
hieved.

• Sin
e we are interested in studying the stability of the mode 
ommon to all

topologies, namely the one 
orresponding to λi = 1, we only look at the 
rossing

frequen
ies of the trans
endental equation (5.14) for i = 1, i.e., ω1 = 0 and

ω2 =
√

2kp. For more details we address to Olga
 and Sipahi (2002). Basi
ally

we simply need to impose s = jω in equation (5.14) and impose that both sides

of the resulting equation in ω have the same magnitude and phase.

• The value of ω1 
orresponds to a root in the origin that prevents asymptoti
al

stability. In parti
ular it generates a non-os
illating mode that stabilizes in a

point di�erent from the origin. The other value of the 
rossing frequen
y may

either lead to stability or instability, depending on the value of τ . In parti
ular,

as explained above, the values of τ that lead to stability 
an be 
omputed

using equation (5.15) 
onsidering that the number of unstable roots at τ = 0

is NU(0) = 1. Indeed, for τ = 0, the system has two roots in the origin: one is

stable at the limit and the other one is unstable.

• It is easy to show that RT1 = −1 for in�nitesimally small values of τ , while it

is RT2 = 1 relatively to ω2 =
√

2kp. This means that mode yσ,1(t) is stable,

but not asymptoti
ally stable, for τ ∈ (0 τ20] where τ20 is the smallest positive

delay 
orresponding to ω2 that is equal to

τ20 =
1

ω2
arctan

( −kdω
3
2

k2
p + ω2

2(k
2
d + kp)

)

(5.16)

as proved by Cepeda-Gomez and Olga
 (2011a). For all the other values of τ
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the mode is unstable.

Note that in the following yσ,1(t) is more simply denoted as y1(t) to emphasize

that it does not depend on the swit
hing signal σ(t).

Asymptoti
 stability of the remaining modes

In this se
tion we introdu
e a 
riterion based on LMIs that enables us to prove the

asymptoti
al stability of all modes yσ,i(t) for all i = 2, . . . , n and any �xed value of

σ ∈ Ω to whi
h it 
orresponds a network topology with a su�
iently large algebrai



onne
tivity.

Theorem 5.1 Consider the multi-agent system (5.11) 
onsisting of n agents with a

time-invariant time delay τ > 0. Consider the n − 1 modes yσ,i(t) for i = 2, . . . , n

obtained via the equivalen
e transformation x(t) = (Tσ ⊗ I2)ξ(t), and relative to a

given σ ∈ Ω. If there exist three positive de�nite matri
es P , Q and S of appropriate

dimensions su
h that the following LMI

Mσ,i =












1

τ
(PĀσ,i + ĀT

σ,iP +Q) + S PB̄σ,i PC̄σ,i

B̄T
σ,iP −1

τ
Q 0

C̄T
σ,iP 0 −S













< 0

(5.17)

holds for any σ ∈ Ω, then all modes yσ,i(t) with i = 2, . . . , n are asymptoti
ally stable

for any topology Ω.

Proof Let us denote as yσ,i(t) the generi
 i-th mode of the system obtained via

the equivalen
e transformation x(t) = (Tσ ⊗ I2)ξ(t) assuming that σ(t) = σ for any

t ≥ 0.
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Consider the following 
andidate Lyapunov-Krasovskii fun
tional:

Vσ,i(t) = yTσ,i(t)Pyσ,i(t) +

∫ 0

−τ

yTσ,i(s+ t)Qyσ,i(s+ t)ds

+

∫ 0

−τ

∫ 0

θ

yTσ,i(r + t)Syσ,i(r + t)drdθ.

Derivation with respe
t to the time gives

V̇σ,i(t) = yTσ,i(t)(PĀσ,i + ĀT
σ,iP +Q +

∫ 0

τ

Sdθ)yσ,i(t)

+2yTσ,i(t)PB̄σ,iyσ,i(t− τ) + 2yTσ,i(t)PC̄σ,i

∫ 0

−τ

yTσ,i(s+ t)

−yTσ,i(t− τ)Qyσ,i(t− τ)−
∫ 0

−τ

yTσ,i(r + t)Syσ,i(r + t)dr

=

∫ 0

−τ

zTσ,i(t)Mσ,izσ,i(t)dθ

where zσ,i(t) = [yσ,i(t), yσ,i(t− τ), yσ,i(t + θ)]. Obviously if the 
ondition in (5.17)

holds, then all modes yσ,i(t) for i = 2, . . . , n are asymptoti
ally stable regardless of

the value of σ.

In simple words Vσ,i(t) is a Lyapunov fun
tion for all i = 2, . . . , n for any network

topology Ω in whi
h the LMI in eq. (5.17) holds. �

The above LMI has been introdu
ed by Ri
hard (2003) in a more general form.

Clearly, the requirement that matri
es P , Q and S exist for any network topology in

Ω is a very 
omputational demanding task. The dependen
e on the network topology

in eq. (5.17) 
onsists in a di�erent set of eigenvalues for every topology. In Se
tion 5.4

we show how to extend this approa
h to avoid the veri�
ation of the LMI in eq. (5.17)

for any network topology in Ω.

Obviously, the asymptoti
 stability of the above modes 
orresponding to a stati


topology does not imply in general the asymptoti
ally stability of the swit
hed system,

in parti
ular under the assumption of arbitrary swit
hing. However, for sure there

exists a minimum dwell time that ensures this (Liberzon, 2003). We 
onje
ture that

su
h a dwell time may be 
omputed appropriately de�ning a 
ommon Lyapunov

fun
tion starting from the 
onsidered Lyapunov-Krasovskii fun
tion.
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Consensus agreement

Theorem 5.2 Consider the multi-agent system (5.11) 
onsisting of n agents with a

time-invariant time delay τ > 0 where σ ∈ Ω is 
onstant. Assume that all modes

yσ,i(t) for i = 2, . . . , n are asymptoti
ally stable and that the mode y1(t) 
orresponding

to the eigenvalue λ1, 
ommon to all topologies in Ω by 
onstru
tion, is stable. Then

the 
onsensus state is a
hieved asymptoti
ally

lim
t→∞

‖xi(t)− xj(t)‖ = 0 ∀i, j ∈ V.

Proof The asymptoti
 stability assumption for all modes i = 2, . . . , n implies that

lim
t→∞

yσ,i(t) = 0, i = 2, . . . , n.

Moreover, being by de�nition yσ,i(t) = [ξσ,i(t), ξ̇σ,i(t)], it is

lim
t→∞

ξi(t) = 0, i = 2, . . . , n

and

lim
t→∞

ξ̇i(t) = 0, i = 2, . . . , n.

Now, being by de�nition xσ(t) = (Tσ ⊗ I2)ξσ(t), it holds

[xσ,1(t) . . . , xσ,n(t)] = Tσ[ξσ,1(t), . . . , ξσ,n(t)]

therefore

limt→∞[xσ,1(t) . . . , xσ,n(t)] = Tσ[Lξ1 , 0, . . . , 0]

= Lξ1T [1, 0, . . . , 0] = Lξ1Te1
(5.18)

where

Lξ1 = lim
t→∞

ξσ,1(t) (5.19)

and e1 = [1, 0, . . . , 0]. Note that we removed the dependen
e on σ in Lξ1 sin
e it

is related to the mode 
ommon to all topologies asso
iated with λ1 = 1. Moreover,
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the limit in (5.19) exists and is �nite sin
e by assumption the �rst mode is a non

os
illating stable mode.

The term Tσe1 returns the �rst 
olumn of Tσ or equivalently the eigenve
tor as-

so
iated to λi = 1 that is equal to [1, . . . , 1]. This means that equation (5.18) 
an be

rewritten as

lim
t→∞

[xσ,1(t) . . . , xσ,n(t)] = Lξ1 [1, . . . , 1], (5.20)

i.e., all xσ,i(t), for i = 1, . . . , n, rea
h the same value equal to Lξ1 , thus proving the

statement.

�

From the above theorem the next result follows.

Corollary 5.1 Consider the multi-agent system (5.11) 
onsisting of n agents with

a time-invariant 
ommuni
ation delay τ ∈ (0, τ20] where τ20 is de�ned as in equa-

tion (5.16). Assume that all 
onditions of Theorem 5.1 are satis�ed. Then, all the

agents rea
h 
onsensus. �

5.4 LMI 
omputation

In this se
tion we provide a method to solve the LMI introdu
ed in Theorem 5.1

whi
h is independent from the network topology. To this aim, let us �rst observe

that Mσ,i 
an be rewritten as

Mσ,i = M̃σ,i + M̂σ,i

where

M̃σ,i =











1
τ
(PĀσ,i + ĀT

σ,iP +Q) + S 0 0

0 − 1
τ
Q 0

0 0 −S











(5.21)
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and

M̂σ,i =











0 PB̄σ,i PC̄σ,i

B̄T
σ,iP 0 0

C̄T
σ,iP 0 0











. (5.22)

Obviously, Mσ,i is negative de�nite if and only if M̃σ,i + M̂σ,i is negative de�nite.

Now, substituting B̄σ,i and C̄σ,i in (5.22), we 
an rewrite (5.22) as

M̂σ,i =




























0 0 0 kdp12 0 −kpp12

0 0 0 kdp22 0 −kpp22

0 0 0 0 0 0

kdp12 kdp22 0 0 0 0

0 0 0 0 0 0

−kpp12 −kpp22 0 0 0 0





























λσ,i

(5.23)

where pij is the entry of P 
orresponding to row i and 
olumn j. Sin
e M̂σ,i is

symmetri
, ‖M̂σ,i‖2 = ρ(M̂σ,i), where ρ(M̂σ,i) is its spe
tral radius. The eigenvalues

η of matrix M̂σ,i are the solutions of equation

det(M̂σ,i − ηI2) = 0.
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Sin
e λσ,i is a multiplying s
alar, we 
an negle
t it and simply solve the following

equation with respe
t to η:

det





























−η 0 0 kdp12 0 −kpp12

0 −η 0 kdp22 0 −kpp22

0 0 −η 0 0 0

kdp12 kdp22 0 −η 0 0

0 0 0 0 −η 0

−kpp12 −kdp22 0 0 0 −η





























= 0.

This 
an be solved analyti
ally by exploiting the Lapla
e rule to 
ompute the de-

terminant. In parti
ular there are 4 null eigenvalues plus the following two non null

eigenvalues

η1,2 = ±λσ,i

√

(k2
d + k2

p)(p
2
12 + p222).

Therefore,

‖M̂σ,i‖2 = |λσ,i|
√

(k2
d + k2

p)(p
2
12 + p222).

Now, let us observe that,

M̃σ,i + M̂σ,i ≤ M̃σ,i + ‖M̂σ,i‖2I6 (5.24)

thus, if we prove that

M̃σ,i + ‖M̂σ,i‖2I6 < 0,

we 
an be sure that M̃σ,i + M̂σ,i < 0 as well, or equivalently, Mσ,i < 0.

Now, equation (5.24) 
an be rewritten as



















1
τ
(PĀσ,i + ĀT

σ,iP +Q) + S + ‖M̂σ,i‖2I2 < 0

− 1
τ
Q+ ‖M̂σ,i‖2I2 < 0

−S + ‖M̂σ,i‖2I2 < 0

(5.25)
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where the last two equations are always veri�ed if







τ‖M̂σ,i‖2I2 < Q

‖M̂σ,i‖2I2 < S
(5.26)

therefore, as a parti
ular 
ase, they are satis�ed by

Q = τ
(

‖M̂σ,i‖2 + ε
)

I2 (5.27)

and

S =
(

‖M̂σ,i‖2 + ε
)

I2 (5.28)

for any ε > 0.

Let Q = τ |λσ,i|αI2 and S = |λσ,i|αI2 with α >
√

(k2
d + k2

p)(p
2
12 + p222). We need to

solve with respe
t to P the �rst inequality in (5.25), that be
omes equal to

PĀσ,i + ĀT
σ,iP + 3τ |λσ,i|αI2 < 0. (5.29)

Our obje
tive is to prove that inequality in equation (5.29) holds for any λσ,i ∈
[

−1, λ̄2

]

. Sin
e matrix PĀσ,i + ĀT
σ,iP + |λσ,i| (3τα) I2 is symmetri
, if its eigenvalues

are negative then it is a negative de�nite matrix and equation (5.29) holds.

We now 
hoose a set of parameters of interest kp, kd, τ, λ̄2. We solve the inequality

in equation (5.17) for this set to determine 
andidate matrix P . We 
hoose a value

α >
√

(k2
d + k2

p)(p
2
12 + p222).

To verify that the eigenvalues of matrix PĀσ,i + ĀT
σ,iP + |λσ,i|3τα are negative we


ompute its determinant and tra
e and verify that they are respe
tively positive and

negative.

Its tra
e 
orresponds to

T = −2p12kp(1− λσ,i) + 6|λσ,i|τα + 2p12 − 2p22kd (5.30)
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Figure 5-1: Tra
e in equation (5.30) versus λσ,i for di�erent values of τ

and its determinant 
orresponds to

∆ =

λ2
σ,i (3τα

2 − p222kp
2 + 2p12kp3τα)

+λσ,i

(

2p222k
2
p − 2p12kpp22kd + 4p212kp − 2p11p22kp

)

+|λσ,i| (−2p12kp3τα− 4p212kp + 6ταp12 − 6ταp22kd)

+2p12kpp22kd − p211 + 2p12kdp11 + 2p11p22kp

−p212kd
2 − p222k

2
p.

