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Abstract

This thesis is concerned with consensus algorithms, convergence, and stability of
multi-agent systems with time-delays. The main objectives of the thesis are

Utilize and define distributed consensus protocols for multi-agent systems with
first- or second-order dynamics so that the consensus state is reached.

Analyze the stability behavior of the designed system in the presence of delays
in the system, with focus on communication delays. The stability of the whole
system must be determined in a distributed manner, i.e., it must rely only on
some general properties of the corresponding communication network topology
of system such as algebraic connectivity.

Reduce the amount of the communications between the pairs of the agents by
using a sampled-data communication strategy. We suppose that the samplings
are aperiodic, and we provide some proofs for the stability and consensus of the
system.

For that purpose, this thesis is divided is three main parts:

The first part, including Chapters 2, 3, and 4, aims at providing a sufficiently
detailed state of the art of the representation and stability analysis of consensus
problems, time-delay systems, and sampled-data systems.

The second part, including Chapters 5, 6, 7, and 8 consists in a presentation of
several results that demonstrate the main contributions of this thesis.

Finally, the third part, including Chapter 9 concludes the thesis and addresses
the future directions and the open issues of this research.
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Introduction and structure of the

thesis

“Coming together is a beginning; Keeping together is progress; Working to-
gether is success.”

— Henry Ford

In the following chapter, we introduce the challenges that we face in distributed
control systems under different information exchange regimes. In Section 1.1, multi-
agent systems are introduced. In Section 1.2, we discuss power networks and dis-
tributed lightning systems as two motivating applications. Finally, in Section 1.3, we

outline the thesis.

1.1 Multi-agent systems

During the last decades, inspired by advances in small size computation, communi-
cation, sensing, and actuation, a growing interest of the control theory community in
distributed control has witnessed. Recent developments in control engineering, em-
bedded computing, and communication networks, have made it feasible to have a large
group of autonomous systems working cooperatively to perform complex tasks. These

technological advances require new ways of managing and decision making over the
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information flow generated by the single units. Especially, the design of control sys-
tems, i.e. a decision making process, has shifted from centralized approaches, where
all the information available is flooded in the network in a neighbor-to-neighbor data
exchange in some point of time and space and then decisions are dispatched through
the network, to decentralized and distributed approaches, where the information lo-
cally gathered by the units (agents) is processed in locus and control decisions are
taken cooperatively by the agents with no supervision. Figure 1-1 illustrates how
the information flows through the units in centralized, decentralized, and distributed
networked systems.

In order to describe the interactions among the different units in large scale sys-
tems, the notion of multi-agent systems(MASs) has been introduced. Each agent,
indeed, is assumed to have some peculiar dynamics, and the network or interconnec-
tions among the agents are then described by a graph called communication topology
graph(CTG). In a CTG each vertex indicates an agent, and the two agents that
can exchange information are being connected by an edge. Cooperative MASs can
be found in numerous applications like aircraft and satellite formations, intelligent
transportation infrastructures, flexible structures, and forest fire monitoring. A basic
common feature of multi-agent control systems is that they are composed of several
subsystems coupled through their dynamics, decision-making process, or performance
objectives. When designing these systems, it is often necessary to adopt a distributed
architecture, in which the decision maker (e.g., controller, network manager, social
planner) is composed of several interconnected units. Each local decision maker can
only access a subset of the global information (e.g., sensor measurements, model pa-
rameters) and actuate on a subset of the inputs in its neighborhood. This distributed
architecture is typically imposed since the central decision maker with full access to
information might become very complex and not possible to implement, or because
different subsystems may belong to competing entities that wish to retain a level of
autonomy.

Generally, the studies of MASs are oriented in the following directions:
1. Consensus and the like problems (synchronization and rendezvous).

18



2. Distributed formation and the like (flocking).
3. Distributed optimization.
4. Distributed estimation and control.

The above problems are not independent but actually may have overlapping in some
contexts.

One of the most attractive problems that appears in distributed control of MAS,
especially in coordination-type problems, is the consensus problem. The study of dis-
tributed control of MASs was first motivated by the work in distributed computing
(Lynch et al., 2008), management science (DeGroot, 1974), and statistical physics
(Vicsek et al., 1995). For example, robots need to arrive at an agreement so as to
accomplish some complicated tasks. Flocks of birds tend to synchronize during mi-
gration in order to resist aggression and reach their destinations. Investigations of
such problems are of significance in both theory and engineering applications. A
critical problem for coordinated control is to design appropriate protocols and algo-
rithms such that the group of agents can reach consensus on the shared information.
The idea behind consensus serves as a fundamental principle for the design of dis-
tributed multi-agent coordination algorithms. The aim is, given initial values (scalar
or vector) of agents, establish conditions under which, through local interactions and
computations, agents asymptotically agree upon a common value, or reach a consen-
sus. Due to its broad spectrum of applications, in the past years, a large attention
has been devoted to the consensus problem in MAS (Qin et al., 2011; Ren et al.,
2005a; Yu et al., 2010; Zareh et al., 2013a). Sensor networks (Yu et al., 2009; Olfati-
Saber and Shamma, 2005), automated highway systems (Ren et al., 2005a), mobile
robotics (Khoo et al., 2009), satellite alignment (Ren, 2007a) and several more, are
some of the potential areas in which a consensus problem is taken into account. In
the other words, Consensus is a state of a networked MAS in which all the agents
reach agreement on a common value by only sharing information locally, namely with
their neighbors. Several algorithms, often called consensus protocols, have been pro-

posed that lead a MAS to consensus. As an illustrative example, the coordination
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centralised decentralised distributed

Figure 1-1: A schematic view of different communication networks in MASs.

problem of mobile robots finds several applications in the manufacturing industry in
the context of automated material handling. The consensus problem in the context
of mobile robots consists in the design of local state update rules which allow the
network of robots to rendezvous at some point in space or follow a leading robot
exploiting only measurements of speeds and relative positions between neighboring
robots. To bridge the gap between the study of consensus algorithms and many phys-
ical properties inherited in practical systems, it is necessary and meaningful to study
consensus by considering many practical factors, such as actuation, control, com-
munication, computation, and vehicle dynamics, which characterize some important
features of practical systems. This is the main motivation to study consensus. An
overview of the research progress in the study of consensus is given in the next section
regarding stochastic network topologies and dynamics, complex dynamical systems,
delay effects, and quantization, which they were published mainly after 2006. Several
milestone results prior to 2006 can be found in Olfati-Saber and Murray (2004); Jad-
babaie et al. (2003); Moreau (2005); Tsitsiklis et al. (1986); Fax and Murray (2004);
Ren et al. (2005b); Lin et al. (2005). A full review of the related works is given in

the next chapters.

Time-delays exist in many real world processes due to the period of time it takes
for the events to occur. Delays are particularly evident in networks of interconnected
systems, such as supply chains and systems controlled over communication networks.
In these control problems, taking the delays into account is particularly important
for performance evaluation and control system’s design. It has been shown, indeed,

that delays in a controlled system (for instance, a communication delay for data
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acquisition) may have a very complicated nature: they may stabilize the system, or,
in the contrary, they may lead to deterioration of the closed-loop performance or
even instability, depending on the delay value and the system parameters. It is a fact
that delays have stabilizing effects, but this is clearly conflicting for human intuition.
Therefore, specific analysis techniques and design methods are to be developed to
satisfactorily take into account the presence of delays at the design stage of the control
system. On the other hand, time delay is ubiquitous in biological, physical, chemical,
and electrical systems (Bliman and Ferrari-Trecate, 2008; Tian and Liu, 2008). In
biological and communication networks, time delays are usually inevitable due to
the possible slow process of interactions among agents. It has been observed from
numerical experiments that consensus algorithms without considering time delays
may lead to unexpected instability. In Bliman and Ferrari-Trecate (2008); Tian and
Liu (2008), some sufficient conditions are derived for the first-order consensus in
delayed multi-agent systems. In Mazenc and Malisoff (2014), framework to prove
stability for nonlinear systems that may have delays and discontinuities, is studied.
In this thesis, we try to mathematically formulate the effects of such time-delays in

distributed control of complex networked systems.

In MAS, heavy computational loads can interrupt the sampling period of a certain
controller. A scheduled sampling period can be used to deal with this problem. In
such a case robust stability analysis with respect to the changes in the sampling time
is necessary. For interesting contributions in this area we address the reader to Ack-
ermann (1985); Fridman (2010); Zutshi et al. (2012) and the references therein. We
also mention the work by Fridman et al. (2004) who exploited an approach for time-
delay systems and obtained the sufficient stability conditions based on the Lyapunov-
Krasovskii functional method. Seuret (2012) and Fridman (2010) proposed methods
with better upper bounds to the maximum allowed sampling. Shen et al. (2012) stud-
ied the sampled-data synchronization control problem for dynamical networks. ()in
et al. (2010) and Ren and Cao (2008) studied the consensus problem for networks of
double integrators with a constant sampling period. In the latter two papers, even

though the authors use the sampled-data notion to introduce their novelty, they sup-
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pose that the communication and the local sensing occur simultaneously and this
simplifies the problem into a discrete state consensus problem. Xiao and Chen (2012)
and Yu et al. (2011) studied second-order consensus in multi-agent dynamical systems
with sampled position data. A comprehensive review of the works published in the
framework of consensus problems is given in the next chapter.

Now we give some examples to illustrate the importance of consensus problems in

practice.

1.2 Illustrative Examples

In this section we briefly introduce some examples to demonstrate the main problems
considered in the thesis. We revisit these examples in the subsequent to illustrate the

importance of the theoretical findings which will be developed in this thesis.

Commercial Lighting Control

In this section we introduce an example proposed by Sandhu et al. (2004). The appli-
cation of wireless sensor networks to commercial lighting control provides a practical
application that can benefit directly from artificial intelligence techniques. This ap-
plication requires decision making in the face of uncertainty, with needs for system
self-configuration and learning. Such a system is particularly well-suited to the eval-
uation of multi-agent techniques involving distributed learning. Generally, two-thirds
of generated electricity is for commercial buildings, and lighting consumes 40 per-
cent of this. An additional 45 percent energy savings are possible through the use
of occupant and light sensors (Wen and Agogino, 2008). The goal in this domain
is to leverage wireless sensor networks to create an intelligent, economical solution
for reducing energy costs, and overall societal energy usage, while improving indi-
vidual lighting comfort levels. There are also so many works in intelligent lighting
control involving building control that focuses on HVAC (heating, ventilation, and
air-conditioning), security or other aspects of building management. Several groups

have examined the use of MAS for building control.
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The proposed system consists of wireless sensor nodes located throughout the
physical environment for purposes of sensing (light, temperature, and occupancy),
actuation, and communication. Multiple sensors per node may be necessary for prac-
tical deployment; since a particular node may not need to use all sensors, or because
it may simply act as a communication relay - dynamic resource allocation may be
needed. All actuation will occur in ceiling-mounted, dimmable lighting ballasts. Pri-
mary design requirements are the inclusion of individual user preferences and the
ability for the user to override the intelligent system. The most desirable automatic
daylighting systems control overhead lighting but allow users to manually adjust desk-
top lighting (Yozell-Epstein, 2003). In order to maintain a practical system it will
be necessary to encode user preferences into the system and provide methods for

modifying these preferences.

The overall system for a building will functionally be decomposed into many
smaller pseudo-static subnets since only local sensing affects local lighting actuation
(Figure 1-2). With a single agent per node, these subnets still present multi-agent
coordination problems. Within this framework, single nodes may belong to multiple
adjacent subnets. While much sensor network literature predicts future networks on
the order of hundreds or thousands of nodes, practical solutions to the presented
problem can be accomplished with tens of nodes per subnet. At the same time that
this scale makes the problem presently tractable, it also provides barriers to successful

use of probabilistic techniques.

The primary goal of an MAS-based approach is to emulate the success of the de-
cisions in a distributed manner. In particular, the interaction among the agents must
emulate sensor validation and fusion techniques. Additionally, the decision making
process must account for factors such as user preferences and variable electricity pric-
ing. There are many challenges to the design and implementation of a successful MAS
for this application. Many of the stated challenges are more generally applicable to
designing MAS solutions for wireless sensor network problems. Simple agents are
necessary because of the limited memory and processing associated with each sensor

node. Limited radio communication among the nodes is necessary to conserve power.
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Location awareness and reconfiguration are necessary aspects of a robust system.
The system must be able to handle latency and time asynchronicity gracefully, due

to communication constraints.

Agent interaction is an essential aspect of this architecture. Because of the com-
munication and power constraints of sensor networks, agent interaction must be highly
efficient. Multiple agents will contribute to the control of a given lighting actuator. In
continuous domains such as this, control can be achieved by averaging agent actions
or taking the median of their actions. Additionally, confidence values can be used to
attenuate the global effects of aberrant local actions. When it is only necessary for
the actuator to take on a fixed number of values control can be achieved by voting
on what action to take. These methods allow a solution to be formed based on in-
formation from multiple sensors in disparate locations. They also add redundancy
and noise reduction allowing the system to overcome faulty sensors. Many have used
online learning techniques in automated building control systems, though the solu-
tions tend to require significant computation and consequently centralized support
(See for example Barnes (1995); Sharples et al. (1999); Chang and Mahdavi (2002)).
In order to avoid the need for centralization, this system must be able to learn in a
distributed manner; depending on the information available to the agents, supervised
and reinforcement learning are the two major classes of learning that apply to this

environment.

Synchronization in Power Networks

Consider the power network composed of two generators shown in Figure 1-3 from

Kundur et al. (1994) and Ghandhari (2000). We can model this power network as

01(t) = wi(t)’
in= — [(Pu(t) + wi(t)) — Ky'sin(01(t) — 6a(t)) — Ky 'sin(01(t)) — Dywn (t)]

My
(1.1)
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Figure 1-3: Schematic diagram of the power network

and

0a(t) = wi(t),
Wy = MLQ [(Pa(t) + wa(t)) — K13 sin(02(t) — 61(t)) — K3 'sin(6:(t)) — Daws(t)]
(1.2)
where 9;(t), Pi(t), and w;(t) are the phase angle of the terminal voltage, the
rotation frequency, the input mechanical power, and the exogenous input of generator
i, respectively. We assume that Pi(t) = Py + Myvi(t) and Pa(t) = Poa + Mavs(t),

where v (t) and vy(t) are the continuous-time control inputs of this system, and Pp;
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and Py, are constant references. Now, we can find the equilibrium point (47, 6;) of
the system and linearize it around this equilibrium. Furthermore, let us discretize
the linearized system by applying Euler’s constant step scheme with sampling time

AT, which results in

z(k+1) = Az(k) + Bu(k) + Hw(k), (1.3)
where ~ -
Ady (k)
Awq(k k k
ey = | Iy = | ] ey = | W
A(Sg(k) Ug(]{?) (A)g(k)
ACUQ(]{?)
[ 1 AT 0o 0 |
" 1 AT D, .
. 21 M, 23 |
0 0 1 AT
Aoz M
where
—AT (K5 cos(df — 63) + K; *cos(67))
a1 = M, )
ATK ., cos(6F — 63)
923 = .
M,
and _ _ _ -
0 0 0 0
1 0 1/M 0
B= o | Y
0 0 0 0
0 1 0 1/M;

Here, Adi(k), Ads(k), Aw;(k) and Awy(k) denote the deviation of the corresponding

parameters from their equilibrium points at time instances t = kAT.

It is interesting to achieve the optimal control of this power network. Whenever

we restrict our considerations to linear time-invariant controllers, the closed-loop per-
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formance measure is given by

J = 1Ty (2)]I2,

where T}, denotes the closed-loop transfer function from the exogenous input w(k) to
output vector y(k) = [z(k)T w(k)T]" in which z is the symbol for the one time-step
forward shift operator. Through minimizing such a cost function, we guarantee that
the frequency of the generators stays close to its nominal value without wasting too

much energy. For the design of nonlinear controllers, we consider the cost function

v

J = lim z(k) 2 (k) + u(k) u(k).

T—o00
0

B
Il

This cost function is equal to the Hs-norm of the closed-loop transfer function
for linear time-invariant systems excited by exogenous inputs that are elements of
a sequence of independently and identically distributed Gaussian random variables

with zero mean and unit covariance.

Let us assume that the impedance of the lines that connect each generator to the
infinite bus in Figure 1-3 varies over time. Define «;, ¢ = 1, 2, as the deviation of the
admittance K, ! from its nominal value. Notice that o; only appears in the model of
subsystem i. When designing the control laws, assume that the information regarding
the value of parameter «; is only available in the design of controller for subsystem .
One motivation for this can be that the generators are physically far apart from each

other.

The synchronization of coupled nonlinear power generators is a closely related
topic to the consensus of MASs. In the pioneering work by Pecora and Carroll (1990),
the synchronization phenomenon of two master-slave chaotic systems was observed
and applied to secure communications. Pecora and Carroll (1990) and Pecora and
Carroll (1998) addressed the synchronization stability of a network of generator by
using the master stability function method. Due to nonlinear dynamics, usually, only

sufficient conditions can be given for verifying the synchronization.
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1.3 Organization of the Dissertation

The dissertation is organized as follows: In Chapter 2, we study the consensus prob-
lem of multi-agent systems. A comprehensive review of the related works up to the
present is given. We discuss the first-order, the second-order, and the higher-order
consensus problems separately, and an overview to some more complicated problems
is also given. Some main results and progress in distributed multi-agent coordina-
tion, focusing on papers published in major control systems and robotics journals
since 2006. Distributed coordination of multiple vehicles, including unmanned aerial
vehicles, unmanned ground vehicles, and unmanned underwater vehicles, has been
a very active research subject studied extensively by the systems and control com-
munity. The recent results in this area are categorized into several directions, such
as consensus, formation control, optimization, and estimation. After the review, a
short discussion section is included to summarize the existing research and to propose
several promising research directions along with some open problems that are deemed
important for further investigations.

The purpose of Chapter 3 is to survey the recent results developed to analyze
the asymptotic stability of time-delay systems. Both delay-independent and delay-
dependent results are reported in this chapter. Special emphases are given to the
issues of conservatism of the results and computational complexity. Connections of
certain delay-dependent stability results are also discussed.

In Chapter 4, we consider the problem of stability of sampled-data systems.
Sampled-data systems are a form of hybrid model which arises when discrete mea-
surements and updates are used to control continuous-time plants. In this chapter,
we use a recently introduced Lyapunov approach to derive stability conditions for
both the case of fixed sampling period (synchronous) and the case of a time-varying
sampling period (asynchronous). This approach requires the existence of a Lyapunov
function which decreases over each sampling interval. To enforce this constraint, we
use a form of slack variable which exists over the sampling period, may depend on

the sampling period, and allows the Lyapunov function to be temporarily increasing.
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The resulting conditions are enforced using a new method of convex optimization of

polynomial variables known as Sum-of-Squares.

In Chapter 5, we address the problem of deriving sufficient conditions for asymp-
totic consensus of second order multi-agent systems with slow switching topology and
time delays. A PD-like protocol is proposed based on local interaction protocol and
the stability analysis is based on the Lyapunov-Krasovskii functional method. The
approach is based on the computation of a set of parameters that guarantee stability
under any network topology of a given set. A significant feature of this method is
that it does not require to know the possible network topologies but only a bound on

their second largest eigenvalue (algebraic connectivity).

In Chapter 6, we study the stability property of a consensus on the average al-
gorithm in arbitrary directed graphs with respect to communication/sensing time-
delays. The proposed algorithm adds a storage variable to the agents’ states so that
the information about the average of the states is preserved despite the algorithm
iterations are performed in an arbitrary strongly connected directed graph. We prove
that for any network topology and choice of design parameters the consensus on the

average algorithm is stable for sufficiently small delays.

In Chapter 7, consensus in second-order multi-agent systems with a non-periodic
sampled-data exchange among agents is investigated. The sampling is random with
bounded inter-sampling intervals. It is assumed that each agent has exact knowl-
edge of its own state at all times. The considered local interaction rule is PD-type.
The characterization of the convergence properties exploits a Lyapunov-Krasovskii
functional method, sufficient conditions for stability of the consensus protocol to a

time-invariant value are derived.

Chapter 8 studies consensus in second-order multi-agent systems with a non-
periodic sampled-data exchange among agents is investigated in this chapter. Sam-
pling is random with bounded inter-sampling intervals, and each agent has exact
knowledge of its own state at any time instant. A constant communication delay
among agents is also considered. A local PD-type protocol is used to bring the sys-

tem into an agreement state. Under the assumption that only the connectivity of the
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graph modeling the network topology is known, sufficient conditions for the stability
of the consensus protocol to a time-invariant value are derived based on LMIs.
Chapter 9 summarizes the contributions and explains the open issues.
In Appendices, the eigenvalue properties of Laplacian matrix, perturbation bounds
on matrix eigenvalues, and the eigenvalue properties of weighted adjacency matrix is

addressed
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Consensus problems

“Those who know that the consensus of many centuries has sanctioned the
conception that the earth remains at rest in the middle of the heavens as its
center, would, I reflected, regard it as an insane pronouncement if I made

the opposite assertion that the earth moves.”

— Nicolaus Copernicus

At the first glance, the word consensus may bring political issues into mind.
According to Merriam-Webster, consensus, is a general agreement about something,
an idea or opinion that is shared by all the people in a group. So two key features
determine the definition of it: first it happens among a group, and second shared
opinions among the group are necessary. We see that in the systems framework, the

same features must be held.

In this chapter, the consensus problem is introduced. In the following section we
introduce the main definitions of a consensus problem. In Section 2.2, we review the
existing literature of consensus problem in systems whose dynamical equations are of
first-order. Similarly in Section 2.3, consensus problems in systems with second-order
dynamics, and in Section 2.4 systems with dynamics of an order higher than two,
are reviewed. In Section 2.5, consensus in systems with complex dynamics (generally

complexity indicates nonlinearity), is skimmed.
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2.1 Introduction

By the help of embedded computational resources in autonomous vehicles, many civil-
ian and military applications profit enhanced operational capability and greater effi-
ciency through cooperative teamwork compared to those in which the vehicles perform
single tasks. Some examples of such applications include space-based interferometers,
surveillance, and reconnaissance systems, and distributed sensor networks. In order
to cover all these applications, various cooperative control capabilities need to be de-
veloped, rendezvous, attitude alignment, flocking, foraging, task and role assignment,
payload transport, air traffic control, and cooperative search. Generally, cooperative
control for MAS can be categorized as either formation control problems like the
control protocols used for mobile robots, unmanned air vehicles (UAVs), autonomous
underwater vehicles (AUVs), satellites, spacecraft, and automated highway systems,
or non-formation based cooperative control problems such as task assignment, role
assignment, air traffic control, timing, and search. There are several challenges in the-
oretical and practical in implementation of cooperative control in MAS. An effective
cooperative control strategy must take into account numerous issues, including the
definition and management of shared information among a group of agents to facili-
tate the coordination of these agents. Generally the shared information may take the
form of common objectives, common control algorithms, relative position and velocity
information, or an image. Information exchange among the agents, which is necessary
for cooperation, can be shared in a variety of ways, e.g., relative position sensors may
enable vehicles to construct state information for other vehicles, knowledge may be
communicated between vehicles using a wireless network, or joint knowledge might
be preprogrammed into the vehicles before a mission begins. Obviously, several un-
predicted issues may disturb the system, and hence in an effective cooperative control
strategy, a team of agents must be able to respond to the new conditions that are
sensed as a cooperative task. As the environment changes, the agents on the team

must be in agreement as to what changes took place.

