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Introduction

This essay is intended to be a review of the entire research work developed during
my PhD school, highly based on published papers and enriched by background
introductions of the debated topics. My research focused on several distinct topics
sharing the use of ab-initio density functional theory calculations for studying dif-
ferent types of materials aimed to technological applications. In particular, it has
regarded the study of the phenomena into multiferroic junctions using standard
DFT approaches; the study of the correlated material CaCu2Ti4O12 and the wide-
gap semiconductor Ga2O3, by means of some beyond-DFT approaches such as the
famous GW method and the pSIC method, a self-interaction correction method
developed within our research group. Moreover, I have contributed to enhance the
development of the pSIC code, providing it with two new tools, namely two rou-
tines for calculating the dielectric function and the X-ray absorption cross section,
which aims to obtain a more direct comparison between theoretical band structure
and experimental measure of optical properties.
For clarity, I will separate this report into two main and distinct parts: Part I

concerns the investigation into multiferroic junctions, while Part II contains the in-
vestigations into CaCu2Ti4O12 and Ga2O3, with particular attention on the results
found by our in-house self-interaction correction approach, and its developing by
means supplementary tools. In the following, I will spend some words to introduce
every single topic, but I refer the reader to each introductions for more details.
The topic of multiferroic materials, discovered in the 60s years, has obtained

many renewed attentions in this recent period for their possible practical appli-
cation in many types of electronic devices. The key property of these materials
is the coexistence of both ferromagnetic and ferroelectric phase and their mutual
coupling. The first studies reveal this property in single phase materials, but the
predicted and measured coupling is quite weak. With modern techniques of crystal
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Introduction

growth, junctions between different materials become accessible, opening the way
to combine ferroelectric and ferromagnetic materials into a multiferroic two-phases
heterostructure. Theoretical and experimental studies have assessed phenomena
such as tunnelling electro-resistance and tunnelling magneto-resistance inside these
junctions, showing in particular that the tunneling of electrons is greatly affected
by the orientation of both magnetic e ferroelectric phases.

In Chapter 2, we report our paper about the SrRuO3/PbTiO3/SrRuO3 multi-
ferroic tunnel junction (MFTJ) with asymmetric interfaces, showing first the signif-
icant presence of a residual depolarizing field; second, the dependence of tunneling
through an asymmetric potential barrier by the polarization orientation and finally
an assessment of the magneto-electric effect at the junction interfaces. In Chapter
3, we report a conference paper about V doping of PbTiO3, an interesting way
to create a single phase multiferroic material. This was part of an initial survey
about doping the interfaces of SrRuO3/PbTiO3/SrRuO3 junction with vanadium
in order to enhance its properties. Then, in Chapter 4, we report a recent work
on a “ferroelectric metal”, which will be published soon. The layered perovskite
Bi5Ti5O17 is predicted to be a ferroelectric metal because it has nonzero density
of states (DOS) at the Fermi energy and a metal-like conductivity which coexist
with spontaneous polarization in zero field. An investigation about the survival of
the switchable depolarizing field in a finite system has been performed as well.

The second part of this report concerns the investigation into CaCu2Ti4O12

(Chapter 6), with the purpose of unravelling the issue of the correct interpretation
of experimental optical properties by using different theoretical approaches beyond
standard DFT, such as VPSIC, GW, LDA+U and Hybrids methods. These ap-
proaches have also been used to give a theoretical support to an experimental gap
characterization, developed by the research group of Prof. Fornari at the Univer-
sity of Parma, of a compelling TCO material, the Ga2O3 (Chapter 7.1). In both
works, the pSIC method gives a further proof of its reliability in correct description
of the band structure of correlated materials and wide-gap semiconductors. These
success have been further improved by the inclusion in the pSIC code of a routine
that calculate the dielectric function, making possible a direct comparison of the
theoretical assessment of this property with the experimental one. In the same area
of research, the two work presented in the Sections 7.2 and 7.3 are. In particular
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they regard with the study of In doping of Ga2O3 and β-Ga2O3/(Ga1−xInx)2O3

interfaces, exploiting only standard GGA/DFT schemes. They represent, as far
as we know, the first theoretical investigations into this topic.
Finally, in Chapter 8 is presented the project of enhancing the pSIC code with a

routine for computing of X-ray absorption spectra (XAS). Our intention has been
that to include within the pSIC code a tool that calculate accurate XAS spectra
directly comparable with the experimental ones, opening the way to an enormous
research field where pSIC approach could give its own contribute to unravel the
phenomena being behind the experimental XAS spectra. Though the coding of this
tool is still in progress, the preliminary spectra calculated for different materials
are well promising. I point out that all the spectra shown should be intended as
validating proofs of the correct working of the implementation more than a new
interpretation based on pSIC approach, though it could be the future target of
this tool porting, especially in the case of correlated materials.
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Multiferroic junctions
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1. Background

The modern technology is strongly based on magnetic and ferroelectric materials.
Consumer data-storage devices, for example, already now exploit both ferromag-
netic materials, where their spontaneous magnetization M is switched by an exter-
nal magnetic field, and giant magneto-resistance effect. In the last decade, in order
to increase the density of information, to reduce dimensions and the high writing
energy, magnetic random-access memory (MRAMs) and related devices have been
pursuited intensively. Also ferroelectric materials, that are featured by a sponta-
neous electrical polarization P reversible with an applied electric field E, are the
main constituents of presently sensor and actuation devices. Another continuous
effort is made towards the use of ferroelectric random-access memory (FeRAMs)
as non volatile and high speed memory media with promising features and hope-
fully superior to semiconductor flash memories. Therefore, materials combining
the properties of ferroelectrics and magnets are highly desirable. These materials
are called multiferroics: electric polarization P and magnetization M coexist in
the same material, also in absence of external electric or magnetic fields, and are
coupled giving the possibility to change P applying a magnetic field or to change
M using an electrical field. The existence of these class of materials is known al-
ready in 60s years, but only recently the study of multiferroics have a renascence.
Mainly because of the great improvement in experimental techniques to grow new
materials with specific properties and in thin film layers, and of the new theoret-
ical approaches to the study of the coexistence of magnetism and ferroelectricity.
The coexistence of several order parameters and their coupling show new physical
phenomena, as the magneto-electric effect, and open the way to completely new
devices. Applications include the ability to address magnetic memories electri-
cally, without using currents; the creation of new types of 4-state logic devices,
exploiting both up and down polarization and magnetization; and magneto-electric
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Chapter 1. Background

sensors. However, attempts to design multiferroics that combine ferromagnetism
and ferroelectricity in the same phase have been proved unexpectedly difficult. In-
deed, many multiferroics materials have been studied but until now none of them
is really attractive for applications because they do not combine large and robust
electric and magnetic polarization at room temperature and usually their coupling
is not strong enough. Two-phase multilayer heterostructures of ferromagnetic and
ferroelectric perovskites seems to be able to overcome the difficulties shown by the
single-phase multiferroics. The most fascinating configuration is called multifer-
roic tunnel junction (MFTJ), coming from other two largely investigated junctions:
magnetic tunnel junction (MTJ) and ferroelectric tunnel junction (FTJ). In MFTJ
two ferromagnetic electrodes are separated by a ferroelectric insulating barrier. It
is shown that the resistance of tunneling current passing through the junction
depends on the relative orientation of magnetization of the two electrodes (tun-
nel magneto-resistance effect) and the direction of ferroelectric polarization of the
insulating layer (tunnel electroresistance effect). This allows to have 4 level of
resistance switchable by applying an external electric and an magnetic fields.

