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Abstract 
 
Heat transfer is one of the most salient and fundamental research areas for any engineer, 
due to its ubiquity.  Today the energy efficiency requirements are becoming more and 
more demanding. This motivates engineers to continuously improve the efficiency of 
heat transfer processes.  
 
For such analysis nowadays, the common and the popular practice to infer the 
temperature field is now commercially available in computer codes. Analytical solutions 
for the temperature field are also available under the assigned conditions such as 
Dirichlet, Neumann or Robin, if the thermal conductivity is constant and isotropic. In the 
cases where conductivity is anisotropic and strongly dependent by temperature or the 
material is not homogenous, the exact solution of the energy conservation in the body is 
not possible due to high non linearity in the equations. 
 
Despite the complexity of many engineering structures, the present work is undertaken 
to demonstrate that the reduction to a simpler version of more complex heat conduction 
equations is possible and the exact analytical solution is comparable with the 
approximate finite element solution. 
 
The topic of the present research study is the resolution of the problems in various 
engineering fields through the analysis of conduction heat transfer in rigid bodies, 
transition bodies, steady and transient bodies and the provision of analytical solutions 
with graphical representation of the results. Namely; in an electrolytic capacitor, a food 
container and a gas turbine blade. The modelling of them plays an important role 
because excessive temperatures drastically reduce the lifetime of capacitors, turbine 
vanes and blades. In the food sterilization it is necessary to know the thermal wave 
behaviour in order to reduce its associated costs or to guarantee the sterilization time. 
 
The last part of this study is the evaluation of the numerical simulation results in order 
to make a comparison with the analytical results and, when possible, with experimental 
data. For such analysis a finite element method has been utilized by both commercial 
and free software; namely, ANSYS™ and FreeFem++. Very good agreements are 
obtained between both of them. 
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Chapter 1        

General Introduction 
 
 

1.1 General motivation and objective 

For all engineers heat transfer is a fundamental research area, since it is ubiquitous. 

The increase in demand for implementation of new and efficient energy techniques 

motivates engineers to propose ideas to improve the efficiency of heat transfer 

processes. Over the past years a large quantity of equipment that relies on heat 

transfer phenomena has been developed and improved significantly. 

In complex geometries where the conduction is stationary or transient, with or 

without production of internal heat in objects subjected to the various boundary 

conditions, heat flow assigned or Robin or in combination between them, or the 

Neumann or Dirichlet, is established practice to calculate the temperatures of finite 

element (FE) now commercially available and widely applicable. 

Analytical solutions are also available for stationary and transient cases cylinders 

and collars (extended surfaces) under the conditions of radiation and convection 

board (Robin), if the thermal conductivity is constant and isotropic [1], [2], [3], [4], 

[5]. 

In cases where the conductivity is anisotropic and a strong function of temperature, 

or the material is not homogeneous, an exact solution does not exist. Despite many 

structures of interest, the mechanics are of complex geometry, or the material is of a 

very viscous consistency, such as in foods to be sterilized, it has been shown that the 

reduction of the heat transport equations to simpler shapes is possible, in which is 

located an explicit solution with the solutions that are comparable to those of the 

finite element modeling. Which allows a greater adherence to both the geometry and 

the real properties of the material. 

This work is based on two parts: the first main part is the study and the analysis of 

analytical conduction heat transfer models in order to simulate the temperature 
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distribution based on energy balance. Second part is the numerical modelling which 

are implemented in ANSYS Multiphysics and FreeFem++ packages in order to 

validate those obtained results from the analytical solutions. 

 

1.2  Thesis outline 

This Thesis is structured in four chapters subdivided in paragraphs for each topic. 

The following chapter is aimed to give a background to the heat conduction 

equation analysis. Chapters 3, 4 and 5 are the main parts of this present work, being 

each free standing. The contents of the Thesis and chapters progress in stages from 

an introduction to an advanced level.  

In addition, Chapters 3, 4 and 5 have their own introduction, body and conclusion 

parts. The structure for all of them is organized as;  

• First is to give a brief introduction to the related engineering areas. 

• Subsequently, next is to describe physically and mathematically the interested 

model and developing the analytical models to obtain an exact solution. 

• Third is providing numerical solutions by utilizing finite element method, 

where the space continuum is partitioned into finite number of elements, in 

order to compare to the analytical results. 

• The part of final is to discuss the results and to make a comparison between 

analytical and numerical results, and, when possible, with experimental data. 
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A brief description of each chapter is given as follows: 

Chapter 2 gives a quick introduction on the basis of heat conduction equation. 

Chapter 3 thinks about the electronic industry devices. More specifically it deals 

with analysis of conduction of heat transfer within capacitor by considering heat 

generation due to joule effect. The case is considered to be independent by time. An 

electric circuit was set up in order to check the superficial temperature of the 

capacitor under assigned convection heat transfer through ventilation. Subsequently, 

a full 3D finite element method through ANSYS™ is performed in order to make a 

comparison between the results of the analytical and numerical solutions.  

Chapter 4 considers the food processing industry. It addresses the presentation of an 

exact solution of temperature field in the sterilization of a tinplate can under 

transient heating stage. The analytical solution is obtained based on the separation of 

variables in space and time. A finite element analysis is made through the software; 

namely, ANSYS™. Lastly, the results of analytical and numerical solutions is 

compared with the experimental data. 

Finally, Chapter 5 is oriented to the thermal analysis of gas turbine blades. It 

introduces how to model a gas turbine blade being cooled from its base while 

receiving convection and radiation heat from combustion products. The difficulty of 

analytical solution arises from the modelling of its form, which causes to it to reduce 

its thickness between the leading edge and the trailing edge, furthermore from the 

necessity of bringing the thickness of the blade at the end to zero.  The energy 

balance is modeled in the form of 2D elliptical however, in a type of degenerative 

elliptical since there is a missing boundary condition. As a first approach, an exact 

solution is found through the sum of the functions by considering that there is no 

internal cooling. This case is also studied as a full 3D model with a commercial finite 

element code ANSYS™ in order to make a comparison with the analytical results. As 

a next step, the turbine alloy is considered to be internally cooled due to the use of 

compressor air bled from the intermediate stages of the compressor. With the 

hypothesis of heat sink or “law of cooling, a solution method of energy balance in 

the alloy is obtained through the finite element method by FreeFem++ software. 
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1.3 Publications 

Some of the topics discussed in this thesis have been already published in 
international journal, and presented at national and international conferences. This 
thesis is based on the following published articles. 

International Journal Papers: 

1. Floris F, Orru P, Ilemin B., Quasi 1-D analysis of Heat Equation with exact 

solutions and comparison with numerical simulation in liquid/vapour pressure tanks, 

waterwalls and hot-drawing machines. 31st UIT Heat Transfer Conference. 2013. 

p. 87-97.  

2. Floris F, Ilemin B, Orrù P., A Multi-dimensional Heat Conduction Analysis: 

Analytical Solutions versus F.E. Methods in Simple and Complex Geometries with 

Experimental Results Comparison. Energy Procedia. 2015;81:1055-1068. 

3. Floris F. and Ilemin B., Analytical Solution on cooled turbine blade under parallel 

convective and radiation heat flux at leading edge and suction/pressure side, Atti del 

33rd UIT National Heat Transfer Conference, 22-24 Giugno 2015, L'Aquila, 

Italia. 

4. Floris F. and Ilemin B., “Soluzioni esatte e soluzioni numeriche della conduzione 

termica nell'industria alimentare, in condensatori commerciali e nelle pale di 

turbina”, La Termotecnica ricerche tecnologie impianti, Dicembre 2015 N° 10, 

pp.45-50. 
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Chapter 2         

Preliminaries 
 
 

2.1 Introduction 
 

PRIMARY causes are unknown to us; but are subject to simple and constant 
laws, which may be discovered by observation, the study of them being the 

object of natural philosophy. 

Heat, like gravity, penetrates every substance of the universe, its rays occupy 
all parts of space. The object of our work is to set forth the mathematical laws 

which this element obeys. The theory of heat will hereafter form one of the 
most important branches of general physics. 

                       ― Joseph Fourier, The Analytical Theory of Heat 

Energy exists everywhere within the universe and there is no doubt about its 

importance. It can be shortly defined as the ability for doing work or making a 

change, whereas work can be defined as the transfer of energy. The presence of 

energy can be in a variety of forms, such as nuclear, mechanical, electrical, chemical, 

gravitational and thermal.  

As the first law of thermodynamics describe how energy cannot be created or 

destroyed; the total amount of energy is fixed within the universe and it can be 

merely transferred or transformed from one form to another form using 

fundamental interactions. 

Heat is a salient form of energy and simply defined as the transfer of energy as a 

result of temperature difference. The second law of thermodynamics implies that the 

movement of heat is from the hotter body to the colder body in the existence of a 

temperature difference within a thermally insulated system from its surroundings. 
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There are three primary mechanisms of heat transfer; namely conduction, convection 

and radiation.  

Conduction heat transfer is perhaps the most frequently encountered type, and occurs 

regularly in nature. In short, it is the transfer of heat by the energy of motion 

between adjacent atoms or molecules, the temperatures tend to equalize between 

molecules. 

Convection involves the transfer of heat by bulk transport and the mixing of 

macroscopic particles of hot and cold elements of a liquid or gas.  

Radiation heat transfer differs from conduction and convection heat transfer since it 

does not rely upon any contact between the heat source and the heated object. Hence 

no physical medium is required in the process of radiation. The heat is transferred 

by electromagnetic radiation that involves waves (or quanta). 

 

2.2  Differential formulation of energy conservation law 

The differential form of the energy conservation equation may be obtained using 

two different methods. One of these methods is directly applying the first law to an 

appropriately chosen differential control volume, while the second method starts 

with the integral form of the first law for an arbitrary system. [2] The latter method, 

being more general and more mathematically elegant, is preferred to present here. 

 

  Fig. 1- An arbitrary control volume. 

For an arbitrary small control volume, as shown in figure (1), a statement of law of 

conservation energy may be expressed as [5] 

Rate of heat entering Rate of energy 
through the 

Rate of energy 
 =   

storage in boundaries of V generation per unit V time
     

+     
     
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The first term on the right side that is the rate of heat entering into the volume 

element may be conveniently written in integral form as 

 − ⋅ = − ∇ ⋅∫ ∫A V
dA dVq n q                                                                                                     [1.1] 

where;  

- q’’     = the heat flux vector at dA. 

- n      = the outward-drawn normal vector to the surface element dA. 

- V      = small volume element of the system, 

and the area integral is converted into a volume integral by using the divergence 

theorem of vector calculus. Similarly, the rate of heat generation can also be written 

in integral form  

∫ genV
Q dV                                                                                                                              [1.2] 

where; 

- Qgen  = the heat generation within the system. 

Before evaluating the rate of heat energy storage, it is convenient to define the 

material derivative term [5]. This can be written for a general property A as 

∂
= + ⋅∇
∂

DA A A
Dt t

V                                                                                                               [1.3] 

where the term on the left side is called the material derivative of property A, and 

the terms on the right hand sides are called the partial time derivative and the 

convective derivative of property A, respectively. And V is the velocity vector which 

has components of vx, vy, vz. 

By introducing the Reynolds transport theorem it is possible to calculate the material 

derivative of a volume integral. Thus, for a general property A, the rate of heat 

energy storage within the volume can be expressed. First, letting A(r,t) = ρcT(r,t) and 

also considering the definition of the specific heat at constant volume [2], the heat 

storage term can be expressed as an integral, which is 

( )ρ ∂ 
+∇ ⋅ ∂ 

∫  
V

Tc T dV
t

V                                                                                                     [1.4] 
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Thus, substituting equations (1.1), (1.2), (1.4) into the statement equation and 

rearranging all these equations into one common integral, energy conservation 

equation appears as 

( )ρ
 ∂ 

+∇ ⋅ +∇ ⋅ − =  ∂  
∫   0genV

Tc T Q dV
t

V q                                                                     [1.5] 

Since equation (1.5) is derived for an arbitrary small volume element, so that the 

only way it is satisfied for all choices of volume is if the integrand itself is zero. Thus 

eliminating the volume integral operation yields 

( )ρ ∂ 
+∇ ⋅ = −∇ ⋅ + ∂ 

 gen
Tc T Q
t

V q                                                                                       [1.6]                                     

That is the differential equation for energy conservation within the system. It is not 

of much use in the present form since it involves variables, however, it is the starting 

point to derive the differential form of the equation of conduction. 

Fourier’s Law of Conduction 

Microscopic theories such as the kinetic theory of gases and the free-electron theory 

of metals can be used to predict the conduction through media. However, the 

macroscopic or continuum theory of conduction disregards the molecular structure 

of continua. Thus conduction is taken to be phenomenological and its effects are 

determined by experiments [1], [2]. 

Fourier’s law of conduction, which is an empirical law based on observation, 

describes the relationship between the heat flow and the temperature field. This 

particular law is named after French mathematician and physicist Joseph Fourier in 

1822 [1], [2] and may be given in the following vectorial form 

= − ∇"  k Tq                                                                                                                           [1.7] 

Where the temperature gradient is a vector normal to the isothermal surface and the 

heat flux vector q” represents the heat flow per unit time, per unit area of the 

isothermal surface in the direction of the decreasing temperature. The quantity k is 

called the thermal conductivity of the medium, and has units of Wm-1K-1.  

Unlike the first law of thermodynamics, Fourier’s law does not have the same ‘legal’ 

standing. Equation (1.7) presents a phenomenological linear relationship between q” 
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and ∇T, which will be highly accurate providing that the characteristic length scale 

of the temperature gradient is significantly larger than the microscopic length scale 

of the medium. Practically, all engineering applications fall into this category except 

the cases such as boundary layer in a space vehicle. 

