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“Alla fine, conserveremo solo ciò che amiamo, 

ameremo solo ciò che conosciamo, 

e conosceremo solo ciò che ci hanno insegnato.” 

 

“In the end, we will conserve only what we love, 

 we will love only what we understand, 

and we will understand only what we are taught.” 
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Introduction 
 

 

Biodiversity is defined by the Convention on Biological Diversity (CBD) as the “the 

variability among living organisms from all sources including, inter alia, terrestrial, 

marine and other aquatic ecosystems and the ecological complexes of which they are 

part; this includes diversity within species, between species and of ecosystems” (CBD 

1992). The latter ones provide a large number of goods and services that sustain our 

lives. This biodiversity is essential to our planet, human wellbeing and to the livelihood 

and cultural integrity of people. Yet biodiversity is currently being lost at unprecedented 

rates due to human activities (Sala et al. 2000; Baillie et al. 2004; Perrings 2014). 

The major processes now driving species extinction are of anthropogenic origin 

and result from habitat loss, alteration and fragmentation, overexploitation, pollution, 

invasion of alien species, global climate change, disruption of community structures and 

the interactions between these (Sala et al. 2000; Novacek and Cleland 2001; IUCN 

2003; Thuiller 2007; Mace et al. 2008). 

Habitat fragmentation caused by human disturbance is currently considered one of 

the main factors reducing population viability of rare plants (Menges 1991; Schemske et 

al. 1994; Holsinger 2000; Matthies et al. 2004; Oostermeijer et al. 2003; Thompson 

2005; Marrero-Gómez et al. 2007; Fenu et al. 2013). Habitat fragmentation increases 

extinction risk for rare species (Holsinger 2000; Matthies et al. 2004; Schleuning and 

Matthies 2009), interferes with distribution, fitness and seedling recruitment (Lienert 

2004; Kolb and Diekmann 2005; Benito et al. 2009; De Vere et al. 2009), and reduces 

the number of breeding individuals and gene flow (Dudash and Fenster 2000) and 

pollination efficiency (Duncan et al. 2004). 

Tourism and recreational activities are the main threat to ecosystems in the 

Mediterranean area (Allen 2001; Ballantyne and Pickering 2013) and typically lead to 

habitat fragmentation (Gibbs 2001; Fenu et al. 2011). In the Mediterranean Basin in 

particular, over the last 30 years, coastal ecosystems have suffered a massive reduction 

of size and quality as a consequence of the disproportionate urban development (Greuter 

1995; McLachlan and Brown 2006; Fenu et al. 2013; Pinna et al. 2015). Reduced range 

size due to habitat fragmentation may subsequently affect the performance of small 

plant populations (Kearns et al. 1998; Aguilar et al. 2006). 

In order to contain the species loss, several laws, programs and initiatives for the 

protection and preservation of biodiversity have been taken. Countries contracting to the 

Convention on Biological Diversity (CBD 1992) and other international strategies (e.g. 

GSPC and ESPC) are obliged to monitor biodiversity in order to protect wild fauna and 

flora. 

The Global Strategy for Plant Conservation (GSPC 2008) and the European Plant 

Conservation Strategy (Planta Europa 2008) aim at halting the continuing loss of plant 

diversity; as part of this, the development of conservation strategies is an issue that 

needs to be urgently addressed at  national level (GSPC 2008; Sharrock and Jones 

2009). GSPC is constituted by 16 plant conservation targets. Still, many of the original 

targets set for 2010 were not achieved. A project was launched in 2009 to put together a 

consolidated update to the GSPC and to revise the target dates for the first time 

(updating to 2011–2020). In particular, the Target 7, which refers to in situ plant 

conservation, supposed that for 2010 the 60 per cent of the world's threatened species 

should be conserved in situ. The same Target was revised for 2020: “at least 75 per cent 

of known threatened plant species conserved in situ”. Therefore, the increase in 
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percentage of the world's threatened plants to be protected by in situ means reflects an 

overall desire to achieve significant progress by 2020 (GSPC 2008). 

In particular, in Europe, the “Council Directive 92/43/EEC on the conservation of 

natural habitats and of wild fauna and flora” (Habitat Directive, hereafter) and the 

Natura 2000 network are by far the most important conservation efforts implemented to 

date (Maiorano et al. 2007, 2015; Pimm et al. 2014; Fenu et al. 2015a). These 

programmes have been proposed as the main strategy to meet the target of halting (or at 

least significantly reducing) biodiversity loss by 2010 (Balmford et al. 2005). 

Annex II of Habitat Directive lists the “animal and plant species of community 

interest whose conservation requires the designation of special areas of conservation”, 

and although it is not a conservation target list itself, it represents a European list of 

species for which in situ conservation actions should be activated. In situ conservation 

of species means the maintenance or recovery of viable populations of species in their 

natural surroundings (CBD 2012). The main general aim and long-term goal of in situ 

conservation of target species is to protect, manage and monitor selected populations in 

their natural habitats. Therefore, species conservation depends critically on identifying 

the habitats in which they occur and then protecting both the habitat and the species 

through various kinds of management and/or monitoring. In the case of threatened 

species, their conservation in situ also requires that the threats to them are removed or at 

least contained; otherwise, the species will continue to decline (Heywood 2014). Hence, 

active in situ conservation measures are needed for policy and threatened species. Some 

forms of intervention or management, such as the protection and restoration of natural 

habitats, are the best suggested methods of preserving plant diversity (CBD 1992; Fenu 

et al. 2015a). 

The 1982 Bern Convention on the Conservation of European Wildlife and Natural 

Habitats and the Habitats Directive are therefore the most important environmental 

regulations at the EU and national levels. 

Monitoring and reporting the conservation status of the species listed in the 

Habitats Directive is mandatory for all EU member states. The EU has also established 

preferential funds targeted for the conservation of these species and their habitats (i.e., 

the LIFE Programme; Rossi et al. 2016). 

To develop a conservation strategy for a species, assessment of conservation status is 

the first step (Planta Europa 2008) and the now accepted standard for doing this are the 

categories and criteria of the IUCN Red List of Threatened Species (see 

www.iucnredlist.org; de Grammont and Cuarón 2006; Rodrigues et al. 2006; Hoffman 

et al. 2008; IUCN 2014). 

At the global scale, IUCN Red Lists of Threatened Species are considered the best 

source of information on the conservation status of individuals. The IUCN Red List 

procedure assesses the relative extinction risk of threatened taxa (Bilz et al. 2011; IUCN 

2014; Rossi et al. 2016). 

Using the IUCN Red List criteria to assess the extinction risk of policy taxa is a 

suitable and rapid method for verifying the effectiveness of national and EU 

conservation policies (Moreno Saiz et al. 2003; de Grammont and Cuarón 2006; 

Rodrigues et al. 2006; Hoffman et al. 2008; Rossi et al. 2016). Moreover, Red Lists are 

a valuable tool to focus the attention of policymakers and conservation planners, as well 

as the general public, on the most threatened species (Rossi et al. 2016). 

Currently, the IUCN system classifies threatened species into threat categories 

(critically endangered, endangered, and vulnerable) following qualitative and 

quantitative criteria based on range and population size, condition and demographic 

trends (IUCN 2010; Domínguez Lozano et al. 2013). 

The IUCN Red List is intended to be policy-relevant, but not policy-prescriptive. 

That is, the IUCN Red List provides the best available information about the 
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conservation status of the listed species, and the relative risk of extinction, often 

including information on the drivers of that risk, but it is not intended to provide 

specific recommendations on the appropriate policy response to that information 

(Baillie et al. 2004). 

Border populations as well as peripheral isolated plant populations are particularly 

important from both ecological and genetic points of view (Lesica and Allendorf 1995; 

Conradt 2001; Holt and Keitt 2005) and require more attention from conservation 

biologists (Abeli et al. 2009). Border populations are usually considered more 

vulnerable and are more prone to local extinction because of their isolation and 

restriction to marginal habitats (e.g., Gargano et al. 2007; Del Vecchio et al. 2012; 

Villellas et al. 2013a; Villellas et al. 2013b). Due to their evolutionary significance, the 

endangered species with small and isolated populations have been key topics of 

conservation biology studies in the last decade to understand the extinction mechanisms 

and avoid biodiversity loss (Beissinger 2000; Fréville et al. 2007; Abeli et al. 2009; 

Gentili et al. 2015).  

Consequently, several plant species in the Mediterranean Basin that show outlying 

populations isolated ecologically and geographically from the rest of their distribution 

range have been investigated in recent years (e.g., Gargano et al. 2007; Del Vecchio et 

al. 2012; Fois et al. 2015; Fenu et al. 2015b). 

Monitoring is needed to improve the biological understanding on which 

management actions can be based (Nichols and Williams 2006). In fact, the collection 

of field data related to plant populations is the first step to produce estimates of system 

status or other variables, which can be compared against model-based predictions for 

the purpose of learning (MacKenzie 2006; Nichols and Williams 2006). Monitoring can 

be used to predict the effects of various management practices on population size, 

condition, stage distribution (i.e. seed production and/or seedlings development) and 

demographic processes, including survivorship and seedling recruitment (Fenu et al. 

2015a). All this information is needed to estimate the temporal or spatial variation in 

population size (in term of number of individuals), density, reproduction traits or 

demographic rates (as survival, growth and fecundity) of plants populations. Also, 

monitoring is an important part of in situ conservation, not the least during and after 

management interventions to ascertain how successful these are and how far the 

population has reached a stable and safe state (Heywood 2015). 

Species conservation is closely related to understanding the key factors 

determining their distribution and abundance. Knowledge of their life-cycle, 

reproductive traits, flowering and fruiting phenology is essential for identifying limits to 

population growth and persistence (Bevill and Louda 1999). 

To efficiently manage threatened species, it is important to understand their 

population dynamics and identify the current threats acting on them (Oostermeijer et al. 

1996); hence determining whether a population is growing or declining is central to 

conservation biology. Although population trends can be estimated from the densities of 

individuals, understanding the mechanisms that drive those trends requires the 

quantification of basic vital rates (growth, survival and fecundity; Metcalf et al. 2013). 

In fact, variation in population growth rates is due to differences in underlying vital 

rates, such as seedling recruitment, growth, reproduction and death (Buckley et al. 

2010).  

Matrix population models are a common tool in population biology to understand 

the factors influencing individuals that may contribute to overall population dynamics 

(Caswell 1989). These models represent the life cycle of individuals; hence, can be used 

to investigate the dynamics of a population (Jongejans and de Kroon 2012), quantifying 

all ways (through survival and reproduction) in which plants contribute to the size of the 

population after one time step. More recently, a new discrete-time structured method 
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was introduced: the integral projection model (IPM, hereafter; Easterling et al. 2000), 

which retains the desirable properties of the matrix projection model, while avoiding 

entirely the need to group plants into discrete stage classes. The analysis of matrix or 

integral projection models can also help us to identify which life stages or vital rates 

most influence population growth rate, information that can be used to focus 

management and monitoring efforts (Morris and Doak 2002). 

The best management solutions to improve the conservation status of threatened 

species are translocations (population reinforcement, reintroduction and introduction), 

which aim to enhance population viability, for instance by increasing population size, 

genetic diversity, or by the representation of specific demographic groups or stages 

(Godefroid et al. 2011). However, many limits remain in the implementation of these 

conservation actions, such as the high both economic and time costs, the availability of 

the optimal site, the difficulties on the implementation of these actions on private areas 

and the high uncertainty of success principally connected to natural stochastic events 

(Fenu et al. 2015c). For this reason, it is often necessary to identify other active 

measures, such as the fences erection to protect small population or to clone in a local 

nursery the entire population (e.g. in Sardinia, see Fenu et al. 2012; Cogoni et al. 2013; 

Fois et al. 2015). 

Despite the increase in conservation planning and initiatives in the past few 

decades, the evidence that habitats are being lost or degraded and species increasingly 

threatened or even extinguished is beyond doubt, and current trajectories suggest that 

this will continue unless some innovative approaches are adopted (Heywood 2015). 

Conservation strategies represent an important issue in the Mediterranean Basin, 

because this area, which represents only 2% of the world’s surface, houses 10% of the 

world’s total floristic richness (e.g. Médail and Quézel 1999; Fenu et al. 2015a). 

The Mediterranean Basin hosts a flora of around 25–35,000 flowering plants and 

ferns and has been identified as 1 of 34 biodiversity hotspots of the world (Mittermeier 

et al. 2005), including the area with the highest plant richness in Europe (Bilz et al. 

2011). In this area it is possible to recognize 10-11 hotspots (Médail and Quézel 1997; 

Cañadas et al. 2014), constituting about 22% (515,000 km
2
) of the total surface of the 

Mediterranean Basin and including about 5,500 narrow endemic plants (Médail and 

Quézel 1999; Thompson 2005). 

The high rate of regional endemism is, perhaps, the major characteristic of the 

Mediterranean flora, with close to 60% of all native taxa being Mediterranean endemics, 

half of which corresponds to narrow endemic species (Thompson 2005; Fenu et al. 

2015a). In the Mediterranean Basin, Iberian Peninsula and Balearic Islands host around 

7,500 taxa (species and subspecies; Castroviejo 2010), followed by Italy with 6,711 

taxa (Conti et al. 2005, 2007). 

The Tyrrhenian Islands (Sardinia and Corsica), together with others western 

Mediterranean Islands (Sicily and Balearic Islands), constitute one of the most 

important biodiversity hotspots within this region (Blondel and Médail 2009; Cañadas 

et al. 2014). Large Mediterranean islands, due to high long-term climate stability, 

combine a high richness of plant lineages and species with the persistence of many 

endemic taxa (Médail and Diadema 2009; Fenu et al. 2014). 

Despite this rich plant diversity, until a few years ago not many biological 

conservation studies had been carried out on threatened species of Sardinia; however, 

the increasing number of papers detected in the last years represents a good signal that 

more attention will be devoted to threatened endemic species in the near future (Fenu et 

al. 2015a). In particular, in the last 10 years, field work and analysis have been 

implemented for endemics and policy species in Sardinia. At present, a total of 39 plant 

species have been periodically surveyed; in particular, 12 policy species, corresponding 
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to the 37.5% of the total, have been monitored (Domínguez Lozano et al. 2000; Fenu et 

al. 2015a). 

 

 

Study species 

 

Cistaceae is a medium-size family with eight genera and approximately 180 taxa 

distributed in temperate and subtropical regions of the northern hemisphere, and it 

displays the highest genus and species diversity in the Mediterranean floristic region 

(Próctor and Heywood 1968; Guzmán and Vargas 2009). Within this family, 

Helianthemum Miller is the most diverse genus, with approximately 100 taxa that grow 

from sea level up to approximately 3000 m in a diverse array of substrates (limestone, 

dolomite, marl, gypsum, saline and sand-soils), that are concentrated in the western 

Mediterranean area (Próctor and Heywood 1968). 

The genus Helianthemum Miller (Cistaceae Jussieu) is a monophyletic group 

limited to the old World (Arrington and Kubitzki 2003; Guzmán and Vargas 2009; 

Sorrie 2011). It includes about 110 species and subspecies of small herbs or subshrubs, 

which are distributed from Macaronesia to central Asia, including Europe and North 

Africa, and mainly occurring in the West Mediterranean, particularly in the Iberian 

Peninsula (Greuter et al. 1984; López González 1993; Arrington and Kubitzki 2003; 

Parejo-Farnés et al. 2013; Ferrer-Gallego 2015). 

Within this genus, Helianthemum caput-felis Boiss. (Figure 1) deserves particular 

attention because it is considered the only extant representative of an ancient lineage 

(Arrigoni 1971; López-González 1992; Parejo-Farnes et al. 2013). H. caput-felis is a 

coastal plant with a narrow fragmented distribution along the south-eastern Iberian 

Peninsula, Balearic Islands, Sardinia and North Africa (Algeria, Morocco and Melilla) 

coastlines (Fenu et al. 2015b); the widest distribution and the largest populations are 

located in Spain (López-González 1992; Agulló et al. 2011), whereas the presence of 

this species in Sardinia and northwest Africa is restricted to small areas in unique or 

reduced places (Quézel and Santa 1963; Arrigoni 1971; Fenu and Bacchetta 2008; Fenu 

et al. 2015b). It is a perennial half shrub tall 35(50) cm. Adults plants produce simple 

raceme-like cymose inflorescences with 3–10 yellow and hermaphroditic flowers, open 

at dawn and close at dusk, characterised by a short lifespan (3–4 days; Rodríguez-Pérez 

2005). Based on studies carried out in Spain, the flowering period is from late February 

to late May, and the fruiting season runs from late April to July-August (Rodríguez-

Pérez 2005; Agulló et al. 2015). Tébar, Gil and Llorens (1997) and Rodríguez-Pérez 

(2005) reported the allogamous character of this species, being a generalist 

entomogamous plant. Fruits are trilocular capsules, dehiscent by three valves, that 

detach at maturity and contain up to 6 (10) seeds with brain-like surface (López-

González 1993; Agulló et al. 2015). Seeds have a mean maximum diameter (±SD) of 

1.45 ± 0.11 mm (Bacchetta et al. 2008). Seed germination occurs in autumn, at the onset 

of the rainy season (Rodríguez-Pérez 2005). H. caput-felis shows a low germination, 

which has been attributed to physical exogenous dormancy (impermeable coat), a 

widespread trait among the Cistaceae (Thanos et al. 1992). 

From an ecological point of view, H. caput-felis is a thermophilous plant that 

preferably grows in coastal environments under the direct influence of the sea, mostly 

on calcareous rocky cliffs (0–200 m a.s.l.) with garrigues or scrublands (Arrigoni 1971; 

Fenu and Bacchetta 2008; Agulló et al. 2011); peculiar populations also grow on 

different habitats, such as sand dunes (Majorca and Melilla), rocky slopes bordering 

inland ravines (Melilla; Agulló et al. 2011) or, rarely, in open wooded areas (Raynaud 

1999). 
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Plants that display a peculiar distribution and, in particular, species with border 

and peripheral populations, as H. caput-felis, represent interesting targets in ecology, 

evolutionary biology and genetics (Gargano et al. 2007; Eckert et al. 2008; Sexton et al. 

2009; Pouget et al. 2013; Fenu et al. 2015b). 

Moreover, both international organizations (e.g. IUCN, European Council) and 

the European Strategy for Plant Conservation (Planta Europa 2008), declare that border 

and isolated populations should be considered an important resource for biodiversity 

and should therefore be included in conservation programs. 

In order to stop the continuous decline of the species (due to the gradual loss of 

natural habitats in which it is found), knowledge of species ecology, demography, 

distribution and threats affecting its conservation status represents the first step to 

develop conservation action plans.  

 

 

 
Figure 1 – Helianthemum caput-felis Boiss. 

 

 
Figure 2 – Distribution of H. caput-felis in the Mediterranean Basin. 
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Figure 3 – Habitats of H. caput-felis along its distribution range. a) Capo Mannu (Sardinia, Italy); 

b) Su Tingiosu  (Sardinia, Italy); c) Cabo Roig (Alicante, Spain); d) Moraira (Alicante, Spain); e) 

Colònia de Sant Jordi (Majorca, Spain); f) Sa Ràpita (Majorca, Spain); g) Taxdirt (Morocco); h) 

Ras Kebdana (Morocco).  
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Helianthemum caput-felis is distributed throughout the western Mediterranean 

Basin (south-eastern Iberian Peninsula, Majorca, Sardinia and northwest Africa) in 

several fragmented populations (Fenu et al. 2015b). From an ecological point of view, it 

typically grows on coastal environments, under the direct influence of the sea, mostly 

on calcareous rocky cliffs (0-200 m; Agulló et al. 2011). 

In Sardinia, which correspond to the eastern range, H. caput-felis grows in two 

main localities (Capo Mannu and Su Tingiosu, central-west part of the Island; Figure 3a 

and 3b, respectively) that are approximately 3 km apart; small patches are also found in 

the coastal cliff along the Sinis Peninsula (Arrigoni 1971; Fenu and Bacchetta 2008), at 

the upper bound of the Gulf of Oristano. 

This plant is found in the discontinuities of the Juniperus micro-forest and into the 

maquis, but it mainly grows in the coastal garrigues, where cushion chamaephytes are 

dominant. H. caput-felis is a member of a rupicolous coastal plant community that is 

rich in narrow endemics, such as Limonium lausianum Pignatti and Polygala sinisica 

Arrigoni, as well as other western Mediterranean plants, such as Viola arborescens L., 

Coris monspeliensis L. and Erica multiflora L. (Fenu et al. 2012, 2015b). 

Helianthemum caput-felis’ Spanish distribution include a central zone, in the 

Majorcan south coast, and a western zone, in the Valencian Community coast. The 

Majorcan distribution range is characterized by rocky calcareous cliffs, but also back-

dune areas with sand substrate in which grows chamaephytic vegetation. In the eastern 

Iberian coast, H. caput-felis grows in the Alicante Province (Valencian Community), 

both in the north of Alicante (Figure 3d) and south of it (Figure 3c), at the limit with 

Murcia Province. These coastal areas are intensely affected by infrastructure 

construction made during the ’80 Spanish boom, so the areal of the species appears 

strongly fragmented. 

In North Africa the species is located in Melilla (Spain), Morocco (Figure 3g and 

h) and Algeria’s coasts. In Melilla it grows in rocky slopes bordering inland ravines 

(Agulló et al. 2011). 

Among the global distribution range of H. caput-felis, six areas were selected in 

order to carry out demographics and phenological analyses: Capo Mannu and Su 

Tingiosu (Oristano, Sardinia, Italy), Cabo Roig and Moraira (Alicante, Valencian 

Community, Spain), Sa Ràpita and Colònia de Sant Jordi (Majorca, Spain). 

Helianthemum caput-felis is a particularly interesting species because it is 

protected at European level. In fact, it is listed as Endangered in the European Red List 

(Bilz et al. 2011), included in the Annex I of the Bern Convention (Convention on the 

Conservation of European Wildlife and Natural Habitats 1979, updated in 2002), in the 

Washington Convention, and in Annex II of the Habitats Directive (92/43/EEC). At 

regional level, it is considered Critically Endangered (CR) in Sardinia (Italy; Fenu et al. 

2015b; Rossi et al. 2016) and Endangered (EN) in Spain (Agulló et al. 2011). The 

species is widespread in areas identified as Sites of Community Interest (SCI) according 

to the Habitats Directive, such as the Sierra de Escalona y Dehesa de Campoamor, 

Ramblas de las Estacas and Cabo Roig in Spain, and Capo Mannu in Italy. In addition, 

in the Valencian Community (Spain), Plant Micro-Reserves (PMRs) have been 

specifically created in limited areas where many species, like H. caput-felis, have legal 

level of protection. 

 

 

Aims of this work 

 

The main objective of this Ph.D. thesis was to analyse ecological constraints related to 

population trends and the conservation status of Helianthemum caput-felis Boiss., 

characterized by a highly fragmented areal isolated from the distribution centre. 
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In Chapter 1, the distribution range, population size, reproductive traits and the 

effect of human disturbance of H. caput-felis in Sardinia (eastern periphery of its 

distribution range) were analysed. Moreover, threats affecting the persistence of H. 

caput-felis in Sardinia where investigated, in order to evaluate the conservation status 

following the IUCN regional protocol. 

The study area was expanded in Chapter 2, in which the H. caput-felis 

reproductive traits along the entire European distribution range were analysed. In 

particular, the Chapter focussed on flowering and fruiting phenology, ecological traits 

(geomorphology, substrate, slope and human trampling intensity) affecting reproductive 

outputs (as fruit and seed sets) and the presence of two ecological gradients among the 

distribution range of the species. 

The following phase of work concerned demographic analysis of H. caput-felis. 

Using demographic surveys, matrix and integral projection models, plant performance 

and population dynamics were investigated both at global level (Chapter 3) than at local 

scale (Chapter 4), in six localities sampled among the European distribution range in 

which H. caput-felis occurs. 

Finally, population dynamics modelling were used in order to know the risk of 

extinction, and then to assess the global conservation status of H. caput-felis 

populations, together with an accurate analysis of the global area of occupancy of the 

species, following the IUCN protocol (Chapter 5). 
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Introduction 

 

Several plant species are characterised by a disjunctive distribution in which peripheral 

populations can be isolated from the main home range. Plants that display a peculiar 

distribution and, in particular, species with border and peripheral populations represent 

interesting targets in ecology, evolutionary biology and genetics (Eckert et al. 2008; 

Sexton et al. 2009; Pouget et al. 2013). In addition, they provide insight into critical 

phenomena, such as speciation, adaptive radiation, and natural selection (Grant and 

Antonovics 1978; Holt and Keitt 2005). 

Independent of the central/marginal model debate, border populations as well as 

peripheral isolated plant populations (PIPPs) are particularly important from both 

ecological and genetic points of view (Lesica and Allendorf 1995; Conradt 2001; Holt 

and Keitt 2005) and require more attention from conservation biologists (Abeli et al. 

2009). Border populations are usually considered more vulnerable and are more prone 

to local extinction due to their isolation and restriction to marginal habitats (e.g. 

Gargano et al. 2007; Del Vecchio et al. 2012; Villellas et al. 2013a; Villellas et al. 

2013b). As suggested by international organisations (e.g. IUCN, European Council) and 

according to The European Strategy for Plant Conservation (Planta Europa 2008), 

border and isolated populations should be considered an important resource for 

biodiversity and should thus be included in conservation programs. Consequently, 

several plant species in the Mediterranean Basin that show outlying populations isolated 

ecologically and geographically from the rest of their distribution range have been 

investigated in recent years (e.g. Gargano et al. 2007; Del Vecchio et al. 2012; Fois et 

al. 2015). 

Cistaceae is a medium-size family with eight genera and approx. 180 taxa 

distributed in temperate and subtropical regions of the northern hemisphere, and it 

displays the highest genus and species diversity in the Mediterranean floristic region 

(Guzman and Vargas 2009). Within this family, Helianthemum Miller is the most 

diverse genus, with approx. 100 taxa that grow from sea level up to approx. 3000 

metres in a diverse array of substrates (limestone, dolomite, marl, gypsum, saline and 

sand-soils) that are concentrated in the western Mediterranean area (Próctor and 

Heywood 1968). Within this genus, Helianthemum caput-felis Boiss. deserves particular 

attention because it is considered the only extant representative of an ancient lineage 

(Arrigoni 1971; López-González 1992). H. caput-felis is a coastal plant distributed 

throughout the western Mediterranean Basin (SE Iberian Peninsula, Majorca, Sardinia 
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and NW Africa) in several fragmented populations; the widest distribution and the 

largest populations are located in Spain (Agulló et al. 2011; López-González 1992), 

while the presence of this species in Sardinia and NW Africa is restricted to small areas 

in unique or reduced places (Arrigoni 1971; Fenu and Bacchetta 2008; Quézel and 

Santa 1963).  

In Sardinia, H. caput-felis grows in two main localities (Capo Mannu and Su 

Tingiosu, central-west part of the island; Figure 1) that are approx. 3 km apart; small 

patches are also found in the coastal cliff along the Sinis Peninsula (Arrigoni 1971; 

Fenu and Bacchetta 2008). This plant is found in the discontinuities of the Juniperus 

micro-forest and into the maquis, but it mainly grows in the coastal garrigues, where 

cushion chamaephytes are dominant. H. caput-felis is a member of a rupicolous coastal 

plant-community that is rich in narrow endemics, such as Limonium lausianum Pignatti 

and Polygala sinisica Arrigoni, as well as other western Mediterranean plants, such as 

Viola arborescens L., Coris monspeliensis L. and Erica multiflora L. (Fenu et al. 2012). 

 

 

 
Figure 1 – Study area in the Sinis Peninsula (CW-Sardinia); the circles indicate the main localities 

of Capo Mannu and Su Tingiosu where H. caput-felis grows. 

 

 

Helianthemum caput-felis is an emblematic plant from a conservation point of 

view; it is included in the Berne Convention and Appendix II of the Habitats Directive 

(European Community Council Directive 92/43/EEC), and it is classified as endangered 

on the European red list of vascular plants (Bilz et al. 2011) according to the IUCN 

protocol (IUCN 2001). However, to date, no exhaustive reproductive and ecological 

studies have been conducted on this plant, and in particular on the Sardinian population, 

and no conservation actions have been implemented for this species. 
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Mediterranean coastal habitats have been altered by human activity for several 

thousands of years, and coastal environments are strongly affected by tourism and 

related infrastructures (Davenport and Davenport 2006). In particular, touristic and 

recreational activities in coastal areas appear to be common threats to a wide variety of 

European threatened plants (Bilz et al. 2011; Ballantyne and Pickering 2013; Fenu et al. 

2013; Rossi et al. 2016). However, few studies have focused on the effects of human 

trampling on Mediterranean coastal ecosystems (Comor et al. 2008; Kutiel et al. 2000; 

Kerbiriou et al. 2008). Although for threatened plants the impact of tourism is 

particularly severe (Pickering and Hill 2007), to our knowledge, the effect of human 

trampling on threatened plants growing on coastal areas has yet to be accurately 

assessed in Mediterranean coastal habitats. In general, tolerance of species to human 

trampling varies, sometimes markedly. In Mediterranean coastal regions, some plant 

species (including threatened plants) are very sensitive to trampling, while others seem 

to be tolerant or even to benefit from trampling (Kerbiriou et al. 2008; Yu et al. 2009; 

Fenu et al. 2013). Human trampling has been demonstrated to be generally an important 

threat for threatened plant species in Sardinia (Quilichini and Debussche 2000; Fenu et 

al. 2011, 2013; Rossi et al. 2016) and we hypothesize that also the Sardinian population 

of H. caput-felis is particularly affected by human disturbance, as previously reported 

for the Spanish population (Dominguez Lozano et al. 1996).  

The main aims of this study were to verify the distribution range and population 

size of H. caput-felis in Sardinia (eastern periphery of its distribution range), to analyse 

plant size and reproductive traits, to analyse the effect of human disturbance, to identify 

its principal threats and to assess its conservation status at the regional level following 

the IUCN protocol. 

 

 

Materials and methods 

 

Study species 

Helianthemum caput-felis is a perennial small shrub that grows to a height of 35(50) 

cm. Its flowers, which are arranged in inflorescences at the tip of new branches, are 

yellow and hermaphroditic, open at dawn and close at dusk, and have a short lifespan 

(3–4 days, Rodríguez-Pérez 2005). Based on studies carried out in Spain, the flowering 

period is from late February to late May, and the fruiting season runs from late April to 

July-August (Rodríguez-Pérez 2005). Tébar, Gil and Llorens (1997) and Rodríguez-

Pérez (2005) reported the allogamous character of this species, being a generalist 

entomogamous plant. Fruits are capsules that detach at maturity, and seed germination 

occurs in autumn, at the onset of the rainy season (Rodríguez-Pérez 2005).  

From an ecological point of view, H. caput-felis is a thermophilous plant that 

typically grows in coastal environments under the direct influence of the sea, mostly on 

calcareous rocky cliffs (0-200 m a.s.l.) with garrigues or scrublands (Arrigoni 1971; 

Agulló et al. 2011; Fenu et al. 2012); peculiar populations also grow on different 

habitats, such as sand dunes (Mallorca and Melilla), rocky slopes bordering inland 

ravines (Melilla; Agulló et al. 2011) or, rarely, in open wooded areas (Raynaud 1999). 