Cooperative control of multiple autonomous vehicles poses significant theoretical
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and practical challenges. First, the research objective is to develop a system of sub-
systems rather than a single system. Second, the communication bandwidth and con-
nectivity of the team are often limited, and the information exchange among vehicles
may be unreliable. It is also difficult to decide what to communicate and when and
with whom the communication takes place. Third, arbitration between team goals
and individual goals needs to be negotiated. Fourth, the computational resources
of each individual vehicle will always be limited. Recent years have seen significant
interest and research activity in the area of coordinated and cooperative control of
multiple autonomous vehicles (e.g.,Anderson and Robbins (1998); Balch and Arkin
(1998); Beard et al. (2001)). Much of this work assumes the availability of global
team knowledge, the ability to plan group actions in a centralized manner, and/or
perfect and unlimited communication among the vehicles. A centralized coordination
scheme relies on the assumption that each member of the team has the ability to com-
municate to a central location or share information via a fully connected network. As
a result, the centralized scheme does not scale well with the number of vehicles. The
centralized scheme may result in a catastrophic failure of the overall system due to
its single point of failure. Also, real-world communication topologies are usually not
fully connected. In many cases, they depend on the relative positions of the vehicles
and on other environmental factors and are therefore dynamically changing in time.
In addition, wireless communication channels are subject to multi- path, fading and
drop-out. Therefore, cooperative control in the presence of real-world communication

constraints becomes a significant challenge.

When multiple vehicles agree on the value of a variable of interest, they are said
to have reached consensus. Information consensus guarantees that vehicles sharing
information over a network topology have a consistent view of information that is crit-
ical to the coordination task. To achieve consensus, there must be a shared variable
of interest, called the information state, as well as appropriate algorithmic methods
for negotiating to reach consensus on the value of that variable, called the consen-
sus algorithms. The information state represents an instantiation of the coordination

variable for the team. Examples include a local representation of the center and shape
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of a formation, the rendezvous time, the length of a perimeter being monitored, the
direction of motion for a multi-vehicle swarm. By necessity, consensus algorithms are
designed to be distributed, assuming only neighbor-to-neighbor interaction between
vehicles. Vehicles update the value of their information states based on the infor-
mation states of their neighbors. The goal is to design an update law so that the

information states of all of the vehicles in the network converge to a common value.

Consensus algorithms have a historical perspective by Borkar and Varaiya (1982);
Chatterjee and Seneta (1977); DeGroot (1974); Gilardoni and Clayton (1993); Lynch
(1996); Tsitsiklis et al. (1986), to name a few, and have recently been studied exten-
sively in the context of cooperative control of multiple autonomous vehicles (Fax and
Murray, 2004; Jadbabaie et al., 2003; Lin et al., 2004; Moreau, 2005; Olfati-Saber
and Murray, 2004; Ren et al., 2005b). Some results in consensus algorithms can be
understood in the context of connective stability (Sﬂjak, 1974). Consensus algorithms
have applications in rendezvous (Beard et al., 2006; Dimarogonas and Kyriakopoulos,
2007; Lin et al., 2004; Lin and Jia, 2011; Martinez et al., 2005; Sinha and Ghose, 2006;
Smith et al., 2005, 2007), formation control (Fax and Murray, 2004; Lafferriere et al.,
2005; Lawton et al., 2003; Lin et al., 2005; Marshall et al., 2006; Porfiri et al., 2007;
Ren, 2007b), flocking (Cucker and Smale, 2007; Dimarogonas et al., 2006; Lee and
Spong, 2007; Moshtagh and Jadbabaie, 2007; Olfati-Saber, 2006; Regmi et al., 2005;
Tanner et al., 2007; Veerman et al., 2005), attitude alignment (Lawton and Beard,
2002; Ren, 2007a,c; Ren and Beard, 2004), perimeter monitoring (Casbeer et al.,
2006), decentralized task assignment (Alighanbari and How, 2005), and sensor net-
works (Yang et al., 2008; Olfati-Saber, 2005; Olfati-Saber and Shamma, 2005; Spanos
et al., 2005; Xiao et al., 2005). The basic idea of a consensus algorithm is to impose
similar dynamics on the information states of each vehicle. If the communication
network among vehicles allows continuous communication or if the communication
bandwidth is sufficiently large, then the information state update of each vehicle
is modeled using a differential equation. On the other hand, if the communication
data arrive in discrete packets, then the information state update is modeled using a

difference equation.
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2.2  First-order Consensus

This section overviews fundamental consensus algorithms in which a scalar infor-
mation state is updated by each vehicle using, respectively, a first-order differential
equation and a first-order difference equation.

Suppose that there are n vehicles in the team. The team’s communication topology
can be represented by directed graph G = (V,€) where V = {1,...,n} is the set of
nodes (vehicles) and &€ C {VxV} is the set of edges. An edge (i, 7) € € exists if there is
a communication channel between vehicles ¢ and j. Self loops (7,7) are not considered.
The set of neighbors of agent i is denoted by N; ={j : (j,i) € &;j=1,...,n}. Let
d; = |NV;| be the degree of agent ¢ which represents the total number of its neighbors.

The topology of graph G is encoded by the so-called adjacency matriz, an n X n
matrix A, whose (i, j)-th entry is equal to 1 if (¢, j) € &€, 0 otherwise. Obviously in
an undirected graph matrix A, is symmetric.

We denote A = diag(dy,...,0,) the diagonal matrix whose non-null entries are
the degrees of the nodes. Denote A;, and A,,;, corresponding to in- and out- degree
matrices respectively, in a directed graph. We now define the Laplacian matrix as
L = A — A. The in-Laplacian and out-Laplacian matrices of a directed graph are
defined as L;, = A;, — Ay and L,y = Ao — Ag. Due to the Gershgorin Circle
Theorem applied to the rows of the in-Laplacian or the columns of the out-Laplacian
it is possible to show that both matrices have eigenvalues with non-negative real
part for any graph G. By construction matrices L;, and L,,; have at least one null
eigenvalue because either the row sum or the column sum is zero. Furthermore, let
1, and 0, be respectively the n-elements vectors of ones and zeros, then L;,1 = 0
and 17L,,, = 0. If G is strongly connected, i.e., there exists a directed path that
connects any pair of nodes in V), then the algebraic multiplicity of the null eigenvalue
of both L;, and L,,; is one. More details about the characteristics of Laplacian matrix
is given in Appendix A.

Let z; be the information state of the ¢ th agent. The information state repre-

sents information that needs be coordinated among agents (Ren et al., 2005a). The
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information state may be agent position, velocity, oscillation phase, decision variable
The system considered in this section is similar to the one presented by Ren et al.
(2005b). There are n agents each with state vectors z; € R. for agents i = 1,...,n

having single integrator dynamics:

(1) = wi(t). (2.1)

As described by Olfati-Saber and Murray (2004), a continuous-time consensus

protocol can be summarized as

() = ui(t) = = Y () (2(t) — 25(t)) (2:2)

JEN;(?)

where N;(t) represents the set of agents whose information is available to agent ¢
at time ¢ and 7;;(t) denotes a positive time-varying weighting factor. In other words,
the information state of each agent is driven toward the states of its (possibly time-
varying) neighbors at each time. Note that some agents may not have any information
exchange with other agents during some time intervals. The continuous-time linear
consensus protocol (2.2) can be written in matrix form as @(t) = —Lx(t), where L is
the graph Laplacian and x = |21, ..., 1,]7.

Similarly, the discrete-time form of the equation, as used by Ren (2007a) can be

given as

z(k+1)=— Y Byk)z(k) (2.3)

JEN;(k)Ui
where 3 iy 0 Bij(k) = 1, and B;; > 0 for j € Nj(k) Ui. In other words, the next
state of each agent is updated as the weighted average of its current state and the
current states of its (possibly time-varying) neighbors. Note that an agent simply
maintains its current state if it has no information exchange with other agents at a
certain time step. The discrete-time linear consensus protocol (2.3) can be written in
matrix form as z(k+1) = P(k)z(k) , where P(k) is a stochastic matrix with positive

diagonal entries.

36



A MAS with n agents is said has reached consensus if tlim |xi(t) —z;(t)|]| = 0, for
—00
Vi # j.
In the following section a review of some first-order consensus problems with

different conditions, are reviewed and the convergence properties are given.

Convergence Analysis

Below, we briefly review the existing results on well known first order consensus

problems.

e Time-invariant Information Exchange Topology

Under a time-invariant information exchange topology, it is assumed that if
one agent can access another agent’s information at one time, it can obtain
information from that agent all the time. For the continuous-time consensus
protocol (2.2), it is straightforward to see that L1 = 0 and all eigenvalues of
the Laplacian matrix L have non-negative real parts from Gershgorin’s disc
theorem. If zero is a simple eigenvalue of L , it is known that x(¢) converges
to the kernel of L | that is, span{1}, which in turn implies that tli>r(r)1o ||z (t) —
2,0 = 0.

It is well-known that zero is a simple eigenvalue (Chung, 1997). However, this
is only a sufficient condition rather than a necessary one. We have the formal
statement that zero is a simple eigenvalue of the Laplacian matrix if and only if
its digraph has a spanning tree. This conclusion was shown by Ren et al. (2005a)
by an induction approach while the same result is proven independently by Lin
et al. (2005) by a constructive approach. As a result, under a time-invariant
information exchange topology, the continuous-time protocol achieves consensus
asymptotically if and only if the information exchange topology has a spanning

tree.

For the discrete-time consensus protocol (2.3), it can be shown that all eigen-
values of D that are not equal to one are within the open unit circle from

Gershgorin’s disc theorem. If one is a simple eigenvalue of P and all other
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eigenvalues have module less than one, it is known that klim P¥ =107, where
—00

v is a column vector. This implies that kh_)rglo |zi(k) — x;(k)|| — O.

The well-known Perron-Frobenius theorem states that one is a simple eigenvalue
of a stochastic matrix if the graph of the matrix is strongly connected. Similar
to the continuous-time case, this is only a sufficient condition rather than a nec-
essary one. Horn and Johnson (2012) showed that for a nonnegative matrix with
identical positive row sums, the row sum of the matrix is a simple eigenvalue
if and only if the digraph of the matrix has a spanning tree. In other words, a
matrix may be reducible but retains its spectral radius as a simple eigenvalue.
Furthermore, if the matrix has a spanning tree and positive diagonal entries,
it is shown that the spectral radius of the matrix is the unique eigenvalue of
maximum modulus. We have the formal statement that one is a unique eigen-
value of modulus one for the stochastic matrix P if and only if its digraph has
a spanning tree (Lafferriere et al., 2005). As a result, under a time-invariant
information exchange topology, the discrete-time protocol achieves consensus
asymptotically if and only if the information exchange topology has a spanning

tree.

Time-varying Information Exchange Topology

Consider an MAS of n agents that communicate with each other and need to
agree upon a certain objective of interest or perform synchronization. Due to
the fact that the nodes of the network are moving, it is easy to imagine that
some of the existing communication links can fail simply due to the existence
of an obstacle between two agents. The opposite situation can arise when new
links between two agents are created because the agents come to an effective
range of detection with respect to each other. In terms of the network topology,
this means that a certain number of edges are added or removed from the graph.
Here, we are interested to investigate this in case of a network with switching

topology G, whether it is still possible to reach a consensus, or not.

Based on a valid common Lyapunov function for the disagreement dynamics,
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Olfati-Saber and Murray (2004) proved that, for any arbitrary switching signal,
solution of the switching system (2.2) globally asymptotically converges to the

average of the initial value (i.e., average-consensus is reached).

Communication delay

In the case that information is exchanged between agents through communica-
tions, time delays of the communication channels need to be considered. Let
7;; denote the time delay for information communicated from agent j to agent

1. The continuous-time consensus protocol is now denoted by:

i) = wi(t) = — D> Yi(t) (wilt = 7ii) — w5t — 7)) (2.4)

FEN;(t)
As it is shown by Olfati-Saber and Murray (2004), in the case 7,; = 7; = 7 €
R>?, if the communication topology is fixed, undirected, and connected, average-

consensus is achieved if and only if 7 € [0, |, where §,,,,; denote the

T
20maz
maximum degree of the corresponding communication topology graph. Consider
another case where the time delay only affects the information state that is
being transmitted. This implies that 7; = 0 in (2.4). Now if 7; = 7 € R,
and the communication topology is directed and switching, the consensus result

for switching topologies described previously is still valid for an arbitrary time

delay 7.

2.3 Second-Order Consensus

All the previously mentioned references focus on consensus protocols that take the

form of first-order dynamics. In reality, equations of motion of a broad class of vehi-

cles require second-order dynamic models. For example, some vehicle dynamics can

be feedback linearized as double integrators, e.g. mobile robot dynamic models. In

the case of first-order consensus protocols, the final consensus value is a constant. In

contrast to the constant final consensus value, it might be proper to derive second-
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order consensus protocols such that some information states converge to a consis-
tent value (e.g. position of the formation center) while others converge to another
consistent value (e.g. velocity of the formation center). However, the extension of
consensus protocols from first order to second order is nontrivial. In the paper of
Ren (2007¢), formation keeping algorithms taking the form of second-order dynamics
are addressed to guarantee attitude alignment, agreement of position deviations and
velocities, and/or collision avoidance in a group of vehicles.

In a very general form, a second-order MAS can be described by the following

dynamics:

(2.5)

Second-order consensus in the multi-agent system (2.5) is said to be achieved if

for any initial conditions it holds:

lim |z;(¢t) — z;(t)| =0
HfO' O-ml =0, £ (2.6)
lim |v;(t) —v;(t)] =0

t—o0

2.4 Higher-order consensus

Recently, increasing interest has turned to MASs with high-order or/and heteroge-
neous dynamical agents. Wang et al. (2008) and Seo et al. (2009) discussed the
solvability of the consensus seeking problem for systems of identical agents in net-
works without communication delays, and proved that for such systems the consensus
problem is solvable if the interconnection topology has a globally reachable node. Ar-
cak (2007) developed a general framework based on passivity theory for the design
of group coordination control of systems with nonlinear dynamical agents. Using the
small-gain method, Lee and Spong (2006) proposed a sufficient consensus condition
for high-order heterogeneous systems with diverse communication delays.

Based on the general Nyquist stability criteria and an S-hull technique, Lestas

and Vinnicombe (2010) also considered high-order heterogeneous systems with di-
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verse communication delays, and proposed frequency-domain conditions which are
less conservative than small-gain-like or passivity-like results. It should be noted that
only the constant-consensus problem has been considered in the above-mentioned ref-
erences on high-order heterogeneous MASs, and the main focus of these references is
on the stability instead of the existence of the set of consensus solutions. Actually,
the existence of a constant consensus depends only on the connectivity of the inter-
connection topology of MASs (Ren et al., 2005a). The values of self delays introduced
by agents in consensus protocols may lead to instability of the consensus solution (see
Papachristodoulou et al. (2010)) but they do not influence the existence of a constant
consensus solution.

However, it is possible for second-order or high-order MASs to reach not only
constant consensus solutions but also dynamical consensus solutions. Such dynamical
consensus solutions will be also called high-order consensus solutions in this section.
An interesting problem for high-order MASs is under which condition the high-order
consensus solution exists. The problem has not been fully addressed in currently
existing literature. It can be shown that an inappropriate value of self-delay may lead
to the in-existence of a high-order consensus solution. To guarantee the existence of
high-order consensus solutions, currently existing consensus protocols introduce self-
delays which are exactly equal to the corresponding communication delays (see, e.g.,
Hu et al. (2007)). In practice, however, communication delays can be estimated only
approximately. Therefore, a high-order consensus protocol which does not depend on
exact values of communication delays is of great importance for practical application

of the consensus theory.

2.5 Consensus in Complex systems

In the mathematical modeling of physical systems, it is an unavoidable dilemma: use a
more accurate model which is harder to manage, or work with a simpler model which
is easier to manipulate but with less confidence? A complex system is a damped,

driven system (for example, a harmonic oscillator) whose total energy exceeds the
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threshold for it to perform according to classical mechanics but does not reach the
threshold for the system to exhibit properties according to chaos theory.

A topic that is closely related to the consensus of MAS, is the synchronization of
coupled nonlinear oscillators. In the pioneering work by Pecora and Carroll (1990),
the synchronization phenomenon of two master-slave chaotic systems was observed
and applied to secure communications. Lu and Chen (2006) and Pecora and Carroll
(1998) addressed the synchronization stability of a network of oscillators by using the
master stability function method. Recently, the synchronization of complex dynam-
ical networks, such as small world and scale-free networks, has been widely studied
(see Chen (2008); Duan et al. (2009); Kocarev and Amato (2005); Lu et al. (2008);
Porfiri et al. (2008); Wang and Chen (2002); Wu et al. (2009)) and the references
therein). Due to nonlinear node dynamics, usually, only sufficient conditions can be
given for verifying the synchronization.

Below, we present some examples which show some applications of consensus

algorithms in complex dynamical systems.

Example 2.1 (Bullo et al., 2009) The following models of control systems are com-
monly used in robotics, beginning with the early works of Dubins (1957), and Reeds
and Shepp (1990). Figure 2-1(left) show a two-wheeled vehicle and a four-wheeled
vehicle, respectively. The two-wheeled planar vehicle is described by the dynamical

system

i(t) =vecosO(t) H(t) =wvsinb(t) O(t) = w(t), (2.7)

with state variables * € R,y € R and § € S' describing the planar position and
orientation of the vehicle, and with controls v and w, describing the forward linear
velocity and the angular velocity of the vehicle.

A group of such robots as shown in Figure 2-1 (right), is an example of MAS. W

Example 2.2 (Bullo et al., 2009) Communication congestion: Omni-directional wire-

less transmissions interfere. Clear reception of a signal requires that no other signals
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Figure 2-1: Two-wheeled robots in a plane in Example 2.2 (left). A multi-robot
networked system (right).

are present at the same point in time and space. In an ad hoc network, node i receives
a message transmitted by node j only if all other neighbors of © are silent. In other
words, the transmission medium is shared among the agents. As the density of agents
increases, so does wireless communication congestion. The following asymptotic and
optimization results are known.

First, for ad hoc networks with n uniformly randomly placed nodes, it is known
(Gupta and Kumar, 2000) that the mazimum-throughput communication range r(n) of
each node decreases as the density of nodes increases; in d dimensions, the appropriate
scaling law is r(n) € O(((log(n)/n)))a. This is referred to as the connectivity regime
in percolation theory and statistical mechanics. Using the k-nearest neighbor graph
over uniformly placed nodes, the analysis by Xue and Kumar (200]) suggests that the
minimal number of neighbors in a connected network grows with log(n). Second, a
growing body of literature (Santi, 2005; Lloyd et al., 2005) is available on topology
control, that is, on how to compute transmission power values in an ad hoc network so
as to minimize energy consumption and interference (due to multiple sources), while
achieving various graph topological properties, such as connectivity or low network

diameter. [ |

Several authors have devised new strategies to address different consensus prob-
lems, but still there are so many open problems left in this area. In this thesis, we

study first- and second-order MASs. Our focus is especially on consensus problems in
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systems with time-delays and sampled-data communications. We study both directed
and undirected communications. In the next two chapters, we study the time-delay
systems and sampled-systems and we describe the tools we use in order to analyze

the MASs.

2.6 Conclusions

In this chapter we reviewed different existing consensus problems and characterized
some important notions in multi agent system control framework. The agreement
and stability conditions for a diversity of conditions in first order, second order, and
high order and complex systems were skimmed. Some illustrative example showed

the applications and importance of MASs.
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Time-delay systems

“You may delay, but time will not.”

— Benjamin Franklin

Delay, is defined as a situation in which something happens later than it should in
Merriam-Webster. Delay is unavoidable in almost every real-world phenomena. It is
well known that even a very small delay may cause big disasters. Some milliseconds
of delay would be enough to happen a big car crash in highway. Delay, also can
have stabilizing effects. For example, in wild water canoeing, the athlete should not
immediately react to every sudden change. Instead, his or her reactions must be with
a delay so that the water’s behavior is better predictable. It is now clear that why
delay analysis is so important. In this chapter, we provide useful tools to analyze the

stability of time-delay systems.

3.1 Introduction

Time-delay systems (TDSs) belong to the class of functional differential equations, as
opposed to ordinary differential equations, and represent a class of infinite-dimensional
systems widely used to describe propagation and transport phenomena or population
dynamics. They are also called hereditary or with memory, deviating arguments, af-

tereffects, post actions, dead-time, or time-lag (Hammarstrom and Gros, 1980). Time

45



delays exist in various engineering systems such as long transmission lines in pneu-
matic systems, nuclear reactors, rolling mills, hydraulic systems and manufacturing
processes. In economics, delays appear in a natural way due to decisions and effects
(investment policy, commodity markets evolution: price fluctuations, trade cycles) are
separated by some (needed analysis) time interval. In communication, data transmis-
sion is always accompanied by a non-zero time interval between the initiation- and
the delivery-time of a message or signal. In other cases, the presence of a delay in a
system may be the result of some essential simplification of the corresponding process

model.

A famous example of the TDSs can be seen in regulating hot water on the shower.
Suppose that someone is under the shower aiming at having a pleasant water temper-
ature Ty. Due to the dynamics, it would take a while until the guy can see the effect
of faucet change on the temperature after few seconds. Indeed the person receives
the information with a delay and this can cause some unwanted actions like too warm
or too cold water, or , if we look at it as a system theory, this may lead the system
to an unstable condition. A simple solution to encounter this specific problem, can
be to wait for few seconds. However, generally in more complex systems, some more
comprehensive might be needed to avoid instability. Let T'(f) denote the water tem-
perature in the mixer output and let 7 be the constant time needed by the water
to go from the mixer output to the person’s head . Assume that the change of the
temperature is proportional to the angle of rotation of the handle, whereas the rate
of rotation of the handle is proportional to T'(t) — Ty. At time t the person feels
the water temperature leaving the mixer at time ¢ — 7, which results in the following

equation with the constant delay 7:

T(t) = —k(T(t—7)-T,), keR. (3.1)

Due to its complexity, the problem of stability analysis and control of TDS has
attracted much attention during the past years, which is of both practical and theo-

retical importance. Various types of TDS have been investigated and a great number
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of results on TDSs have been reported in the literature (see, e.g. Chen and Latch-
man (1995), Chu (1997), Hui and Hu (1997), Cao et al. (1998a), Su and Chu (1999),
Hmamed (2000), Shi et al. (2000), Park (2001),Fridman and Shaked (2002), Lu et al.
(2003),Niu et al. (2005), Zhou and Li (2005), Chen et al. (2006), Shi et al. (2007),
Chen et al. (2010a), Gouaisbaut and Ariba (2011),Goebel et al. (2011),Chesi et al.
(2012), Bekiaris-Liberis and Krstic (2013a,b), Feyzmahdavian et al. (2014), Mazenc
and Malisoff (2014), and the references cited therein).

In the following section, we briefly describe a history about TDSs which has been

taken mainly from Schoen (1995).

3.2 History

Studying retarded elasticity effects, Boltzman in 1874, presented one of the earliest
studies of TDS. His publication, however, did not point out clearly the need of the
past states for a realistic modeling of retarded elasticity effects. In the early 1900’s
a controversy arose over the necessity of specifying the earlier history of a system
in order to predict its future evolution. This view stood in contradiction with the
Newtonian tradition which claimed that the knowledge of the present values of all
relevant variables should suffice for prediction. Picard in 1907 took the view that the
past states are important for a realistic modeling. He analyzed a system with essential
hidden variables, not themselves accessible to observation. He claimed that the pre-
diction of that system requires also the knowledge of the earlier values of the hidden
variables. His paradigm for that situation was a pendulum clock whose descending
weight is encased. As long as we cannot observe the present position of the weight
and its rate of descent, a prediction of the future motion of the clock hand requires
the knowledge of when the clock was last wound. Systematic work with mathematical
models on medicine and biology began with the epidemiological studies of Ross in
1911. Ross was laying the equations. His results were extended and improved in the
1920’s. The need for delays was emphasized both by Sharpe and Lotka (1978), who

discussed the discrete delays due to the incubation times in the Ross malaria epidemic
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model. From the very beginning of their ecological investigations, Lotka realized that,
in order to achieve some degree of realism, delayed effects had to be explicitly taken
into account. Lotka’s main previous interest had been in physical chemistry, with
special emphasis on the oscillations of chemical reactions. He had also dealt with
demographic problems and with evolutionary theory. Volterra’s previous interests
were mostly in mechanics, including irreversible phenomena and elasticity. The latter
had led him to develop the theory of functionals and integral-differential equations,
for which he became well known. He also attempted to introduce a concept of energy
function to study the asymptotic behavior of the system in the distant future. Mi-
norsky (1943) pointed out very clearly the importance of the delay considerations in
the feedback mechanism. The great interest in control theory during those and later
years has certainly contributed significantly to the rapid development of the theory

of differential equations with dependence on the past state.