2.3  Equation of conduction 

Introducing Fourier’s law of conduction into the law of conservation of thermal 

energy eliminates the heat flux term simultaneously provides the differential form of 

the heat conduction equation. Since our interest lies in solids or an incompressible 

medium whose continuity is 0, therefore, by the means of the well-known vectorial 

identity above expression can be introduced into equation (1.6) and the desired heat 

conduction equation in cartesian coordinates can be expressed as 

 ( )x y z gen
T T T Tc v v v k T Q
t x y z

ρ
 ∂ ∂ ∂ ∂

+ + + = ∇⋅ ∇ + ∂ ∂ ∂ ∂ 
                                                          [1.8] 

This equation is valid in the case of constant (ρc) for an incompressible, moving solid 

with velocity V. The heat conduction equation can be expressed in several different 

forms. For stationary solids when the thermal conductivity is constant, above 

expression simplifies to 

α
∂

= ∇ +
∂

21 genQT T
t k

                                                                                                              [1.9] 

where α is the thermal diffusivity of the material which has units of (m2/s) and 

defined as  

α ρ= /k c                                [1.10] 

On the other hand, the particular form of the Laplacian operator depends on the 

coordinate system. There are 11 orthogonal coordinate systems in the Laplacian can 

be cast as a differential operator. For the most common geometries of cartesian, 

cylindrical and spherical, the Laplacian is 

φ

θ
θ θθ θ φ

∂ ∂ ∂
∇ = + +

∂ ∂ ∂

∂ ∂ ∂ ∂
∇ = + +

∂ ∂ ∂ ∂
∂ ∂ ∂ ∂ ∂

∇ = + +
∂ ∂ ∂ ∂ ∂

2 2 2
2

2 2 2

2 2
2

2 2 2

2
2 2

2 2 2 2

1 1

1 1 1sin
sin sin

T T TT
x y z

T T TT r
r r r r z

T T TT r
r rr r r

                                                   [1.11] 
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General Initial and Boundary Conditions 

• Initial (volume) condition 

For transient problem the temperature of a continuum under consideration must be 

known at some instant of time. In many cases this instant is most conveniently taken 

to be the beginning of the problem. Mathematically speaking, if the initial condition 

is given by T0(r), the solution of this problem, T(r, t), must be such that at all points 

of the continuum 

There are several boundary conditions encountered in conduction heat transfer, 

some of the formal ones are as follows. 

• (1)  1st type of boundary condition (Prescribed Temperature).  

This is the first and most basic type of boundary condition where the temperature is 

prescribed to be a constant or a function of space and/or time at the surface of the 

system. Mathematically these can be shown as respectively  

( )= = 

0      or     ,
surface surface

T T T f r t   

where T0 is the known boundary temperature as a constant, while f(r, t) is the 

prescribed surface temperature distribution as a function of both space and time. 

Mathematically speaking, boundary conditions of the first type are called Dirichlet 

boundary conditions. 

• (2)  2nd type of boundary condition (Prescribed Heat Flux).  

The second type of boundary condition is specified heat flux at the surface that is to 

be a constant or a function of space and/or time. These can be shown as follows 

( )∂ ∂′′− = − =
∂ ∂



0      or     ,
surface surface

T Tk q k f r t
n n

  

where q0” is the applied constant heat flux, f(r, t) is the prescribed surface heat flux as 

a function of both space and time and ∂T /∂n is the derivative along the outward-

drawn normal to the surface as shown in fig (a). If the derivative is along the inward-

drawn normal to the surface, the sign of the derivative would be minus. Thus, it is 

important to write a more general form 
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∂ ′′± = ±
∂ surface

Tk q
n

  

The plus and the minus signs of the left hand side of this equation correspond to the 

differentiations along inward and outward normal respectively, and the plus and 

minus signs of the right hand side correspond to the heat flux from and to the 

boundary, respectively. These are shown in the figure (2). 

Mathematically speaking, boundary conditions of the second type are called 

Neumann boundary conditions. A special and common form of this boundary 

condition appears when the heat flux is equal to zero. 

∂
=

∂
0

surface

T
n

  

which is called either adiabatic or perfectly insulated surface. 

 

 

 Fig. 2- Directions of second kind of boundary conditions. 

 

• (3)  3rd type of boundary condition (Convection condition). 

The third type of boundary condition also referred to as the convection condition is 

obtained from the Newton’s law of cooling, that is, the heat flux to or from the 
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surface of a boundary is proportional to the difference between the boundary 

temperature and the ambient temperature as follows 

( )σ ∞

∂
± = −

∂ surface

Tk h T T
n

  

where Tσ is the boundary temperature, T∞ is the ambient temperature and the 

quantity h is the convection heat transfer coefficient. Again in this equation the 

minus and positive signs play critical role, as shown in the figure (3). 

  

 

 

  Fig. 3- Third kind of boundary conditions. 

 

• (4) Radiation condition. 

When the surface temperature are relatively high, heat transfer by radiation rapidly 

increases thus, it becomes significant. It may contribute up to fifty percent of the 

total heat transfer. The net radiation heat flux between a surface and its surrounded 

environment may be typically expressed as 
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( )σεσ ∞
′′ = −4 4
radq T T   

where ε is the emissivity of surface, σ is the Stefan-Boltzmann constant that is equal 

to 5.67 10-8 (Wm-2K-4) and T∞ is the ambient radiation temperature. This boundary 

condition is a bit complex due to the non-linearity, because the dependent variable 

temperature appears in the fourth power.  

• (5)  Other Boundary Conditions.   

Except above boundary conditions, the most frequently used ones during the 

solution of the heat conduction equation are symmetry condition which acts like an 

adiabatic, interface boundary conditions when the two materials are having different 

conductivities. Another one to consider here may be the necessity for finite 

temperature throughout the domain of a problem. For instance, with curvilinear 

coordinate systems, the solution of the heat equation often contains functions that 

tend to infinity as their argument approaches to zero. 

2.4  Quasi 1D-analysis of heat conduction equation 

There are many engineering thin devices subjected to heat transfer from both sides 

whose solid temperature distribution may be inferred by the extended surface (fin) 

analysis through the solution of the energy equation in quasi 1-dimension, steady or 

transient state. 

In a few cases it is possible to use a simple analytical solution of the energy equation 

if the numerical analysis of the complex 2-D or 3-D modelling -that takes into 

account more spatial parameters and dependence from temperature of major 

physical parameters- gives minor differences in the field temperatures. For instance; 

• Pressure tanks : An uneven distribution of temperature in pressure tanks 

(pressured liquid gas, natural gas for automotives), boiler drums and slag tap 

cyclones (both in steam generating units), as show in figure (4), is possible 

when the vapour and liquid volumes have a defined separation surface 

between the phases. The values of vapour - side and liquid-side heat transfer 

coefficients may vary of two orders of magnitude. The determination of 

temperature field in the metal body can be obtained via a quasi 1-D treatment 

of the heat equation, assuming that the thermal conductivity is independent 

of temperature. 
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a) Steam drum of a flat car en 
route to a power plant 

construction site. Courtesy of 
Babcock&Wilcox. 

b) Liquified petroleum gas 
tanks. 

c) In automotive industry. 

Fig. 4- Examples of pressure tanks and steam drums. 
 

• Waterwalls: They are exposed to quite different heat fluxes on a side due to 
heat release zone position and convective heat transfer on the other side due 
to nucleate boiling. On a vertical elevation of more than 30 meters, conduction 
through the metal is possible due to changes in metal temperature. Due to 
low thickness (a few mm) of tubes compared to the highness of waterwall 
(longer than 30000 mm), a quasi 1-D of an infinite plate is feasible. An 
illustration is shown in figure 2. 

 

 

 

 

 

 

Fig. 5. Example of waterwalls. (Photo courtesy of Babcock&Wilcox). 

 
 

• Extrusion: In the extrusion of  thin hot plates through rotating dies, as shown 
in figure (6), the heat transfer from metal (or plastic sheet) to a cooler fluid at 
known convective heat transfer coefficient vented across the slab may be 
treated as an extended surface quasi 1-D. In order to calculate the angular 
velocity of dies the temperature field has to be established with solution of 
heat equation integrated with entalphy flux. Péclèt number is the key 
parameter in the exact solution. 
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Fig. 6 - Examples of extrusion processes. 
 

Above examples are just some of the cases that the temperature distribution may be 

easily inferred by the extended surface (fin) analysis through the solution of the 

energy equation in quasi 1-dimension for either steady or transient state. 

In the first published paper, various comparative examples involving rectangular 

and cylindrical coordinates of water walls, tanks and extrusion sheets with 

incompressible fluid flow at high Péclet number are analyzed. Then, the results of 

these exact solutions are compared to the finite element analysis, which take account 

of the variability of thermo-physical properties with temperature and dimensionality 

whose analytically complex differential equations with temperature built-in 

functions cannot be solved with explicit solutions. Their results were in a very good 

agreement in each case. 

The modeling studies were then focused on the solution of more complex 

conduction cases, with / without internal heat production, and in steady and 

transient conditions as in electrical capacitors and commercial foods compressed into 

cakes under sterilization with wet steam in an autoclave. These are presented in the 

following chapters 3 and 4, respectively. 
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Chapter 3          

Thermal modelling of a capacitor 
 
 

3.1 Introduction 
Capacitor, formerly referred to as a condenser, is a widely-used and passive 

electronic component or device that is capable of storing energy in the form of an 

electrostatic field. 

The history of the theory of capacitors technology is quite old and dates back to the 

invention of the Leyden jar. According to the literature, the Leyden jar was 

discovered almost simultaneously by German cleric Georg von Kleist in 1745 and 

Dutch physicist Pieter van Musschenbroek, in the University of Leyden, in 1746 [6]. 

As originally constructed, it consisted of a glass jar partially filled with water with an 

electrical lead passing through a cork in the top of the jar to the water [7]. The wire 

lead was then hooked up to an electrostatic generator, which served as a source of 

electricity. At first, experimenters thought that the charge was held in the water, but 

through experimentation Benjamin Franklin figured out that the water in the jar was 

not essential and could be replaced by attaching an electrode to the inside of the jar 

since the basic requirement for a functioning Leyden jar is the presence of two 

conductors separated by an insulator. And then, Leyden jars evolved over time into 

more efficient devices. Some demonstrations of Leyden Jars are given in figure (7). 

   
Fig. 7- Some Leyden jars. (Courtesy of John Jenkins, www.sparkmuseum.com.) 
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As the precursor to the modern capacitors, knowledge of the Leyden jars quickly 
spread to the laboratories; since then, there has been stupendous progress in the 
technology of capacitors. In the early times, these devices were mainly used in 
electrical and electronic products, however, nowadays they are used almost 
everywhere, in the fields ranging from industrial application to automobiles, aircraft 
and space, medicine, computers, games and power supply circuits [8]. 

Thus, there are a great variety of different kinds of capacitors available used in the 
market depending on their ancestry and applications. However, all of their essence 
is the same thing; namely, stores the charge.  

 

3.2 Fundamentals of Capacitor 
Fundamentally, they are composed of two or more parallel conducting plates 

separated either by air or by an insulated material for accumulating electrical charge. 

The insulator is properly called dielectric. While the dielectric material can 

theoretically be any non-conductive substance, in practical applications, specific 

materials such as glass, vacuum, mica, ceramic, plastic, aluminum, and etc., are used 

depending on which best suit the capacitor's function. In this way each type has its 

own combination of features that makes it beneficial and important for some 

applications, while it can be inadequate for other applications. 

The main purpose of capacitors is storing charge. However they can be used for 

various task in electrical circuits. These uses includes: 

• Timing devices. This is due to the fact that the time needed to charge them is 
certain and can be predicted. 

• Filters. They can be used as circuits that allow only certain signals to flow. 
• Smoothing the voltage in circuits. 
• Tuning. In radios and TVs. 
• As batteries (large super-capacitors). 
• Variety of other purposes. 

 

As J.Ho et.al (2010) describes as that “Capacitors are a good example of the fact that 

even the simplest device can become complex given 250 years of technical 

evolution.” 

On the other hand, the uses of small and large capacitors differ. Small capacitors can 

be used in electronic devices for various purposes such as coupling signals between 
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stages of amplifiers. Or they can be part of power supply system used to smooth 

rectified current. While large capacitors are mostly used for energy storage. They can 

be found in applications as strobe lights, as well as in some types of electric motors.  

Capacitors can be standard (having a fixed value of capacitance) or adjustable. The 

latter capacitors are more frequently used in tuned circuits. The symbols for a fixed 

capacitor and an adjustable (variable) capacitor used in electrical circuit diagrams 

are shown in figure (8). 

 
  Fig. 8- Schematic symbols of capacitors. 

Some of the most common capacitor types which find widespread application in 

electronics as well as electrical industries are Paper, Mica, Ceramic, Electrolytic, 

Tantalum, Power, Spherical, Super-capacitors, and others as shown in figure (9). 

 

 Fig. 9- Some different type of capacitors. 

 

The Capacitance of a capacitor 

Capacitance (C) is the measure of a capacitor’s ability to collect and store energy in 

the form of electrical charge required for generating a unit potential difference 

between its plates [9]. In an ideal capacitor, the capacitance is defined as  

=
QC
V
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where Q is the electric charge stored in coulombs and V is the potential difference 

between the capacitor’s plates in volts. The standard unit of capacitance is named 

Farad (F), which is really equivalent to coulomb/volt, in honor of British electrical 

pioneer Michael Faraday. 

One farad is too great a unit of measurement to use in practical purposes, hence 

fractional values of Farad are almost always used such as micro-farads (μF), nano-

farads (nF), pico-farads (pF) and so forth on. A large capacitance means that more 

charge can be stored. Super-capacitors, meanwhile, can store very large electrical 

charges of thousands of farads. 

 

Parallel Plate Model 

In a parallel-plate capacitor, as shown in figure (10), experiments demonstrate that 

capacitance C is proportional to the area A of a plate, inversely proportional to the 

plate spacing d (i.e. the dielectric thickness) and depends on the nature of the 

dielectric 

ε ε
= 0 r A

C
d

  

where; 
• ε0 is a constant value equal to 8.85 10-12 (F/m).  
• εr is the relative permittivity.  
• A is the area of the plates. 
• d is the thickness of dielectric. 

 

 

Fig. 10– Parallel plate (prototypical) model. 
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Aluminum Electrolytic Capacitors 

Among other types of capacitors, aluminum electrolytic capacitors own a special 

position in numerous power applications and systems because they are very cost 

effective and able to provide a higher capacitance per volume (CV) compared to 

other types of capacitor. Therefore, these components are extensively preferred to 

use as power supplies wherein high volumetric efficiency is required such as 

aircrafts, space vehicles, automobiles, computers, mobile phones and many other 

electronics. 