(5.31)

The above quantities 
an be evaluated numeri
ally for λσ,i ∈ [−1, 1]. Thus, for

any value of τ 
onstraints on the spe
trum for any network topology 
an be given.

For a su�
iently small τ a 
onstraint involving only the algebrai
 
onne
tivity λ̄2


an be 
omputed so that the proposed 
onsensus proto
ol is stable for all network

topologies with algebrai
 
onne
tivity smaller than λ̄2. As an example in Figure 5-1

and Figure 5-2 the determinant and tra
e given in equation (5.30) and (5.31) are


omputed versus λσ,i ∈ [−1, 1] for di�erent values of τ . Simulations are performed

with parameters kp = 10, kd = 50 and a 
andidate P = [35 0.65; 0.65 0.15]. Consider

as an example the simulation with τ = 0.1: the tra
e is negative for all λσ,i ∈ [−1, 0.79]

while the determinant is positive for all λσ,i ∈ [−1, 0.54]. This implies that the

proposed 
onsensus proto
ol is stable for any network topology with λ̄2 = 0.54. Thus,

there exists a minimum dwell time su
h that 
onsensus is a
hieved even with slow

arbitrary swit
hings between any topology satisfying su
h 
onstraint.
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Figure 5-2: Determinant in equation (5.31) versus λσ,i for di�erent values of τ

5.5 Simulations

In this se
tion we present a simulation of the 
onsensus proto
ol in (5.1). We 
onsider

a network of six agents with 
ontrol parameters kp = 10, kd = 50 and a time delay

τ = 0.1. As shown in Se
tion 5.4 these parameters guarantee stability of the 
onsen-

sus proto
ol for any topology with se
ond largest eigenvalue (algebrai
 
onne
tivity)

smaller than λ̄2 ≤ 0.54. Furthermore, the 
hosen value of τ guarantees the stability

of the 
ommon mode as explained in Se
tion 5.3, in fa
t to the above parameters it


orresponds a value τ20 = 0.6827 as in equation (5.16). In Figure 5-3 we 
onsider

a network that swit
hes randomly among 6 randomly generated 
onne
ted network

topologies whi
h satisfy the bound on the algebrai
 
onne
tivity. In this 
ase the

simulation shows that with a dwell time of one se
ond the system remains stable.

5.6 Con
lusions

In this 
hapter we investigated the 
onsensus problem for networks of agents with

double integrator dynami
s a�e
ted by time-delay in their 
oupling. We provided

a stability result based on the Lyapunov-Krasovskii fun
tional method and a nu-

meri
al pro
edure based on an LMI 
ondition whi
h depends only on the algebrai



onne
tivity of the 
onsidered network topologies, thus redu
ing greatly the 
ompu-

tational 
omplexity of the pro
edure. Obviously, this result implies the existen
e of

a minimum dwell time su
h that the proposed 
onsensus proto
ol is stable for slow
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Figure 5-3: Simulation of the 
onsensus proto
ol for a swit
hing network topology

swit
hings between network topologies with su�
ient algebrai
 
onne
tivity. Future

work will involve a
tually 
omputing this dwell time by adopting a multiple Lyapunov

fun
tion method and evaluating the worst 
ase 
onvergen
e rate. Furthermore we will

evaluate novel 
onsensus proto
ols that 
onsider only delayed relative measurements

instead of delayed absolute values of the neighbors' state variables.
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6

Average 
onsensus in arbitrary

dire
ted networks with time-delay

�The noblest pleasure is the joy of understanding�

� Leonardo da Vin
i

In this 
hapter, based on the results of Zareh et al. (2013a), we study the stability

property of a 
onsensus on the average algorithm in arbitrary dire
ted graphs with re-

spe
t to 
ommuni
ation/sensing time-delays. The proposed algorithm adds a storage

variable to the agents' states so that the information about the average of the states

is preserved despite the algorithm iterations are performed in an arbitrary strongly


onne
ted dire
ted graph. We prove that for any network topology and 
hoi
e of de-

sign parameters the 
onsensus on the average algorithm is stable for su�
iently small

delays. We provide simulations and numeri
al results to estimate the maximum delay

allowed by an arbitrary unbalan
ed dire
ted network topology.

6.1 Introdu
tion

The 
onsensus problem in multi-agent systems 
onsists in the design of a 
oupling

law between dynami
al systems (agents) su
h that the state of ea
h one 
onverges to

the same value in absen
e of external referen
e signals. Multi-agent systems are 
on-
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sidered to be 
omplex systems sin
e the pattern of inter
onne
tions between agents

is often arbitrary and unknown at the 
ontroller design stage. This 
learly makes


hallenging the design of intera
tion rules between agents that exploit only lo
al in-

formation. For these reasons agents modeled by simple single integrators or se
ond

order systems are usually investigated. One of the major works from whi
h we take

inspiration is the one by Olfati-Saber and Murray (2004) where the 
onsensus problem

for networks of �rst order agents for swit
hing topologies or time-delays is investi-

gated. In this 
hapter, we prove that simple averaging lo
al intera
tion rules 
an

a
hieve 
onsensus on the average, i.e., the state of ea
h agent 
onverges to the aver-

age of the initial states only if the dire
ted graph that en
odes the network topology

is strongly 
onne
ted and balan
ed (ea
h agent re
eives and sends information to the

same number of agents). They also explored the 
onsensus problem in the 
ase of

time-delays for undire
ted network topologies.

Sin
e then several authors have explored ways to design 
onsensus on the average

algorithms that work on general dire
ted graphs not ne
essarily balan
ed. In the

work of Fran
es
helli et al. (2008, 2009) the idea to use an augment state spa
e to add

robustness to a networked system represented by an undire
ted graph that exe
utes

a 
onsensus algorithm was proposed. The proposed algorithms aim at re
overing the


orre
t network average on
e mali
ious or faulty agents have been removed from the

network.

Fran
es
helli et al. (2009, 2011) presented a dis
rete time 
onsensus on the average

algorithm for arbitrary strongly 
onne
ted dire
ted graph based on asyn
hronous state

updates , based on the idea to augment the state of ea
h agent with an additional

variable to preserve the information about the initial average of the states in the

network. Simulations were used to 
hara
terize the 
onvergen
e properties and the

performan
e of the algorithm.

Cai and Ishii (2012) 
hara
terized a dis
rete time 
onsensus on the average algo-

rithm based on additional state variables was in terms of a tuning parameter. It was

proven that there always exist su�
iently small values of su
h tuning parameter so

that the proposed algorithm 
onverges to the average of the initial state in arbitrary
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strongly 
onne
ted dire
ted graphs.

Dominguez-Gar
ia et al. (2012) addressed the 
ontrol of distributed energy re-

sour
es by developing a 
onsensus on the average proto
ol based on the so 
alled

ratio 
onsensus. Their algorithm is based on two independent distributed dynami-


al systems, one with arbitrary initial 
onditions and one with predetermined initial

values. The authors 
onsider time-varying network topologies des
ribed by dire
ted

graphs and show that for ea
h agent the ratio of the output of these two dynami
al

systems 
onverges to the average of the initial states.

Chen et al. (2010b, 2011) proposed the Corre
tive Consensus algorithm. It 
on-

sists in a lo
al state update rule where ea
h agent keeps tra
k of several additional

variables 
orresponding to the number of its neighbors whi
h are used to periodi-


ally steer the average of the network state to the 
orre
t value 
orresponding to the

average of the states at the initial instant of time.

Aysal et al. (2009) proposed the broad
ast gossip algorithm . This algorithm is

based upon dis
rete time and asyn
hronous state updates with dire
ted information

�ow, it makes ea
h agent agree upon a random variable whose expe
tation is the

average of the initial states.

Most of the literature on 
onsensus on the average in dire
ted graphs deals with

methods and te
hniques to a
hieve 
onsensus on the average in networks of agents

des
ribed by single integrators. On the other hand the literature on 
onsensus with

time-delays in dire
ted graphs usually deals with the problem of making the state of

ea
h agent 
onverge to the same value whi
h 
an be time-varying and not related to

the initial state of the network in an expli
it way.

Yu et al. (2010) 
hara
terized ne
essary and su�
ient 
onditions for 
onvergen
e

of se
ond-order multi-agent systems with velo
ity feedba
k are given and the e�e
t

of time-delays in dire
ted graphs while the 
onsensus value is arbitrary.

In the work of Sun and Wang (2009) several instan
es of 
onsensus problems with

time-delays are investigated. In parti
ular the 
ases of swit
hing dire
ted topologies,

pa
ket data dropouts, and �nite time 
onsensus are all 
hara
terized separately by


onsidering the e�e
t of time-delays for the a
hievement of 
onsensus on an arbitrary
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value.

In this 
hapter, we propose a 
ontinuous time 
onsensus algorithm inspired from

the dis
rete time algorithms of Fran
es
helli et al. (2009, 2011); Cai and Ishii (2012).

We 
onsider a des
ription in 
ontinuous time to des
ribe a network of n vehi
les with

a lo
al intera
tion rule that 
ontrols the instantaneous speed of ea
h vehi
le. Then

we extend the proof method of Cai and Ishii (2012) to the 
ase at hand and study

the 
onvergen
e properties of the resulting system 
onsidering a time-delay in the

state update of ea
h agent. We �nally provide simulation results to 
orroborate the

theoreti
al analysis.

The main 
ontributions of this 
hapter 
an be summarized in the following three

items.

• We provide a 
ontinuous time version of a 
onsensus on the average algo-

rithm for arbitrary dire
ted strongly 
onne
ted graphs derived from results of

Fran
es
helli et al. (2009, 2011) and Cai and Ishii (2012).

• We provide a 
hara
terization of the 
onvergen
e properties of the algorithm

with respe
t to time-delays.

• We present simulations to 
hara
terize numeri
ally the performan
e of the pro-

posed proto
ol with respe
t to di�erent time-delays and tuning parameters.

The next se
tions are stru
tured as follows. In Se
tion 6.2 we introdu
e a 
on-

sensus on the average proto
ol and the 
orresponding model 
onsidering time-delays.

In Se
tion 6.3 we 
hara
terize the 
onvergen
e properties of the proposed algorithm

with respe
t to time-delays. In Se
tion 6.4 we 
orroborate the theoreti
al analysis

with a numeri
al example and simulations. Con
luding remarks are �nally given in

Se
tion 6.5.

6.2 Consensus on the average proto
ol

We now introdu
e a 
onsensus proto
ol stated in 
ontinuous time that takes inspira-

tion from proto
ols addressed by Fran
es
helli et al. (2011) and Cai and Ishii (2011b)
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in a dis
rete time setting. In the proto
ol under 
onsideration ea
h agent is a single

integrator with an additional state variable 
alled surplus or storage. This additional

variable is used to preserve information about the average value of the agents' states

at the initial instant of time, that is a time-varying quantity in dire
ted graphs that

are not balan
ed, i.e., graphs in whi
h the in-degree and out-degree of ea
h node are

not ne
essarily equal.

The lo
al state update rule implemented by ea
h node is the following:































ẋi(t) = −∑j∈Ni,in
(xi(t)− xj(t)) + εzi(t),

żi(t) =
∑

j∈Ni,in
(xi(t)− xj(t))

−∑j∈Ni,in
(zi(t)− zj(t))

− (ε− δi,in + δi,out) zi(t),

(6.1)

where xi, zi ∈ R are the states of agent i and ε ∈ R
+
is a tuning parameter of

the algorithm. It is 
lear that to implement proto
ol (6.1) ea
h agent requires only

relative state information with respe
t to variable xi, absolute state information with

respe
t to variable zi, and knowledge of its own out-degree.

The network dynami
s that emerges when ea
h agent implements the lo
al state

update rule in eq. (6.1) 
an be formulated in matrix form as follows:





ẋ(t)

ż(t)



 =





−Lin εI

Lin −Lout − εI









x(t)

z(t)





(6.2)

where x = [x1, x2, . . . , xn] and z = [z1, z2, . . . , zn] are a 
ompa
t representation of

the agents' state.

The proposed lo
al intera
tion s
heme 
an be interpreted as a network of n vehi
les

ea
h modeled as a 
ontinuous time single integrator ẋ(t)i = ui(t) where ea
h xi(t)

represents a position in spa
e and variables zi(t) are software variables whi
h enable

the intera
tion s
heme to 
onverge to the initial average position.

In this 
hapter, we study proto
ol (6.2) under the assumption that 
ommuni
a-

tion/sensing delays a�e
t the multi-agent system. The network dynami
s are thus
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des
ribed by





ẋ(t)

ż(t)



 = M(ε)





x(t− τ)

z(t− τ)





(6.3)

with x(θ) = x0, z(θ) = z0, −τ ≤ θ ≤ 0, where

M(ε) =





−Lin εI

Lin −Lout − εI





(6.4)

and τ ∈ R+
denotes a time-delay. We study system (6.3) in the approximation that

the delay for all the agent is the same.

6.3 Convergen
e properties

In this se
tion we study the 
onvergen
e properties of system (6.3).