 

Data sampling 

The distribution of H. caput-felis was verified by field surveys conducted in the 

localities for which herbarium specimens and/or published data (Arrigoni 1971; Fenu 

and Bacchetta 2008) were available. The geographical limits of the main localities of 

Capo Mannu and Su Tingiosu (CM and ST, hereafter) were mapped using a global 
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positioning system, and the areas where the plants were found were estimated using 

ArcView v. 3.2 (ESRI, Redlands, USA). Localities containing only scattered plants 

were excluded a priori in this study (Figure 1). 

Forty permanent plots of 2 × 1 m (20 per locality) were randomly established (in 

the area where the plant was found) to estimate the plant densities and extrapolate the 

population size. Over one year, plants were monitored bimonthly, approximately on the 

10
th

 and 20
th

 days of each month. Within the plots, all plants (including seedlings) were 

counted, marked and measured from March to August, in order to analyse the whole 

reproductive season of the plant species. During each monitoring, survival, 

morphological (height, maximum and minimum diameter) and reproductive traits 

(number of flowers and fruits per plant) were recorded for every plant. Each plant was 

assigned to one of the following habitats: garrigue, maquis and micro-forest. Similarly, 

each plant was assigned to a geomorphology and substrate (lowland versus slope areas 

and soil versus bedrock, respectively). 

Human trampling intensity was visually estimated for each plot and four levels of 

intensity were considered: absent, low (≤30% of the plot surface), moderate (31–60%), 

and intense (≥61%); ten plots for each category were considered in this study. 

Phenological and reproductive traits were monitored in 378 marked-plants. 

Phenological phases were considered present when >5% of the plants showed the same 

pattern and each plant were classified as being reproductive based on the presence of 

flowers/fruits (censuses were carried out in May). The average number of fruits per 

plant was determined at the peak of fruiting season (May) from a ratio of the total 

number of fruits/total number of plants monitored. Seed-set (considered as number of 

seeds per fruit) was calculated in May by collecting randomly 400 mature fruits from 40 

randomly selected plants. Seeds were extracted and counted, and the average number of 

seeds per fruit was multiplied by the average number of fruits per reproductive plant to 

predict the mean reproductive capacity of each plant. 

 

IUCN assessment at regional level 

Globally, the IUCN Red List procedure is the most widely used protocol for species risk 

assessment because it facilitates objective, replicable and flexible assessments (e.g. 

Rodrigues et al. 2006; de Grammont and Cuarón 2006; Rossi et al. 2016). For IUCN 

assessment, we evaluated all of the localities where H. caput-felis grows (Fenu and 

Bacchetta 2008). IUCN categories and criteria version 3.1 (2001) were applied 

according to the procedure for regional assessment (IUCN 2003). According to the New 

Italian Red List project (Rossi et al. 2014), a grid of 2 × 2 km generated by the ESRI
®

 

ArcGis
TM

 9x package and superimposed to a map of Italy was used to assess the area of 

occupancy (AOO, defined as the area within the extent of occurrence, EOO, that is 

occupied by a taxon, where EOO is defined as the area contained within the shortest 

continuous imaginary boundary that can be drawn to encompass all the known sites of 

occurrence of a taxon, excluding cases of vagrancy, sensu IUCN 2001, 2014a). All of 

the parameters required by the IUCN protocol (i.e., EOO, locations, decline rate) and 

conservation status were assessed following the latest guidelines of the IUCN (2014a).  

The major threats to H. caput-felis were determined through field observations 

and categorised following the version 3.2 of IUCN threats classification scheme (IUCN 

2014b). 

 

Statistical analyses 

Considering that the peak of the reproductive season occurred in May, only the data of 

this month have been used in the analyses. Morphometric traits collected in the field 

were used to calculate the volume of each plant (plant size, hereafter). We calculated 
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plant size (V, expressed in dm
3
) using individual height (h, expressed in dm) and the 

maximum and minimum diameter (dM and dm, respectively), according to the following 

formula: 

 

Plant size [dm
3
]: V = [π × (dM/2) × (dm/2)] × h 

 

The Pearson correlation value was calculated to correlate plant size with 

reproductive parameter. To evaluate the effect of locality, ecological parameters 

(geomorphology, substrate and habitat type) and disturbance on plant density, plant size 

and fruits production, three independent Generalized Linear Models (GLMs) were fitted 

using a normal function for continuous variables, Poisson error distribution and log as a 

link function for count data. GLM analyses were performed by a stepwise procedure 

using JMP 7.0 (SAS, SAS Institute, Cary, NC). 

The non-parametric Mann–Whitney U test was performed to verify differences 

between localities in the mean percentage of seeds per fruit; these analyses were 

performed using Statistica 8.0 software (Statsoft, USA). 

 

 

Results 

 

Surface-area and plant density 

The overall surface-area occupied by the H. caput-felis populationwas 30.61 hectares 

(17.87 ha for CM and 12.74 ha for ST); these locations represented almost the entire 

Sardinian population (99.99%), although a few isolated plants grow in some southern 

coastal sites along the Sinis Peninsula (data not show). 

The estimated mean density was 4.73 ± 2.31 plants m
-2

, and it varied from 4.63 ± 2.25 

(CM) to 4.83 ± 2.42 (ST) plants m
-2

; the minimum and maximum density values ranged 

from 2 to 9.5 plants m
-2 

for CM and from 1 to 8.5 plants m
-2

 for ST (Table 1). 

Plant density was higher in bedrock and lowland areas, and the highest density 

value was observed in garrigue, followed by maquis (Table 2), however the differences 

among plants growing in different ecological conditions are not statistically significant 

(p-value > 0.05; Table 3a). Our results revealed that only human trampling intensity 

significantly affected plant density (p-value < 0.05; Table 3a): in fact, the lowest plant 

density was observed in the plot with intense trampling pressure (6.67±4.27 plants m
-2

) 

compared to undisturbed areas (trampling low and absent, 10.38 ± 4.61 and 10.48 ± 

4.96 plants m
-2

, respectively; Figure 2). 
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Table 1 – Helianthemum caput-felis localities and their population traits: area, mean density, estimated population range, mean plant size, percentage of reproductive 

plants, mean number of flowers and fruits per plant, percentage of empty fruits and mean number of seeds per fruit. 

 

Locality Area (ha) 

Plant density  

± SD  

(plants m-2) 

Mean no. 

plants 

Population range  

(max-mix) 

Plant size  

± SD 

 (dm3) 

Adults  

plants (%) 

Flowers per plant  

(Mean ± SD) 

Fruits per plant  

(Mean ± SD) 

Empty 

fruits (%) 

Seeds per fruit  

(Mean ± SD) 

           

Capo Mannu  (CM) 17.87 4.63 ± 2.25 862230 1295400-429100 11.21 ± 48.68 66.49 30.42 ± 48.00 36.69 ± 49.43 17.5 4.32 ± 1.40 

           

Su Tingiosu  (ST) 12.74 4.83 ± 2.42 589225 876250-302200 6.11 ± 13.72 89.64 39.01 ± 44.52 78.49 ± 107.15 22.5 4.27 ± 1.37 

           

Overall population 30.61 4.73 ± 2.31 1446320 2154000-738600 8.61 ± 35.48 78.31 33.23 ± 46.98 58.03 ± 86.47 20.0 4.29 ± 1.39 
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Table 2 – Helianthemum caput-felis traits at population and plant levels in relation to substrate, geomorphology and habitat in Sardinia. 

  Plant density (plant m-2)  Plant size (plant volume - dm3)  No. Fruits per reproductive plant 

  Overall CM ST  Overall CM ST  Overall CM ST 

SUBSTRATE             

Bedrock Mean ± SD 4.89 ± 2.41 5.17 ± 2.84 4.82 ± 2.43  3.64 ± 8.10 3.44 ± 6.23 3.69 ± 8.59  68.27 ± 80.26 60.61 ± 73.94 69.75 ± 81.72 

 Min 1.5 2 1.5  0.0002 0.0012 0.0002  3 4 3 

 Max 8.5 7.5 8.5  61.28 24.46 61.28  500 325 500 

Soil Mean ± SD 4.63 ± 2.3 4.53 ± 2.23 4.83 ± 2.56  11.43 ± 43.79 12.78 ± 53.17 9.05 ± 17.73  80.21 ± 98.14 55.85 ± 46.81 112.48 ± 133.40 

 Min 1 2 1  0.0003 0.0003 0.009  2 2 2 

 Max 9.5 9.5 8.5   628.32 628.32 117.76   600 218 600 

             

GEOMORPHOLOGY             

Plain Mean ± SD 5.23 ± 2.52 5.56 ± 2.26 5.03 ± 2.72  6.56 ± 15.47 5.72 ± 15.87 7.12 ± 15.22  79.87 ± 102.61 44.08 ± 36.43 96.43 ± 118.13 

 Min 1 2 1  0.0003 0.0003 0.002  2 2 2 

 Max 9.5 9.5 8.5  117.76 107.35 117.76  600 146 600 

Slope Mean ± SD 3.97 ± 1.77 3.86 ± 2.04 4.20 ± 1.15  12.65 ± 57.16 17.67 ± 69.39 2.49 ± 4.21  66.83 ± 62.98 69.91 ± 61.22 61.86 ± 66.30 

 Min 2 2 3  0.0002 0.0003 0.0002  4 4 4 

 Max 8.5 8.5 5.5   628.32 628.32 24.93   325 325 300 

             

HABITAT             

Garigues  Mean ± SD 4.59 ± 2.18 4.35 ± 1.92 4.72 ± 2.36  5.11 ± 12.26 3.08 ± 5.66 6.15 ± 14.43  82.22 ± 103.07 59.12 ± 55.46 91.06 ± 115.19 

 Min 1 2 1  0.0002 0.0003 0.0002  2 2 2 

 Max 8.5 7.5 8.5  117.76 31.73 117.76  600 325 600 

Maquis Mean ± SD 4.50 ± 2.50 3.67 ± 1.53 5.75 ± 3.89  27.64 ± 94.19 50.45 ± 132.19 5.82 ± 6.59  76.00 ± 62.95 77.00 ± 66.96 75.24 ± 61.39 

 Min 2 2 3  0.014 0.088 0.014  8 8 10 

 Max 8.5 5 8.5  628.32 628.32 133.99  217 217 207 

Micro-forest Mean ± SD 5.43 ± 2.91 5.43 ± 2.91 -  9.17 ± 18.73 9.17 ± 18.73 -  46.51 ± 37.10 46.51 ± 37.10 - 

 Min 2 2 -  0.0006 0.0006 -  2 2 - 

 Max 9.5 9.5 -   107.35 107.35 -   152 152 - 
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Table 3 – Generalized Linear Models (GLMs) results. 

 

 

a) Effects of locality and ecological parameters on plant density (Observations = 40. Model: - 

LogLikelihood = 13.80; χ
2
 = 27.60; DF = 11; p-value = 0.004). 

Source χ2 DF p-value 

Locality 0.42 1 0.515 

Site geomorphology 1.40 1 0.237 

Substrate 0.20 1 0.653 

Habitat type 4.99 2 0.082 

Human trampling 14.44 3 0.002 

Site geomorphology × substrate 0.01 1 0.984 

Site geomorphology × habitat type 4.09 2 0.129 

 

b) Effects of locality and ecological parameters on plant size (plant volume. Observations = 378. 

Model: - LogLikelihood = 1665332.51; χ
2
 = 3330665; DF = 11; p-value < 0.001). 

Source χ2 DF p-value 

Locality 105189.91 1 < 0.001 

Site geomorphology 122056.28 1 < 0.001 

Substrate 62790.64 1 < 0.001 

Habitat type 186002.73 2 < 0.001 

Human trampling 432806.60 3 < 0.001 

Site geomorphology × substrate 3533.98 1 < 0.001 

Site geomorphology × habitat type 1030061.80 2 < 0.001 

 

c) Effects of locality and ecological parameters on fruit output per plant (Observations = 378. 

Model: - LogLikelihood = 2696.70; χ
2
 = 5393.41; DF = 11; p-value < 0.001). 

Source χ2 DF p-value 

Locality 1125.31 1 < 0.001 

Site geomorphology 68.21 1 < 0.001 

Substrate 296.44 1 < 0.001 

Habitat type 394.20 2 < 0.001 

Human trampling 1005.00 3 < 0.001 

Site geomorphology × substrate 0.34 1 0.558 

Site geomorphology × habitat type 201.26 2 < 0.001 

 

Plant size 

The mean plant size was 8.61 ± 35.48 dm
3
, ranging from a minimum of 0.20 × 10

-3
 dm

3
 

to a maximum of 628.32 dm
3
. Plants growing in CM (mean value = 11.21 ± 48.68 dm

3
) 

were larger than those growing in ST (mean value = 6.11 ± 13.72 dm
3
); indeed, a higher 

percentage of large plants (plant volume > 25.00 dm
3
) was observed in CM compared to 

ST (10.3% of the plants measured for CM and 3.1% for ST).  

All ecological variables analysed in our study had a statistically significant effect 

on plant size, as well as the interactions between geomorphology and substrates and 

between geomorphology and habitat significantly affected plant size (p-value < 0.001; 

Table 3b); in particular, larger plants were found in areas with the following ecological 

features: soil presence, on the slopes, in the maquis habitat (Table 2) and in areas with 

intensive human trampling (Figure 2). In contrast, smaller plants were observed in areas 

without human trampling (5.55 ± 13.08 dm
3
). 

 

Reproductive traits 

Flowering season occurs from March to late May, but isolated flowers were present 

until mid-June. In CM, the flowering season ranged from March to mid-May, and peak 

of flowering was recorded in mid-April. The flowering season in ST ranged from early 

April to mid-May, and peak flowering was recorded in early May. Generally, the 
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fruiting season lasts one month; here, it lasted from April to July, and the peak occurred 

from mid-May to mid-June in both localities. 

The mean percentage of reproductive plants was 76.72%, ranging from 64.86% 

(CM) to 88.08% (ST). The mean number of flowers per plant was 33.23 ± 46.98, 

ranging from 1 to 327. Notably, the number of ST flowers per reproductive plant (39.01 

± 44.52) was higher than CM (30.42 ± 48.00). 

The mean number of fruits per reproductive plant was 58.03 ± 86.47 and it was higher 

in ST than in CM (78.49 ± 107.15 and 36.69 ± 49.43, respectively). All ecological 

variables analysed had a statistically significant effect on the number of fruits per plant, 

as well as the interactions between geomorphology and habitat significantly affected 

plant size (p-value < 0.001; table 3c); plants displayed a higher mean number of fruits in 

deep and structured soil and in lowland areas, preferably in the garrigue and maquis 

habitats (Table 2). The mean number of fruits per plant increased as human trampling 

intensified, with mean values ranging from 50.33 ± 71.17 (absent human trampling) to 

113.18 ± 190.62 (intense human trampling; Figure 2). 

 

 

 

 
Figure 2 – Effect of human trampling on plant density, plant size and fitness. 
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A positive correlation between number of fruits and plant size was observed (r = 

0.76, r
2
 = 0.57 and p < 0.001; Figure 3). 

Overall, approx. 20% of the fruits were empty, ranging from 17.5 for CM to 

22.5% for ST. The mean number of seeds per fruit was 4.29 ± 1.39, ranging from 1 to 7 

seeds per fruit; the fruits collected in CM had a higher mean number of seeds per fruit 

(4.31 ± 1.40) compared to those in ST (4.27 ± 1.37), but this difference was not 

statistically significant (Mann–Whitney U test, p > 0.05). 

 

 
Figure 3 – Relationships between plant size (plant volume) and reproductive capacity (number of 

fruits per plant) in H caput-felis. The following equation was used: No. of fruits = -0.320 + 0.517 × 

plant volume; r
2
 = 0.57; r = 0.76; p-value < 0.001. 

 

IUCN assessment at regional level 

The same threats were detected in all localities where H. caput-felis was found, 

including areas with scattered plants growing in the southern part of the Sinis Peninsula. 

The major threat is tourism and other outdoor activities (such as human trampling), 

followed by the expansion of agricultural/pastoral activities (such as agriculture and 

wood plantations) and the invasion of exotic plants. All of these pressures result in 

reduced population size due to habitat loss and fragmentation. Stochastic environmental 

events (e.g., landslides) pose a significant potential threat. All of these threats could 

result in the disappearance of small localities with a consequent reduction in EOO and 

AOO values, as well as in the number of localities. Additionally, continuous, human-

induced habitat degradation will continue to occur in a predictable manner in the future. 

Based on the EOO (3.99 km
2
), AOO (16 km

2
 = 4 cell of 2 × 2 km), decline rate 

and number of locations (one, sensu IUCN 2014a), we propose that H. caput-felis 

should be included on the Red List categorisation of Critically Endangered at the 

regional level, based on the following formula: B1ab(i,ii,iii,v) + 2ab(i,ii,iii,v). 

 

 

Discussion 

 

Our study highlighted important information regarding the distribution pattern, 

reproductive traits and ecological requirements of H. caput-felis, which are relevant 

issues for developing future conservation measures for this species in Sardinia. To the 

best of our knowledge, no exhaustive studies have been performed on the central 
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populations of H. caput-felis, and the present study is the first investigation which 

analyse the population traits of this threatened species under natural conditions. 

In the Sardinian population, density did not vary between localities and ecological 

features (geomorphology, substrate, and habitat type), suggesting the absence of strong 

differences in ecological stress among different local conditions. The actual distribution 

of H. caput-felis in Sardinia is restricted in the two main localities, which constitute 

“ecological islands” (acting as local refuges) in coastal areas strongly modified by 

human activity. Thus, H. caput-felis could represent a “refuge-model” plant in Sardinia, 

with a range that simply occupies a reduced fraction of a wider habitat from which it is 

excluded by intensive human-induced habitat degradation, similar to several endemic 

species in the Mediterranean basin (Thompson 2005). In this restricted ecological 

context, H. caput-felis represents one of the principal species among coastal vegetation 

types. 

Our data detected a significant effect of topography, landform and habitat type on 

plant fitness. H. caput-felis prefers lowland areas with deep, structured soil due to the 

amount of water and resources available and morphological soil stability. Moreover, as 

highlighted by the mean number of fruits per plant, H. caput-felis was ecologically 

optimum in garrigues, whereas it produced few fruits in micro-forests. 

Considering previous studies (Tébar, Gil and Llorens 1997; Rodriguez-Pérez 

2005), the phenological pattern of H. caput-felis is similar in the Sardinian and Balearic 

populations. Information on the reproductive biology of endangered plants is crucial for 

predicting their survival capacity and establishing the appropriate measures for their 

conservation (e.g. Schemske et al. 1994; Cogoni et al. 2015). However, despite the 

ecological importance of the Cistaceae in the Mediterranean Basin, few studies have 

been carried out on this topic for this family (Herrera 1992; Talavera et al. 1993; 

Rodríguez-Pérez 2005; Guzmán et al. 2011). Local studies have been carried out on 

Helianthemum species (Tébar et al. 1997; Rodriguez-Perez 2005; Aragón and Escudero 

2008), but it remains one of the genera for which reproductive biology remains less 

documented. 

The H. caput-felis population in Sardinia is mainly composed of reproductive 

plants (78.31%), while the percentage of saplings and seedlings is relatively low; this 

result, together with the high number of seeds produced each year, suggests that 

seedling establishment represent the main critical stage for this plant. However, further 

studies are needed to understand whether this is related to marginalisation of the 

population or the lack of suitable micro-sites for plant establishment. In fact, in the case 

of locally restricted and threatened species, many seeds may end up in unsuitable areas 

depending on their peculiar ecological requirements (e.g. Cogoni et al. 2012). The 

lowest percentage of reproductive plants was observed in CM (2/3 of the total), 

suggesting a greater rate of recruitment, whereas in ST, 4/5 of the plants were 

reproductive. The similar number of empty fruits per plant and number of seeds per fruit 

between the two localities (lower values in ST) could be related to the impact of 

agricultural activities that determine habitat fragmentation. However, at the population 

level, multiplying the number of viable seeds per fruit per the estimated number of 

reproductive plants per locality by the mean number of fruit per plant gives approx. 75 

million viable seeds for CM and 137 for ST; thus, seed production is not a limiting 

factor for this plant. 

Reproductive limitations were not detected for this species (i.e., fruit and seed set, 

pollination service and seedling survival on natural populations) in previous studies 

(e.g. Rodríguez-Pérez 2005); considering our findings on the high seed output, the 

increasing rarity of this species seems to be likely a direct result of the destruction of its 

natural habitat.  
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Habitat fragmentation or destruction caused by human disturbance is currently 

considered one of the main factors responsible for reducing population viability and 

increasing the extinction risk of rare plants and/or of marginal and small populations 

(Schemske et al. 1994; Holsinger 2000; Schleuning and Matthies 2009). As a 

consequence, many threatened or rare plants are confined to naturally fragmented 

habitats or ecological islands that might be separated by large inhospitable areas, as 

noted in this study. 

Among other factors, human trampling is an important threat for threatened 

endemic species in Sardinia (Quilichini and Debussche 2000; Fenu et al. 2011, 2013; 

Rossi et al. 2016). A consistent reduction in reproductive traits was observed in plant 

populations subjected to human trampling (e.g. Rossi et al. 2006; Fenu et al. 2013), 

resulting in a serious threat to the persistence of the population. Accordingly, in the 

present study, a negative effect of human trampling was observed on plant density. 

Surprisingly, human trampling enhanced the plant size and the rate of fruit production, 

suggesting that the reproductive plant of H. caput-felis is tolerant to direct damage and 

probably is benefited from the reduction of inter- and intra-specific competition. 

However, considering the critical limitation in seedling recruitment, as suggested by the 

negative effect on plant density, human trampling should be considered a significant 

threat to the persistence of the Sardinian population. 

Red lists highlight the most pressing issues in biodiversity conservation matters, 

representing taxa that are closer to extinction (Rossi et al. 2014, 2016). In this context, 

Red lists may be policy-relevant for promoting conservation efforts, but they cannot be 

considered policy-prescriptive (Bilz et al. 2011; IUCN 2014a). Very little attention has 

been given to border populations in the application of the IUCN criteria at the regional 

level (IUCN 2003; Miller et al. 2007) and only recent research assigned some Italian 

marginal populations of widespread species to high-risk categories (e.g. Gargano et al. 

2007; Del Vecchio et al. 2012; Rossi et al. 2016). This study confirms this trend for H. 

caput-felis, and it allows us to raise the risk category at the regional level for this 

species from Lower Risk (LR; Conti et al. 1997) to Critically Endangered (CR). 

Although criterion B is biased by restricted range and could overestimate the extinction 

risk, it is strongly supported by the population decline observed in Sardinia. However, 

to confirm or reject the assumed worse performance and higher vulnerability of border 

populations, an extensive and integrative approach that compares all population over a 

wide temporal context is needed; in addition, the effect of population attributes (e.g., 

population size or structure) or the particular conditions where populations occur (e.g., 

human trampling intensity analysed in this study) should be taken into account to 

separate the role of local and positional factors that drive populations (García et al. 

2009). This approach is essential for all plants at the margin of their distribution range 

to plan appropriate conservation measures to reduce the extinction risk of these 

populations. 

 

Implication for conservation 

According to the European Strategy for Plant Conservation (Planta Europa 2008), 

populations at the border of their distribution area, such as H. caput-felis in Sardinia, 

should be considered of high interest, with a need for urgent conservation measures. In 

situ and ex situ (e.g., seed conservation in seed banks, cultivation in botanical gardens) 

conservation efforts should be improved. In particular, greater emphasis should be given 

to minimising the range of negative impacts, including unsustainable tourism and 

recreation use (Fenu et al. 2011, 2013; Ballantyne and Pickering 2013; Rossi et al. 

2016). Therefore, touristic and recreational activities should be regulated in known 

localities, and no new pathways should be opened. A management strategy should 
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exclude trampling in different portions of the population to facilitate the plant 

recruitment process and population renewal. 

In addition, an ex situ conservation strategy must be implemented and the seeds 

collected could be used for future reinforcement or reintroduction of this species in 

suitable areas, as realised in Spanish regions or following low-cost programs carried out 

in Sardinia (Cogoni et al. 2013). These actions may be extremely important for 

conservation in a changing climate (Sala et al. 2000; Godefroid et al. 2011). Moreover, 

because many threats will affect plant species over the next few decades (e.g. climate 

change, biological invasions), long-term monitoring programs must be developed to 

reveal changes in the species conservation status (Balmford et al. 2003; Fenu et al. 

2015), as well as monitoring both the vegetation and the human threat dynamics. 
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CHAPTER 2 

Variation of phenological and reproductive patterns in a 

Mediterranean coastal plant with fragmented distribution 
 

 

Introduction 

 

Studies on reproductive biology of endangered plants are crucial for predicting their 

survival capacity (Evans et al. 2003; Zhao et al. 2013; Fenu et al. 2015; Morellato et al. 

2016); however, to date, few exhaustive studies have explored the phenological and 

reproductive patterns of Mediterranean coastal plants (e.g. Estiarte et al. 2011; Cogoni 

et al. 2015), in particular those growing in several isolated places. 

Several plant species are characterised by a disjunctive distribution in which 

peripheral populations can be isolated from the main home range (e.g. Thompson 2005; 

Gargano et al. 2007; Pouget et al. 2013); plants that display a peculiar distribution and, 

in particular, species with peripheral populations represent interesting targets in 

ecology, evolutionary biology and genetics (Eckert et al. 2008; Sexton et al. 2009; 

Pouget et al. 2013). In addition, they provide insight into critical phenomena, such as 

speciation, adaptive radiation, and natural selection (Grant and Antonovics 1978; Holt 

and Keitt 2005; Fenu et al. 2015). 

Many studies have demonstrated that plant traits (e.g. morphology, breeding 

system, genetic settings, ecology and demography) vary across the range of a species, 

which is termed the central/marginal concept (also called ACM or ACH, indicating the 

abundant centre model or hypothesis, or CPH, centre-periphery hypothesis; e.g. Abeli et 

al. 2014; Pironon et al. 2014). This model assumes that the most favourable conditions 

will be found at the core of a species’ range, and thus, the centre will support greater 

densities, fitness, and genetic diversity than peripheral sites (e.g. Grant and Antonovics 

1978; Sagarin and Gaines 2002; Jump and Woodward 2003; Alexander et al. 2007; 

Vaupel and Matthies 2012). However, the findings of several studies diverge from these 

classical predictions (Sagarin and Gaines 2002; Samis and Eckert 2007; Doak and 

Morris 2010; Villellas et al. 2013a, Villellas et al. 2013b) and recent literature reviews 

raise considerable doubt about the generality of this model in nature (Sagarin and 

Gaines 2002; Sagarin et al. 2006; Eckert et al. 2008; Gaston 2009; Sexton et al. 2009; 

Castilla et al. 2011). Comparative analyses indicate that the differences between central 

and peripheral populations can be explained by the specific local environmental 

conditions in which populations occur (e.g. Samis and Eckert 2007; Villellas et al. 

2013a, Villellas et al. 2013b). In addition, populations at the range margin may or may 

not be considered marginal from an ecological point of view (Grant and Antonovics 

1978; Herrera and Bazaga 2008) because not all ecologically marginal populations are 

peripherally located and not all geographically peripheral populations are ecologically 

marginal (Soulé 1973). 

Along any ecological gradient, generally a plant species will be most abundant 

where the conditions allow maximum survival and reproduction and will be 

progressively less abundant away from this point until a geographic limit is reached 

(Hengeveld and Haeck 1982; Lawton 1993). However, several studies have shown that 

some species do no present lower fitness in marginal populations (e.g. Jump and 

Woodward 2003; Kluth and Bruelheide 2005; Samis and Eckert 2007) suggesting that 

marginal populations may be locally adapted to sub-optimal conditions at the range 

edge (Caughley et al. 1988; Barton 2001; Abeli et al. 2014) and other mechanisms such 
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as dispersal limitation or unstable metapopulation dynamics, rather than departure from 

ecological optimum, could be also important in limiting geographic distributions of 

some species (Kawecki and Holt 2002; Holt 2003).Those factors represent exceptions at 

the ACM hypothesis, which may result from complex patterns of environmental 

suitability across a species’ range (e.g. Abeli et al. 2014).  

Several studies consider ranges or gradients of latitude, longitude or altitude in 

order to explain variation in population and reproductive traits (e.g. Angert 2009; 

Eckhart et al. 2011; Villellas et al. 2013a). Nevertheless, many others consider a clear 

dichotomy between geography and environment by focusing rather on central and 

marginal habitats, regardless of geographic position (Kawecki 2008). As suggested by 

Abeli et al. (2014), an approach based on the study of population performance along 

geographical and ecological gradients is more informative than a direct comparison 

between central and peripheral populations. 

In this study, phenological and reproductive patterns of Helianthemum caput-felis 

Boiss. (Cistaceae) were explored in relation to the longitudinal gradient and the ACM 

model by considering that those two gradients are a good proxies for detect change in 

plant performance. For this purpose, H. caput-felis represent an interesting study case, 

due to its fragmented distribution: in fact, this plant grows in several fragmented 

populations throughout the coasts of the western Mediterranean Basin (Fenu et al. 2015 

and references therein). In addition, this species represents a good study case in order to 

explore the abundant-center model (ACM) and considering that geographically 

peripheral populations of H. caput-felis will product fewer fruits and seeds per capita 

than central populations. The primary objective of this study is to analyze the 

geographic pattern of the reproductive output across the distribution range of the 

species; specifically the aims were: (1) to analyse the flowering and fruiting periods; (2) 

to study the fruit and seed output per population, including the relationships with local 

or ecological conditions; (3) to compare the central populations with the marginal ones; 

(4) to verify the presence of any pattern in fruit and seed outputs in relationship to 

regions or populations, following a longitudinal gradient. 

 

 

Materials and methods 

 

Study species 

Helianthemum caput-felis Boiss. is a perennial half shrub of 35(50) cm tall. Its flowers, 

which are arranged in inflorescences at the tip of new branches, are generally yellow 

and hermaphroditic, open at dawn and close at dusk, and have a short lifespan (3–4 

days, Rodríguez-Pérez 2005). Only few local phenological studies were carried out in 

Majorca and Sardinia, which highlighted a flowering period from late February to late 

May and a fruiting season from late April to July–August (Rodríguez-Pérez 2005; Fenu 

et al. 2015). Tébar et al. (1997) and Rodríguez-Pérez (2005) reported the allogamous 

character of this species, being a generalist entomogamous plant. More recently, Agulló 

et al. (2015) stated that H. caput-felis is a partially self-compatible plant. Fruits are 

capsules that detach at maturation, and seed germination takes place in autumn, at the 

onset of the rainy season (Rodríguez-Pérez 2005). 