An aluminum electrolytic capacitor generally consists of a cylindrical wound 

capacitor element and impregnated with an electrolyte. The element is comprised of 

an anode foil, a cathode foil and paper separators which are saturated with a liquid 

or gel-like electrolyte [10]. The two foils are made of aluminum that gives rise to the 

fact that the capacitor is referred to as the aluminum electrolytic capacitor. The 

anode foil is usually highly etched to increase the plate’s surface and there is a thin 

dielectric layer of aluminum oxide on the surface of the anode. The paper spacer is 

placed between them in order to prevent a short circuit between the foils and then 

the layers of materials are wound around on one another and then placed into an 

aluminum can. A sketch of a typical aluminum electrolytic capacitor is shown in 

figure (11). 

 

  Fig. 11- Aluminum electrolytic capacitor [11]. 
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However, while these capacitors offer high CV ratios and are low in cost, they 

exhibit high DC leakage and low insulation resistance and the fact that their 

performance and reliability strongly depend on the operation temperature. In 

principle, the lifetime of an aluminum electrolytic capacitor generally doubles for 

each 10 ◦C temperature reduction in the capacitor core. [12] The core is the hottest 

spot of the capacitor and approximately at the center of the capacitor. The evaluation 

of the core temperature is generally obtained by three factors; namely, the ambient 

temperature, the power dissipation in the capacitor, and the thermal resistance 

between the capacitor core and the ambient air [13]. 

The lifetime of capacitor is mainly established by the component temperature. 

Therefore it is critical to anticipate heating under operating conditions already in the 

early stage of development. This can be used in optimization of the electronics 

design with regards to selecting the most suitable type of capacitor. 

Many manufacturers are trying to tabulate values of thermal resistances for the 

thermal core to case and core to air resistances [14]. Parler [15] and Huesgen [13] 

have developed more specific models by investigating numerous cooling techniques 

for large capacitors with screw and snap in terminals. 

 

3.3 Motivation and Objective 
 

Choosing the right capacitor has significant role for an application. It involves 

knowledge of different aspects of application environment, including thermal and 

electrical. [16] The life of an aluminum electrolytic capacitor varies exponentially 

with temperature, therefore the thermal modeling concept is substantial. [15] 

To build a thermal model it is necessary to know the thermal parameters. These 

parameters are:  

• thermal conductivities. 

• thermal capacitances.  

Basic analytical equations for heat conduction can be applied for the known 

geometries and commonly used materials (such as aluminum can and aluminum 

leads). The capacitor winding is a more complex part. This is composed of a cathode 

and an anode layer. These layers are separated by paper, impregnated by a liquid 
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electrolyte. The winding has very high anisotropic properties. This is influenced by 

much higher thermal resistance in radial than in axial direction. Also there are 

undefined properties like compression factor of the paper and material data of the 

electrolyte or the gaps between the winding and the can. Because of these latter 

factors, Parler [15] measured the thermal properties of the winding using a special 

test stand. Then he was able to employ these properties to a one-dimensional model. 

In his model the complex winding structure is represented by a thermal resistance in 

radial and in axial direction. Parler and Macomber later used these results to build a 

thermal network model. Their model consisted of seven resistive elements based on 

analytical equations [14]. 

However, the objective of this work is to investigate an analytical solution for the 

aluminum electrolytic capacitor by applying the general equation of energy 

conservation, and considering the independency of k by space and temperature and 

the heat generation due to the joule effect. Then, to compare the results to the FE- 

computer- solved results. 

Modelling the heat transfer for capacitor can 

During the course of the device functioning, the capacitor temperature reaches to a 

higher temperature than the environment temperature. And under steady state 

conditions, the heat power dissipated to the medium should be equal to the power 

generated by the capacitor according to the balance of energy. 

=gen thP P                                                                                                                                            [3.1] 

The ways in which heat transfer mechanisms is being distributed around and inside 

the capacitor may include conduction, (free or forced) convection and radiation. In 

this case, the convective heat transfer is the mean to cool the capacitor from the can 

to the ambient. It is generally modelled as a surface effect that depends on fluid 

mechanics, medium temperature, heat and mass transfer properties such as density, 

specific heat and viscosity, geometry of device and direction of flow. Assuming the 

surface of the device is at a higher temperature than the environment by an amount 

ΔT, the power dissipated through the convection is given by 

= ∆conv conv sP h A T                                                                                                                              [3.2] 
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where As is the surface area of the capacitor where the convection occurs. Similarly, 

radiation is also a surface effect. Its capability depends on material properties of the 

capacitor surface and the absolute temperature as well as the temperature difference 

between the can surface and the ambient. This is governed by Stefan-Boltzmann’s 

law as 

( )εσ ∞= − = ∆4 4
conv s rad sP T T h A T                                                                                                     [3.3] 

where ε is the radiation coefficient (emissivity). For an aluminum electrolytic 

capacitor that is covered with an isolating sleeve ε = 0.85 is a good approximation, 

while for bare capacitors ε = 0.4 [15]. 

At standard atmospheric pressure and temperature controlled, the medium would 

be air at values ranging from 20 to 30 °C. In electrical industry an approximate value 

of h is commonly used which is linked to velocity of cross flow air via the 

correlation: 

= +11 ( 0.25) / (0.25)h V                                                                                                              [3.4] 

in units of Wm-2K-1. According to [15], above correlation lumps together all the 

effects of natural convection, forced convection and radiation processes. In the 

present analysis, although it does not take into account many other important factors 

for capacitor such as gravimetric orientation, the aspect ratio and the type of air flow 

laminar or turbulent, h is used as a known quantity being equal to 11 Wm-2K-1 by 

taking the velocity as 0 ms-1. Thus, by means of equation (3.4), the defining energy 

balance is given as 

= ∆i sW V hA T                                                                                                                       [3.5] 

A schematic diagram and nomenclature of a capacitor model is simply illustrated in 

figure (12), where all the surface of the capacitor is exposed to a convection 

environment characterized by h∞, T∞. 
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Fig. 12- Model of the capacitor under convection environment. 

 

An electric circuit was set up in order to check the superficial temperature of the 

device under assigned convection heat transfer through ventilation as shown in 

figure (13) A few simplifications were made on the value of thermal conduction 

leading to the known physical quantities as dimensionless variables: Biot number in 

x and r directions. The analytical result, obtained as a series expansion, has the 

advantage of being correct and usable in a large range of devices, provided an 

adequate number of eigenvalues is employed. 

 

 

  Fig. 13- Test Setup.  
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3.4 Analytical Solution 
When the exact steady solution is sought, the unsteady term of heat conduction 

equation on the r.h.s (right hand side) is zero. Therefore, the differential equation 

which governs the steady conduction of heat across a two dimensional solid (or 

fluid) in cylindrical coordinates [2], considering there is no angular variation, with z 

and r are the only spatial coordinates is 

 ∂∂ ∂
+ + = ∂ ∂ ∂ 

2

2

1 0iWT Tr
r r r kz

                                                                                                [3.6] 

where the body is assumed to be homogeneous, k is the material conductivity and Wi 

is the constant and uniformly distributed internal heat generation. In order to make 

the boundary conditions homogeneous, θ is defined as the spatial temperature 

distribution referred to the known ambient temperature T∞. And only half of the 

capacitor length is considered since the problem is symmetrical in axial position z 

about z=L. In other words, the origin is replaced in the center of the cylindrical 

model and imposed an adiabatic condition at z=0. 

If there were no heat generation, equation (3.6) would be solved through the 

separation of variables, since boundary conditions are homogeneous in terms of 

temperature difference with ambient medium. However, the volumetric power 

density Wi is the known term in the equation, thus we moved to investigate a 

solution which is given by superposition method as the sum of two effects θ1 and θ2, 

that obey to two different differential equations; namely, a steady state one-

dimensional heat equation with power density and a partial second order 

differential equation, homogeneous in θ2 with no heat generation as given below 

( ) ( ) ( )θ θ θ= +1 2, ,r z r r z                                                                                                       [3.7] 

where θ1 is chosen as a function of only r-direction. As an alternative solution, it 

would also be possible to choose θ1 as a function of only z-direction However, in 

present analysis the heat generation term is implemented to be absorbed in θ1 which 

is a function of only r-direction. Therefore; corresponding equations are given in the 

following. 
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( ) θ
θ

 
= + = 

 
1

1
1 0iWddr r
r dr dr k

                                                                                              [3.8] 

( ) θ θ
θ

 ∂ ∂∂
= + = ∂ ∂ ∂ 

2
2 2

2 2

1, 0r z r
r r r z

                                                                                       [3.9] 

Then taking into account the symmetry of the cylinder at center r=0 and z=L, the 

boundary conditions which have to be satisfied are derived for the quarter of the 

cylinder model as 

• b.c.1.    θ

=

=1

0

0
r

d (r)
d r

  

• b.c.2.    θ
θ

=

= −1
1( )

r a

d (r) h a
dr k

   

• b.c.3.   θ

=

∂
=

∂
2

0,

0
r z

(r,z)
r

  

• b.c.4   θ
θ

=

∂
= −

∂
2

2
,

( , )
r a z

(r,z) h a z
r k

  

• b.c.5   θ

=

∂
=

∂
2

, 0

0
r z

(r,z)
z

  

• b.c.6.   θ
θ θ

=

∂
= −  +  ∂

2
1 2

,

( ) ( , )
r z L

(r,z) h r r L
z k

  

The solution of equation (3.8) which is an ODE is straight forward, coupled with 

heat balance: 

θ
= +

2
1

12
iWd rr C

dr k
                                                                                                              [3.10] 

Applying the b.c. (1) into equation (3.10) yields that C1 must be equal to 0. Then, 

again differentiating the equation gives 

θ = +
2

1 24
iW r

(r) C
k

  

In order to find the constant C2, as mentioned above before, from energy balance we 

have: 
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( ) ( )π π= ∆2 2iW a L h T aL                                                                                                    [3.11] 

By rearranging the above equation, the spatial surface temperature can be expressed 

as 

θ∆ = = surf2
iW a

T
h

                                                                                                                 [3.12] 

Therefore, solution of θ1 results in 

θ = − +
2 2

1 2( ) (1 )
4 2

i iW a W arr
k ha

                                                                                                [3.13] 

Subsequently, equation (3.9), which is a Laplace’s equation, is solved by utilizing 

separation of variables method. The existence of a product solution of two functions 

is assumed; namely, one a function of the z coordinate only and one a function of the 

radial coordinate only. 

θ =2( , ) ( ) ( )r z R r Z z                                                                                                              [3.14] 

Then, this equation is superseded for θ2 into equation (3.9) and the following result 

is obtained. 

∂   ∂  ∂ ∂ ∂ ∂   + ⇒ + =
∂ ∂ ∂ ∂∂ ∂

2 2

2 2

( ) ( ) ( ) ( )1 1 ( ) ( )( ) ( ) 0
R r Z z R r Z z R r Z zr Z z r R r

r r r r r rz z
              [3.15] 

Each term of equation (3.15) is divided by R(r)Z(z) and each side is set equal to a 

constant that result in 

α+ + = ⇒ + = − = −
" ' " " ' "

2( ) 1 ( ) ( ) ( ) 1 ( ) ( )0
( ) ( ) ( ) ( ) ( ) ( )

R r R r Z z R r R r Z z
R r r R r Z z R r r R r Z z

                                  [3.16] 

The sign of the separation constant is chosen -α2 since the homogenous boundary 

conditions are in the direction of r, such that eigenfunctions are obtained in this 

direction. Hence, the two ordinary differential equations in conjunction with their 

boundary conditions separately expressed as first order equations bring following 

solutions. Firstly, the solution for Z is given by hyperbolic functions as 

( ) ( )α α α− ⇒ = +" 2
1 2( ) ( ) ( ) sinh coshZ z Z z Z z C z C z                                                 [3.17] 

and the solution of R is expressible in terms of the general Bessel’s equations as 
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α α α+ + = ⇒ = +2 " ' 2 2
3 0 4 00 ( ) ( ) ( )r R rR r R R r C J r C Y r                                                 [3.18] 

Thereby, the general form of the solution for θ2 becomes 

θ α α α α=  +   +    2 1 2 3 0 4 0( , ) sinh( ) cosh( ) ( ) ( )r z C z C z C J r C Y r                                         [3.19] 

The above set of ordinary differential equations in conjunction with the boundary 

conditions have to be satisfied. Firstly, the homogenous r boundary conditions are 

used in order to determine the eigenfunctions and the eigenvalues of the problem. 

Since all Yn become -∞ as r becomes zero; to keep the solution finite, b.c. (3) requires 

that C4 = 0. The eigenfunctions of the problem become J0(αna). And applying the 

convection b.c. (4) by use of the formulas for the derivative of J0 yields following 

relationship 

α α α− = −1 0( a)C ( a)hJ J
k

                                                                                                   [3.20] 

which is the eigencondition to the problem and for convenient it may be rewritten 

as: 

α λα λ
α λ

= ⇒ =0 0

1 1

( ) ( )
( ) ( )a a

J a Ja
Bi J a Bi J

                                                                                        [3.21] 

Where the Bia is the Biot number in the direction of r, equal to ha/k. Moreover, the 

roots of equation (3.21) give the eigenvalues and there are infinite number of real 

eigenvalues which satisfy the equation (3.21), as α1a, α2a, α3a, ……. αna, where αn < 

αn+1 (n = 1, 2, …) And graphically, all these values can be shown as intersections of 

the function f (λ) = J0(λ) * Bia - J1(λ) / λ = 0 with the λ-axis as shown in figure (14). 

 
Fig. 14-  Points of eigenvalues. 
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In traditional way, the acceptable values of these positive roots are indicated as the 

abscises of intersections of the graph of J0(λ) / J1(λ) with the graph of a straight line 

through the origin with a slope of λ / Bia as plotted in figure (15). These eigenvalues 

are computed with Matlab™ program. 

 

Fig. 15- Eigenvalues to the problem at intersections. 