We preliminary observe that by 
onstru
tion matrix M(ε) satis�es

[

1
T
n 1

T
n

]

M(ε) =
[

0
T
n 0

T
n

]

,

for any ε ∈ R. Therefore, sin
e

1
T
n ẋ(t) + 1

T
n ż(t) = 0, ∀t ≥ 0

it holds

1
T
nx(t) + 1

T
nz(t) = 1

T
nx(0) + 1

T
nz(0), ∀t ≥ 0. (6.5)

Now 
onsider matrix M(ε) for ε = 0, namely

M(0) =





−Lin 0

Lin −Lout



 . (6.6)

It is 
lear that sin
e matrix M(0) is a 2n × 2n blo
k lower triangular matrix it has

2n eigenvalues equal to the eigenvalues of matri
es −Lin and −Lout. If graph G is
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strongly 
onne
ted, then M(0) has one null eigenvalue with algebrai
 multipli
ity 2

and geometri
 multipli
ity 2, all other eigenvalues have stri
tly negative real part.

In the following we denote as λi(0), i = 1, . . . , 2n, the eigenvalues of matrix M(0)

and assume that

0 = λ1(0) = λ2(0) > ℜ(λ3)(0) ≥ . . . ≥ ℜ(λ2n(0)).

Eigenvalues of matrix M(ε) are denoted as λi(ε), i = 1, . . . , 2n, and ordered as

ℜ(λ1)(ε) ≥ . . . ≥ ℜ(λ2n(ε)).

We now prove some properties of the eigenvalues of matrix M(ε) for small values

of ε > 0, that 
an be derived from the results of Cai and Ishii (2011b).

Proposition 6.1 Let matrix M(ε) be de�ned as in eq. (6.4). If G is strongly 
on-

ne
ted, there exists ε̄ ∈ R+
su
h that if ε ∈ (0, ε̄] then M(ε) has one null eigenvalue

and 2n− 1 eigenvalues with stri
tly negative real part.

Proof: Matrix M(ε) depends smoothly on parameter ε ≥ 0, therefore if eigenvalues

λ3(0), . . . , λ2n(0) of M(0) have stri
tly negative real part, there exists ε̄ > 0 su
h that

if ε ∈ [0, ε̄] then for i = 3, . . . , 2n, it holds ℜ(λi(ε)) < 0. Therefore, a

ording to Cai

and Ishii (2011b), we only have to show that for ε su�
iently small it is λ1(ε) = 0

and ℜ(λ2(ε)) < 0.

Sin
e the null eigenvalue of M(0) is semi-simple

1

and Rank(M(0)) = 2n − 2

it has two linearly independent right eigenve
tors r1, r2 and left eigenve
tors l1, l2


orresponding to the null eigenvalue. It holds

M ′ =
dM(ε)

dε
=





0 I

0 −I



 . (6.7)

Then, as shown by Cai and Ishii (2011b), dλ1(ε)/dε|ε=0 and dλ2(ε)/dε|ε=0 are the

eigenvalues of the following matrix

1

An eigenvalue is semi-simple if its algebrai
 and geometri
 multipli
ity are equal.
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



lT1 M
′r1 lT1 M

′r2

lT2 M
′r1 lT2 M

′r2



 . (6.8)

If graph G is strongly 
onne
ted then l1 = α112n and r1 = α2

[

1
T
n , 0

T
n

]

where α1, α2 ∈ R


an be 
hosen su
h that lT1 r1 = 1. By substituting l1 and r1 in (6.8) it 
an be shown

by simple 
omputations that

dλ1(ε)/dε|ε=0 = 0, dλ2(ε)/dε|ε=0 = lT2 M
′r2.

The �rst equality enables us to 
on
lude that for su�
iently small values of ε, it

is λ1(ε) = 0.

Now, let νr,out be the right eigenve
tor 
orresponding to the null eigenvalue of

matrix Lout and νl,in be the left eigenve
tor 
orresponding to the null eigenvalue of

matrix Lin. It is possible to verify by substitution that we 
an 
hoose r2 =
[

0
T
n , ν

T
r,out

]

and l2 =
[

νT
l,in, 0

T
n

]

. Therefore,

dλ2(ε)/dε|ε=0 = −νT
l,inνr,out.

Sin
e Lin and Lout are Metzler matri
es (Berman and Plemmons (1979)), the

eigenve
tors νl,in and νr,out 
orresponding to the null eigenvalue have only positive

elements. Therefore

dλ2(ε)/dε|ε=0 = −νT
l,inνr,out < 0

and λ2(ε) < 0 for ε > 0 su�
iently small, thus proving the statement. �

We are now ready to study the stability of system (6.3) with respe
t to time-delays.

Let Y (s) =
[

X(s)T Z(s)T
]T

denote the Lapla
e transform of y(t) =
[

x(t)T z(t)T
]T
.

Then the Lapla
e transform of system (6.3) is

Y (s) =
(

sI −M(ε)e−sτ
)−1

Y (0)

and the stability property of system (6.3) depends upon the roots of the quasi-
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polynomial

det
(

sI −M(ε)e−sτ
)

. (6.9)

By simple manipulations it holds

det
(

sI −M(ε)e−sτ
)

= e−2nsτdet (sesτI −M(ε)) (6.10)

thus the roots of (6.9) 
orrespond to the solutions of

sesτ = λi(ε), i = 1, . . . , 2n. (6.11)

Theorem 6.2 Let matrix M(ε) be de�ned as in eq. (6.4) and ε ∈ (0, ε̄] as in Propo-

sition 6.1. If G is strongly 
onne
ted and

τ ≤ τc(ε) = min
i=2,...,2n

θi(ε)− π
2

Ri(ε)
, (6.12)

where Ri(ε) = |λi(ε)| and θi(ε) = ∠λi(ε) with λi(ε) the i-th eigenvalue of M(ε), then

the roots of

det
(

sI −M(ε)e−sτ
)

(6.13)

have all stri
tly negative real part ex
ept one in s = 0.

Proof: By Proposition 6.1 sin
e G is strongly 
onne
ted by assumption, there exists

ε̄ su
h that for ε ∈ (0, ε̄], M(ε) has a single null eigenvalue and 2n − 1 eigenvalues

with stri
tly negative real part. Sin
e the roots of eq. (6.13) depend 
ontinuously on τ

and for τ = 0 they 
oin
ide with the roots of M(ε), we 
ompute the smallest positive

value of τ , denoted as τc, for whi
h at least one non-null root 
rosses the imaginary

axis. By eq. (6.11), assuming s = jω it holds

jωejωτ = Ri(ε)e
jθi(ε).

By simple manipulations the above equation 
an be rewritten as

jω = Ri(ε) cos(θi(ε)− ωτ) + jRi(ε) sin(θi(ε)− ωτ),
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therefore







Ri(ε) cos(θi(ε)− ωτ) = 0,

ω = Ri(ε) sin(θi(ε)− ωτ).

This implies that







θi(ε)− ωτ =
π

2
+ kπ, k ∈ N

ω = Ri(ε) sin(
π

2
+ kπ) = Ri(ε)(−1)k.

Finally, 
onsidering only the top-half of the Gauss plane, θi(ε) ∈
(

π
2
, π
]

for i =

1, . . . , 2n. Thus

τc(ε) = min
i=2,...,2n

min
k∈N

θi(ε)− π
2
− kπ

Ri(ε)(−1)k

= min
i=2,...,2n

θi(ε)− π
2

Ri(ε)
,

(6.14)

proving the statement. �

Next we give bounds on the maximum length of the time delay that ensures

stability as fun
tion of known network parameters 
omputed for ε = 0. If the a
tual

time delay is smaller than the proposed bound then we are sure that there exist ε > 0

su�
iently small su
h that the system is stable and a
hieves 
onsensus.

Theorem 6.3 Consider a multi-agent system that implements proto
ol (6.1) in graph

G = {V, E}, with tuning parameter ε > 0, initial 
ondition z(0) = 0n and time-delay

τ > 0. If G is strongly 
onne
ted, there exists ε̃ su
h that if ε ∈ (0, ε̃] and

τ < τ̃ =
1

2δ̄
arctan

(ℜ{λ3(0)}
δ̄

)

where

δ̄ = max
i∈V

{δi,in, δi,out}
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and λ3(0) is the rightmost non-null eigenvalue of matrix M(0), then

lim
t→∞

x(t) =
1
T
nx(0)

n
1n.

Proof: By de�nition it holds

M(ε) = M(0) + εM ′,

where M ′
is de�ned as in eq. (6.7). Sin
e M(ε) 
an be seen as a perturbation of matrix

M(0) its eigenvalues depend 
ontinuously on parameter ε. This implies that the ratio

in eq. (6.12) 
an be bounded for an arbitrary small ε as a fun
tion of the eigenvalues

of M(0). In parti
ular, for ε = 0 by the Gershgorin dis
 theorem applied to matri
es

Lin and Lout we have Ri(ε) ≤ maxi=1,...,2n |λi(ε)| ≤ 2maxi∈V{δi,in, δi,out} = 2δ̄, thus it

holds

min
i=2,...,2n

θi(ε)− π
2

Ri(ε)
≥ mini=2,...,2n θi(ε)− π

2

maxi=2,...,2n Ri(ε)

≥ 1

2δ̄
arctan

(

min
i=1,...,2n

ℜ(λi(ε))

ℑ(λi(ε))

)

.

Finally, sin
e for ε = 0, it is ℑ(λ2(ε)) = 0 and maxi=1,...,2n |ℑ(λi(ε))| ≤ δ̄, it holds

min
i=2,...,2n

θi(ε)− π
2

Ri(ε)
≥ 1

2δ̄
arctan

(ℜ{λ3(ε)}
δ̄

)

.

Therefore, sin
e by Theorem 6.2 we may 
on
lude that for τ ≤ τc(ε) all the roots of

eq. (6.9) have stri
tly negative real part ex
ept one, this also holds for a su�
iently

small value of ε provided that

τ <
1

2δ̄
arctan

(ℜ{λ3(0)}
δ̄

)

= τ̃ ≤ τc(ε).

Therefore, the solutions x(t) and z(t) of system (6.3) 
onverge to the null spa
e

of matrix M(ε), i.e.,

lim
t→∞





x(t)

z(t)



 = r1 = α





1n

0n



 .
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Figure 6-1: The dire
ted graph 
onsidered in Se
tion 6.4.
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Figure 6-2: Evolution of x(t) for ε = 1.3 and τ = 0.19.

Sin
e 1
T
nx(t) + 1

T
nz(t) = 1

T
nx(0) + 1

T
nz(0) for any t ≥ 0 we have that

α =
1
T
nx(0) + 1

T
nz(0)

n
.

Sin
e by assumption z(0) = 0n, it holds

lim
t→∞

x(t) =
1
T
nx(0)

n
1n,

thus proving the statement. �

6.4 Numeri
al example and simulations

In this se
tion we 
onsider a numeri
al example to 
orroborate the theoreti
al results

presented in the previous se
tion.
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Figure 6-3: Evolution of z(t) for ε = 1.3 and τ = 0.19.
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Figure 6-4: Real part of the rightmost non-null eigenvalue of matrixM(ε) with respe
t
to ε.
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Figure 6-5: Real part of rightmost non-null root of eq. (6.9) with respe
t to τ , for
ε = 1.1.
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Figure 6-6: The value of τc(ε) with respe
t to ε.

We 
onsider the network of 6 agents whose topology is shown in Fig. 6-1. Su
h a

network is en
oded by the adja
en
y matrix

A =





























0 1 0 1 0 1

0 0 1 0 1 0

0 1 0 1 0 1

1 0 0 0 1 0

0 1 0 0 0 1

1 0 1 0 0 0





























(6.15)

The in and out-Lapla
ian matri
es are, respe
tively

Lin =





























3 −1 0 −1 0 −1

0 2 −1 0 −1 0

0 −1 3 −1 0 −1

−1 0 0 2 −1 0

0 −1 0 0 2 −1

−1 0 −1 0 0 2




























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Figure 6-7: Value of the real part of the rightmost non-null root λR of eq. (6.9) versus

in
reasing ε and time delay τ .

and

Lout =





























2 −1 0 −1 0 −1

0 3 −1 0 −1 0

0 −1 2 −1 0 −1

−1 0 0 2 −1 0

0 −1 0 0 2 −1

−1 0 −1 0 0 3





























.

Fig. 6-2 shows the evolution of system (6.3) when ε = 1.3 and τ = 0.18. Initial


onditions x(0) are 
hosen uniformly at random while initial 
onditions z(0) = 0n.

Fig. 6-2 shows how 
onsensus on the average of the initial state x(0) is a
hieved.

Fig. (6-3) presents the evolution of the storage variables z(t). All storage variables

are initially set to zero and then vary during the dynami
al evolution of the system

so that the quantity 1
T
nx(t) + 1

T
nz(t) remains 
onstant.

We now present the results of a series of numeri
al simulations whose aim is that

of showing how the 
onsensus a
hievement is related to parameters ε and τ . In

parti
ular, Fig. 6-4 shows how the rightmost non-null eigenvalue λR of matrix M(ε)

varies for ε ∈ [0.2, 1.8]. Fig. 6-4 shows that there exists an optimal value at ε = 1.1

for whi
h matrix M(ε) in the given example has the smallest rightmost non-null

eigenvalue.

In Fig. 6-5 we show how the rightmost non-null root of eq. (6.9) varies for in
reas-

ing values of the time-delay τ when ε = 1.1. Fig. 6-5 shows that despite the time-delay
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an make the system unstable, it 
an also improve the 
onvergen
e speed to average


onsensus. For this example the optimal value of the time-delay is τ = 0.19.