From an ecological point of view, H. caput-felis is a termophilous plant that 

preferably grows in coastal environments under the direct influence of the sea, mostly 

on calcareous rocky cliffs with garrigues or scrublands; peculiar populations also grow 

on sand dunes (Majorca), or rocky slopes bordering inland ravines (Fenu et al. 2015 and 

references therein). 
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Helianthemum caput-felis is distributed throughout the coasts of the western 

Mediterranean Basin (SE Iberian Peninsula, Balearic Islands, Sardinia and NW Africa), 

in several fragmented populations (Fenu et al. 2015 and references therein). Alicante 

coast’s population was considered the centre of H. caput-felis distribution range, while 

Majorcan and Sardinian represented the range’s edges. 

 

Data collection 

In this study, two assumptions were considered: the term “region” was used to indicate 

a geographic area along the distribution range of H. caput-felis (Alicante, Majorca and 

Sardinia – ALI, MAJ and SAR hereafter) and the term “population” to indicate a 

locality geographically isolated by other nucleus/groups of the same plant. Six 

populations were analysed, equally distributed in the three regions spanning the entire 

geographic distribution range of the species and corresponding to the eastern, central 

and western part of its range (Table 1). 

Over two years (2013–2014), data sampling was carried out from March to 

August in a total of 98 plots, randomly placed in the six populations. Overall, a total of 

821 plants were fortnightly monitored within the plots (Table 1). 

At plot level, during the first survey the altitudinal range, substrate type, 

geomorphology and human trampling intensity were recorder for each plot. Following 

previous studies (i.e. Fenu et al. 2015), human trampling intensity was visually 

estimated for each plot; in particular, following the method in Fenu et al. (2015), four 

levels of intensity were considered: absent, low (≤ 30% of the plot surface), moderate 

(31–60%), and intense (≥ 61%). 

At plant level, during each sampling, phenological status and reproductive traits 

(number of flowers and fruits per plant) were recorded for each plant. 

 

 
Table 1 – Principal geographical and ecological traits of Helianthemum caput-felis population 

investigated in this study: region, coordinates, altitudinal range (m), substrate type; in addition the 

number of plots and the number of plants within the monitored plots were reported. 

Region 

(code) 

Population 

(code) 

Coordinates U.T.M. 

(time zone) 

Altitude 

(min-max) 

Substrate 

type 

N. 

plots 

N. 

plants 

       

Alicante (ALI) Cabo Roig (CR) 700388.62 m E, 

4198390.09 m N 

(30 S) 

3 - 15 limestone 15 116 

       

Alicante (ALI) Moraira (MO) 250226.01 m E, 

4285845.34 m N 

(31 S) 

3 - 15 limestone 15 56 

       

Majorca (MAJ) Sa Ràpita (SR) 496897.00 m E, 

4356780.00 m N 

(31 S) 

0 - 5 sand and 

limestone 

15 252 

       

Majorca (MAJ) Colònia de Sant 

Jordi (SJ) 

500074.00 m E, 

4352060.00 m N 

(31 S) 

0 - 5 sand and 

limestone 

13 65 

       

Sardinia (SAR) Capo Mannu (CM) 447428.00 m E, 

4432412.00 m N 

(32 S) 

5 - 55 limestone 20 146 

       

Sardinia (SAR) Su Tingiosu (ST) 449657.67 m E, 

4428538.64 m N 

(32 S) 

5 - 25 limestone 20 186 
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In order to estimate the fruit output per region and population, the number of 

fruits per plant counted at the peak of fruiting season (ranging from May to June) was 

considered. The average number of fruits per plant was determined from a ratio of the 

total number of fruits/total number of reproductive plants monitored. 

Seed output (number of seeds per fruit) per region and population, was estimated 

by analysing 10 mature fruits collected from a randomly selected plant from each plot 

(achieving a total of 980 fruits). Seeds were extracted and counted, and the average 

number of seeds per fruit was multiplied by the average number of fruits per 

reproductive plant to predict the mean reproductive capacity of each plant. 

 

Data analyses 

In order to carry out reproductive analyses, empty or parasitic fruits were considered for 

the fruit output, but excluded from the seed output analyses. Seedlings were excluded 

from all the analysis. 

Normality distribution of data were analysed with the Shapiro-Wilk normality 

test, followed by a non-parametric Levene test for the analysis of variance homogeneity, 

calculated by R “car” package (Fox and Weisberg 2011). Differences in fruits per plant 

and seeds per fruit (both in 2013 and 2014) among regions and populations were 

analysed by non-parametric Kruskal-Wallis test, followed by Nemenyi post-hoc tests 

with Chi-squared approximation for independent samples to perform multiple 

comparisons among them (Zar 1999). This analysis was performed by R “PMCMR” 

package (Pohlert 2014). 

The effects of geomorphology (lowland versus slope areas), substrate type (soil, 

bedrock or sand), distribution area at region and population levels and their 

relationships on fruit and seed output were analyzed by fitting Generalized Linear 

Mixed Models (GLMMs), modelled by the “glmer.nb” and “glmer” functions, included 

in the R “lme4” package (Bates et al. 2014). Moreover, “MASS” and “lmerTest” R 

packages were used in order to explores the data (Kuznetsova et al. 2014). 

GLMMs provide a flexible way to model traits which do not satisfy the 

assumptions of a standard linear modelling, allowing at the same time the distinction 

between fixed and random factors in the model. Their use in this case is justified by the 

non-normal distribution of dependent variables under consideration and for the 

inclusion of random sources of variation, which represent an accurate estimation of the 

effect of environmental heterogeneity at several relevant scales on the modelled 

variables (see Littell et al. 1996). 

Since fruits counts follow a Poisson distribution, a log link function and a 

negative binomial error distribution have been used in order to account variance larger 

than the mean (overdispersion). Studies with biological counts generally confirm that 

the negative binomial does provide the more accurate characterization of the observed 

variation in field situations, compared to the Poisson theory (Stroup 2015). Empty fruits 

were treated as a binary scale response (0 = empty, 1 = viable fruit), hence a binomial 

distribution error with logit-link function was chosen. Poisson error distribution and a 

log link function were selected in order to analyse the seed output. 

Every experimental unit (fruits, empty fruits and seeds per fruit) was hypothesized 

to be a function of fixed effects, including geomorphology levels (lowland vs. slope), 

substrate type (bedrock, sand and soil), human trampling intensity (absent, low, 

moderate and intense) and interactions among these. To select the best model, null 

models with the other ones were compared through the Akaike Information Criterion 

value (AIC; Burnham and Anderson 2002). 

Models were fit using GLMM by maximum likelihood (Laplace Approximation) 

with year as the random effect and fixed factors changing according to the specific 
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model. In all models, fixed factor effects were tested with F-tests, and the random factor 

was tested using the Wald Z-statistic test (Giménez-Benavides and Milla 2012). 

All statistical analyses were performed using the R Software (R Core Team 2014). 

Results were graphically expressed using “ggplot2” package for graphics plot 

(Wickham 2009). 

 

 

Results 

 

Phenological pattern 

The reproductive season of H. caput-felis showed a general flowering period ranging 

from March to June and a fruiting period from late April to beginning of August (Figure 

1). The flowering peak was always observed in April, except for CR in 2014 (March), 

while the fruiting peak was recorded in May (2014) or in June (2013; Figure 1). 

The mean flowering duration (± SE) was 82.92 ± 2.27 days, ranging from 75.5 to 

89.5 days, while the mean fruiting duration was 74.75 ± 2.30 days, with a range from 

68.5 to 83.5 days. In 2013, flowering period was longer than 2014 (89.33 and 76.5 days, 

respectively), while the fruiting period had an opposite trend (71 and 78.5 days in 2013 

and 2014, respectively). 

In the peak, the mean percentage of flowered plants (± SE) was 68.35 ± 0.63%, 

whereas the mean percentage of fruited plants was 66.79 ± 0.65 %. 

At the region level (Figure 1), in 2013 the mean percentage of flowered plants in 

ALI populations reached the peak in early April, earlier than MAJ and SAR 

populations, which reached the peak in late April. In 2014 ALI populations reached the 

peak in early March, MAJ in early April and SAR in late April, so there was an advance 

of fifteen days in MAJ and ALI populations respect to 2013, while SAR doesn’t change 

in time. The mean percentage of flowering plants followed the same pattern across the 

years; SAR populations had the highest value (81.69% in 2013 and 73.83% in 2014), 

followed by ALI (64.19% and 66.63% in 2013 and 2014, respectively) and MAJ 

(59.31% and 65.55% in 2013 and 2014, respectively). Only in the SAR region the 

percentage of flowering plants was slightly lower in 2014 than 2013. 

Considering the mean percentage of fruiting plants, in 2013 all regions reached 

the peak in early June, while in 2014 the peak was reached in late May (Figure 1). The 

mean percentage of fruiting plants followed the same pattern across the years (Figure 

1); SAR populations had the highest value (84.06% in 2013 and 83.62% in 2014), 

followed by ALI (62.27% in 2013 and 67.03% in 2014) and MAJ (59.50% in 2013 and 

55.18% in 2014). Only in SAR region the percentage of fruiting plants was lower in 

2014 than 2013. 

At population level, in 2014 CR achieved the flowering peak in late March, earlier 

than the others, which reached the peak in early April, except ST, which had the peak in 

late April, like in the 2013 (Figure 2). In both years, ST had the highest value of 

flowering plants (89.83% and 86.02% in 2013 and 2014, respectively), followed by SJ 

and CM. The lowest value was found in SR (41.88% and 48.02% in 2013 and 2014, 

respectively). 

Fruiting period showed high percentage of fruiting plants generally between late 

May and early June, with the exception of SJ population, which reached the peak in 

early July in 2013, and CR, which achieved the peak in late or early May (2013 and 

2014, respectively; Figure 2). 

The highest percentage of fruiting plants in 2013 was found in MO (92.68%) and 

ST (92%), followed by SJ and CM. In 2014, SJ showed the highest value (87.10%), 

followed by CM and CR. Like flowered plants, lowest percentages of fruiting plants 
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were found in SR (37.61% in 2013 and 36.51% in 2014), but the lowest in 2013 was CR 

(35.40%). 

 

 

 
Figure 1 – Percentage of flowering and fruiting plants per region. In the top row, flowering plants; 

in the bottom row, fruiting plants. Columns correspond to 2013 and 2014 years. 

 

 

 
 

Figure 2 – Percentage of flowering and fruiting plants per locality. In the top row, flowering plants; 

in the bottom row, fruiting plants. Columns correspond to 2013 and 2014 years. 
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Fruit output per plant 

In general, more fruits are produced in 2014 (Figure 3). In 2013, the highest average 

number of fruits per plant was found in SAR (69.70 ± 4.82 fruits per plant), followed by 

ALI (30.68 ± 6.57 fruits per plant), while the lowest values were found in MAJ (9.15 ± 

2.03). The same pattern was found in 2014, when SAR plants produced 116.00 ± 7.05 

fruits per plant, while ALI 58.18 ± 7.55 and MAJ 14.61 ± 1.86 fruits per plant. Post-hoc 

Nemenyi’s tests showed that, in 2013 and 2014 SAR had significantly higher fruits 

production than the other two regions (p<0.05), while not difference was found between 

ALI and MAJ (p>0.05) in 2013, whereas in 2014, fruits production was high in ALI 

(p<0.05; Figure 3). 

 

 
Figure 3 – Average number of fruits per plant per regions (top row) and localities (bottom row) in 

2013 and 2014 (left and right column, respectively), with standard error bars. 

 

At population level, in 2013 the highest fruit production was observed, in MO 

(101.33 ± 19.12 fruits per plant), followed by CM (76.40 ± 8.60 fruits per plant) and ST 

(64.20 ± 5.20 fruits per plant), whereas in 2014 CM showed more fruits per plants 

(118.98 ± 11.56 fruits per plant; Figure 3), followed by ST (113.75 ± 8.79 fruits per 

plant). The lowest fruit production was observed in SR (2.09 ± 0.37 and 13.05 ± 2.22 

fruits per plant in 2013 and 2014, respectively). 

Post-hoc Nemenyi’s tests revealed no statistical differences between CM and ST 

populations (p>0.05 in 2013 and 2014), and these Sardinian populations produced more 

fruits per plant than all the others ones. 

The best GLMMs selection for each analysis was reported in Table 1A. Among 

all the analysed models, the best GLMM that describe fruits production include region, 

geomorphology and substrate variables (AIC = 11509; p<0.001; Table 1A). According 

to this model, the number of fruits per plant in SAR was statistically higher than ALI 

and MAJ (p<0.001; Table 2; Figure 3). Plants growing on lowland and on sandy 

substrate generally produced less fruits compared to the plants in slope, on structured 

soil or on rocky substrate (p<0.001; Table 2). 
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Table 2 – GLMM output (fruits per plant at regional level): coefficient estimates β, standard errors 

SE(β), associated Wald’s z-score [=β / SE(β)] and significance level p for all predictors in the 

analysis. Random effect (year): 0.057 ± 0.238. 

Fixed effects Coef. β SE(β) z p  

intercept 3.257 0.201 16.205 < 2e-16*** 

region MAJ -0.339 0.187 -1.817 0.069 

region SAR 1.052 0.143 7.382 1.56e-13*** 

geomorphology slope 0.708 0.107 6.624 3.50e-11*** 

substrate sand -1.514  0.201 -7.538 4.78e-14*** 

substrate soil -0.021 0.122 -0.173 0.863 

 

At population level, the best selected model includes population, substrate type, 

geomorphology and human trampling intensity variables (AIC=11442; p<0.05; Table 

1A). GLMM’s results show that in ST and CM plants produce more fruits than those in 

the others population (p<0.001; Table 3). On the contrary, plants growing in SR had a 

significant lower fruit production (p<0.05). Plants produced generally more fruits in 

slope (p<0.05) and less in sand substrate (p<0.001; Table 3), whereas soil and rocky 

substrates, as well as trampling intensity, didn’t show any significant effect on fruits 

output. 

 
Table 3 – GLMM output (fruits per plant at locality level): coefficient estimates β, standard errors 

SE(β), associated Wald’s z-score [=β / SE(β)] and significance level p for all predictors in the 

analysis. Random effect (year): 0.115 ± 0.338. 

Fixed effects Coef. β SE(β) z p 

intercept 2.952 0.289 10.264 < 2e-16*** 

population CM 1.265 0.177 7.138 9.49e-13*** 

population SJ 0.667 0.241 2.774 0.006** 

population MO 1.173 0.214 5.490 4.03e-08*** 

population SR -0.703 0.223 -3.148 0.00164** 

population ST 1.341 0.166 8.095 5.74e-16*** 

geomorphology slope 0.377 0.122 3.094 0.00198** 

substrate sand -1.425 0.207 -6.871 6.39e-12*** 

substrate soil 0.188 0.130 1.452 0.147 

trampling low -0.163 0.115 -1.425 0.154 

trampling intense 0.118 0.353 0.336 0.737 

trampling moderate 0.276 0.162 1.700 0.090 

 

At region level, ALI showed the highest percentage of empty fruits (29.50% and 

44.67% in 2013 and 2014 respectively), followed by MAJ (27.37% and 40.53% in 2013 

and 2014, respectively). In SAR, the range varies from 15.75% (2013) to 15.50% 

(2014). In addition, presence of parasitised fruits was observed in ALI and MAJ 

regions. The best selected model took into account region, substrate, geomorphology 

and human trampling intensity variables (AIC=1826; p<0.001; Table 1A). In particular, 

plants in ALI had more empty fruits than MAJ (p<0.05), while plants in SAR showed 

the highest number of viable fruits (p<0.001; Table 4). Sand substrate had a negative 

significant relationship with viable fruits (p<0.05), while soil substrate had a positive 

relationship (but not significant). At geomorphology level, plants that grew in slope 

produce more viable fruits than those growing in lowland (p<0.05); low human 

trampling intensity positively affected the number of viable fruits (p<0.001; Table 4).  



 

43 

Table 4 – GLMM output (empty fruits per plant at regional level): coefficient estimates β, standard 

errors SE(β), associated Wald’s z-score [=β / SE(β)] and significance level p for all predictors in the 

analysis. Random effect (year): 0.052 ± 0.228. 

Fixed effects Coef. β SE(β) z p  

intercept 0.043 0.221 0.194 0.847 

region MAJ 0.434 0.201 2.152 0.0314* 

region SAR 1.288 0.147 8.774 < 2e-16*** 

substrate sand -0.653 0.245 -2.663 0.008** 

substrate soil 0.031 0.141 0.219 0.827 

geomorphology slope 0.372 0.124 2.997 0.003** 

trampling low 0.505 0.144 3.519 0.000433*** 

trampling intense 21.135 104.512 0.202 0.839738 

trampling moderate 0.308 0.185 1.660 0.097 

 

At population level, in 2013 the highest percentage of empty fruits was observed 

in SR (48.89%), followed by MO (37%) and CR (22%). A similar pattern was observed 

in 2014 in MO (50%), followed by SR (42.86%), CR (39.33%) and SJ (39.17%). In 

both Sardinian populations, the percentage of empty fruits was low (15–17%) and did 

not vary between years. The best selected model about empty fruits depicted the 

influence of population, substrate type, geomorphology and human trampling intensity 

(AIC=1811.6; p<0.001; Table 1A). MO and SR showed a negative relationship with 

viable fruits and there are more empty fruits than in the others populations (p<0.001; 

Table 5). On the contrary, CM and ST had the highest quantity of viable fruits 

(p<0.001). Sandy and soil substrate had a negative relationship with viable fruits 

number, but the last was not significant (p>0.05). Surprisingly, low and moderate 

human trampling intensity facilitated the production of viable fruits (p<0.05; Table 5). 

 
Table 5 – GLMM output (empty fruits per plant at locality level): coefficient estimates β, standard 

errors SE(β), associated Wald’s z-score [=β / SE(β)] and significance level p for all predictors in the 

analysis. Random effect (year): 0.053 ± 0.231. 

Fixed effects Coef. β SE(β) z p  

intercept 0.512 0.252 2.033 0.042* 

population CM 1.096 0.209 5.254 1.49e-07*** 

population SJ 0.295 0.243 1.212 0.226 

population MO -0.679 0.202 -3.366 0.000763*** 

population SR -0.508 0.302 -1.684 0.092 

population ST 0.828 0.202 4.108 4.00e-05*** 

substrate sand -0.603 0.261 -2.310 0.021* 

substrate soil -0.154 0.161 -0.956 0.339 

geomorphology slope 0.233 0.139 1.681 0.093 

trampling low 0.463 0.146 3.166 0.002** 

trampling intense 17.410 28.622 0.608 0.543 

trampling moderate 0.637 0.206 3.091 0.002** 

 

Seeds output 

Number of seeds per fruit was always higher in SAR (4.21 ± 0.08 and 4.44 ± 0.08 seeds 

per fruits in 2013 and 2014, respectively; Figure 4). 
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Figure 4 – Average number of seeds per fruit per regions (top row) and localities (bottom row) in 

2013 and 2014 (left and right columns, respectively), with standard error bars. 

The lowest seed output was found in MAJ in 2013 (3.98 ± 0.13 seeds per fruit), 

and in ALI in 2014 (3.70 ± 0.13 seeds per fruits). Post-hoc Nemenyi’s tests revealed 

that in 2014 only SAR differed from the others, producing more seeds per fruits 

(p<0.05). The best selected model revealed that region, geomorphology and human 

trampling intensity had a statistical significant effect in seeds production (AIC=4787.9; 

p<0.05; Table 1A). In particular, SAR had the highest mean of seeds per fruit 

(p<0.001), followed by ALI (p<0.001). Moderate human trampling intensity enhanced 

the production of seeds per fruit (p<0.05; Table 6). 

 
Table 6 – GLMM output (seeds per fruit at regional level): coefficient estimates β, standard errors 

SE(β), associated Wald’s z-score [=β / SE(β)] and significance level p for all predictors in the 

analysis. Random effect (year): 8.729
-16

 ± 2.955
-08

. 

Fixed effects Coef. β SE(β) z p  

intercept 1.289 0.040 32.26 < 2e-16*** 

region MAJ 0.002 0.045 0.04 0.964 

region SAR 0.122 0.035 3.44 0.001*** 

geomorphology slope 0.056 0.029 1.89 0.059 

trampling low 0.043 0.033 1.29 0.199 

trampling intense 0.199 0.104 1.92 0.056 

trampling moderate 0.101 0.043 2.37 0.018* 

 

At population level, MO and ST showed the highest seed output in 2013 (4.37 ± 

0.26 and 4.36 ± 0.11 seeds per fruit, respectively), while in 2014 ST reached 4.67 ± 0.10 

seeds per fruit. The lowest seed output was found in SJ in 2013 (3.85 ± 1.16 seeds per 

fruit) and in CR in 2014 (3.23 ± 0.16 seeds per fruit), while CM, ST and SR populations 

showed a higher seed output in 2014 than in 2013. Post-hoc Nemenyi’s tests revealed 

that only in 2014 there were statistical significant differences among populations, which 

highlighted in particular the lowest seed output for CR and the highest for ST (p<0.001 

in both cases). 
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The best selected GLMM revealed that seeds per fruits depended on populations 

and geomorphology (AIC=4772.8; p<0.05; Table 1A). ST had the highest seeds per 

fruit output, followed by SR, MO, CM and CR (p<0.001). Furthermore, plants that grew 

on slope produced higher value of seeds per fruit (p<0.05; Table 7). See Appendix 

Figures (1A-12A) for details. 

 
Table 7 – GLMM output (seeds per fruit at locality level): coefficient estimates β, standard errors 

SE(β), associated Wald’s z-score [=β / SE(β)] and significance level p for all predictors in the 

analysis. Random effect (year): 0. 

Fixed effects Coef. β SE(β) z p  

intercept 1.218 0.045 27.264 < 2e-16*** 

population CM 0.164 0.049 3.364 0.0008*** 

population SJ 0.070 0.058 1.219 0.223 

population MO 0.187 0.058 3.206 0.001** 

population SR 0.233 0.069 3.384 0.0007*** 

population ST 0.270 0.049 5.467 4.58e-08*** 

geomorphology slope 0.073 0.032 2.297 0.022* 

 

 

Discussion 

 

Studies on reproductive biology of endangered plants are crucial for predicting their 

survival capacity (Evans et al. 2003); plant reproductive success is determined by 

intrinsic characteristics of the reproductive system of a species, as well as by extrinsic 

abiotic and biotic factors (Cogoni et al. 2012, 2015; Abdala-Roberts et al. 2014). In 

particular, also unmeasured microenvironmental factors (like soil, temperature, etc.) 

may play a role in affecting phenological variations over space, and more extensive 

environmental gradients could lead to stronger impacts on spatial patterns of phenology, 

as suggested by studies in other locations (e.g. Fisher et al. 2006; Liang and Schwartz 

2009; Zhao et al. 2013). 

The results of this research on the general flowering and fruiting seasons in H. 

caput-felis are conforming to the previous local studies carried out at Sa Ràpita 

population (Rodríguez-Pérez 2005; Tébar et al. 1995) and in Sardinia (Fenu et al. 

2015). In general, flowering and fruiting phenology may have an important influence on 

plant reproductive success in several ways (Augspurger 1981; Elzinga et al. 2007). The 

phenological patterns of H. caput-felis were similar among the three analysed 

geographic regions and among the investigated years, except in ALI region that showed 

significant inter–annual variability.  

The existence of ecological gradients that affect the phenological and reproductive 

traits among populations was widely analysed. Geographical gradients represent an 

important issue in plant population ecology studies and several authors investigated 

plants phenology and reproductive traits along altitudinal and latitudinal gradients (e.g. 

Giménez-Benavidez et al. 2007; Giménez-Benavides and Milla 2012; Abbott and 

Brennan 2014; De Frenne et al. 2011). These studies demonstrate a relationship of those 

traits with the altitudinal and latitudinal differences. Conversely, longitudinal gradient 

remains less documented, and no studies were available on this pattern for 

Mediterranean plants. Plants of H. caput-felis growing at the western part of the 

distribution range (ALI region) advanced the beginning of flowering period respect to 

the others distribution regions. These differences could reflect a longitudinal gradient; 

in fact, moving from western to eastern part of the distribution range in the Western 

Mediterranean Basin, a gradient determined by the following bioclimatic factors can be 

detected: the aridity decrease from western to eastern localities, while the mean 



 

46 

temperatures and the oceanicity increase. In particular, CR population (ALI region) 

showed higher temperatures (maximum absolute temperature: 43°C; Serra 2005) and 

aridity (mean annual precipitation: 290 mm; Hijmans et al. 2005) with respect to the 

others H. caput-felis populations. This general pattern is consistent with the bioclimatic 

classification of these territories. In fact, CR population is characterized by 

Mediterranean xeric-oceanic bioclimate, with low thermomediterranean thermotype and 

semiarid ombrotype. Conversely, MO, SR and SJ populations are characterised by 

Mediterranean pluviseasonal-oceanic bioclimate, with upper thermomediterranean 

thermotype and dry ombrotype. Finally, CM and ST populations (SAR region) showed 

a Mediterranean pluviseasonal-oceanic bioclimate with upper thermomediterranean 

thermotype and dry ombrotype (Rivas-Martínez et al. 2004). Hence, also bioclimatic 

data confirm that the mean temperature values decrease when moving from west to east, 

while the mean rainfall increases. 

Generally, climatic factors and climate patterns directly influence the timing, 

magnitude (productivity), and spatial patterns of vegetation growth cycles, and, for that 

matter, phenological response (Schwartz 1994; Zhao et al. 2013). The correlation 

among fruits output and seed germination with climatic variability, in particular 

precipitation, was detected for other congeneric Mediterranean species (i.e. 

Helianthemum squamatum (L.) Dum Cours.; Escudero et al. 1999). In addition, juvenile 

recruitment is generally strongly correlated with climatic variability, and more 

specifically with precipitation, because water is the principal limiting resource in arid 

regions (Harrington 1991), as previous highlighted in others Helianthemum species 

(Marrero Gómez et al. 2007).  

Reproductive output varied widely among populations throughout the geographic 

range (Yakimowski and Eckert 2007; Giménez-Benavides et al. 2007). Plants growing 

at the eastern edge of the distribution range (SAR region) had a significantly higher 

fruits per plant and seeds per fruit than the other two regions, while the lowest fruits per 

plant production were found in MAJ region. No differences were found between CM 

and ST populations (SAR region), and the higher productive output compared to the 

others populations should be related to the lower habitat fragmentation observed, as 

well as the optimal bioclimatic condition (lowest climatic aridity), that could promote 

the fruits production. Also difference in fruit and seed output among regions and 

populations can be related to this general pattern and in particular to the aridity gradient, 

in which summer drought periods increase from a minimum of 4 months in SAR to a 

maximum of more than 6 months the southern ALI population. 

According to the aridity gradient hypothesis, in which an increase of humidity 

could promote reproductive output, plants growing in arid substrate (sandy habitat – SR 

population) are the least productive. In addition, dune systems have limited resources 

available for plants, and only for a limited time during the growing season (e.g. Fenu et 

al. 2012, 2013; Cogoni et al. 2013, 2015). 

This study highlighted that the optimal ecological condition promoting the fruit 

and seeds output for H. caput-felis are the presence of structured soil in slope areas, 

according to the previous study carried out in Sardinia (Fenu et al. 2015). 

Fruit production is typically the most important cost in plant reproduction for 

most plant species, since it comprises not only seeds but also fruits and many accessory 

structures related to seed protection and dispersal, and the cost of aborted seeds and 

empty fruits (Lord and Westoby 2006). A particular reproductive trait observed in ALI 

region was the presence of a high percentage of empty fruits. The high number of empty 

fruits per plant in ALI region could be related to the impact of urbanization that 

determines habitat fragmentation. In fact, habitat fragmentation and degradation may 

have serious implications for plant populations because isolated and scattered plants 

may have difficulty attracting pollinator visits, potentially resulting in reduced 
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reproductive performance (total number of flowers, fruits or seeds per plant; e.g. Brys et 

al. 2004; Johnson and Collin 2004; Bruna and Oli 2005; Metcalfe and Kunin 2006). 

Moreover, the parasitism observed in ALI and MAJ regions, which was detected as an 

important factor in reducing reproductive output, can reduce the reproductive success of 

H. caput-felis, as detected for other Cistaceae plants (e.g. Cistus ladanifer L.; Metcalfe 

and Kunin 2006). Hence, further researches are needed in order to evaluate the 

importance of fruits parasitism. 

Human trampling has been hypothesized to be generally an important threat for 

Mediterranean coastal plants (Quilichini and Debussche 2000; Fenu et al. 2013, 2015). 

The results of this study highlighted that moderate intensity trampling promote the 

production of seeds and viability of fruits, but it was only slightly positively significant 

in fruit production. However, previous studies considering also population density in 

Sardinian populations (Fenu et al. 2015), underline the negative effect of trampling on 

plant density, that could be related to the critical limitation in seedling recruitment; so, 

human trampling should be considered anyway a significant threat to the persistence of 

the populations. Moreover, trampling and others human-related disturbances appear to 

have an important detrimental impact on sand dunes, especially in the Mediterranean 

coasts (Fenu et al. 2013; Ciccarelli 2014). 

The abundant centre model was not confirmed for H. caput-felis. The “central” 

populations (ALI region) showed lowest reproductive outputs (fruits and seeds) 

compared to the eastern peripheral populations (SAR region). Although several studies 

demonstrated a reduced seed production or seed quality at the species’ range margin 

(Pigott and Huntley 1981; García et al. 2000; Jump and Woodward 2003), H. caput-

felis didn’t follow this pattern, as demonstrated for others plant species (Kluth and 

Bruelheide 2005; Yakimowski and Eckert 2007). However, the local ecological and 

historical conditions must be considered; although representing the largest distribution 

area along the Iberian’s coasts, ALI populations appear strongly fragmented by human 

disturbance, with the consequent reduction of the suitable habitat. On the contrary, SAR 

populations are located in more natural sites, without urbanizations and less fragmented 

respect to the ALI ones. In fact, ACM does not sufficiently explain plant population 

patterns at range margins and also the population history could be considered in order to 

understand the effect of marginality (see also Abeli et al. 2014). Marginal populations 

may be locally adapted to sub-optimal conditions at the range edge (Caughley et al. 

1988; Barton 2001) and other mechanisms, such as dispersal limitation or unstable 

population dynamics, could be also important in limiting the geographic distribution of 

some plant species (Kawecki and Holt 2002; Holt 2003). 

In conclusion, this study represents the first global analysis of H. caput-felis 

phenological and reproductive traits along the entire European distribution range of this 

endangered plant species. However, some factors affecting the reproductive systems of 

this plants remains unknown and further detailed analyses are needed in order to 

understand the complex interaction governing the populations’ persistence in a 

fragmented Mediterranean plant. 
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Appendices 

 
Table 1A – GLMMs selection results on fruit set, empty fruits and seeds per fruits in relation to regions and localities, with AIC statistics test; in bold, the selected model 

of each selection. 