The properties of Bessel and trigonometric functions is used to cancel part of the two 

unknown constants and to solve the b.c. equations (first order ODEs) for which the 

roots (eigenvalues) are obtained. On the other hand, to satisfy the boundary 

condition (5) that is θ∂ ∂ =2 / 0z , C1 must be equal to 0. Hence, the product solution 

is rewritten as the sum of all eigenvalue solutions, namely, each multiplied by a 

different constant as following 

2 0
1

( , ) cosh( ) ( )n n n
n

r z C z J rθ α α
∞

=

=∑                                                                                       [3.22] 

We are now left with infinite functions θ2,n unknown by a constant Cn, because they 

satisfy the three homogenous b.c.s. 3, 4 and 5 of the problem. Therefore, we will look 

for a series expansion that satisfies the remaining b.c. (6). Setting z = L in equation 

(3.22) gives the following equation for the non-homogenous boundary condition. 

2,
1 0

,

( ) cosh( ) ( )n
n n n n

r z L

h r C L J r
z k

θ
θ α α

=

∂
 = − + ∂ ∑                                                          [3.23] 

Then, rearranging equation (3.23) results in 
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0 1sinh( ) cosh( ) ( ) ( )n n n n n
h hC L L J r r
k k

α α α α θ 
+ = −     

 
∑                                                [3.24] 

A use of the orthogonality condition for the Bessel functions, which has a weighting 

function r, is now made to compute the remaining unknown Cn’s. Namely, each side 

of equation (3.24) is multiplied by rJ0(αnr) and integrated over the r domain - which 

extends from a lower limit of zero to an upper limit of a – this gives the following 

result 

α α α α θ α
  

+ = −   
   

∑ ∫ ∫2
0 1 0

0 0

sin( ) cos( ) ( ) ( ) ( )
a L

n n n n n n
h hC L L rJ r dr r rJ r dr
k k

                        [3.25] 

since after the rJ02 integration kills off all terms in the series except for n=m. 

Therefore, Cn expansion coefficients become 

( )

θ α

α α α α α

 
−  

 =
  

+ +  
   

∫ 1 0
0

2
2 2

1 0
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sinh( ) cosh( ) ( a) ( a)
2

a

n

n

n n n n n

h r rJ r dr
k

C
h aL L J J
k

                                     [3.26] 

Upon evaluating the integration of θ1 in the numerator and introducing the result 

the unknown values of Cn expansion coefficient is expressed as 

( )

2 2
1 1

02

2
2 2

1 0

a ( a) a 2 ( a)
 ( a)

2 ( a)2
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α α
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α α α α α

∞

∞
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− −     

    =
 

+ + 
 

                                        [3.27] 

Therefore, the solution of Cn eventually are substituted into equation (3.22) and then 

the final result of the temperature distribution for cylindrical capacitor is obtained as 

θ α α
∞

∞
=

 
− = = − + + 

 
∑

2 2

02
1

1 cosh( ) ( )
4 2

i i
n n n

n

W a W arT T C z J r
k ha

                                            [3.28]  
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3.4.1 Results and discussions 

The above final expressions for T(r, z), which may even easily be inserted into a 

palmar calculator that has “math” solvers, have been implemented in Matlab™ 

ambient. Since the analytical solution is the summation of an infinite series, only a 

finite number of terms are taken into account while obtaining the analytical solution 

after checking the effect of number of terms on the result. In other words, the 

equations are evaluated until the change in the temperature is less than the desired 

tolerance. And, it is found that the solution converges with more than 5 terms and it 

does not change appreciably when an additional number of terms is used. 

The representation of these analytical results are given in the following figures. 

Firstly, θ1 and θ2 are plotted within Matlab™ as shown independently in figure (16) 

to visualize that how their summation together with ambient temperature form the 

final result of the temperature distribution. And in figure (17), the 3D-view of T(r, z) 

together with its surface-map onto base is given to give a good qualitative overview 

of the full space temperature distribution for the capacitor model. 

 

  

 Fig. 16-  2D plots of θ1  (left) and θ2 (right). 
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Fig. 17- 3D plot of the analytical temperature distribution as a function of distance in r-
direction (m) and in z-direction (m) in a cylindrical capacitor model. 

 

 

3.5 Finite element method solution 
Figure (18) presents the temperature contours in the modeled cylindrical capacitor 
under same conditions with an uniformal heat generation an amount of 574234 
[W/m3]. 

 

 

Fig. 18-  Temperature contours  in a cylindrical capacitor model. 
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3.6 Comparison of results of the analytical method and the FEM 
method 

Figure (19) and (20) presents the comparison between analytical and finite element 

analysis. The temperature profiles perfectly matches between these solution through 

either r or z direction.  

 

 

 

Fig. 19-  Comparison of temperature variation between analytical and FEM results through r 
– direction. 

 
 

 

 

Fig. 20-  Comparison of temperature variation between analytical and FEM results through z 
– direction. 
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3.7 Conclusion 
The present work found an analytical solution for a cylindrical capacitor model. The 

analytical solution of the heat transfer partial differential equations presented in this 

section appears in the form of the sum of the effects. The results are obtained in 

terms of a series expansion solution involving Bessel functions based on the 

principle of superposition and separation of variables. 

And then, a comparison between the analytical results and the numerical results 

obtained through a FEA package, ANSYS™. The comparison shows that they are in 

excellent agreement. 

Thus, the analytical solution is valuable because it can be even obtained by simple 

math solvers and palmar calculators and is a mean of validating the numerical 

schemes or vice versa when experimental data of the engineering problem are 

available. 
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Chapter 4        

A tinplate can filled with beef 
homogenate under thermal sterilization  
 
 

4.1 Basic concepts of heat transfer in Food Processing Industry  
A myriad of food processing operations involve the transfer of heat, such as cooking, 

roasting, sterilization, chilling, freezing. Therefore, a good understanding of the 

principles that govern heat transfer becomes an essential subject also in the food 

processing industry. 

 

Thermal processing of food products is done by either heating or cooling. It’s 

objective is to produce a product which is stable and could be stored for longer 

periods. Such product should be free from pathogenic organisms, which cause food 

spoilage. [17] Various enzymes and microorganisms are interacting with food and 

making it unsuitable for humans. In order to prevent it, these enzymes and 

microorganisms should be destroyed or partially or totally inhibited and food 

should be stored in proper packaging. The outcome of heat treatment correlates with 

time and temperature. Generally, the effect is greater with increase of temperature 

and time. There are various techniques of food preservation by heat treatment. These 

includes: 

• Sterilization;  Pasteurization; Drying; Cooking; Laundering. 

Sterilization by heat is achieved by exposing food to temperature which normally 

surpass 100°C for a period of time ample enough to inhibit enzymes and various 

forms of microorganisms in sealed containers. To obtain a commercially sterile 

product conditions applied to product should be specified. The success is granted 

only by applying heat for a certain period of time at the certain temperatures, under 

determined conditions [18]. However, this technique does not grant the long-term 
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conservation by itself. In everyday conditions food is affected by subsequent 

contamination by environmental microorganisms. Therefore the food container most 

also be sterilized. The sterilization of both, food and container, can be achieved in the 

following two ways: 

• Appertization. 

• Aseptic packaging. 

Appertization is a technique when container and its content is sterilized 

simultaneously. Aseptic packaging is when container and its content are sterilized 

separately. When designing thermal food process operations two criteria outstand. 

The temperature in the slowest heating zone (SHZ) and the thermal center of the 

food during the process are essential. This temperature is measured using 

thermocouples [19]. This allows the possibility to evaluate the effect of the thermal 

treatment on the microbiological and sensory quality using well-established 

methods. Traditional methods of temperature measurements and quantitative 

microbiological and food quality analyses are very time consuming. Therefore 

mathematical models and simulation software can be an advantageous alternative. 

[20]. Heat transfer modes can be classified when considering sterilization of canned 

food. These types include: 

• Conduction through solid foods. 

• Convection through liquid foods, especially those having low viscosity. This 

convection can be natural or forced, depending on whether the motion of fluid is 

induced artificially or not. 

• Combined convection-conduction through liquid food with high viscosity. 

However, commonly in the applications conduction is assumed as the only heat 

transfer mode which can only be used for solid food. This is due to the relative 

simplicity of analytical and numerical solutions. In the case, when heat transfer is 

only controlled by conduction, then during the heating process the so-called SHZ 

remains at the geometric center of the can [19]. 

Most of the thermally preserved products are in metal containers (cans) while others 

are packed in glass jars or plastic or aluminum/plastic laminated pouches. Most 

metal containers are cans or “tins” produced from tinplate and they have usually a 
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cylindrical shape. In this study, it is also considered a tinplate can filled with beef 

meat which has a cylindrical shape as shown in figure (21). 

  

Fig. 21- Tinplate can filled with beef homogenate. 

The relevant thermal and physical properties of foods for mathematical modelling of 

conduction heat transfer are thermal conductivity (k), specific heat (cp) and density 

(ρ). These thermo-physical properties may be temperature dependent which make 

the problem non-linear. The values of these parameters are assumed to be constant 

in the analytical solution for the sake of the simplicity of the problem. Besides, they 

are considered as a mild function of temperature in the finite element method 

solution. 

4.1.1 Motivation and Objective 

Sterilization of a tinplate can filled with beef homogenate was theoretically and 

experimentally modeled and the finite element method was applied to the 

calculation of temperature profiles under unsteady heating and cooling stages [21]. 

The objective of this chapter was to obtain an analytical solution for sterilization 

process of the can in the heating stages. 

The dimensions for the cylindrical can are taken to be a radius of a = 36 mm and a 

height of 2c = 104 mm and where the can is heated from all sides at 123°C with an 

uniform initial temperature of 21.5°C. 

4.2 Analytical Solution 
Generally, in thermal food processes the heat generation is assumed to be zero since 

the chemical reactions do not generate large amounts of heat except those involve 

volumetric heating such as microwave heating. In present study of the case of 

tinplate can filled with beef under sterilization there is also no volumetric heat 

generation and it is decoupled from the differential equation and the case is 
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unsteady. Therefore, the general differential equation which governs the unsteady-

conduction of heat across a two dimensional solid (or fluid) in cylindrical 

coordinates is written as the following equation [2],  

 ∂ ∂∂ ∂
+ = ∂ ∂ ∂∂ 

2

2

1 1

t

T TTr
r r r a tz

                                                                                                [4.1] 

where the heat transfer is assumed to be significant in radial (r) and longitudinal (z) 

directions while it is neglected in angular direction due to symmetry boundary 

conditions, and the thermo-physical parameters ρ, c and k are assumed to be 

constant for the sake of simplicity in the analytical solution. 

Usually, in canning processes, the convection boundary condition at the outer 

surface and symmetry boundary condition in the centreline are preferred. In this 

study it is also proceeded that the tinplate can loses heat from its outer surface 

according to Newton's law of cooling. Since the problem is symmetrical in axial 

position z about z=c, only half of the tin can length is considered. In other words, the 

origin is replaced in the center of the cylinder model and imposed an adiabatic 

condition at z=0 as it is shown in figure (22). 

 
Fig. 22- The model of can with corresponding boundary conditions. 

 

In order to make the boundary conditions homogeneous, first, θ is defined as the 

spatial temperature distribution referred to the known ambient temperature T∞. 

Additionally, initial temperature is defined as being equal to θi = Tinitial – T∞. 

Therefore, the initial condition and the boundary conditions which are to be satisfied 

are given as 
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• b.c.1.   
θ

=

∂
=

∂
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,
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r z t
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• b.c.2.   
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= −
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=

∂
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∂
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,
0

r z t

(r,z t)
z

  

• b.c.4.   
, ,

, ,
r z c t

(r,z t) h (r,c t)
z k

θ θ
=

∂
= −

∂
  

• i.c.      θ θ=,0 i(r, z )   
 

Under all these considerations, a solution that is the product of three functions has 

been become possible in the form of the separation of variables namely; R(r) is a 

function of the radial coordinate only, Z(z) is a function of the z coordinate only and 

τ(t) is a function of the time only. Thus, by employing this product solution, the 

general solution is written as 

( ) ( ) ( ) ( )θ τ= ⋅ ⋅, ,r z t R r Z z t                                                                                                           [4.2] 

This equation is superseded for θ into partial differential equation (4.1) and the 

following result is obtained. 

( ) ( ) ( )2

2

1 ( ) ( ) ( ) ( )( ) ( )
t

tR r Z z R r Z zZ z t r R r t
r r r a tz

τ
τ τ

∂∂ ∂ ∂
+ =

∂ ∂ ∂∂
                                                    [4.3] 

Equation (4.3) is then divided through by the product R(r)Z(z)τ(t) solution, which 

yields 

'' ' '' '1 1

t

R R Z
R r R Z a

τ
τ

+ + =                                                                                                                     [4.4] 

The separation constant is set for the left hand side terms to be equal to respectively  

-α2 and –β2 and for the right hand side term to be equal to –( α2 + β2). These yield 

three ordinary differential equations to solve as given with the following equations. 

( )τα β α β
τ

+ = − = − = − +
'' ' '' '

2 2 2 21 1,    ,    
at

R R Z
R r R Z

                                                                 [4.5] 
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These set of ordinary differential equations in conjunction with their boundary 

conditions expressed as first order equations bring following solutions. Firstly, the 

solution for R in r is given by the following form: 

α α α+ + = ⇒ = +2 " ' 2 2
1 0 2 00 ( ) ( ) ( )r R rR r R R r C J r C Y r                                                         [4.6] 

Where J0 and Y0, are the known Bessel functions of the first and second kind with 

zero order [22]. In this equation coefficient C2 is eliminated by applying b.c. (1), since 

all Yn become -∞ as r becomes zero; therefore to keep the solution finite, it is required 

that C2 = 0. Applying the convection b.c. (2) by use of the formulas for the derivative 

of J0 as dJ0(r)dr = –J1(r) provides the following needed eigenvalue relationship. 

1 1 1 0J ( a) J ( a)hC C
k

α α α− = −                                                                                                  [4.7] 

which is the eigencondition to that problem and for convenient it may be written as: 

a a1
1 0

0

J ( a)
      J ( )  J ( ) 

J ( a) ( a) ( )
Bi Biα

λ λ
α α λ

= ⇒ =                                                                            [4.8]                                                                 

where Bia is the Biot number in the direction of r and is equal to ha / k. The graph of 

these functions’ behaviors are as shown in figure (23). 