While it became clear a long time ago that retarded systems could be handled
as infinite dimensional problems, the paper of Myshkis (1949) gave the first correct
mathematical formulation of the initial value problem. Furthermore he later intro-
duced a general class of equations with delayed arguments and laid the foundation

for a general theory of linear systems.

Subsequently, several books appeared which presented the current knowledge on
the subject and which greatly influenced later developments. In their monograph at
the Rand Corporation (Bellman et al., 1953) pointed out the diverse applications of
equations containing past information to other areas such as biology and economics.
They also presented a well organized theory of linear equations with constant coeffi-
cients and the beginnings of stability theory. A more extensive development of these
ideas is contained in the book of Bellman and Cooke (1963). Some important results
were supplied also by Krasovskii, who studied stability and optimal control problems
for time-delay systems (Krasovskii, 1962). Further important works have been writ-
ten by Elsgolts and Norkin (1973) and Hale (1971). In recent years several books
have been published on this topic (Hino et al., 1991; MacDonald and MacDonald,
2008; Hammarstrom and Gros, 1980; Neudecker and Magnus, 1988; Stépan, 1989).
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The stability analysis for TDSs can be divided into two main groups: Eigenvalue-
based analysis and Lyapunov or energy-based methods. Eigenvalue-based methods,
using the characteristic equation of the system, usually provide a necessary and suf-
ficient conditions under which a TDS remains stable. Basically, these methods are
used when a constant delay exist, aiming to find the interval/s in the delay space
where the stability of the system is guaranteed. Lyapunov-based methods provide
sufficient conditions for the stability of TDSs. Even though, it is not always so
trivial to find the necessary conditions for the stability of such systems. The Lya-
punov based tools are typically used to investigate the stability of such systems. Out
of them Lyapunov-Razumikhin theory, Lyapunov-Krasovskii theory are used widely.
The Lyapunov based methods can be also classified into two types: delay-dependent
and delay-independent stability conditions; the former include the information on
the size of the delay, while the latter do not. Generally speaking, delay-independent
stability conditions are simpler to apply, while delay-dependent stability conditions
are less conservative especially in the case when the time delay is small. The main

objectives of the study of the delay-dependent stability problem are:

e to develop delay-dependent conditions to provide a maximal allowable delay as

large as possible,

e to develop delay-dependent conditions by using as few as possible decision vari-

ables while keeping the same maximal allowable delay.

However, none of these basic concepts represents applicable stability tests in terms
of the system matrices. The stability tests obtained can be categorized into four
groups, depending on how much information concerning the delays is required for

these tests:

e Delay-independent stability criteria: The length of the delay need not be known
for the application of these stability tests. The delays may be state-dependent
and/or time variable. The only assumption needed is that the delays are con-

tinuous and bounded.
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e Stability criteria independent of constant delays: In the second group it is
assumed that the delays of the system are constant; no further information on

the delays is necessary.

e Stability criteria independent of a delay constant: This type of stability criteria
presumes that the delays are constant and that the ratios of size of the delays

are known.

e Delay-dependent stability criteria: This group includes exact algebraic stabil-
ity criteria depending on the delay and on the system constants and stability
criteria which yield an upper bound of the admissible delay. The need for delay-
independent (and related) stability tests is obvious, since in practice the delays
are difficult to estimate, especially those that are time variable and state de-
pendent. While algebraic stability tests independent of delays are suitable to
apply, exact algebraic stability conditions depending on the delay and the sys-
tem constants are known only in some special cases. In this context a method
is presented to achieve some extensions. The method permits the investiga-
tion of the stability of systems which are general enough to demonstrate the
differences among the four types of stability tests. The stability of general,
linear time-delay systems, however, can be checked exactly only by eigenvalue

considerations.

In the literature, various approaches have been proposed to obtain delay-dependent
stability conditions, among which the linear matrix inequality (LMI) approach is the
most popular and has played an important role due to the fact that LMIs can be
cast into a convex optimization problem which can be handled efficiently by resorting
to recently developed numerical algorithms for solving LMIs (Boyd et al., 1994).
Another reason that makes LMI conditions appealing is their frequent readiness to
solve the corresponding synthesis problems once the stability (or other performance)
conditions have been established, especially when state feedback is employed.

In the following section, we study different methods of analyzing TDSs.
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3.3 Stability analysis

Before stating these methods, some notations must be introduced.

For a given scalar 7 > 0, let C,, = C([—7, 0], R") be the Banach space of continuous
7__

vector functions mapping the interval [—7,0] into R™. For any ¢ € C", its norm is

defined by
[llc = sup |lo(s)], (3.2)
<s<0

-7

where ||¢(s)|| denotes the Euclidean norm of ¢(s) € R™. Define a set

C, = {0 € Culldllc <a},

for some a > 0.

In a general form, a TDS can be illustrated by the following differential- difference-

difference equation:

ZL'(t) = f(ta xt)a t 2 t0> (33)

where z(t) € R" is the state vector, and z; is defined as:

r=z(t+0), —7<60<0.

Assume that the function f : RT x C,, — R™ is continuous and f(¢,0) = 0 holds

for all £ € R. The initial condition of the system is given by the following equation:
x,(0) = ¢(0), —7 <6 <0. (3.4)

We assume that for any ¢ € C, and for any ¢, € R, the system in (3.3) with the
initial condition (3.4) has a unique solution. We also assume that f(¢,0) = 0, which

guarantees that (3.3) possesses a trivial solution x(t) = 0.
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Eigenvalue based methods

In this part, we discuss linear TDSs, characteristic equations, and location of eigen-
values of the system, as well as effects of delays on stability.

Counsider a scalar retarded TDS
(t) = ax(t) + ba(t — 7), (3.5)

with real constant coefficients and constant delay 7 > 0. Substituting z(¢) = e* into
(3.5) we find that the solution satisfies the equation if s is the root of the characteristic
equation

A(s)=s—a—be ™ (3.6)

Dissimilar to systems without delays, the transcendental equation A(s) = 0 gener-
ally, has an infinite number of solutions. This also reflects the infinite-dimensional
nature of TDSs. However, since A(s) is an entire function,' it cannot have an infinite
number of zeros within any compact set |s| < M,VM > 0. Therefore, most of the
characteristic roots go to infinity. To understand the location of the characteristic

roots, i.e., of the solutions of the characteristic equation we note that
|s| < la] + [ble~TH) (3.7)

When |s| — oo, the left-hand side of the above equation approaches to oo, thus, the

—TRe(s)

right-hand side, i.e., e approaches infinity as well. This means that

lim Re(s) = —o0.

|s| =00
Hence, Vo € R there is a finite number of characteristic roots with real parts

greater than «. Therefore, the location of the characteristic roots has a nice property

'In complex analysis, an entire function, also called an integral function, is a complex-valued
function that is holomorphic over the whole complex plane. Typical examples of entire functions are
polynomials and the exponential function, and any sums, products and compositions of these, such
as the trigonometric functions sine and cosine and their hyperbolic counterparts sinh and cosh, as
well as derivatives and integrals of entire functions such as the error function.
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Figure 3-1: Roots of characteristics equation.

that the number of the roots on the right hand side of any vertical line, is finite.
Figure 3-1 depicts this property.
An LTI system with N discrete delays and with a distributed delay has a form:

—Td

N 0
z(t) = Z Apx(t — ) + / A(0)z(t + 0)do, (3.8)
k=0
with the initial condition
x(to+60) =¢(0), 0€[7,0], ¢€ClT,0], (3.9)

where 0 = 79 < 71 < ... < 7y,2(t) € R, Ay are constant matrices and A(6) is an
integrable matrix function, and 7 = max{taug, 7y }. The characteristic equation of

this system is given by

0

N
det [s] — ZAke_”’“ —/
k=0

—Td

A(9)689] = 0. (3.10)

Equation (3.10) is transcendental having infinite number of roots. Similar to what
was said about the scalar case in (3.5), since here the left hand side of (3.10) is
an entire function, it cannot have an infinite number of zeros within any compact

set |s| < M,VM > 0. The LTI system has exponential solutions of the form e*v,
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where s is a characteristic root and v € R" is an eigenvector of the matrix inside
the determinant in (3.10). The latter can be verified by substituting e*v into (3.10).
Moreover, if s is a characteristic root of multiplicity m, then t™e'v is the solution of
(3.10). Hence, solutions of (3.10) are given by x(t) = >, pi(t)e®, where s; are the
characteristic roots and p;(t), are polynomials.

As mentioned above, the location of the characteristic roots has a nice property:
there is a finite number of roots to the right of any vertical line. Using this fact, the

following statement holds (Hale, 1993; Bellman and Cooke, 1963).

Theorem 3.1 (Fridman, 201/) For any o € R, there are only a finite number of
characteristic roots (poles) with real parts greater than «. Let s; be characteristic
roots and oy = max;R(s;). Then Yo > «q there exists K > 1 such that for any
¢ € C[—T,0] the solution of (3.10) with xy = ¢ satisfies the inequality

lz(t)| < Ke*||p]l., t>0. (3.11)

TDS (3.10) is called exponentially stable if for any ¢ € C[—7, 0] there exist a < 0 and
K > 1 such that the solution initialized by (3.9) satisfies (3.11).

Corollary 3.1 Retarded TDS in (3.8) is exponentially stable iff all the roots of its

characteristic quasi-polynomial in (3.10) have negative real parts.

Stability of single delay characteristic equation

Note that the for the case of having a single delay, Equation (3.10) becomes

1
det [s[ - ZAke_STk] =0, (3.12)

k=0
where 7 = 0 and 77 = 7 > 0. By manipulating, one can get the following quasi-
polynomial equation

L(s) = P(s) + Q(s)e*" =0, (3.13)
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where P and @) are polynomials

P(s) = 5"+ ap_15" "+ ... +ap,

Q(5) = bps™ + bm—lsm_l +...+ay, n>m.

It is assumed that P and ) have no common imaginary roots jw Yw € R (otherwise
L(jw) = 0), and that ag+0by # 0 (otherwise L(0) = 0). The key property of the quasi-
polynomial (3.13) is the continuity of its roots as functions of positive 7. This means
that as 7 changes, the characteristic roots may transit from the LHP to the RHP
(i.e., become unstable) and vice versa (i.e., become stable) by crossing the imaginary
axis only. Thus, the analysis steps are as follows: locate the roots of P(s) + Q(s),
increase 7 and check for the imaginary axis crossings of roots (for the corresponding
crossing frequencies w, ).

If at some 7 roots of L(s) cross the imaginary axis, we have P(jw)+Q(jw)e™“T =0
and, thus, P(jw) # 0 since otherwise P(jw) = Q(jw) = 0, which contradicts the

assumption that P and ) have no common imaginary roots jw for all w € R. Hence

—Q(jw)/P(jw) = &7

This leads to phase equations as follows

QUjw)
WwT = arg(——- + 2k, k=0,1,..., 3.14
B (314
and the magnitude equation as
|P(jw)]* = |Q(jw)|* =0, (3.15)

respectively, where (with no loss of generality) we assume that arg(.) € [0,27). The

magnitude equation (3.15) is delay-independent and can be rewritten as

Pjw)P(—jw) = Qjw)Q(—jw) =0 (3.16)
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which is polynomial equation in w?. As a consequence, a finite number of crossing
frequencies may be determined by solving this equation. It is clear that for any
positive real solution w. of (3.15) there always exists a 7 > 0 (actually, a family of
delays of the form 7o+ i—ﬂk) such that (3.14) holds for w = w, as well. If there are no
positive real solutions ofc(3.15), no poles migrate from left to right or vice versa as

7 varies and the stability (or instability) of the roots of (3.13) is delay-independent
(does not depend on 7). Thus, if (for 7 = 0) P(s) + Q(s) is stable and

‘QUW><1,vw>o (3.17)

P(jw)

the characteristic quasi-polynomial is delay-independently stable. Note that

’Quw)>1,vW>o (3.18)

P(jw)

does not hold since n > m. Another possibility for delay-independent stability is the
stability of P(s) (corresponding to 7 = 00) together with (3.17).
Now, we introduce some useful definitions that determine the behavior of the roots

and in turn the stability of an LTI TDS.

Definition 3.1 Root tendency (RT): At each crossing frequency w,, is defined as

RT = sign (Re(j—j)) (3.19)

Indeed, RT indicates that the root loci of (3.13) tends to either LHP (RT < 0) or to
RHP (RT > 0) at the crossings when 7 increases.

Definition 3.2 (Fridman, 201}) The sensitivity function is defined as

o) = A (PGP = QP+ >0, (3.20)

which s independent of T. [ |
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Proposition 3.1 (Fridman, 201/) If o(w.) > 0, a root crosses the axis from left
to right(RT > 0); if o(w.) < 0, a root crosses from right to left(RT < 0); and, if

o(w.) = 0 there is a touch of the roots with the imaginary azis.

Example 3.1 Consider a scalar TDS

#(t) = —a(t — 7). (3.21)

The system without delay is stable and its quasi-polynomial is given by L(s) = s+e7*.
Then, the magnitude equation (3.15) w?>—1 = 0 has a unique positive solution w, = 1,

where the sensitivity function

d
o(we) = %[wz — 1], = 2,

15 positive, which indicates that the characteristic roots crossing at w. = 1 mowve from

LHP to RHP. The phase equation (3.14) has the form

T = arg(—1/j) + 2rk =7/2+ 27k, k=0,1,....

Therefore, the equation is (ewponentially) stable for T € [0,%) and is unstable for
T > g Moreover, for each k > 0 two characteristic roots move to RHP at T = 1.

Now, time consider

(t) = —=bx(t — 1), b>0. (3.22)

by changing the time t = bt we get,t — 7 = (t — bt)/b, and denoting Z(t) = x(t/b), we
arrwe at

#(8) = —z(E—br), b>0.

which is exponentially stable for br < 3 and unstable for bt > 3.
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Example 3.2 Consider a TDS

(t) = —ax(t) —bx(t —71), a+b>0. (3.23)

The system without delay is stable and its quasi-polynomial is given by
L(s)=s+4+a+be ™.

Since a + b > 0, the system is stable at T = 0. The magnitude equation has the form

w?+a® = b =0.

It may have a nontrivial solution only when |a| < |b|, yielding the positive crossing

frequency w. = Vb> — a?. Clearly, this is possible only when either a > 0, b > 0, or

a <0, b> 0. Moreover, the sensitivity function

d
o(w) = %[uﬂ +a? = V)umwe = 2w, > 0,

indicates that the characteristic roots crossing at w. = vb*> —a? move to RHP If

a>0,b>0,

b
Vb2 — a1, = arg(————— + a) + 27k

= arg(a — jVb* — a?) + 27k

a
=7 — arccos(g) + 27k, k=0,1,....
As a result, the first crossing happens at

7 — arccos(b/a)

)
bQ_a2

T0 =

which implies the exponential stability for T € [0,7y) and instability for T > 9.
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If a <0, b>0, then

b
JV2 —a?
a

= arccos(g) +27k, k=0,1,....

Vb2 — a’1y, = arg(— +a) + 27k

and thus, the system is stable for 7 € [0,7) and unstable for T > 15 with

arccos(b/a)

On the other hand, the system is delay-independently exponentially stable if and
only if a > |b| (provided a +b > 0), i.e., iff a > b >0 ora > —b > 0. Indeed, the
condition a > |b| guarantees that

’Q(jW) b
P(jw)

Jw+a

<1, Yw>0

Lyapunov based methods

This section presents generalizations of the direct Lyapunov method to TDSs. First,
for general TDSs, the stability notions are defined, and Lyapunov-Krasovskii and
Lyapunov-Razumikhin stability theorems are stated. Then delay-independent and
delay-dependent stability conditions for linear TDSs are derived. Sufficient conditions
are derived in terms of LMIs. Some of the presented ideas may be useful in the
nonlinear case and Lyapunov-based necessary stability conditions for LTI retarded
TDSs.

Note that the direct Lyapunov method is also called the second Lyapunov method,
whereas the first one establishes the stability of a nonlinear system on the basis of the
exponential stability of the linearized system. In order to have a better understanding

of the notations, following definition of the concept of stability is given

Definition 3.3 The trivial solution of (3.3) is

29



o uniformly (in to) stable if Vto € R and Ve > 0, there exists a § = §(e) > 0 such
that ||y, || < d(€) implies |z(t)| < € for all t > to;

e uniformly asymptotically stable if it is uniformly stable and there exists a 6, > 0
such that for any n > 0 there exists a T'(04,n) such that ||z |lc < da implies
|z(t)] < n for allt >ty +T(4,m) and to € R.

o globally uniformly asymptotically stable if d, can be an arbitrary large, finite

number.

The system is uniformly asymptotically stable if its trivial solution is uniformly asymp-

totically stable. [ |

Note that the stability notions are not different from their counterparts for systems
without delay (Khalil and Grizzle, 2002).
Now, we are in a position to present the method of Lyapunov-Krasovskii func-

tionals.

Theorem 3.2 Krasovskii Stability Theorem:(Hale, 1971) Suppose that the function
f in (3.3) takes bounded sets of C,, in bounded sets of R™, and u,v,w: RT — R are
continuous, non-decreasing functions satisfying u(0) = v(0) = 0 and u(s),v(s) > 0

for s > 0. If there exists a continuous function V : R x C,, — R™ such that
() u(lz]) < V(E, 2:) < vffele).
(b) The derivative of V (t,z;) along the solution of (3.3) and (3.4), defined as

1
V(t,zy) = lim sup —(V(t + s, x445) — V(t, 7)),

s—0t S

satisfies V(t,x;) < w(|z|), then the trivial solution x = 0 of the time-delay system
in (3.3) and (3.4) is uniformly stable.

If lim u(s) = oo, the solutions of the time-delay system in (3.3) and (3.4) are
5—00

uniformly bounded.

If w(s) =0 for s =0, then the solution x = 0 is uniformly asymptotically stable.
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Example 3.3 (Fridman, 201/) Consider the nonlinear autonomous scalar equation
@(t) = —az®(t) — ba*(t — h); a>0;b€R. (3.24)

Let |b| < a and consider the following functional

deriwation gives

V) =32V(z) = 2$Z(t)i(t) +28(t) — 2°(t — h)
= —[25(t) + 2a3(t)23(t — h) + 2°(t — h)]
=[2*(1) e-n)l |, ]<al(@)

-2 -1

for some o > 0. Thus, the system is delay-independently asymptotically stable if

|b| < a. Note that the linear equation

(t) = —ax(t) —bx(t —h), a+b>0

is delay-independently asymptotically stable iff |b] < a. [

We now recall one of the widely used theorems in TDSs.

Theorem 3.3 Razumikhin Stability Theorem:(Fridman, 201/ ) Suppose that the func-
tion f in (3.3) takes bounded sets of C, in bounded sets of R™ and suppose that

u,v,w : RYXRT are continuous, nondecreasing functions, u(s), v(s), w(s) are positive
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X(to)

Figure 3-2: The idea of Razumikhin approach

for s >0, u(0) =v(0) = 0. Let p: RT xR be a continuous non-decreasing function
satisfying p(s) > s for s > 0. If there exists a continuous function V : R x Rt x R*
such that

(a) u(|z]) < V(t,x) <ov(|z|),Vt € R,z € R".

(b) The derivative of V (t, ) along the solution of (3.3) and (3.4), defined as

1
V(t,z;) = lim sup g(v(t + 5, 2015) — V(L 20)),

s—0t

satisfies

V(t,21) < w(l])

V(t+0,x9) <p(V(t,xy)), VO € [—h,0].

then the trivial solution x = 0 of the time-delay system in (3.3) and (3.4) is
uniformly stable. Furthermore, if u(s) — oo as s — oo, then the trivial solution

s globally uniformly asymptotically stable.

The idea of the Razumikhin method can be explained as follows for the typical choice
of (quadratic) Lyapunov functions of the form V(z) = 2T Pz, P > 0 (see Fig. 3-2).
If a solution begins inside the ellipsoid V(¢ + 6, 2449) = 2] P19 < 6,V0 € [—h 0],
and not for any x(¢ + ). This guarantees the stability of the system.
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So, the solution will not leave the ellipsoid 7 (t) Pz (t) < § if £V (2(t)) < 0 along
&(t) = f(t,x;) for all zy = x(t +60), 6 € [—h 0] satisfying the Razumikhin condition

V(z(t+6)) <V(z(t)), 6e[-h 0

The following theorem also plays an important role in the stability analysis of

time-delay systems.

Theorem 3.4 Halanay theorem(Xu and Lam, 2008) Consider that scalars ky and ks
satisfy k1 > ko > 0, and z(t) governed by equation (3.3) is a non-negative continuous

function on [ty — T,ty] satisfying
t(t) < —kx(t) + ko (t), (3.25)

fort > ty, where 7 > 0 and

z(t) = sup x(s)

t—7<s<t
Then, fort > ty, we have

z(t) < x(tg)e 1),

where a > 0 is the unique solution to the following equation:
o = k’l — kge‘”

Both Theorems 3.3 and 3.4 can be used to derive stability conditions for the case
when the delay is time-varying, which is continuous but not necessarily differentiable.
It is also worth pointing out that Theorem 3-2 can be used to obtain delay-dependent

stability conditions for time-delay systems, which will be shown in the next section.

3.4 An LMI Approach to Stability

The direct Lyapunov method for linear ordinary differential equations leads to sta-

bility conditions in terms of LMIs. Most of the earlier works on stability of linear
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systems via Lyapunov method were formulated in terms of Lyapunov equations and
algebraic Riccati equations. This is mostly because of the unavailability of efficient
numerical algorithms for the general form of LMI. Solutions of some matrix inequal-
ities have appeared in 1960 (see, e.g., Fridman (2014)). The realization that LMI
is a convex optimization problem and the development of the efficient interior point
method led to formulation of many control problems and their solutions in the form
of LMIs (Boyd et al., 1994). The LMI approach is capable to provide the desired
stability /performance analysis and design in spite of significant model uncertainties.

Among the model uncertainties may be, e.g., uncertain delays.

There are efficient numerical methods to determine whether an LMI is feasible ,
or to solve a convex optimization problem with LMI constraints. Many optimization
problems in control theory, system identification and signal processing can be formu-
lated using LMIs. Also LMIs find application in Polynomial Sum-Of-Squares. The
prototypical primal and dual semidefinite program is a minimization of a real linear
function respectively subject to the primal and dual convex cones governing this LMI.
The solution of LMIs is a part of convex programming. There exist various packages

that provide efficient solutions to LMIs, e.g., MATLAB provides an LMI toolbox.

We will review the LMI techniques in deriving stability results for the single-delay
case. However, the LMI techniques presented in the following can be extended to the
multiple-delay case in a straightforward manner. We consider a class of TDSs with

time-varying delays as follows

#(t) = Ax(t) + Bu(t — 7(t)) (3.26)
o(t) = ¢(t), Vte[-7 0] (3.27)

where x(t) € R" is the state; ¢(t) is the continuous initial condition. 7(t) is the

time-varying delay of system (3.26), which is assumed to be continuous and satisfies

0<7(t) <7, (3.28)
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A and B are known real constant matrices.