1.1. Ferroelectric materials

1.1.1. Landau theory

Ferroelectricity was discovered by Valasek in 1921, in the Rochelle salt [1].
The term ferroelectric (FE) is used in analogy to ferromagnetism: as ferromag-

netic materials exhibits a permanent magnetic moment, ferroelectric materials
have a spontaneous electric polarization. Further, as for ferromagnetism, it is pos-
sible to employ the Landau’s symmetry-based treatment of phase transitions to
describe ferroelectrics, as Devonshire first made [2].
Considering a bulk system with spatially uniform polarization, the thermody-

namic of a ferroelectric system in equilibrium can be described by the temperature
(T), the polarization (P ), the electric field (E), the strain (η), and the stress (σ).
In particular, in the vicinity of a phase transition we can expand approximately the
free energy in powers of the dependent variables with coefficients that came from
experiment or from microscopic calculations. To be more specific, we can put in
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1.1. FERROELECTRIC MATERIALS

zero the origin of energy for the free unpolarized, unstrained uni-axial ferroelectric
crystal, and write:

FP =
1

2
a0(T − T0)P 2 +

1

4
bP 4 +

1

6
cP 6 − EP

where T0 is the Curie temperature, b and c are other coefficients independent
from temperature, and a0 and c are both positive in all known ferroelectrics [3, 4].

As shown in Figure 1.1 (top (a)), from the free energy as a function of polar-
ization we recognize two phase depending on the temperature: paraelectric for
T � T0 and ferroelectric for T � T0. The behavior of the free energy between
these two configurations is determined by the sign of the coefficient b. Indeed
its sign will regulates the nature of the parelectric-ferroelectric transition, and
whether the polarization at T < T0 develops continuously or discontinuously.

For b > 0, at T = T0 a second-order transition occurs, and the free energy will
transform continuously from a parabolic to a double-well shape, from having only
one minimum at P = 0 to two minima P = ±P0. Setting a null external field
E = 0, we can estimate the spontaneous polarization P0 as :

P0 =
{a0

b
(T0 − T )

} 1
2

that decreases continuously with an increasing temperature, until critical point
T0.

For b < 0, when T < T0 the free energy will have two minima in P 6= 0. As the
temperature is increased over T0, a new minimum in P = 0 appears. At any tem-
perature between Tc and T0 the unpolarized state exists as a local minimum of the
free energy. At T = Tc the three minima become energetically degenerate. Increas-
ing the temperature over Tc, the minimum at P = 0 is thermodynamically favoured
respect to the other two at P 6= 0 even if they remain. The most important feature
of this phase transition is that the order parameter jumps discontinuously to zero
at Tc. This type of phase transition is usually called a first-order or discontin-
uous transition, typical in solid-liquid transitions. We note that the presence of
three minima for T = Tc implies that that actual state of the system depends on
whether it is approaching Tc from lower or higher temperatures. In particular, it
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Chapter 1. Background

will be that only for T0 < Tc that the ferroelectric minima are thermodynamically
favorable.

Figure 1.1.: At the top is shown the case b > 0. (a) Free energy as function
of polarization for different temperatures; (b) polarization as func-
tion of temperature, note that it is a contious function, so we have a
second-order transition; (c) permittivity, namely the first derivative of
polarization respect with the temperature, as function of the latter.
At the bottom same functions are shown but for the case b < 0, where
a first-order transition occurs. Pictures from Ref. [5].

In a ferroelectric below T0 there are (at least) two minima of the free energy, cor-
responding to spontaneous polarizations with different spatial orientations. Since
there is a barrier between these minima, the application of a small external elec-
tric field will not immediately switch the polarization. Indeed Landau-Devonshire
theory described here predicts hysteresis, shown schematically in Figure 1.2. The
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1.1. FERROELECTRIC MATERIALS

Figure 1.2.: Sketch of hysteresis loop for a ferroelectric material with additional
pictures of free energy behavior in different point (P,E) of the cycle.
Picture from Ref.[5].

hysteresis loop represents the polarization P as function of external electric field
E. We observe that for E = 0, the polarization is not zero and can assume two
values P = ±P0. Starting for example from a positive polarization, we need to
apply an increasing electrical field to overcome the potential barrier and push the
system from it current polarized state to the reversal one with a negative value
of P . When this finally occurs, decreasing external field we will observe that the
polarization could decrease a bit, but for E = 0 it will be non zero. The system
lives in the other polarized state. Now, starting from this position and applying
an electric field in the opposite direction respect to the previous, we manage to
push the system back to the previous polarized state.

1.1.2. Atomic origin

Now, we try to understand the microscopical origin of polarization in ferroelec-
tric materials, considering the most relevant ones: perovskites oxides with ABO3

chemical structure. The most common and studied of them are KNbO3, BaTiO3,
PbTiO3 (and others). Above the Curie temperature they have a cubic structure
like that shown in Fig. 1.3 (a), where A cations occupy the four corners of a cube,
the B cations is typically a transition metal (TM) occupying the center of this
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Chapter 1. Background

Figure 1.3.: a) Cubic and b) tetragonal phase of perovskites oxides with ABO3

structure, corrisponding to paraelectric and ferroelectric phase respec-
tively. Cations A are in gray, cation B is in cyan and oxigens are in
red.