Fig. 6-6 shows the values of τc in eq. (6.14) for whi
h eq. (6.9) has roots in the imag-

inary axis, i.e., it shows the maximum time delay sustainable by system in eq. (6.3)

for the 
onsidered network topology in Fig. 6-1.

Finally, in Fig. 6-7 we show a plot of the real part of the rightmost non-null

eigenvalue of eq. (6.9) for ε ∈ (0, 2] and τ ∈ [0, 1]. Fig. 6-7 shows how the 
onvergen
e

properties are a�e
ted by parameters ε and τ : there exists an optimal value at ε = 1.1

and τ = 0.19 for whi
h λR is the most negative and there exists a 
onne
ted region

of the plane de�ned by ε, τ where λR has stri
tly negative real part.

The rightmost non-null root of eq. (6.9) for a given set of (ε, τ) is 
omputed using

the spe
tral method with the heuristi
 presented by Wu and Mi
hiels (2012).

6.5 Con
lusions

The results of Zareh et al. (2013a) were addressed in this 
hapter. A 
ontinuous

time version of a 
onsensus on the average proto
ol for arbitrary strongly 
onne
ted

dire
ted graphs was proposed and its 
onvergen
e properties with respe
t to time

delays in the lo
al state update were 
hara
terized. The 
onvergen
e properties of

this algorithm depend upon a tuning parameter that 
an be made arbitrary small to

prove stability of the networked system. Simulations were presented to 
orroborate

the theoreti
al results and show that the existen
e of a small time delay 
an a
tually

improve the algorithm performan
e. The future work will in
lude an extension of

the mathemati
al 
hara
terization of the proposed algorithm to 
onsider possibly

heterogeneous or time-varying delays.
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7

Consensus in multi-agent systems

with se
ond-order dynami
s and

non-periodi
 sampled-data ex
hange

�In questions of s
ien
e, the authority of a thousand is not worth the humble

reasoning of a single individual.�

� Galileo Galilei

In this 
hapter based on the results of Zareh et al. (2014a), 
onsensus in se
ond-

order multi-agent systems with a non-periodi
 sampled-data ex
hange among agents

is investigated. The sampling is random with bounded inter-sampling intervals. It

is assumed that ea
h agent has exa
t knowledge of its own state at all times. The


onsidered lo
al intera
tion rule is PD-type. The 
hara
terization of the 
onvergen
e

properties exploits a Lyapunov-Krasovskii fun
tional method, su�
ient 
onditions for

stability of the 
onsensus proto
ol to a time-invariant value are derived. Numeri
al

simulations are presented to 
orroborate the theoreti
al results.
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7.1 Introdu
tion

This 
hapter deals with the problem of 
onsensus in se
ond-order MAS with a non-

periodi
 data sending manner among the agents. We 
onsider the 
ase in whi
h ea
h

agent has a perfe
t knowledge of its own state with almost no delay, i.e., it knows its

own speed and position. Information ex
hanges between neighboring agents happens

at dis
rete time intervals whi
h are possibly non-periodi
 but stri
tly positive and

bounded.

The network dynami
s 
an thus be modeled as a sampled-data system (SDS), a


lass of systems extensively investigated in the literature.

For interesting 
ontributions in this area we point the reader to A
kermann (1985);

Fridman (2010); Zutshi et al. (2012) and the referen
es therein. We also mention the

work by Fridman et al. (2004) who exploited an approa
h for time-delay systems

and obtained the su�
ient stability 
onditions based on the Lyapunov-Krasovskii

fun
tional method. Seuret (2012) and Fridman (2010) proposed improved methods

with better upper bounds to the maximum allowed delay. Shen et al. (2012) studied

the sampled-data syn
hronization 
ontrol problem for dynami
al networks. Qin et al.

(2010) and Ren and Cao (2008) studied the 
onsensus problem for networks of double

integrators with a 
onstant sampling period. In the latter two papers, even though

the authors use the sampled-data notation to introdu
e their novelty, they suppose

that the 
ommuni
ation and the lo
al sensing o

ur simultaneously and this simpli�es

the problem into a dis
rete state 
onsensus problem. Xiao and Chen (2012) and Yu

et al. (2011) studied se
ond-order 
onsensus in multi-agent dynami
al systems with

sampled position data.

We propose a PD-like 
onsensus algorithm with non-periodi
 sampled-data ex-


hange among agents with bounded and stri
tly positive inter-sampling intervals.

A 
hara
terization of the 
onvergen
e properties exploiting a Lyapunov-Krasovskii

fun
tional method is provided and su�
ient 
onditions for exponential stability of

the 
onsensus proto
ol to a time-invariant value are derived. Numeri
al simulations

are presented to 
orroborate the theoreti
al results.
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This 
hapter is organized as follows. In Se
tion 7.2 some notation and preliminar-

ies are introdu
ed. In Se
tion 7.3 the 
onsensus problem for se
ond order multi-agent

systems with non-periodi
 sampled-data ex
hange is formalized. In Se
tion 7.4 the


onvergen
e properties of the proposed 
onsensus proto
ol are 
hara
terized. In Se
-

tion 7.5 simulation results are presented to 
orroborate the theoreti
al analysis. In

Se
tion 7.6 
on
luding remarks and dire
tions for future resear
h are dis
ussed.

7.2 Notation and Preliminaries

In this se
tion we re
all some basi
 notions on graph theory and introdu
e the nota-

tions.

The topology of bidire
tional 
ommuni
ation 
hannels among the agents is repre-

sented by an undire
ted graph G = (V, E) where V = {1, . . . , n} is the set of nodes

(agents) and E ⊆ {V × V} is the set of edges. An edge (i, j) ∈ E exists if there is

a 
ommuni
ation 
hannel between agent i and j. Self loops (i, i) are not 
onsidered.

The set of neighbors of agent i is denoted by Ni = {j : (j, i) ∈ E ; j = 1, . . . , n}. Let
δi = |Ni| be the degree of agent i whi
h represents the total number of its neighbors.

The topology of graph G is en
oded by the so-
alled adja
en
y matrix, an n × n

matrix Ad whose (i, j)-th entry is equal to 1 if (i, j) ∈ E , 0 otherwise. Obviously in

an undire
ted graph matrix Ad is symmetri
.

We denote ∆ = diag(δ1, . . . , δn) the diagonal matrix whose non null entries are

the degrees of the nodes. Moreover, matrix Wd = ∆−1Ad is the weighted adja
en
y

matrix asso
iated with G. The following result holds.

Lemma 7.1 If a graph G is 
onne
ted then the eigenvalues of the weighted adja
en
y

matrix Wd, namely λi, i = 1, . . . , n, are all lo
ated in the interval [−1, 1], and λ1 = 1

is always a simple eigenvalue of Wd.

Proof: Using Gershgorin theorem sin
e all the diagonal elements of Wd are zero

and ea
h row sums up to 1, it immediately follows that λi ∈ [−1, 1]. Now, let

L = ∆−Ad be the Lapla
ian matrix asso
iated with the 
onsidered graph. If su
h a
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graph is 
onne
ted, then the origin is a simple eigenvalue of L whi
h implies that it

is a simple eigenvalue also for −∆−1L = ∆−1Ad − I = Wd − I. Consequently, if the

graph is 
onne
ted, λ1 = 1 is a simple eigenvalue of the weighted adja
en
y matrix.

�

Finally, in the rest of this 
hapter we denote with ∗ the symmetri
 elements of

symmetri
 matri
es.

7.3 Problem Statement

Consider a se
ond-order multi-agent system with an undire
ted 
ommuni
ation topol-

ogy. Consider the PD-type 
onsensus proto
ol inspired by Cepeda-Gomez and Olga


(2011b) and Zareh et al. (2013b):























ẋi(t) = vi(t),

v̇i(t) =
kp
δi

∑

j∈Ni
xj(t) +

kd
δi

∑

j∈Ni
vj(t)

−kpxi(t)− kdvi(t),

(7.1)

where i = 1, . . . , n, n denotes the number of agents, xi(t) and vi(t) are the position

and the velo
ity of agent i, and δi indi
ates its degree.

We suppose that the lo
al information, i.e., the information that ea
h agent re-


eives from its own sensors, is measured instantaneously. This obviously makes sense

when the sensor dynami
s are fast enough.

Moreover, we assume that the 
ommuni
ation between the generi
 agent i and its

set of neighbors Ni o

urs in sto
hasti
 sampling time instants tk, k = 0, 1, . . . ,∞
that satisfy the following 
onditions:

0 < tk+1 − tk ≤ τ̄ ∈ R
+

and

lim
k→∞

tk = ∞.
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Under the above assumptions, equation (7.1) 
an be rewritten as:























ẋi(t) = vi(t),

v̇i(t) =
kp
δi

∑

j∈Ni
xj(tk) +

kd
δi

∑

j∈Ni
vj(tk)

−kpxi(t)− kdvi(t)

(7.2)

or, alternatively, doing some simple manipulations, as:





ẋ(t)

v̇(t)



 = (A⊗ In)





x(t)

v(t)



+ (B ⊗Wd)





x(tk)

v(tk)





(7.3)

where t ∈ [tk, tk+1), x = [x1, x2, . . . , xn], v = [v1, v2, . . . , vn], ∆ = diag{δ1, δ2, . . . , δn},
Ad is the adja
en
y matrix, Wd = ∆−1Ad is the weighted adja
en
y matrix, and

matri
es A and B are equal, respe
tively, to:

A =





0 1

−kp −kd



 , B =





0 0

kp kd



 . (7.4)

A MAS with an undire
ted 
ommuni
ation topology and following equation (7.1),

is said to 
onverge to a 
onsensus state if

lim
t→∞

|xi(t)− xj(t)| = 0

and

lim
t→∞

|vi(t)− vj(t)| = 0.

In this 
hapter, given the value of the maximum admissible di�eren
e τ̄ between

any two 
onse
utive sampling time instants, and a 
ommuni
ation topology with a

given spe
trum, we aim at �nding 
onditions that guarantee 
onsensus to a �xed

point among agents that evolve a

ording to equation (7.3).

We will also address the issue of evaluating an upper bound to the de
ay rate of


onvergen
e.

We 
on
lude this se
tion pointing out some di�eren
es among our problem for-
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mulation and the ones by Xiao and Chen (2012) and Yu et al. (2011). The most

important di�eren
e is that we assume that ea
h agent re
eives a message 
ontaining

its neighbors' positions and velo
ities in a sampled-data basis. On the 
ontrary, Xiao

and Chen (2012) and Yu et al. (2011) supposed that the agents gather the sampled

positions of their neighbors and their own at the same time instants.

7.4 Convergen
e properties

In the following subse
tion we �rst introdu
e a state variable transformation to de
ou-

ple the dynami
s of modes asso
iated with the eigenvalues of the weighted adja
en
y

matrix. Then, the stability of su
h modes is analyzed in detailed.

Stability analysis

Apply the following 
hange of variables:

x(t) = Tz(t) (7.5)

to eq. (7.3). Then, it holds:

(I2 ⊗ T )





ż(t)

z̈(t)



 = (A⊗ T )





z(t)

ż(t)





+(B ⊗WdT )





z(tk)

ż(tk)





(7.6)

and eq. (7.3) 
an be rewritten as:





ż(t)

z̈(t)



 = (A⊗ In)





z(t)

ż(t)





+(B ⊗ T−1WdT )





z(tk)

ż(tk)



 .

(7.7)
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Sin
e Wd is a symmetrizable matrix, then it is also diagonalizable (Cepeda-Gomez

and Olga
, 2011b), and the transformation matrix T 
an be 
hosen su
h that

Λ = T−1WdT = diag(λ1, λ2, . . . , λn)

where

λ1 ≥ λ2 ≥ . . . ≥ λn

are the eigenvalues of the weighted adja
en
y matrix Wd. As a result, eq. (7.7) 
an

be rewritten as:





ż(t)

z̈(t)



 = (A⊗ In)





z(t)

ż(t)



+ (B ⊗ Λ)





z(tk)

ż(tk)



 ,

or alternatively, as





żi(t)

z̈i(t)



 = A





zi(t)

żi(t)



+ λiB





zi(tk)

żi(tk)





(7.8)

where i = 1, . . . , n, and zi(t) is the i-th element of ve
tor z(t).

Now, if we de�ne

yi(t) = [zi(t) żi(t)]
T

(7.9)

the i-th mode of the system, we 
an say that its dynami
s follows equation:

ẏi(t) = Ayi(t) + λiByi(tk). (7.10)

Moreover, assuming τ(t) = t− tk, the above equation 
an be rewritten as:

ẏi(t) = Ayi(t) + λiByi(t− τ(t)). (7.11)

The above SDS is a spe
ial 
ase of a time varying delayed system where the delay

τ(t) is upper bounded by τ̄ , and its derivative is τ̇(t) = 1, while the delay swit
hes at

times t = tk, k = 0, 1, . . . ,∞.
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In the rest of this 
hapter we assume that the graph G des
ribing the 
ommuni-


ation topology is 
onne
ted. By Lemma 7.1 this implies that its largest eigenvalue

is λ1 = 1. We 
all unitary eigenvalue mode (UEM) the mode asso
iated with λ1 = 1.

The following lemma 
hara
terizes the dynami
s of the UEM. In parti
ular it

shows that the UEM 
onverges asymptoti
ally to a ve
tor whose �rst entry z1(t) is

equal to a 
onstant value and the se
ond entry ż1(t) is null.