Note that stability results on (3.26) with a constant delay obtained by the method
of Lyapunov-Krasovskii functionals can be easily extended to systems with differen-
tiable time-varying delays. Considering this, time-delay systems with differentiable
time-varying delays are not considered, and attention will be focused on the review of
the LMI techniques in deriving both delay independent and delay-dependent stability
conditions for the time-delay systems with constant and time-varying delay.

Generally, the functionals which are used as candidate Lyapunov ones are achieved

by summing up the following terms (Richard, 2003)

Vi(z(t)) = ZET(t)f;iE(t),
Vo(zy) = 2T (t) /_ | Qx(t + 0)do,

Va(z,) = /_O 2T (t + 6)S;z(t + 0)do,

o' (3.29)
Vi(zy) / / 0)dods,
—T; +9

V() = a7 (1) / Pi(n)ee(t + n)dn,

6(7) / / 2(n, 0)z(0)dndb,

Delay-Independent Conditions for Linear TDSs

For the time-delay system (3.26) with a constant time delay 7(¢) = 7, by choosing a

Lyapunov-Krasovskii functional as

t

V(t,z) = 2 (t)Px(t) + /xT(s)Qx(s)ds (3.30)

t—T7

and putting it into Theorem 3.2, the following stability condition can be obtained

Theorem 3.5 (Richard, 2003) The TDS (3.26) is asymptotically stable if there exist
matrices P > 0 and Q > 0 such that
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PA+ATP+(Q PB
* —Q

<0. (3.31)

Remark 3.1 Hereafter, * in ij-element indicates the transpose of the ji-element of

the same matriz.

Note that for the general case in (3.26), since the time-varying delay 7(¢) may not be

differentiable, the Lyapunov-Krasovskii functional similar to (3.30) as

t

V(t ) = 27 (t)Px(t) + / 27 (5)Qu(s)ds, (3.32)

t—7(t)

cannot be used to derive a stability condition. If we suppose that 7(¢) is a differen-

tiable function with 7(¢t) < d, < 1, Fridman (2014) provided the following theorem.

Theorem 3.6 The TDS (3.26) is asymptotically stable if there exist matrices P > 0
and Q) > 0 such that

PA+ATP+(Q  PB
* —(1—-4d,)Q

<0. (3.33)

If 7(¢) is not differentiable, however, we can use Theorem 3.3 to give a delay

independent stability condition. Here, we choose a Lyapunov function as

V(t, ) = 27 (t)Px(t), (3.34)
By setting the following conditions

p(s) =ds, w(s) = es, (3.35)

where 0 > 1 and € > 0 are scalars, we have the following result.
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Theorem 3.7 TDS in (3.26) is asymptotically stable if there exists a matriz P > 0

such that
PA+ AP+ P PB

* —-P

<0. (3.36)

It is easy to see that the LMI condition in Theorem 3.7 is a special case of that in
Theorem 3.5. Thus, Theorem 3.7 is more conservative than Theorem 3.5. However,
it is worth pointing out that Theorem 3.7 can be applied to the case when the delay
is time-varying and continuous, which may not be differentiable, while in the time-
varying delay case, the use of Theorem 3.5 usually requires the considered delay being
differentiable.

Now, we introduce some useful inequalities for TDS. Notice that from (3.26) one
has @(t) — Ax(t) + Bu(t — 7(t)) = 0. Therefore, for any matrices Y, W and S with

appropriate dimensions, the following equalities hold:

T (Y [i(t) = Ax(t) + Bu(t — 7(t))] = 0 (3.37)
o' ()W [i(t) = Az(t) + Bu(t — 7(t))] =0 (3.38)
2T (t = 7(1)S[i(t) = Ax(t) + Bu(t — 7(t))] = 0 (3.39)

Indeed the above equations add some degrees of freedom to the equations and
provide a wider decision variable space. By noting these and using the Lyapunov
function (3.34), we can obtain the following delay-independent stability result for the
time-delay system (3.26) and (3.27).

Theorem 3.8 The time-delay system (3.26) is asymptotically stable if there exist
matrices P >0, Y, W, and S such that

WA+ ATWT WB+ ATST ATYT P - W
* SB+BTST  BI'vyT_-g§ <0 (3.40)
* * —Y — YT
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Delay-dependent stability conditions

In this section we consider the linear TDSs (3.26) and (3.27). The feasibility of
the delay-independent conditions in (3.33) and (3.36) implies that A and A £ B
are Hurwitz. It means that these conditions cannot be applied for stabilization of
unstable plants by a feedback with delay. For such systems, the stability depends on
the delay.

In this section, LMI techniques in deriving delay-dependent stability conditions
will be reviewed. Generally, these techniques can be divided into two main groups, i.e.,
the model transformation techniques and the bounding techniques. The aim of using
these transformations and boundings is to achieve some LMIs that are dependent on

delay. Now, we introduce some usual transformation and bounding techniques.

Transformations and boundings

One of the most used techniques in delay-dependent LMIs is Newton-Leibniz trans-

formation. Using Newton-Leibniz formula, one gets

=z(t) — / [Az(s) + Bx(t — 7(t))]ds
t—7(t)
Replacing z(t — 7) in (3.26) gives us

#(t) = (A+ B)z(t) - B / [Az(s) + Bz(t — 7)]ds (3.41)

t—1

Note that the asymptotic stability of the TDS in (3.41) implies that of the system
in (3.26) and (3.27). For this reason, we now turn to study the stability of (3.41). For

a constant time-delay 7 = 7, we choose a Lyapunov-Krasovskii functional candidate
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as follows:

V(t,x;) = a:T(t)P_lx(t)+//zT(s)BTQlex(s)dsd9
Tl (3.42)
+:ET(t)P_1x(t)+/ / 27 (s)BTQy ' Bx(s)dsdo

—Tt—740

in which P,@1,Q2 > 0. Then, by Theorem 3.2, the stability condition for (3.41) is

obtained in the following theorem.

Theorem 3.9 (Cao et al., 1998b) The TDS in (3.41) is asymptotically stable for any
delay T satisfying 0 < 7 < T if there exist matrices P > 0, Q1 > 0 and Q2 > 0 such
that

v 7PAT FPBT
«  —0Q 0 , (3.43)
* * —Q2

where ¥ = (A+ B)P + P(A+ B)T + B(Q, + Q2)BT.

Using the Lyapunov function in (3.34) a system with a time varying delay 7(%),

the following result is achieved.

Theorem 3.10 (Cao et al., 1998a) The time-delay system in (13) is asymptotically
stable for any delay 7(t), satisfying 0 < 7(t) < T if there exist matrices X1, Xo, X5 > 0
such that

(A+B)X, + X1(A+ B)" +7B(X, + X3)BT + 27X, <0,
X, X AT
* X5
X, X,B"
Xy
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By the Newton-Leibniz formula, we can also change system (3.26) to

#(t) = (A+ B)a(t) - B /t_ #(s)ds, (3.44)

7

and

% [x(t) + B/:_ x(s)ds} = (A+ B)x(t.) (3.45)

7

Remark 3.2 All the time-delay systems in (3.41), (3.44), and (3.45) are transformed
from the time-delay system in (3.26) by using the Newton-Leibniz formula. However,
all of them are not equivalent to (3.26). Compared with (3.26), additional dynamics
are introduced in (3.41), (3.44), and (3.45) (Gu (2000); Kharitonov and Melchor-
Aguilar (2005a,b)), which may cause conservatism as the delay-dependent conditions

are derived based on the transformed systems.

One of the main purposes in the study of delay-dependent stability for time-
delay systems is to find methods to reduce conservatism of existing delay-dependent
stability conditions. It is known that the finding of better bounds on some weighted
cross products arising in the analysis of the delay-dependent stability problem plays
a key role in reducing conservatism. Note that the delay-dependent stability results
reported by Li and De Souza (1997) and Cao et al. (1998a,b) were obtained by using
the well-known inequality on upper bound for the inner product of two vectors, that

is,

—2a"b < a’Xa+ "X, (3.46)

where a,b € R" and X € R™". In order to reduce the conservatism in the delay-
dependent stability results of Li and De Souza (1997) and Cao et al. (1998a,b), an

improved inequality was proposed by Park (1999) which is re-stated as follows:

Lemma 3.11 (Park’s Inequality)(Park, 1999) Assume that a(a) € R™ | andb(a) €
R™ are given for o € Q. Then, for any X € R"*" with X > 0 and any matriz

M € R"*" we have
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ala) X XM
b(a) MTX (MTX +DX Y MTX +1)T (3.47)

Now, we present another important inequality, which is also effective in the deriva-

tion of delay-dependent stability conditions.

Lemma 3.12 Jensen’s Inequality (Gu, 2000): For any constant matriz M € R™*™
with M > 0, scalars b > a, vector function w : [a,b] — R™ such that the integrations

in the following are well-defined, then

(=) [T (OMu(B)dE (3.48)
> [fw)as] M [fPu@as]

3.5 Conclusions

In this chapter, we reviewed the stability analysis of TDSs. Eigenvalue-based methods
give quite precise and satisfying results when the delay is constant and the system is
LTI. However, when the delay becomes time-varying these methods cannot be used
easily. Instead, Lyapunov-based methods can provide some sufficient conditions for
the stability of TDSs. Nevertheless, one has to use these methods is most cases.

Among the Lyapunov based-methods, the delay-independent ones are usually can-
not be straightforwardly achieved. Many researches have been devoted to improve
the conservativeness of the delay-dependent methods at the expense of increased com-
plexity of the resulting LMIs.

Due to its importance in our work, in the next chapter, we separately study

sampled-data systems as a special case of time-varying TDSs.
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Sampled-data systems

“Equipped with his five senses, man explores the universe around him and
calls the adventure Science.”

— Edwin Powell Hubble, The Nature of Science, 1954

In this chapter we consider sampled-data systems (SDS) with zero-order hold
(ZOH). We start with preliminaries on main approaches to sampled-data control. We
also review some recent time-dependent Lyapunov functionals in the framework of the
delayed system approach. Indeed, the corresponding TDS to SDS can be considered

as a system with a piecewise-continuous time-varying delay.

Introduction

SDSs have been extensively studied over the past years (Chen and Latchman (1995);
Fridman (2010); Liu and Fridman (2012) and the references therein). Two main
approaches have been used for the sampled-data control of linear uncertain systems
leading to conditions in terms of Linear Matrix Inequalities (LMIs) (Boyd et al.,
1994). The first one is the input delay approach, where the system is modeled as a
continuous-time system with the delayed control input (Miheev et al., 1988). The
second approach is based on the representation of the sampled-data system in the

form of impulsive model (see e.g., Hespanha et al. (2008)). The input delay approach
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became popular in the networked control systems literature, being applied via time-
independent Lyapunov-Krasovskii functionals or Lyapunov-Razumikhin functions to
analysis and design of linear uncertain systems under uncertain sampling with the
known upper bound on the sampling intervals (Fridman et al., 2004; Gao et al., 2008).

In this chapter, we are going to focus on the delayed system approach.

Modern control employs digital technology for implementation. SDSs are dynami-
cal systems that involve both a continuous-time dynamics and a discrete-time control.

Consider the linear system

#(t) = Az(t) + Bu(t) (4.1)

where A and B are constant matrices. The control signal is assumed to be gener-

ated by a zero-order hold (ZOH) function

with a set of hold times {¢o,¢;,...}

O<tog<ti <...< limt = o0, (4.3)
k—o0

where uy is a discrete-time ZOH control signal. The sampling interval can be
either constant ¢y, — tx = T or variable with time-varying t;.1 — ¢, = 7. In the
context of NCSs (e.g., due to packet dropout) the sampling interval may be variable
and uncertain. Hereafter, we assume that the samplings happen in a bounded time,
ie.,

o1 — e <7, TER kEZ,.
Consider a state-feedback controller u(ty) = Kz (t;). Regarding (4.1) and (4.2),
we arrive at
ZL’(t) = AZL’(t) + BZL’(tk), e <1 <tpt1, (4.4)

where B = BK. For the periodic sampling case with ¢, — ¢, = T, the solution is
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achieved
t
z(t) = AW p(ty,) + / A Br(ty)dh, ty, <t < tr, k€ ZY. (4.5)
g
Finding the value of x(tx.1) leads us to the following discrete-time system

T
z(tppr) = Da(ty), D =T +/ e TBdo, k€7, (4.6)
0

System (4.4) is asymptotically stable iff the eigenvalues of D are located inside the
unitary circle (Schur stable matrix). Under variable sampling, the closed-loop system

(4.4) is converted into a linear time-varying discrete-time system

T

k
z(tis1) = Dipx(ty), Dy = T + / AT Bdl, k€ 7.y, (4.7)

0

Assuming Ty = ty41 — t < 7, the following bound follows from (4.6):
()] < Alxte)], te <t <tp1, kE€Zy (4.8)

where

0
v = max |e*?| + max lim / eA%dc,
0€[0,7] 6€[0,7] Jo

Therefore, the stability of the discrete-time linear system (4.7) is equivalent to the

stability of the continuous-time system (4.4).

4.1 Stability analysis

SDS in (4.4) can be considered as a continuous-time system with a piecewise-linear

time-varying delay as (3.3)
i(t) = Ax(t) + Bx(t —7(t)), 7(t) =t — ty, tr <t <tpr (4.9)

See Fig. 4-1 for the plot of a sawtooth delay corresponding to a variable sampling.

)



o
(o]
T

o
»
T

I

6 8 10

4 Time(sec)

Figure 4-1: Looking an SDS systems as a time-varying TDS with 7 = 1.

As for the general time-varying delay with 7(¢) < 7, if the LTI system without delay
(i.e., the continuous-time system) is asymptotically stable, then for small enough 7

the sampled-data system preserves the stability.

Example 4.1 Consider a simple system as follows
x(t):—x(tk), e <t <tpi1,k=0,1,.... (410)

The corresponding continuous-time system x(t) = —xz(t) is exponentially stable.
It is well known (see Fridman and Shaked (2003); Fridman (2014)) that the equation
#(t) = —x(t — 7(t)) with a constant delay T is asymptotically stable for T < 5 and
unstable for T > T, whereas for the fast varying delay it is stable for 7(t) < 1.5 and
there exists a destabilizing delay with an upper bound greater than 1.5.

For the constant periodic sampling case, D in the corresponding discrete-time
system (4.6) is given by D = 1 —T. Since the eigenvalues of D must be inside the
unitary circle, the system remains asymptotically stable for all constant samplings
less than 2 and becomes unstable for samplings greater than 2. Consider now the
variable sampling with tp 1 — tx = Tk, where the corresponding discrete-time system

is given by (4.6) with Dy, = 1 — Ty. For any small € > 0 and Ty, < 2 — € we have

|Dp| = |1 —Tx| < 1—e. Hence, the discrete-time (and, thus, the continuous-time
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SDS) system is asymptotically stable for T, <2 —¢e Ve > 0. [ |

In the above example, the maximum interval for the sampling that preserves the
asymptotic stability is the same under the constant and the variable sampling in-
tervals. Usually a maximum upper bound on the uncertain variable sampling that

preserves the stability is smaller than the one for the constant sampling.

Example 4.2 (Constant and time-varying sampling)

Consider System in (4.4) with

13 1 -6
A= . B=
2 1 0.6 —3.6

Note that, for a constant delay, T, if x(ty) is changed by x(t —T), the above closed-
loop system is asymptotically stable for the constant delay T < 0.19 and becomes
unstable for T > 0.19 (using the phase (3.14) and the magnitude equation (3.15), and
considering that all the eigenvalues of the system must be located in the LHP). In
the case of a constant sampling, the equivalent discrete-time system is asymptotically
stable for the constant sampling interval ty 1 —ty =T for T € [0 0.5937]. Therefore,
for the constant sampling intervals T1 = 0.18 or Ty = 0.54 the system is asymptotically
stable (see Figures 4-2, 4-8). However, if we sample using a sequence of sampling
intervals Ty — Ty — Ty — ... the system becomes unstable (see Figure 4-4 with the
plot of the state).

In the second case, the equivalent discrete-time system over two sampling instants
can be presented as

Lpio = Dk+1Dkl’k, k= O, 1, 2, l... s

One can see that the system becomes LTV, and therefore the analysis for LTI
systems are not valid anymore. Using the Razumikhin approach and conver embed-
dings, Fiter et al. (2012) found the following upper bound on the variable sampling
was achieved T = 0.4683.
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Figure 4-2: The system in Example 4.2 with a constant

sampling 7} = 0.18.
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Figure 4-3: The system in Example 4.2 with a constant

sampling 7} = 0.54.
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Figure 4-4: The system in Example 4.2 with a switched

sampling T — 15— 1Ty . ...
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Generally, three main approaches are used for the SDSs, i.e., the discrete-time,

the time-delay, and the impulsive /hybrid system approach.

In the discrete-time approach the system is discretized (Ichikawa and Katayama,
2001). If the SDS is linear time invariant, the discretization is achieved from (4.6) that
leads to the discrete-time system (4.6). The advantage of the above discretization is in
the simplicity of the stability conditions. Moreover, for LTI systems these conditions
are necessary and sufficient for the stability under the constant and known sampling
rate. However, it becomes complicated for systems with uncertain matrices or/and
uncertain variable sampling period. The main drawback is that discretization loses the
knowledge about the inter-sampling behavior. It can hardly be used to performance
analysis, to control and tracking of nonlinear systems. A special lifting technique
was introduced by Yamamoto (1990) and Bamieh et al. (1991) for sampled-data Ho,

control.

The second approach, converts an SDS to a system with an input delay so that
(4.4) is modeled as a continuous-time system (4.9) with the delayed control input
(Fridman, 2014; Seuret, 2009). Robust control of SDS was started by Fridman et al.
(2004) via Lyapunov-Krasovskii functionals proposed by Fridman and Shaked (2003)
for systems with fast-varying delays (here 7 = 1 almost everywhere). The time-
delay approach became popular in NCSs, being applied to uncertain systems under

uncertain sampling and network induced delay (Gao et al., 2008; Kim et al., 2010).

The third one is impulsive system approach which has been described by Naghshtabrizi
et al. (2008, 2010). In this thesis this approach is not being utilized in this thesis,

and we only mention it to complete the discussion.

Consider the augmented system state £(t) = [27(t) u(t)], and

at) =0, t#ty, ulty) = Ku(ty),
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With this we arrive at the following impulsive model

. A B
§(t) = (1), t # t,
0 0
- (4.11)
_ z(ty) =t
Ku(ty)

The impulsive approach was extended to the case of variable sampling with a
known upper bound, where a discontinuous Lyapunov function method was intro-
duced (Naghshtabrizi et al., 2008). The latter method improved the existing results,
based on the input delay approach via time-independent Lyapunov functionals, and
gave an insight to time-dependent Lyapunov functionals suggested by Fridman (2010).

In the next section stability analysis based on Lyapunov functional is discussed.

4.2 Lyapunov based time-dependent methods

One of the earliest works in this framework is the paper of Fridman et al. (2004),
in which Lyapunov functionals for stability analysis of (4.4) with external distur-
bance and in the case of fast-varying delay is addressed. Naghshtabrizi et al. (2008)
introduced a Lyapunov function which depends on ¢; for the corresponding finite-
dimensional system with jumps. Following Fridman (2010), we employ below a time-
dependent Lyapunov functional which may be discontinuous in time, but it is not

allowed to grow in the jumps.

Lemma 4.1 (Fridman, 2014) Consider a general SDS (4.9). Assume that there exist
positive numbers o, 8 and a functional V : RT x W[—=7,0] x Ly(—7,0) — RT such

that

where ¢ indicates the space of functions ¢ : [T,0] — R, which are absolutely continuous

on [7,0), have a finite glim () = 0, and have square integrable first order derivatives
—0~
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Figure 4-5: Discontinuous Lyapunov functional

A

:

lim ¥ (1) > 7 (1,

L I, b ;
is denoted by Wa,b) with the norm
ol = s fo(0)] + | [ &6 } | (113

Consider the function V(t) = V (t,xy, ), which is continuous from the right for
x(t) satisfying (4.9), locally absolutely continuous on t € [tg,try1),k = 1,2,... and
which satisfies

lim V(t) > V(t), (4.14)

t—ty

This has been shown in Figure 4-5. Given «, if along (4.9)

d _
ZV () + 20V (1) <0, (4.15)

for almost all t, then (4.9) is ezponentially stable with a decay rate a.

In the next section, we introduce the looped-functional method for SDSs.
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4.3 Looped functional Method

Looped-functionals have been introduced by Briat and Seuret (2012a), Seuret (2012)
and Seuret et al. (2014) for the analysis of sampled-data systems. The main aim was
to reformulate a discrete-time condition into another condition devoid of exponential
terms, allowing then for the consideration of uncertain time-varying systems and
nonlinear systems (Peet and Seuret, 2014). They have been further considered for
the analysis of impulsive systems (Briat and Seuret, 2014; Hespanha et al., 2008). The
key idea behind the use of looped-functionals is to encode a discrete-time stability
condition in a condition that is convex in terms of the matrices of the systems. Due to
the convexity property, the resulting conditions can be extended to uncertain systems
and linear time-varying systems, unlike the discrete-time stability conditions that are
non-convex in the matrices of the system due to the presence of exponential terms.

In the papers of Briat and Seuret (2012b, 2013), the considered looped-functional
led to sufficient conditions for the feasibility of a certain discrete-time stability cri-
terion characterizing the stability of impulsive and switched systems. They show
here that this very same looped-functional is complete in the sense that the result-
ing criterion is actually equivalent to the discrete-time stability condition aimed to
be represented in a convex way. This result is proved for a larger class of systems,
referred to as pseudo-periodic systems, encompassing periodic systems, impulsive sys-
tems, sampled-data systems and switched systems, proving then the sufficiency and
the necessity of the conditions obtained by Briat and Seuret (2013).

The definition of a looped-functional is given below (Briat and Seuret, 2012a).

Definition 4.1 (Looped-functional) A functional f : [0, Tr] xK[Ty, Ty] x [T, T5] — R,
wheree < T < Ty 00, € > 0, is said to be a looped functional if the following conditions

are satisfied

(i) the equality f(0,2,T) = f(T,Z,T) holds for all functions Z € C([0,T],R") C
K[T\,Ts] and oll T € [T}, T3], and

(11) it is differentiable with respect to the first variable with the standard definition
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of the derivative.

The idea for proving stability of (4.9) is to look now for a positive definite quadratic
function, such that the discrete sequence is monotonically decreasing. This is formal-

wzed as the following theorem.

[ |
Theorem 4.2 Let 0 < Ty < Tj be two scalars and V : R® — RT be a differentiable
function for which there exist positive scalars py < pe and p such that

Ve € R, py|z|P < V(z) < polzl?. (4.16)

Then the following statements are equivalent.

(i) The absolute value of the Lyapunov function strictly decreases Yk € N and
Ty € [T1, T3], or equivalently

AV (k) =V (z(ty)) — V(2(0)) <0

(i) There exists a continuous and differentiable functional Vo : [0,T3] x K — R

which satisfies for all z € K
VT e [Th,Ty] Vo(T, z(.)) = Vo(0, 2(.)), (4.17)
and such that, Vt € [0T}],

Wo(r, a(t)) = %[V(x(tk)) Vot (t))] < 0. (4.18)

If one of the above statements is satisfied, then the the system in (4.9) is asymp-
totically stable.

Now we introduce Wirtinger’s inequality, which has a very important role in de-

termining a less conservative upper bound in Lyapunov based methods in SDSs. This
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inequality allows the Lyapunov functionals to have a negative term.

4.4 Wirtinger based Lyapunov functionals

In mathematics, historically Wirtinger’s inequality for real functions was an inequality
used in Fourier analysis. [t was named after Wilhelm Wirtinger. It was used in 1904
to prove the isoperimetric inequality. A variety of closely related results are today

known as Wirtinger’s inequality.

Wirtinger’s inequality is an alternative of Jensen’s inequality in delay-dependent
stability analysis of linear systems with constant discrete and distributed delays or

with discrete time-varying delays via Lyapunov functionals.