cube and of the octahedral cage of oxygen ions. When the temperature is lowered
they leave their high symmetry paraelectric structure, where roughly behaves as
ordinary dielectrics, and display a series of structural transitions to low-symmetry
ferroelectric phases. Typically, the first transition is to a tetragonal phase (Fig.
1.3 (b)), characterized by microscopic displacements of the ions from the high-
symmetry sites. The distortion determines a preferred polarity of the tetragonal
axis and is responsible for the occurrence of spontaneous polarization.
We will follow the [6] to explain the origin of the ferroelectric phase at low

temperature.
In fact, ionic-bond perovskite oxides are always centrosymmetric (therefore, not

ferroelectric-favoured). This is because, for centrosymmetric structures, the short-
range Coulomb repulsions between electron clouds on adjacent ions are minimized.
The ferroelectric stability is therefore determined by a balance between these short-
range repulsions favouring the non-ferroelectric centrosymmetric structure, and
additional bonding considerations which stabilize the ferroelectric phase. Cur-
rently, two distinctly different chemical mechanisms for stabilizing the distorted
structures in ferroelectric oxides have been proposed in the literature, both de-
scribed as a second-order Jahn–Teller effect. Here, we mention the ligand-field
hybridization of a TM cation with its surrounding anions. Considering BaTiO3 as
an example, the empty d-states of TM ions, such as Ti4+ in BaTiO3, can be used
to establish strong covalency with the surrounding oxygen anions which soften the
Ti–O repulsion [7, 8]. It is favourable to shift the TM ions from the centre of O6
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1.1. FERROELECTRIC MATERIALS

Figure 1.4.: Energy levels of the orbital configuration of O-TM-O chain unit in
ABO3 perovskite.

octahedra towards one (or three) oxygen(s) to form a strong covalent bond at the
expense of weakening the bonds with other oxygen ions, as shown in Fig. 1.3 (b).
The hybridization matrix element tpd (defined as the overlap between the wave
functions of electrons in Ti and O ions) changes to tpd(1 + gu), where u is the dis-
tortion and g is the coupling constant. In the linear approximation, corresponding
terms in the energy ∼ (−t2pd/∆), where ∆ is the charge transfer gap, cancel each
other [7]. However, the second-order approximation produces an additional energy
difference:

δE ∼= −(tpd(1 + gu))2/∆− (tpd(1− gu))2/∆ + 2t2pd/∆ = 2t2pd(gu)2/∆.

If the corresponding total energy gain ∼ u2 exceeds the energy loss due to the
ordinary elastic energy ∼ Bu2/2 of the lattice distortion, such a distortion would
be energetically favourable and the system would become ferroelectric. Referring
to Fig. 1.4, one observes that only the bonding bands would be occupied (solid
arrows) if the TM ion has an empty d-shell, a process that only allows for electronic
energy. If there is an additional d-electron on the corresponding d-orbital (dashed
arrow), this electron will occupy an antibonding hybridized state, thus suppressing
the total energy gain. This seems to be one of the factors suppressing the tendency
of magnetic ions to make a distorted shift associated with ferroelectricity [7, 8].

In addition to the ligand-field hybridization of a B-site (TM) cation by its sur-
rounding anions, which is responsible for the ferroelectric order, the existence of
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Chapter 1. Background

(ns)2 (lone-pair) ions may also favour breaking the inversion symmetry, thus in-
ducing and stabilizing the ferroelectric order. In general, those ions with two
valence electrons can participate in chemical bonds using (sp)-hybridized states
such as sp2 or sp3. Nevertheless, this tendency may not be always true and, for
some materials, these two electrons may not eventually participate in such bond-
ing. They are called the ‘lone-pair’ electrons. The ions Bi3+ and Pb2+ have two
valence electrons in an s-orbit, which belong to the lone pairs. The lone-pair state
is unstable and will invoke a mixing between the (ns)2 ground state and a low-lying
(ns)1(np)1 excited state, which eventually leads these ions to break the inversion
symmetry [9, 10]. This ‘stereochemical activity of the lone pair’ helps to stabilize
the off-centre distortion and, in turn, the ferroelectricity. In typical ferroelectrics
PbTiO3 and Na0.5Bi0.5TiO3, both the lone-pair mechanism and the ligand-field
hybridization take effect simultaneously [9].

The ions with lone-pair electrons, such as Bi3+ and Pb2+, are always locate at A-
sites in an ABO3 perovskite structure. This allows magnetic TM ions to locate at
B-sites so that the incompatibility for TM ions to induce both magnetism and fer-
roelectricity is partially avoided. The typical examples are BiFeO3 and BiMnO3,
where the B-site ions contribute to the magnetism and the A-site ions via the
lone-pair mechanism lead to the ferroelectricity. There has been until now an in-
tense investigation of BiFeO3 and BiMnO3 all over the world, which focuses on the
enhanced ferromagnetism and ferroelectricity. The strong magneto-electric cou-
pling in the macroscopic sense, such as the mutual control of ferroelectric domains
and antiferromagnetic domains, were revealed by recent experiments. Therefore,
it may be beneficial to devote some effort to addressing these two materials. In
both BiFeO3 and BiMnO3, Bi3+ ions with two electrons in a 6s orbit (lone pair)
shift away from the centrosymmetric positions with respect to the surrounding
oxygen ions, favouring the ferroelectricity. As we will see in Chapter 4 this type
of distorsion of Bi ions also yields the ferroelectricity in Bi5Ti5O17 perovskite.

1.1.3. Polarization assessment

Going back to macroscopical world, the question that now we ask is: how to
measure the spontaneous polarization in ferroelectrics?
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1.1. FERROELECTRIC MATERIALS

Figure 1.5.: Sketch of the usual Sawyer-Tower circuit used to measure the polar-
ization of a ferroelectric material sample.

The experimental way is surprisingly simple: the classic Sawyer-Tower circuit,
shown in Figure 1.5, accomplish this task. Since the capacitor and ferroelectric are
in series, the charge must be the same. Hence, measuring the voltage variation,
we obtain the charge of the ferroelectric by Q = C · V .

From the theoretical point of view the macroscopic electric polarization is more
difficult to define. Indeed, it had been a source of controversial interpretations
until 90s years, when modern theory of polarization was introduced.

Microscopically, the simplest way is to consider the dipole of unit cell as a
well defined quantity. Although this is possible for finite systems as molecules, it
become ill-defined in bulk solids: choosing two different but equally valid cells we
can obtain two opposite estimates of polarization.

Alternatively, we can consider the dipole per unit volume of a finite piece of
matter

P = Pion + Pel =
1

V

[
−e
∑
l

ZlRl +

ˆ
drρ(r)

]
but, though it is well defined, it is not a bulk property depending on the shape

and the truncation of the sample. If we think to what we do in experiments, when
bulk tensors such that for piezoelectricity, dielectric permittivity etc., we actually

13



Chapter 1. Background

derived them from a variation of P with respect to suitably chosen perturbations.
Also for spontaneous polarization, the actual measured quantity is only the dif-
ference ∆P between two state of the crystal. Therefore, to assess the polarization
as a bulk property from the theory, the basic quantity of interest is the difference
∆P in polarization between two different states of the same solid.