Lemma 7.2 Consider a system whose dynami
s in the time interval t ∈ [tk, tk+1),

k = 0, 1, . . . ,∞, follows eq. (7.10) with λi = 1. Assume tk+1 − tk > 0 for any

k = 0, 1, . . . ,∞. It holds

lim
k→∞

z1(tk) = γ, γ ∈ R. (7.12)

Proof: To prove this lemma we observe that by eq. (7.10) and by de�nition of

matri
es A and B, it follows that

z̈1(t) + kdż1(t) + kpz1(t) = kdż1(tk) + kpz1(tk), (7.13)

for t ∈ [tk tk+1]. We 
onsider two 
ases separately.

Case A

The 
hara
teristi
 polynomial asso
iated with eq. (7.13) has two distin
t roots. This


orresponds to

σ =
k2
d

4
− kp 6= 0.

In su
h a 
ase the solution of the above ordinary linear di�erential equation is

equal to:

z1(t) = c1ż1(tk)e
s1(t−tk) − c2ż1(tk)e

s2(t−tk)

+z1(tk) +
kd
kp

ż1(tk),
(7.14)
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where

s1,2 =
−kd
2

±
√

k2
d

4
− kp,

c1 =
1

s1 − s2
(1 +

kd
kp

s2),

c2 =
1

s1 − s2
(1 +

kd
kp

s1).

Now, let Tk = tk+1 − tk. From (7.14) we 
an 
ompute z1(tk+1) and ż1(tk+1) as:





z1(tk+1)

ż1(tk+1)



 = M(Tk)





z1(tk)

ż1(tk)





(7.15)

where

M(Tk) =





1 µk

0 βk



 , (7.16)

µk = c1e
s1Tk − c2e

s2Tk +
kd
kp

, (7.17)

and

βk = c1s1e
s1Tk − c2s2e

s2Tk . (7.18)

Therefore for all k > 0 it holds:





z1(tk)

ż1(tk)



 = M̄k





z1(0)

ż1(0)





where

M̄k = M(Tk)M(Tk−1) . . .M(T0)

=









1
k
∑

m=0

µm

m−1
∏

j=0

βj

0
k
∏

j=0

βj









.
(7.19)

We now prove that |βk| < 1 where βk is de�ned as in eq. (7.18).

Let

s1 =
−kd
2

+
√
σ, s2 =

−kd
2

+
√
σ, σ =

k2
d

4
− kp.

We 
onsider separately the 
ase of σ > 0 and σ < 0.
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Case A1: σ > 0

In this 
ase it is trivial to show that s1, s2 ∈ R and s2 < s1 < 0. Furthermore, we

have es2Tk < es1Tk
and c1s1 − c2s2 = 1. We 
an also show that:

c1s1 =
1

s1 − s2
(s1 +

kd
kp

s1s2)

=
1

2
√
σ
(
kd
2

+
√
σ) > 0

and

c2s2 =
1

s1 − s2
(s2 +

kd
kp

s1s2)

=
1

2
√
σ
(
kd
2

−√
σ) > 0.

Let ω =
√
σ and ν = kd/2 =

√

ω2 + kp. We get:

βk =
(ν + ω)eωTk − (ν − ω)e−ωTk

2ωeνTk
. (7.20)

Moreover, sin
e σ > 0, it is ω ∈ (0, ∞) and therefore ν ∈ (
√

kp, ∞). For any kp > 0

we obtain:

lim
ω→0

βk =
1 +

√

kpTk

e
√

kpTk

,

lim
ω→∞

βk = 1.

Hen
e due to the 
ontinuity in (7.20), for any value of kp and kd su
h that σ > 0,

knowing that Tk > 0, we a
hieve

βk ∈
(

1 +
√

kp

e
√

kp
, 1

)

thus prove the statement.
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Case A2: σ < 0

In su
h a 
ase s1 and s2 are 
omplex 
onjugate numbers and

βk = (c1s1 − c2s2)e
−Tkkd/2 cos(

√
σTk)+

j(c1s1 + c2s2)e
−Tkkd/2 sin(

√
σTk).

Being c1s1 + c2s2 = 0 and c1s1 − c2s2 = 1 the se
ond term vanishes and we get:

βk = e−Tkkd/2 cos(
√
σ) < 1 (7.21)

This leads us to

lim
k→∞

k
∏

j=0

βj = 0.

Therefore, due to the fa
t that for all m > 0 the norm of µm is bounded by some

µ̄ < ∞, we 
an 
on
lude that the term

k
∑

m=0

µm

m−1
∏

j=0

βj , whi
h is obtained multiplying

bounded numbers and exponentially de
reasing produ
ts gets a 
onstant bounded

value Π̄. Hen
e lim
k→∞

z1(tk) = lim
t→∞

(z1(0) + Π̄ż1(0)) and lim
k→∞

ż1(tk) = 0 whi
h in turn

implies that there exists γ ∈ R su
h that:

lim
k→∞

z1(tk) = γ. (7.22)

Case B

The 
hara
teristi
 polynomial of (7.13) has a single real root s = −kd/2 with multi-

pli
ity 2.

In su
h a 
ase the solution of eq. (7.13) is:

z1(t) = d1ż1(tk)te
s1(t−tk) − d2ż1(tk)e

s2(t−tk)

+z1(tk) +
kd
kp

ż1(tk),
(7.23)
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where

d1 =

(

1 +
kd
kp

s

)

= 0

d2 =

(

tk +
kd
kp

tks+
kd
kp

)

=
2

kd
.

Therefore it is





z1(tk+1)

ż1(tk+1)



 = M ′(Tk)





z1(tk)

ż1(tk)



 , (7.24)

where

M ′(Tk) =





1 µ′
k

0 β ′
k



 ,

with µ′
k =

kd
kp

(1 − esTk), and β ′
k = −esTk

. Sin
e for any Tk > 0, it is |βk| < 1, then,

repeating the same reasoning as in Case A, we 
on
lude that there exists γ ∈ R su
h

that

lim
k→∞

z1(tk) = γ. (7.25)

�

We now 
hara
terize the 
onditions on the design parameters kp, kd, τ̄ under whi
h

the modes yi(t), i = 2, . . . , n, de�ned in eq. (7.9) are exponentially stable.

To do this we provide the following lemma, whose proof is inspired by Seuret

(2012).

Lemma 7.3 Consider the generi
 mode yi(t) de�ned in eq. (7.9) whose dynami
s

follows eq. (7.11). Matri
es A, B are de�ned as in eq. (7.4), τ(t) = t − tk, k =

0, 1, . . . ,∞, and λi ∈ [−1, 1).

Assume that the di�eren
e between any two 
onse
utive sampling times is smaller

than a given τ̄ , i.e., it holds tk+1 − tk ≤ τ̄ for all k = 0, 1, . . . ,∞.

If there exist symmetri
 positive de�nite matri
es Pi, Ri, Si ∈ R2×2
, a matrix

Qi =





Qi,1

Qi,2



 ∈ R4×2
and a 
onstant value α > 0 su
h that the following inequalities

are satis�ed:





Ψi,11(τ̄ , α) Ψi,12(τ̄ , α)

∗ Ψi,22(τ̄ , α)



 < 0, (7.26)
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









Ψi,11(0, α) Ψi,12(0, α) τ̄Qi,1

∗ Ψi,22(0, α) τ̄Qi,2

∗ ∗ −τ̄ (1− 2ατ̄)Ri











< 0 (7.27)

where

Ψi,11(τ̄ , α) = PiA+ ATPi − Si −Qi,1 −QT
i,1

+τ̄(SiA + ATSi + ATRiA+ 2αSi)

+2αPi − 2αRi,

Ψi,12(τ̄ , α) = λiPiB + Si + 2αRi +Qi,1 −QT
i,2

+τ̄(−ATSi + λiSiB + λiA
TRiB − 2αSi),

Ψi,22(τ̄ , α) = −Si − 2αRi +Qi,2 +QT
i,2

−τ̄ (λiB
TS + λiSiB − λ2

iB
TRiB + 2αSi),

then mode yi(t) is exponentially stable with de
ay rate α.

Proof: Consider the following fun
tional:

Vi(t, yi(t), yi(tk)) = yTi (t)Piyi(t)

+ (τ̄ − τ(t)) ξTi (t)Siξi(t)

+ (τ̄ − τ(t))
∫ t

tk
ẏi

T (s)Riẏi(s)ds,

(7.28)

where

ξi(t) = yi(t)− yi(tk). (7.29)

Obviously ξ̇i(t) = ẏi(t). Note that the se
ond and the third term of the fun
-

tional vanish during the jump due to the fa
t that lim
t→tk

yi(t) = yi(tk) whi
h leads

to lim
t→tk

V (t) ≤ V (t−k ). Hen
e we should look the fun
tional only inside the intervals

without being worried about the jumps.
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Derivating eq. (7.28) with respe
t to time we get:

V̇i(t, yi(t), yi(tk)) = yTi (t)
(

PiA + ATPi − Si

+
(

τ̄ − τ(t)
)

(SiA+ ATSi + ATRiA)
)

yi(t)

+2yTi (t)
(

λiPiB + Si +
(

τ̄ − τ(t)
)

(SiA

+ATSi + ATRiA)
)

yi(tk)

+yTi (tk)
(

− Si −
(

τ̄ − τ(t)
)

(λiB
TSi + λiSiB

−λ2
iB

TRiB
)

yi(tk)−
∫ t

tk
ẏTi (s)Riẏi(s)ds.

(7.30)

Now 
onsider the following 
andidate fun
tional:

Wi(t, yi(t), yi(tk), α)

= V̇ (t, yi(t), yi(tk)) + 2αVi(t, yi(t), yi(tk))

= yTi (t)
(

PiA+ ATPi − Si + 2αPi

+
(

τ̄ − τ(t)
)

(SiA + ATSi + ATRiA+ 2αSi)
)

yi(t)

+2yTi (t)
(

λiPiB + Si +
(

τ̄ − τ(t)
)

(SiA

+ATSi + ATRiA− 2αSi)
)

yi(tk)

+yTi (tk)
(

− Si −
(

τ̄ − τ(t)
)

(λiB
TSi + λiSiB

−λ2
iB

TRiB + 2αSi

)

yi(tk)

−(1 − 2α(τ̄ − τ(t)))
∫ t

tk
ẏTi (s)Riẏi(s)ds.

(7.31)

To ensure the exponential stability of mode yi(t) with de
ay rate α it is su�
ient to

prove that:

Wi(t, yi(t), yi(tk), α) < 0.

We manipulate the integral term

− (1− 2α(τ̄ − τ(t)))

∫ t

tk

ẏTi (s)Riẏi(s)ds (7.32)

to a
hieve a bound on that based on a fun
tion of yi(t) and yi(tk). To this aim, we

136



rewrite the above term as the summation of two terms

− (1− 2ατ̄)

∫ t

tk

ẏTi (s)Riẏi(s)ds (7.33)

and

− 2ατ(t)

∫ t

tk

ẏTi (s)Riẏi(s)ds (7.34)

and provide an upper bound to ea
h term separately.

To provide an upper bound to (7.33), we introdu
e the following inequality for

two ve
tors ω1 and ω2 and an arbitrary matrix Γ with 
ompatible dimensions:

2ωT
1 ω2 ≤ ωT

1 Γ
−1ω1 + ωT

2 Γω2.

Rewriting the above inequality assuming ω1 = QT
i





yi(t)

yi(tk)





, ω2 = ẏi(s) and Γ =

(1− 2ατ̄)Ri, we get:

2[yTi (t) yTi (tk)]Qiẏi(s) ≤
[

yTi (t) yTi (tk)
]

Qi
R−1

i

1− 2ατ̄
QT

i





yi(t)

yi(tk)





+(1− 2ατ̄)ẏi
T (s)Riẏi(s).

Integrating it in the interval [tk, t] in whi
h ẏi(t) is 
ontinuous we obtain:

−(1 − 2ατ̄)
∫ t

tk
ẏTi (s)Rẏi(s)ds ≤

−2[yTi (t) yTi (tk)]Qiξi(t)

+τ(t)
[

yTi (t) yTi (tk)
]

Qi
R−1

i

1− 2ατ̄
QT

i





yi(t)

yi(tk)



 .

(7.35)

To provide an upper bound to (7.34) we use Jensen integral inequality (Xu and
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Lam, 2008):

−2ατ(t)
t
∫

tk

ẏTi (s)Riẏi(s)ds ≤

−2α
t
∫

tk

ẏTi (s)dsRi

t
∫

tk

ẏi(s)ds

= −2α(yi(t)− yi(tk))
TRi(yi(t)− yi(tk))

(7.36)

Introdu
ing inequalities (7.35) and (7.36) in (7.31), the following inequality is

a
hieved for t ∈ [tk, tk+1):

Wi(t, yi(t), yi(tk)) ≤ [yTi (t) yTi (tk)]

(





Ψi,11(τ̄ − τ(t), α) Ψi,12(τ̄ − τ(t), α)

∗ Ψi,22(τ̄ − τ(t), α)





+
τ(t)

1− 2ατ̄
QiR

−1
i QT

i

)





yi(t)

yi(tk)



 .

(7.37)

The above inequality 
orresponds to an LMI that is linear with respe
t to τ(t). There-

fore, a

ording to S
herer and Weiland (2000), in order to be sure that it holds for

all τ(t) ∈ [0, τ̄ ] we only need to 
he
k it at the boundary of the interval, namely for

τ(t) = 0 and τ(t) = τ̄ .