Lemma 4.3 (Liu and Fridman, 2012) For all absolutely continuous functions w :

la,b] — R"™ with w € Ly(a,b). and all n x n matrices W > 0 the following holds

Ab—a) / ’ wT (0)Wdotw(6)db. (4.19)

b
/ wh(O)Ww(9)do < 5
a T
The Wirtinger’s inequality can help to decrease the conservativeness of the results
in the context of the stability analysis of time delay systems using discrete Lyapunov-

Krasovskii functionals. In this way, the following additive term was suggested by Liu

and Fridman (2012) for SDSs with a constant communication delay n € R*:

Viv :72/ i“T(S)W:t(S)ds_W_/t_n[x(s)—!L'(tk—n)]TW[ZE(S)—ZE(tk_U)]d& (4.20)

tg 4 k=N

where W > 0, ¢, <t <tpi1. According to Wirtinger’s inequality, in spite of having a
negative term, we get Vi > 0 for ¢, <t < tx41. By derivation with respect to time,
a negative term appears which removes the effect of some positive terms and reduces

the conservativeness of the results.
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4.5 Conclusions

In this chapter, some Lyapunov based stability conditions for the SDSs were studied.
Main discussions in this chapter were based on time-dependent functionals, looped-
functionals, and Wirtinger based functionals. The corresponding TDS to SDS was

considered as a system with a piecewise-continuous time-varying delay.
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Consensus 1n second-order
multi-agent systems with time-delay

and slow switching topology

“The scientist is not a person who gives the right answers, he’s one who asks

the right questions.”

— Claude Lévi-Strauss

In this chapter, based on the results of Zareh et al. (2013b), we investigate the
problem of deriving sufficient conditions for asymptotic consensus of second order
multi-agent systems with slow switching topology and time delays. The proposed local
interaction protocol is PD-like and the stability analysis is based on the Lyapunov-
Krasovskii functional method. Our approach is based on the computation of a set
of parameters that guarantee stability under any network topology of a given set.
A significant feature of this method is that it does not require to know the possible
network topologies but only a bound on their second largest eigenvalue (algebraic

connectivity).
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5.1 Introduction

As mentions in Chapter 2, in the past years a significant attention has been given
to the consensus problem in multi-agent systems due to its broad spectrum of ap-
plications to sensor networks, automated highway systems, mobile robotics, satellite
alignment and several more. The objective of a consensus algorithm is to drive the
state variables of all the agents in a networked system toward a common value. This
particular network state is called consensus state.

Motivated by the requirement to consider more complex agent dynamics, some
researchers now study the consensus problem for second-order systems. This makes
the consensus problem more complex and its stability properties depend not only
on the interconnection topology, but also on the parameters of the local interaction
protocols. In the work of Tian and Liu (2008), the case of heterogeneous multi-
agent systems is investigated by means of frequency-domain analysis. Lin and Jia
(2009) proposed a control strategy for consensus over a group of agents with discrete-
time second-order dynamics, operating under a time delayed communication/sensing
structure.

Another challenge of interest is the topology switching problem caused by inter-
mittent and time-varying communication links or sensing capabilities. A switching
network topology may result in instability even if all the topologies produce stable
systems (Liberzon, 2003; Liberzon and Morse, 1999). Xie and Wang (2006); Jia et al.
(2011) investigated second order multi-agent systems with switching topology are .

Despite the considerable number of contributions in second order multi-agent sys-
tems where time delays and switching topology are considered separately, to the best
of our knowledge very few works have investigated both issues simultaneously.

In this chapter we extend the results of Cepeda-Gomez and Olgac (2011a) which
deals with systems with communication/sensing delay but static topology, to sys-
tems with delay and slow switching topology. We provide sufficient conditions under
which the consensus state is reached by agents modeled by double integrator dynam-

ics affected by a communication/sensing time delay for any network topology with
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algebraic connectivity greater then a given bound. The proposed method is based on
the solution of a set of LMIs and allows to infer stability for slow switching topolo-
gies by ensuring the existence of a minimum dwell time. The computation of the
minimum dwell time that ensures consensus will be the object of our future research
in this topic.

The next sections ar organized as follows. In Section 5.2 the problem statement
is formalized. In Section 5.3 sufficient conditions based on LMIs for stability of
second-order multi-agent systems with time delays are given. In Section 5.4 the main
results are presented. It is a method to solve the LMIs required to infer stability
of the networked system in such a way that they are independent from the network
topology, thus greatly reducing the computational burden. In Section 5.5 simulations
are presented to corroborate the theoretical results. In Section 5.6 concluding remarks

are given and future works are discussed.

5.2 Problem statement

Consider a group of n autonomous agents with double integrator dynamics

B =wlt), i=1--n.

In the case of mobile robots x; € R can be considered as a scalar position and u; € R
as the control law that governs their acceleration.

For simplicity, the motion of each agent is supposed to be one dimensional, but
since the protocol makes use of only relative positions and velocities the results that
follow can be trivially extended to higher dimensions.

Objective of the control action is to achieve the consensus state asymptotically,
ie.,

lim [z;(t) — 2;(t)| =0 Vi,j €V

t—o00

Each agent ¢ is supposed to exchange information with a subset N; C V of agents,

called neighbors. The cardinality of N; is denoted d; which is referred to as the degree
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of agent i.

Let us assume that all the interactions between the agents have a constant non-
null delay 7, thus agent 7 at the generic time ¢ knows the position and the velocity of
its informers at time ¢ — 7.

Finally, we assume a PD-like local interaction control logic that makes the dy-

namics of the generic ¢-th agent of the form:

Fi(t) = wi(t) = k, (Z w = xi(t)>

JEN;

+kg (Z @ - g‘c,.(t)) (5.1)
JEN;
where k,, kg € RT are design parameters.

Cepeda-Gomez and Olgac (2011a) provided conditions on ky, kg, 7 € RT under
which, if the network topology is connected, all agents reach consensus. Note that
their protocol differs from all previously proposed schemes, e.g., Gao et al. (2009); Luo
et al. (2010); Meng et al. (2010) in the fact that the time delay affects the information
coming from all the other agents, but not the state of the i-th agent itself.

In the next section, we extend the results of Cepeda-Gomez and Olgac (2011a)
and assume that the set of informers may change during the system evolution, namely
the topology of the network is time-variant.

The following subsection recalls some equivalence transformations that will be

useful in the rest of this chapter (Cepeda-Gomez and Olgac, 2011a).

Equivalence transformations

Let Aq be the n x n adjacency matrix the elements of which are a;; = a;; = 1 if the
corresponding edge (i, j) € E exists and a;; = a;j; = 0 otherwise. Let A be a diagonal
n X n matrix the elements of which are A;; = ¢§; the degrees of the corresponding
agents.

The network dynamics of the multi-agent system, where each agent has dynamics
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given in equation (5.1), can be written in a compact form as:

&(t) = Az(t) + Bx(t — 1) (5.2)
where x(t) = [z, (), @1(t), - , 2 (t), 2, (t)] € R®" is the state vector,
0 1
A == In & A/, Al - )
K, kg
(5.3)
0 O
B=A"4,9 B, B =
k, kg

In (5.3), ® denotes Kronecker product, A, is the adjacency matrix of graph G and I,

is the n-th order identity matrix.

Ay is a real symmetric matrix. If G is connected then A is invertible and ma-
trix A1 A, a weighted adjacency matrix, is symmetrizable (Sergienko et al., 2003).
Therefore, A~'A; is diagonalizable and has n linearly independent eigenvectors.
Thus, there exists a matrix 7" such that T-1(A7™1A,)T = A, where A is a diago-

nal matrix whose non-zero entries are the eigenvalues of A~1A,

A0 0

o 0 X -+ 0

T AT AT =A=| . (5.4)
0 0 An

To achieve a diagonal realization we choose as state transformation z(t) = (T’ ®

L)&(t) in (5.2), with

60 = [0, &), &a®)]
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From (5.2) and (5.3), the system dynamics in the new state coordinates becomes:

) =T 0 L) (LeA) (L)
NG <A—1Ad ® B’) (T ® L)t — 7).

Using the features of the ® operation, we obtain:

&) = (oo A)e + (Ae B )¢t — 7).

(5.5)

(5.6)

Since I, and A are diagonal matrices, equation (5.6) represents a set of n decoupled

second-order blocks of the form:
v:(t) = A'y;(t) + N\ B'yi(t — 1)

where

yi(t) = [&(1), &()7, 1=1,...,n.

Now, from basic integral properties, it holds:

/_ Es + t)ds = &() — &t —7)

or equivalently
0

Li(t —7) = &(t) — &i(s+t)ds.

By substituting (5.8) in (5.7) we obtain:
0

Gi(t) = Aa(t) + Buya(t — ) + G, / yils + £)ds

—T
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where

i 0 1
Ai: 9
k(1= X)) —ka
(5.10)
o o o o
0 kah | |0 —ko\

Each time function y;(¢) is called a mode of the system.

Using Gershgorin circle theorem on matrix A™'A, it is easy to show that \; €
[—1,1] and A; = 1 always exists because the matrix is row stochastic. Henceforth,
without loosing generality, in the following we consider y;(¢) as the mode correspond-

ing to \; = 1.

Switching dynamics

We assume that the topology of the network is time-variant, consequently the ad-
jacency matrix and A change with time. As a consequence, equation (5.2) can be
rewritten as:

i(t) = Aga(t) + Bya(t — 1) (5.11)

where 0 : R>¢g — €1 is the switching signal and Q = 1,--- | N is the index set of all
possible topologies.

In the following the subscript o is used everywhere to make explicit the dependence
on o. As an example the adjacency matrix becomes a function of ¢ and is denoted
as Ag,. Analogously, the diagonal matrix A becomes A,, matrices A;, B;, and C,
defined in (5.10) become A, ;, B,;, and C,;, respectively. Finally, the i-th mode y;(t)

in equation (5.7) also becomes a function of o and is denoted y, ;(t).

5.3 Stability analysis

In this section we prove the main result of this chapter. In particular, three are

the main steps towards the derivation of conditions on k,, k; and 7 that guarantee
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consensus to a common position in a finite point of the state space, under arbitrary

switchings, provided that switchings occur sufficiently slowly.

e Firstly, we prove that under appropriate conditions on k,, k; and 7, the mode
corresponding to the eigenvalue A\ = 1, namely, y;(t) = y,1(f), common to all

topologies, regardless of the switching signal o, is a non oscillating stable mode.

e Secondly, we prove that under appropriate conditions on k,, k; and 7, all modes
Yoi(t), for i =2,... n, are asymptotically stable for any network topology with
algebraic connectivity grater than a given bound. This implies that the stability
is also guaranteed for sufficiently slow switching topologies. However, as already
pointed out in the Introduction, the computation of the minimum dwell time

that guarantees this, is still an open issue.

e Finally, we prove that if the conditions of the two items above are satisfied, all

agents reach consensus both in terms of position and velocity.

The above three points are dealt in the following three subsections separately.

Stability of the common mode

In this subsection we firstly recall some results for the stability analysis of time delayed
linear time invariant (LTT) systems that have been firstly proved by Olgac and Sipahi
(2002), and later used by Cepeda-Gomez and Olgac (2011a, 2012) in the framework
of multi agent systems.

Consider a generic system whose dynamics is expressed by equation (5.2). Its

characteristic equation is equal to:
det(sl, — A— Be ™) =0 (5.12)

- <52 4 (ks + k) (1 — A{”)) —0, (5.13)

1

(2
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or even equivalently
s2 4 kqs + ky — (kas + kp)Aie” ™ =0 (5.14)

for + = 1,...,n. The above transcendental equations obviously have an infinite
number of roots.

Olgac and Sipahi (2002) proved that the number of imaginary characteristic roots
are finite. Let . = {we1, Wea, - - -, Wem } be the set of crossing frequencies corresponding
to the roots on the imaginary axis. The number of such frequencies depends on
matrices A and B. Moreover to each of such frequencies there correspond infinitely
many values of 7 that are periodically spaced. We denote Y; = {79, 711, ..., Tio } the
infinite set of 7’s associated with w., [ =1,...,m.

A key parameter in this stability analysis is the root tendency defined as:

RT, = sign (Re (%j—) ) s=jwel

where sign denotes the sign operator and Re the real part.

It represents the direction of transition of the roots at w. as 7 increases from
Tk — € to T +6, 0 < e <<1, for any 74 € Y;. In particular, if RT; = —1, the root
Jwe moves to the left half plane, stabilizing the system, whereas if RT; = 1, the root
moves to the right half plane, causing instability. Note that, since Olgac and Sipahi
(2002) proved that for each crossing frequency wy, RT) is invariant with respect to
the element in the set Y;, Olgac and Sipahi (2002) simply propose to analyze the
smallest value of 7 for each crossing frequency.

Now, the following equation provides an easy procedure to compute the number

of unstable roots as 7 varies from 0 to oo, for a given couple of k, and kg:

m
T—T

Nu(7) = Ny(0) +ZF< e )U(T, 70)RT; (5.15)

=1

where Ny (7) denotes the number of unstable roots corresponding to a generic delay

7, Ny (0) is equal to the number of unstable roots for 7 = 0, 7o indicates the smallest

95



positive delay related to w;, the function I'(z) gives the smallest integer greater than
™
or equal to z, A, = —, and U(7, 7j0) is the step function in 7 with the step taking
w

cl
place at 7q:

0 O0<7<mH
U(t,m0) = 1 7>79 and wy =0

2 7>19 and wyg #0

Now, the following considerations and results can be achieved.

e Since we are interested in studying the stability of the mode common to all
topologies, namely the one corresponding to A; = 1, we only look at the crossing
frequencies of the transcendental equation (5.14) for ¢ = 1, i.e.,, wy = 0 and
wy = 1/2k,. For more details we address to Olgac and Sipahi (2002). Basically
we simply need to impose s = jw in equation (5.14) and impose that both sides

of the resulting equation in w have the same magnitude and phase.

e The value of w; corresponds to a root in the origin that prevents asymptotical
stability. In particular it generates a non-oscillating mode that stabilizes in a
point different from the origin. The other value of the crossing frequency may
either lead to stability or instability, depending on the value of 7. In particular,
as explained above, the values of 7 that lead to stability can be computed
using equation (5.15) considering that the number of unstable roots at 7 = 0
is Ny (0) = 1. Indeed, for 7 = 0, the system has two roots in the origin: one is

stable at the limit and the other one is unstable.

e [t is easy to show that RT; = —1 for infinitesimally small values of 7, while it
is RTy = 1 relatively to wy = 1/2k,. This means that mode y, () is stable,
but not asymptotically stable, for 7 € (0 79| where 75 is the smallest positive

delay corresponding to wsy that is equal to

1 —kdwg’
= — arct 5.16
720 Wo ekt (k}% + w3 (k2 + kp)) (5.16)

as proved by Cepeda-Gomez and Olgac (2011a). For all the other values of 7
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the mode is unstable.

Note that in the following y,1(¢) is more simply denoted as y;(t) to emphasize
that it does not depend on the switching signal o(t).

Asymptotic stability of the remaining modes

In this section we introduce a criterion based on LMIs that enables us to prove the
asymptotical stability of all modes y,;(t) for all i = 2,...,n and any fixed value of
o € € to which it corresponds a network topology with a sufficiently large algebraic

connectivity.

Theorem 5.1 Consider the multi-agent system (5.11) consisting of n agents with a
time-invariant time delay T > 0. Consider the n — 1 modes y,;(t) fori=2,...,n
obtained via the equivalence transformation z(t) = (T, ® 13)&(t), and relative to a
given o € Q. If there exist three positive definite matrices P, QQ and S of appropriate
dimensions such that the following LMI

Mcni =
YPAL+ATP Q) S PB, PO,
BIP —%Q 0 (5.17)
Ccr,p 0o =S
<0

holds for any o € 2, then all modes y,;(t) with i =2,...,n are asymptotically stable
for any topology €.

Proof Let us denote as y,;(t) the generic i-th mode of the system obtained via
the equivalence transformation z(t) = (T, ® I)&(t) assuming that o(t) = o for any

t>0.
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Consider the following candidate Lyapunov-Krasovskii functional:

0 /0
+ / / Yo i(r 4+ 1) Syoi(r + t)drdf.
—7J6

0
Var) = WE(OPsos(t) + [ E (s +00Quas(s + 1)ds

Derivation with respect to the time gives

0
Vo (8) = gL (0) (PAgs + AT, P+ Q + / Sd8)ys(t)
+2y§i(t)PBU,iy(,7,~(t —7)+ Qy(ff’i(t)PCg,i / yffz(s + 1)

0 —T
YT — ) Q) — /

yfl(r +t)SYyi(r + t)dr
0 -7
= / Z?,i (t)Mo’,iZo’,i (t)d@
where 2,,;(t) = [Ysi(t), Yoi(t —T), ¥oi(t+ 6)]. Obviously if the condition in (5.17)
holds, then all modes y,;(t) for i = 2,...,n are asymptotically stable regardless of

the value of o.

In simple words V,,,(t) is a Lyapunov function for all i = 2, ..., n for any network

topology €2 in which the LMI in eq. (5.17) holds. O

The above LMI has been introduced by Richard (2003) in a more general form.
Clearly, the requirement that matrices P, () and S exist for any network topology in
() is a very computational demanding task. The dependence on the network topology
in eq. (5.17) consists in a different set of eigenvalues for every topology. In Section 5.4
we show how to extend this approach to avoid the verification of the LMI in eq. (5.17)
for any network topology in §2.

Obviously, the asymptotic stability of the above modes corresponding to a static
topology does not imply in general the asymptotically stability of the switched system,
in particular under the assumption of arbitrary switching. However, for sure there
exists a minimum dwell time that ensures this (Liberzon, 2003). We conjecture that
such a dwell time may be computed appropriately defining a common Lyapunov

function starting from the considered Lyapunov-Krasovskii function.
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Consensus agreement

Theorem 5.2 Consider the multi-agent system (5.11) consisting of n agents with a
time-tnvariant time delay T > 0 where o € ) is constant. Assume that all modes
Yoi(t) fori=2,...,n are asymptotically stable and that the mode y,(t) corresponding
to the eigenvalue N\, common to all topologies in 2 by construction, is stable. Then

the consensus state is achieved asymptotically
tlim llxi(t) —x;(t)|| =0 Vi,jeW
—00
Proof The asymptotic stability assumption for all modes ¢ = 2, ..., n implies that
lim y,:(t) =0, i=2,...,n.
t—o00
Moreover, being by definition y,;(t) = [€,4(t), £,.4(t)], it is
tliglogi(t) =0, i=2,...,n

and

lim &(t) =0, i=2,...,n.

t—o00

Now, being by definition z,(t) = (T, ® I)&,(t), it holds

[To1(t) .. Zon(t)] = Tpéon(t), .- Eon(t)]

therefore
limy eo[oa(t) - .o Ton(t)] = Tp[Le,, 0, ..., 0] (5.18)
= Le,T[1,0,...,0] = L, Tey
where
Le, = tlg?o &n() (5.19)
and e; = [1,0,...,0]. Note that we removed the dependence on o in L, since it

is related to the mode common to all topologies associated with Ay = 1. Moreover,
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the limit in (5.19) exists and is finite since by assumption the first mode is a non

oscillating stable mode.

The term T,e; returns the first column of T, or equivalently the eigenvector as-
sociated to A\; = 1 that is equal to [1,...,1]. This means that equation (5.18) can be

rewritten as

tlim [To1(t) ..., 2on(t)] = L, [1, ..., 1], (5.20)
—00
ie., all x,;(t), for i = 1,...,n, reach the same value equal to Lg,, thus proving the
statement.

U

From the above theorem the next result follows.

Corollary 5.1 Consider the multi-agent system (5.11) consisting of n agents with
a time-invariant communication delay 7 € (0, 79| where Ty is defined as in equa-
tion (5.16). Assume that all conditions of Theorem 5.1 are satisfied. Then, all the

agents reach consensus. U

5.4 LMI computation

In this section we provide a method to solve the LMI introduced in Theorem 5.1
which is independent from the network topology. To this aim, let us first observe

that M, ; can be rewritten as
Ma,i = Ma,i + Ma,i

where

1(PA,; + AT P+Q)+S 0 0
My, = 0 _1 0 (5.21)
0 0o =S

100



and

~

M,;= | BLP 0 0 : (5.22)
ctp 0 0

Obviously, M, ; is negative definite if and only if Mo,i + ]\}[m- is negative definite.
Now, substituting B, and C,; in (5.22), we can rewrite (5.22) as

M, =
[ 0 0 0 kapiz 0 —kppro ]
0 0 0 Fkgpaa 0 — pP22
0 0 0 0 O 0 (5.23)

kapiz2  kape 0 O
0 0 0 0
0

o o O

0
0
| pP12 _kpp22 0 0

where p;; is the entry of P corresponding to row ¢ and column j. Since Mg,i is
symmetric, | M|l = p(M,;), where p(M,;) is its spectral radius. The eigenvalues

n of matrix ]\}[m- are the solutions of equation

~

det(Mm - 7][2) = 0.
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Since A,; is a multiplying scalar, we can neglect it and simply solve the following

equation with respect to n:

-1 0 0 kgpiz 0 —kppio
0 =1 0 kapz 0 —Fkppao
0 0 — 0 0 0
det 77
kapi2  kapze 0 —m 0 0
0 O 0 0 -p 0
| —RpP12 —kap22 0 0 0 -n
=0.

This can be solved analytically by exploiting the Laplace rule to compute the de-

terminant. In particular there are 4 null eigenvalues plus the following two non null

eigenvalues

Mo = FAoir/ (k7 + E2)(pT; + p3y)-

Therefore,

|82 alla = ol (63 + K2) (0 + p2).

Now, let us observe that,

~ ~ ~

Myi+ Ms; < M,; + ||Mo,iH2IG (5.24)

thus, if we prove that
Mo,i + HMcr,i||2I6 <0,
we can be sure that Mo,i + ]\}[m- < 0 as well, or equivalently, M,; < 0.

Now, equation (5.24) can be rewritten as

L(PAy; + AT,P+ Q)+ S+ || Myyllal; <0

—%Q + ||Mo,iH2]2 <0 (5.25)
—S + || My |2 L <0
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where the last two equations are always verified if

T||Mo,i||2]2 <Q

. (5.26)
||Ma,i||2l2 < S
therefore, as a particular case, they are satisfied by
Q:7'<||Ma,i||2+€> Iy (5.27)
and
S = <||Mcrz||2 + 8) I (5.28)

for any € > 0.

Let Q = 7|\ilaly and S = |\, ;|aly with a > \/(k‘g + k2)(p3, + p3,). We need to
solve with respect to P the first inequality in (5.25), that becomes equal to

PA,; + AL,P + 37| \sylaly < 0. (5.29)

Our objective is to prove that inequality in equation (5.29) holds for any A,; €
[—1, 5\2}. Since matrix PA,; + fl;iP + |Aoi| (BTa) I3 is symmetric, if its eigenvalues

are negative then it is a negative definite matrix and equation (5.29) holds.

We now choose a set of parameters of interest &, kg, 7, Xa. We solve the inequality

in equation (5.17) for this set to determine candidate matrix P. We choose a value

o > [ (k3 + ) (% + pBo).

To verify that the eigenvalues of matrix PAN- + A;iP + |As.i|3T are negative we
compute its determinant and trace and verify that they are respectively positive and

negative.

Its trace corresponds to

T = —2p12k’p(1 — )\mi) + 6|>\U,i|7'04 + 2]912 - 2p22kd (530)

103



0.001
0.03
0.05

Trace

000
aNk

0,5 0,79 1

>0t

Figure 5-1: Trace in equation (5.30) versus A, ; for different values of 7

and its determinant corresponds to

A =

A2 (Bra? — paykp® + 2p1ok,3Ta)

+Xoi (2055K2 — 2p12kypaska + ApToky — 2p11pasky) (5.31)
+Aoi| (—2p12k, 3T — Ap3yk, + 6Tapiy — 6Tapasky)

+2p12kppaska — piy + 2p12kapiy + 2p11paoksy

—piz kd* — p%z kf; .