Response variable  Factors     

  fixed  random  AIC  Pr(>Chisq) 

fruit set         
region 1 region  year  11600   

 2 region + substrate  year  11552  6.899e-12*** 

 3 region + substrate + geomorphology  year  11509  1.668e-11*** 

 4 region + substrate + geomorphology + trampling  year  11508  0.08421 
         

population 1 population  year  11527   
 2 population + substrate  year  11458  < 2.2e-16*** 

 3 population + substrate + geomorphology  year  11447  0.0003246*** 

 4 population + substrate + geomorphology + trampling  year  11442  0.0159311* 
         

         

empty fruits          
region 1 region  year  1848.8   

 2 region + substrate  year  1844.1  0.0126926* 

 3 region + substrate + geomorphology  year  1840.1  0.0143794* 

 4 region + substrate + geomorphology + trampling  year  1826.0  0.0001628*** 
         

population 1 population  year  1825.9   

 2 population + substrate  year  1826.3  0.1630 

 3 population + substrate + geomorphology  year  1826.8  0.2301 

 4 population + substrate + geomorphology + trampling  year  1811.6  9.552e-05*** 

         

         

seeds per fruit         
region 1 region  year  4790.0   

 2 region + geomorphology  year  4790.0  0.165994 

 3 region + substrate   year  4793.2  1.000000 

 4 region + geomorphology + trampling  year  4787.9  0.009261** 
         

population 1 population  year  4776.1   

 2 population + geomorphology  year  4772.8  0.02158* 

 3 population + substrate   year  4779.7  1.00000 

 4 population + geomorphology + substrate + trampling  year  4777.5  0.03742* 
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Figure 1A – Average number of fruits per plant per region, divided for lowland areas (top row) 

versus slope areas (bottom row) for 2013 and 2014 (left and right columns, respectively), with error 

bars. 

 

 

 

 
Figure 2A – Average number of fruits per plant per locality, divided for lowland areas (top row) 

versus slope areas (bottom row) for 2013 and 2014 (left and right columns, respectively), with error 

bars. 
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Figure 3A – Average number of seeds per fruit per region, divided for lowland areas (top row) 

versus slope areas (bottom row) for 2013 and 2014 (left and right columns, respectively), with error 

bars. 

 

 

 

 
Figure 4A – Average number of seeds per fruit per locality, divided for lowland areas (top row) 

versus slope areas (bottom row) for 2013 and 2014 (left and right columns, respectively), with error 

bars. 
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Figure 5A – Average number of fruits per plant per region, divided for type of substrate: rocky 

(top row), sand (central row) and soil (bottom row), for 2013 and 2014 (left and right columns, 

respectively), with error bars. 

 

 

 

 
Figure 6A – Average number of fruits per plant per locality, divided for type of substrate: rocky 

(top row), sand (central row) and soil (bottom row), for 2013 and 2014 (left and right columns, 

respectively), with error bars. 
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Figure 7A – Average number of seeds per fruit per region, divided for type of substrate: rocky (top 

row), sand (central row) and soil (bottom row), for 2013 and 2014 (left and right columns, 

respectively), with error bars. 

 

 

 

 
Figure 8A – Average number of seeds per fruit per locality, divided for type of substrate: rocky 

(top row), sand (central row) and soil (bottom row), for 2013 and 2014 (left and right columns, 

respectively), with error bars. 
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Figure 9A – Average number of fruits per plant per region, divided for trampling intensity: from 

absent (top row) to intense (bottom row), for 2013 and 2014 (left and right columns, respectively), 

with error bars. 

 

 

 
Figure 10A – Average number of fruits per plant per locality, divided for trampling intensity: from 

absent (top row) to intense (bottom row), for 2013 and 2014 (left and right columns, respectively), 

with error bars. 
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Figure 11A – Average number of seeds per fruit per region, divided for trampling intensity: from 

absent (top row) to intense (bottom row), for 2013 and 2014 (left and right columns, respectively), 

with error bars. 

 

 
Figure 12A – Average number of seeds per fruit per locality, divided for trampling intensity: from 

absent (top row) to intense (bottom row), for 2013 and 2014 (left and right columns, respectively), 

with error bars. 
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CHAPTER 3 

Evaluation of population dynamics of a perennial Mediterranean 

coastal plant by different methodological approaches 
 

 

Introduction 

 

Population dynamics is the area of science which tries to explain in a simple 

mechanistic way the time variations of the size and structure of biological populations 

(Bacaer 2011). Determining whether a population is growing or declining is central to 

conservation biology, species’ range dynamics, invasion biology and biogeography 

(Metcalf et al. 2013). In fact, during the past two decades, population ecologists have 

repeatedly argued for increased use of quantitative demographic analysis to guide 

management (Schemske et al. 1994; Morris et al. 2002; Bakker and Doak 2009; Crone 

et al. 2011); hence, biological demography has witnessed a rapid growth in theory and 

application (Steiner et al. 2012).  

In order to manage the conservation of threatened plant species, the contribution 

of different life history components to the population growth rate must be clearly 

understood (Oostermeijer et al. 1996). Assessing which life history stages are the most 

critical to population growth is thus needed in order to target those parts of the life cycle 

when designing management actions (Schemske et al. 1994; Heywood and Iriondo 

2003). Variation in population growth rates is due to differences in underlying vital 

rates, such as seedling recruitment, growth, reproduction and death (Buckley et al. 

2010).  

General patterns have been shown within species: good years or sites (i.e. those 

that have above average population growth rates) are associated with a higher 

contribution of sexual reproduction, whereas populations in poor years or sites rely 

more on survival (Oostermeijer et al. 1996; Menges and Dolan 1998; Valverde and 

Silvertown 1998; Jongejans and de Kroon 2005). 

Sexual reproduction is crucial for long-term persistence of plant populations. 

Through sexual seed production, plants benefit from an independent dispersal phase, the 

opportunity to increase or maintain genetic diversity, and the potential to adapt to new 

environments (Wilcock and Neiland 2002). However, reproduction is not the only 

ecological process that determines the growth and persistence of plant populations (e.g. 

Jules and Rathcke 1999; Lennartsson 2002). Other stages in the life cycle of plants such 

as seed dispersal and germination or seedling survival and establishment are also 

important in affecting the demographic dynamics of plant populations (e.g. Santos and 

Telleria 1997; Benitez-Malvido 1998; Bruna 2003; Aguilar et al. 2006). 

Population models are widely used in species management studies (Jongejans et 

al. 2008). By the 1990s, matrix population models (MPMs, hereafter; Caswell 1988, 

2001) had become one of the most frequently used methods to translate vital rates into 

population-level outcomes (Caswell 2001; Morris and Doak 2002; Crone et al. 2011; 

Griffith et al. 2016). MPMs provided a powerful tool for population biologists to 

estimate parameters important to population persistence and dynamics by modelling 

commonly collected demographic data on stage and/or age transitions. These models 

may result in biases, however, where underlying state variables are continuous (Picard 

et al. 2010; Salguero-Gómez and Plotkin 2010), such as for example, height, weight, 

biomass (Metcalf et al. 2013). MPMs are a common tool in population biology to 

understand the factors influencing individuals that may contribute to overall population 
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dynamics (Caswell 1989). These models quantify all ways (through survival and 

reproduction) in which individuals contribute to the size of the population after one time 

step. Transition matrices contain exactly the same information as life cycle graphs, but 

then organized in matrix form. Hence, matrix models represent the life cycle of 

individuals, and can be used to investigate the dynamics of a population (Jongejans and 

de Kroon 2012).  

More recently, a new discrete-time structured method has been introduced: the 

integral projection model (IPM, hereafter; Easterling et al. 2000), which retains the 

desirable properties of the matrix projection model, while avoiding entirely the need to 

group plants into discrete stage classes. IPMs describe how a population structured by a 

continuous individual-level state variable changes in discrete time (Easterling et al. 

2000). IPMs are defined by a kernel, which represents probability densities of growth 

between discrete or continuous stages conditional on survival, and the production of 

offspring (Metcalf et al. 2013). It offers tools that can incorporate stage, age and 

continuous states into similar analysis of population dynamics (Easterling et al. 2000; 

Ellner and Rees 2006). 

Essentially, the same tools are available for IPMs as for discrete projection 

matrices (MPMs). The main difference between an IPM and a MPM is that while in 

discrete projection matrices the number of classes (i.e., number of stages in the life 

cycle of the study species) must be defined a priori, IPMs impose the discretization of 

the three-dimensional surface for the purposes of numerical integration. This produces a 

typically large matrix (e.g., 100 × 100 cells) that is more robust to biases from matrix 

dimensionality (e.g. Zuidema et al. 2010; Salguero-Gómez and Plotkin 2010) and 

sample size (e.g. Ramula et al. 2009) than classical matrix models (Metcalf et al. 2014). 

Many demographic studies of plant populations have been conducted over the 

past few decades, including studies on various endangered plant species of international 

interest (e.g. García 2003; Oostermeijer et al. 2003; Pisanu et al. 2012; Schwartz et al. 

2016). 

In this study, both MPMs than IPMs are performed for Helianthemum caput-felis 

Boiss., a threatened plant distributed throughout the western Mediterranean Basin 

(south-eastern Iberian Peninsula, Majorca, Sardinia and northwest Africa) in several 

coastal fragmented populations (Fenu et al. 2015a and references therein). This species 

deserves particular attention because it is considered the only extant representative of an 

ancient lineage (Arrigoni 1971; López-González 1992). Moreover, H. caput-felis is 

listed in the Appendices of the Habitat Directive (92/43/EEC) and it is categorised as 

endangered on the European red list of vascular plants (Bilz et al. 2011). As other 

genera of Cistaceae family, H. caput-felis can accumulate long-lived persistent seed 

banks in the soil through the production of large yields of impermeable-hardcoated 

seeds (Ferrandis et al. 1999). A reserve of dormant seeds in the soil can stabilize 

population dynamics in response to short-term environmental fluctuations and 

disturbances (Harper 1977; Cavers 1983; Venable and Brown 1988; Warr et al. 1993).  

Currently there are no models that assess the population traits of H. caput-felis, 

hence a detailed demographic analysis of this species’ population over three years was 

performed. Populations in a stable environment can be expected to have an asymptotic 

growth rate near unity, and, in contrast, populations in unstable (abiotic or biotic) 

environments can be expected to have growth rates different from unity; thus, the aim of 

this study was to analyse the global population dynamics of H. caput-felis along its 

overall distribution range using MPM, and to verify the population growth rate’s output 

by an IPM. The following questions were addressed: 1) Is the overall H. caput-felis 

population in decline? 2) What vital traits give a more important contribution in the 

population growth rate?  
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Materials and methods 

 

Study species and area 

Helianthemum caput-felis Boiss. is a half shrub that grows to a height of 35(50) cm. Its 

flowers are hermaphroditic, and have a short lifespan (3–4 days, Rodríguez-Pérez 

2005). Based on studies carried out in Spanish and Sardinian populations, the flowering 

period is from March to June, and the fruiting season runs from late April to beginning 

of August (Fenu et al. 2012, 2015a; see Chapter 1 and 2). Fruits are capsules that detach 

at maturation, and seed germination takes place in autumn, at the onset of the rainy 

season (Rodríguez-Pérez 2005).  

Helianthemum caput-felis is a long-lived iteroparous perennial plant, but the 

information about its exact lifespan is lacking. The life cycle of H. caput-felis include a 

continuous stage, in which growth and reproduce, combined with a discrete stage, with 

seeds that can enter a permanent soil seed bank or germinate the next spring after 

dispersion (Figure 1). As other genera of Cistaceae family, H. caput-felis can 

accumulate long-lived persistent seed banks in the soil through the production of large 

yields of impermeable-hardcoated seeds (Ferrandis et al. 1999). 

 

 

 
Figure 1 – Life cycle diagram of Helianthemum caput-felis. The black arrows represent 

survival/growth transitions, while the blue arrows involve production (via seeds) of new individuals 

after one year. 

 

From an ecological point of view, H. caput-felis is a termophilous plant that 

preferably grows in coastal environments under the direct influence of the sea, mostly 

on calcareous rocky cliffs (0–200 m a.s.l.) with garrigues or scrublands; peculiar 

populations also grow on different habitats, such as sand dunes (Majorca), rocky slopes 

bordering inland ravines or, rarely, in open wooded areas (Fenu et al. 2015a and 

references therein). 

 

Data collection 

Plant demographic data was collected in 98 permanent plots of 2 × 1 m, randomly 

established among the overall distribution range of the species (except NW Africa), 

which include all ecological situations in which the plant was found. Within these plots, 

821 plants were marked, mapped and monitored during the study period. The 

probabilities of plants remaining in the same class or changing to a different class were 

calculated from censuses of marked plants in the demographic plots. 
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Table 1 – Principal geographical and ecological traits of Helianthemum caput-felis populations 

investigated in this study: region, coordinates, altitudinal range (m), substrate type; in addition the 

number of plots and the number of plants within the monitored plots were reported. 

Region Population (code) 
Coordinates U.T.M. 

(time zone) 

Altitudinal 

range 

(min-max) 

Substrate 

type 

N. 

plots 

N. 

plants 

       

Alicante Cabo Roig (CR) 700388.62 m E, 

4198390.09 m N 

(30 S) 

3 - 15 limestone 15 116 

       

Alicante Moraira (MO) 250226.01 m E, 

4285845.34 m N 

(31 S) 

3 - 15 limestone 15 56 

       

Majorca Sa Ràpita (SR) 496897.00 m E, 

4356780.00 m N 

(31 S) 

0 - 5 sand and 

limestone 

15 252 

       

Majorca Colònia de Sant 

Jordi (SJ) 

500074.00 m E, 

4352060.00 m N 

(31 S) 

0 - 5 sand and 

limestone 

13 65 

       

Sardinia Capo Mannu (CM) 447428.00 m E, 

4432412.00 m N 

(32 S) 

5 - 55 limestone 20 146 

       

Sardinia Su Tingiosu (ST) 449657.67 m E, 

4428538.64 m N 

(32 S) 

5 - 25 limestone 20 186 

 

Over the study period (2013–2015), surveys took place at least three times a year, 

following Jacquemyn et al. (2010). In early March, all sites were visited a first time for 

locating all previously mapped individual and mapping new seedlings. During the 

flowering peak (April-May), when all plants are fully grown, plots were visited a 

second time to measure each plant (height, minimum and maximum diameter were 

taken, in order to estimate plant size), count the number of flowers per plant and check 

for new occasionally individuals, that were added in the data set. During the fruiting 

peak (latest May-early June) the last survey was made in all sites, to count the number 

of fruits per plant. 

 

Data analysesIn order to investigate the stability of the H. caput-felis global population 

and to evaluate its population growth rate (λ),  a stage-based MPM for all sampling 

plants was performed and compared with an IPM (Easterling et al. 2000; Ellner and 

Rees 2006). The modelled asymptotic growth λ is an especially important population 

parameter in matrix or integral projection analysis. In a constant environment, λ > 1 

indicates that the population will eventually increase whereas λ < 1 indicates that the 

population will decline to extinction (Ezard et al. 2010).  

The chosen continuous state variable to evaluate the demographic dynamics of H. 

caput-felis populations was plant size (plant volume). In particular, this parameter was 

found to be the variable that best explained the vital rates of this species; plant volume 

(plant size = V, expressed in cm
3
) was calculated according to the formula in Fenu et al. 

(2015a), in which individual height (h) and the maximum and minimum diameter (dM 

and dm, respectively) were multiplied: 

 

Plant size [cm
3
]: V = [π × (dM/2) × (dm/2)] ×h 
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Then, according to Rees et al. (2014) sizes were log-transformed, because this 

transformation foot well the data.  

As a first step, a matrix model based on the classification of individuals into life 

stages was constructed (Caswell 2001). Matrix models divide the populations into 

discrete classes and tracks the contribution of individuals in each class at one census to 

all classes in the following census (Morris and Doak 2002). This stage classification 

was devised to characterize the population using a biological approach (Lefkovitch 

1965; Werner 1975; Marrero-Gómez et al. 2007), which relies on field observations of 

developmental states. The life cycle of H. caput-felis was classified into five 

developmental stages based on fields’ observations. A seed bank class, a seedling class 

and three adult classes (small, medium and large) were distinguished, based on plant 

size. Considering that the plant size was positively correlated to the reproductive output 

(see Chapter 2), all plants were grouped in four classes considering the plant volume 

only. Hence, totally, five size classes were selected in order to build the matrices: (1) 

seeds, (2) plants with a volume <5 cm
3
 (seedling, hereafter), (3) flowering and fruiting 

plants with a volume of 5.1– 500 cm
3
 (small, hereafter), (4) adults plants with a volume 

of 500.1–5000 cm
3
 (medium, hereafter), and (5) large adults plants (large, hereafter). 

The seed bank class was calculated by multiplying the proportion of total reproductive 

output attributable to an individual (the average number of seeds per fruit with the fruit 

number of each plant; data from Fenu et al. 2015a) times the total number of seedlings 

at the end of the projection interval (Stubben and Milligan 2007). The transitions 

between the five different life stages observed in the study population are shown in a 

life-cycle diagram, performed following Wardle (1998; Figure 1), which represent the 

mean projected matrix. 

The basic matrix model is given by: 

 

𝑛𝑡+1 = 𝑨𝑛𝑡 
 

where nt and n(t+1) are vectors whose elements, aij are the number of individuals that 

belong to the ith category at time t and t + 1, respectively, and A is the non-negative 

square matrix, whose elements, aij represent the transitions or contributions from 

individuals in the jth category to the ith category after one time step (Caswell 2001). 

Transition probabilities were obtained by calculating the proportion of individuals in 

each category experiencing each specific fate from one year to the next (Marrero-

Gómez et al. 2007). 

The survival rate is the expected proportions of plants in class i at the last census 

that are still alive at the current census. The growth rate is the estimated probability that 

a surviving plant undergoes a transition from its original class to each of the other 

potential classes (Morris and Doak 2002). 

A transition matrix for each year was generated, adding individual fertility 

estimates per plant. Then, the annual matrices were created setting the number of time 

steps for a deterministic model (it=100). A demographic projection matrix for each year 

was generated, which does a simple deterministic projection of the matrix for each year 

in order to extract the deterministic λ. To extract the mean deterministic λ of all years, a 

mean of the three projection matrices for deterministic analysis was calculated, making 

a random draw with replacement.  

Long-term simulations of the fates of H. caput-felis population were carried out 

by incorporating environmental stochasticity into the matrix models. Environmental 

stochasticity involves chance variation in several external factors such as weather 

conditions which affects population performance (Pico and Riba 2002). The effect of 

initial population size on the long-term dynamics of the analysed population was tested 

in order to calculate the stochastic growth rate (λS, Tuljapurkar et al. 2003). The 
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numeric values for the population size (40 seedlings, 186 small, 210 adults and 209 

large adults plants) in the first year of monitoring (2013) were used as starting 

population vector (nt). 

The “popbio” package of Stubben and Milligan (2007) in R version 3.1.2 (R Core 

Team 2014) was used to calculate the finite rate of increase (λ) and the stochastic 

lambda (λS) of the population via Tuljapakar's method (Tuljapurkar 1990). This R 

package is based upon methods described in Caswell (2001) and Morris and Doak 

(2002). The bootstrap method (Kalisz and McPeek 1992; Caswell 2001) was used: each 

annual matrix was randomly resampled with replacement 50,000 times. Therefore, in 

each sample, the number of plants in each size class equalled the number in the 

corresponding class in the original data set; then, from the resulting distributions of 

50,000 estimates for each matrix, the stochastic growth rate was extracted (the analytic 

approximation of λ and a percentile 95% confidence interval were computed; Morris 

and Doak 2005). Bootstrap distributions of population growth rates were calculated 

using the “boot.transitions” function of the aforementioned package. 

The projection matrix itself allows to integrate the contributions of individuals in 

different states, and the effects of different vital rates, into an overall measure of 

population growth and viability (Morris and Doak 2002). 

Sensitivity and elasticity matrices were calculated for every year transition 

interval. Sensitivities of a population projection matrix are the direct contributions of 

each transition to determining λ, while elasticities are sensitivities, weighted by the 

transition probabilities (Stevens 2009). Elasticity analysis determines the relative 

contribution of each parameter to the population growth rate, adjusted for the magnitude 

of each parameter (Adams et al. 2005). Also, elasticity represents an analytical tool for 

decomposing the global population growth rate into the contributions made by the life 

cycle transitions (de Kroon et al. 2000). Damping ratios, which measure the rate of 

convergence to a stable stage distribution (Caswell 2001) and it is determined by the 

ratio of the dominant eigenvalue to the second largest eigenvalue (Caswell 2001; 

Stubben and Milligan 2007), were calculated. 

Subsequently, in order to evaluate the MPMs’ outputs, an IPM for each transition 

year was constructed. 

IPMs are similar to MPMs, but differ because populations do not have to be 

divided into classes but state variables (size, in this case) can be continuous (Easterling 

et al. 2000). IPMs describe how a population structured by a continuous individual-

level state variable changes in discrete time (Easterling et al. 2000). In the IPM, the 

state of the population is described by the size distribution n(y, t). IPM uses a 

continuous projection kernel in order to describe the population size distribution by a 

density function (Easterling et al. 2000; Ellner and Rees 2006). In this model, growth, 

survival and the probability of flowering are described in function of plant size. 

Constant, linear and quadratic models were fit, and the best fit was selected based on the 

lowest Akaike Information Criteria (AIC; Dauer and Jongejans 2013). As in the cell of 

the matrix models, plants in the population could survive, grow, and produce new 

individuals in each time step (Easterling et al. 2000). The IPM of a size structured 

population is given by: 

 

𝑛(𝑦, 𝑡 + 1)  = ∫ 𝐾(𝑦, 𝑥)𝑛(𝑥, 𝑡)d𝑥 =

𝑈

𝐿

 ∫[𝑃(𝑦, 𝑥) + 𝐹(𝑦, 𝑥)] 𝑛(𝑥, 𝑡)d𝑥

𝑈

𝐿

 

 

where n(y, t + 1) is the size distribution y of both established and newly recruited plants 

in census time t + 1, n(x, t) the distribution across size of individuals at census time t, L 

and U are the respective lower and upper size limits modelled in the IPM (Metcalf et al. 
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2013), and these values were set lower and higher than the observed minimum and 

maximum sizes to avoid unintentional evictions (Williams et al. 2012). The kernel (K) 

can be broken down into two sub-kernels (P and F): the P sub-kernel represents 

transitions attributable to survival and growth, while the F sub-kernel describes per 

capita contributions of reproductive individuals given the recruit density function at the 

next census (Metcalf et al. 2013).  

The method proposed by Salguero-Gómez (2014) for IPMs for complex life 

cycles was followed and adapted to the H. caput-felis. The survival probability was 

modelled by logistic regression (binomial error distribution and logit link function), 

while the growth probability was modelled as a linear regression (Merow et al. 2014). 

Fecundity was the product of two vital rates: the probability of flowering, modelled as a 

logistic regression (by specifying binomial error distributions and logit link functions in 

GLM), and the number of fruits in the peak of the year t for every monitored plant, 

modelled as a linear regression (with a Poisson error distribution and a log link 

function), times the mean number of seedlings in year t + 1 per number of fruiting 

individuals in year t, and a probability function of the seedling size distributions. The 

seedling size distribution in each population and each year was described by a normal 

distribution with the observed mean and standard deviation. 

Survival, growth and fecundity objects that compose the IPM were constructed 

using the version 2.1 of the “IPMpack” package (Metcalf et al. 2014), and matrix were 

plots with the “fields” package (Nychka et al. 2014) in R version 3.1.2 (R Core Team 

2014). 

Furthermore, other vital rates were not measured for every individual but included 

in the IPM as constants (i.e. size independent): the mean number of seeds per fruit, the 

probability of germination and the probability of seedling survival within the year of 

seed production, the probabilities of seeds entering the seed bank or staying there. These 

constants form the fecundity object and a discrete stage describes the seed bank. Mean 

seeds per fruit was calculated by collecting randomly 980 mature fruits from 98 

randomly selected plants (one per plot). According to Bruna et al. (2014), the theoretical 

amount of seeds per year was estimated from the multiplication of the total number of 

fruits (excluding the percentage of empty/aborted fruits) and the mean seeds per fruit. 

This was also the case of seed germination rate, which has been analysed in laboratory 

at locality level (Tébar et al. 1997), but not documented in the field. In light of this, it 

was estimated by the proportion of seeds becoming seedlings by counting the number of 

newly established seedlings during the surveys, dividing this number by the number of 

seeds produced by all monitored plants in the previous reproductive season (Bruna et al. 

2014). This estimation reflects a general low germination probability, as reported in 

Tébar et al. (1997) for the Majorcan population (4%). Seedling survival was estimated 

from the ratio between seedlings counted in year t and seedlings present in t+1. Due to 

the absence of seed bank’s studies regarding this plant species, data about seeds entering 

and staying in the seed bank were calculated according to Quintana-Ascencio et al. 

(1998). All these estimated data had to be incorporated into fecundity parameter 

calculation. 

The transition of each plant among the continuous and the discrete stage was 

added in the original database. In the case of H. caput-felis, these transitions are: 

- continuous stage → discrete stage: individuals with a given volume in year t 

contribute seeds to the seed bank, that is, seeds that were produced, did not germinate, 

and remain viable; 

- discrete stage →  discrete stage: prolonged dormancy and survival of seeds in the seed 

bank; 

- discrete stage → continuous stage: germination of seeds from the seed bank to become 

seedlings of a given above ground volume. 
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The IPM predicts the population’s asymptotic growth rate (λ), represented by the 

dominant eigenvalue, with associated eigenvectors and state-dependent sensitivity and 

elasticity functions (Easterling et al. 2000). Dominant right and left eigenvectors w(x) 

and v(x) give the stable size distribution and size-specific reproductive value, 

respectively (Easterling et al. 2000). The stable size distribution was extracted and 

compared with the observed ones, and damping ratios were calculated, following the 

same procedure in MPM.  

The deterministic lambda (λ) was also calculated excluding the seed bank stage 

(λcontinuous), in order to analyse possible differences with λ. 

Moreover, having constructed the IPM kernel, it is then straightforward to 

calculate other statistics, as the net reproductive rate (R0) and the generation time (T). 

The net reproductive rate (R0) represents the number of offspring produced on average 

by an individual over its lifespan (Metcalf et al. 2014), or, in other words, the measure 

of mean lifetime reproductive output, so it represents the global population growth rate 

per generation (not per unit of time); it is an indicator function for population growth, in 

which population growth is positive if, and only if, R0>1 (Caswell 2011).  

Similarly to the MPMs, sensitivity described the change in λ resulting from a 

change in demographic parameters (survival or fecundity) affecting only individuals at a 

particular size (Easterling et al. 2000). Elasticity provided details on the size range 

having the greatest effect on λ (Dauer and Jongejans 2013), and then elasticity values 

were calculated by dividing the relative increase in λ by the relative increase of the vital 

rate function (de Kroon et al. 2000). Sensitivity and elasticity kernel were calculated 

from IPMs of both years’ transitions. Moreover, elasticities could be partitioned into 

contributions from the survival-growth and reproduction components of the kernel (P 

and F; Ellner and Rees 2006), and  then the percentage of each vital rate contribution 

were calculated.  

The stochastic rate of increase (λS) was also calculated as the geometric mean 

proportional change in population size over 50,000 model iterations, where one yearly 

projection kernel was randomly drawn for each iteration.  

Knowing λ, it was possible to calculate the generation time (T), which is the time 

required for the population to increase by a factor of R0 (Coale 1972; Koons et al. 2005; 

Caswell 2001; Williams et al. 2011): 

 

T =  
log (R0)

log (λ)
 

 

Generation time measures the typical age at which offspring are produced, and it 

was calculated both from MPMs then from IPMs. Moreover, from IPM kernel, mean 

life expectancy or the predicted mean lifespan of an individual of size z at time 0 was 

extracted. 

 

Life table response experiment analysis (LTRE)  

Life table response experiments (LTREs) are studies that quantify the population-level 

effect of environmental factors by measuring a complete set of vital rates (a life table) 

under several conditions (treatments).  The terms “experiment” and “treatment” are used 

loosely to include not only manipulative experiments but also comparative observations 

under natural conditions (Caswell 1996). A one-way LTRE analysis was performed in 

order to elucidate the demographic mechanisms underlying differences among years by 

decomposing differences in λ into the contributions from different demographic 

variables (Caswell 1989). It was only performed from IPMs, because for large datasets 

IPMs perform better the data (Ramula et al. 2009). 
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For each year of monitoring the IPM2013-2014 was arbitrarily defined as the 

“control”, because the interest of this analysis is to compare the differences in λ from 

the IPM2014-2015 in comparison to the IPM “control”, and to know what vital rates 

change between years. Then, the arithmetic mean of the two IPMs was calculated as a 

mid-way IPM, which permitted to evaluate the differences in the sensitivities of the 

IPM kernels to be compared. Finally, the IPM of the differences between the IPM 

kernels corresponding to the 2013-2014 and 2014-2015 transitions were calculated, and 

then the parts of the life cycle of the study species that were responsible for the 

difference in λ between the two transition periods were inspected, by weighting the IPM 

of the difference between those two IPMs by the sensitivity of the arithmetic mean IPM. 

LTRE was verified by a cross-check as recommended by Salguero-Gómez (2014). 

To interpret the results, kernels’ plots were made with the “image” function of the 

library “fields” (Nychka et al. 2015) of “IPMpack” version 2.1 (Metcalf et al. 2014) in 

R version 3.1.2 (R Core Team 2014). 

 

 

Results 

 

The principal outputs of MPMs and IPMs were summarised in Table 2.  

Deterministic population growth rate (λ) extracted from MPMs was higher in the 

first transition year (1.03) compared to the second (0.92; Table 2). Growth rates 

calculated considering only the continuous stage (excluding the discrete seed bank 

stage; λcontinuous) were slightly lesser from those including the seed bank (λ; Table 2). 

Stochastic growth rate (λS) did not differ from the deterministic rate of the mean matrix 

(λM; Table 2). 

The two projected matrices (Figure 2) show how large adult plants contribute 

more than others to fecundity, while the proportion of plants along the diagonal is 

greater than others. 

The mean projected transition matrix was displayed in Figure 3, represented as a 

life cycle diagram, which represent the mean transitions between the five different life 

stages observed in the study population.  
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Table 2 – Parameters extracted or calculated from matrix population models (MPM) and integral 

projection models (IPM) of H. caput-felis for the two years transitions: projected deterministic 

population growth rate excluding the seed bank (λcontinuous), projected deterministic population 

growth rate (λ) with confidence intervals at 95%, damping ratio (dr), net reproductive rate (R0), 

generation time (T), deterministic population growth rate of the mean projected matrix (λM), 

stochastic population growth rate (λS). 

    MPM 
 

IPM 

    2013–2014 2014–2015 
 

2013–2014 2014–2015 

λ
continuous

 
 

1.01 0.81 
 

1.02 0.92 

λ 
 

1.03 [1.002197 - 

1.054032] 

0.92 [0.8914003 - 

0.9508634]  

1.08 [1.066577 -

1.106768] 

0.92 [0.9181867 -

0.9258905] 

d
r
 

 
1.39 1.38 

 
1.35 1.30 

R
0
 

 
1.50 0.10 

 
7.12 0.26 

T 
 

32.44 24.43 
 

14.61 17.33 

λ
M

 
 

0.98 
 

1.01 

λ
S
 

 
0.97 [0.9728896 - 0.9755021] 

 
1.00 [-] 

 

 

 
Figure 2 – Estimated stage class transition matrices (MPMs) of H. caput-felis population. On the 

left, the first year’s transition (2013-2014), on the right, the second year’s transition (2014-2015). 