Now, if we parti
ularize eq. (7.37) with τ(t) = 0 this obviously leads to the LMI

in eq. (7.26).

To 
omplete the proof we need to show that parti
ularizing eq. (7.37) with τ(t) = τ̄

we get the LMI in eq. (7.27). But this follows from the fa
t that





Ψi,11(0, α) Ψi,12(0, α)

∗ Ψi,22(0, α)



 +
τ̄

1− 2ατ̄
QiR

−1
i QT

i (7.38)

is the S
hur 
omplement of matrix −τ̄ (1− 2ατ̄)Ri in eq. (7.27). Thus, if the LMI in

eq. (7.27) is de�nite negative, also it is matrix in eq. (7.38). �

Consensus among agents

We now prove the main result, namely the 
onsensus of agents to a 
ommon position.
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Theorem 7.4 Consider a MAS evolving a

ording to equation (7.2) where τ̄ is su
h

that 0 < tk+1 − tk < τ̄ < ∞. Let λi, i = 2, . . . , n be the eigenvalues of the weighted

adja
en
y matrix asso
iated with the undire
ted 
onne
ted graph G modeling the 
om-

muni
ation topology. If there exists a positive 
onstant α su
h that the LMIs de�ned

in eq. (7.26) and (7.27) are satis�ed for all λi, i = 2, . . . , n, then there exists a γ ∈ R

su
h that x(t) exponentially 
onverges to γ~1 and v(t) exponentially 
onverges to

~0.

Moreover, the rate of 
onvergen
e is greater than or equal to α.

Proof: By Lemma 7.3, if the LMIs in eq. (7.26) and (7.27) hold, all modes ex
ept

the UEM are stable, i.e., lim
t→∞

yi(t) = 0 and thus lim
t→∞

zi(t) = 0 for i = 2, . . . , n with

rate of 
onvergen
e of at least α. Furthermore, by Lemma 7.2, there exists a positive


onstant γ ∈ R su
h that lim
t→∞

z1(t) = γ.

Now, the �rst 
olumn of T is the eigenve
tor 
orresponding to the unitary eigen-

value of Wd, therefore it is equal to

~1 = [1 1 . . . , 1]T . Thus, being x(t) =

T [z1(t) 0 . . . 0]T , it is trivial to show that when t → ∞ it is xi(t) = xj(t), for all

i, j = 1, . . . , n. The same 
al
ulations 
an be repeated for the velo
ities, thus proving

that for t → ∞, it is vi(t) = vj(t), i, j = 1, . . . , n. �

7.5 Simulation results

In this se
tion we present the results of some numeri
al simulation that shows the

e�e
tiveness of the 
onsensus proto
ol in eq. (7.3). To this aim we 
onsider a system

with 6 agents and adja
en
y matrix:

Ad =





























0 1 0 1 0 0

1 0 0 1 0 0

0 0 0 1 0 1

1 1 1 0 1 0

0 0 0 1 0 1

0 0 1 0 1 0





























.
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Figure 7-1: Positions and velo
ities when the proposed proto
ol is implemented.

Assume kp = 1, kd = 2 and τ̄ = 1. Using the above LMIs with α = 0.38 we 
an

prove that the system rea
hes 
onsensus to a �xed point.

Fig. 7-1 shows the evolution of positions and velo
ities when the proposed al-

gorithm is implemented, while Fig. 7-2 shows the sampled positions and velo
ities

aperiodi
ally transmitted to neighbors by ea
h agent.

We 
on
lude this se
tion presenting the results of another numeri
al simulation


arried out under the assumption that only sampled positions are transmitted to

neighbors, i.e., the se
ond term is removed in eq. (7.2) that is equivalent to rede�ne

B as B′ = [0 0; kp 0].

It 
an be proved that in su
h a 
ase the 
onsensus to a �xed point is still rea
hed,

but with de
ay rate bounded by 0.21 that is almost the half of the previous 
ase.

Su
h a 
on
lusion 
an also be drawn by looking at Fig. 7-3.
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Figure 7-2: Aperiodi
 sampled positions and velo
ities when the proposed proto
ol

is implemented.
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Figure 7-3: Positions and velo
ities when the proposed proto
ol is modi�ed in order

to only 
onsider sampled positions.
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7.6 Con
lusions and future work

The 
ontribution of this 
hapter 
onsists in a PD-like 
onsensus algorithm for a

se
ond-order multi-agent system where, at non-periodi
 sampling times, agents trans-

mit to their neighbors information about their position and velo
ity, while ea
h agent

has a perfe
t knowledge of its own state at any time instant. Conditions have been

given to prove 
onsensus to a 
ommon �xed point, based on LMIs veri�
ation. More-

over, we also show how it is possible to evaluate an upper bound on the de
ay rate

of exponential 
onvergen
e of stable modes.

The main dire
tions of our future resear
h in this framework are

(i) We want to also study the 
ase where agents do not have a perfe
t knowledge

of their own state.

(ii) Finally, we plan to relax the assumption that all 
ommuni
ations among agents

o

ur simultaneously.
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8

Non-periodi
 sampled-data 
onsensus

in se
ond-order multi-agent systems

with 
ommuni
ation delays over an

un
ertain network

�Give me a lever long enough and a ful
rum on whi
h to pla
e it, and I shall

move the world.�

� Ar
himedes

In this 
hapter 
onsensus in se
ond-order multi-agent systems with a non-periodi


sampled-data ex
hange among agents is investigated. The sampling is random with

bounded inter-sampling intervals. It is assumed that ea
h agent has exa
t knowledge

of its own state at any time instant. The 
onsidered lo
al intera
tion rule is PD-

type. Su�
ient 
onditions for stability of the 
onsensus proto
ol to a time-invariant

value are derived based on LMIs. Su
h 
onditions only require the knowledge of the


onne
tivity of the graph modeling the network topology. Numeri
al simulations are

presented to 
orroborate the theoreti
al results.
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8.1 Introdu
tion

Due to its broad spe
trum of appli
ations, in the past years, a large attention has

been devoted to the 
onsensus problem in multi-agent systems (MAS) Qin et al.

(2011); Ren et al. (2005a); Yu et al. (2010); Zareh et al. (2013a). Sensor networks

Yu et al. (2009); Olfati-Saber and Shamma (2005), automated highway systems Ren

et al. (2005a), mobile roboti
s Khoo et al. (2009), satellite alignment Ren (2007a) and

several more, are some of the potential areas in whi
h a 
onsensus problem is taken

into a

ount. Consensus is a state of a networked multi-agent system in whi
h all

the agents rea
h agreement on a 
ommon value by only sharing information lo
ally,

namely with their neighbors. Several algorithms, often 
alled 
onsensus proto
ols,

have been proposed that lead a MAS to 
onsensus. In parti
ular, the 
oordination

problem of mobile robots �nds several appli
ations in the manufa
turing industry in

the 
ontext of automated material handling. The 
onsensus problem in the 
ontext

of mobile robots 
onsists in the design of lo
al state update rules whi
h allow the

network of robots to rendezvous at some point in spa
e or follow a leading robot

exploiting only measurements of speeds and relative positions between neighboring

robots. Robots are hereafter referred to as agents.

In MAS, heavy 
omputational loads 
an interrupt the sampling period of a 
er-

tain 
ontroller. A s
heduled sampling period 
an be used to deal with this prob-

lem. In su
h a 
ase robust stability analysis with respe
t to the 
hanges in the

sampling time is ne
essary. For interesting 
ontributions in this area we address the

reader to A
kermann (1985); Fridman (2010); Zutshi et al. (2012) and the referen
es

therein. We also mention the work by Fridman et al. (2004) who exploited an ap-

proa
h for time-delay systems and obtained the su�
ient stability 
onditions based

on the Lyapunov-Krasovskii fun
tional method. Seuret Seuret (2012) and Fridman

Fridman (2010) proposed methods with better upper bounds to the maximum allowed

sampling. Shen et al. Shen et al. (2012) studied the sampled-data syn
hronization


ontrol problem for dynami
al networks. Qin et al. Qin et al. (2010) and Ren and

Cao Ren and Cao (2008) studied the 
onsensus problem for networks of double inte-
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grators with a 
onstant sampling period. In the latter two papers, even though the

authors use the sampled-data notation to introdu
e their novelty, they suppose that

the 
ommuni
ation and the lo
al sensing o

ur simultaneously and this simpli�es the

problem into a dis
rete state 
onsensus problem. Xiao and Chen Xiao and Chen

(2012) and Yu et al. Yu et al. (2011) studied se
ond-order 
onsensus in multi-agent

dynami
al systems with sampled position data.

In this 
hapter, we 
onsider the 
ase in whi
h ea
h agent has a perfe
t knowl-

edge of its own state with almost no delay, i.e., it knows its own speed and position.

Information ex
hanges between neighboring agents happen at dis
rete time inter-

vals whi
h are possibly non-periodi
 but stri
tly positive and bounded. The network

dynami
s 
an thus be modeled as a sampled-data system (SDS), a 
lass of systems

extensively investigated in the literature. Using PD-like algorithm we guarantee that

all the agents rea
h 
onsensus. We proposed su
h a proto
ol in Chapter 7 where

we provided a 
hara
terization of the 
onvergen
e properties exploiting a Lyapunov-

Krasovskii fun
tional method. In parti
ular in Chapter 7 we provided su�
ient 
on-

ditions for exponential stability of the 
onsensus proto
ol to a time-invariant value

under the assumption that the spe
trum of the weighted adja
en
y matrix is known.

With respe
t to Chapter 7, in this 
hapter we relax su
h assumption and provide

su�
ient 
onditions for 
onsensus under the assumption that the only information

on the network topology is its 
onne
tivity, i.e., the se
ond largest eigenvalue of the

weighted adja
en
y matrix. This is obviously a signi�
ant improvement with respe
t

to the previous 
hapter, not only be
ause mu
h less information on the network topol-

ogy is needed, but also be
ause, despite of Chapter 7, the number of LMIs that have

to be 
omputed does not depend on the number of agents.

The 
hapter is organized as follows. In Se
tion 8.2 the 
onsensus problem for se
-

ond order multi-agent systems with non-periodi
 sampled-data ex
hange is formal-

ized. In Se
tion 8.3 the 
onvergen
e properties of the proposed 
onsensus proto
ol

are 
hara
terized. In Se
tion 8.4 simulation results are presented to 
orroborate the

theoreti
al analysis. Finally, in Se
tion 8.5 
on
luding remarks and dire
tions for

future resear
h are dis
ussed.
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8.2 Problem Statement

Consider a se
ond-order multi-agent system with an undire
ted 
ommuni
ation topol-

ogy. Consider the PD-type 
onsensus proto
ol introdu
ed in (7.1).

We suppose that the lo
al information, i.e., the information that ea
h agent re-


eives from its own sensors, is measured instantaneously. This obviously makes sense

when the sensor dynami
s are fast enough.

Moreover, we assume that the 
ommuni
ation between the generi
 agent i and its

set of neighbors Ni o

urs in sto
hasti
 sampling time instants tk, k = 0, 1, . . . ,∞,

that satisfy the following 
onditions:

0 < tk+1 − tk ≤ τ̄ ∈ R
+

and

lim
k→∞

tk = ∞.

Under the above assumptions, equation (7.1) 
an be rewritten as:























ẋi(t) = vi(t),

v̇i(t) =
kp
δi

∑

j∈Ni
xj(tk) +

kd
δi

∑

j∈Ni
vj(tk)

−kpxi(t)− kdvi(t)

(8.1)

or, alternatively, doing some simple manipulations, as:





ẋ(t)

v̇(t)



 = (A⊗ In)





x(t)

v(t)



+ (B ⊗Wd)





x(tk)

v(tk)





(8.2)

where x = [x1, x2, . . . , xn], v = [v1, v2, . . . , vn], ∆ = Diag{δ1, δ2, . . . , δn}, Ad is the

adja
en
y matrix, Wd is the weighted adja
en
y matrix, and matri
es A and B are
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equal, respe
tively, to:

A =





0 1

−kp −kd



 , B =





0 0

kp kd



 . (8.3)

A MAS with an undire
ted 
ommuni
ation topology and following equation (7.1),

is said to 
onverge to a 
onsensus state if

lim
t→∞

|xi(t)− xj(t)| = 0

and

lim
t→∞

|vi(t)− vj(t)| = 0.

In this 
hapter, given the value of the maximum admissible di�eren
e τ̄ between

any two 
onse
utive sampling time instants, and a 
ommuni
ation topology whose


onne
tivity is known to be smaller than or equal to a given value λ̄, we aim at

�nding 
onditions that guarantee 
onsensus to a �xed point among agents that evolve

a

ording to equation (8.2).

8.3 Convergen
e properties

In the following subse
tion we re
all a state variable transformation, �rstly introdu
ed

in Chapter 7, to de
ouple the dynami
s of modes asso
iated with the eigenvalues of

the weighted adja
en
y matrix. Then, the stability of su
h modes is analyzed in

detail.

Stability analysis

Apply the following 
hange of variables:

x(t) = Tz(t) (8.4)
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to eq. (8.2). Then, it holds:

(I2 ⊗ T )





ż(t)

z̈(t)



 = (A⊗ T )





z(t)

ż(t)





+(B ⊗WdT )





z(tk)

ż(tk)





(8.5)

and eq. (8.2) 
an be rewritten as:





ż(t)

z̈(t)



 = (A⊗ In)





z(t)

ż(t)





+(B ⊗ T−1WdT )





z(tk)

ż(tk)



 .