 
Fig. 23- The representation of behaviors of the related functions. 

 

Moreover, the roots of equation (4.8) give the eigenvalues and there are infinite 

number of real eigenvalues as α1a, α2a, α3a, …. αna. And graphically, all these values 

can be shown as intersections of the graph of J0(λ) / J1(λ) with the graph of a straight 

line through the origin with a slope of  λ / Bia as plotted in figure (24). 

 



Chapter 4  41 

 
  Fig. 24- Eigenvalues of the problem. 

On the other hand, the general solution of the second term of equation (4.2) in z-

direction is expressed as: 

( ) ( )β β β+ ⇒ = +" 2
3 4( ) ( ) ( ) sin cosZ z Z z Z z C z C z                                                       [4.9] 

In this equation the coefficient C3 is easily eliminated by the use of b.c.(3), ∂ ∂ =/ 0Z z

in order to satisfy the condition, namely, ( ) ( )β β β β− =3 4cos sin 0C z C z , C3 must be 

equal to 0. Then, the following needed eigenvalue relationship is obtained by 

applying the convection b.c (4). 

( ) ( )β β β− = −4 4sin coshC c C c
k

                                                                                      [4.10] 

which is the another eigencondition needed for this problem and this can be written 

as the following equations in order to obtain a transcendental equation for β. 

( ) ( )or   cotc

c

Bi c
tg c

c Bi
β

β λ
β

= =                                                                               [4.11] 

where Bic is, the Biot number in the direction of z, equal to hc / k. Here the infinite 

roots which satisfy the equation (4.11) are β1a, β2a, β3a, ……. βma, where βm ˂ βm+1 (m 

= 1, 2, ...); and the acceptable values of these positive roots are indicated as the 

intersections of the graph of the cot(λ) with the graph of a straight line through the 

origin with a slope of βmc / Bic as plotted in figure (25). 
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  Fig. 25- Eigenvalues of the problem.  

Here the values of λm, similar to the previous eigenvalues for J0, are not evenly 

spaced and have to be found by numerical solutions. As the integer m increases, 

these values of λm will increase and as a result of this the intersections will come 

closer to an integer value of π while the cotangent term goes to infinity. 

Finally, the general solution of equation of the third in t is obtained as 

( ) ( )' 2 2 2 2(t) (t) 0 (t) exp[ ]n m t n m ta a tτ α β τ τ α β+ + = ⇒ = − +                                        [4.12] 

Since there are infinite number of terms for both n and m, the solution is summed 

over all n’s and m’s- a double summation. Thus, the product solution with the 

component solutions for θ(r,z,t) = R(r)Z(z)τ(t) is expressed as: 

( ) ( ) ( )2 2
0

1 1
(r,z, t) cos exp[ ]nm n m n m t

n m
C J r z a tθ α β α β

∞ ∞

= =

= − +∑∑                                          [4.13] 

There are an infinite series of roots in r and z, respectively the initial condition θi is 

then applied and is assumed that is equal to a series of functions with unknown Cnm. 

( ) ( )θ α β
∞ ∞

= =

=∑∑ 0
1 1

cosi nm
n m

C J r z                                                                                           [4.14] 

For the above equation it is made a use of the orthogonality properties of Bessel 

functions and cos functions with respect to the weighting factor r over the finite 

interval 0, a and 0, c.  It is done by multiplying both sides of equation by J(αnr)*r and 

cos(βmz), and integrating the result over the said interval with the assumption that 
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the integral of the infinite sum is equivalent to the sum of integrals. Therefore 

equation (4.14) can be rewritten as following: 

( ) ( ) ( ) ( )θ α β α β=∫ ∫ ∫ ∫2 2
0 0

0 0 0 0

cos cos
a c a c

i n m nm n mr J r dr z dz C r J r dr z dz   

Making the integrals for θi, which is constant and equal to Ti-T∞ 

( ) ( ) ( ) ( ) ( ) ( )
2

2 2
1 1 0
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2 2 2

m m
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n m m

z ca cJ C J J c
β β

θ α α α β
α β β

 
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After rearranging above equation results in: 
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              [4.15] 

Hence, equation (4.15) gives following relationship for the constants: 
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Introducing these values into equation (4.14) the final solution in dimensionless form 

is obtained as: 

( )
( )

( ) ( )
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                       [4.17] 

Where; 2
a / atFo a t=  (Fourier Number) and an nα λ=  

4.2.1 Results and discussions 

 

The representation of the analytical solutions are given in the following figures. By 

using the exact analytical solutions listed in this section and implemented in Matlab 

ambient, 3D plots of temperature per unit length and time are derived. In detail, the 

temperature contours of the analytical solution as a function of radial distance and 
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time is shown in figure (26) (a) and (b), respectively, while as a function of 

longitudinal distance is shown in figure 27 (a) and (b). 

 

  

(a) (b) 

Fig. 26-  2D and 3D plot of the analytical temperature distribution as a function of distance in 
r-direction (m) and time (s) for the cylindrical tinplate can model. 

 

  

(a) (b) 

Fig. 27- 2D and 3D plot of the analytical temperature distribution as a function of distance in 
z-direction (m) and time (s) for the cylindrical tinplate can model. 

 

And figure (28) presents the plot of temperature distribution at the time of 7200 secs. 
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Fig. 28- 3D plot of the analytical temperature distribution as a function of distance in z-
direction (m) and r-direction after 7200 seconds for the cylindrical tinplate can model. 

 

4.3 FEM Analysis 
A finite element model has been made for the purpose of making a comparison 

against to the analytical solution. Its dimensions are the same of the actual tin plate 

can that used in the analytical model but instead of 2D, in the finite element method 

it is modeled as a 3D. In the software Ansys™ Design Modeler Graphic user 

interface (GUI), it was built a 3D solid cylinder of radius r=0.036 (m) and of height 

z=0.104 (m). Again all the faces of the solid cylinder are considered to be subjected to 

convective conditions where the convective heat transfer coefficients on faces are 

equal and have values of 50 W/m2°C while the ambient temperature is 123 °C.  

In transient analysis, in addition to the thermal conductivity, density and specific 

heat are specified hence the program calculates the heat storage characteristics of 

each element and then combines them in the specific heat matrix, which is denoted 

by C in equation (4.20).  

Unlike the analytical solution, the temperature dependent both thermal conductivity 

and specific heat of the material are taken into account in the finite element analysis. 

The conductivity of the material is given as a mild function of temperature and 

isotropy is given, as shown in the figure (29). According to analysis of [21], the 

thermal conductivity of the material is expressed by the following empirical 

equation in the range of 40 - 123 (°C), while it stays constant between 20 and 40 (°C). 
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40.573 [1 3.7 10 (T 40)]   [W/m C]ok −= ⋅ + ⋅ −                                                                      [4.18] 

 

  

   (a) (b) 

Fig. 29-   Thermal conductivity and specific heat as a mild function of temperature for  the 
tinplate can. 

And similarly, the specific heat is given as a function of temperature in the range of 

40 -123 (°C) which is given in the equation (4.19), while it is constant and have a 

value of 3730 (j/kg°C) between 20 and 40 (°C). 

4(40 123 ) c (20 40 )[1 4.4 10 (T 40)]     [j/g C]o o o
p pc −− = − + ⋅ −                                             [4.19] 

And finally density is given, as a constant property, being equal to 1060 (kg/m3). 

Then, the cylindrical model is meshed using the three dimensional thermal solid 

element, SOLID90, which has 20 nodes with a single degree of freedom. The 20-

nodes elements have compatible temperature shapes and are well suited to model 

curved boundaries. In addition to SOLID90, a three dimensional thermal surface 

effect element SURF152 is used by overlaying it onto the faces of the thermal solid 

elements for the consideration of the convection effects on the model’s surface. 

Fig.11(b) shows the meshes generated for the present simulation. The applied model 

consists of 14866 nodes and a total number of 3268 elements as shown in the figure 

(30). 
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(a) (b) 

Fig. 30-   (a) Convectional boundary condition applied on the surfaces of model 

                            (b) Shows the 3D model meshed 

Since this case is a non-linear transient system, corresponding finite element 

equation expressing the thermal analysis, which ANSYS™ uses, can be written in 

matrix form as following: 

( ) { } { } ( ){ },C T T K T Q T t   +   =   
                                                                                           [4.20] 

where C denotes the specific heat matrix. 

Non-linear solutions in ANSYS™ / Mechanical are fundamentally based on the full 

Newton-Raphson iteration procedure [23]. Since, the thermal conductivity and the 

specific heat nonlinearities are given as a mild function of temperature in the current 

analysis, instead of full, a Quasi Newton-Raphson algorithm was used. That was 

speeded up the solution time significantly. 

A thermal load of convection was applied all the surfaces of the solid cylinder as 

After all these proceedings, the transient thermal heat transfer finite element analysis 

was performed by taking the initial temperature 21.5 °C, as same as in the analytical 

solution. The load time step is again considered as 7200 seconds whereas the used 

minimum time step is 1e-03 and the maximum time step is 50 seconds. 

The following figure (31) shows the temperature distribution in the solid cylinder 

model after 7200 seconds. As expected, the aliment cake is warmer near the surfaces 

due to the convection and the coolest point is the center of the solid cylinder. 
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Fig. 31-   FEM surface and mid – plane plots of contours of temperature in a tinplate can at 
the end of 7200 seconds with a rainbow representation. 

 

4.3.1 Results and the verification of the FEM analysis 

In order to check the validation of the results, two considerations has been analyzed. 

First is the accuracy of the results with the refined mesh. In other words, if the 

results converge when the mesh is refined. Therefore, a new mesh was made with a 

total number of 106513 nodes and 24928 elements.  

To make a comparison of the results between refined mesh and previous one, 

temperature as a function of radial distance from the middle of the cylinder is 

plotted.  As it is seen from the plot below, the FEA solutions for both meshes match 

very closely. Additionally, the finite element solution converges very quickly. In the 

figures below (32) and (32) there are two plotted lines; however, only one is visible 

since the variation is very minute. Hence this figure approves the good agreement 

between the used mesh and the refined mesh. 

 

 

Fig. 32-  Temperature variation vs Radial position after 7200 secs. 
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Fig. 33-   Temperature variation vs Axial position after 7200 secs. 

 

On the other hand, to check the validity of the FEA results, as much as refining mesh 

is important for obtaining accurate results, time is also considered as a second 

refinement factor that it may affect the solution. To do that, the number of time steps 

were altered and their temperature time history at the point of r=0.019 and z=0.027 

(m) are plotted. As it is seen from the figure (34) when max time steps are enlarged, 

the results are changing significantly. Therefore the max time step as 50 seconds 

used in the analysis is enough to getting accurate results, with keeping on mind the 

costs of the analysis. 

 

 

Fig. 34-   Temperature vs time at B point for different maximum time steps. 
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Hence, the verification of the FEM analysis is made. And considering the expensive 

of the meshes and time costs the first obtained results is used for making comparison 

between FEM analysis, analytical and experimental results. 

4.4 A comparison of results of the analytical method, finite element 
method and experimental data 

In figures (35, 36, 37 and 38), time variations of temperatures which are obtained by 

analytical and numerical (FEM) solutions are compared with the experimental data. 

These solutions shows the temperature variations at the relative measuring points 

which are shown on the right hand side of the figure (34). It is seen that the transient 

thermal analysis of the analytical solution and the finite element solution via 

computer simulation matches very closely. However the simulation forecasts a time 

of sterilization larger than in real world, and it is in favor of safety. 

In this particular case a better match with experiments is obtained by the simple 

hypothesis that external tinplate can temperature is equal to environmental T∞ since 

forced ventilation is quite turbulent. 

 

  Fig. 35-   Temperature variation at A point during 7200 secs. 
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  Fig. 36-  Temperature variation at B point during 7200 secs. 

 

 

  Fig. 37-  Temperature variation at C point during 7200 secs. 

 

  Fig. 38-   Temperature variation at D point during 7200 secs. 
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4.5 Conclusion 
The solid behavior of the food container is assumed and an exact analytical solution 

is obtained for the two-D transient temperature in a food can under sterilization at 

high temperature with the known initial temperature and surface heat transfer 

coefficient. The results are obtained in terms of a series expansion solution involving 

Bessel functions and based on the principle of separation of three variables. The 

eigenvalues required by the series expansion are obtained by root solving method by 

making a use of orthogonality of Bessel functions and homogeneous boundary 

conditions together. A not homogeneous condition brings to a Fourier analysis with 

an unknown coefficient left. It has been found that a finite number of roots can be 

used to obtain the analytical solution with reasonable accuracy. In particular 20 

terms for the two-D problem were found to be sufficient. 

In addition, a finite element solution is obtained with the conductivity and specific 

heat of the material are a mild function of temperature and isotropy is given. It is 

enforced the hypothesis that the heat convective forced flow is uniform all around 

the can and on both the caps. 

Finally, a comparison is made between the analytical, numerical and experimental 

results. It was obtained that the finite element simulation result has a similar shape 

with that obtained by the conventional theoretical model. However, there is a 

significant difference with the experimental data, but a better match with 

experiments is obtained by the simple hypothesis since forced ventilation is quite 

turbulent. 
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Chapter 5          

A cooled turbine blade under parallel 
convective and radiative heat flux, with and 
without internal cooling 
 

5.1 Overview on Gas Turbines 
 

One of the world’s most salient and widespread power engineering technology is 

“gas turbines” (GT), either to produce power or thrust, for use in propulsion 

systems, power generation plants and other industrial applications. 

These devices, also called combustion turbines, play a key role due to a myriad of 

advantages in a great variety of applications. Some of its significant advantages are 

having a great power-to-weight ratio, remarkable reliability, ability to run with 

many different gaseous or liquid fuels such as natural gas, liquefied natural gas, 

diesel fuel, oil and biomass gases. While having multiple fuel flexibility, however, 

most GTs operate on natural gas particularly in industrial applications. 