SB: seed bank stage, SDL: seedling, S: small adult, M: medium adult, L: large adult plants. 

 

 

Figure 3 – Loop analysis of H. caput-felis’ life cycle. Values correspond to P and F values of the 

mean projected matrix. The black arrows represent survival/growth and the accompanying rates 

give the proportion of individuals that survive and move to a particular class. The blue arrows 

involve production (via seeds) of new individuals after one year. The projected λ of the mean matrix 

is 0.98, projecting a decrease in population size of 2% per year. 
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Figure 4 – Sensitivity matrices for the deterministic stage class matrix model of H. caput-felis 

population. On the left, the first year’s transition (2013-2014), on the right, the second year’s 

transition (2014-2015). SB: seed bank stage, SDL: seedling, S: small adult, M: medium adult, L: 

large adult plants. 

 

 
 

Figure 5 – Elasticity matrices for the deterministic stage class matrix model of H. caput-felis 

population. On the left, the first year’s transition (2013-2014), on the right, the second year’s 

transition (2014-2015). Values represent the proportional change in λ with a proportional change in 

each parameter, and are scaled so that elasticities sum to one. SB: seed bank stage, SDL: seedling, 

S: small adult, M: medium adult, L: large adult plants. 

The sensitivity and elasticity matrices were showed in Figure 4 and 5. The 

sensitivity analysis indicated that the highest absolute contribution to deterministic 

population growth rate came from seeds emerging from the seed bank to germinate and 

become seedlings (Figure 4). On the contrary, the highest elasticity values came from 

medium adults plants (31% in 2013-2014 and 36% in 2014-2015), followed by adults 

individuals in stasis (that is, which does not change from one class to another, either 

growing or shrinking), contributed more than others to elasticity (Figure 5).  

The stable size distribution extracted from the projected matrices confirmed the 

highest values in the seed bank in both years’ transitions. However, the damping ratios 

show a slightly higher value in the first year transition than in the second (1.39 and 1.38, 

respectively). Therefore, there was a slightly difference between the stable size 

distribution and the predicted from the MPM models.  

The net reproductive rate (R0) was > 1 in 2013-2014 and < 1 in 2014-2015. The 

mean generation time (T) from MPM was 26.63 years.  

In the IPM analyses, vital rates models show that plants volume is correlated with 

growth, survival, probability of flowering and fruits output (Figure 6). Survival rate 

increased in correspondence of large adult plants (Figure 6). The size of individuals that 

survive until the next year (growth) was linear dependent from size in year t and show 
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that smaller plants were commonly more likely to grow than larger individuals, which 

tend to shrink (Figure 6). The probability that plants flower at the first census is strongly 

related to their size, and plants larger than ca. 400 cm
3
 (corresponding to log(6) in 

Figure 6), have an high flowering probability. Among flowered plants, the number of 

fruits was exponentially dependent on plant’s size, and larger plants produced much 

more fruits than the smaller ones (Figure 6). 
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Figure 6 – Size-dependent survivorship, growth, flowering probability and fruit production of plants during initial (t) and subsequent (t + 1) surveys. The top line referred 

to 2013-2014 transition, while the bottom line to 2014-2015 transition. Plant size is showed as log(plant size). 
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Figure 7 – Observed versus predicted stable size distribution, reproductive value and mean life expectancy of plants during initial (t) and subsequent (t + 1) surveys. The 

top line referred to 2013-2014 transition, while the bottom line to 2014-2015 transition. Plant size is showed as log(plant size). 
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Figure 8 – Sensitivity, elasticity and IPM kernels of plants during initial (t) and subsequent (t + 1) surveys. The top line referred to 2013-2014 transition, while the bottom 

line to 2014-2015 transition. Plant size is showed as log(plant size). 
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The predicted stable size distribution (Figure 7) was skewed heavily towards large 

adults’ plants. This indicates that, under deterministic conditions, H. caput-felis 

populationcould include larger numbers of plants with a volume of ca. 400 cm
3
 and 

slightly differed from the observed distribution (dr 2013-2014 = 1.35 and 1.37, dr 2014-2015 = 

1.30 and 1.33 for IPM and MPM, respectively; Table 2). 

The reproductive value increased with plants’ volume, reflecting the fact that 

larger plants had higher fecundity, survival and larger offsprings, until a maximum of 

ca. 162,800 cm
3
 in 2014-2015, after which decrease (Figure 7). 

In 2013-2014 mean life expectancy  increased with plant size, while in 2014-2015 

the overall highest mean life expectancy (11 years) was found in medium-large plants, 

with a size of ca. 22,000 cm
3 

(corresponding to log(10); Figure 7).  

Sensitivity kernels showed the highest values in the first column, corresponding to 

the seeds emerging from the seed bank (Figure 8). Elasticity values were high along the 

diagonal representing medium-large size individuals, indicating that its contribution to λ 

is dominated by stasis (Figure 8). The breakdown of IPMs elasticity in his two 

components revealed that survival/growth component was generally higher than 

fecundity component in both year transitions (P component: 84% and 97% in 2013-

2014 and 2014-2015, respectively), even if in 2013-2014 fecundity was higher than 

2014-2015 (F component: 16% and 3%).  

Moreover, the kernel’s plots showed the importance of medium-large size 

individuals (high values near the diagonal central area), indeed were dominated by the 

survival function, representing individuals who survived the next year without changing 

much in size (stasis; Figure 8). The slight evidence in the bottom-right region 

represented the fecundity portion of the kernel. In 2013-2014 the peak was for plants 

with ca. 1,203,000 cm
3
 in size (corresponding to log(14) in Figure 8), In the following 

transition years, the fecundity peak was ca. 59,900 cm
3
 (corresponding to log(11) in 

Figure 8), that indicated that individuals of that size contribute most to reproduction. 

Furthermore, the absence of evidence in the bottom left area, that represent new-borns 

entering in the small size class, mean that only few seedlings were produced and few of 

these could survive to the next year; hence there was a high mortality of smaller plants. 

Offsprings measured 51.78 ± 81.28 cm
3 

in 2014 and 1.45 ± 11.25 cm
3 

in 2015. 

Note that the kernels don’t show the discrete stage (seed bank) for display 

reasons, but it was included in all the analyses.  

The rate of population increase over a generation (R0) extracted from the IPM was 

higher than 1 in 2013-2014 and less than 1 in 2014-2015. Mean generation time (T) was 

15.97 years. 

Life table response experiment analysis (LTRE) 

Sensitivity of the arithmetic mean IPM kernel included seed bank dynamics; its plots 

showed the importance of the emergence of seeds from the seed bank to λ (Figure 9a). 

The sensitivity of the mean IPM to changes in the emergence of seeds from the seed 

bank was high, meaning that there was a high impact of new-borns in the population 

growth rate. Nevertheless, the colour graduation of new seeds into the seed bank 

denoted a low impact on λ. In fact, λ calculated considering only the continuous stage 

(λcontinuous) does not change from λ including the seed bank dynamics (λ; Table 2). 

The seed bank dynamics were then cancelled in the kernel of differences (Figure 9 

b and c), and their contribution to the difference between λ2013-2014 and λ2014-2015 were 

null; those kernels showed only the continuous stage. Through those plots it was 

possible to see the differences between the kernels of the two years transitions. 
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Figure 9 – Life table response experiment analysis (LTRE). a) sensitivity of the mid-way IPM, 

including the seed bank stage; b) kernel of differences between the IPMs of the two years 

transition; c) kernel of the contributions to differences in expression (λ) of plants during initial (t) 

and subsequent (t + 1) surveys. Plant size was showed as log(plant size). 

The plot in Figure 9b showed a general difference both in survival/growth than in 

fecundity. In particular, a greater shrinkage of individuals in the second year of study 

was displayed, involving both larger and small plants. 

Furthermore, a difference in fecundity between years was observed, with a 

reduction of its impact in 2014-2015, involving individuals of smaller size, respect to 

the previous year transition. The shrinkage of individuals in the second year of study 

and the minor fecundity rate could be considered the main responsible of lowest λ. 

The contributions to differences in λ (Figure 9c) showed how part of the life cycle 

of the study species were responsible for the differences in λ between 2013-2014 and 

2014-2015. In the latter, the stasis of plants involved a bigger range of size (in other 

words, there was more variability), and plants of medium-large size tended to shrink 

(Figure 9c). 

 

 

Discussion 

 

Demographic studies of Mediterranean coastal plants are still lacking and only few 

researchs were performed on threatened plants (e.g. Pisanu et al. 2012; Cursach et al. 

2013). This analysis represents the first demographic investigation for H. caput-felis, 

including plants sampled along a representative part of its Mediterranean distribution. 

The population showed a general stability in the first year transition, after which a 

decline from the second to the third study year (2014-2015) was observed; hence, in this 

study, a “good year” was followed by a “bad year”. This trend was also confirmed by 

the net reproductive rate, which indicated that the rate of population increase over a 

generation was higher in the first year transition than the second. 

Plants survival increased positively with plant volume, and growth of smaller 

plants was greater than those in larger ones, which tended to shrink, probably because 

larger individuals typically acquire more resources than smaller ones, which means they 

have more energy available to spend on growth, reproduction and maintenance (Rees et 

al. 2014). Moreover, fruits production was exponentially dependent on plant’s size, 

meaning that larger plants produced much more fruits than smaller ones, as stated in 

previous phenological studies for H. caput-felis (Fenu et al. 2015a; Chapter 2).  

The predicted stable size distributions indicated that, under deterministic 

conditions, H. caput-felis population could include larger numbers of individuals with a 

large volume. In fact, large individuals are the most important for the population growth 

rate, as showed in the elasticity matrices and kernels. Furthermore, it must be 

considered that it takes some years with transient dynamics before asymptotic dynamics 
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are reached. In fact, the damping ratio value, which did not differ between IPMs and 

MPMs, underlined that the dominant stable stage distribution will be reached fairly 

soon. 

Sensitivity and elasticity patterns did not substantially change between the two 

models. This could mean that the class stage a priori chosen for build the matrix model 

were representative of the population structure. In fact, Easterling et al. (2000) 

demonstrated how sensitivity and elasticity values are inclined to change a lot from a 

matrix model which does not correctly reflect the plants size in the population, to an 

integral projection model. Therefore, the importance of the inizial chosed class size 

boundaries in the matrix model was fundamental in performing demographics plant 

population models. 

The assessments of management option depended on sensitivity and consequent 

elasticity results. Sensitivity outputs showed how a change in seeds emerging from the 

seed bank and becoming seedlings will have a much larger effect on the population 

growth rate of H. caput-felis, but, rescaling the sensitivity for the proportional change in 

vital rates, large-adult plants showed the highest values; hence, the survival-growth 

transitions were the critical determinant of the population growth rate. In other words, if 

this transition can be increased, this will result in much greater enhancement of 

population growth rate than a similar increase in other stages (Morris and Doak 2002). 

The highs values in the medium-large adults’ plants elasticity meant that a 

reduction of fecundity is not expected to have large negative effects on population 

dynamics, in contrast to any reduction of survival and growth. This pattern is typical 

from those observed in many long-lived perennial plant species (Pfister 1998; Caswell 

2001; Fréville et al. 2004), as confirmed by the reproductive value and the mean life 

expectancy outputs, which seem reasonable for a long-lived perennial plant. For 

instance, survival of adult plants and high longevity represent a typical strategy of 

several Mediterranean endemic plants (Lavergne et al. 2004; Thompson 2005). 

The high generation times and the mean long life span predicted from both 

models are probably a consequence of strong selection in very stressful habitats where 

growth is slow and colonization infrequent, as highlighted in other Mediterranean long-

lived species (García et al. 2002). Long life spans may buffer populations against rapid 

extinction because of a series of “bad” years for reproduction or germination, if extant 

individuals survive (García et al. 2002). Annual seedling recruitment becomes less 

important in this context, due to the long period each plant has to replace itself (García 

et al. 2002). 

The presence of seed banks may enhance population persistence by decreasing the 

chances of population extinction in “bad” years. However, seed banks may retard 

population growth rates in “good” years because dormant individuals are delaying 

reproduction (Kalisz et al. 1993). Seed banks can also stabilize population dynamics by 

damping oscillations in population size to stable equilibria (Kalisz et al. 1993). Thus, 

seed banks should be an important life stage when modelling the persistence of plant 

populations for conservation purposes (Adams et al. 2005). 

In this study, environmental variability was added into the demographic analyses 

to addressed the demographic consequences of seed banks. The LTRE analysis and the 

absence of significant differences among population growth rates, calculated excluding 

the seed bank stage, showed how few importance has seeds staying in the seed bank. In 

contrast, emergence of seeds from the seed bank to becoming seedlings in the following 

census had a high impact in population growth rates, but recruitment rate was mainly 

absent or very low. In fact, previous studies suggested how recruitment is a critical 

stage for this species (Fenu et al. 2015a), as demonstrated for several endemic plants 

along Mediterranean coasts (Cogoni 2012, 2013). Recruitment is particularly critical in 

stressful habitats such as those found in arid and semiarid climates, where water is the 
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main limiting factor because of both overall water scarcity and its heterogeneity and 

unpredictability in contrasting spatial and temporal scales (Sher et al. 2004; Olano et al. 

2011), as also detected for other congeneric perennial plant (Escudero et al. 1999). 

Furthermore, the low germination rate of H. caput-felis (Tébar et al. 1997) attributed to 

physical exogenous dormancy, a widespread trait among the Cistaceae species (Thanos 

et al. 1992), must be considered. 

This pattern was similar to the dynamic of other relict plant populations growing 

in the Mediterranean Basin, that showed a limited seedling recruitment rate and the 

survival of mature plants were the main factors for the population persistence (e,g. Pico 

and Riba 2002; García et al. 2002; Copete et al. 2009) as also confirmed by elasticity 

analysis for H. caput-felis. Such situations would call for measures that enhance 

successful sexual reproduction,  i.e., stimulation of life cycle parameters that have low, 

rather than high, elasticities (de Kroon et al. 2000). 

As a further explanation, for long-lived, iteroparous species, fecundity is generally 

less important for population growth than survival (Silvertown et al. 1993; Franco and 

Silvertown 2004; Ramula et al. 2008), as demonstrated for H. caput-felis. The elasticity 

partition in its two components (survival/growth and fecundity) showed a higher 

fecundity in 2013-2014 than 2014-2015. This fact can explicate the higher deterministic 

population growth rate in the first years transition, because a matrix or an integral with a 

high λ will likely have higher elasticity values for fecundity than a matrix for the same 

species with a low λ (Jongejans 2012). The larger sensitivity of population growth rate 

to changes in growth and survival of adult plants than to changes in reproduction is a 

main characteristic shares with long-lived plants (Silvertown et al. 1993). Moreover, the 

LTRE indicated that the differences in λ for the two years transitions were due primarily 

to differences in the probability of growing into or remaining in large size ranges; in 

fact, large plants are most likely to reproduce and produce more fruits (Bruna et al. 

2014), as highlighted in previous study for this species (Fenu et al. 2015a; Salguero-

Gómez et al. 2015, 2016). This pattern is consistent with the results of a recent study, 

which analyse vital rates of more than 1,000 plant species (includying species with 

complex life-history traits), in which retrogressive growth (shrinkage) correlates 

negatively with reproductive traits, in agreement with the frequent increase in 

reproductive output with plant size (Harper and White 1974; Salguero-Gómez et al. 

2016). 

The λ results varied with the environmental variability; in fact, variation between 

models in the stochastic population growth rate was observed (MPM = 0.96 and IPM = 

1.01). The lower λS predicted by the MPM, highlighted a slowly decline over time of ca. 

4% in the analysed population, maybe due to the difference between the two models. 

Despite this, H. caput-felis population oscillated around the equilibrium under the range 

of environmental variability simulated in both models; the constancy in λ has been 

previous found in demographic studies as an additional population trait of long-lived 

perennials plants (Nault and Gagnon 1993; Ehrlén 1995; Damman and Cain 1998; 

Nantel and Gagnon 1999; Pico and Riba 2002). Temporal variation in environmental 

factors may be important to population dynamics both in terms of long-term trends and 

short-term fluctuations (Nicolé et al. 2011). Temporal variation is often included in 

population models in terms of stochastic variation among years. Linking among-year 

variation in population performance to environmental variation is likely to improve 

predictions of demographic models in many cases. For example, it enables exploration 

of the effects of climate change on population viability in a more direct way (cf. 

Maschinski et al. 2006; Jenouvrier et al. 2009; Jongejans et al. 2010; Jonzén et al. 2010; 

Nicolé et al. 2011).  

The results of this research were similar to those found in other population 

dynamics studies of Mediterranean species, as Centaurea horrida Bad. (Pisanu et al. 
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2012) and also in congeneric species, as Helianthemum juliae Wildpret (Marrero 

Gómez et al. 2007), Helianthemum polygonoides Peinado, Mart. Parras, Alcaraz & 

Espuelas (Copete et al. 2009) and Helianthemum teneriffae Coss.. Those species 

showed the importance of survival of mature reproductive plants and life spans 

comparable with H. caput-felis. Common patterns in Mediterranean species were 

populations whit lambdas closer to the equilibrium, longevity of established individuals 

and low recruitment rate (García 2008), probably because those populations contained 

the highest proportion of reproductive plants and lowest frequency of seedlings, a 

pattern shared with species growing in calcareous rocky habitats (Petrocoptis 

pseudoviscosa; García 2008) or small isolated populations (as Kosteletzkya 

pentacarpos; Pino et al. 2007). 

Moreover, also for H. juliae introducing stochastic variability offered results 

similar to the deterministic analysis, as demonstrated in this study.  

Summarizing, for comparative demography, IPMs may also prove to be very 

useful because they solve the problem that different matrix studies use a range of matrix 

dimensions (Jongejans 2012).    

Easterling et al. (2000) demonstrate that, using a large data set (> 600 

individuals), MPMs and IPMs produced identical estimates of population growth rates 

for a perennial herb. Instead, Ramula et al. (2009) show how small demographic data 

sets (< 300 individuals) are likely to benefit from the use of IPMs because matrix 

models have the greatest probability of producing biased population estimates for such 

data sets. Due to the greater precision, IPM were considered more adapted than MPM to 

monitoring species with restricted range, as H. caput-felis. Time and resources for 

population monitoring are limited (e.g. Lindenmayer and Likens 2010; Fenu et al. 

2015b), so this greater accuracy represents an advantage regarding the efforts in terms 

of cost and time of monitoring.  

Moreover, further analyses are needed, both at global level, in order to understand 

transient dynamics, than at local level, to evaluate each local situation, which may 

shows differences from the global population. 
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CHAPTER 4 

Assessing the local population dynamics of Helianthemum caput-felis 

along its distribution range 
 

 

Introduction 

 

A significant challenge in ecology is to accurately describe the ecological processes that 

cause changes in the distribution and abundance of organisms. In fact, population 

ecology seeks to understand the drivers of changes in abundance over time and space, 

with demography more specifically related to how underlying vital rates (survival, 

growth, reproduction, etc.) structure populations (Griffith et al. 2016).  

This is particularly important when significant changes are occurring, such as 

endangered species that are declining spatially and numerically (Jongejans et al. 2011). 

The monitoring and the research of population dynamics are necessary to assess 

appropriate management strategies (Silva et al. 2015). Monitoring populations is one of 

the main tools in conservation biology for identifying declining species or species with 

a high risk of extinction (Marsh and Trenham 2008). Data related to plant populations 

can be used to predict the effects of various management practices on population size, 

condition, stage distribution (i.e. seed production and/or seedlings development) and 

demographic processes, including survivorship and seedling recruitment and, in general, 

temporal variations in population size and geographic range (Kull et al. 2008;  Fenu et 

al. 2015a).  

Although the general population trends can be estimated from the densities of 

individuals, understanding the mechanisms that drive those trends requires the 

quantification of basic vital rates (growth, survival and fecundity; Metcalf et al. 2013). 

Despite this, long-term sampling programmes are uncommon because of the need to 

maintain monitoring structures and funding in the long run (Silva et al. 2015). 

Population size is regulated by several demographic parameters whose alteration 

may have very different impacts on the population growth rate (Cursach et al. 2013). 

Assessing which life history stages are the most critical to population growth is thus 

needed in order to target those parts of the life cycle when designing management 

actions (Schemske et al. 1994; Heywood and Iriondo 2003; Kerr et al. 2016). Such 

approach relies on the estimation of survival, growth and fecundity using intensive 

individual monitoring (Cursach et al. 2013). Knowledge about the contributions of 

different stages of the life cycle to population growth rate enhances our understanding 

of the life histories of species (de Kroon et al. 2000). In fact, elasticities have become a 

popular tool in conservation biology, because they quantify the relative importance of a 

matrix element to population growth rate. Therefore, it is generally inferred that 

management should focus on the demographic parameters with the largest elasticities 

(e.g. Menges 1990; Doak et al. 1994; Heppell et al. 1994; Caswell 1996; de Kroon et al. 

2000). In addition, particularly for endemic and endangered plants, also the difference 

in population trends at local level must be evaluated in order to understand the 

mechanisms driving the vital rates in different localities. In fact, previous studies 

demonstrate as different population of the same species, despite the areal distribution 

proximity, shows strong local adaptations and a low correlation with the overall 

population performance (García 2008). 

The Integral Projection Model (IPM hereafter) was elaborated by Easterling et al. 

(2000) in order to analyse individuals which vary continuously in size, and subsequently 
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developed in several ways (e.g. monocarpic plants in Rees and Rose 2002). The model 

avoids the need to divide data into discrete classes, and does not require any extra 

biological assumptions (Easterling et al. 2000). In fact, one problem with size-based 

stage classifications is that it can be hard to find clear borders among one size group and 

the next: the sizes of individuals in a population often follow a continuous distribution, 

and vital rates mostly show gradual change with size (Jongejans and de Kroon 2012). In 

particular, for long-lived and slow-growing plants, the choice of the number of size 

classes is not without consequences: matrix dimension can have profound impact on the 

projected population growth rate (λ). Conversely, in IPMs vital rates are continuous 

functions of size, and these can be copied directly from statistical regression analyses. 

For comparative demography IPMs may also prove to be very useful because they solve 

the problem that different matrix studies use a range of matrix dimensions (Jongejans 

and de Kroon 2012). Moreover, IPMs’ characteristic is that it has many properties in 

common with matrix models; for example, they both allow the calculation of the stable 

size distribution, the population growth rate, and the sensitivities and elasticities of λ 

(Childs et al. 2003). IPM has been particularly advocated for small demographic 

datasets (less than 300 plants; Ramula et al. 2009), and therefore it is very useful for 

studies of fragmented plant populations. 

The comparison of population dynamics under different conditions is one of the 

most valuable approaches to understand ecological and evolutionary processes 

(Salguero-Gómez 2014). An useful tool/method designed for such data is the Life Table 

Response Experiment (LTRE; the term was introduced by Caswell 1989), a study that 

compares a complete set of vital rates under two or more conditions (Caswell 2010), 

based on variance decomposition techniques (Jongejans and de Kroon 2012). This 

approach helps to compare vital rates among different populations or different years of 

the same populations (Jongejans and de Kroon 2012), and has been applied to IPMs 

(Williams and Crone 2006; Williams et al. 2010; Shou-Li et al. 2011; Gonzalez et al. 

2012; Bassar et al. 2013; Yule et al. 2013; Salguero-Gómez 2014). 

Although IPMs have been successfully applied in plant ecology and evolutionary 

biology (e.g. Rees and Rose 2002; Williams 2009; Coulson 2012), their use in 

conservation biology remains still lacking (e.g. Zuidema et al. 2010; Nicolè et al. 2011; 

Ferrer-Cervantes et al. 2012). Indeed, although much interest has been devoted to the 

Mediterranean flora (e.g. Médail and Quézel 1997; Nikolic et al. 2008; Bacchetta et al. 

2012; Iliadou et al. 2014), demographic studies on endangered plant populations are 

uncommon (e.g. Pino et al. 2007; Pisanu et al. 2012; Cursach et al. 2013), even more so 

at local level (Cursach et al. 2014). 

Therefore, the main aim of this research was to assess the local population 

dynamics of H. caput-felis, a coastal plant of European interest (92/43/EEC), which 

showed several fragmented distribution along the western Mediterranean Basin. Using 

demographic analyses, plant performance and population dynamics were investigated in 

six populations representative of the European distribution of H. caput-felis. 

Specifically, study questions are: 

(1) Do the six populations exhibit similar population dynamics?  

(2) What demographic parameters contribute to variation in fitness over time within 

populations?  

(3) How do the six populations differ in terms of fecundity, growth, and plant survival? 

(4) What stages of the life cycle have the greatest influence on population maintenance 

and growth? 
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Materials and methods 

 

Study species 

Helianthemum caput-felis Boiss. is a half shrub of 35(50) cm tall. Its flowers are 

hermaphroditic and have a short lifespan (3–4 days; Rodríguez-Pérez 2005). Based on 

studies carried out in Spanish and Sardinian populations, the flowering period is from 

March to June, and the fruiting season runs from late April to beginning of August (see 

Chapter 1 and 2). Fruits are capsules that detach at maturation, and seed germination 

takes place in autumn, at the onset of the rainy season (Rodríguez-Pérez 2005).  

Helianthemum caput-felis is a long-lived iteroparous perennial plant, but the 

information about its exact lifespan is lacking. The life cycle of H. caput-felis (see 

Chapter 4) include a continuous stage, in which growth and reproduce, combined which 

is a discrete stage, with seeds that can enter a permanent soil seed bank or germinate the 

next spring after dispersion. As other genera of Cistaceae family, H. caput-felis can 

accumulate long-lived persistent seed banks in the soil through the production of large 

yields of impermeable-hardcoated seeds (Ferrandis et al. 1999). 

Helianthemum caput-felis is a coastal plant distributed throughout the western 

Mediterranean Basin (south-eastern Iberian Peninsula, Majorca, Sardinia and northwest 

Africa) in several fragmented populations (Fenu et al. 2015b and references therein).  

From an ecological point of view, H. caput-felis is a termophilous plant that 

preferably grows in coastal environments under the direct influence of the sea, mostly 

on calcareous rocky cliffs (0–200 m a.s.l.) with garrigues or scrublands; peculiar 

populations also grow on different habitats, such as sand dunes (Majorca), rocky slopes 

bordering inland ravines (Melilla) or, rarely, in open wooded areas (Fenu et al. 2015b 

and references therein). 

 

Data collection 

Data were directly collected over three years (2013–2015) from plants belonging to six 

populations within the distribution range of H. caput-felis: two located in Sardinia 

(Italy), at the eastern margin of its distribution range (Capo Mannu and Su Tingiosu – 

CM and ST hereafter), two in Majorca’s island, in the center of its range (Sa Ràpita and 

Colònia de Sant Jordi – SR and SJ hereafter) and two in Alicante’s coasts, at the 

western part of its distribution (Cabo Roig and Moraira – CR and MO hereafter; Table 

1). Overall, those populations encompass a large part of the H. caput-felis geographic 

distribution.  

Plant demographic data were collected in 98 permanent plots of 2 × 1 m, 

randomly established in the six selected populations (in the area where the plant was 

found); across the six populations a total of 821 plants were marked, mapped and 

monitored during the study (Table 1). 

Over the study period, surveys took place at least three times a year, following 

Jacquemyn et al. (2010). In early March, all sites were visited a first time for locating 

all previously mapped individual and mapping new seedlings. During the flowering 

peak (April-May), when all plants are fully grown, sites were visited a second time, in 

order to measure individuals (height, minimum and maximum diameter were taken), 

count the number of flowers per plant and check for new occasional individuals, that 

were added in the data set. During the fruiting peak (latest May-early June) the third 

survey was carried out in all populations, to count the number of fruits per plant. 
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Table 1 – Principal geographical and ecological traits of Helianthemum caput-felis populations 

investigated in this study: region, coordinates, altitudinal range (m), substrate type; in addition the 

number of plots and the number of plants within the monitored plots were reported. 

Region Population (code) 
Coordinates U.T.M. 

(time zone) 

Altitude 

(min-max) 

Substrate 

type 

N. 

plots 

N. 

plants 

       

Alicante Cabo Roig (CR) 700388.62 m E, 

4198390.09 m N 

(30 S) 

3 - 15 limestone 15 116 

       

Alicante Moraira (MO) 250226.01 m E, 

4285845.34 m N 

(31 S) 

3 - 15 limestone 15 56 

       

Majorca Sa Ràpita (SR) 496897.00 m E, 

4356780.00 m N 

(31 S) 

0 - 5 sand and 

limestone 

15 252 

       

Majorca Colònia de Sant 

Jordi (SJ) 

500074.00 m E, 

4352060.00 m N 

(31 S) 

0 - 5 sand and 

limestone 

13 65 

       

Sardinia Capo Mannu (CM) 447428.00 m E, 

4432412.00 m N 

(32 S) 

5 - 55 limestone 20 146 

       

Sardinia Su Tingiosu (ST) 449657.67 m E, 

4428538.64 m N 

(32 S) 

5 - 25 limestone 20 186 

 

Data analyses 

An Integral Projection Model (IPM) for each population and year of sampling was 

performed in order to evaluate the presence of changes in population dynamics among 

years. IPMs describe how a population structured by a continuous individual-level state 

variable changes in discrete time (Easterling et al. 2000). In the IPM, the state of the 

population is described by the size distribution n(y, t). Plant size was chosen as the 

continuous state variable to evaluate the demographic dynamics of H. caput-felis in the 

six populations. In particular, plant volume was found to be the variable that best 

explained the vital rates of this species (Fenu et al. 2015b). Plant size was calculated 

according to the formula in Fenu et al. (2015b) and then, according to Rees et al. 

(2014), plant sizes were log-transformed, because this transformation foot well the data.  

Data were separated by site and year in order to elucidated differences between 

them, if presents. 

IPM uses a continuous projection kernel in order to describe the population size 

distribution by a density function (Easterling et al. 2000; Ellner and Rees 2006). In our 

model, growth, survival and the probability of flowering are described in function of 

plant size. Constant, linear and quadratic models were fit, and the best fit was selected 

on the basis of the lowest Akaike Information Criteria (AIC; Dauer and Jongejans 

2013). 

Plants in the population could survive, grow, and produce new individuals in each 

time step (Easterling et al. 2000). The IPM of a size structured population is given by: 

 

𝑛(𝑦, 𝑡 + 1)  = ∫ 𝐾(𝑦, 𝑥)𝑛(𝑥, 𝑡)d𝑥 =

𝑈

𝐿

 ∫[𝑃(𝑦, 𝑥) + 𝐹(𝑦, 𝑥)] 𝑛(𝑥, 𝑡)d𝑥

𝑈

𝐿
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where n(y, t + 1) is the size distribution y of both established and newly recruited plants 

in census time t + 1, n(x, t) the distribution across size of individuals at census time t, 

and L and U are the respective lower and upper size limits modelled in the IPM 

(Metcalf et al. 2013). The latter ones were set lower and higher than the observed 

minimum and maximum sizes to avoid unintentional evictions (Williams et al. 2012). 