(8.6)

Sin
e Wd is a symmetrizable matrix, then it is also diagonalizable, and the transfor-

mation matrix T 
an be 
hosen su
h that

Λ = T−1WdT = diag(λ1, λ2, . . . , λn)

where

λ1 ≥ λ2 ≥ . . . ≥ λn

are the eigenvalues of the weighted adja
en
y matrix Wd. As a result, eq. (8.6) 
an

be rewritten as:





ż(t)

z̈(t)



 = (A⊗ In)





z(t)

ż(t)



+ (B ⊗ Λ)





z(tk)

ż(tk)



 ,

or alternatively, as





żi(t)

z̈i(t)



 = A





zi(t)

żi(t)



+ λiB





zi(tk)

żi(tk)





(8.7)

where i = 1, . . . , n, and zi(t) is the i-th element of ve
tor z(t).
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Now, if we de�ne

yi(t) = [zi(t) żi(t)]
T

(8.8)

the i-th mode of the system, we 
an say that its dynami
s follows equation:

ẏi(t) = Ayi(t) + λiByi(tk). (8.9)

Moreover, assuming τ(t) = t− tk, the above equation 
an be rewritten as:

ẏi(t) = Ayi(t) + λiByi(t− τ(t)). (8.10)

The above SDS is a spe
ial 
ase of a time varying delayed system where the delay

τ(t) is upper bounded by τ̄ , and its derivative is τ̇(t) = 1, while the delay swit
hes at

times t = tk, k = 0, 1, . . . ,∞.

We assume that the graph G des
ribing the 
ommuni
ation topology is 
onne
ted.

By Lemma 7.1 this implies that its largest eigenvalue is λ1 = 1. We 
all unitary

eigenvalue mode (UEM) the mode asso
iated with λ1 = 1.

Based on Lemma 7.2, we 
an 
hara
terize the dynami
s of the UEM. In parti
ular

it shows that the UEM 
onverges asymptoti
ally to a ve
tor whose �rst entry z1(t) is

equal to a 
onstant value and the se
ond entry ż1(t) is null. In other words

lim
k→∞

z1(tk) = γ, γ ∈ R. (8.11)

We now provide the main 
ontribution of this 
hapter, i.e., we 
hara
terize the


onditions on the design parameters kp, kd, τ̄ , λ̄ under whi
h the modes yi(t), i =

2, . . . , n, de�ned in eq. (8.8) are asymptoti
ally stable provided that λi ≤ λ̄ for all

i = 2, . . . , n.

Theorem 8.1 Consider the generi
 mode yi(t) de�ned in eq. (8.8) whose dynami
s

follows eq. (8.10) where λi is an un
ertain parameter in [−1, λ̄], and obviously λ̄ < 1.

If there exist positive de�nite matri
es P and R and square matri
es Q1 and Q2
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su
h that the following inequalities hold:

M1 =

















QT
1 (A− B)+

(A− B)TQ1

P −QT
1+

(A− B)TQ2

∗ −Q2 −QT
2 + τ̄R

















< 0 (8.12)

M2 =

















QT
1 (A+ λ̄B)+

(A+ λ̄B)TQ1

P −QT
1+

(A+ λ̄B)TQ2

∗ −Q2 −QT
2 + τ̄R

















< 0 (8.13)

M3 =





























QT
1 (A−B)+

(A−B)TQ1

P −QT
1+

(A− B)TQ2

τ̄QT
1B

∗ −Q2 −QT
2 τ̄QT

2B

∗ ∗ −τ̄R





























< 0

(8.14)
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M4 =





























QT
1 (A+ λ̄B)+

(A+ λ̄B)TQ1

P −QT
1+

(A+ λ̄B)TQ2

−τ̄ λ̄QT
1B

∗ −Q2 −QT
2 −τ̄ λ̄QT

2B

∗ ∗ −τ̄R





























< 0

(8.15)

then the system with dynami
s (8.10) is asymptoti
ally stable.

Proof: Consider the Lyapunov fun
tion

V (t, yi(t), yi(tk)) = yTi (t)Pyi(t)

+ (τ̄ − τ(t))

∫ t

tk

ẏi
T (s)Rẏi(s)ds.

(8.16)

It holds:

V̇ (t, yi(t), yi(tk)) = 2ẏTi (t)Pyi(t)

−
∫ t

tk

ẏi
T (s)Rẏi(s)ds+

(τ̄ − τ(t))
(

ẏi
T (t)Rẏi(t)− ẏi

T (tk)Rẏi(tk)
)

.

(8.17)

To provide an upper bound to (8.17) we use Jensen integral inequality:

t
∫

tk

ẏTi (s)Rẏi(s)ds ≤
t
∫

tk

ẏTi (s)dsR

t
∫

tk

ẏi(s)ds. (8.18)

De�ne ξi(t) =
1

τ(t)

t
∫

tk

ẏi(s)ds.

We get:

t
∫

tk

ẏTi (s)Rẏi(s)ds ≤ τ(t)ξTi (t)Rξi(t) (8.19)
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From the des
riptor method (Fridman and Shaked, 2002) we know:

[yi(t) ẏi(t)]





Q1

Q2



 ·

·((A+ λiB)yi(t)− τ(t)ξi(t)− ẏi(t)) = 0

(8.20)

Adding this to the right side of the inequality in (8.17) and using the inequality (8.19)

we obtain:

V̇ ≤ ηTi (t)Ψ(τ(t), λi)ηi(t)− (τ̄ − τ(t))ẏi
T (tk)Rẏi(tk),

where

η=[y
T
i (t) ẏTi (t) ξTi (t)]

T

and:

Ψ(τ(t), λi) =



































QT
1 Γi + ΓT

i Q1

P −QT
1

+ΓT
i Q2

−τ(t)λiQ
T
1B

∗
−Q2 −QT

2+

(τ̄ − τ(t))R
−τ(t)λiQ

T
2B

∗ ∗ −τ(t)R



































(8.21)

where

Γi = (A+ λiB).

Noti
e that (τ̄ − τ(t))ẏi
T (tk)Rẏi(tk) is always positive. Thus:

V̇ ≤ ηTi (t)Ψ(τ(t), λi)ηi(t), (8.22)

Hen
e to prove the stability one needs to prove that Ψ(τ(t), λi) is negative de�nite.
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Now de�ne the following matri
es:

Φi,0(λi) =











QT
1 Γi + ΓT

i Q1 P −QT
1 + ΓT

i Q2

∗ Q2 −QT
2 + τ̄R











.

(8.23)

and

Φi,τ̄ =























QT
1 Γi + ΓT

i Q1 P −QT
1 + ΓT

i Q2 −τ̄λiQ
T
1B

∗ Q2 −QT
2 −τ̄λiQ

T
2B

∗ ∗ −τ̄R























(8.24)

De�ne

η′i(t) = [yTi (t) ẏTi (t)]
T .

One 
an show that:

ηTi (t)Ψ(τ(t), λi)ηi(t) =

τ̄ − τ(t)

τ̄
η′

T

i (t)Φi,0η
′
i(t) +

τ(t)

τ̄
ηTi (t)Φi,τ̄ηi(t) =

τ̄ − τ(t)

τ̄
η′

T

i (t)
( λ̄− λi

λ̄+ 1
M1 +

λi

λ̄+ 1
M2

)

η′i(t)+

τ(t)

τ̄
ηTi (t)

( λ̄− λi

λ̄+ 1
M3 +

λi

λ̄+ 1
M4

)

ηi(t)

(8.25)

De�ne µτ =
τ̄ − τ(t)

τ̄
and µλ =

λ̄− λi

λ̄+ 1
.
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Then

τ(t)

τ̄
= 1− µτ ,

λi

λ̄+ 1
= 1− µλ and

ηTi (t)Ψ(τ(t), λi)ηi(t) =

µτη
′T
i (t)Φi,0η

′
i(t) + (1− µτ )η

T
i (t)Φi,τ̄ηi(t) =

µτη
′T
i (t)

(

µλM1 + (1− µλ)M2

)

η′i(t)+

(1− µτ)η
T
i (t)

(

µλM3 + (1− µλ)M4

)

ηi(t).

(8.26)

Sin
e µτ ∈ [0, 1] and µλ ∈ [0, 1], 
oe�
ients µτ , 1−µτ , µλ, and 1−µλ are positive.

Moreover, by equations (8.12) to (8.15) it follows that Ψ(τ(t), λi) is negative de�nite

and this proves the stability of the system. �

Consensus among agents

We now prove the 
onsensus of agents to a 
ommon position.

Theorem 8.2 Consider a MAS evolving a

ording to equation (8.1) where τ̄ is su
h

that 0 < tk+1 − tk < τ̄ < ∞. Assume that the undire
ted 
onne
ted graph G modeling

the network topology is su
h that the se
ond largest eigenvalue of its weighted adja-


en
y matrix is smaller than or equal to λ̄. If the LMIs de�ned in eq. (8.12) to (8.15)

are satis�ed, then there exists a γ ∈ R su
h that x(t) asymptoti
ally 
onverges to γ~1

and v(t) asymptoti
ally 
onverges to

~0.

Proof: By Theorem 8.1, if the LMIs in eq. (8.12) to (8.15) hold, all modes ex
ept

the UEM are asymptoti
ally stable, i.e., lim
t→∞

yi(t) = 0 and thus lim
t→∞

zi(t) = 0 for

i = 2, . . . , n. Furthermore, by Lemma 7.2, there exists a positive 
onstant γ ∈ R su
h

that lim
t→∞

z1(t) = γ.

Now, the �rst 
olumn of T is the eigenve
tor 
orresponding to the unitary eigen-

value of Wd, therefore it is equal to

~1 = [1 1 . . . , 1]T . Thus, being x(t) =

T [z1(t) 0 . . . 0]T , it is trivial to show that when t → ∞ it is xi(t) = xj(t), for all
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i, j = 1, . . . , n. The same 
al
ulations 
an be repeated for the velo
ities, thus proving

that for t → ∞, it is vi(t) = vj(t), i, j = 1, . . . , n. �

8.4 Simulation results

In this se
tion we present the results of some numeri
al simulations that show the

e�e
tiveness of the proposed 
onsensus proto
ol. To this aim we 
onsider a system

with 8 agents and assume kp = 1 and kd = 1.

In Fig. 8-1 the area under the 
urve shows the stability region in the λ̄− τ̄ plane.

Su
h an area has been 
omputed using the LMIs (8.12) to (8.15).

We now 
onsider a graph with adja
en
y matrix (randomly generated) equal to:

Ad =









































0 0 0 1 0 0 0 1

0 0 1 1 0 0 0 0

0 1 0 1 0 0 0 0

1 1 1 0 1 0 0 1

0 0 0 1 0 1 1 0

0 0 0 0 1 0 1 0

0 0 0 0 1 1 0 0

1 0 0 1 0 0 0 0









































. (8.27)

Fig. 8-2 shows the positions and velo
ities of the agents, while Fig. 8-3 shows

the sampled positions and velo
ities aperiodi
ally transmitted to neighbors by ea
h

agent.

8.5 Con
lusions and future work

In this 
hapter we 
onsidered a PD-like 
onsensus algorithm for a se
ond-order multi-

agent system where, at non-periodi
 sampling times, agents transmit to their neigh-

bors information about their position and velo
ity, while ea
h agent has a perfe
t

knowledge of its own state at any time instant. The main 
ontribution 
onsists in
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Figure 8-1: The stability area in the λ̄− τ̄ plane.
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Figure 8-2: Positions and velo
ities when the proposed proto
ol is implemented.
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Figure 8-3: Positions and velo
ities when the proposed proto
ol is implemented.
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proving 
onsensus to a 
ommon �xed point, based on LMIs veri�
ation, under the

assumption that the network topology is not known and the only information is an

upper bound on the 
onne
tivity.

Two are the main dire
tions of our future resear
h in this framework. First, we

want to 
ompute analyti
ally an upper bound on the value of the se
ond largest

eigenvalue of the weighted adja
en
y matrix that guarantees 
onsensus, as a fun
tion

of the other design parameters. Se
ond, we plan to study the 
ase where agents do

not have a perfe
t knowledge of their own state.
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9

Con
lusions and open issues

�Give me a lever long enough and a ful
rum on whi
h to pla
e it, and I shall

move the world.�

� Martin H. Fis
her

Di�erent 
onsensus problems in multi-agent systems have been addressed in this

thesis. They represent improvements with respe
t to the state of the art.

In the �rst part of the thesis in
luding Chapters 2, 3, and 4, the state of the art of

the representation and stability analysis of 
onsensus problems, time-delay systems,

and sampled-data systems have been presented.

Novel 
ontributions have been illustrated in Chapters 5-8. Parti
ularly, in Chapter

5 we reported the results of Zareh et al. (2013b), where we investigated the 
onsensus

problem for networks of agents with double integrator dynami
s a�e
ted by time-delay

in their 
oupling. We provided a stability result based on the Lyapunov-Krasovskii

fun
tional method and a numeri
al pro
edure based on an LMI 
ondition whi
h de-

pends only on the algebrai
 
onne
tivity of the 
onsidered network topologies, thus

redu
ing greatly the 
omputational 
omplexity of the pro
edure. Obviously, this re-

sult implies the existen
e of a minimum dwell time su
h that the proposed 
onsensus

proto
ol is stable for slow swit
hings between network topologies with su�
ient al-

gebrai
 
onne
tivity. Future work will involve a
tually 
omputing su
h a dwell time

by adopting a multiple Lyapunov fun
tion method and evaluating the worst 
ase
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onvergen
e rate. Furthermore we will evaluate novel 
onsensus proto
ols that 
on-

sider only delayed relative measurements instead of delayed absolute values of the

neighbors' state variables.