The rates of their power output can vary from a few kilowatts to hundreds of mega-

watts according to their ancestry, applications and the quality of the hardware. A 

variety of terms is used to describe the types of GT models but they are generally 

classified as aircraft engine type and industrial type.  
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Fig. 39- Cut-away of the Pratt & Whitney PW4000-94 turbofan engine. (Source: 
www.pw.utc.com/PW400094_Engine) 

 

A cut-away drawing of the PW4000-94 turbofan engine produced by Pratt & 

Whitney is shown in figure (39). It covers a range of 231.3 – 275.8 kN of thrust and 

powers several aircrafts. Figure (40) shows a commonly used industrial and marine 

gas turbine. The LM2500 engine is developed by GE Aviation which is a derivative 

of CF6 aircraft engine and its power output is approximately 25 MW. 

 

 

 Fig. 40-- Diagram of the GE LM2500 gas turbine engine. (Source: www.ge.com) 

 

In point of fact, both types have some things in common and share technologies 

driven from their designs and simulations. All gas turbines are made up of three 

chief components; namely a compressor, a combustor and a turbine. The 

arrangement of a simple open-cycle gas turbine is shown in figure (41). 

The working fluid, which is usually air, is drawn into the rotating compressor and is 

compressed. The pressure and the temperature of the gas increase as a result of this 

 



Chapter 5  55 

process. The compressed air is then heated at constant pressure in the combustor by 

burning fuel and air mixes, where the gas reaches to the maximum cycle 

temperature. Subsequently, the hot gases are expanded to the atmospheric pressure 

through the turbine to produce power. 

 

Fig. 41-- A simplified open-cycle gas turbine diagram. 

 

However, outputs of the turbine are extracted differently for both types. In short, in 

the aircraft types generally the turbine acts as a windmill to drive the compressor by 

using the output and the hot gases are then accelerated into the atmosphere through 

an exhaust nozzle to produce thrust. Unlike the aircraft type, typically in the 

industrial types, much of the produced work by the turbine is used for the 

requirement of driving the compressor (back work) while the remaining is 

considered as the useful work via shaft power to turn an energy conversion device. 

In addition to this kind of simple configuration, some additional equipment can also 

be added in order to increase the efficiency or output of a unit such as regeneration 

by heat exchanger, intercooling or reheating.  

Thermodynamic analyses used by gas turbines are based on Brayton, also called 

Joule, cycle. A P-v and a T-s diagram of the Air Standard (ideal) Brayton Cycle are 

shown in figure (42). 

 

  Fig. 42-– The ideal Brayton cycle. 
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This ideal Brayton Cycle consists of four internally reversible processes where the 

combustion and exhaust processes are replaced by the heat addition and the heat 

rejection processes at constant pressure, respectively, while compression and 

expansion of the gases are assumed to be isentropic. On the other hand, actual gas 

cycles are quite complex and differs from the ideal Brayton cycle, in which all the 

processes are assumed internally reversible since there are irreversibilities in the 

compressor and the turbine such as friction in the bearings, and pressure drop in the 

flow passages and combustion chamber. However, the conclusion to be drawn from 

the ideal Brayton cycle is that its efficiency varies with the temperature ratio which is 

related to its pressure ratio.  

Therefore the two factors which most affect the gas turbines efficiencies are; namely, 

pressure ratios and temperature. For an optimum thermal efficiency, the increase of 

both these two factors are essential since they are in parallel to each other. 

Developments of the pressure ratios and the firing temperature values are shown in 

figures (43) and (44), respectively. 

 

 

Fig. 43- The rise in pressure ratios over the years. (Source: [41]) 
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Fig. 44- The increase in firing temperatures over the years. (Source: [41]) 

 

5.1.1 Cooling Technology and Increasing Efficiency 
 

The quest to increase the thermal efficiency and the power of gas turbines for the 

future engines, gas turbine manufacturers are trying to reach higher turbine inlet 

temperatures (TIT), meanwhile higher compression pressure ratios [24]. However, 

there is a limitation to increasing the TIT since the permissible temperature level of 

the cycle is limited by the softening point of the materials, and operation at very high 

temperatures damages the turbine and reduces the life time of the turbine vanes and 

blades, as the blades  are under large stresses  and weaker.   

In advanced gas turbines of today, the hot gases enter the turbine section at a 

temperature of greater than 1800 [K], which is far from the melting point of the 

turbine blade materials. Besides, there are presently no metals or coatings which can 

resist to that much high values of temperatures. Therefore, turbine blades need to be 

cooled so they can withstand these tremendous temperatures and the maximum 

temperature of the cycle can be increased. 

The recognition of material temperature limitations has led to the continuous turbine 

development programs for new materials, advanced thermal barrier coatings and 

cooling technologies in conjunction with their related multi-disciplinary disciplines 

such as fluid dynamics, heat transfer, aerodynamic, mechanical and structures, all 

aimed to meet the increasing demands [25]. Incorporation of the growth material 
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technologies and new high temperature coatings have significantly relaxed the 

temperature limitations. But, as their developments almost reach a culminating 

point, further increases in TITs can only be achieved from advanced airfoil cooling 

technologies [25]. As a natural consequence, the key and the most salient issue is 

“cooling the turbine blades” in order to ensure higher performances of the modern 

gas turbine engines. 

Various techniques of turbine blade cooling have been proposed over the years, it is 

usually performed by the extracted air from the exit of the compressor. This involves 

a loss in the thermal efficiency, however, a considerable gain in turbine performance 

offsets this loss. Turbine blade air-cooling technique can be classified in two main 

sections; internal and external, as follows: 

• Internal cooling: convection cooling, jet-impingement cooling, pin-fin cooling. 

• External cooling: film cooling, transpiration cooling. 

The internal convective cooling, is one of the earliest method, where the coolant is 

passed through several enhanced serpentine passages from hub towards the blade 

tip and the heat is removed from the outside of the blades. Jet impingement and pin-

fin cooling methods are also considered to be a technique of internal cooling [24]. 

Another method of cooling the blade is external cooling, also referred to as film 

cooling, where the coolant is ejected out through a large number of small holes to 

provide a thin film cooling layer on the external surface of the blade [24]. However, 

in all these techniques the purpose is to keep the blade temperatures compatible 

within the allowable values. And a combination of these cooling techniques are 

generally utilized by the modern gas turbines. 

In fact, only in the early 1970s research activities in the turbine heat transfer and 

cooling analysis began [24.] Since then, great progress has been achieved in the field 

of turbine technology. Figure (45) shows the change in turbine inlet temperature 

with cooling technologies over the years. 
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Fig. 45-- Variation of turbine inlet temperature with cooling technologies over the years. 
(From Clifford, 1985, collected in Lakshminarayana, B.: Fluid Dynamics and Heat 

Transfer of Turbomachinery. Chapter 7, pp. 597–721. 1996 [24]) 

 

5.1.2 Motivation 

The design and the theoretical prediction of the cooling performance of internally 

air-cooled turbine blades is still far from being an exact science [26], since the large 

number of both aerodynamic and geometric variables which might influence the 

cooling characteristics create a considerable degree of complexity in the problem. 

The proof is that in the last thirty years the gas turbine cooling technology has been 

based on the more detailed understanding of temperature / heat flux boundary 

conditions in order to solve the fluid flow field coupled with the solid energy 

balance equation. The way it has been done is throughout the simulation of fluid 

flow to get an accurate prediction of temperature field around the surface of the 

blade. From the computed information, boundary conditions are then shared with 

the solid side whose temperature distribution is solved with a solid temperature 

solver, such as ANSYS™. This approach is known as Conjugate Flow and Heat 

Transfer.  

The key point of the Conjugate Flow and Heat Transfer [27], [28], [29], [30], [31],[31], 

33] analysis is to simulate the turbulence and predict the laminar-turbulent transition 

region under transonic conditions. Consequently, a determination of the flow and 
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rates of the heat transfer in the laminar-turbulent transition regime is crucial, but it is 

quite complex since the nature of the flow is very complicated, which makes their 

simulation a very challenging task in the transition zone. However, in modern 

turbine designs, high precision transition models must be reached and experimental 

test data have to be collected in order to validate the analysis. 

There are several methods of conjugate flow and heat transfer analysis and lots of 

papers have been discussed extensively [29], [30], [31], [32]. Although Large Eddy 

Simulation (LES) and Direct Numerical Simulations (DNS) can give accurate results 

in the transition zone, they are not preferable nowadays for engineering applications 

because of their high prices [33]. The affordable and more popular method is 

currently the two-equation turbulence model with transition model [33]. 

The result of the Computational Fluid Dynamics (CFD) simulation provides 

convective heat transfer coefficient in the form of Nusselt Number spatial 

correlation. Radiation is included in the Nusselt number as a low percent addition to 

the surface convection heat transfer coefficient. However, in the real GTs, radiation 

flux and convective heat transfer loads are in parallel and only convection is affected 

by laminar-turbulent transition. Nevertheless, radiation becomes the more important 

as the higher is the TIT. 

The quantity of thermal radiation depends upon many factors such as emissivities of 

the blade surface exposed, absorptivity, the temperatures, including blade’s sizes 

and shapes. It is between 10-20 % of the total heat flux already, is even higher in the 

regions viewing the flame zone as in the leading edge and is supposed to increase 

with the higher TIT.  

Since the cooling system has to be designed to withstand the load peak conditions, it 

is of interest to assume as boundary condition the maximum radiation load that 

impacts on blade / vanes and the mean convective heat transfer at peak load too. By 

this way, an alternative method to the CHT could be to consider the thermal loads 

(convection and radiation) as known and investigate the conduction heat transfer in 

the solid side only. 
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5.1.3 Objective and physical description of the model  

Accepted above assumption, a gas turbine blade is then modelled (see figure 46) 

which is being cooled from its base while subjected to convective and radiant heat 

loads from the combustion products to the its surface. The two fluxes are decoupled 

in the analysis as it is shown in the next section. The tip of the blade is considered to 

be insulated. In this way the focus was on the material thermal gradients generated 

by the thermal loads and on the way to distribute the cooling in order to have more 

isothermal behavior. 

Here it is used the method to establish directly the differential form of heat 

contributions in terms of an appropriately chosen differential control volume, by 

considering that the turbine blade is made of a homogeneous metal matrix whose 

thermal conductivity is independent of temperature, as it was done in the previous 

sections for other engineering processes with explicit solutions.  

As a first simpler approach, in the section (5.3), an analytical solution is obtained for 

the pseudo two-dimensionally temperature distribution in the turbine blade with no 

internal cooling process. Subsequently, a finite element analysis is made for the 

turbine blade under the same conditions by utilizing ANSYS™ program. And then, 

the comparison is made between the results those provided by the analytical 

solutions and by the finite element solutions. The results of these analysis is 

considered to be the starting point of a more elaborate procedure that takes into 

account the internal cooling process. 

In the next section (5.4), with regard to the internal cooling, it is then introduced in 

the control volume the rate of energy subtraction as a distributed sink per unit 

volume. In this step, the strength of the energy subtraction is a key point of the 

investigation. It could not be uniform due to the characteristic blade shape, and has 

to be designed in order to bring the cooling where it is needed more. For the 

convenient, the terms “heat sink” or “law of cooling” are used as a description of the 

strength of the energy subtraction per unit volume; such strength has to be also 

distributed in the spatial directions. Indeed the way the blades are internally cooled 

by ducts and ribs properly positioned it has to follow an effective qualitative / 

quantitative heat subtraction strategy. 



62   Chapter 5 

All things considered, it is expected that the model herein proposed and developed 

will give information to the designer on how to engineer the cooling inside the blade 

and, therefore, take the advantages on knowing where heat sink is more necessary. 

Technically, this is modeled by the aforementioned approach throughout the 

mathematical formulation of the energy balance equilibrium in the workpiece, in 

terms of its temperature. Such balance is modeled by a quasi-two dimensional 

problem, whose formulation is derived in the section (5.2).  

The problem is presented by the means of a degenerate elliptic partial differential 

equation in a rectangle, with Dirichlet, Neumann and Robin boundary conditions. 

Once some remarks about the problem are given, solution is concerned with its 

numerical resolution procedure that is obtained through the Finite Element Method 

(FEM) technique. Therefore, some examples and simulations are obtained and 

analyzed 

 

 

 

(a) (b) 

Fig. 46- (a) Heat load distribution around an inlet guide vane and a rotor blade. 

                      (b) Differential element of the blade. 
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5.2 Quasi 2D Energy Balance Modelling  
 

The heat transmission by radiation requires prediction of the space-dependent 

concentration and radiative properties of transient species (OH CO …) and of the 

main products of combustion, CO2 and H2O, whose infrared (IR) emissivity values 

are function of partial pressures, of pressure ratio, of mean beam length, of gas & 

surface metal temperature [34], [35]. The combustion products’ emissivity is related 

to Hottel emissivity with band overlapping correction effect [36]. The Hottel 

emissivities of any steady and transient species, CO2 and H2O mainly, with 

temperature as a parameter, form a family of curves of the form ε = −ba cx   

Where x is the partial pressure P (atm) of species multiplied by mean free path L and 

a, b and c are functions themselves of temperature. An example of literature 

correlations [37] is as follows: 
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The combined or Hottel emissivity of the main IR absorption/emission components 

is then found from the relation: 

ε ε ε ε= + −∆
2 2 2 2g CO CO H O H OC C   

The empirical fit for Hottel charts is in [37] including Cj and correction for wave 

length overlapping. Convective heat transfer comes from Nusselt correlation from 

experimental data [38], [39]. A family of correlation as following is given: 

−= ΚSt Re Pra b   

From here h∞ is inferred. The thermal load Q (Watt) could be then calculated inside a 

reasonable range of nowadays engineering apparatus according to the below 

empirical relations. 
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The following figure (47) shows the expected heat load distribution around an inlet 

guide vane and a rotor blade [24]. At the leading edge the heat flux is higher both for 

the flame proximity (direct radiation heat flux effect) and the stagnation enthalpy. 

As the flow splits and travel along the surface the heat flux decreases up to the point 

of transition from laminar to turbulent, and the heat transfer increases. The 

transition is expected in the suction side mainly. 

 

 

Fig. 47-- Comparison of measured heat transfer coefficients. Source: [24], [40]. 

 

To use the convective heat flux local values – as a continuous function along the 

curved variable - is not conceivable in order to solve analytically the energy balance 

in the alloy. 