This is the first key concept in modern theory of polarization. The second
important point, again taken from experiment, is that the quantity to take into
account is the current insted of the charge [14]. Therefore, we have to extract
the observable polarization from the phase of wavefunction rather than from the
squared modulus of it. Within a finite system, the two alternate descriptions are
equivalent, since the continuity equation states that the charge piling up at the
surface during the continuous transformation is related to the current that flows
through the bulk region. However, in an infinite crystal in the thermodynamic
limit, this connection does not longer hold: the charge and the current, described
by the wave function’s modulus and phase respectively, then carry quite different
informations. In this same limit, macroscopic polarization is a property of the
current not of the charge. Therefore, in order to assess ∆P in an infinite periodic
crystal, the macroscopic current flowing through the unit cell have to be measured.
The Berry phase of Bloch orbitals performs exactly this task in an elegant and
effective way.

The modern theory of polarization is based on works of Resta [15], who see in
∆P an integrated macroscopic current, of King-Smith and Vanderbilt [17], who
identified in ∆P a geometric quantum phase [19, 20]. It is an approach very elegant
and computationally powerful, as has been demonstrated in many calculations of
various real materials [17, 21, 22]. We refer the reader to those reference to have
a complete knowledge about this topic (see also [14] for a review).

Here we will just follow the paper of Resta [16] to get an idea of how this theory
works considering a one dimensional ferroelectric model (Fig. 1.6 (top)). First,
we need to define a scalar parameter λ defining the amplitude of ferroelectric
distortion, that assumes two different value for centrosymetric (λ = 0) and for
ferroelectric (λ = 1) structures. The potential Vλ(x) has the period a of the lattice
for any value of the parameter. Taking into account the simplest model of an
insulator, we have only two electrons per cell that occupy a single band with the
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1.1. FERROELECTRIC MATERIALS

Figure 1.6.: (top) Schematic representation of a one-dimentional para- and ferro-
electric material (top and bottom, respectively). (bottom) The circuit
in (k, λ)-plane chosen to calculate the Berry phase.

following wavefunctions:
ψλ(k, x) = eikxukλ(x)

where k is the Bloch vector in the one-dimensional Brillouin zone [−π/a, π/a],
ukλ(x) is the periodic function with period a. The Hamiltonian of this system will
depend on parameters k and λ. Thus, it is possible to write a two-dimensional
parameter ξ having k and λ as components, and consider as integration curve
C the contour of the rectangle in the (k, λ) plane, to calculate the Berry phase
γ in usual formulation that we will see in the separated subsection 1.1.3. The
polarization difference ∆P between the ferroelectric (λ = 1) and the non-polar
(λ = 0) structures coincides with the integrated current which flows through the
linear chain while the ions are continuously displaced. According to the modern
theory, this quantity is

∆P = eγ/π + ∆Pion (1.1)

where the first term represent the electronic contribution, where e is the electron
charge, and ∆Pion is the trivial contribution of the classical ions. The dimensions
of polarization are dipole per unit length.

The Berry phase approach is basically a one-electron theory, such a the band
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theory of solids. Thus, the main results can be reformulated in any mean-field
theoretical scheme, as in the most famous and common density functional theory
(DFT) of Kohn and Sham. A correct many-body extention is accessible, though.
Since ∆P is adiabatic observable of electronic ground state, the DFT framework
is appropriate. Within it, further, ∆P is shown to be a property of the manifold
of occupied Kohn-Sham orbitals, in particular it depends on the phases of these
orbitals in a gauge-invariant way [14].
Nowaday, the three-dimensional analogue of Eq. 1.1 has been implemented

in several DFT first-principles codes and used for an enormous number of real
materials investigations. Indeed, in the case of ferroelectric polarization, thanks
to modern theory of polarization, the numerical results display a quite surprising
agreement with the experimental data. The very first case study was KNbO3 in
its tetragonal phase [15, 17]: the theory predicts a spontaneous polarization PS of
0.35 C/m2, compared with early measurements of about 0.37 C/m2 [18]. Other
successful theoretical predictions of polarization are those for the most studied
ferroelectric material, such as BaTiO3, BiFeO3, PbTiO3: theoretical values of 0.32,
~0.95, 0.88 C/m2 have been found respectively [23]. Incidentally, I have performed
a berry phase calculation of bulk PbTiO3, in GGA-PBE approximation, finding a
value of 0.86 C/m2.

Berry phase

In this short subsection, I will reproduce the formulation of Berry phase proposed
by Resta in paper [16], since I found it clear and algebraically simple but still
effective to explain this very general concept.
One starts with the most generic quantum Hamiltonian having a parametric

dependence:
H(ξ) |ψ(ξ)〉 = E(ξ) |ψ(ξ)〉

where ξ is defined in a suitable domain: a two-dimensional ξ with real values
has been chosen for illustration in the Figure 1.6 (bottom). In the original Berry
paper H(ξ) is the electronic Hamiltonian of a molecule in the Born-Oppenheimer
approximation, and ξ is a nuclear coordinate [19]. But the theory is quite general
and applies to the most disparate parametric dependence: in the theory for the
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macroscopic polarization of a crystalline dielectric the parameter ξ is a rather
exotic one. We assume that |ψ(ξ)〉 is the ground state, non-degenerate for any
ξ. The phase difference ∆φ12 between the ground eigenstates at two different ξ
points is defined in the most natural way as

e−i∆φ12 =
〈ψ(ξ1) |ψ(ξ2)〉
|〈ψ(ξ1) |ψ(ξ2)〉|

∆φ12 = −Im log 〈ψ(ξ1) |ψ(ξ2)〉

This phase cannot have any physical meaning. In fact, any quantum mechanical
state vector is arbitrary by a constant phase factor: “choice of the gauge” will be
used in the following as a synonym for the (arbitrary) choice of such a phase.
For instance, in numerical implementations the gauge is typically chosen by the
diagonalisation routine. A simple change of gauge at ξ1 and/or at ξ2 will give the
phase difference the most arbitrary value. Despite this, when one considers the
total phase difference γ along the closed path in the Figure 1.7:

γ = ∆φ12 + ∆φ23 + ∆φ34 + ∆φ41

= −Im log 〈ψ(ξ1) |ψ(ξ2)〉 〈ψ(ξ2) |ψ(ξ3)〉 〈ψ(ξ3) |ψ(ξ4)〉 〈ψ(ξ4) |ψ(ξ1)〉

one immediately realizes that the phase difference is gauge invariant, since all the
gauge-arbitrary phases cancel in pairs. The most common Berry phase γ is defined
in the continuum limit. Suppose we have a smooth closed curve C in the parameter
domain, as in the Figure 1.7, and we discretize it with a set of N points, we can
then assume that the gauge is chosen such that |ψ(ξ)〉 is single-valued and varies in
a differentiable way along the path. The phase difference between two contiguous
points is therefore given by:

e−i∆φ =
〈ψ(ξ) |ψ(ξ + δξ)〉
|〈ψ(ξ) |ψ(ξ + δξ)〉|

−i∆φ ' 〈ψ(ξ) |ψ(ξ + δξ)〉 · δξ

When the set of points becomes dense, the total phase difference γ converges to
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Figure 1.7.: (a) A closed circuit made of only four points representing stable states
of the probed system during the ξ parameter changing. (b) Continuos
closed path made of infinite little changes of the ξ parameter over
which Berry phase is calculated.