The results of Zareh et al. (2013a) were addressed in Chapter 6, in whi
h a 
on-

tinuous time version of a 
onsensus on the average proto
ol for arbitrary strongly


onne
ted dire
ted graphs is proposed and its 
onvergen
e properties with respe
t to

time delays in the lo
al state update are 
hara
terized. The 
onvergen
e properties

of this algorithm depend upon a tuning parameter that 
an be made arbitrary small

to prove stability of the networked system. Simulations have been presented to 
or-

roborate the theoreti
al results and show that the existen
e of a small time delay 
an

a
tually improve the algorithm performan
e. Future work will in
lude an extension

of the mathemati
al 
hara
terization of the proposed algorithm to 
onsider possibly

heterogeneous or time-varying delays.

In Chapter 7 we proposed a PD-like 
onsensus algorithm for a se
ond-order multi-

agent system where, at non-periodi
 sampling times, agents transmit to their neigh-

bors information about their position and velo
ity, while ea
h agent has a perfe
t

knowledge of its own state at any time instant. Conditions have been given to prove


onsensus to a 
ommon �xed point, based on LMIs veri�
ation. Moreover, we also

show how it is possible to evaluate an upper bound on the de
ay rate of exponential


onvergen
e of stable modes.

In Chapter 8, mainly based on our paper Zareh et al. (2014b), we 
onsidered the

same problem as in Chapter 7. The main 
ontribution 
onsists in proving 
onsensus

to a 
ommon �xed point, based on LMIs veri�
ation, under the assumption that the

network topology is not known and the only information is an upper bound on the


onne
tivity. Two are the main dire
tions of our future resear
h in this framework.

First, we want to 
ompute analyti
ally an upper bound on the value of the se
ond

largest eigenvalue of the weighted adja
en
y matrix that guarantees 
onsensus, as a

fun
tion of the other design parameters. Se
ond, we plan to study the 
ase where

agents do not have a perfe
t knowledge of their own state.
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Appendix A

Lapla
ian matrix
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In the mathemati
al �eld of graph theory, the Lapla
ian matrix, sometimes 
alled

admittan
e matrix, Kir
hho� matrix or dis
rete Lapla
ian, is a matrix representation

of a graph. Together with Kir
hho�'s theorem, it 
an be used to 
al
ulate the number

of spanning trees for a given graph. The Lapla
ian matrix 
an be used to �nd many

other properties of the graph. Cheeger's inequality from Riemannian geometry has

a dis
rete analogue involving the Lapla
ian matrix; this is perhaps the most impor-

tant theorem in spe
tral graph theory and one of the most useful fa
ts in algorithmi


appli
ations. It approximates the sparsest 
ut of a graph through the se
ond eigen-

value of its Lapla
ian. Given a simple graph G with n verti
es, its Lapla
ian matrix

L := (li,j)n×n is de�ned as:

L = ∆−A,

where ∆ is the degree matrix and A is the adja
en
y matrix of the graph. In the 
ase

of dire
ted graphs, either the in-degree or out-degree might be used, depending on

the appli
ation.

From the de�nition it follows that:

lij =



















deg(vi) ifi = j

−1 i 6= j and vi is adja
ent to vj

0 otherwise

where deg(vi) is degree of the vertex i.

The normalized Lapla
ian matrix is de�ned as (Bollobás, 1998):

L := D−1/2LD−1/2 = I −D−1/2AD−1/2 = (ℓ̃ij),

where:
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6

45

1 2

3

ℓ̃i,j :=



























1 if i = j and deg(vi) 6= 0

− 1√
deg(vi) deg(vj)

if i 6= j and vi is adja
ent to vj

0 otherwise.

We note that L 
an be written as

L = SS∗,

where S is the matrix whose rows are indexed by the verti
es and whose 
olumns

are indexed by the edges of G su
h that ea
h 
olumn 
orresponding to an edge e =

u, v has an entry 1/
√
du in the row 
orresponding to u, an entry 1/

√
dv in the row


orresponding to v, and has zero entries elsewhere. (As it turns out, the 
hoi
e of

signs 
an be arbitrary as long as one is positive and the other is negative.)

Here is a simple example of a labeled graph and its Lapla
ian matrix. Consider a

6-vertex graph as shown in �g. A
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In this example the weight matrix is

∆ =





























2 0 0 0 0 0

0 3 0 0 0 0

0 0 2 0 0 0

0 0 0 3 0 0

0 0 0 0 3 0

0 0 0 0 0 1





























,

The adja
en
y matrix

A





























0 1 0 0 1 0

1 0 1 0 1 0

0 1 0 1 0 0

0 0 1 0 1 1

1 1 0 1 0 0

0 0 0 1 0 0





























,

and the Lapla
ian matrix

L =





























2 −1 0 0 −1 0

−1 3 −1 0 −1 0

0 −1 2 −1 0 0

0 0 −1 3 −1 −1

−1 −1 0 −1 3 0

0 0 0 −1 0 1





























.

Some properties of Lapla
ian matrix is provided below (Bollobás, 1998; Anderson Jr

and Morley, 1985).

For an undire
ted graph G and its Lapla
ian matrix L with eigenvalues λ0 ≤ λ1 ≤
· · · ≤ λn−1:

• L is symmetri
.

• L is positive-semide�nite (that is λi ≥ 0 for all i). This 
an also be seen from
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the fa
t that the Lapla
ian is symmetri
 and diagonally dominant.

• L is an M-matrix (its o�-diagonal entries are non-positive, yet the real parts of

its eigenvalues are nonnegative).

• Every row sum and 
olumn sum of L is zero. Indeed, in the sum, the degree of

the vertex is summed with a "-1" for ea
h neighbor.

• In 
onsequen
e, λ0 = 0, be
ause the ve
tor v0 = (1, 1, . . . , 1) satis�es Lv0 = 0.

• The number of times 0 appears as an eigenvalue in the Lapla
ian is the number

of 
onne
ted 
omponents in the graph. The smallest non-zero eigenvalue of L

is 
alled the spe
tral gap.

• The se
ond smallest eigenvalue of L is the algebrai
 
onne
tivity (or Fiedler

value) of G.

• The Lapla
ian is an operator on the n-dimensional ve
tor spa
e of fun
tions

f : V → R, where V is the vertex set of G, and n = |V |.

• When G is k-regular, the normalized Lapla
ian is: L = 1
k
L = I − 1

k
A, where A

is the adja
en
y matrix and I is an identity matrix.

• For a graph with multiple 
onne
ted 
omponents, L is a blo
k diagonal ma-

trix, where ea
h blo
k is the respe
tive Lapla
ian matrix for ea
h 
omponent,

possibly after reordering the verti
es (i.e. L is permutation-similar to a blo
k

diagonal matrix).

• For a graph G on n verti
es, we have

∑

i

λi ≤ n.

with equality holding if and only if G has no isolated verti
es.

• For n ≥ 2,

λ1 ≤
n

n− 1
,
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with equality holding if and only if G is the 
omplete graph on n verti
es. Also,

for a graph G without isolated verti
es, we have

λn−1 ≥
n

n− 1
.
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Appendix B

Perturbation bounds on matrix

eigenvalues
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In this se
tion, the goal is the exposition of bounds for the distan
e between the

eigenvalues of two matri
es A and B in terms of expressions involving ‖A−B‖. The
prototype of su
h bounds is H. Weyl's inequalityBhatia (2007).

For several years the most prominent 
onje
ture on perturbation inequalities,

whi
h attra
ted the attention of several mathemati
ians, was that the inequality

d(eig(A), eig(B)) ≤ ‖A− B‖,

would be true for all normal matri
es A and B. d(eig(A), eig(B)) indi
ates the

maximum distan
e between the eigenvalues of matri
es A and B. In 1992, J. Holbrook

published a 
ounterexample to this with 3 × 3 matri
es. It is now known that the

inequality

d(eig(A), eig(B)) ≤ c‖A− B‖,

is true for all n × n normal matri
es A and B with c < 2.904 and that the best


onstant c here is bigger than 1.018.

We now give a brief summary of the major inequalities whi
h are proved (o

a-

sionally just stated) below. Let A,B be n × n Hermitian matri
es with eigenvalues

α1 ≥ . . . ≥ αn and β1 ≥ . . . ≥ βn respe
tively. Then

max lim
j

|αj − βj| ≤ ‖A− B‖.

Kahan (1975), showed that

d(eig(A), eig(B)) ≤ (γn + 2)‖A− B‖,

where γn is a 
onstant depending on the size n of the matri
es. Further they showed

that the optimal 
onstant for this inequality is bounded as

2

π
ln(n)− 0.1 ≤ γn ≤ log2(n) + 0.038.

Based on the results of an extended work, 
an see that if A is normal and B

170



arbitrary then

d(eig(A), eig(B)) ≤ (2n− 1)‖A−B‖.

If, in addition, B is Hermitian then the fa
tor (2n− 1) 
an be repla
ed by

√
2 in the

above inequality.

When A,B are arbitrary n× n matri
es the situation is not so simple. Results of

this type in the general 
ase were obtained by Ostrowski et al. (1960); Henri
i (1962);

Bhatia (2007). This latest result says that for A, B arbitrary n× n matri
es

d(eig(A), eig(B)) ≤ n(2M)1−1/n‖A−B‖,

where M = max(‖A‖, ‖B‖).
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Appendix C

Properties of weighted adja
en
y

matrix
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Let ν1 be a right eigenve
tor of Wd = ∆−1Ad then ∆−1Adν1 = λν1. Using the

transformation ν1 = ∆− 1

2 ν2 one gets:

∆−1Ad∆
− 1

2 ν2 = λ∆− 1

2ν2 → ∆− 1

2Ad∆
− 1

2 ν2 = λ∆− 1

2ν2

This shows that matri
es ∆− 1

2Ad∆
− 1

2
and Wd = ∆−1Ad have the same eigenvalues

and sin
e the former is a symmetri
 matrix, they possess real eigenvalues. From

Courant-Fis
her theorem (Horn and Johnson, 2012) the largest eigenvalue whi
h is a

simple one is a
hieved from the following equation:

λ1 = max{νT
2 ∆

− 1

2Ad∆
− 1

2 ν2}, νT
2 ν2 = 1.

Suppose the ve
tor ν†
2 is a solution to the above optimization problem. In order to

�nd the se
ond largest eigenvalue we must sear
h in a subspa
e whi
h is perpendi
ular

to the one in whi
h the largest eigenvalue is lo
ated:

λ2 = max{νT
2 ∆

− 1

2Ad∆
− 1

2ν2}, νT
2 ν2 = 1, νT

2 ν
†
2 = 0.

Sin
e ∆− 1

2
is diagonal we get:

λ2 = max{(∆− 1

2 ν2)
TAd(∆

− 1

2ν2)} = max{νT
1 Adν1)},

We know that the 
orresponding eigenve
tor of λ1 = 1 is parallel to 1 so ν†
2 = ∆− 1

21.

The 
onstraints be
ome:

n
∑

i=1

δiν
2
1i = 1,

n
∑

i=1

δiν1i = 0.

Noti
e that:

νT
1 Adν1 =

n
∑

i=1

n
∑

j=1

aijν1iν1j =
∑

(i,j)∈E

2ν1iν1j ,
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It should be noted that 2ν1iν1j = ν2
1i + ν2

1j − (ν1i − ν1j)
2
. Hen
e:

νT
1 Adν1 =

n
∑

i=1

δiν
2
1i −

∑

(i,j)∈E

(ν1i − ν1j)
2 = 1−

∑

(i,j)∈E

(ν1i − ν1j)
2,

Consequently

max{νT
1 Adν1} = max{1−

∑

(i,j)∈E

(ν1i − ν1j)
2} = 1−min{

∑

(i,j)∈E

(ν1i − ν1j)
2},

The minimum of the last term is a
hieved when the number of the edges set is the

minimum possible whi
h allows the graph to be 
onne
ted. Trivially su
h a graph is

a tree graph.

By looking at the matrix W̄ = ∆− 1

2Ad∆
− 1

2
we 
an see that it 
an be 
onverted to

the well known shape normalized Lapla
ian matrix, Ld, as follows:

Ld = I − W̄ ,

It 
an be easily observed that the eigenvalues of Ld are equal to 1−λ. In order to �nd

the se
ond largest eigenvalue of W̄ (orWd) we 
an 
he
k the se
ond largest eigenvalue

of Ld for tree graphs.

Now we introdu
e the following 
onje
ture whi
h gives a relationship between the

se
ond largest eigenvalue of the weighted adja
en
y matrix and the number of agents.

Conje
ture C.1 For a given number of agents, n, the se
ond largest eigenvalue of

the weighted adja
en
y matrix (Wd and equivalently that of W̄ ) over whole possible


onne
ted graphs is upper bounded by cos( π
n−1

).

The above 
onje
ture has been validated by many di�erent simulations, and we

are trying to �nd a proof for it.
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