The kernel (K) can be broken down into two sub-kernels (P and F): the P sub-kernel 

represents transitions attributable to survival and growth, while the F sub-kernel 

describes per capita contributions of reproductive individuals given the recruit density 

function at the next census (Metcalf et al. 2013). 

Survival, growth and fecundity objects that compose the IPMs were constructed 

using the version 2.1 of the “IPMpack” package (Metcalf et al. 2014), and matrix were 

draw with the “fields” package (Nychka et al. 2014) in R version 3.1.2 (R Core Team 

2014).     

The survival probability was modelled by logistic regression (binomial error 

distribution and logit link function), while the growth probability was modelled as a 

linear regression (Merow et al. 2014a). Fecundity was composed by two vital rates: the 

probability of flowering (fec0), modelled as a logistic regression (by specifying 

binomial error distributions and logit link functions in generalized linear models), and 

the number of fruits in the peak of the year t for every monitored plant (fec1), modelled 

as a linear regression (with a Poisson error distribution and a log link function), times 

the mean number of seedlings in year t + 1 per number of fruiting individuals in year t, 

and a probability function of the seedling size distributions. The seedling size 

distribution in each population and each year was described by a normal distribution 

with the observed mean and standard deviation. 

Furthermore, other vital rates were not measured for every individual but pooled 

from every population and are therefore included in the IPM as constants (i.e. size 

independent): the mean number of seeds per fruit (fec2), the probability of germination 

(fec3) and the probability of seedling survival (fec4) within the year of seed production, 

the probabilities of seeds entering the seed bank (goSB) or staying there (staySB). 

These constants form the fecundity object and a discrete stage describes the seed bank. 

Mean seeds per fruit (fec2) was calculated by collecting randomly 980 mature fruits 

from 98 randomly selected plants (one per plot). According to Bruna et al. (2014), the 

theoretical amount of seeds per year was estimated from the multiplication of the total 

number of fruits (excluding the percentage of empty/aborted fruits) and the mean seeds 

per fruit. This was also the case of seed germination rate (fec3), which has been 

analysed in laboratory at locality level (Tébar et al. 1997), but not documented in the 

field. In light of this, it was estimated by the proportion of seeds becoming seedlings by 

counting the number of newly established seedlings during the surveys, dividing this 

number by the number of seeds produced by all monitored plants in the previous 

reproductive season (Table 1A; Bruna et al. 2014). This estimation reflects a general 

low germination probability, as reported in Tébar et al. (1997) for the Majorcan 

population (4%). Seedling survival (fec4) was estimated from the ratio between 

seedlings counted in year t and seedlings present in t+1. Due to the absence of seed 

bank’s studies regarding this plant species, data about seeds entering and staying in the 

seed bank were taken according to Quintana-Ascencio et al. (1998). All this estimated 

data had to be incorporated into fecundity parameter calculation. 

The transition of each plant among the continuous and the discrete stage was 

added in the original database. In the case of H. caput-felis, these transitions are: 

- continuous stage → discrete stage: individuals with a given volume in year t 

contribute seeds to the seed bank, that is, seeds that were produced, did not germinate, 

and remain viable; 
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- discrete stage →  discrete stage: prolonged dormancy and survival of seeds in the seed 

bank; 

- discrete stage → continuous stage: germination of seeds from the seed bank to become 

seedlings of a given above ground stem height (Salguero-Gómez 2014). 

The IPM predicts a population’s asymptotic growth rate (λ), represented by the 

dominant eigenvalue, with associated eigenvectors and state-dependent sensitivity and 

elasticity functions (Easterling et al. 2000). Dominant right and left eigenvectors w(x) 

and v(x) give the stable size distribution and size-specific reproductive value, 

respectively (Easterling et al. 2000). The stable size distribution was extracted and 

compared with the observed ones, and damping ratios were calculated. The absence of 

recruitment (probability of seed germination and seedling survival = 0) in MO and SJ 

populations cause the impossibility to calculate reproductive values for those sites.  

The deterministic lambda (λ) was also calculated excluding the seed bank stage 

(λcontinuous), in order to analyse possible differences with λ. 

Sensitivity describes the change in λ resulting from a change in demographic 

parameters (survival or fecundity) affecting only individuals at a particular size 

(Easterling et al. 2000). Elasticity provided details on the size range having the greatest 

effect on λ (Dauer and Jongejans 2013), and then elasticity values were calculated by 

dividing the relative increase in λ by the relative increase of the vital rate function (de 

Kroon et al. 2000).  

Elasticity can be partitioned into contributions from the survival-growth and 

reproduction components of the kernel (P and F; Ellner and Rees 2006), than the 

percentage of each vital rate contribution were calculated. 

The stochastic rate of increase (λS) was also calculated as the geometric mean 

proportional change in population size over 50,000 model iterations, where one yearly 

projection kernel was randomly drawn for each iteration.  

The ratio between the dominant eigenvalue and the second highest eigenvalue of a 

transition matrix (damping ratio) was also calculated. 

Life table response experiments (LTREs) are studies that quantify the population-

level effect of environmental factors by measuring a complete set of vital rates (a life 

table) under several conditions (treatments). The terms “experiment” and “treatment” 

are used loosely to include not only manipulative experiments but also comparative 

observations under natural conditions (Caswell 1996b). A one-way LTRE analysis was 

performed for each population in order to elucidate the demographic mechanisms 

underlying differences among years by decomposing differences in λ into the 

contributions from different demographic variables (Caswell 1989).  

For each population the IPM2013-2014 was arbitrarily defined as the “control”, 

because the interest of this analysis is to compare the differences in λ from the IPM2014-

2015 in comparison to the IPM “control”, and to know what vital rates change between 

years. Then, the arithmetic mean of the two IPMs as a mid-way IPM, which permits to 

evaluate the differences in the sensitivities of the IPM kernels to be compared, was 

designating. In MO and SJ populations, the mean IPM plots were inaccurate, because 

since there are too many zeros in the matrix, R generates “-inf” for those zero entries 

with the logarithmic function; hence the square root of the values were taken, in order to 

visualize differences in values. 

Finally, the IPM of the differences between the IPM kernels corresponding to the 

2013-2014 and 2014-2015 transitions was calculated, and then the parts of the life cycle 

of the study species that are responsible for the difference in λ between the two 

transition periods were inspected, by weighting the IPM of the difference between those 

two IPMs by the sensitivity of the arithmetic mean IPM. LTRE was verified by a cross-

check as recommended by Salguero-Gómez (2014).  
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Due to the strong low values of some population (particularly in elasticity), plots 

were scaled in order to display the main differences.  

To interpret the results, kernels’ plots were made with the “image” function of the 

library “fields” (Nychka et al. 2014) of “IPMpack” version 2.1 (Metcalf et al. 2014) in 

R version 3.1.2 (R Core Team 2014). 

 

 

Results 

 

Plants volume is correlated with survival, growth, flower probability and fruits number 

in both years of study and for each population (Figure 1–4). 

Survival rate generally increased in correspondence of large adult plants (Figure 

1). Some exceptions to this pattern were detected, like SR in 2013 and SJ in both years 

of study. In SR population plants showed lowest survival for little-intermediate 

volumes, but high survival for lowest and highest volumes, whereas in SJ there was no 

relationship between survival and size. In 2014, exceptions were represented by CR 

population, where survival initially decrease and then, in correspondence of high 

volumes, increased. Also SR population in 2014 have a positive relationship between 

survival and size until ca. 2,900 cm
3
 (corresponding to log(8) in Figure 1), after which it 

decreases. 

The sizes of individuals that survive until the following year (growth) is always 

linear dependent from size in year t and generally follow the same pattern among 

populations, although smaller plants were commonly more likely to grow than larger 

ones (Figure 2). 

The exceptions to this pattern were represented by MO and SJ populations; in the 

first, there was a linear negative relationship between growth and size, hence plants 

reduced their size in the following year, whereas in the seconds there was no difference 

between smaller and large plants growth. Furthermore, growth’s plots highlighted the 

general concentration of large plants compared to smaller.   

The probability that plants flowered at the first census was strongly related to their 

size, with most plants larger than ca. 400 cm
3
 (corresponding to log(6) in Figure 3) 

flowering, except in MO. 

Among flowered plants, the number of fruits was exponentially dependent on 

plant’s size, and larger plants produced many more fruits than the smaller ones (Figure 

4). Fecundity’s plots showed that Majorcan and Iberian east-coast populations (SR, SJ, 

CR and MO) presented a higher number of larger plants which did not produced any 

fruits compared to Sardinians’ (CM and ST). Moreover, a high fruit production was 

detected in 2014 than 2013 of CM, ST, CR and SR populations (Figure 5). 
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Figure 1 – Relationship between plant size and survival probability from 2013 to 2014 and from 2014 to 2015 (first and second row, respectively). Columns correspond 

to the six studied populations (see Table 1). Red lines show the best-fit model prediction. The x-axis represent plant size at t; the y-axis represent survival probability of 

plants at t + 1. 
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Figure 2 – Relationship between plant size and growth from 2013 to 2014 and from 2014 to 2015 (first and second row, respectively). Columns correspond to the six 

studied populations (see Table 1). Red lines show the best-fit model prediction. The x-axis represent plant size at t; the y-axis represent plant size at t + 1. 
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Figure 3 – Plants’s flowering probability from 2013 to 2014 and from 2014 to 2015 (first and second row, respectively). Columns correspond to the six studied 

populations (see Table 1). Red lines show the best-fit model prediction. The x-axis represent plant size at t; the y-axis represent the proportion of reproductive 

plants at t + 1. 
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Figure 4 – Relationship between plant size and fruits production from 2013 to 2014 and from 2014 to 2015 (first and second row, respectively). Columns correspond to 

the six studied populations (see Table 1).  Red lines show the best-fit model prediction. The x-axis represent plant size at t; the y-axis represent the number of fruits per 

reproductive plant. 
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Table 2 – Population growth rate (λ), population growth rate excluding the seed bank (λcontinuous), 

stochastic population growth rate (λS), elasticity partition (P and F components) and damping ratio 

(dr) of the six analysed populations in the two years transitions. 

Population 

(code) 
λ λ

continuous
 λ

S
 P component  F component d

r
 

 
2013-

2014 
2014-

2015 
2013-

2014 
2014-

2015  
2013-

2014 
2014-

2015 
2013-

2014 
2014-

2015 
2013-

2014 
2014-

2015 

Capo Mannu (CM) 0.98 1.06 0.98 1.06 1.03 0.98 0.94 0.02 0.06 1.23 1.23 

Su Tingiosu (ST) 1.01 1.01 1.01 1.00 1.01 0.97 0.97 0.03 0.03 1.15 1.18 

Cabo Roig (CR) 1.02 0.67 1.02 0.59 0.80 0.97 1 0.03 0 1.18 1.14 

Moraira (MO) 1.65 1.61 1.65 1.61 1.63 0.43 0.39 0.57 0.61 1.71 2.14 

Sa Ràpita (SR) 1.13 0.97 1.13 0.96 1.03 0.91 0.93 0.09 0.07 1.17 1.42 

Colònia de Sant 

Jordi (SJ) 
0.93 1.79 0.93 1.79 1.30 1 0.44 0 0.56 1.03 1.84 

 

Asymptotic growth rates (λ) varied widely both between years and populations 

(from 0.93 in SJ to 1.65 in MO in 2013–2014 and from 0.67 in CR to 1.79 in SJ in 

2014–2015; Table 2). 

Population growth rates considering only the continuous stage, that is, excluding 

the seed bank stage (λcontinuous), did not change from the total population growth rate λ, 

except in CR in 2014, where λcontinuous had a value 0.08 inferior to λ (Table 2). 

Stochastic growth rates (λS) varied from 0.80 (CR) to 1.63 (MO). 

The predicted stable size distribution was generally skewed heavily towards large 

adults’ plants (Figure 5). 

This indicates that, under deterministic conditions, H. caput-felis populations 

could include larger numbers of plants with a volume ranging from ca. 400 cm
3
 and ca. 

60,000 cm
3
. However, the predicted stable size distributions did not correspond with the 

observed size histogram distribution in CR2013-2014, MO2013-2014, MO2014-2015 and SR2013-

201, as confirmed by the damping ratio value (Table 2). 

The reproductive value increased with plants volume, reflecting the fact that 

larger plants had higher fecundity, survival and larger offsprings (Figure 6). 

Generally, the sensitivity values increased with plant volume (data not shown) and 

the elasticity values were high along the diagonal representing the survival of medium-

large size individuals. The same pattern was detected for all years and populations, 

except in CR (Figure 7). 

The breakdown of elasticity in his two components revealed that P component is 

higher than F component in almost all populations, hence, in H. caput-felis populations, 

the survival-growth transitions were the critical determinant of λ (Table 2). Moreover, 

the contribution of growth to λ was dominated by transitions into the larger plants where 

reproduction occurs (Figure 7). Only MO (in both years) and SJ (in 2014) populations 

represented an exception. In those populations, the F component was higher than the P 

component, meaning that fecundity contributed more than survival/growth to the 

projected population growth rate. 

The kernel’s plots showed the importance of medium-large size’s plants (high 

values near the diagonal central area); indeed they were dominated by the survival 

function, representing individuals who survive the following year without changing 

much in size (stasis; Figure 8). Generally, the majority of medium size individuals could 

reach larger size, as demonstrate by elasticities. 
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Figure 5 – Histogram distribution of plant sizes (log of plant volume in cm3) and stable size distribution (red lines) for the IPM fitted from 2013 to 2014 and from 2014 

to 2015 (first and second row, respectively). Rows correspond to the six studied populations (see Table 1). 
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Figure 6 – Relationship between plant size and reproductive value from 2013 to 2014 and from 2014 to 2015 (first and second row, respectively). Columns 

correspond to four of the six studied populations (see Table 1). The absence of recruitment (see Table 1A) in MO and SJ cause the impossibility to calculate 

reproductive values for those sites. 
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Figure 7 – Relationship between plant size and elasticity from 2013 to 2014 and from 2014 to 2015 (first and second row, respectively). Columns correspond to the six 

studied populations (see Table 1). The x-axis represent plant size at t; the y-axis represent plant size at t + 1. 
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Figure 8 – IPM kernels from 2013 to 2014 and from 2014 to 2015 (first and second row, respectively). Columns correspond to the six studied populations (see Table 1). 

The x-axis represent plant size at t; the y-axis represent plant size at t + 1. 
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Figure 9 – LTRE outputs. Columns correspond to the six studied populations (see Table 1). For each populations were represented: (a) Sensitivity of the arithmetic mean 

IPM kernel, including seed bank dynamics; (b) difference between the kernels 2013-2014 and 2014-2015; (c) contributions to the difference in λ between the two H. caput-

felis IPMs. The x-axis represent plant size at t; the y-axis represent plant size at t + 1. 
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The slight evidences in the bottom-right region represent the F portion of the kernel. 

The high peak was ca. 22,000 cm
3 

(corresponding to log(10) in Figure 8), indicating that 

individuals of this size contributed most to reproduction. The F component is difficult 

to see in the kernels because its values are very low compared to those from P 

component, which dominate the IPMs. 

Furthermore, it is important to draw attention to the absence of evidence in the 

bottom left area, which represents new-borns entering in the small size class. This 

absence means that only few seedlings were produced and few of this could survive to 

the following year, hence a high mortality of smaller plants. Note that the kernels don’t 

show the discrete stage (seed bank) for display reasons, but it is included in all the 

analyses. 

Furthermore, results showed that high damping ratios were found for both years in 

MO population and for SR and SJ populations in 2014-2015 transition (Table 2). 

Sensitivity of the arithmetic mean IPM kernel included seed bank dynamics; its 

plots showed the importance of the emergence of seeds from the seed bank to λ (Figure 

9a). The sensitivity of the mean IPM to changes in the emergence of seeds from the 

seed bank was high, with values that increase with plant size. Nevertheless, the colour 

graduation of new seeds into the seed bank denotes a low impact on λ. In fact, λ 

calculated considering only the continuous stage (λcontinuous) does not change from λ 

including the seed bank dynamics (λ; Table 2). 

The seed bank dynamics were then cancelled in the kernel of differences (Figure 

9b and 9c), and their contribution to the difference between λ2013-2014 and λ2014-2015 were 

null; those kernels show only the continuous stage. Through those plots it is possible to 

see the differences between the kernels of the two years transitions. Populations whose 

λ2014-2015 was lower than λ2013-2014 (CR, MO and SR) displayed a general difference both 

in survival/growth than in fecundity (Figure 9b). In particular, in the two Alicante’s 

populations (CR and MO) a greater shrinkage of individuals in the second year of study 

was displayed, strongly emphasized in MO population, where the shrinkage involved 

both larger and small plants (whereas, in CR, only medium-large individuals shrink). 

Furthermore, a difference in fecundity between years in CR population was observed, 

with a total absence in elasticity of 2014. The absence of fecundity in the IPM was 

observed in both years in MO populations, in SJ2013-2014 and in CR2014-2015 populations. 

Clearly, the shrinkage of individuals in the second year of study of these two Iberian 

populations could be considered the main responsible of lowest λ. SR population 

represents an exception, because differences between years are due to the high fecundity 

of large plants in the first year. 

In Sardinian populations a similar trend was observed, described by slight changes 

in fecundity of large plants and by a more emphasized growth of both smaller and large 

individuals, especially in CM population, which λ increases slightly in the second year 

of study (whereas ST stayed at equilibrium: λ = 1.01 in both years). 

In addition to CM, SJ was another population whose λ2014-2015 were higher than 

λ2013-2014 ; differences among years are due to a change between stasis of all size 

individuals to a general growth in size involving a higher range of sizes, more marked 

in smaller plants, with shrinkage only in large individuals. 

The contributions to differences in λ (Figure 9c) show how part of the life cycle of 

the study species are responsible for the differences in λ between 2013-2014 and 2014-

2015. In Sardinian populations the higher λ2014-2015 of CM is due to a high growth of 

medium and large individuals (while in the precedent year transition there was more 

shrinkage of plants of the same size). Instead, ST population present demographic 

equilibrium among year transition, but in 2014-2015 the stasis situation of plants 

involves a bigger range of size (Figure 9c). Conversely, in CR and MO there was a high 

shrinkage (of medium-large plants and of smaller plants, respectively), which have a 
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stronger impact on λ with respect to the growth of individuals in the past year transition. 

The same occur in SR population, where the highest shrinkage of medium size plants 

contributed most to the lowest λ2014-2015. Instead, in SJ population the higher λ2014-2015 is 

due to a strong growth of smallest plants with respect to the past year transition. 

 

 

Discussion 

 

Population performance can be assessed using demographic models that result in an 

estimate of the long-term population growth rate (Ramula 2014). In fact, demographic 

census is a powerful tool for detecting and diagnosing decline of plants populations 

(Menges 1990; Keith 2002). Long-lived plant populations may be locally adapted and 

respond differentially to the same overall weather (García 2008). 

Helianthemum caput-felis showed vital rates and population dynamics that 

varying among populations: some populations growth, some seems at equilibrium and 

some decline, showing high variability among them, depending from the zone of origin 

and environmental or stochastic factors. 

Generally, the four basic demographic functions (i.e. growth, survival, probability 

of flowering and fruits output) were size dependent, and highlight that survival increase 

with size, smaller plants are generally more likely to grow than larger individuals and 

larger plants have higher fecundity, as already detected in a previous study at locality 

level on Sardinian populations (Fenu et al. 2015b).  

Growth’s pattern reflects that larger individuals typically acquire more resources 

than smaller conspecifics, which means they have more energy available to spend on 

growth, reproduction and maintenance (Rees et al. 2014). This occurs because, when 

individuals are small, maintenance costs increase slowly with size relative to 

acquisition, resulting in a positive relationship between size and absolute growth rate 

(Rees et al. 2014). Later in life, when individuals are large, maintenance costs increase 

more rapidly with size relative to acquisition, leading to a negative relationship between 

size and growth (Rees et al. 2014). 

Similar patterns were found in others studies on the populations and dynamics of 

cliff-dwelling plants (Silva et al. 2015). Coastal plants are characterised by high local 

persistence (Lavergne et al. 2004; Thompson 2005), extraordinarily long-lived lifespan 

(Larson et al. 2000; García et al. 2002), and unusually stable population sizes (Morris 

and Doak 1998; Picó and Riba 2002; García 2003).  

At regional level, Sardinian populations seems to have greater equilibrium (λ 

closer to 1) than Spanish populations, as demonstrated by the correspondence between λ 

and λS for ST population and a slight increase in CM population over the years, even if 

with values always near 1 (see Table 1). This is probably due to the reached stable 

structure of population, mainly composed from large individuals, which produce more 

fruits per plant, then more seeds per fruit (Fenu et al. 2015b). Moreover, these results 

are in agreement with those obtained in Chapter 2, which underlines that Sardinian 

populations produce less empty fruits per plant compared to Spanish populations.   

Helianthemum caput-felis populations dynamics seem to be in agreement with 

those founds in another Mediterranean coastal species, the narrow endemic Centaurea 

horrida Bad. (Asteraceae), a perennial sea-cliff plant restricted to the North of Sardinia 

and belonging to Habitat Directive (43/92/EEC). As discovered for this species through 

demographic analyses (Pisanu et al. 2012), populations of H. caput-felis are dominated 

by adults, and this, together with the slow growth of the plants (frequency of stasis), 

suggests that this species behaves as a typical long-lived Mediterranean plant: low 

colonization ability (Colas et al. 1997) and high local persistence (Lavergne et al. 2004; 

Thompson 2005; Pisanu et al. 2012). This pattern fortifies the hypothesis that H. caput-
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felis in Sardinia is restricted in two main localities, which constitute “ecological islands” 

(acting as local refuges) in coastal areas strongly modified by human activity (Fenu et 

al. 2015b); over time they have provided stable ecological conditions and thus have 

enabled the persistence of narrow endemic species (Albert et al. 2001).  

Conversely, eastern Iberian and Majorcan populations have a higher variability of 

population growth rates, both among different localities in the same year and different 

years of the same population. The higher λ of MO2013-2014, MO2014-2015 and SJ2014-2015 

populations were strongly influenced by the fecundity parameters that compose the 

elasticity matrix. In fact, there is a systematic variation in elasticity values of life cycle 

stages with population growth rate (de Kroon et al. 2000). Changing vital rate functions 

related to sexual reproduction (flower probability, fruits production and seed 

germination) had the largest impact on λ (Jacquemin et al. 2010). Therefore, a matrix 

with a high λ will likely have higher elasticity values for reproduction elements than a 

matrix for the same species with a low λ (Jongejans and de Kroon 2012). The larger 

sensitivity of population growth rate to changes in growth and survival of adult plants 

than to changes in reproduction is a property shares with many long-lived plants 

(Silvertown et al. 1993). In fact, for long-lived, iteroparous species, fecundity is 

generally less important for population growth than survival (Silvertown et al. 1993; 

Franco and Silvertown 2004; Ramula et al. 2008; Ramula 2014). 

Furthermore, MO population shows a uniform shrinkage of individuals, probably 

due to a more intense fragmentation of the population.  

The predicted stable size distributions of H. caput-felis populations were generally 

skewed heavily towards large adults plants. This indicates that, under deterministic 

conditions, H. caput-felis populations could include larger numbers of individuals with 

a large volume, as Sardinian population. Nevertheless, the predicted stable size 

distribution do not match with the observed size histogram distribution in CR, MO, 

SR2013-2014 and in SJ2014-2015 populations, fact further corroborated by the highs damping 

ratio, which meaning that the dominant stable stage distribution is reached fairly soon.   

It has long been recognized that transient population dynamics greatly differ from 

asymptotic dynamics (Koons et al. 2006; Caswell 2007). Although asymptotic 

perturbation analyses are widely used in demographic studies (Caswell 2001), recently 

there is an increase of interest in transient rather than asymptotic dynamics, and 

transient dynamics are more relevant for what happens in real populations that are never 

in stable state due to stochastic dynamics or disturbances (Jongejans and de Kroon 

2012), hence further analyses are needed. 

In two extreme cases total elasticity was made up almost entirely of contributions 

from stasis transitions: SJ2013-2014 and CR2014-2015 populations (Table 2). In those 

populations fecundity completely fails (F component of elasticity = zero). At low values 

of λ delay mechanisms such as self-loops (stasis) and retrogression prevail at the 

expense of reproductive loops, which become important only at the higher population 

growth rates. These patterns imply that caution should be taken to base management on 

elasticities of a matrix of a single population at a single time, especially if a population 

is declining (Silvertown et al. 1996). In perennial plants, remnant populations with very 

little recruitment may only persist by the survival of some mature individuals (Eriksson 

1996). Such situations would call for measures that enhance successful sexual 

reproduction, i.e. stimulation of life cycle parameters that have low, rather than high, 

elasticities (de Kroon et al. 2000).  

Moreover, in semiarid and arid climates (as in the case of CR population) 

characterized by a high environmental stochasticity, perennial shrubs usually rely on 

their longevity to persist over time (García and Zamora 2003), because the effort 

invested in new plant establishment seems to be very high and the allocation of energy 

to stress tolerance mechanisms is supposed to increase survival but to reduce energy for 
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reproduction (Escós et al. 2000; Aragón et al. 2009). Hence, the different population 

dynamics observed among the analysed localities of H. caput-felis should be correlated 

to particular microclimate and ecological conditions, i.e. the high aridity of CR and the 

sand substrate of SR (Chapter 2), which affects the relationship among plant size and 

vital rates. 

The absence of recruitment is validated by the LTRE analysis. Contributions to 

the difference between λ2013-2014 and λ2014-2015 highlights that the difference in shrinkage 

is the leading cause of the difference in λ in Spanish populations. As demonstrated in a 

recent study analysing vital rates of more than 1,000 plant species (including species 

with complex life-history traits), retrogressive growth (shrinkage) correlates negatively 

with reproductive traits, in agreement with the frequent increase in reproductive output 

with plant size (Salguero-Gómez et al. 2016). 

Considering only the continuous stage, that is, excluding the seed bank stage 

(λcontinuous), population growth rates do not change from the total population growth rate 

λ, except in CR2014-2015 population, where λ continuous had a value inferior to λ. 

Iteroparous perennial plants optimise the conservative strategy, investing in 

vegetative tissues at the expense of reproduction (Wiegand et al. 1995; Wiegand et al. 

2004). If water availability is limited, perennials could fail to survive their first stressful 

period (Sánchez and Peco 2007); hence seed availability and seedling establishment are 

critical for persistence in arid environments. Seed availability limitations are most likely 

to occur at low conspecific densities where suitable sites for germination are plentiful 

(Eriksson and Ehrlen 1992). At high conspecific densities, seedling completion in 

suitable microsites may lead to populations becoming limited by establishment (Maron 

and Gardner 2000), that seems to be the critic stage of this species (Fenu et al. 2015b). 

Furthermore, it must be taken into account the low germination of H. caput-felis (Tébar 

et al. 1997), attributed to physical exogenous dormancy, a widespread trait among the 

Cistaceae (Thanos et al. 1992). 

Lastly, H. caput-felis’ populations have variable demography behaviour, close to 

the equilibrium where the stable size distribution is reached (Sardinian populations), 

while in a slight decline in populations where fecundity is the most important vital rate 

for the population growth rate. 

Finally, this study confirm the general pattern shows within species, under which 

λ over 1 are associated with a higher contribution of sexual reproduction, whereas 

populations with low λ rely more on survival (Oostermeijer et al. 1996; Menges and 

Dolan 1998; Valverde and Silvertown 1998; Jongejans and de Kroon 2005). H. caput-

felis populations in demographic equilibrium, as the Sardinians’, could be locally 

adapted to ecological and microclimate conditions. 

Furthermore, it must be taken into account that it takes some years with transient 

dynamics before asymptotic dynamics are reached (Jongejans and de Kroon 2012), 

hence further analyses are clearly needed, in order to reflect a more realistic situation. 
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Appendix 

 

 
Table 1A – Reproductive values of H. caput-felis calculated in order to estimate the IPM’s 

parameters (fec2, fec3 and fec4). 

 

  

2013 

population 

code 

% 

aborted 

N. 

counted 

fruits 

N. 

aborted 

N. viable 

fruits 

mean seeds 

per fruit 

(fec2) 

estimated 

seed 

bank 

seedlings 
establishment 

(fec3) 

seedling 

survival 

(fec4) 

CM 15.5 10698 1658.19 9039.81 4.07 36792.03 21 0.000570776 0.67 

ST 16 11011 1761.76 9249.24 4.36 40326.69 5 0.000123987 0.8 

CR 22 181 39.82 141.18 3.86 544.95 12 0.022020175 0.83 

MO 37 5551 2053.87 3497.13 4.37 15282.46 0 0 0 

SR 48.89 146 71.38 74.62 4.24 316.39 25 0.079016068 0.72 

SJ 8 1003 80.24 922.76 3.85 3552.63 0 0 0 

  

2014 

population 

code 

% 

aborted 

N. 

counted 

fruits 

N. 

aborted 

N. viable 

fruits 

mean seeds 

per fruit 

(fec2) 

estimated 

seed 

bank 

seedlings 
establishment 

(fec3) 

seedling 

survival 

(fec4) 

CM 14.00 19506 2730.84 16775.16 4.24 71126.68 11 0.000154654 0.82 

ST 17.00 20092 3415.64 16676.36 4.67 77856.50 11 0.000141286 1 

CR 39.33 6798 2673.65 4124.35 3.23 13321.64 10 0.000750658 0.4 

MO 50.00 3259 1629.50 1629.50 4.27 6957.97 0 0 0 

SR 42.86 2584 1107.50 1476.50 4.30 6348.94 57 0.008977877 0.58 

SJ 39.17 1254 491.19 762.81 3.82 2913.93 0 0 0 



 

115 

 

  



 

116 

  



 

117 

CHAPTER 5 

Conservation status at global level of Helianthemum caput-felis 

(Cistaceae), a plant of international interest 
 

 

Introduction  

 

Countries contracting the Convention on Biological Diversity (CBD 1992) and other 

international strategies (e.g., GSPC, EPCS, Planta Europa) are obliged to monitor 

biodiversity in order to protect wild fauna and flora. In particular, in Europe, the 

“Council Directive 92/43/EEC on the conservation of natural habitats and of wild fauna 

and flora” (Habitat Directive, hereafter) and the Natura 2000 network are by far the 

most important conservation efforts implemented to date (e.g., Maiorano et al. 2007, 

2015; Bastian 2013; Pimm et al. 2014; Fenu et al. 2015a). Annex II of Habitat Directive 

lists the “animal and plant species of community interest whose conservation requires 

the designation of special areas of conservation”, and although it is not a conservation 

target list itself, it represents a European list of species for which in situ conservation 

actions should be activated. These conservation measures, such as the protection and 

restoration of natural habitats, are the best suggested methods of preserving plant 

diversity (CBD 1992). The importance of in situ conservation of endangered plant 

species has been highlighted also by the Target 7 of the GSPC for 2020, which 

scheduled that at least 75% of known threatened plant species should be conserved in 

situ (e.g., GSPC 2008; Fenu et al. 2015c; Heywood 2015).  