To write explicitly the heat balance of the first principle equation, and to solve 

exactly the temperature field, it appears anyway feasible to preserve partly the 

variability of heat flux along the curved coordinate. It is done by assigning a 

constant mean value of convective heat transfer along all the blade surface through 

T∞, h∞ and adding to it the radiation flux, (variable) given by Hottel charts at the 

boundaries. Radiation, as the convective heat flux, is then inserted into the boundary 
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conditions and in the first principle statement. The tip of the blade -shroud area- is 

assumed with almost zero heat flux in the y direction. 

The case study is three dimensional, geometrically complex as shown in figure (46) 

and it requires a simplification to be treated analytically. Since the mean blade 

thickness is less than 0.01 [m] and the Biot number is below 1/6, the energy balance 

in the blade is modeled as a quasi-2D problem, including into the differential 

equation of the heat transfer load in the third direction z, convection and radiation 

independently [34]. The blade then has become to be considered as lumped in the 

transverse direction z to justify the scale down from 3-D to quasi-2-D formulation. 

This means that the variation of temperature in the direction of z can reasonably be 

approximated as being uniform. 

The two heat fluxes are then defined as the following equations, where q1’’ is towards 

the leading side and q2” is towards the suction and pressure surfaces. 

1

2

, 1

, 2

/

/  

R rad leading

R rad sides

Q A q

Q A q

′′=

′′=
  

Statement 1 According to the basic studies on emissivity of heteropolar gases, it is 

possible to infer the amount of power that impinges by radiation on a gray surface 

(see [36]), even if it is a cumbersome procedure. A number of investigations tentative 

way to express analytically the Hottel charts or explores alternative ways (see [37]). 

In this sense due to the high non linearity of gas radiation parameters, it is not 

possible to provide an explicit relationship for QR1 and QR2 , and therefore QR. We 

expect then that radiation QR on the first stage blades is around 200 W and 400 W. 

The leading edge is exposed to higher flux due to the proximity of the can while a 

lower flux hits the suction and pressure sides. 

To these radiation fluxes the convective heat transfer coefficient effect h∞, due to the 

high speed and turbulence inside the cascade, has to be added [35]. Even though the 

dependence of h∞ is not easily expressed as an analytical function, we assume for it a 

reasonable value taken between 150 W/m2K and 400 W/m2K [33]. Therefore, the 

convection contribution QC is from 200 W to 1100 W. These ranges will be considered 

in the numerical examples. 
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5.2.1 Internal Energy Balance Modeling 
The analytical expression of the steady energy balance, within the small volume 

element figure (46.b) of length ∆x and height ∆y, is expressed as the following 

equation 
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where g denotes the cross section of the blade and it is idealized as 
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2
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Therefore equation (5.1) with constant material properties becomes 
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In order to make simplification following relations have been introduced 
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Hence, the partial differential equation expressing energy balance for the blade with 

internal cooling process to be solved is given in the following equation. 
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5.3 Analytical Solution of the cooled turbine blade under 
parallel convective and radiation heat flux 

As a first simpler approach partial differential equation with no internal cooling 

process is considered and solved. The results of the analysis is considered to be the 

starting point of a more elaborate procedure that takes into account the internal 

cooling. Equation (5.5) without internal cooling process is expressed as 
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And the boundary conditions which are to be satisfied are given as 

• b.c.1     T(0,y) = definite value since thickness is 0 at x=0. 
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Since the partial differential equation (5.6) to be solved and corresponding boundary 

equations are not homogeneous, separation of variables method could not be 

utilized. Thus, the exact solution is found through the sum of effects in the form of 

two functions, a pseudo 1-D solution φ (x), and a 2-D solution ψ (x, y) in terms of a 

series expansion involving Bessel function of first kind of the real order ν, as given 

below 

ϕ ψ= +(x,y) (x) (x,y)T                                                                                                          [5.7] 

And their corresponding equations are shown below, respectively. 
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The equation (5.8) only in x direction is an ODE and its solution is, straight forward, 

given by the following equations. Firstly, it is divided into two parts; namely one is 

partial term and second is homogenous term as 

ϕ ϕ ϕ+= hom( ) partx                                                                                                               [5.10] 

By introducing the N constant as is equal to n + m2 T∞, their solution can be 

expressed as 
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From the mathematical theory; it is known that 
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Since this is true for the equation, the roots of function may be found with the 

algeabric equation as; 
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From engineering reasoning it seems more believable the behaviour of φ in this way 

Bxr1, hence the solution of φ (x) results in 

ϕ ϕ ϕ= + = + 12
part hom( ) / rx N m Bx                                                                                      [5.12] 

In order to find the constant B, the second boundary condition at x = L is applied. 
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At this point, the equation (5.9) is solved by utilizing separation of variables method. 

A solution that is the product of two functions is assumed as following of the form.  

ψ (x, y) = X(x)Y(y)                                                                                                               [5.14] 

This equation is superseded for ψ into the equation (5.9) and the following result is 

obtained. 

∂∂  ∂ 
+ − = ∂ ∂ ∂ 

′′ ′ ′′+ + − =

2
2 2 2

2

2 2 2

( )( )( ) ( ) ( ) ( ) 0

2 0

Y yX xY y x X x x m X x Y y
x x y

x X Y xX Y x XY m XY

                                                  [5.15] 

Each term of this equation is divided by the product X(x)Y(y) and each side is set 

equal to a constant which result in 

2 2 2
2 2

2

2 20      x X xX x Y X X m Ym
X X Y X Xx Yx

λ
′′ ′ ′′ ′′ ′ ′′
+ + − = ⇒ + − = − = −                                 [5.16] 

The sign of the separation constant is chosen -λ2 so that the eigenfunctions are 

obtained in direction of x. Hence the two ordinary differential equations in 

conjunction with their boundary conditions separately expressed as first order 

equations bring following solutions. Firstly, the solution for Y is given by hyperbolic 

functions as 

( ) ( )λ λ λ− = ⇒ = +" 2
1 2( ) ( ) 0 ( ) sinh coshY y Y y Y y C y C y                                          [5.17] 

Here the coefficient C1 is killed off by applying the third boundary condition. And, 

the solution of X is obtained from the Bessel equations which is given by the 

following equations 

( )λ′′ ′+ + − =2 2 2 22 0x X xX x m X                                                                                        [5.18] 

In here, by introducing X(x) = X*/√x eq. (5.18) becomes 

( )λ + + − + = 

2 * *
2 2 2 2 *

2 1 / 4 0d X dXx x x m X
dxdx

                                                                 [5.19] 
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And its solution is given by 

( )λ=*
3

1(x) bX C J x
x

                                                                                                        [5.20] 

where; 

= +2 1 / 4b m                                                                                                                    [5.21] 

Thereby, the general form of the solution for ψ becomes 

( ) ( ) ( )ψ λ λ λ−  = +   
1/2

1 2 3( , ) sinh cosh bx y C y C y C x J x                                                  [5.22] 

In order to determine the characteristic values of the problem, the convection 

boundary condition (2) is applied to the equation (5.22) and following equation is 

obtained by the use of the formulas for the derivatives of Bessel functions. 

λ λ λ λ λ
− − −

∞
−

   
− + − = −   

  

1 11
2 2

1 (1/2)

1 1( ) ( x) ( x) ( L)
2 b n b b b

LL

hbx J x x J J J
x k L

 

And finally, the following relationship is obtained after rearranging the above 

equation.  

λ λ
λ−

=
+ −1

( )
( ) 1 / 2

b

b L

J L L
J L b Bi

                                                                                                    [5.23]  

The roots of equation (5.23) give the eigenvalues and there are infinite number of 

real eigenvalues as λ1L, λ 2L, λ3L, …..,λnL, which satisfy the equation (5.23). The 

numerical values of these eigenvalues are implemented and computed with the 

Matlab program. Thus the product solution of the problem is rewritten as a series 

expansion of kind as following 

ψ λ λ
∞

−

=

=∑ (1/2)

1
(x,y) cosh( y) ( x)n n b n

n
C x J                                                                              [5.24] 

Lastly, the remaining which is non-homogenous boundary condition is applied by 

setting y = l in equation (5.24) in order to find the Cn expansion coefficients. 
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ϕ

λ λ λ λ λ
∞ ∞

= =

 
    
 = − + + −   
   
  

∑ ∑


( )

0
02

1 1

1 1sinh( l) ( x) cosh( l) ( x)

x

a
n n n b n n n b n

n n

h NC J C J Bx T
k mx x

  

Rearranging above equation results in 

λ λ λ λ
∞

−∞
∞

= ∞

  
+ = − + + −       

∑
''

(1/2) 0 2
0

1
sinh( l) cosh( l) ( x) (T T )a

n n n n b n
n

hh q
C x J Bx

k k h
            [5.25] 

Then, a use of the orthogonality properties of the Bessel functions is made. Namely, 

each side of equation (5.25) is multiplied by x1+1/2 Jb(λnx) and integrated over the x 

domain from 0 to L. 

λ λ λ λ λ

λ λ λ

+ −
∞

+ +

∞
∞

 
+ 

 
      

= − + − +                  

∫

∫ ∫ ∫

1 11
2 2

0

''1 3 310 22 2 2
0

0 0 0

sinh( l) cosh( l) ( x) ( x)d

( x)d ( x)d (T T ) ( x)d

L

n n n n b n b n

L L La

b n b n b n

h
C x x J J x

k

h q
B x J x x J x x J x

k h

          [5.26] 

Thus, the unknown values of Cn expansion coefficient is expressed as 

λ λ

λ λ λ λ

+

∞
∞

 
− + − − 
 =

 
+ 

 

∫ ∫

∫

3 3''
0 02 2 2

0
0 0

20

0

( x)d ( x)d

sinh( l) cosh( l) ( x)d

L L a

b n b n

n L

n n n b n

h hqT T x J x B x J x
k h k

C
h

xJ x
k

                                       [5.27] 

In principle, the solution of the proposed problem is completed. All the coefficients 

have been evaluated and they are introduced into equation (5.7) in order to obtain 

the temperature distribution of the turbine blade model, which results in as 

( )λ λ
∞

−

=

= + +∑ (1/2) 2

1
(x,y) cosh( ) ( ) / a

n n b n
n

T C y x J x N m Bx                                                    [5.28] 
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5.3.1 Results and Discussions of the analytical solution without 
internal cooling 

The following values, listed in Table (5.1), as boundaries, conductivity, convection 

heat transfer coefficients, gas temperature, cooling fluid temperature, radiation flux, 

length, height and max-thickness of the blade, are used to obtain the results. 

Table 5.1- Values of the parameters  used in the simulations. 
- Thermal conductivity  of blade alloy  k = 12 (Wm-1K-1) 
- Chord length L =  0.062 (m) 
- Pitch length l   = 0.064 (m)  
- Thickness of blade b   = 0.014 (m) 
- Convective transfer coefficient of  hot gases h∞  = 200 (Wm-2K-1) 
- Temperature of hot gases T∞ = 1700 (K) 
- Convective transfer coefficient of  cooling fluid h0  = 1000 (Wm-2K-1) 
- Temperature of cooling fluid T0  = 400 (K) 
- Convection flux q1’’ = 5 104 (Wm-2) 
- Radiation flux q2’’ =  2 104 (Wm-2) 

 

The above final expressions for T(x, y), have been implemented in Matlab™ ambient 

in order to compute the results. Since the temperature is the summation of a pseudo 

1-D solution φ (x) and an infinite series solution ψ (x, y), only a finite number of 

values are taken for obtaining the analytical solution of temperature distribution. 

The effect of λn roots is determined and shown in the figure (48) at two different y 

(height) positions = l/2 and l, respectively. 

The sensibility analysis shows that 20 terms are sufficient in almost all the domain. 

For y = l just on the cooling lower limit in the border, the solution is affected by the 

number of λn roots. In the other points of the domain the solution converges with 20 

terms already. For instance, when 40 or 50 terms are used the difference between the 

results is less than 0.001%. 
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Fig. 48- T variation along x direction from different number of eigenvalues. 

 

It is found that the pseudo 2-D solution is not accurate near the trailing edge at x = 0 

where the blade idealization have no area (surface = 0 m2), a condition not realistic 

from an engineering point of view.  

The radiation effect forces the metal temperature to be higher than the gas 

temperature value T∞. Plots of temperature distribution from these analytical results 

are shown in two different views in figure (49). 

  

Fig. 49- Plots of Temperature distribution from the analytical solution. 
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From an engineering point of view we may observe that temperature is everywhere 

too high to preserve the material from immediate damage. Due to the low 

conductivity of the alloy, even with high heat transfer at the blade base, the 

penetration of the cooling wave is not expected to keep the metal temperature below 

fusion. Undoubtedly we understand the importance to insert internal cooling all 

over the metal and add a film cooling to internal cooling also, via discrete holes 

devoted to eject out compressed air. Nonetheless film cooling of the blade is out of 

the objective of this work. 

The next development of the exact analysis will be to insert a heat sink all over the 

blade extension from x to L and y to l. The heat sink would be an idealization of the 

real internal cooling due to channel meshes. 

First, a finite element analysis is made for the entire blade with no internal cooling 

process in order to make a comparison against the results of the analytical solution  

5.3.2 Finite Element Method Solutions without internal cooling 

The finite element analysis at the base of the code was exploited fully three 

dimension. The convection / radiation heat flux applied to the suction / pressure 

sides and leading edge were the same. Boundary condition on the trailing edge is 

more engineering feasible since the surface at x = 0 has a finite value. 

  

Fig. 50- The mesh structure of the blade and Temperature distribution obtained by 
ANSYS™. 
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5.3.3 Comparison between the analytical and the numerical solutions 

The results obtained by the analytical solution were compared with those obtained 

numerically by a well-known powerful commercial program, ANSYS™, as 

illustrated in figure (51).  

As it is shown, the discrepancies in temperature between numerical and analytical 

solution near the mid-plane y = l / 2 are still high (around 30 °C), and are more for y 

> l / 2. Going in the reverse direction, toward the shroud, the error is lower. 

 

Fig. 51- Comparison of Temperature behaviour between analytical and numerical results. 
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5.4 Finite element method with internal cooling 

In this section, a more elaborate procedure, which takes into account the internal 

convective cooling due to the use of compressor air bled from the intermediate 

stages of the compressor, is modelled as a sort of heat sink that allows to exceed the 

normal material temperature limits.  