the circuit integral of a real linear differential form, called the Berry connection:

γ =
N∑
s=1

∆φS,S+1 → i

˛
C

〈ψ(ξ) |ψ(ξ + δξ)〉 · δξ

The above simple-minded algebra leads to a result of overwhelming physical
importance, namely that a gauge-invariant quantity is potentially a physical ob-
servable. Traditionally, we are accustomed to regarding any observable effect in
quantum mechanics as the eigenvalue of some operator. The main message of
Berry’s milestone paper can be spelled out by saying that there are also observ-
able effects of a completely different nature: the phase γ cannot be expressed
in terms of the eigenvalues of any operator, whereas it is by definition a gauge-
invariant phase of the state vector. Several observables having the nature of a
Berry phase have been found in different ares of physics: the macroscopic polar-
ization of a crystalline dielectric is one of them, very recently discovered, but not
the least by far. Having understood that the Berry phase in general may provide a
qualitatively novel quantum observable, one naturally wonders how and why this
happens. To answer, one must re-examine the initial assumption of a parametric
Hamiltonian, and realize its most fundamental meaning. In general, a quantum
system having a parametric dependence in its Hamiltonian cannot be isolated: the
parameter schematizes a kind of coupling with other variables not described by
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the given quantum Hamiltonian, or more generally with “the rest of the universe”,
to use Berry’s words. The parametric Hamiltonian allows one to deal with a part
of a larger system as if it were isolated: as a trade-off, some observable effects may
occur as gauge-invariant phases.

1.2. Depolarizing field problem

If we suppose to terminate the crystal by two interface perpendicular to the po-
larization, we expect a buildup of free opposite charge at the surfaces, generating
a macroscopic dipole, that in bulk would be screened by the opposite sign charge
density of adjacent periodic cells. These unscreened surface charges generate a
field that counteracts to the ferroelectric distortion and making energetically dif-
ficult for the sample to sustain the ferroelectric state. Since the magnitude of this
depolarizing field depends on the thickness of the slab considered, its influence in-
creases with reduced size and it is important to take into account of it for a correct
description of small ferroelectric systems. Thus, the problem of a critical thickness
is crucial to exploit ferroelectric materials as thin films in microelectronic devices,
as capacitors for example.
The presence of this field inside the ferroelectric material has been observed

experimentally and theoretically predicted and calculated (see references inside
[103]). In the paper of Junquera and Ghosez [103], a supercell of BaTiO3 slab
between two metallic electrodes of SrRuO3 representing a capacitor, was studied.
In particular the relation between the total energy of the cell and the ferroelectric
distortion parameter was calculated for different thicknesses of ferroelectric thin
film. They found that the limit for a stable ferroelectric phase is 6 basic unit of
BaTiO3 as clearly shown in Figure 1.8.
They further observe that near the interface BaTiO3/SrRuO3 there is a complex

rearrangement of charge, but the screening effect of metal is not perfect. This
means that an unscreened charge remains at the interfaces. The proof come from
the electrostatic potential: inside the metal it is zero, but near the interfaces
it drops causing an almost linear behaviour inside the ferroelectric, namely an
electrostatic field, opposite to polarization, is still present inside it. The magnitude
of this depolarizing field depends first on the screening length of the metal and
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Figure 1.8.: Free energy versus distorsion paramter ξ(%) of the BaTiO3 in the
BaTiO3/SrRuO3 supercell for different number of layers. Stability of
spontaneous polarization is found only beyond a thickness of 6 layers.
In the inset, the polarization increasing respect with the thickness of
ferroelectric until it reaches the bulk maximum value for quite thick
sample. Figure from Ref. [103].

the polarization of the thin film which determine the potential drop and second
on the film thickness: ∆V = 2E/l.

Energy of film in presence of this field is E = U − P · E, where U is the
internal energy under zero field, and P · E is the depolarizing field contribution
to total energy. U is approximated from the bulk soft-mode double-well energy.
Contribution from atomic displacements and from the electronic polarization are
taken into account to calculate polarization P . The depolarizing field Ed is deduced
from the slope of electrostatic potential inside the ferroelectric.

In this model they assume that the modification of the bonding at the interface
plays only a minor role, thus the dominant effect is electrostatic one. Thus, under
this assumption, in the case of zero internal field, for example in perfect screening
scenario, total energy E is equal to U and the ferroelectric has the same behavior
as in the bulk. But in the real case of metal interface, the screening is not perfect
and a sizable depolarizing fields appears.

The main effects of this field are, first, the suppression of ferroelectricity at
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1.2. DEPOLARIZING FIELD PROBLEM

Figure 1.9.: Figure from Ref. [103]. (a) Total charge density of m = 6 thick-
ness, and (b) electrostatic potential for two level of distorsion of
BaTiO3/SrRuO3 supercell. The value of residual electric fields are
shown.

finite size, and second, the reduction of the spontaneous polarization also well
above the critical thickness, indeed the bulk polarization is achieved slowly for
film of increasing size.

Moreover, the depolarizing field has been shown to be the principal cause of the
reduced capacitance value in high-permittivity insulators capacitors by Stengel
and Spaldin in [24]. They performed an ab-initio study of a capacitor with metal
electrodes of SrRuO3 and a high-permittivity dielectric SrTiO3, which they applied
an external electric field on. They showed that the calculated permittivity achieves
the classical value only in a narrow part of the dielectric and decreases much around
the interfaces. They calculated also the induced potential in both cases of fixed
atoms in the zero field positions, relaxing only the electrons under a voltage bias,
and of relaxed atomic positions. In the first case the uniform electric field inside
the dielectric slab was equal to classical value E = ∆V/l. In the second case, the
field in the dielectric was drastically reduced. The difference of the two potentials is
the component of the potential that steam from the relaxation of ions. It basically
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Figure 1.10.: Figure from Ref. [24]. (a) Theoretical and calculated values of
permittivity and (b) electrostatic potential due to only electrons
(red curve) and additional ions relaxation (blue curve). The dif-
ference of previous potentials leads to the depolarizing field, in the
SrRuO3/SrTiO3/SrRuO3 model of capacitor.

induces a polarization of the layers near the interface and an electrical field that
counteracts to relaxation and reduces the total electrical field inside the insulating
slab because of its opposite sign respect to that of external field. This is the same
depolarizing field seen before.

Until now we have shown that the depolarizing field has a detrimental effect
in the real capacitors, with both normal or ferroelectric dielectric insulator film,
reducing their capacitance value. In the next section we are going to see that
the residual field inside the ferroelectric slab of a capacitor is the key concept in
another type of device: the ferroelectric tunnel junctions (FTJ).