Monitoring and reporting the conservation status of species listed in the Habitat 

Directive is mandatory for all of the signatory EU Member States (European 

Commission 1992; Rossi et al. 2015; Fenu et al. 2015a, 2015c). Regardless those 

international regulatory requirements, an increasing number of species face risk of 

extinction because they occur in very specific or highly fragmented areas, have a 

reduced number of populations or individuals, or are declining (World Conservation 

Union 1994; Pimm 1995; Novacek and Cleland 2001). The persistence of a population 

depends on a numerical equilibrium over time, whatever the schedules of fecundity, 

recruitment and survival, and the integration of such parameters in simulation models 

allows exploration of their relative importance (Schemske et al. 1994; Caswell 2001; 

Morris and Doak 2002; García 2003; Adler et al. 2014). 

Quantifying the demographic behaviour of a species is a key element for 

understanding its present status and to explore possible scenarios of conservation or 

management (González et al. 2016). Demographic data are necessary to analyse 

species’ vital rates, of which the most strongly correlated with changes in population 

growth rate are often the object of management actions to increase census population 

size (Reed et al. 2009; Johnson et al. 2010; Andrello et al. 2012). Viable populations 

are those that have a suitably low chance of going extinct before a specified future time 

(Morris and Doak 2002). Population viability analysis (PVA) is a modelling tool that 

estimates the future size and risk of extinction for populations (Brook et al. 1997, 2000). 

PVA works by using life history or population growth rate data to parameterize a 

population model that is then used to project dynamics and estimate future population 

size and structure (Ludwig 1999; Akçakaya 2000; Brigham and Thomson 2003; Rueda-

Cediel et al. 2015). However, in real-world populations, vital rates are unlikely to 

remain constant over time, so adding stochasticity (both demographic and 

environmental) into the population models allows more realistic projections; this can be 
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achieved by giving to the vital rate values that at each time step are taken from 

distribution based on mean rate values and process variance (Morris and Doak 2002; 

Mills 2007). Small but stable populations may be at lower risk than larger populations 

subjected to strong sources of variability, so a better approach is to perform analyses of 

population dynamics that can assess the stochastic population growth rate (Morris and 

Doak 2002). 

To develop a conservation strategy for a species, assessment of conservation 

status is the first step (Planta Europa 2008; Fenu et al. 2015c; Rossi et al. 2015). 

Identifying the key traits linked to high extinction risk is critical for predicting future 

declines and provides an opportunity for implementing preemptive conservation 

measures (Cardillo et al. 2006). The most widely known quantitative system of 

classifying imperilled species is the International Union for Conservation of Nature’s 

(IUCN) Red List Categories and Criteria (IUCN 2001), which includes various 

categories and time horizons (in both years and generation time) in its categorization 

system (Mace et al. 2008; Fenu et al. 2011, 2012; Rossi et al. 2014, 2015). In addition, 

the IUCN also considers quantifiable determinants of extinction risk (i.e., population 

trends, population size, and geographic range). In a recent evaluation of endangered 

species categorization systems to determine which had the most desirable 

characteristics, the IUCN categorization system ranked highest (de Grammont and 

Cuarón 2006).  

Geographic range size, and how it changes through time, is one of the 

fundamental ecological and evolutionary characteristics of a species (Gaston 2003). 

Perhaps most immediately, however, range size is a strong predictor of extinction risk 

(Gaston and Fuller 2009). 

The IUCN Red Lists provide reliable and rapid tools to evaluate the extinction 

risk of species (Moreno et al. 2003); IUCN criteria are clearly defined, scientifically 

sound, adaptable from global to local scale and based on quantitative data, which makes 

the Red Lists the most used assessment system all over the world (de Grammont and 

Cuarón 2006; Rodrigues et al. 2006; Hoffman et al. 2008; Rossi et al. 2015). 

Although the evaluation of the conservation status of species listed in the Habitats 

Directive is mandatory for EU member states (Dimopoulos et al. 2005; Iliadou et al. 

2014; Rossi et al. 2015; Fenu et al. 2015c), only in the last decade the efforts to assess 

species conservation status have increased, both at global, regional and local levels 

(e.g., Gargano et al. 2007; Fenu et al. 2011, 2012, 2015c; Rossi et al. 2015). 

The Mediterranean Basin hosts a flora of around 25–35,000 flowering plants and 

ferns (Fenu et al. 2015a) and has been identified as 1 of 34 biodiversity hotspots of the 

world (Mittermeier et al. 2005). The Mediterranean flora shows a high rate of regional 

endemism (close to 60%) of all native taxa being Mediterranean endemics, half of 

which correspond to narrow endemic species (Thompson 2005; Fenu et al. 2015a). In 

this region, rocky habitats shelter many endemic and endangered plant (Domínguez 

Lozano et al. 1996; Médail and Verlaque 1997; Cañadas et al. 2014; Fenu et al. 2014) 

for which demographic data is lacking (e.g., García 2003).  

In addition, several Mediterranean plants show a fragmented distribution, in 

particular those related to coastal environment. Due to its highly fragmented 

distribution, border populations are usually considered more vulnerable and are more 

prone to local extinction because of their isolation and restriction to marginal habitats 

(e.g. Gargano et al. 2007; Del Vecchio et al. 2012; Villellas et al. 2013a, 2013b). In 

recent years, several plants species with peripheral and isolated populations (PIPPs) in 

the Mediterranean Basin that show outlying populations isolated ecologically and 

geographically from the rest of their distribution range have been investigated (e.g., 

Gargano et al. 2007; Del Vecchio et al. 2012; Fenu et al. 2015b). Due to their 

ecological ad genetic importance, as suggested by international organisations (IUCN, 
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European Council), PIPPs should be considered as an important resource for 

biodiversity and thus included in conservation actions (Abeli et al. 2009). 

Helianthemum caput-felis is a coastal species with peripheral and isolated 

populations, distributed throughout the western Mediterranean Basin (south-eastern 

Iberian Peninsula, Majorca, Sardinia and northwest Africa) in several fragmented 

populations (Fenu et al. 2015b and reference therein).  

Helianthemum caput-felis deserves particular attention because it is considered 

the only extant representative of an ancient lineage (Arrigoni 1971; López-González 

1992; Fenu et al. 2015b). This species is particulary interesting because it is protected 

by European and regional (Spanish and Italian) regulations. In fact, it is included in the 

Bern Convention (Convention on the Conservation of European Wildlife and Natural 

Habitats), and in the Habitats Directive; in addition, H. caput-felis is listed as 

Endangered in the European Red List (Bilz et al. 2011) and, at regional level, is 

considered Critically Endangered (CR) in Italy (Fenu et al. 2015b; Rossi et al. 2015) 

and Endangered (EN) in Spain (Bañares et al. 2010). 

Until now, the evaluation of the H. caput-felis’ conservation status carried out 

using IUCN parameters was only based on geographical information. For example, 

Marcer et al. (2013) estimate the EOO and AOO, on the basis of available bibliographic 

and Herbaria records; the results indicate a distribution thresholds compatible with 

Endangered and Vulnerable categories, respectively. However, although local and 

partial studies have been carried out (e.g., Fenu et al. 2015b; Agulló et al. 2010; Rossi 

et al. 2015), no data at global level is actually available for this priority interest species 

in Europe. 

The main aim of this study was to detect the comprehensive assessment of H. 

caput-felis at global scale using distributive data and population dynamics models. 

Particularly, the objectives of this study were: 1) to determine species distributions by 

analyse the populations, 2) to quantify population sizes through censuses and to 

calculate population trends, 3) to identify the main threat to its persistence in natural 

habitats, 4) to assess the global status of H. caput-felis, and 5) to propose possible 

conservation measures in order to preserve the persistence of those populations or 

reduce the threats impact. 

 

 

Materials and methods 

 

Study species  

Helianthemum caput-felis Boiss. is a long-lived half shrub tall 35(50) cm. Its flowers 

are hermaphroditic, and have a short lifespan (3–4 days, Rodríguez-Pérez 2005). Based 

on studies carried out on some Spanish and Sardinian populations, the flowering period 

is from March to June, and the fruiting season runs from late April to beginning of 

August (Chapter 1). Fruits are capsules that detach at maturation, and seed germination 

takes place in autumn, at the onset of the rainy season (Rodríguez-Pérez 2005; Fenu et 

al. 2015b and references therein; Chapter 1).  

The life cycle of H. caput-felis includes a continuous stage, in which it grows and 

reproduces, combined with a discrete stage, with seeds that can enter a permanent soil 

seed bank or germinate the next spring after dispersion (Chapter 3). 

From an ecological point of view, H. caput-felis is a termophilous plant that 

preferably grows in coastal garrigues or scrublands under the direct influence of the sea, 

mostly on calcareous rocky cliffs (0-200 m a.s.l.); peculiar populations also grow on 

different habitats, such as sand dunes (Majorca), rocky slopes bordering inland ravines 
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(Melilla) or, rarely, in open wooded areas (Fenu et al. 2015b and references therein; 

Chapter 1).  

Data collection 

The geographic distribution of H. caput-felis was verified over three years (2012–2015) 

by numerous field surveys in the localities for which herbarium specimens and 

bibliographic references were available (Arrigoni 1971; Fenu and Bacchetta 2008; 

Agulló et al. 2010; Fenu et al. 2012b). In particular, a preliminary herbarium analysis 

was carried out in the main museum in the W-Mediterranean Basin (CAG, SS, SASSA, 

VAL, HJBS, SEV, GDA, MGC, BC, MA, MPU, P, AL). 

A limit of 1 km as crow flies was used to consider two (or more) localities as 

geographically separated. In addition, all sites showing suitable ecological conditions 

along the Mediterranean coast of Sardinia, Balearic Islands (Majorca), Mediterranean 

Spanish and Moroccan coast were surveyed; only for Algeria’s coast fields surveys 

were not carried out, due to the problematic political and social situation. 

For each locality, where the plants were found, the geographic limits were 

mapped using a global positioning system, and several ecological traits (e.g. coordinate, 

altitudinal range, slope, aspect and habitat type according to the Habitats Directive) 

were noted.  

The major threats to H. caput-felis were determined through field observations 

and categorised following the IUCN Threats Classification Scheme (version 3.2; IUCN 

2012).  

The demographic trend was based on results of the data presented in Chapter 3. 

Moreover, data taken from six localities were chosen in order to perform more detailed 

demographic surveys: Capo Mannu and Su Tingiosu in Sardinia (Italy), Cabo Roig and 

Moraira in the west Iberian coast, and Sa Ràpita and Colònia de Sant Jordi in south 

Majorcan coast. In each studied locality, demographic data at plant level were collected.  

The selected localities included all ecological situations in which the plant grown. 

Demographic analyses started in 2013, considering a total of 645 plants, and finished in 

2015, year in which 745 plants were surveyed (see Chapter 3 and 4 for details). 

All studied plants were counted, marked and measured, in order to recorder 

survival, morphological (height, maximum and minimum diameter) and reproductive 

traits (number of flowers and fruits per plant) for each plant, including seedlings.  

Over the study period, surveys took place at least thrice yearly, following 

Jacquemyn et al. (2010). In early March, all sites were visited a first time for locating 

all previously mapped individuals and mapping new seedlings. During the flowering 

peak (April-May), when all plants are fully grown, site were visited a second time, in 

order to measure individuals (height, minimum and maximum diameter were taken), 

count the number of flowers per plant and check for new occasional individuals, that 

were added in the data set. During the fruiting peak (latest May-early June) the third 

survey was carried out in all populations, to count the number of fruits per plant. The 

current total population size of H. caput-felis was considered large enough to expect that 

demographic stochasticity would not play an important role (García 2003). 

 

Data analyses 

The areas and perimeters of the surveyed localities where the plants were found were 

calculated using ArcView v. 3.2 (ESRI, Redlands, CA, USA). The distance between 

each locality and all the others was calculated in order to obtain the mean distance 

among localities; in this analysis, all available localities (including Herbaria and 

bibliographic data) were considered. 

For population and demographic analyses, only confirmed localities were 

analysed. 
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Plant density was obtained during each monitoring using a variable number of 

homogeneously distributed sampling plots (2 × 1 m), in which we recorded the number 

of individuals in order to estimate population size.  

The population size was analysed considering only the localities confirmed by this 

research (through field trips, in which the plants’ number or density were determined). 

Conversely, in the localities confirmed only by bibliography, this research could neither 

confirm nor exclude the presence/absence of the study species. 

The population size (including only mature individuals) was considered as d × A × 

p, where d is an estimate of population density, A is an estimate of area, and p is an 

estimate of the proportion of individuals that are mature (sensu IUCN 2014), and it was 

estimated in each investigated locality. 

In order to understand the frequency classes of population size and the 

omogeneity level of distribution whitin the localities, four classes were a priori defined: 

1) 1–100, 2) 101–2000, 3) 2001–5000 and 4) >5000 plants per locality.  

 

Extinction risk 

In order to characterize the population dynamics of H. caput-felis, a size-structured 

matrix model was constructed (Caswell 2001), from which demographic vital rates, 

their relative importance and the quasi-extinction risk were calculated. Although 

integral projection models (IPMs) better perform data of species with restricted range 

and small demographic data sets (< 300 individuals; Ramula et al. 2009; Chapter 4), the 

R package “IPMpack” actually does not permit to calculate the quasi-extinction risk 

probability. For this reason, matrix projection models (MPMs) were performed, using 

the R package “popbio” (Stubben and Milligan 2007), the outputs of which are 

therefore comparable to IPM’s outputs (Chapter 3).  

Population viability and the stochastic rate of increase (λS) were calculated both 

for the overall population and for the six selected populations, separately, due to the 

observed wide range of the size population. Size stage based matrices, the principal tool 

for assessing the viability of structure populations (populations in which individuals 

differ in their contributions to population growth), were used (Chapter 3). They divides 

the population into discrete classes and tracks the contribution of individuals in each 

class at one census to all classes in the following census (Morris and Doak 2002). 

Lefkovitch matrices based on the classification of individuals into life stages were used 

(Caswell 2001).  

The life cycle of H. caput-felis was classified into four developmental stages 

based on fields’ observations. Considering that the plant size was positively correlated 

to the reproductive output (see Chapter 1), all plants were grouped in classes 

considering the plant volume only, which was the variable that best explained the vital 

rates of this species (Fenu et al. 2015b; Chapter 3). The four size classes were: (1) 

plants with a volume <5 cm
3
 (seedling, hereafter), (2) flowering and fruiting plants with 

a volume of 5.1–500 cm
3
 (small, hereafter), (3) adults plants with a volume of 500.1–

5000 cm
3
 (medium, hereafter), and (4) large adults plants (large, hereafter). The seed 

bank stage was omitted from those analyses, due to the low impact in the population 

growth rate founded in previous studies (Chapter 3).  

An idealized case in which the population size changes according to:  

 

𝑁𝑡+1 = 𝜆𝑡𝑁𝑡 
 

where Nt+1 is the population size in year t and λt is the finite rate of increase, were 

analysed (Morris and Doak 2002).  

Stochastic population growth rates (λS) were calculated with Tuljapurkar’s 

approximation (Tuljapurkar 1982) for realized population growth in the presence of 
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independently and identically distributed environmental fluctuations (Crone et al. 

2013), which takes into account how stochastic variation in the matrix elements affects 

the long-term stochastic growth rate (Caswell 2001). It can be more accurate in cases 

where there is covariation between matrix elements within the same year but may not be 

as accurate when there is a high level of temporal variation (Morris and Doak 2002). 

Stochastic population growth rates (λS) were calculated by randomly selecting one of 

three annual matrices with equal probability for each of 1000 model iterations, and 

taking the geometric mean of the obtained annual growth rates (Caswell 2001; Morris 

and Doak 2002). Than, to estimate sampling errors in λs, resampled the data, a bootstrap 

vector of the same sample size was generated, and λ and bias-corrected 95% confidence 

intervals (CI) were calculated (Schleuning and Matthies 2009). Stochastic lambdas 

provide a more conservative risk assessment than those estimated from mean matrices 

for species in fluctuating environments (Menges 2000).  

Damping ratio (ratio between the dominant eigenvalue and the second highest 

eigenvalue) of a transition matrix (Caswell 2001), which represents a measure of the 

speed with which the population converges to stability, was also calculated; this 

parameter was proportional to generation time (T; Franco and Silvertown 2004; Ezard et 

al. 2010), that represents the time required for the population to increase by a factor of 

R0 (Coale 1972; Koons et al. 2005; Caswell 2001; Williams et al. 2011; IUCN 2014). 

The net reproductive rate (R0), which is the number of offsprings produced on average 

by an individual over its lifespan (Metcalf et al. 2014), or, in other words, the measure 

of mean lifetime reproductive output, was also extracted from the matrices, to calculate 

T. It represents the global population growth rate per generation (not per time unit), and 

it is an indicator function for population growth, in which population growth is positive 

if, and only if, R0>1 (Caswell 2011). Generation time (T) values for the global 

population of H. caput-felis were calculated both with IPM than with MPM methods 

(see Chapter 3), in order to carry out a most accurate extinction risk analysis.   

Extinction probabilities (Pe) were calculated for 100 years as the proportion of 500 

model iterations where the quasi-extinction threshold was reached (Van der Meer 2014). 

Matrices were selected at random with replacement (each matrix had an equal 

probability of selection; Morris and Doak 2002). A quasi-extinction threshold of 20 

individuals was a priori designated to help minimize demographic stochasticity 

associated with small population size (Morris and Doak 2002). The number of surveyed 

plants (i.e., global population in this study) in 2013 was used as the population vector 

(sensu Morris et al. 1999) and consisted of 40 seedlings, 186 juveniles, 210 small 

adults, and 209 large adults.  

Furthermore, in order to assess the quasi-extinction risk, the λs were imposed by 

multiplying the estimated global population growth rate with four populations’ size 

classes, in order to create different quasi-extinction scenarios in relation to the 

population sizes, and to understand which population size presented a decline. 

Moreover, the same method was performed in order to calculate the extinction 

risk of the six selected localities, representative of the high eterogeneity of size 

population classes and different habitat types. 

Demographic analyses and the estimation of quasi-extinction risk were performed 

using the “popbio” package (Stubben and Milligan 2007), based upon methods 

described in Caswell (2001) and Morris and Doak (2002), in R version 3.1.2 (R Core 

Team 2014). 

 

IUCN assessment 

For the risk assessment, IUCN categories and criteria version 3.1 (IUCN 2012b) and the 

most recent guidelines for its application (IUCN 2014) were applied. In particular, three 

IUCN criteria (A, B and E) were used. The A criterion was used to evaluate the size 
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population reduction, in particular considering the reduction decline in AOO or EOO. 

The actual geographic range size (B criterion) was calculated both with the EOO than 

the AOO (B1 and B2, respectively). The E criterion is based on quantitative analysis of 

extinction risk in the wild (e.g., Population Viability Analysis; IUCN 2012a). 

Both the EOO and AOO analyses (AOO, defined as the area within the extent of 

occurrence, EOO, that is occupied by a taxon, where EOO is defined as the area 

contained within the shortest continuous imaginary boundary that can be drawn to 

encompass all the known sites of occurrence of a taxon, excluding cases of vagrancy; 

IUCN 2001) were based on a geo-database (including all literature/herbarium records as 

well as new records from our field surveys) illustrating current global species 

distribution. In estimating EOO, firstly a minimum convex polygon (also called convex 

hull), including all the sites of occurrence at a given time, were drew. It is the smallest 

polygon in which no internal angle exceeds 180 degrees and which contains all sites. 

Then, a large portion of obviously unsuitable areas were excluded, by deriving the 

correspondent α-hull through the following steps: a Delauney triangulation (sensu 

Burgman and Fox 2003) was created by drawing lines joining the points, constrained so 

that no lines intersected between points; then, the lengths of all of the lines were 

measured, and the average line length was calculated; then, all lines that are longer than 

a mulitple (α = 2) of the average line length were deleted, and, finally, the areas of 

habitat were calculated by summing the areas of all remaining triangles (Burgman and 

Fox 2003; Gargano et al. 2007). 

According to the IUCN suggestion, a grid of 2 × 2 km generated by the ESRI® 

ArcGis™ 9.2 package and superimposed onto a map of the West Mediterranean Basin 

was ad hoc created to assess the AOO. All of the parameters required by the IUCN 

protocol (i.e., EOO, locations and decline rate) and conservation status were assessed 

following the latest guidelines of the IUCN (2014). 

Population trends (i.e., decline, equilibrium or growth of a population) of H. 

caput-felis population were calculatedat global and locality levels basing on the PVA 

abovementioned.  

In order to evaluate the conservation status of H. caput-felis following the A 

criterion, the difference in time of AOO and EOO were analysed, while the actual EOO, 

combined with the population trends, was used to follow the B criterion.  

Moreover, the PVA and the estimated quasi–extinction risks were used to follow 

the E criterion. Than, as suggested in the IUCN’s guidelines (2014), all three global 

assessments (10 years or three generations, 20 years or five generations and 100 years) 

for taxa with a generation length less than 20 years, such as H. caput-felis, are needed. 

Hence, the generation time (T), considered a priori equivalent to the “generation 

length” definition in IUCN (2014), was multiplied and related with the probability of 

extinction (Pe), in order to applicate the criterion E. 

 

 

Results 

 

A total of 50 localities for H. caput-felis along the Mediterranean coastal environments 

were reported. The presence of H. caput-felis was confirmed in 43 localities, 33 of 

which confirmed in the field, while the remaining 10 confirmed by bibliography or 

Herbaria speciemens (Table 1). 

Field surveys in Cala Conta (Ibiza) and Maioris (Majorca) were unsuccessful; 

hence, in those localties, the species was considered as “not retrieved”, but not 

“extinct”, due to the precautionary approach. In two localities (Santa Pola in Spain and 

Seu in Sardinia) this species was certainly extinct in the wild. The three Algerian 
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localities still remain uncertain, due to the old age of the Herbarium specimens found in 

Oran museum (1918–1930; Brahim Zeineb 2012; Battandier and Trabut 1893). 

The species grows in three localities in Italy, 31 in Spain (seven in Majorca, eight 

in north Alicante’s coast and 14 in south Alicante’s coast, two in Melilla), nine in 

Morocco and three documented in the Algerian coast (Table 1 and Figure 1). 
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Table 1 – Investigated localities within the distribution range of H. caput-felis. Plants number were counted (superscript C) or estimated (superscript E). N.D.: not 

determined data.  

Country, Region Locality (Municipality) 
Area 

(ha) 

Altitudinal range 

(m, min-max) 

Plant density 

(plants/m2) ± SD 
No. plants 

Seedlings 

presence 
Situation Source 

Italy, Sardinia Is Arutas (Cabras) 0.001 5 - 15 N.D. 24C N.D. confirmed this research 

Italy, Sardinia Su Tingiosu – Porto Suedda (Cabras) 12.743 5 - 25 4.83 ± 2.42 615491.73E yes confirmed this research 

Italy, Sardinia Seu (Cabras) 
 

18 
   

extinct this research 

Italy, Sardinia Capo Mannu (San Vero Milis) 17.868 5 - 55 4.63 ± 2.25 827306.92E yes confirmed this research 

Spain, Majorca Punta es Bauç (Santanyí) 
 

8 - 10 N.D. 20C N.D. confirmed this research 

Spain, Majorca Colònia de Sant Jordi - Playa del Puerto (Ses Salines)  5.533 3 - 8 1.58 ± 0.74 87422.98E no confirmed this research 

Spain, Majorca Colònia de Sant Jordi - Es Trenc (Ses Salines) 0.493 2 - 4 3 ± 1.41 14784E yes confirmed this research 

Spain, Majorca Sa Ràpita - backdune (Campos) 10.495 2 7.8 ± 5.57 818594.4E yes confirmed this research 

Spain, Majorca Sa Ràpita - nautic club (Campos) 0.416 3 - 6 9.6 ±  1.85 39945.6E yes confirmed this research 

Spain, Majorca Cap Blanc (Llucmajor) 101.359 90 - 110 2.55 ± 1.14 2584646.85E yes confirmed this research 

Spain, Majorca Cala Pi  15- 20 N.D. 50 E N.D. confirmed this research 

Spain, Majorca Maioris (Llucmajor) 
 

 
   

not retrieved this research 

Spain, Ibiza Cala Conta (San José) 
 

 
   

not retrieved this research 

Spain, Alicante Cap d'Or (Teulada) 0.21 40 - 50 N.D. 20 E N.D. confirmed this research 

Spain, Alicante Cala del Portitxolet (Teulada) 1.038 9 - 14 1.41 ± 0.86 14630.16E no confirmed this research 

Spain, Alicante L'Andragó – Les Playetes (Teulada) 0.166 6 - 12 1.6 ± 0.54 2662.4E no confirmed this research 

Spain, Alicante Cala els Pinets, Cala Lobella, Cala Advogat (Benissa) 2.203 10 - 20 2.9 ± 0.74 63895.7E yes confirmed this research 

Spain, Alicante Cala Fustera (Benissa) 0.182 7 - 11 1.2 ± 0.57 2180.4E no confirmed this research 

Spain, Alicante Cala de les Bassetes (Benissa) 0.869 6 - 20 2.8 ± 1.04 24337.6E yes confirmed this research 

Spain, Alicante Cala de la Calalga (Calpe) 0.129 6 - 10 1.5 ± 0.79 1941E yes confirmed this research 

Spain, Alicante Calpe  (Calpe) 0.034 5 - 6 3 ± 1.37 1008E yes confirmed this research 

Spain, Alicante Santa Pola (Santa Pola) 
 

 
   

extinct this research 

Spain, Alicante Cabo Cervera (Torrevieja) 1.676 5 - 14 1.1 ± 0.65 18438.53E no confirmed this research 

Spain, Alicante Torrevieja (Torrevieja) 0.039 2 - 3 1.4 ± 0.82 546E no confirmed this research 
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Spain, Alicante Cala Mosca and Punta Prima (Orihuela) 0.155 13 N.D. N.D. N.D. confirmed Padilla et al. 2013 

Spain, Alicante Rambla de las Estacas (Orihuela) 0.195 8 - 10 N.D. 1C N.D. confirmed Molina et al. 2011 

Spain, Alicante Cala de las Estacas (Orihuela) N.D. 0 - 3 N.D. N.D. N.D. confirmed Molina et al. 2011 

Spain, Alicante Barranco de la Cala del Capitan (Orihuela) 0.167 15 - 20 N.D. N.D. N.D. confirmed Molina et al. 2014 

Spain, Alicante Casa de Los Leoncios (Orihuela) 0.381 15 - 20 N.D. N.D. N.D. confirmed Molina et al. 2014 

Spain, Alicante Cala Mosca - Playa Flamenca (Orihuela) 9.723 1 - 9 2 ± 0 194461.4E yes confirmed this research 

Spain, Alicante Cabo Roig (Orihuela) 0.706 3 - 7 3.5 ± 1.67 24703E no confirmed this research 

Spain, Alicante Punta de la Glea (Orihuela) 4.179 5 - 17 3.61 ± 3.53 150865.51E yes confirmed this research 

Spain, Alicante Dehesa de Campoamor (Orihuela)  0.017 5 - 10 1.5 261E no confirmed this research 

Spain, Alicante Punta de la Horadada (Pilar de la Horadada) N.D. 0 - 5 N.D. N.D. N.D. confirmed Molina et al. 2014 

Spain, Alicante Mil Palmeras (Pilar de la Horadada) 0.178 3 - 7 7.66 ± 1.53 13596.5E no confirmed this research 

Spain, Alicante Rio Mar (Pilar de la Horadada) 0.377 0 - 2 3.66 ± 1.53 13812.84E no confirmed this research 

Spain, Nador Barranco del Quemadero (Melilla) 36.908 110 2.4 ± 1.56 885784.8E yes confirmed this research 

Spain, Nador Barranco del Nano (Melilla) 24.630 99 3.2 ± 1.04 365040E yes confirmed this research 

Morocco, Nador near Beni Chiker (Beni Chiker) N.D. N.D. N.D. N.D. N.D. confirmed this research 

Morocco, Nador Taxdirt - Cabo de Tres Forcas (Beni Chiker) 115.639 100 - 210 3.2 ± 1.56 506958.35E yes confirmed this research 

Morocco, Nador near Beni Sidel (Beni Sidel) N.D. 200 N.D. 30C N.D. confirmed this research 

Morocco, Nador road to Cap de Trois Fourches (Cap de Trois Fourches) N.D. N.D. N.D. N.D. N.D. confirmed SEV Herbarium 

Morocco, Nador Douar Ighzar -n- Yamrabthan (Douar Ighzar -n- Yamrabthan) N.D. N.D. N.D. N.D. N.D. confirmed SEV Herbarium 

Morocco, Nador Ras El Má (Ras Kebdana) 4.211 50 2.3 ± 1.20 96855.3E yes confirmed this research 

Morocco, Nador Ras El Má (Ras Kebdana) 3.686 52 2.3 ± 1.20 84771.1E yes confirmed this research 

Morocco, Nador coast between Azzanene and Sidi Messaous (Sidi Messaoud) N.D. N.D. N.D. N.D. N.D. confirmed SEV Herbarium 

Morocco, Nador Târia n Tît (Charrana) N.D. N.D. N.D. N.D. N.D. confirmed SEV Herbarium 

         

Algeria, Oran Cabo Lindlés (Aïn El Turk) N.D. 90 N.D. N.D. N.D. undetermined 
Taieb Brahim Zeineb (2012), MA 

Herbarium 

Algeria, Oran Cap Falcon (Aïn El Turk) N.D. 50 N.D. N.D. N.D. undetermined Battandier and Trabut (1893) 

Algeria, Oran Aïn El Turk (Aïn El Turk) N.D. 75 - 80 N.D. N.D. N.D. undetermined 
Taieb Brahim Zeineb (2012), 

Battandier and Trabut (1893) 
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Figure 1 – H. caput-felis’ distribution map. The circle size is proportionally to the number of 

confirmed locations. 

 

 

 
Figure 2 – Frequency of four size population’s classes within the global confirmed H. caput-felis 

distribution. Class 1: ≤ 100 plants; class 2: 101 – 2000 plants; class 3: 2001 – 5000 plants and class 

4: > 5000 plants. N.D.: localities whitout data (not confirmed or confirmed only in bibliography; see 

Table 1 for details). Extinct, not retrieved and uncertain localities were excluded from this analysis.  
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Figure 3 – Threats frequency for H. caput-felis along its distribution range following the IUCN 

Threat Classification Scheme (IUCN 2012); different colors highlight the number of localities 

affected by a single threat in Italy, Spain and Morocco.  

 

Helianthemum caput-felis distribution was centred in the westernmost part of the 

Mediterranean Basin, and, in particular, along the eastern Iberian coasts. This plant 

reached the eastern limit of distribution in Su Tingiosu (Sardinia, Italy), the northern in 

Capo Mannu (Sardinia, Italy), the western in Beni Chiker and the southern in Beni Sidel 

(Morocco; Figure 1). The innermost locality where H. caput-felis grew is near Beni 

Sidel, in Morocco (3.44 km far from the coast line). 

The mean distance among localities was 392.28 km, while the distances between 

each locality and the others were showed in Table 1A. 