For such an hypothesis, the related energy balance already is previously derived in 

section (5.3), which can also be rewritten in the following form.  

( ) ( )
''

2

( )( ( , ) ) ( )( ( , ) )

                                          2 2 ( ( ) )
                                          ( ) ( ) 0

x yx y
kg x T x y T x y kg x T x y T x y

q x y h T x T x y
W x g x x y

∞ ∞

∞ ∞

− ∆ ∆ + − ∆ ∆

+ ∆ ∆ − − ∆ ∆
− ∆ ∆ =

                                            [5.29] 

In the equation (5.29) W denotes the rate of energy subtraction as a distributed sink 

per unit volume in the control volume. Such cooling is sized according to the total 

thermal impact Q defined in the previous sections and quantifiable from estimations 

of QR and QC in the statement (1). Exactly, the following relationship is considered 

µ=(x) (x) QW
V

                                                                                                                   [5.30] 

Where μ will be later appropriately fixed and V is the volume of the blade. 

More exactly, we already emphasized that QR and QC are parameters linked to the 

GT first stage in several aircraft engines and in power-generating units, which are 

present in the market. 

In particular, the blade thickness goes according to a quadratic law in the curvilinear 

x direction. The dependence of cooling should be then strongly influenced by 

thickness variation. On the contrary, there is no cross section variation along y 

direction. Therefore, we assume a larger dependence of the cooling law by x and a 

weak influence by y. That is the reason we solve the energy balance with a heat sink 

function only of x. Of course this formulation is totally suitable to solve the problem 

also for two-spatial variables functions. 
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More precisely, following three expressions are considered : 

• Sin law;         µ π 
=  

 
1

4( ) sin
5

xx
L

                                                                        [5.31] 

• Power law;    ( )µ =
2

2( ) /x x L                                                                               [5.32] 

• Root law;       µ =3( ) /x x L                                                                                 [5.33] 

For each case, temperature distribution on the entire domain is analyzed and then 

the temperature profiles and gradients are given in the following sections.  

The solutions are obtained by the software package called FreeFem++. This is a free 

programming language, implemented in terms of the variational of PDEs and based 

on finite element method. 
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5.4.1 Temperature Distribution on the blade 

 

(a) Temperature distribution according to sin law. 

 

   (b) Profile of the law of cooling W1(x) prescribed in equation (5.30). 

Fig. 52- Temperature distribution on the entire blade for case 1; µ π 
=  

 
1

4( ) sin
5

xx
L

 

 

In figures (52, 53 and 54), the color restitutions of the temperature profiles are given 

in the shape of 2D graphs and 3D surface plots obtained for the three different laws 

of cooling explored in the analysis. The high temperature wave moves from the 

trailing edge inwards vertically and axially in all cases as it is not affected by any 

cooling. This phenomenon is expected due the singularity of the border, a sort of 

razor blade in the modeling, a no-surface / no-cooling flux possibly assigned. 
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(a) Temperature distribution according to power law. 

 

 (b) Profile of the law of cooling W2(x) prescribed in equation (5.30). 

Fig. 53-  Temperature distribution on the entire blade for case 2; ( )µ =
2

2( ) /x x L  

 

Mathematically therefore the temperature at trailing edge is even higher than T∞. In 

real turbomachinery the trailing edge has to be film cooled. The different 

formulations of heat sink shapes have no effect on this border, as they are equal zero 

at x = 0. An implemented analytical expression close to the border could then be 

studied.  
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(a) Temperature distribution according to root law. 

 

 (b) Profile of the law of cooling W3(x) prescribed in equation (5.30). 

Fig. 54-  Temperature distribution on the entire blade for case 3; µ =3( ) /x x L  

Staying close to the leading edge and moving inwards, apparently the progressive 

effect of the sin law is more effective in keeping down the hot wave than it is the 

power law. The root law plays itself in between, closer to sin law anyway. The 

penetration of the heat wave from the stagnation point on the contrary is efficiently 

blocked by the subtraction of heat energy given both by the cool wave from below 

and from the heat sink increasing with x according to functions μ1(x); μ2(x) and μ3(x). 
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5.4.2 Temperature profiles and gradients 

In figure (55) the values of temperature T(y) are shown in four sections taken in x = 

L/3; x = L/2; x = 2L/3 and x = L. The higher values of temperature are shown close to 

the trailing edge where film cooling is supposed to be mandatory.  

Analogously, where the insulation is assumed at y = 0 position, the temperature is 

higher also, and decreases progressively as the cooling effect from below moves up, 

as a sort of cool wave that penetrates in the core blade. The values of the temperature 

could easily kept lower with a higher amount of heat sink. In engineering devices it 

would mean to implement the total cooling flow rate, and to distribute it according 

to the law of cooling.  

The main difference in the results (in the case of T(y) versus one/thirds height plane, 

midplane height, two-thirds height plane and leading edge) is still found near the 

trailing edge border and insulation surface. In all cases temperature changes 

appreciably near the cooled root. For all the T(y) obtained, the sin law performs 

better, followed by the root law and then the power law gives apparently the 

poorest result in the blade core, even if tends to catch up going towards the leading 

edge. 
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  (a) Section x = L/3. 

 

(b) Section x = L/2. 

 

   (c) Section x = 2L/3. 

 

   (d) Section x = L. 

Fig. 55- Temperature profiles for fixed sections along x direction. The blue line 

represents the results in the case of the sin law (μ1(x)), the red of the power law 

(μ2(x)) and the green of the root law (μ3(x)). 
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Figure (56) shows the absolute gradients (derivatives) of T with respect to y, at flat 

planes taken at four different x values: L/3; L/2; (2/3) L and L. Apparently the 

thermal wave induced by the cooled border at y = l does not reach the alloy matrix 

deep into the core, as gradients are very high close to the platform.  

The cool wave is able to keep metal cooled only close to the root and then, moving 

up towards the height center and beyond towards the adiabatic shroud, gradients 

become lower and temperature decisively higher. Gradients are not affected by the 

different law of cooling.  

There are two possible explanations to this effect: the low alloy thermal conductivity 

and the unbalance between the amount of heat sink in the core and the thermal load 

induced by the cooled platform. If the gradients have to be kept lower, as it is the 

need, both in the model and in the real GT the balance must be reviewed. 
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  (a) Section x = L/3. 

 

(b) Section x = L/2. 

 

   (c) Section x = 2L/3. 

 

   (d) Section x = L. 

Fig. 56- Temperature gradients for fixed sections along x direction. The blue line 

represents the results in the case of the sin law (μ1(x)), the red of the power law 

(μ2(x)) and the green of the root law (μ3(x)). 
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Similarly, in figure (57) the values of temperature T(x) are shown for four sections 

taken in y = l/3; y = l=2; y = 2l/3 and y = l. The higher values of temperature are found 

close to the trailing edge, as expected. The boundary at the point x = 0, where the 

blade idealization have no area (in fact, the surface is 0 m2, a not realistic condition 

from an engineering point of view), forces the metal temperature to be higher than 

the gas temperature value, i.e. equal to T∞ + q2” /h∞. Even in this spatial direction the 

temperature absolute values could easily kept lower with an higher amount of heat 

sink. It would mean to implement the total cooling flow rate, and to distribute it 

according to the cooling law. 

In the real cascade a cooling film flow has to be added at plane x = 0. The T(x) results 

versus one/third chord plane (at y = l/3), chord midplane (y = l/2), two-thirds chord 

plane (y = 2l/3) and root plane edge (y = l) are still found higher near the trailing 

edge surface and change appreciably as the T(x) approaches the cooled platform. 

Their values rise up a bit as x reaches the leading edge. For all the T(x) results the sin 

law performs better, but at the extreme stagnation point where root law overcomes it, 

followed by root law and then the power law, whose cooling effect is almost absent up 

to position 2/3 chord plane. 

The plot reverses at about x/L = 5/8 where the sin law starts to decrease from the 

maximum value. It is the consequence of the form given to the sin law that reaches it 

top value at five eights of L. 
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  (a) Section y = l/3. 

 

(b) Section y = l/2. 

 

   (c) Section y = 2l/3. 

 

   (c) Section y = l. 

Fig. 57- Temperature profiles for fixed sections along y direction. The blue line 

represents the results in the case of the sin law (μ1(x)), the red of the power law 

(μ2(x)) and the green of the root law (μ3(x)). 
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Another observation has to be made from figure (58); here are shown the derivatives 

(absolute K/m) of temperature with respect to x at different constant planes: y = l/3; y 

= l/2; y = 2l/3 and y = l. Starting to y = l and y = 2l/3, close to the cooled lower bound, 

the temperature gradients are decisively low close to the trailing and leading edge 

and weakly dependent by the cooling low. The absolute values do not overcome the 

6 (K/mm).  

A different plot is given deep into the blade core: the gradients rise up and the 

performances of the heat sink effect are now reversed. The sin law has the lower 

performances at least up to x = L/2. At y = l the behavior is almost unchanged for all 

the three laws of cooling. As y moves away from the cooling root lower boundary, 

the gradient of temperature dramatically increases at midplane. Again, there are two 

possible explanations to this effect: the low alloy thermal conductivity and the 

unbalance between the amount of heat sink in the core and the thermal load induced 

by the cooled platform. 

The best gradient performance is assigned to the sin law heat sink when x ≥ L/2. As 

the solution reaches the leading edge bound, it is possible that temperature solution 

is affected by the substantial increment in the heat load due to the flux q1” previously 

defined. Ultimately, noting that the apparently strong cusp at an axial distance 

larger than (4/5) L where gradients start to rise up abruptly from the minimum is 

only due to the way to return the temperature gradients as absolute values. 
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  (a) Section y = l/3. 

 

(b) Section y = l/2. 

 

   (c) Section y = 2l/3. 

 

   (c) Section y = l. 

Fig. 58- Temperature gradients for fixed sections along y direction. The blue line 

represents the results in the case of the sin law (μ1(x)), the red of the power law 

(μ2(x)) and the green of the root law (μ3(x)). 
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5.5 Conclusion 
The present work considers the first principle of energy balance, in steady, in a 

blade/vane gas turbine alloy affected by parallel convection and radiation heat 

fluxes, larger in the leading edge and lower in suction and pressure sides, cooled by 

convection at the platform border. 

The quasi-two-dimensional approach is used as Biot number based on mean 

thickness is lower than 1/6 and the lumped approximation is used in the third 

direction z. Mathematically, the energy balance is modeled by means of a 

(degenerate) elliptic problem, with mixed boundary conditions (Neuman, Dirichlet 

and Robin), whose unknown is temperature field. 

This approach tends to simplify the conjugate and heat transfer analysis of transient 

flow with unknown heat flow, heat transfer coefficient, laminar / turbulent, subsonic 

/ transonic transition (to be determined), and where solutions are not available due 

to the uncertainty in radiative amount contribution to heat transfer and complexity 

of the turbulence modeling and the computation fluid dynamic analysis. 

As a first simpler approach, an analytical solution is obtained for the pseudo two-

dimension temperature distribution in a finite length and height turbine blade with 

no internal cooling process. These results are obtained in terms of series expansion 

which are involving Bessel functions. A method of solution is used based on the sum 

of the two effects: a pseudo 1-D solution φ (x) and a 2-D solution ψ (x, y). 

It has been found that a finite number of terms can be used for obtaining the 

analytical solution with reasonable accuracy. In almost all the domain 20 terms were 

found to be sufficient. The method of solution as a combination of a pseudo 1-

dimension solution φ (x), and a pseudo 2-dimension solution ψ (x, y) showed the 

domination of former with the latter part being less effective near the borders.  

The comparison of the exact analysis with the full three dimension finite element 

modelling of the same blade by ANSYS™ shows that the analytical solution fails the 

more it approaches to the lower border, where it is supposed to be the cooling and it 

goes towards the trailing edge where the physical idealization places a surface 

equals to 0 m2. 
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As a next step, the analytical modelling of heat transfer inside the turbine blade is 

considered to be implemented through a hypothesis of heat sink or “law of cooling” 

inside the metal, variable in accordance with the independent coordinates x and y.  

These results have been the base of a more elaborate procedure that takes into 

account the internal convective cooling due to the use of compressor air bled from 

the intermediate stages of the compressor, modelled as a sort of heat sink that allows 

to exceed the normal material temperature limits. 

Making a hypothesis on the ways metal has to be internally cooled, according to the 

external thermal load, a solution method of energy balance in the alloy is obtained 

through the finite element method. It is concluded that the FEM solution of the 

elliptic equation is much easier to implement as compared to the full conjugate 

problem to solve for both the fluid and the solid when the heat transfer coefficient 

and radiative flux are not known. In fact, once the partial differential problem is 

solved and the solution is valuable because it provides a means to infer the 

temperature field when a distribution of cooling effect is assigned to the domain.  

Even though the numerical FEM simulations herein obtained show high values of 

metal temperature that in real circumstances cannot be stand, it is due only to the 

selected amount of thermal heat sink (negative: from -1500 W to -400 W). The lower 

it is the more the absolute temperature in the field decreases. However, the 

numerical solution presented in this research may be useful in developing a suitable 

numerical scheme for the conjugate problem of variable heat transfer at the 

boundaries and in the choice of the better law cooling devoted to keep the 

temperature and its gradients below excessive values. 

Specifically, through this work, three hypothesis of law of cooling are investigated 

successfully, the differential form of heat contributions in terms of an appropriately 

chosen differential control volume is a valuable way to model the thermodynamic 

first principle, steady, at constant thermal conductivity. 

The FEM solutions are easily available to the insertion of other laws of cooling 

function of x, or function of x and y of different fashion. The discussed results, 

indeed, show that the chosen laws of heat subtraction in the core and the cooling 

through the platform have to be better balanced. In the meantime, the heat sink in 

the form of power, root and sin laws are good analytical expressions to use as 
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starting base for improvements. As a matter of fact, in the simple form used in this 

work, they over-estimate the temperature in the trailing edge.  

Anyway all the functions of energy subtraction in the blade the project designer 

would like to test, the result would be an accurate temperature distribution in the 

blade/vane to use as alternative or as complementary information to CHT analysis. 
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