1.3. Giant electroresistance in FTJ

Ferroelectric tunnel junctions (FTJs) are devices that enjoy a tunneling current
between two metallic electrodes through a thin ferroelectric insulator. The main
feature of this device is that this tunnelling current or the resistance is strongly
influenced by switching the polarization orientation of the ferroelectric barrier.
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1.3. GIANT ELECTRORESISTANCE IN FTJ

This phenomenon is known as tunneling electro-resistance (TER) effect.

One of the physical mechanism behind the TER effect in ferroelectric tunnel
junction is the change of the electrostatic potential profile induced by the reversal
of electric polarization in ferroelectric. As we have said before, a polarization
surviving also in thin ferroelectric films, generates surface charges only partially
screened by the metal electrodes and hence a depolarizing field remain inside the
ferroelectric. If the two interfaces are identical, the reversal of polarization yields
two symmetrically identical potential profiles, that does not change the tunnelling
resistance. Whereas, imagining to have two different interface M1-FE-M2, for
example using two different metals, the two potential profiles would be different
for opposite polarization directions. Thus, in this last case the tunneling electrons
will across a different potential and TER effect will appear.

I will show in the following the simple but effective electrostatic model presented
by Zhuravlev et al in Ref. [31], to investigate the TER effect and assess it in a
ferroelectric tunnel junction made by different metals (M1-FE-M2).

In their model, they consider a ferroelectric thin film of thickness d placed be-
tween two different semi-infinite metal electrodes. The ferroelectric is assumed
to be uniformly polarized in the direction perpendicular to the interfacial plane.
The polarization P creates the surface charge densities ±σP = ± |P| on the two
surfaces of the ferroelectric film. These polarization charges, ±σP , are screened
by the screening charge per unit area, ±σS, which is induced in the two metal
electrodes, as is shown schematically in Fig. 1.11(a).

It is assumed that the ferroelectric is perfectly insulating so that all the com-
pensating (screening) charge resides in the electrodes. Further, it is assumed that
the FTJ is short circuited, equalizing the electrostatic potentials of the two elec-
trodes at infinity. In order to find the distribution of the screening charge and the
potential profile across the junction, they apply the usual Thomas-Fermi model of
screening (as in Ref. [65]). According to this model the screening potential within
metal 1 (z ≤ 0) and metal 2 (z ≥ d) electrodes is given by

ϕ(z) =

σSδ1e
−|z|/δ1
ε0

z ≤ 0

−σSδ2e
−|z−d|/δ2
ε0

z ≥ d
(1.2)
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Figure 1.11.: Figure from Ref. [31]. (a) Charge density and (b) electrostatic poten-
tial for the ME1-FE-ME2 model. Note the different charge distribu-
tion inside the two different metals and the relative different potetial
heights.

Where δ1 and δ2 are the Thomas-Fermi screening lengths in the M1 and M2 elec-
trodes and σS is the magnitude of the screening charge per unit area which is
to be the same in metals 1 and 2 due to the charge conservation condition. The
screening charge σS can be found from the continuity of the electrostatic potential,
implying that the potential drop within the ferroelectric film is determined by a
constant electric field in the ferroelectric:

ϕ(0)− ϕ(d) =
d(P − σS)

εF
. (1.3)

To be noted that here P is considered to be the absolute value of the spontaneous
polarization, and the introduction of the dielectric permittivity εF is required to
account for the induced component of polarization resulting from the presence of
an electric field in the ferroelectric. Now using Eqs. 1.2 and 1.3 and introducing
the dielectric constant ε = εF/ε0 it possible to write:

σS =
dP

ε(δ1 + δ2) + d
. (1.4)
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It is evident from Eq. 1.4 that for “good” metals in which the screening length
is small (a fraction of an Angstrom) and for not too thin ferroelectrics, such that
ε(δ1+δ2)/d� 1, a full screening occurs, i.e., σS = P , which implies no depolarizing
field E in the ferroelectric. In the opposite limit, ε(δ1 + δ2)/d � 1, the screening
charge tends to zero and the depolarizing field increases to saturation at E =

−P/ε. Figure 1.11(b) shows the electrostatic potential in a M1-FE-M2 junction
assuming that metals M1 and M2 have different screening lengths, such that δ1 >

δ2. It follows from Eq. 1.2 that different screening lengths result in different
absolute values of the electrostatic potential at the interfaces, so that ϕ(0) 6=
ϕ(d), which makes the potential profile highly asymmetric, as it is seen from Fig.
1.11(b). The switching of the polarization in the ferroelectric layer leads to the
change in the potential which transforms to the one shown in Fig. 1.11(b) by the
dashed line. Thus, due to different screening lengths in the two metals that make
the electrostatic potential profile asymmetric, the switching of the polarization
orientation in the ferroelectric barrier should inevitably lead to the change in the
resistance of the junction. In order to predict the magnitude of the resistance
change associated with polarization switching, the thickness of the ferroelectric
barrier is assumed to be so small that the dominant transport mechanism across the
FTJ is the direct quantum-mechanical electron tunneling. The overall potential
profile V (z) seen by transport electrons is a superposition of the electrostatic
potential shown in Fig. 1.11(b), the electronic potential which determines the
bottom of the bands in the two electrodes with respect to the Fermi energy EF ,
and the potential barrier created by the ferroelectric insulator. For simplicity, the
barrier potential is assumed to have a rectangular shape of height U with respect
to the EF . The electronic potential within the metal electrodes is determined by
the screening lengths δ1 and δ2 which are related to the Fermi wave vectors k1,2

according to the Thomas-Fermi theory, by k1,2 = πa0
4δ21,2

where a0 is the Bohr radius.

The resulting potential V (z) for the two opposite orientations of polarization in
the ferroelectric barrier is shown schematically in Fig. 1.12 for δ1 > δ2 .

The difference ϕ(0) 6= ϕ(d) controls the asymmetry in the potential profile
which is decisive for the resistance change on polarization switching. Indeed, the
average potential barrier height seen by transport electrons traveling across the
ferroelectric layer for polarization pointing to the left, UL = U + (ϕ(0)− ϕ(d))/2,
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Figure 1.12.: Potential barrier seen by the electrons accordingly with the polar-
ization direction. Note that for (a) case the highest value is lower
than the highest in the (b) case, namely the mean values are in this
relation UL > UR. Figure from Ref. [31].

is not equal to the average potential barrier height for polarization pointing to the
right, UL = U + (ϕ(d) − ϕ(0))/2, as is seen from Figs. 1.12(a) and 1.12(b). In
addition, polarization switching leads to the change in the effective thickness of
the tunneling barrier which is evident from Figs. 1.12(a) and 1.12(b). This occurs
if the electrostatic potential ϕ at the M1-FE interface exceeds the Fermi energy in
metal 1.