The above quantities can be evaluated numerically for A\,; € [—1,1]. Thus, for
any value of 7 constraints on the spectrum for any network topology can be given.
For a sufficiently small 7 a constraint involving only the algebraic connectivity s
can be computed so that the proposed consensus protocol is stable for all network
topologies with algebraic connectivity smaller than Xo. As an example in Figure 5-1
and Figure 5-2 the determinant and trace given in equation (5.30) and (5.31) are
computed versus \,; € [—1,1] for different values of 7. Simulations are performed
with parameters k, = 10, k; = 50 and a candidate P = [35 0.65;0.65 0.15]. Consider
as an example the simulation with 7 = 0.1: the trace is negative for all \,; € [—1,0.79]
while the determinant is positive for all A,; € [—1,0.54]. This implies that the
proposed consensus protocol is stable for any network topology with Ay = 0.54. Thus,
there exists a minimum dwell time such that consensus is achieved even with slow

arbitrary switchings between any topology satisfying such constraint.
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Figure 5-2: Determinant in equation (5.31) versus \,; for different values of 7

5.5 Simulations

In this section we present a simulation of the consensus protocol in (5.1). We consider
a network of six agents with control parameters k, = 10, k; = 50 and a time delay
7 =10.1. As shown in Section 5.4 these parameters guarantee stability of the consen-
sus protocol for any topology with second largest eigenvalue (algebraic connectivity)
smaller than A\, < 0.54. Furthermore, the chosen value of 7 guarantees the stability
of the common mode as explained in Section 5.3, in fact to the above parameters it
corresponds a value 79 = 0.6827 as in equation (5.16). In Figure 5-3 we consider
a network that switches randomly among 6 randomly generated connected network
topologies which satisfy the bound on the algebraic connectivity. In this case the

simulation shows that with a dwell time of one second the system remains stable.

5.6 Conclusions

In this chapter we investigated the consensus problem for networks of agents with
double integrator dynamics affected by time-delay in their coupling. We provided
a stability result based on the Lyapunov-Krasovskii functional method and a nu-
merical procedure based on an LMI condition which depends only on the algebraic
connectivity of the considered network topologies, thus reducing greatly the compu-
tational complexity of the procedure. Obviously, this result implies the existence of

a minimum dwell time such that the proposed consensus protocol is stable for slow
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Figure 5-3: Simulation of the consensus protocol for a switching network topology

switchings between network topologies with sufficient algebraic connectivity. Future
work will involve actually computing this dwell time by adopting a multiple Lyapunov
function method and evaluating the worst case convergence rate. Furthermore we will
evaluate novel consensus protocols that consider only delayed relative measurements

instead of delayed absolute values of the neighbors’ state variables.
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Average consensus in arbitrary

directed networks with time-delay

“The noblest pleasure is the joy of understanding”

— Leonardo da Vinci

In this chapter, based on the results of Zareh et al. (2013a), we study the stability
property of a consensus on the average algorithm in arbitrary directed graphs with re-
spect to communication /sensing time-delays. The proposed algorithm adds a storage
variable to the agents’ states so that the information about the average of the states
is preserved despite the algorithm iterations are performed in an arbitrary strongly
connected directed graph. We prove that for any network topology and choice of de-
sign parameters the consensus on the average algorithm is stable for sufficiently small
delays. We provide simulations and numerical results to estimate the maximum delay

allowed by an arbitrary unbalanced directed network topology.

6.1 Introduction

The consensus problem in multi-agent systems consists in the design of a coupling
law between dynamical systems (agents) such that the state of each one converges to

the same value in absence of external reference signals. Multi-agent systems are con-
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sidered to be complexr systems since the pattern of interconnections between agents
is often arbitrary and unknown at the controller design stage. This clearly makes
challenging the design of interaction rules between agents that exploit only local in-
formation. For these reasons agents modeled by simple single integrators or second
order systems are usually investigated. One of the major works from which we take
inspiration is the one by Olfati-Saber and Murray (2004) where the consensus problem
for networks of first order agents for switching topologies or time-delays is investi-
gated. In this chapter, we prove that simple averaging local interaction rules can
achieve consensus on the average, i.e., the state of each agent converges to the aver-
age of the initial states only if the directed graph that encodes the network topology
is strongly connected and balanced (each agent receives and sends information to the
same number of agents). They also explored the consensus problem in the case of

time-delays for undirected network topologies.

Since then several authors have explored ways to design consensus on the average
algorithms that work on general directed graphs not necessarily balanced. In the
work of Franceschelli et al. (2008, 2009) the idea to use an augment state space to add
robustness to a networked system represented by an undirected graph that executes
a consensus algorithm was proposed. The proposed algorithms aim at recovering the
correct network average once malicious or faulty agents have been removed from the

network.

Franceschelli et al. (2009, 2011) presented a discrete time consensus on the average
algorithm for arbitrary strongly connected directed graph based on asynchronous state
updates , based on the idea to augment the state of each agent with an additional
variable to preserve the information about the initial average of the states in the
network. Simulations were used to characterize the convergence properties and the
performance of the algorithm.

Cai and Ishii (2012) characterized a discrete time consensus on the average algo-
rithm based on additional state variables was in terms of a tuning parameter. It was
proven that there always exist sufficiently small values of such tuning parameter so

that the proposed algorithm converges to the average of the initial state in arbitrary
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strongly connected directed graphs.

Dominguez-Garcia et al. (2012) addressed the control of distributed energy re-
sources by developing a consensus on the average protocol based on the so called
ratio consensus. Their algorithm is based on two independent distributed dynami-
cal systems, one with arbitrary initial conditions and one with predetermined initial
values. The authors consider time-varying network topologies described by directed
graphs and show that for each agent the ratio of the output of these two dynamical
systems converges to the average of the initial states.

Chen et al. (2010b, 2011) proposed the Corrective Consensus algorithm. It con-
sists in a local state update rule where each agent keeps track of several additional
variables corresponding to the number of its neighbors which are used to periodi-
cally steer the average of the network state to the correct value corresponding to the
average of the states at the initial instant of time.

Aysal et al. (2009) proposed the broadcast gossip algorithm . This algorithm is
based upon discrete time and asynchronous state updates with directed information
flow, it makes each agent agree upon a random variable whose expectation is the
average of the initial states.

Most of the literature on consensus on the average in directed graphs deals with
methods and techniques to achieve consensus on the average in networks of agents
described by single integrators. On the other hand the literature on consensus with
time-delays in directed graphs usually deals with the problem of making the state of
each agent converge to the same value which can be time-varying and not related to
the initial state of the network in an explicit way.

Yu et al. (2010) characterized necessary and sufficient conditions for convergence
of second-order multi-agent systems with velocity feedback are given and the effect
of time-delays in directed graphs while the consensus value is arbitrary.

In the work of Sun and Wang (2009) several instances of consensus problems with
time-delays are investigated. In particular the cases of switching directed topologies,
packet data dropouts, and finite time consensus are all characterized separately by

considering the effect of time-delays for the achievement of consensus on an arbitrary
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value.

In this chapter, we propose a continuous time consensus algorithm inspired from
the discrete time algorithms of Franceschelli et al. (2009, 2011); Cai and Ishii (2012).
We consider a description in continuous time to describe a network of n vehicles with
a local interaction rule that controls the instantaneous speed of each vehicle. Then
we extend the proof method of Cai and Ishii (2012) to the case at hand and study
the convergence properties of the resulting system considering a time-delay in the
state update of each agent. We finally provide simulation results to corroborate the
theoretical analysis.

The main contributions of this chapter can be summarized in the following three

items.

e We provide a continuous time version of a consensus on the average algo-
rithm for arbitrary directed strongly connected graphs derived from results of

Franceschelli et al. (2009, 2011) and Cai and Ishii (2012).

e We provide a characterization of the convergence properties of the algorithm

with respect to time-delays.

e We present simulations to characterize numerically the performance of the pro-

posed protocol with respect to different time-delays and tuning parameters.

The next sections are structured as follows. In Section 6.2 we introduce a con-
sensus on the average protocol and the corresponding model considering time-delays.
In Section 6.3 we characterize the convergence properties of the proposed algorithm
with respect to time-delays. In Section 6.4 we corroborate the theoretical analysis
with a numerical example and simulations. Concluding remarks are finally given in

Section 6.5.

6.2 Consensus on the average protocol

We now introduce a consensus protocol stated in continuous time that takes inspira-

tion from protocols addressed by Franceschelli et al. (2011) and Cai and Ishii (2011b)
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in a discrete time setting. In the protocol under consideration each agent is a single
integrator with an additional state variable called surplus or storage. This additional
variable is used to preserve information about the average value of the agents’ states
at the initial instant of time, that is a time-varying quantity in directed graphs that
are not balanced, i.e., graphs in which the in-degree and out-degree of each node are

not necessarily equal.

The local state update rule implemented by each node is the following:

Ti(t) = =D jen., @i(t) — x;(t)) +ez(t),
4(t) = Djen., (@i(t) —x;(t))

=D jena (i) — 2(1))

— (€ = di,in + Oiout) 2i(t),

(6.1)

where z;,z; € R are the states of agent ¢ and ¢ € R" is a tuning parameter of
the algorithm. It is clear that to implement protocol (6.1) each agent requires only
relative state information with respect to variable x;, absolute state information with

respect to variable z;, and knowledge of its own out-degree.

The network dynamics that emerges when each agent implements the local state

update rule in eq. (6.1) can be formulated in matrix form as follows:

z(t —L;, el x(t
0] _ (" o)
£(t) Lin —Low — €l 2(t)
where x = [21,X9,...,2,) and z = [21, 29, ..., 2, are a compact representation of

the agents’ state.

The proposed local interaction scheme can be interpreted as a network of n vehicles
each modeled as a continuous time single integrator #(t); = wu;(t) where each x;(t)
represents a position in space and variables z;(t) are software variables which enable

the interaction scheme to converge to the initial average position.

In this chapter, we study protocol (6.2) under the assumption that communica-

tion/sensing delays affect the multi-agent system. The network dynamics are thus
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described by

x(t) M) x(t — 1) (6.3)
2(t) z2(t —71)
with z(0) = xg, 2(0) =2z, —7 <60 <0, where
—L;, el
M(e) = (6.4)

Lin _Lout - El

and 7 € RT denotes a time-delay. We study system (6.3) in the approximation that
the delay for all the agent is the same.

6.3 Convergence properties

In this section we study the convergence properties of system (6.3).

We preliminary observe that by construction matrix M(e) satisfies
(1, 1] M(e) = [0, 0, ],
for any € € R. Therefore, since

17a@t) +120) =0, vt>0

it holds
102(t) + 15 2(t) = 112(0) + 11 2(0), vt >0. (6.5)

Now consider matrix M (e) for € = 0, namely

M(0) = . (6.6)

It is clear that since matrix M(0) is a 2n X 2n block lower triangular matrix it has

2n eigenvalues equal to the eigenvalues of matrices —L;, and —L,,. If graph G is
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strongly connected, then M (0) has one null eigenvalue with algebraic multiplicity 2
and geometric multiplicity 2, all other eigenvalues have strictly negative real part.
In the following we denote as X;(0), i = 1,...,2n, the eigenvalues of matrix M (0)

and assume that

Eigenvalues of matrix M(e) are denoted as A\;(¢), ¢ = 1,...,2n, and ordered as
R(A)(E) > ... > R(Aan(e))-
We now prove some properties of the eigenvalues of matrix M (e) for small values

of ¢ > 0, that can be derived from the results of Cai and Ishii (2011b).

Proposition 6.1 Let matriz M(c) be defined as in eq. (6.4). If G is strongly con-
nected, there exists £ € RT such that if € € (0,&] then M(g) has one null eigenvalue
and 2n — 1 eigenvalues with strictly negative real part.

Proof: Matriz M (g) depends smoothly on parameter e > 0, therefore if eigenvalues
A3(0), ..., A2, (0) of M(0) have strictly negative real part, there exists € > 0 such that
if € € [0,€] then fori=3,...,2n, it holds R(\;(¢)) < 0. Therefore, according to Cai
and Ishii (2011b), we only have to show that for ¢ sufficiently small it is Ai(e) =0
and R(A2(g)) < 0.

Since the null eigenvalue of M(0) is semi-simple' and Rank(M(0)) = 2n — 2
it has two linearly independent right eigenvectors ri,rs and left eigenvectors Iy, ls
corresponding to the null eigenvalue. It holds

dM(e) 0 I

M = = . .
— o (6.7)

Then, as shown by Cai and Ishii (20110), d\i(g)/delc=o and dX2(g)/de|.=¢ are the

etgenvalues of the following matriz

L An eigenvalue is semi-simple if its algebraic and geometric multiplicity are equal.
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Z{M/’f’l ZI{M/’T’Q

(6.8)
lgM’T’l lgM/Tg

n» - n

If graph G is strongly connected then l; = a1y, and ry = as [lT OT} where aq, g € R
can be chosen such that liprl = 1. By substituting l; and ry in (6.8) it can be shown

by stmple computations that

dMi(€)/dele—g = 0, dXa(e)/de|ceo = 13 M'ry.

The first equality enables us to conclude that for sufficiently small values of €, it
is \(e) = 0.

Now, let vy be the right eigenvector corresponding to the null eigenvalue of
matrix Loy and vy, be the left eigenvector corresponding to the null eigenvalue of

matrix Li,. It is possible to verify by substitution that we can choose ro = [OT vl }

n’ “rout
and ly = [ng, OZ} Therefore,

dXa(e)/de|eco = Vi Vs out-

Since Ly, and Ly are Metzler matrices (Berman and Plemmons (1979)), the
etgenvectors Vi, and Vy .y corresponding to the null eigenvalue have only positive
elements. Therefore

dXo(€) /delc—o = =13 Vrout < O

and Aa(€) < 0 for e > 0 sufficiently small, thus proving the statement. O

We are now ready to study the stability of system (6.3) with respect to time-delays.
Let Y(s) = [X(s)T Z(S)T}T denote the Laplace transform of y(t) = [z(t)” z(t)T}T.

Then the Laplace transform of system (6.3) is
Y(s) = (sI — M(e)e™) ™ Y(0)

and the stability property of system (6.3) depends upon the roots of the quasi-
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polynomial

det (sI — M(g)e™") . (6.9)

By simple manipulations it holds
det (sI — M(g)e™T) = e >"det (se" 1 — M(e)) (6.10)
thus the roots of (6.9) correspond to the solutions of
se’T = N\(e), i=1,...,2n. (6.11)

Theorem 6.2 Let matriz M(g) be defined as in eq. (6.4) and € € (0,&] as in Propo-

sition 6.1. If G is strongly connected and
7<7(e)= min —-~ 2 (6.12)

where R;(€) = |N\i(e)| and 0;(e) = L\i(€) with \i(e) the i-th eigenvalue of M(g), then
the roots of
det (sI — M(g)e™*") (6.13)

have all strictly negative real part except one in s = 0.

Proof: By Proposition 6.1 since G is strongly connected by assumption, there exists
€ such that for e € (0,&], M(e) has a single null eigenvalue and 2n — 1 eigenvalues
with strictly negative real part. Since the roots of eq. (6.13) depend continuously on T
and for T = 0 they coincide with the roots of M(e), we compute the smallest positive
value of T, denoted as 1., for which at least one non-null root crosses the imaginary

axis. By eq. (6.11), assuming s = jw it holds
JwelT = R;(e)e??®),
By simple manipulations the above equation can be rewritten as

Jjw = Ri(e) cos(0;(e) — wT) + jR;(e) sin(0;(e) — wT),
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therefore
Ri(e) cos(0;(¢) —wT) =0,
w = R;(e) sin(f;(e) — wT).

This implies that

Finally, considering only the top-half of the Gauss plane, 0;(¢) € (g,ﬂ for i =
1,...,2n. Thus

, . Oi(e) =5 —km
me(e) = min min e
(6.14)
= min bule) — 3
i=2,.2n Ri(e)
proving the statement. U

Next we give bounds on the maximum length of the time delay that ensures
stability as function of known network parameters computed for € = 0. If the actual
time delay is smaller than the proposed bound then we are sure that there exist ¢ > 0

sufficiently small such that the system is stable and achieves consensus.

Theorem 6.3 Consider a multi-agent system that implements protocol (6.1) in graph
G = {V, &}, with tuning parameter ¢ > 0, initial condition z2(0) = 0,, and time-delay

7> 0. If G is strongly connected, there exists € such that if € € (0,&] and

L ean (20500)

T < T = — arctan
20 1)

where

5 = T?E%X{(Si,im 5i,out}
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and A3(0) is the rightmost non-null eigenvalue of matriz M(0), then

lim (t) = 1220

t—o0 n

1,.

Proof: By definition it holds

M(e) = M(0) +eM’,

where M' is defined as in eq. (6.7). Since M(e) can be seen as a perturbation of matriz
M(0) its eigenvalues depend continuously on parameter €. This implies that the ratio
in eq. (6.12) can be bounded for an arbitrary small € as a function of the eigenvalues

of M(0). In particular, for e =0 by the Gershgorin disc theorem applied to matrices

.....

..... 2
=220 Ri(e) T maxj—a.on Ri(€)

92(8) -z > minizg m ‘9@(6) -z

, )
> o SN (2))
> = arctan (2:I1111n2n S(Ai(e)

-----

bie) =5 _ 1 (M) ,

min ——~——% > — arctan

i=2,..2n  R;(e) T 28

Therefore, since by Theorem 6.2 we may conclude that for T < 7.(g) all the roots of
eq. (6.9) have strictly negative real part except one, this also holds for a sufficiently
small value of € provided that

< %arctan (M) —F <o),

Therefore, the solutions x(t) and z(t) of system (6.3) converge to the null space
of matriz M(g), i.e.,



Time [sec]

Figure 6-2: Evolution of x(t) for ¢ = 1.3 and 7 = 0.19.
Since 11x(t) + 11 2(t) = 172(0) + 172(0) for any t > 0 we have that

172:(0) + 17 2(0) .

o =
n
Since by assumption z(0) = 0, it holds
172(0
lim a(t) = 220y
t—o0 n
thus proving the statement. U

6.4 Numerical example and simulations

In this section we consider a numerical example to corroborate the theoretical results

presented in the previous section.
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Figure 6-3: Evolution of z(¢) for ¢ = 1.3 and 7 = 0.19.
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Figure 6-4: Real part of the rightmost non-null eigenvalue of matrix M (¢) with respect
to €.
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Figure 6-5: Real part of rightmost non-null root of eq. (6.9) with respect to 7, for
e=1.1.
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Figure 6-6: The value of 7.(¢) with respect to .

We consider the network of 6 agents whose topology is shown in Fig. 6-1. Such a

network is encoded by the adjacency matrix

(6.15)

_ o = O O O
_ o O O = O

oS =B O = O =
o O O = O =
o O kOO = O
(e =l e R

The in and out-Laplacian matrices are, respectively




=
o

Real part oﬁ\R
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Figure 6-7: Value of the real part of the rightmost non-null root Ag of eq. (6.9) versus
increasing € and time delay 7.

and

Lout =

Fig. 6-2 shows the evolution of system (6.3) when ¢ = 1.3 and 7 = 0.18. Initial
conditions z(0) are chosen uniformly at random while initial conditions z(0) = 0,,.
Fig. 6-2 shows how consensus on the average of the initial state x(0) is achieved.
Fig. (6-3) presents the evolution of the storage variables z(¢). All storage variables
are initially set to zero and then vary during the dynamical evolution of the system
so that the quantity 122 (¢) + 17 2(¢) remains constant.

We now present the results of a series of numerical simulations whose aim is that
of showing how the consensus achievement is related to parameters ¢ and 7. In
particular, Fig. 6-4 shows how the rightmost non-null eigenvalue Ag of matrix M(e)
varies for € € [0.2,1.8]. Fig. 6-4 shows that there exists an optimal value at ¢ = 1.1

for which matrix M(e) in the given example has the smallest rightmost non-null

eigenvalue.

In Fig. 6-5 we show how the rightmost non-null root of eq. (6.9) varies for increas-

ing values of the time-delay 7 when € = 1.1. Fig. 6-5 shows that despite the time-delay
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can make the system unstable, it can also improve the convergence speed to average
consensus. For this example the optimal value of the time-delay is 7 = 0.19.

Fig. 6-6 shows the values of 7. in eq. (6.14) for which eq. (6.9) has roots in the imag-
inary axis, i.e., it shows the maximum time delay sustainable by system in eq. (6.3)
for the considered network topology in Fig. 6-1.

Finally, in Fig. 6-7 we show a plot of the real part of the rightmost non-null
eigenvalue of eq. (6.9) for ¢ € (0,2] and 7 € [0, 1]. Fig. 6-7 shows how the convergence
properties are affected by parameters € and 7: there exists an optimal value at ¢ = 1.1
and 7 = 0.19 for which A\g is the most negative and there exists a connected region
of the plane defined by e, 7 where A has strictly negative real part.

The rightmost non-null root of eq. (6.9) for a given set of (¢, 7) is computed using

the spectral method with the heuristic presented by Wu and Michiels (2012).

6.5 Conclusions

The results of Zareh et al. (2013a) were addressed in this chapter. A continuous
time version of a consensus on the average protocol for arbitrary strongly connected
directed graphs was proposed and its convergence properties with respect to time
delays in the local state update were characterized. The convergence properties of
this algorithm depend upon a tuning parameter that can be made arbitrary small to
prove stability of the networked system. Simulations were presented to corroborate
the theoretical results and show that the existence of a small time delay can actually
improve the algorithm performance. The future work will include an extension of
the mathematical characterization of the proposed algorithm to consider possibly

heterogeneous or time-varying delays.
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Consensus in multi-agent systems
with second-order dynamics and

non-periodic sampled-data exchange

“In questions of science, the authority of a thousand is not worth the humble

reasoning of a single individual.”

— Galileo Galilei

In this chapter based on the results of Zareh et al. (2014a), consensus in second-
order multi-agent systems with a non-periodic sampled-data exchange among agents
is investigated. The sampling is random with bounded inter-sampling intervals. It
is assumed that each agent has exact knowledge of its own state at all times. The
considered local interaction rule is PD-type. The characterization of the convergence
properties exploits a Lyapunov-Krasovskii functional method, sufficient conditions for
stability of the consensus protocol to a time-invariant value are derived. Numerical

simulations are presented to corroborate the theoretical results.
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7.1 Introduction

This chapter deals with the problem of consensus in second-order MAS with a non-
periodic data sending manner among the agents. We consider the case in which each
agent has a perfect knowledge of its own state with almost no delay, i.e., it knows its
own speed and position. Information exchanges between neighboring agents happens
at discrete time intervals which are possibly non-periodic but strictly positive and
bounded.

The network dynamics can thus be modeled as a sampled-data system (SDS), a
class of systems extensively investigated in the literature.

For interesting contributions in this area we point the reader to Ackermann (1985);
Fridman (2010); Zutshi et al. (2012) and the references therein. We also mention the
work by Fridman et al. (2004) who exploited an approach for time-delay systems
and obtained the sufficient stability conditions based on the Lyapunov-Krasovskii
functional method. Seuret (2012) and Fridman (2010) proposed improved methods
with better upper bounds to the maximum allowed delay. Shen et al. (2012) studied
the sampled-data synchronization control problem for dynamical networks. Qin et al.
(2010) and Ren and Cao (2008) studied the consensus problem for networks of double
integrators with a constant sampling period. In the latter two papers, even though
the authors use the sampled-data notation to introduce their novelty, they suppose
that the communication and the local sensing occur simultaneously and this simplifies
the problem into a discrete state consensus problem. Xiao and Chen (2012) and Yu
et al. (2011) studied second-order consensus in multi-agent dynamical systems with
sampled position data.