The altitudinal range of H. caput-felis varied from the sea level to a maximum of 

210 m a.s.l. (Taxdirt, Morocco), in population generally located on variable slope of 0–

45°. The localities surface was also highly variable, ranging from 10 m
2
 to 115.64 ha (Is 

Arutas in Sardinia and Taxdirt in Morocco, respectively), while Cap Blanc (Majorca, 

Spain) represents the second biggest locality (101.36 ha). 

The mean plant density was 3.19 ± 2.13 plants/m
2
, and it varied from 1.10 ± 0.65 

plants/m
2
 (Cabo Cervera, south Alicante) to 9.6 ± 1.85 plants/m

2
 (Sa Ràpita, Majorca). 

According to the classification adopted in this study, the estimate size population 

varied considerably among localities (Figure 2), from one to ca. 2,6 million plants 

(Rambla de las Estacas in sout Alicante and Cap Blanc in Majorca, respectively). The 

majority of localities (63.64%) fall into the fourth class (> 5000 plants), followed by 

localities into the first class (18.18%; ≤ 101 plants); only the 6.06% of localities fall into 

the third class (2001–5000 plants; Figure 2). 

The populations’ structure was mainly characterised by adult plants (reproductive 

plants), and seedlings were observed only in the 63% of the total of investigated 

localities. No correlation between seedlings presence (and abundance) and population 

size was observed (Table 1). 

At global level, the main threats affecting the persistence of H. caput-felis 

localities were recreational activities (code 6.1), observed in 19 localities (57.58% of the 

total), followed by housing and urban areas (code 1.1, 45.45%) and tourism and 

recreation areas (code 1.3, 36.36%; Figure 3). Invasive alien species (code 8.1), such as 

Carpobrotus sp., Agave sp., Acacia sp., and Ricinus communis L., roads (code 4.1) and 

landslides (code 10.3) represented also important treaths, being present in 30.30% and 

24.24% of the localities (Figure 3 and 4).  
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Figure 4 – Threats affecting the persistence of H. caput-felis along its distribution range; a) road in 

Cap Blanc (Majorca, Spain); b) a biker in Su Tingiosu (Sardinia, Italy); c) houses in Sa Ràpita 

(Majorca, Spain); d) houses and invasive species in Colònia de Sant Jordi (Majorca, Spain); e) 

bulldozers removing Posidonia oceanica banquettes removal in Colònia de Sant Jordi (Majorca, 

Spain); f) garbage in Ras el Ma (Ras Kebdana, Morocco); g) grazing in Su Tingiosu (Sardinia, 

Italy); h) landslides in Su Tingiosu (Sardinia, Italy). 
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At regional level, the Spanish localities were more exposed to threats than the 

other regions. In Sardinia, stochastic events (i.e. landslides) and human–relacted factors 

(i.e. invasive species, recreational activities, wood plantation and agriculture) 

represented the main threats to the persistence of H. caput-felis localities, while in Spain 

the main threats were related to recreational activities.  Morocco’ localities showed a 

different situation from the European one, as the garbage and wood plantations 

represented the main pressure (Figure 3 and 4).  

The presence of the parasitic plant Cytinus hypocistis (L.) L. could be considered 

a negative factor for H. caput-felis, as well as the high presence of empty fruits, in 

particular in Spanish populations. 

 

Global population demography 

Demographic parameter of H. caput-felis were summarised in Table 2. The stochastic 

population growth rate of H. caput-felis was 0.97, which highlighted an overall 

population decline rate of 3% (Table 2). The analysis, at population level, showed 

stochastic populations growth rates which varied from 0.77 (CR) to 1.01 (CM and SR; 

Table 2).  

The probability of reaching a quasi-extinction threshold (20 individuals) based on 

500 iterations of population growth over 100 years generate the simulated cumulative 

distribution functions showed in Figure 5. From a starting population size of 645 plants, 

the probability of hitting a threshold density of 20 individuals reaches a value of 0.1 

after only ca. 75 years, a value of 0.5 after ca. 90 years and the 0.85 after ca. 100 years; 

according to this simulation, the 100% probability of quasi-extinction risk will be 

reached in 130 years. 

 

 
Table 2 – Parameters extracted from matrix population models (MPMs) of H. caput-felis for the 

two years transitions: projected deterministic population growth rate (λ), deterministic population 

growth rate of the mean projected matrix (λM), stochastic population growth rate (λS) with 

confidence intervals at 95%, damping ratio (dr) and probability of extinction (Pe) of six localities: 

Capo Mannu (CM), Su Tingiosu (ST), Cabo Roig (CR), Moraira (MO), Sa Ràpita (SR), Colònia de 

Sant Jordi (SJ) and the overall population (GLOBAL). 

 
λ λ

M
 λ

S
 d

r
 P

e
 (time) 

 
2013-2014 2014-2015 

  
2013-2014 2014-2015 

 

CM 0.97 1.05 1.01 
1.01  

[1.010 - 1.010] 
1.29 1.45 - 

ST 0.99 1.00 1.00 
1.00  

[1.001 - 1.002] 
1.37 1.39 - 

CR 1.00 0.60 0.79 
0.77  

[0.767 - 0.771] 
1.05 1.16 

100 

(in 16 years) 

MO 1.00 0.86 0.87 
0.93  

[0.933 - 0.934] 
1.33 1.11 

100 

(in 10 years) 

SR 1.08 0.94 1.02 
1.01  

[1.013 - 1.013] 
1.28 1.26 - 

SJ 1.00 1.00 0.96 
1  

[1-1] 
1.10 1.14 

100 

(in 13 years) 

GLOBAL 
1.03  

[1.002 - 1.054] 
0.92  

[0.891 - 0.951] 
0.98 

0.97 

[0.973 - 0.976] 
1.37 1.33 

85 

(in 100 years) 

 

 



 

131 

 

Figure 5 – Simulated cumulative distribution functions for the time to reach a quasi-extinction 

threshold of 20 individuals for the global monitored population of H. caput-felis, starting at 645 

individuals. a) three generations, b) five generations, c) three generation basing on generation time 

calculated with MPM. 

 

 
Figure 6 – Simulated cumulative distribution functions for the time to reach a quasi-extinction 

threshold of 20 individuals for three H. caput-felis’ populations: Cabo Roig (CR), Moraira (MO) 

and Colònia de Sant Jordi (SJ). a) three generations, b) five generations, c) three generations based 

on generation time calculated with MPM. 

 

 
Figure 7 – Simulated cumulative distribution functions for the time to reach a quasi-extinction 

threshold of 20 individuals for two scenarios of H. caput-felis’ populations (100 and 2000 

individuals, respectively). 
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Helianthemum caput-felis’ generation time (T) extracted from the global IPM was 

14.61 years in 2013–2014 and 17.33 years in 2014–2015, that covers a mean period of 

time of 15.97 years. Consequently, three generations for this plant last 47.91 years, 

which correspond to none extinction risk (see line a in Figure 5), and five generations 

(79.85 years) correspond to an extinction probability of ca. 30%. The generation time 

extracted from the MPM was 32.44 years in 2013–2014 and 24.43 years in 2014–2015. 

Considering the MPM mean generation time (28.44 years), three generations involve a 

period of 85.31 years, which correspond to a risk of quasi-extinction of ca. 35% (see 

line c in Figure 5).  

At local level, only Cabo Roig (CR) and Moraira (MO) show a stochastic lambda 

< 1, but Colònia de Sant Jordi (SJ) too face risk of extinction, due to the absence of 

seedlings (Table 2). In particular, the quasi-extinction risk analyses showed that CR, 

MO and SJ will be extinct in 16, 10 and 13 years, respectively (Figure 6 and Table 2). 

The four quasi extinction risk scenario’s models calculated for the four size 

population classes showed that one class (N < 100 individuals) achieved the 100% 

quasi–risk extinction probability before 100 years (67 years, Figure 7). The class two 

(101–2000 individuals) achieved the quasi–extinction probability of 20% in 100 years 

(and the 100% in 160 years, Figure 7). Only in the classes three and four (2001 – 5000 

and N > 5000 plants, respectively) sites faced no high risk of extinction according to 

this models; in fact, localities in class three and four will not reach populations sizes of 

20 or fewer individuals in 100 years. The third class (2001–5000 plants) achieved the 

100% probability of extinction in ca. 180 years (data not showed). 

The extinction probability according to the four scenario models of each locality 

where H. caput-felis was confirmed was reported in Table 3. 

The models’ outputs showed a general trend which highlights that, of 33 

confirmed localities, six will be extinct in 10 years, while 27 will persist more than 20 

years; finally, for 10 localities it was not possible to estimate the extinction risk with 

this method, due to the absence of data about the size populations. No locality fell into 

the temporal limit of 20 years. 
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Table 3 – Probability of extinction of H. caput-felis localities, based on the four scenarios outputs of 

population size classes (1) 1–100, 2) 101–2000, 3) 2001–5000 and 4) >5000 individuals per locality. 

Cross symbols indicate extinction, while tick symbols indicate localities which will survive over the 

correspondent time threshold.  

Country, 

Region 
Locality (Municipality) Situation No. plants Class 

Years 

≤10 ≤20 > 20 

Italy, Sardinia Is Arutas (Cabras) confirmed 24C 1 ×   
Italy, Sardinia 

Su Tingiosu – Porto Suedda 

(Cabras) 
confirmed 615491.73E 4 

  
  

Italy, Sardinia Capo Mannu (San Vero Milis) confirmed 827306.92E 4 
  

  

Spain, Majorca Punta es Bauç (Santanyí) confirmed 20C 1 ×   
Spain, Majorca 

Colònia de Sant Jordi - Playa del 

Puerto (Ses Salines) 
confirmed 87422.98E 4 

  
  

Spain, Majorca 
Colònia de Sant Jordi - Es Trenc 

(Ses Salines) 
confirmed 14784E 4 

  
  

Spain, Majorca Sa Ràpita - backdune (Campos) confirmed 818594.4E 4 
  

  

Spain, Majorca Sa Ràpita - nautic club (Campos) confirmed 39945.6E 4 
  

  

Spain, Majorca Cap Blanc (Llucmajor) confirmed 2584646.85E 4 
  

  

Spain, Majorca Cala Pi confirmed 50 E 1 ×   
Spain, Alicante Cap d'Or (Teulada) confirmed 20 E 1 ×   
Spain, Alicante Cala del Portitxolet (Teulada) confirmed 14630.16E 4 

  
  

Spain, Alicante L'Andragó – Les Playetes (Teulada) confirmed 2662.4E 3 
  

  

Spain, Alicante 
Cala els Pinets, Cala Lobella, Cala 

Advogat (Benissa) 
confirmed 63895.7E 4 

  
  

Spain, Alicante Cala Fustera (Benissa) confirmed 2180.4E 3 
  

  

Spain, Alicante Cala de les Bassetes (Benissa) confirmed 24337.6E 4 
  

  

Spain, Alicante Cala de la Calalga (Calpe) confirmed 1941E 2 
  

  

Spain, Alicante Calpe  (Calpe) confirmed 1008E 2 
  

  

Spain, Alicante Cabo Cervera (Torrevieja) confirmed 18438.53E 4 
  

  

Spain, Alicante Torrevieja (Torrevieja) confirmed 546E 2 
  

  

Spain, Alicante Rambla de las Estacas (Orihuela) confirmed 1C 1 ×   
Spain, Alicante 

Cala Mosca - Playa Flamenca 

(Orihuela) 
confirmed 194461.4E 4 

  
  

Spain, Alicante Cabo Roig (Orihuela) confirmed 24703E 4 
  

  

Spain, Alicante Punta de la Glea (Orihuela) confirmed 150865.51E 4 
  

  

Spain, Alicante Dehesa de Campoamor (Orihuela) confirmed 261E 2 
  

  

Spain, Alicante Mil Palmeras (Pilar de la Horadada) confirmed 13596.5E 4 
  

  

Spain, Alicante Rio Mar (Pilar de la Horadada) confirmed 13812.84E 4 
  

  

Spain, Nador Barranco del Quemadero (Melilla) confirmed 885784.8E 4 
  

  

Spain, Nador Barranco del Nano (Melilla) confirmed 365040E 4 
  

  
Morocco, 

Nador 

Taxdirt - Cabo de Tres Forcas (Beni 

Chiker) 
confirmed 506958.35E 4 

  
  
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Morocco, 

Nador 
near Beni Sidel (Beni Sidel) confirmed 30C 1 ×   

Morocco, 
Nador 

Ras El Má (Ras Kebdana) confirmed 96855.3E 4 
  

  
Morocco, 

Nador 
Ras El Má (Ras Kebdana) confirmed 84771.1E 4 

  
  

Spain, Majorca Maioris (Llucmajor) 
not 

retrieved  
? 

   
Spain, Ibiza Cala Conta (San José) 

not 

retrieved  
? 

   
Spain, Alicante 

Cala Mosca and Punta Prima 
(Orihuela) 

confirmed N.D. ? 
   

Spain, Alicante Cala de las Estacas (Orihuela) confirmed N.D. ? 
   

Spain, Alicante 
Barranco de la Cala del Capitan 
(Orihuela) 

confirmed N.D. ? 
   

Spain, Alicante Casa de Los Leoncios (Orihuela) confirmed N.D. ? 
   

Spain, Alicante 
Punta de la Horadada (Pilar de la 

Horadada) 
confirmed N.D. ? 

   

Morocco, 

Nador 
near Beni Chiker (Beni Chiker) confirmed N.D. ? 

   

Morocco, 

Nador 

road to Cap de Trois Fourches (Cap 

de Trois Fourches) 
confirmed N.D. ? 

   
Morocco, 

Nador 

Douar Ighzar -n- Yamrabthan 

(Douar Ighzar -n- Yamrabthan) 
confirmed N.D. ? 

   

Morocco, 
Nador 

coast between Azzanene and Sidi 
Messaous (Sidi Messaoud) 

confirmed N.D. ? 
   

Morocco, 

Nador 
Târia n Tît (Charrana) confirmed N.D. ? 

   

Algeria, Oran Cabo Lindlés (Aïn El Turk) uncertain 
 

? 
   

Algeria, Oran Cap Falcon (Aïn El Turk) uncertain 
 

? 
   

Algeria, Oran Aïn El Turk (Aïn El Turk) uncertain 
 

? 
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Conservation status assessment  

The extent of occurrence of H. caput-felis was 100682.36 km
2
 (Figure 8), which does 

not fall into any threatened categories, according to the B criterion. However, this 

species falls into the Endangered category, according to the formula B2ab (ii,iii,iv,v), 

basing on
 
the AOO calculated (42 cells = 168 km

2
), the fragmented distribution and the 

calculated/observed  continuous decline rate in AOO, habitat quality, number of 

localities, and number of mature plants (decline rate = 3%).  

During recent decades few extinctions (Santa Pola and Seu) have been recorded in 

the H. caput-felis populations. However, the reduction in geographical range (EOO) 

was negligible, because these two localities were located into the convex polygon or 

next to the edge. Based on the number of occupied cells in a grid of 2 × 2 km, the AOO 

decrease amounted to 2 cells (8 km
2
), which correspond to a decline rate of 4.55 % in 

the last 50 years. Those estimates do not reach the minimum threshold imposed by the 

A criterion, and, according to the A2c subcriterion, the species results as not threatened 

(NT).  

Based on IPM generation time (T), five generation lasts 79.85 years, that 

represent the threshold of a probability of extinction of ca. 30% (line b in Figure 5), and, 

consequently, this species must be included into the Endangered category (EN). In 

addition, three generations for H. caput-felis, calculated by using the generation time 

(T) extracted by the MPM, involve a period of 85.31 years, which correspond to quasi-

extinction risk of ca. 35% (line c in Figure 5); also in this case, these parameter allowed 

to attribute the Endangered (EN) category to the study species.  

Based on these results and applying the precautionary approach recommend by the 

IUCN, the H. caput-felis must be considered Endangered (EN) at global level, 

according to the formula B2ab (ii,iii,iv,v) + E. 

 

 

 

 
Figure 8 – Actual extent of occurrence (EOO) of H. caput-felis (α-hull = 100682.36 km

2
).  
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Discussion 

 

Despite countries contracting to the Convention on Biological Diversity (CBD 1992) 

and other international laws (e.g., Habitat Directive) are obliged to monitoring 

biodiversity in order to protect wild fauna and flora, few in–depth studies have focused 

on the conservation status’ analysis at global level. In addition, for species distributed in 

different countries, global analyses are often more complicated. 

To our knowledge, no exhaustive studies have been performed at global level on 

H. caput-felis, and the present study represents the first attempt to analyse the 

distribution and the population dynamics, as well as to assess at global level of the 

conservation status of this threatened species. 

Althought Red Lists were recognised as the best method allowing to identify the 

species risk status, the assessments of several plant species of high conservation interest 

are still lacking. The assessment procedure of threatened species was mainly based on 

the criterion B, related to the plant distribution; only in few cases, when reliable data on 

population trends or population size were available, other criteria were applied (e.g., 

Fenu et al. 2015c; Rossi et al. 2016). Distributional data are often the most diffuse 

(Gärdenfors 2000; Hartley and Kunin 2003; Moreno 2008), at least in some areas, and 

in many cases applying the criterion B is the only possibility to assess a taxon under the 

IUCN categorization system (e.g., Abeli et al. 2009). However, as suggested by Abeli et 

al. (2009), the criterion B should be used to evaluate PIPPs only when the decline is 

really demonstrable and not just suspected. 

In this study, several IUCN criteria and quantitative analyses were mixed in order 

to characterise the conservation status. The A criterion clearly underestimates the status 

of H. caput-felis, undervaluing the calculated decline rate. Converserly, the B and E 

criteria offer a more realistic status of this species, according to the specific 

demographic studies (Chapter 3 and 4). Moreover, although the B criterion is less 

accurate than E, in this case the two assessment are congruents. Nevertheless, in many 

cases, and in particular for PIPPs, the E criterion indicates a lower risk category than the 

other ones (Abeli et al. 2009). When the short-term risk of extinction is low, but the 

current population size is small, or only short-term data are available, growth rate may 

be a more important indicator of potential future problems than extinction probability 

(Morris and Doak 2002). In fact, at local level, the high quasi-extinction probability 

calculated for Cabo Roig, Moraira and Colónia de Sant Jordi underline how more 

detailed analyses (as PVA) are needed, also in population with a high number of 

individuals. Despite this, assessments at restricted geographic scale are discouraged by 

IUCN (2012a), and, for PIPPs, is important  to consider the whole population 

independently from the administrative regions or districts in which they occurs (Abeli et 

al. 2009).  

This research indicate that H. caput-felis is an endangered plant at global level, 

supporting the previous regional assessments that highlighted a critical status in Spain 

and Italy (Agulló et al. 2010; Fenu et al. 2012b; Rossi et al. 2016; Chapter 1). This 

assessment is strongly supported by the quantitative analysis. Matrix population models 

are a potentially powerful tool for assessing population status and extinction risk, as 

well as effects of past or future changes in management or in the environment (Crone et 

al. 2011). Those models are an increasingly influential tool for diagnosis of the 

persistence probability of threatened species (Milner-Gulland and Rowcliffe 2007).  

Under natural conditions, both demographic and environmental stochasticity have 

been claimed as important factors in determining viability of species with limited 

distributions and/or small population sizes.  

Helianthemum caput-felis suffers a continuing decline in AOO, quality of its 

habitat, number of localities and number of reproductive plants. This decline rate is 
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mainly due to the habitat loss, and the expansion of infrastructures, associated with an 

extinction probability in ca. 130 years. In fact, in the last decades, two localities have 

disappeared (Santa Pola, Aguilella et al. 2010 and Agulló et al. 2010;  Seu) and one 

decreased up to have survived only one individual (Rambla de las Estacas, Giménez-

Font 2008; Molina et al. 2011).  

Tourism and recreational activities, followed by housing and urban areas, 

promoting habitat fragmentation, are the main threat to H. caput-felis, as well as several 

ecosystems in the Mediterranean area (e.g. Dominguez Lozano 1996; Allen 2001; Gibbs 

2001; Fenu et al. 2011). Habitat fragmentation increases extinction risk for endangered 

species (Holsinger 2000; Matthies et al. 2004; Schleuning and Matthies 2009), 

interfering with distribution, fitness and seedling recruitment (Lienert 2004; Kolb and 

Diekmann 2005; Benito et al. 2009; De Vere et al. 2009). Despite this, more small-size 

populations in eastern Iberian coasts grew within urbanised areas, which have 

experienced strong urban development linked to tourism since the 1970s, with the 

consequent reduction of the habitat of the species (Zaragozí et al. 2012). 

Demographic analyses strongly support the conservation status category for H. 

caput-felis; these analyses reflect that the global population growth rate showed a slight 

declining trend. In addition, the analyses of vital rates indicate that the persistence of H. 

caput-felis localities was mainly related to the adults survival. Despite the seedling 

presence in the majority of visited localities, previous studies (Chapter 3 and 4) 

highlight how seedlings have a high mortality probability; in fact, only few of these 

reach survive to the next year, hence seedling establishment seems to be the critic stage 

of this species, confirming Fenu et al. (2015b). Those information on survival strategies 

of threatened species are critical for optimizing and determining the success of in situ 

and ex situ conservation efforts (Fenu et al. 2011). 

  

Implications for conservation and management  

Monitoring endangered plants, as H. caput-felis, faces several difficulties, as the need to 

maintain a sustained effort of monitoring across years, in order to ensure the collection 

of relevant monitoring time series, and the need to obtain precise monitoring data which 

allow the detection of significant changes across space and time in biodiversity (Fenu et 

al. 2015a). These needs come into conflict with the usually limited amount of available 

financial and human resources (Schmeller et al. 2009; Fenu et al. 2015a). In addition, 

plants with a complex distribution, such as H. caput-felis, present further problems: 

presence in  four countries, in different geographic and ecological situations (i.e. two 

island, remote sites), as well as private lands, entaile a significant effort, both in 

economic resources and in required time. Despite this, long-lived plants, with slow life 

histories, present a demanding challenge for plant conservation biologists, because low 

natural recruitment and mortality make detection of decline difficult without strong 

commitment to collection of demographic data (Schwartz et al. 2000; Schwartz 2003; 

García 2003; Marrero-Gómez et al. 2007; Dominguez et al. 2011).  

Hence, the results of this study could be useful for assessing the status of the 

species and identifying effective conservation measures. The quantification of quasi-

extinction probability highlights how H. caput-felis global population faces a substantial 

risk of extinction over the short-medium time, if no additional management actions will 

be carry out. In other words, this finding indicates that the passive current conservation 

measures (e.g., SCI inclusion or protected areas) are inadeguate to guarantee the 

persistence of the studies species.   

Actually, some populations are protected by Site of Community Importance 

(SCI), both in Italy and Spain. In Majorca, all populations are located in protected areas, 

making its local conservation status more favourable (Rodríguez-Pérez 2005), even if 

the high impact of recreational activities in the coasts still remains a problem. In 



 

138 

particular, Morocco and Algerian populations do not present any legal protection, and 

therefore it is difficult to implement active conservation measures. 

Effective conservation measures could be focussed on protecting the single 

localities where H. caput-felis grows, in order to avoid further species decline. In this 

contest, conservation efforts should be primarily aimed at protecting established 

individuals (mature plants) against disturbances, as suggested for other long-lived 

species (e.g., Garcia and Zamora 2003). An effective measure at small spatial scale was 

the establishment of Plants Micro-Reserves (PMRs), as experimented in Spain (Padilla 

and Ramón 1997; Laguna et al. 2004; Zaragozí et al. 2012). 

Other successful experiences, that could be positively replicated in other territorial 

context, were carried out in Spain. For example, in Majorca (Ses Covetes), 68 

unauthorized flats, built during the ’80 Spanish boom, were destroyed in 2013, in order 

to promote an important habitat restoration plan, followed by the invasive plant’s 

eradication and, subsequently, the reintroduction of H. caput-felis and others 

autochthonous species. Similarly, in Les Bassetes (Benissa, Alicante province), a 

habitat restoration was promoted, after a destruction in the ’70 and ’80 due to intensive 

urbanisation processes. Also in a suitable area near to Barranco del Nano (Melilla),  H. 

caput-felis reintroductions and reinforcements are periodically done. These represent 

effective examples, comparable to others low-cost project carried out in Sardinia for 

other coastal endangered plants  (Cogoni et al. 2013; Fenu et al. 2015), which could be 

replicate for the main threatened localities, in order to enhance population viability (e.g., 

by increasing population size, genetic diversity, or by the representation of specific 

demographic groups or stages; Godefroid et al. 2011; Fenu et al. 2015c).  

In addition, an ex situ conservation strategy was implemented, and the seeds 

collected could be used for future reinforcement or reintroduction of this species in 

suitable Sardinian areas (Fenu et al. 2015c).  
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Main conclusions 
 

This research produced important new information regarding the distribution pattern, 

reproductive traits, demography and ecological requirements of H. caput-felis, which 

are relevant issues for developing future conservation measures for this species. In 

particular, this research helped to identify the key traits linked to extinction risk, which 

are critical for predicting future decline, and to evaluate the conservation status of the 

species at global level. 

 

The distribution area of H. caput-felis in Sardinia consists of two distinct 

localities, approximately 3 km apart. In this region, the species preferably grows in 

lowland areas with deep structured soil, due to the amount of water and resources 

available and morphological stability. H. caput-felis shows the highest reproductive 

output in garrigues, habitat that represents its ecologically optimum. The high seed 

production indicates that this is not a limiting factor for this plant, in contrast to seedling 

establishment, which represent its main critical stage. Surprisingly, in Sardinia, human 

trampling enhanced the plant size and the rate of fruits production, suggesting that 

reproductive plants of H. caput-felis are tolerant to direct damage, and probably benefit 

from the reduction of inter-specific and intra-specific competition (Chapter 1). 

 

An extensive and integrative approach that compares the phenology and 

reproductive output along the entire European distribution range of this species over a 

two year temporal context was adopted. The results indicate the phenology and the 

importance of abiotic factors, as geomorphology, substrate, slope and human trampling 

intensity, on reproductive outputs of this species. The general phenological pattern is 

similar among Sardinian and Majorcan regions, whereas, in the eastern Iberian 

populations (the western part of the distribution range), the southern population (Cabo 

Roig) showed a higher inter-annual variability and an early flowering period. Those 

differences could be related to a longitudinal aridity gradient for this plant: the aridity 

decreases from western to eastern localities while the mean temperatures and the 

oceanicity increase. Plants growing at the eastern edge of the distribution range 

(Sardinia) produce more viable fruits, fruits per plant and seeds per fruit than the other 

two regions, while plants growing in arid substrate (as in the sandy habitat of Sa Ràpita, 

Majorca) are the least productive, confirming that sand substrate is negatively correlated 

with fruit production and viable fruits, as well as lowland geomorphology. Hence, these 

analyses underline that the Abundant Centre Model assumptions, by which reproductive 

traits should be higher at the centre of species distribution, is not confirmed for H. 

caput-felis, maybe because the central populations, represented by the largest 

distribution area along the Iberian’s coasts, appear strongly fragmented mainly by 

human disturbance (Chapter 2). 

 

Demographic traits of H. caput-felis population were analysed, by using 

demographic surveys, integrated by Matrix and Integral Projection Models (MPM and 

IPM, respectively). Plant performance and population dynamics were investigated in 

plants sampled along the comprehensive and representative part of the European 

distribution range in which the species occurs. The global population showed a general 

stability in the first year transition (2013–2014), after which it declined (2014–2015). 

This trend was probably due to the higher shrinkage of plants in the last year of study, 

that correlates negatively with reproductive traits, in agreement with the frequent 

increase in reproductive outputs with plant size. Despite this decline, stochastic 
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population growth rate highlighted as H. caput-felis population oscillated around the 

equilibrium. Elasticity analysis indicated the higher importance of large individuals and 

the determinant role of the survival-growth transitions for the population growth rate. 

Moreover, plants reached high generation times and mean long life span, which, with 

the limited seedling recruitment rate and the presence of a consistent seed bank, reflect 

patterns that are typical both of many long-lived plants and of calcareous rupicolous 

Mediterranean species. IPM methods were found to be more accurate than MPM to 

monitoring species with restricted range, as H. caput-felis (Chapter 3). 

 

A more detailed demography investigation was carried out at local level. The 

pattern of typical long-lived Mediterranean plants, underlined in Chapter 3, was 

confirmed also at local level; in fact, populations were mainly composed from large 

individuals, characterized by slow growth (frequency of stasis). H. caput-felis showed 

vital rates and population dynamics varying among populations: the Sardinians’ seems 

to have greater equilibrium (λ closer to 1) than Spanish populations. The high 

population growth rates of Moraira (north eastern Iberian coast) and Colònia de Sant 

Jordi (south Majorcan coast) were strongly influenced by the fecundity parameters. In 

fact, for long-lived, iteroparous species, fecundity is generally less important for 

population growth than survival; hence, for these populations, results should be 

considered with caution. Plants growing in Moraira show a uniform shrinkage of 

individuals, probably due to a more intense fragmentation of the population. This study 

confirms the general pattern within the species: populations with λ over 1 are associated 

with a higher contribution of sexual reproduction, whereas populations with low λ rely 

more on survival. Moreover, the different population dynamics observed among the 

analysed localities of H. caput-felis should be correlated to particular microclimate and 

ecological conditions, i.e. the high aridity of Cabo Roig and the sand substrate of Sa 

Ràpita (Chapter 2), which probably affected the relationship among size and vital rates. 

On the contrary, H. caput-felis populations in demographic equilibrium, as the 

Sardinians’, could be locally adapted to ecological and microclimate conditions 

(Chapter 4). 

 

Finally, population dynamics models were applied to analyse the extinction risk 

and then assess the global conservation status of H. caput-felis, together with an 

accurate analysis of the global area of occupancy of the species, following the IUCN 

protocol. This research highlighted that H. caput-felis should be considered an 

Endangered (EN) plant at global level, according to the formula B2ab (ii,iii,iv,v) + E. H. 

caput-felis suffered a continuing decline in AOO, quality of its habitat, number of 

localities and number of reproductive plants. This decline rate was mainly due to the 

habitat loss and the expansion of infrastructures detected in the last decades. Hence, 

effective future conservation measures could be focussed on protecting the single 

localities where H. caput-felis grows, in order to avoid further species decline. In this 

contest, conservation efforts primarily aimed to protect established individuals (mature 

plants) against disturbances, as suggested for other long-lived species (Chapter 5). 

  



 

151 

  



 

152 

 

  



 

153 

Appendix – Altre pubblicazioni prodotte durante il dottorato di ricerca 
 

 

Articoli scientifici su riviste non indicizzate: 

Sulis E., Fenu G., Cogoni D. and Bacchetta G. 2014. Helianthemum morisianum Bertol. 

Informatore Botanico Italiano 46: 93–152. 

 

 

Articoli scientifici su riviste indicizzate: 

Fenu G., Fois M., Cogoni D., Porceddu M., Pinna M.S., Cuena Lombraña A., Nebot A., 

Sulis E., Picciau R., Santo A., Murru V., Orrù M. and Bacchetta G. 2015. The Aichi 

Biodiversity Target 12 at regional level: an achievable goal?. Biodiversity 16: 120–135. 
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