In order to have a quantitative description of the electronic transport through
these two different potential profiles, they calculate the conductance GL and GR

for polarization pointing to the left and for polarization pointing to the right,
respectively. Considering a small applied bias voltage the conductance of a tunnel
junction per area A is obtained using the standard expression [66]:

G

A
=

2e2

h

ˆ
d2k||

(2π)2T
(
EF ,k||

)
,

where T
(
EF ,k||

)
is the transmission coefficient evaluated at the Fermi energy EF

for a given value of the transverse wave vector k|| . The transmission coefficient
is obtained from the Schrodinger equation for an electron moving in the potential
V (z) by imposing a boundary condition of the incoming plane wave normalized to
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Figure 1.13.: Giant electro-resistance GER respect to metal screening parameter
δ as calculated in the ME1-FE-ME2 model from Ref. [31]. It is
shown GER ratio as function of both polarization and thickness of
the ferroelectric layer.

unit flux density and by calculating the amplitude of the transmitted plane wave.
Under the assumption, for simplicity, that electrons have a free electron mass in
all the three layers. Using typical values for screening length for metal M2 and
for U and ε for perovskite ferroelectric, they calculate the conductances for the
polarization directions and their ratio in function of δ1, as shown in Fig. 1.13.

The two conductances start from a shared value, that of the condition of equal
screening length where potential profiles are symmetric, and they decrease with
the increasing of δ1that mean an increasing of potential barrier and they separated
after a while because of the difference between the potential barrier UL and UR

increase. The ratio of the conductance show an exponential growth, exceeding
factor 10 as δ1approaches 1 nm.

In Fig.1.13 the relation of the conductance ratio with the thickness and the
polarization of the insulating film is also shown. The ratio can be very high (102−
103) and change exponentially changing both the thickness and the polarization,
again because these two parameters influenced heavily the high and the shape of
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potential barriers in the two state of polarization. For this reason this ratio and
the TER effect in ferroelectric tunnel junction are called giant electro-resistance
ratio and effect (GER), respectively.

These quantitative assessment, though approximated, will be in good agreement
with our findings on the junction studied and exposed in the following section 2.

1.4. Interface Magnetoelectric effect

In this section, we focus on interface magneto-electric (ME) effects caused by pure
electronic mechanisms, namely of the changing the interface magnetization by
applied electric field, that could be both external and “internal”. Since in every
ferromagnetic (FM) interface, or surface, the time-reversal symmetry is broken by
the ferromagnetism and the space-reversal symmetry by the interface itself, the
ME effect always occurs. It is possible to isolate two mechanisms yielding the
interface ME effect: (i) spin-dependent screening and (ii) interface bonding. From
classic electrostatic, a metal film exposed to an electric field, respond with an
induced surface charge σ = ε0E that screens the electric field according to its own
screening length. If the metal is FM, the screening charge is spin dependent due
to the exchange splitting of the spin bands. This induces a surface magnetization
Msurf [26], as demonstrated by Duan et al. [27] in a ab initio calculation of Fe
(001) surface exposed to an external electric field. A linear contribution to Msurf

is determined by the surface ME susceptibility as follows [27]:

µ0Msurf = αSE.

In SI units, αS is measured in Tm2V −1 = s. In a simple approximation, the
screening contribution to αS :

αS =
µB
ec2

n↑ − n↓
n↑ + n↓

, (1.5)

where n↑, n↓ are the surface spin-dependent density of states at the Fermi en-
ergy. The ME susceptibilities have been calculated from first principles for el-
emental FM metals Fe, Co and Ni [27]. It was found that the effect is small,

28



1.4. INTERFACE MAGNETOELECTRIC EFFECT

αS ∼ 10−22Tm2V −1, which is about the same order as for Cr2O3 but limited
to the surface (i.e. αS ∼ a/a0, where a0 ∼ 1 Å). Interestingly, as follows from
equation 1.5, for half metals the surface ME coefficient is a universal constant
αS = µB

ec2
. A viable way to enhance the ME effect is that of interfacing a ferromag-

net with a dielectric, since the induced surface charge scales with the dielectric
constant σ = ε0κE. Thus, the ME effect increases, by two or more orders of
magnitude, exploiting high-κ dielectrics, which have a dielectric constant as large
as κ = ε/ε0 ∼ 100 and even higher. First-principles calculations, developed by
Rondinelli et al. in [25], have predicted the enhanced ME susceptibility at the
SrRuO3/SrTiO3 interface, i.e. αS ∼ 2 × 10−20Tm2V −1, which is larger by two
orders in magnitude than that for the FM metal surfaces [27], harnessing the large
dielectric constant of SrTiO3.

In particular, they investigate the response of the SrRuO3/SrTiO3 model capac-
itor to an applied electric field, firstly, applying an external bias of ∆V = 27.8 mV
across the capacitor plates, and allowing the ions to relax until their equilibrium
positions. The resulting planar and macroscopically averaged change in magne-
tization is shown in Figure 1.14 (top). The overall induced magnetic moment is
localized at the interfaces, and amounts to 2.5× 10−3µB per surface unit cell, cor-
responding to a surface spin density of 0.27µC/cm2 . The accumulation of spin
is exactly equal in magnitude and opposite in sign at the left and right electrode
so that the overall induced magnetic moment of the heterostructure is zero, con-
sistent with the symmetry of the system. From the planar average of the induced
spin density without macroscopic averaging (Fig. 1.14 (top)), it is clear that the
dominant contribution to the induced magnetization is accumulation of spin on
the interfacial RuO2 layer. Interestingly, this effect is partially compensated by
a smaller opposite induced spin density in the adjacent RuO2 layer. Whereas,
the induced spin on the SrTiO3 side of the interface, which is provided by the
exponentially vanishing tails of the metal-induced gap states, is small.

Secondly, they isolate the electronic response of the system repeating the electric
field calculations with the ions frozen in their initial centrosymmetric positions.
The magnetization charge for this case, corresponding experimentally to the high-
frequency limit, is shown in Figure 1.14 (down). Since keeping the ions fixed any
structural effect on magnetism is completely removed, any induced magnetization
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Figure 1.14.: Induced spin density as calculated in the SrRuO3/SrTiO3/SrRuO3

capacitor by Rondinelli at al in Ref. [25]. The difference of the two
pictures consist in the effect of the ion relaxation (top) that increase
induced spin density of one order of magnitude. But the important
aspect is shown in the bottom image: induced spin density remains,
though reduced, without ions relaxation being an electronic effect.
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must be of intrinsic electronic origin, and can only be ascribed to the capacitive
accumulation of spin-polarized carriers at the interface. In this case they obtain
an induced magnetic moment at each interface of 1.80 × 10−4µB per unit cell,
corresponding to a spin-polarized charge density of 0.019µC/cm2, hence all of
these values are an order of magnitude lower than the corresponding quantities in
the static-field case.