We propose a PD-like consensus algorithm with non-periodic sampled-data ex-
change among agents with bounded and strictly positive inter-sampling intervals.
A characterization of the convergence properties exploiting a Lyapunov-Krasovskii
functional method is provided and sufficient conditions for exponential stability of
the consensus protocol to a time-invariant value are derived. Numerical simulations

are presented to corroborate the theoretical results.
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This chapter is organized as follows. In Section 7.2 some notation and preliminar-
ies are introduced. In Section 7.3 the consensus problem for second order multi-agent
systems with non-periodic sampled-data exchange is formalized. In Section 7.4 the
convergence properties of the proposed consensus protocol are characterized. In Sec-
tion 7.5 simulation results are presented to corroborate the theoretical analysis. In

Section 7.6 concluding remarks and directions for future research are discussed.

7.2 Notation and Preliminaries

In this section we recall some basic notions on graph theory and introduce the nota-
tions.

The topology of bidirectional communication channels among the agents is repre-
sented by an undirected graph G = (V, &) where V = {1,...,n} is the set of nodes
(agents) and & C {V x V} is the set of edges. An edge (i,j) € & exists if there is
a communication channel between agent ¢ and j. Self loops (i,) are not considered.
The set of neighbors of agent i is denoted by N; ={j : (j,i) € &;j=1,...,n}. Let
d; = |NV;| be the degree of agent ¢ which represents the total number of its neighbors.

The topology of graph G is encoded by the so-called adjacency matriz, an n X n
matrix A, whose (i, j)-th entry is equal to 1 if (¢, j) € &€, 0 otherwise. Obviously in
an undirected graph matrix Ay is symmetric.

We denote A = diag(dy, . ..,d,) the diagonal matrix whose non null entries are
the degrees of the nodes. Moreover, matrix W, = A=Ay is the weighted adjacency

matriz associated with G. The following result holds.

Lemma 7.1 If a graph G is connected then the eigenvalues of the weighted adjacency
matriz Wy, namely \;, 1 =1,...,n, are all located in the interval [—1, 1], and Ay =1

15 always a simple eigenvalue of Wy.

Proof: Using Gershgorin theorem since all the diagonal elements of W, are zero
and each row sums up to 1, it immediately follows that A\; € [—1, 1]. Now, let

L = A — A, be the Laplacian matrix associated with the considered graph. If such a
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graph is connected, then the origin is a simple eigenvalue of L which implies that it
is a simple eigenvalue also for —A™'L = A=tA; — I = W, — I. Consequently, if the
graph is connected, A\; = 1 is a simple eigenvalue of the weighted adjacency matrix.
OJ

Finally, in the rest of this chapter we denote with % the symmetric elements of

symmetric matrices.

7.3 Problem Statement

Consider a second-order multi-agent system with an undirected communication topol-
ogy. Consider the PD-type consensus protocol inspired by Cepeda-Gomez and Olgac
(2011b) and Zareh et al. (2013b):

zi(t) = wv(t),
CONEES DINFACERD D (1)

—]fpﬂfi (t) — ]fd’UZ‘(t),

where i = 1,...,n, n denotes the number of agents, x;(t) and v;(t) are the position
and the velocity of agent ¢, and 9; indicates its degree.

We suppose that the local information, i.e., the information that each agent re-
ceives from its own sensors, is measured instantaneously. This obviously makes sense
when the sensor dynamics are fast enough.

Moreover, we assume that the communication between the generic agent ¢ and its
set of neighbors N; occurs in stochastic sampling time instants ¢, k = 0,1,...,00

that satisty the following conditions:
O<tk+1—tk§7_'€R+

and

lim ¢, = oo.
k—o0
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Under the above assumptions, equation (7.1) can be rewritten as:

;(t) = Z@(t)’ )
vi(t) = 5—f > jen; Tilte) + 5—j > jen; Vilte) (7.2)
—]fp.l’l(t) — kdvl(t)

or, alternatively, doing some simple manipulations, as:

&) —(A®1,) z(t) +(BaW,) z(t) (7.3)

o(t) v(t) v(tk)
where t € [ty tkr1), T = X1, T2, ..., 2], v = [U1, 00, ..., 0], A = diag{01,02,...,0n},
Ay is the adjacency matrix, W; = A7'A, is the weighted adjacency matrix, and

matrices A and B are equal, respectively, to:

0 1 0 0
A= , B = . (7.4)
—k, —kq ky kq
A MAS with an undirected communication topology and following equation (7.1),
is said to converge to a consensus state if

lim |z;(t) — z;(t)] =0

t—o00

and

lim |v;(t) — v;(t)| = 0.

t—o0

In this chapter, given the value of the maximum admissible difference 7 between
any two consecutive sampling time instants, and a communication topology with a
given spectrum, we aim at finding conditions that guarantee consensus to a fixed
point among agents that evolve according to equation (7.3).

We will also address the issue of evaluating an upper bound to the decay rate of
convergence.

We conclude this section pointing out some differences among our problem for-
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mulation and the ones by Xiao and Chen (2012) and Yu et al. (2011). The most
important difference is that we assume that each agent receives a message containing
its neighbors’ positions and velocities in a sampled-data basis. On the contrary, Xiao
and Chen (2012) and Yu et al. (2011) supposed that the agents gather the sampled

positions of their neighbors and their own at the same time instants.

7.4 Convergence properties

In the following subsection we first introduce a state variable transformation to decou-
ple the dynamics of modes associated with the eigenvalues of the weighted adjacency

matrix. Then, the stability of such modes is analyzed in detailed.

Stability analysis

Apply the following change of variables:

z(t) = Tz(t) (7.5)
to eq. (7.3). Then, it holds:
(L®T) f(t) _ e | Y
Z(t) £(t) (76)
cBow) | "
Z(t)
and eq. (7.3) can be rewritten as:
SO N 0
Z(t) 2(t) (7.7)
. z(tx)
(B ®T'W,T)
Z(t)



Since Wy is a symmetrizable matrix, then it is also diagonalizable (Cepeda-Gomez

and Olgac, 2011b), and the transformation matrix 7" can be chosen such that
A =T 'WyT = diag(A, Mo, ..., \n)

where

AM>X > >\,

are the eigenvalues of the weighted adjacency matrix W,. As a result, eq. (7.7) can

be rewritten as:

or alternatively, as

zi(t z;i(t zi(t
o] _,f=0],, =@ -
Zi(t) Zi(t) Zi(ty)
where i = 1,...,n, and z/(t) is the i-th element of vector z(t).
Now, if we define
yit) = [a(t) &))" (7.9)

the i-th mode of the system, we can say that its dynamics follows equation:

i(t) = Ayi(t) + X\iByi(t). (7.10)

Moreover, assuming 7(t) = t — t;, the above equation can be rewritten as:

U:(t) = Ayi(t) + \iByi(t — 7(1)). (7.11)

The above SDS is a special case of a time varying delayed system where the delay
7(t) is upper bounded by 7, and its derivative is 7(¢) = 1, while the delay switches at

times t =t,, k=0,1,...,00.

129



In the rest of this chapter we assume that the graph G describing the communi-
cation topology is connected. By Lemma 7.1 this implies that its largest eigenvalue
is Ay = 1. We call unitary eigenvalue mode (UEM) the mode associated with A; = 1.

The following lemma characterizes the dynamics of the UEM. In particular it
shows that the UEM converges asymptotically to a vector whose first entry z(¢) is

equal to a constant value and the second entry 2, (¢) is null.

Lemma 7.2 Consider a system whose dynamics in the time interval t € [ty, tri1),
k= 0,1,...,00, follows eq. (7.10) with \; = 1. Assume tx41 — tx, > 0 for any
k=0,1,...,00. It holds

lim 2 (t) =v, ~v€R. (7.12)

k—o0

Proof: To prove this lemma we observe that by eq. (7.10) and by definition of
matrices A and B, it follows that

Zl(t) —+ kdz'l (t) + ]{szl (t) = kdzl(tk) + kpzl (tk), (713)

for t € [ty try1]. We consider two cases separately.

Case A

The characteristic polynomial associated with eq. (7.13) has two distinct roots. This

corresponds to
k2
o=-—+——k,#0.

In such a case the solution of the above ordinary linear differential equation is

equal to:

a(t) = 1z (B)es ) — ey (1 )es2t-t)
(7.14)

kg .
() + k—dzl(tk),
P
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where

—k k2
8172:—2d:|: Zd—]{?p,
kq
Cc1 = (1 + —52),
S1 — S9 k’p
kq
= 1+ s,
= S1 —82( + ]fp81)

Now, let Ty = ty41 — t. From (7.14) we can compute z1(t;y1) and z1(tx41) as:

21t 21(t
1) | iy [ 200 -
Z1(trt1) Z1(tr)
where
1
M= "™, (7.16)
0 B
s1T s2T] kd
g = e’ — cpe®th 4 — (7.17)
kp
and
B = 151651k — co50e°2Tk, (7.18)

Therefore for all £ > 0 it holds:

21 (tk) _ Mk 21 (0)

Z1 (tx,) Z1(0)

where

My = M(TW)M(Ty_y) ... M(T)

k m—1
eI (7.19)
_ X .
0 11 5;
=0

We now prove that || < 1 where fy is defined as in eq. (7.18).

Let
—kq kfl

—k
SlZT‘I—\/E, SQZTd‘I‘\/E, U:Z—kp.

We consider separately the case of ¢ > 0 and o < 0.
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Case Al: 0 >0

In this case it is trivial to show that s;,so € R and sy < s; < 0. Furthermore, we

have %27k < 1Tk and c¢157 — o852 = 1. We can also show that:

1 k

_ Md
c1S1 = 51— 59 (81 + kpslsg)
1 kg
—— >0
2\/5( 5 Vo)
and ] i
CoS9 = (82 + —d8182)
1— S2 ]fp
1 kg

Let w = /o and v = kq/2 = \/w? + k,. We get:

(v +w)eTr — (v — w)e T

Br = ST : (7.20)

Moreover, since o > 0, it is w € (0, 0o) and therefore v € (1/k,, o00). For any k, > 0

we obtain:

Hence due to the continuity in (7.20), for any value of k, and k4 such that o > 0,

knowing that 7} > 0, we achieve

RV
771

thus prove the statement.
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Case A2: 0 <0

In such a case s; and sy are complex conjugate numbers and

Br = (c151 — cas9)e™Tkkal2 cos(\/aT),)+
jlc1s1 + cos)eTkkal2 gin(\/aT},).

Being c181 + cos9 = 0 and ¢;87 — co59 = 1 the second term vanishes and we get:

By = e Tikal2 cos(\/o) < 1 (7.21)

This leads us to

Therefore, due to the fact that for all m > 0 the norm of u,, is bounded by some
k m—1

fi < 0o, we can conclude that the term ) p,, [[ 5;, which is obtained multiplying
m=0  j=0

bounded numbers and exponentially decreasing products gets a constant bounded

value II. Hence lim z(t;) = lim (21(0) 4+ [12,(0)) and lim Z,(¢;) = 0 which in turn
k—o0 t—o0 k—o0

implies that there exists v € R such that:

lim 2 (t) = 7. (7.22)
k—o0
Case B
The characteristic polynomial of (7.13) has a single real root s = —k;/2 with multi-
plicity 2.

In such a case the solution of eq. (7.13) is:

Zl(t) = diz (tk)tesl(t_tk) — dy7y (tk)€52(t—tk)
ka . (7.23)
_I'Zl (tk) + k—Zl (tk),
P
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where

kg kq 2
dy = (tp + Llps + = ) = —.
= (g )

Therefore it is

z1 (¢ z1 (¢
) | ey [ 20 ] -
Z1(tkt1) Z1(t)
where
1 !/
0 B
k
with p) = k—d(l —e*Tr), and B, = —e*Tr. Since for any Ty > 0, it is |B| < 1, then,
P

repeating the same reasoning as in Case A, we conclude that there exists v € R such

that
lim 2 (t) = 7. (7.25)
k—o0

O
We now characterize the conditions on the design parameters k,, kq, 7 under which
the modes y;(t), i = 2,...,n, defined in eq. (7.9) are exponentially stable.

To do this we provide the following lemma, whose proof is inspired by Seuret

(2012).

Lemma 7.3 Consider the generic mode y;(t) defined in eq. (7.9) whose dynamics
follows eq. (7.11). Matrices A, B are defined as in eq. (7.4), 7(t) =t —ty, k =
0,1,...,00, and \; € [—1,1).

Assume that the difference between any two consecutive sampling times is smaller
than a given T, i.e., it holds tyy1 —t, < T forallk=0,1,...,00.

If there exist symmetric positive definite matrices P, R;, S; € R**2 a matriz

Qia

Q; = € R*™2 and a constant value o > 0 such that the following inequalities
Qiz2

are satisfied:

\I]i 7_',Oé \I’Z 7_',Oé
n(7,@) Win(7, ) <0, (7.26)
Y

*
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U, 11(0, ) W;12(0, ) TQi1
* W;22(0, @) TQiz2 <0 (7.27)
* * —7(1 — 2a7)R;

where
U, 1(T,a) = PA+ ATP, — S, — Qin — 7,1

+2OKPZ - 2OKRZ‘,

\1’112(7' Oé)—)\PB‘i‘S +20éR "‘Qzl Qz2

W;00(T, ) = —S; — 2aR; + Qi 2 + Q7

then mode y;(t) is exponentially stable with decay rate c.

Proof: Consider the following functional:

Vilt,yi(t), vi(te)) = yf (1) Pi(t)
(f T(t)) & ()S-&-() (7.28)
77_ t) ft yz Ryz )d
where
&i(t) = yi(t) — yilty). (7.29)

Obviously &(t) = 9;(t). Note that the second and the third term of the func-
tional vanish during the jump due to the fact that tlir? yi(t) = yi(tx) which leads
—lk
to tlir? V(t) < V(t;). Hence we should look the functional only inside the intervals
—lk

without being worried about the jumps.
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Derivating eq. (7.28) with respect to time we get:

Vilt,wi(t). :(t) = 5T (1) (PA+ ATP, = 5,
(7 — (1)) (SiA+ ATS; + ATRZ-A)>y,~(t)
1ou7 (1) ()\Z-PZ-B + S+ (F—7()(S:A
FATS, + ATRiA)>yi(tk)
+yi (tk)( -8 — (7 — T(t)) (A-BTS- + \iSiB
_\2BTR, B) vilte) — fi T (s) Raga(s)ds.

(7.30)

Now consider the following candidate functional:

Wit yi(t), yi(te), o)
= V(t, 5:(), yi(te)) + 2aVi(t, yi(t), yi(tr))
— y7(¢) (BA + ATP, — 5, + 2P,
(7 = T(0))(S:A + ATS + ATRA + 2080) )ui(1)
1257 (1) (APB + Si+ (7 = 7(t )) (S:A (7.31)
FATS, + ATR,A — 20, )
Tyl () (= Si = (7= (e ))(>\ BS; + \S:B
“N2BTR,B + 2a5; )yz(tk)
—(1 = 2a(7 = 7(t))) [ 47 (s)Riti(s)ds.

To ensure the exponential stability of mode y;(t) with decay rate « it is sufficient to

prove that:
Wit yi(t), yi(te), ) < 0.

We manipulate the integral term

—ﬂ—2MT—ﬂODZQﬂ$R@®Ms (7.32)

to achieve a bound on that based on a function of y;(t) and y;(tx). To this aim, we
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rewrite the above term as the summation of two terms

~(1=207) [ il () Rai(s)ds (7.33)
and .
—2a7(t) /t yl (s)Rys(s)ds (7.34)

and provide an upper bound to each term separately.

To provide an upper bound to (7.33), we introduce the following inequality for

two vectors wy and wy and an arbitrary matrix [ with compatible dimensions:

2w wy < wiT ™ wy 4+ wiTws.

(T
Rewriting the above inequality assuming w; = Q7 bi(0) , wy = y;i(s) and ' =

yi(te)
(1 — 2aT)R;, we get:

2yl () yl (tr)]Qiti(s) <

| vi)
1-— 2@7’Q yi(te)
+(1 = 207)y;" () Rigji(s).

Wl () yi (t)] Qi

Integrating it in the interval [t;, t] in which ;(¢) is continuous we obtain:

—(1=2a7) [y 4] () Rii(s)ds <
=20yl (t) vl (te)]Qi&s(2)

+7(0) [l (O o ()] Q=5 — R‘ ! vi(t)
yi(tr)

(7.35)

To provide an upper bound to (7.34) we use Jensen integral inequality (Xu and
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Lam, 2008):
—2ar(t fyl YRy (s)ds <

—2afyz YdsR; fy2 (7.36)

tr tr
= —20(yi(t) — yit))" Ri(i(t) — yi(te))
Introducing inequalities (7.35) and (7.36) in (7.31), the following inequality is

achieved for t € [ty, tri1):

* i22(T—7(t), a) (7.37)
T(t) -1~T yl(t)
+1 — 20&77' ‘ QZ yz(tk>

The above inequality corresponds to an LMI that is linear with respect to 7(¢). There-
fore, according to Scherer and Weiland (2000), in order to be sure that it holds for
all 7(t) € [0, 7] we only need to check it at the boundary of the interval, namely for
7(t) =0 and 7(t) = 7.

Now, if we particularize eq. (7.37) with 7(¢) = 0 this obviously leads to the LMI
in eq. (7.26).

To complete the proof we need to show that particularizing eq. (7.37) with 7(¢) = 7
we get the LMI in eq. (7.27). But this follows from the fact that

\Ili,ll(ou 04) \Ili,12(07 04)
U

QilR; R7'QT (7.38)
i22(0, @) 1 - 2

7
*

is the Schur complement of matrix —7(1 — 2a7)R; in eq. (7.27). Thus, if the LMI in

eq. (7.27) is definite negative, also it is matrix in eq. (7.38). O

Consensus among agents

We now prove the main result, namely the consensus of agents to a common position.
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Theorem 7.4 Consider a MAS evolving according to equation (7.2) where T is such
that 0 < tpy1 —tpx < T < 00. Let \;, i = 2,...,n be the eigenvalues of the weighted
adjacency matriz associated with the undirected connected graph G modeling the com-
munication topology. If there exists a positive constant o such that the LMIs defined
in eq. (7.26) and (7.27) are satisfied for all \;, i = 2,...,n, then there exists a v € R
such that x(t) exponentially converges to v1 and v(t) exponentially converges to 0.

Moreover, the rate of convergence is greater than or equal to c.

Proof: By Lemma 7.3, if the LMIs in eq. (7.26) and (7.27) hold, all modes except
the UEM are stable, i.e., tllglo y;(t) = 0 and thus tlggo zi(t) = 0 for i = 2,...,n with
rate of convergence of at least a. Furthermore, by Lemma 7.2, there exists a positive
constant v € R such that tliglo z1(t) = 7.

Now, the first column of 7" is the eigenvector corresponding to the unitary eigen-

value of W, therefore it is equal to 1 = 1 1 ..., 1]%. Thus, being z(t) =
Tlz1(t) 0 ... 0]7, it is trivial to show that when ¢ — oo it is z;(t) = z;(¢), for all
1,7 = 1,...,n. The same calculations can be repeated for the velocities, thus proving
that for ¢t — oo, it is v;(t) = v;(t), 4, =1,...,n. O

7.5 Simulation results

In this section we present the results of some numerical simulation that shows the
effectiveness of the consensus protocol in eq. (7.3). To this aim we consider a system

with 6 agents and adjacency matrix:

010100
100100
000101

Ay =
111010
000101
001010
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Figure 7-1: Positions and velocities when the proposed protocol is implemented.

Assume k, = 1, kg = 2 and 7 = 1. Using the above LMIs with oo = 0.38 we can

prove that the system reaches consensus to a fixed point.

Fig. 7-1 shows the evolution of positions and velocities when the proposed al-
gorithm is implemented, while Fig. 7-2 shows the sampled positions and velocities

aperiodically transmitted to neighbors by each agent.

We conclude this section presenting the results of another numerical simulation
carried out under the assumption that only sampled positions are transmitted to
neighbors, i.e., the second term is removed in eq. (7.2) that is equivalent to redefine

B as B'=[00;k, 0].

It can be proved that in such a case the consensus to a fixed point is still reached,
but with decay rate bounded by 0.21 that is almost the half of the previous case.

Such a conclusion can also be drawn by looking at Fig. 7-3.

140



20

2 1o .
.“U;;
g i
o O:ﬁ_g%% i
k) ——
SRS
g-100 1 |
-
2% 5 10 15 20
Time(sec)
10
)
= 5 1
: =
(V] =
e |
k) —
£
g -5 f 1
.
1% 5 10 15 20
Time(sec)

Figure 7-2: Aperiodic sampled positions and velocities when the proposed protocol
is implemented.
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Figure 7-3: Positions and velocities when the proposed protocol is modified in order
to only consider sampled positions.
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7.6 Conclusions and future work

The contribution of this chapter consists in a PD-like consensus algorithm for a
second-order multi-agent system where, at non-periodic sampling times, agents trans-
mit to their neighbors information about their position and velocity, while each agent
has a perfect knowledge of its own state at any time instant. Conditions have been
given to prove consensus to a common fixed point, based on LMIs verification. More-
over, we also show how it is possible to evaluate an upper bound on the decay rate
of exponential convergence of stable modes.

The main directions of our future research in this framework are

(i) We want to also study the case where agents do not have a perfect knowledge

of their own state.

(ii) Finally, we plan to relax the assumption that all communications among agents

occur simultaneously.
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Non-periodic sampled-data consensus
in second-order multi-agent systems
with communication delays over an

uncertain network

“Give me a lever long enough and a fulcrum on which to place it, and I shall

move the world.”

— Archimedes

In this chapter consensus in second-order multi-agent systems with a non-periodic
sampled-data exchange among agents is investigated. The sampling is random with
bounded inter-sampling intervals. It is assumed that each agent has exact knowledge
of its own state at any time instant. The considered local interaction rule is PD-
type. Sufficient conditions for stability of the consensus protocol to a time-invariant
value are derived based on LMIs. Such conditions only require the knowledge of the
connectivity of the graph modeling the network topology. Numerical simulations are

presented to corroborate the theoretical results.
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8.1 Introduction

Due to its broad spectrum of applications, in the past years, a large attention has
been devoted to the consensus problem in multi-agent systems (MAS) Qin et al.
(2011); Ren et al. (2005a); Yu et al. (2010); Zareh et al. (2013a). Sensor networks
Yu et al. (2009); Olfati-Saber and Shamma (2005), automated highway systems Ren
et al. (2005a), mobile robotics Khoo et al. (2009), satellite alignment Ren (2007a) and
several more, are some of the potential areas in which a consensus problem is taken
into account. Consensus is a state of a networked multi-agent system in which all
the agents reach agreement on a common value by only sharing information locally,
namely with their neighbors. Several algorithms, often called consensus protocols,
have been proposed that lead a MAS to consensus. In particular, the coordination
problem of mobile robots finds several applications in the manufacturing industry in
the context of automated material handling. The consensus problem in the context
of mobile robots consists in the design of local state update rules which allow the
network of robots to rendezvous at some point in space or follow a leading robot
exploiting only measurements of speeds and relative positions between neighboring

robots. Robots are hereafter referred to as agents.

In MAS, heavy computational loads can interrupt the sampling period of a cer-
tain controller. A scheduled sampling period can be used to deal with this prob-
lem. In such a case robust stability analysis with respect to the changes in the
sampling time is necessary. For interesting contributions in this area we address the
reader to Ackermann (1985); Fridman (2010); Zutshi et al. (2012) and the references
therein. We also mention the work by Fridman et al. (2004) who exploited an ap-
proach for time-delay systems and obtained the sufficient stability conditions based
on the Lyapunov-Krasovskii functional method. Seuret Seuret (2012) and Fridman
Fridman (2010) proposed methods with better upper bounds to the maximum allowed
sampling. Shen et al. Shen et al. (2012) studied the sampled-data synchronization
control problem for dynamical networks. Qin et al. Qin et al. (2010) and Ren and

Cao Ren and Cao (2008) studied the consensus problem for networks of double inte-
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grators with a constant sampling period. In the latter two papers, even though the
authors use the sampled-data notation to introduce their novelty, they suppose that
the communication and the local sensing occur simultaneously and this simplifies the
problem into a discrete state consensus problem. Xiao and Chen Xiao and Chen
(2012) and Yu et al. Yu et al. (2011) studied second-order consensus in multi-agent

dynamical systems with sampled position data.

In this chapter, we consider the case in which each agent has a perfect knowl-
edge of its own state with almost no delay, i.e., it knows its own speed and position.
Information exchanges between neighboring agents happen at discrete time inter-
vals which are possibly non-periodic but strictly positive and bounded. The network
dynamics can thus be modeled as a sampled-data system (SDS), a class of systems
extensively investigated in the literature. Using PD-like algorithm we guarantee that
all the agents reach consensus. We proposed such a protocol in Chapter 7 where
we provided a characterization of the convergence properties exploiting a Lyapunov-
Krasovskii functional method. In particular in Chapter 7 we provided sufficient con-
ditions for exponential stability of the consensus protocol to a time-invariant value
under the assumption that the spectrum of the weighted adjacency matrix is known.
With respect to Chapter 7, in this chapter we relax such assumption and provide
sufficient conditions for consensus under the assumption that the only information
on the network topology is its connectivity, i.e., the second largest eigenvalue of the
weighted adjacency matrix. This is obviously a significant improvement with respect
to the previous chapter, not only because much less information on the network topol-
ogy is needed, but also because, despite of Chapter 7, the number of LMIs that have

to be computed does not depend on the number of agents.

The chapter is organized as follows. In Section 8.2 the consensus problem for sec-
ond order multi-agent systems with non-periodic sampled-data exchange is formal-
ized. In Section 8.3 the convergence properties of the proposed consensus protocol
are characterized. In Section 8.4 simulation results are presented to corroborate the
theoretical analysis. Finally, in Section 8.5 concluding remarks and directions for

future research are discussed.
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8.2 Problem Statement

Consider a second-order multi-agent system with an undirected communication topol-

ogy. Consider the PD-type consensus protocol introduced in (7.1).

We suppose that the local information, i.e., the information that each agent re-
ceives from its own sensors, is measured instantaneously. This obviously makes sense

when the sensor dynamics are fast enough.

Moreover, we assume that the communication between the generic agent ¢ and its
set. of neighbors N; occurs in stochastic sampling time instants t,, k = 0,1,..., 00,

that satisfy the following conditions:
O<tk+1—tk§7’ER+

and

k—o0

Under the above assumptions, equation (7.1) can be rewritten as:

zi(t) = (),
1) = LT e ) + 2 e vl .

—k’pl'i (t) — k:dvi (t)

or, alternatively, doing some simple manipulations, as:

O _aen | ™| s ewy | "™ (8.2)

0(t) v(t) v(tr)

where x = [z1,Z2,...,2,], v = [v1,V2,...,0,], A = Diag{d1,d2,...,0,}, Ay is the

adjacency matrix, Wy is the weighted adjacency matrix, and matrices A and B are
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equal, respectively, to:

0 1 0 0
A= ., B= . (8.3)
—k, —kq ky kg

A MAS with an undirected communication topology and following equation (7.1),
is said to converge to a consensus state if

lim |z;(t) — x;(t)| =0

t—o00

and

lim |v;(t) — v;(t)| = 0.

t—o0

In this chapter, given the value of the maximum admissible difference 7 between
any two consecutive sampling time instants, and a communication topology whose
connectivity is known to be smaller than or equal to a given value )\, we aim at
finding conditions that guarantee consensus to a fixed point among agents that evolve

according to equation (8.2).

8.3 Convergence properties

In the following subsection we recall a state variable transformation, firstly introduced
in Chapter 7, to decouple the dynamics of modes associated with the eigenvalues of
the weighted adjacency matrix. Then, the stability of such modes is analyzed in

detail.

Stability analysis
Apply the following change of variables:

2(t) = Tz(t) (8.4)
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to eq. (8.2). Then, it holds:

(L®T) %@ = (A®T) ,@
Z(t) £(t) 8.5)
cBowm | W
£(tr)
and eq. (8.2) can be rewritten as:
O] _ oy [0
Z(t) Z(t) (8.6)
. z(tx)
+(B® T-'W,T)
Z(tr)

Since Wy is a symmetrizable matrix, then it is also diagonalizable, and the transfor-

mation matrix T can be chosen such that

A= T_IWdT = diag()\l, )\2, ey >\n>

where

A=A > >,

are the eigenvalues of the weighted adjacency matrix W,. As a result, eq. (8.6) can

be rewritten as:

t z(t z
N e K)—MB®M W
Z(t) £(t) Z(tr)
or alternatively, as
i (T i (T it
A0y O s | (8.7)
Z(t) Z(t) Zi(tx)
where i =1,...,n, and z/(t) is the i-th element of vector z(t).
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Now, if we define

vi(t) = [zi(t) Z()]" (8.8)

the i-th mode of the system, we can say that its dynamics follows equation:
Yi(t) = Ayi(t) + X Byi(ty)- (8.9)
Moreover, assuming 7(t) = t — t;, the above equation can be rewritten as:
yi(t) = Ayi(t) + \iByi(t — 7(1)). (8.10)

The above SDS is a special case of a time varying delayed system where the delay
7(t) is upper bounded by 7, and its derivative is 7(¢) = 1, while the delay switches at
times t =t,, k=0,1,...,00.

We assume that the graph G describing the communication topology is connected.
By Lemma 7.1 this implies that its largest eigenvalue is Ay = 1. We call unitary
eigenvalue mode (UEM) the mode associated with A; = 1.

Based on Lemma 7.2, we can characterize the dynamics of the UEM. In particular

it shows that the UEM converges asymptotically to a vector whose first entry z;(t) is

equal to a constant value and the second entry Z;(¢) is null. In other words

lim z(tx) =7, ~v€R. (8.11)

k—o0

We now provide the main contribution of this chapter, i.e., we characterize the
conditions on the design parameters k,, ks, 7, A under which the modes y;(t), i =
2,...,n, defined in eq. (8.8) are asymptotically stable provided that \; < A for all

1=2,...,n.

Theorem 8.1 Consider the generic mode y;(t) defined in eq. (8.8) whose dynamics

follows eq. (8.10) where ); is an uncertain parameter in [—1, ], and obviously A < 1.

If there exist positive definite matrices P and R and square matrices QQ1 and Qo
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such that the following

M, =

M;

inequalities hold:

[ QT(A-B)+
(A-B)'Q,

[ QT(A+ 2B+
(A+AB)TQ,

QT (A - B)+
(A-B)TQ

<0

P— Qi+
(A= B)"Qy

-Q>— QY +7R

P—-Qf+
(A+AB)TQ,

—Q2— QF +7R ]

P—Qf+

o QB
(A—B)' Qs

-Q,—Q; TQIB
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<0

<0

(8.12)

(8.13)

(8.14)



M, =

[ QT(A+AB)+ P—Qf+ - -
Ql ( ] ) 7@1 _7__)\Q/{B
(A+AB)TQ1  (A+AB)"Qs
~ (8.15)
. ~Q-Qf  —TAQIB
* * —TR
<0
then the system with dynamics (8.10) is asymptotically stable.
Proof: Consider the Lyapunov function
Vit yi(t), yi(tr) = yi (t)Pyi(t)
b (8.16)
T / 317 (s) Rys(s)ds.
ty
It holds:
V(t, yi(t), yi(te)) = 297 (8) Pyi(t)
t
- / vi* (s)Ryi(s)ds+ (8.17)
ty
(7= 7(t) (%" () Ryilt) — 9" (t) Ryja(te)).-
To provide an upper bound to (8.17) we use Jensen integral inequality:
t t t
/yzr(s)Ryi(s)ds < /g’/ZT(s)dSR/yi(s)ds. (8.18)
tr i (23
1 t
Defi (t)=— [ ¥
efine &;(t) 0 /yz(s)ds
ty
We get:
t
[ i@ ris)ds < g 0 Re (8.19)



From the descriptor method (Fridman and Shaked, 2002) we know:

Q|
Q2 (8.20)
((A+XiB)yi(t) — 7(1)&:(t) — 9i(t)) = 0

Adding this to the right side of the inequality in (8.17) and using the inequality (8.19)

we obtain:
V<l (0)W(r(t), Mma(t) — (7 — 7(6)5ii" (t) R (),
where
n=lyi (t) gl (t) & @)
and:
U(r(t), Ai) =
_ poor -
TP 4 T7 —T(ONQTB
Qi + 17 170, T(t)NiQy
(8.21)
N T
. Gt ot
(T—71(t)R
I * * —T(t)R |
where
;= (A4 \B).
Notice that (7 — 7(¢))y;” (tx)Ryi(tz) is always positive. Thus:
V <l (&)U (r(t), \)ni(t), (8.22)

Hence to prove the stability one needs to prove that W(7(¢), \;) is negative definite.
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Now define the following matrices:

(I)i,O()\i) =
QITi+T7Q1 P—Qf +T7Q: (8.23)

* Q:— QT +7R

and

QITi+17Q,  P—-QT+17Q, —TNQIB
(8.24)
* Q2 — QF —TNQIB

* * ~7R

Define

One can show that:

(8.25)
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pei (@ionj(t) + (1= e )nf () @i zmilt) = 6.26)
gl () (M + (1= ) Mo )i (0)+
(1= g (8) (irMs + (1= pix) Mo ).

Since p, € [0,1] and py € [0, 1], coefficients g, 1 —pir, py, and 1 — puy are positive.
Moreover, by equations (8.12) to (8.15) it follows that W(7(¢), \;) is negative definite

and this proves the stability of the system. 0

Consensus among agents

We now prove the consensus of agents to a common position.

Theorem 8.2 Consider a MAS evolving according to equation (8.1) where T is such
that 0 <t —tr, < T < 00. Assume that the undirected connected graph G modeling
the network topology is such that the second largest eigenvalue of its weighted adja-
cency matriz is smaller than or equal to \. If the LMIs defined in eq. (8.12) to (8.15)
are satisfied, then there exists a v € R such that x(t) asymptotically converges to vf

and v(t) asymptotically converges to 0.

Proof: By Theorem 8.1, if the LMIs in eq. (8.12) to (8.15) hold, all modes except

the UEM are asymptotically stable, i.e., tlim y;(t) = 0 and thus tlim zi(t) = 0 for
—00 —00
1 =2,...,n. Furthermore, by Lemma 7.2, there exists a positive constant v € R such
that lim 2 () = 7.
t—o0

Now, the first column of 7" is the eigenvector corresponding to the unitary eigen-
value of Wy, therefore it is equal to 1 = [1 1 ..., 1]7. Thus, being z(t) =
Tlz1(t) 0 ... 0]7, it is trivial to show that when ¢ — oo it is z;(t) = z;(¢), for all
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1,7 = 1,...,n. The same calculations can be repeated for the velocities, thus proving

that for t — oo, it is v;(t) = v;(t), 1,7 =1,...,n. O

8.4 Simulation results

In this section we present the results of some numerical simulations that show the
effectiveness of the proposed consensus protocol. To this aim we consider a system
with 8 agents and assume k, = 1 and kg = 1.

In Fig. 8-1 the area under the curve shows the stability region in the A — 7 plane.
Such an area has been computed using the LMIs (8.12) to (8.15).

We now consider a graph with adjacency matrix (randomly generated) equal to:

(00010001]
00110000
01010000
|t oo o)
00010110
00001010
00001100
(10010000

Fig. 8-2 shows the positions and velocities of the agents, while Fig. 8-3 shows
the sampled positions and velocities aperiodically transmitted to neighbors by each

agent.

8.5 Conclusions and future work

In this chapter we considered a PD-like consensus algorithm for a second-order multi-
agent system where, at non-periodic sampling times, agents transmit to their neigh-
bors information about their position and velocity, while each agent has a perfect

knowledge of its own state at any time instant. The main contribution consists in
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Figure 8-2: Positions and velocities when the proposed protocol is implemented.
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Figure 8-3: Positions and velocities when the proposed protocol is implemented.
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proving consensus to a common fixed point, based on LMIs verification, under the
assumption that the network topology is not known and the only information is an
upper bound on the connectivity.

Two are the main directions of our future research in this framework. First, we
want to compute analytically an upper bound on the value of the second largest
eigenvalue of the weighted adjacency matrix that guarantees consensus, as a function
of the other design parameters. Second, we plan to study the case where agents do

not have a perfect knowledge of their own state.
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Conclusions and open issues

“Give me a lever long enough and a fulcrum on which to place it, and I shall
move the world.”

— Martin H. Fischer

Different consensus problems in multi-agent systems have been addressed in this
thesis. They represent improvements with respect to the state of the art.

In the first part of the thesis including Chapters 2, 3, and 4, the state of the art of
the representation and stability analysis of consensus problems, time-delay systems,
and sampled-data systems have been presented.

Novel contributions have been illustrated in Chapters 5-8. Particularly, in Chapter
5 we reported the results of Zareh et al. (2013b), where we investigated the consensus
problem for networks of agents with double integrator dynamics affected by time-delay
in their coupling. We provided a stability result based on the Lyapunov-Krasovskii
functional method and a numerical procedure based on an LMI condition which de-
pends only on the algebraic connectivity of the considered network topologies, thus
reducing greatly the computational complexity of the procedure. Obviously, this re-
sult implies the existence of a minimum dwell time such that the proposed consensus
protocol is stable for slow switchings between network topologies with sufficient al-
gebraic connectivity. Future work will involve actually computing such a dwell time

by adopting a multiple Lyapunov function method and evaluating the worst case
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convergence rate. Furthermore we will evaluate novel consensus protocols that con-
sider only delayed relative measurements instead of delayed absolute values of the
neighbors’ state variables.

The results of Zareh et al. (2013a) were addressed in Chapter 6, in which a con-
tinuous time version of a consensus on the average protocol for arbitrary strongly
connected directed graphs is proposed and its convergence properties with respect to
time delays in the local state update are characterized. The convergence properties
of this algorithm depend upon a tuning parameter that can be made arbitrary small
to prove stability of the networked system. Simulations have been presented to cor-
roborate the theoretical results and show that the existence of a small time delay can
actually improve the algorithm performance. Future work will include an extension
of the mathematical characterization of the proposed algorithm to consider possibly
heterogeneous or time-varying delays.

In Chapter 7 we proposed a PD-like consensus algorithm for a second-order multi-
agent system where, at non-periodic sampling times, agents transmit to their neigh-
bors information about their position and velocity, while each agent has a perfect
knowledge of its own state at any time instant. Conditions have been given to prove
consensus to a common fixed point, based on LMIs verification. Moreover, we also
show how it is possible to evaluate an upper bound on the decay rate of exponential
convergence of stable modes.

In Chapter 8, mainly based on our paper Zareh et al. (2014b), we considered the
same problem as in Chapter 7. The main contribution consists in proving consensus
to a common fixed point, based on LMIs verification, under the assumption that the
network topology is not known and the only information is an upper bound on the
connectivity. Two are the main directions of our future research in this framework.
First, we want to compute analytically an upper bound on the value of the second
largest eigenvalue of the weighted adjacency matrix that guarantees consensus, as a
function of the other design parameters. Second, we plan to study the case where

agents do not have a perfect knowledge of their own state.
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Appendix A

Laplacian matrix
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In the mathematical field of graph theory, the Laplacian matrix, sometimes called
admittance matrix, Kirchhoff matrix or discrete Laplacian, is a matrix representation
of a graph. Together with Kirchhoff’s theorem, it can be used to calculate the number
of spanning trees for a given graph. The Laplacian matrix can be used to find many
other properties of the graph. Cheeger’s inequality from Riemannian geometry has
a discrete analogue involving the Laplacian matrix; this is perhaps the most impor-
tant theorem in spectral graph theory and one of the most useful facts in algorithmic
applications. It approximates the sparsest cut of a graph through the second eigen-
value of its Laplacian. Given a simple graph G with n vertices, its Laplacian matrix

L := (l; j)nxn is defined as:

L=A— A,

where A is the degree matrix and A is the adjacency matrix of the graph. In the case
of directed graphs, either the in-degree or out-degree might be used, depending on
the application.

From the definition it follows that:

deg(v;) ifi=7j
lij = —1 i # j and v; is adjacent to v,
0 otherwise

where deg(v;) is degree of the vertex i.
The normalized Laplacian matrix is defined as (Bollobas, 1998):
L:=D2LD™V? = - DV2AD™V? = (i),

where:
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6 3
5 4
(
1 if i = j and deg(v;) # 0
~M- = < —m if ¢ # j and v; is adjacent to v;
0 otherwise.

\

We note that L can be written as

L=_55",

where S is the matrix whose rows are indexed by the vertices and whose columns
are indexed by the edges of GG such that each column corresponding to an edge e =
u,v has an entry 1/4/d, in the row corresponding to u, an entry 1/4/d, in the row
corresponding to v, and has zero entries elsewhere. (As it turns out, the choice of

signs can be arbitrary as long as one is positive and the other is negative.)

Here is a simple example of a labeled graph and its Laplacian matrix. Consider a

6-vertex graph as shown in fig. A
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In this example the weight matrix is

o o o o O N
o o o o w o
o O O NN o O
o O w o o o
o w o o o o
- o O O O O

The adjacency matrix

b
S = O O = O
_ = O = O O

o O = O O O

SO = O = O
(e R N = N e
o O = O =

and the Laplacian matrix

-1 3 -1 0 -1 O

o 0 -1 3 -1 -1
-1 -1 0 -1 3 0
o 0 0 -1 0 1

Some properties of Laplacian matrix is provided below (Bollobas, 1998; Anderson Jr
and Morley, 1985).
For an undirected graph G and its Laplacian matrix L with eigenvalues A\g < A\; <

e < Ayt
e [ is symmetric.

e [ is positive-semidefinite (that is A; > 0 for all 7). This can also be seen from
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the fact that the Laplacian is symmetric and diagonally dominant.

L is an M-matrix (its off-diagonal entries are non-positive, yet the real parts of

its eigenvalues are nonnegative).

Every row sum and column sum of L is zero. Indeed, in the sum, the degree of

the vertex is summed with a "-1" for each neighbor.
In consequence, \g = 0, because the vector vo = (1,1,...,1) satisfies Lvg = 0.

The number of times 0 appears as an eigenvalue in the Laplacian is the number
of connected components in the graph. The smallest non-zero eigenvalue of L

is called the spectral gap.

The second smallest eigenvalue of L is the algebraic connectivity (or Fiedler

value) of G.

The Laplacian is an operator on the n-dimensional vector space of functions

f:V = R, where V is the vertex set of G, and n = |V|.

When G is k-regular, the normalized Laplacian is: L= L =1 — %A, where A

1
k

is the adjacency matrix and [ is an identity matrix.

For a graph with multiple connected components, L is a block diagonal ma-
trix, where each block is the respective Laplacian matrix for each component,
possibly after reordering the vertices (i.e. L is permutation-similar to a block

diagonal matrix).

For a graph G on n vertices, we have

with equality holding if and only if G' has no isolated vertices.

For n > 2,




with equality holding if and only if G is the complete graph on n vertices. Also,

for a graph G without isolated vertices, we have
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Appendix B

Perturbation bounds on matrix

eigenvalues
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In this section, the goal is the exposition of bounds for the distance between the
eigenvalues of two matrices A and B in terms of expressions involving ||A — B||. The
prototype of such bounds is H. Weyl’s inequalityBhatia (2007).

For several years the most prominent conjecture on perturbation inequalities,

which attracted the attention of several mathematicians, was that the inequality
d(eig(A),eig(B)) < [[A— B,

would be true for all normal matrices A and B. d(eig(A),eig(B)) indicates the
maximum distance between the eigenvalues of matrices A and B. In 1992, J. Holbrook
published a counterexample to this with 3 x 3 matrices. It is now known that the
inequality

d(eig(A), eig(B)) < c[|[A = B,

is true for all n X n normal matrices A and B with ¢ < 2.904 and that the best

constant ¢ here is bigger than 1.018.

We now give a brief summary of the major inequalities which are proved (occa-
sionally just stated) below. Let A, B be n x n Hermitian matrices with eigenvalues

a; > ...>a,and By > ... > f3, respectively. Then
maxlim|a; — 5 < |4 - B]|
Kahan (1975), showed that
d(eig(A), eig(B)) < (1 +2)[|A = B,

where v, is a constant depending on the size n of the matrices. Further they showed

that the optimal constant for this inequality is bounded as

2
In(n) — 0.1 <, <log,(n)+ 0.038.

m
Based on the results of an extended work, can see that if A is normal and B
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arbitrary then
d(eig(A), eig(B)) < (2n —1)[|A — BJ|.

If, in addition, B is Hermitian then the factor (2n — 1) can be replaced by /2 in the
above inequality.

When A B are arbitrary n X n matrices the situation is not so simple. Results of
this type in the general case were obtained by Ostrowski et al. (1960); Henrici (1962);
Bhatia (2007). This latest result says that for A, B arbitrary n x n matrices

d(eig(A), eig(B)) < n(2M)'"V"||[ A~ B,

where M = max(||A|], || B|)-
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Appendix C

Properties of weighted adjacency

matrix
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Let v; be a right eigenvector of W; = A7'A,; then A~*Azv; = Ay, Using the

. _1
transformation vy, = A7z, one gets:

AT ANy = AAT 20y — ATTAZA 20 = AA T

This shows that matrices A_%AdA_% and Wy = A=t A, have the same eigenvalues
and since the former is a symmetric matrix, they possess real eigenvalues. From
Courant-Fischer theorem (Horn and Johnson, 2012) the largest eigenvalue which is a

simple one is achieved from the following equation:

A = max{szA_%AdA_%Vg}, vivy =1.

Suppose the vector l/g is a solution to the above optimization problem. In order to

find the second largest eigenvalue we must search in a subspace which is perpendicular

to the one in which the largest eigenvalue is located:

Ay = ma:v{ugA_%AdA_%yg}, vive =1,010) = 0.
Since A2 is diagonal we get:

Ao = maz{(A"2) " Ag(A215)} = maz{vT Agn)},

We know that the corresponding eigenvector of A\; = 1 is parallel to 1 so vl =A"z21.

The constraints become:

i@yi = ]_, i@l/li = 0.
1=1 i=1

Notice that:

n n
T
vy Agy = g g iV = g 2015,

=1 j=1 (i,j)EE
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It should be noted that 2vy,01; = vf; + vf; — (v1; — v1;)*. Hence:

v Aay = Z‘Sﬂ/i - Z (i —1y)* =1~ Z (i = 15)*,
=1

(i,5)eE (i,5)EE

Consequently

max{v{ Agv;} = max{l — Z (v1; — 11j)%} = 1 — min{ Z (v1i; — 114)*},
(1,9)EE (1,9)EE
The minimum of the last term is achieved when the number of the edges set is the
minimum possible which allows the graph to be connected. Trivially such a graph is
a tree graph.
By looking at the matrix W = A~z A;A~2 we can see that it can be converted to

the well known shape normalized Laplacian matrix, L4, as follows:

Lyg=1-W,

It can be easily observed that the eigenvalues of Ly are equal to 1 —\. In order to find
the second largest eigenvalue of W (or Wy) we can check the second largest eigenvalue
of Ly for tree graphs.

Now we introduce the following conjecture which gives a relationship between the

second largest eigenvalue of the weighted adjacency matrix and the number of agents.

Conjecture C.1 For a given number of agents, n, the second largest eigenvalue of
the weighted adjacency matriz (Wy and equivalently that of W) over whole possible

connected graphs is upper bounded by cos(-"5).

The above conjecture has been validated by many different simulations, and we

are trying to find a proof for it.
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