For both cases, they calculate a quantity labeled as “spin capacitance density”
CS = σS

V
, where σS is the amount of spin polarization per unit area induced

by the voltage V. This definition in an analog of the charge capacitance density
per unit area, C = σ

V
, where σ is the surface density of free charge stored at

the electrode. Moreover, to avoid the dependence from the capacitor features
and extract the fundamental properties of the interface response, the define the
parameter η = CS/C.

They found a similar value of η for both static-field and high-frequences cases,
indicating that the mechanisms leading to the screening of polar phonons in the
static regime are the same as those screening electronic bound charges in the high-
frequency regime, where changes in chemical bonding and/or structure are not
possible. Therefore, they conclude that this system provides the first example of a
carrier-mediated magneto-electric effect, which results entirely from the capacitive
accumulation of spin-polarized carriers at the interfaces. Further, they give an
explanation of the origin of the carrier-mediated magneto-electric effect: on appli-
cation of an external field, free carriers accumulate at the capacitor plates, which
are partially screened by the dielectric polarization of the SrTiO3 film. In the
half-metallic limit all displaced electrons are spin-polarized in the same direction
(up in the figure 1.15); in the present case there is a partial cancellation between
spin-up and spin-down carriers that reflects the incomplete spin polarization at
the Fermi level of the interfacial SrRuO3 layer. This process accumulates up-spin
magnetization adjacent to the positively charged electrode, leaving behind an ab-
sence of up-spin magnetization (or equivalently down-spin polarized holes) at the
negative plate.

These electronically driven ME effects can be further enhanced by employing
an FE material to produce a field effect, that we mention as “internal” in the
beginning of this Section. In this case, the spin-dependent screening in a FM
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Figure 1.15.: Rondinelli at al in Ref. [25] proposed this schematic model to explain
that the screening charges from a magnetic metal have a preferential
spin. This gives rise the spin polarized charge density at the two
surfaces metal-insulator.

material occurs in response to the polarization charge at the FE/FM interface.
The latter can be changed by switching the FE polarization orientation by applied
electric field. Such an ME effect was predicted for the SrRuO3/BaTiO3 interface
in the work of Niranjan et al. [49]. They found from ab-initio calculations that
because of the ferroelectricity in the BaTiO3, the magnetizations of the SrRuO3

at the left and right interfaces differ significantly. In particular, integrating the
spin density over the four unit cells of SrRuO3 nearest the interfaces, they assessed
a total magnetic moment of 3.20µB and 3.51µB for the left and right interfaces,
respectively. Therefore the net change in interfacial magnetic moment per unit
area caused by the polarization reversal is ∆M = 0.31µB/a

2. Comparing the total
magnetic moment of 3.55µB, of interfacial SrRuO3 unit cell in the paraelectric
BaTiO3 state, with the ferroelectric state, they see that the change in magnetic
moment induced by the polarization is −0.35µB for the left interface and −0.04µB

for the right interface. This is quite different from a linear expected behavior where
the changes in the moments at the two interfaces would be equal and opposite, as
found in the previous SrTiO3 case. Therefore, their calculations clearly show the
highly nonlinear dependence of the ME coupling respect to the magnitude of the
ferroelectric polarization.
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Figure 1.16.: Figures from Ref. [49]. (left) Different spin-dependent local den-
sity of states projected onto the Ru 3d orbitals at the two interfaces
of SrRuO3/BaTiO3 supercell (color lines) respect with those in the
middle of BaTiO3 (gray): different spin states are accessible depend-
ing on the interfaces, or equivalently on the polarization direction.
(right) Spin density in the (100) plane cutting through the Ru atoms.

In Figure 1.16 (left) the change in spin density at the SrRuO3/BaTiO3 [001]
interface with polarization reversal is shown. It is clear that the largest change
occurs within the interfacial RuO2 mono-layer. Unlike the case that we will men-
tion next, where the interface ME effect is largely determined by the interface
bonding, there are no strong bonding effects dominating the ME coupling at the
SrRuO3/BaTiO3 [001] interface. In Figure 1.16 (right) the spin-polarized densi-
ties of states projected onto the Ru 3d orbitals at the right and left interfaces are
shown. It is seen that there is a clear change in the exchange splitting between
the two interfaces giving rise to a change in the relative population of the two
spin channels and therefore to the change in magnetic moment. The origin of the
change in exchange splitting is the screening of the bound polarization charges of
the ferroelectric at the interface, which they demonstrate using the Stoner model
of ferromagnetism. Finally, though the relationship 1.5 between ∆M and E is
nonlinear, since the ferroelectric polarization is a nonlinear function of applied
electric field, an order-of-magnitude assess of αS is still accessible. Considering
a coercive field Ec = 100kV/cm to reverse the polarization of BaTiO3 and tak-
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Figure 1.17.: Density of states projected onto Ti 3d, Fe 3d, O 2p orbitals at the
two interfaces of Fe/BaTiO3/Fe heterostructure studied in Ref. [108]
. The key role is played only by interfacial Ti and Fe 3d orbitals near
the fermi level that show spin-polarized states not accessible in the
bulk and polarization dependent.

ing into account that ∆M = 0.31µB/a
2, they find the surface ME coefficient

αS ∼ 2× 10−18Tm2V −1.
In addition to the spin-dependent screening, described in previous cases, the

interface bonding mechanism may play an important role in the ME effect at the
FM/FE interfaces. In the paper of Duan et al. [108], they perform an ab-initio
calculation of the junction Fe/BaTiO3/Fe, for increasing number of ferroelectric
layers (m ≥ 4). They observe that the magnetic moments of Fe atoms at the
interfaces, equals for paraelectric BaTiO3, become different in ferroelectric case
and in turn interface Ti atoms show an induced magnetic moment different for the
two interfaces. In this case, the presence of ferroelectricity in BaTiO3 causes the
magnetic moments of interface Fe and Ti atoms to deviate from their values in the
paraelectric state. This is due to the change in the strength of bonding between
the Fe and Ti atoms induced by ferroelectric displacements. For the electrically
polarized multilayer (m ≥ 4), the upward polarization makes Ti atoms move away
from the bottom interface and towards the top interface. This causes the Fe-Ti
bond length to be shorter and, hence, the overlap between the Fe 3d and Ti 3d
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orbitals to be stronger at the top interface compared to the bottom interface. As
a result, the minority-spin bonding state lies deeper in energy and, hence, is more
populated for Fe and Ti atoms at the top interface than at the bottom interface,
as indicated by the arrows in Figs. 2(a) and 2(b). Thus, ferroelectric instability
enhances the induced magnetic moment on top Ti atoms but reduces the magnetic
moment of bottom Ti atoms. The change is opposite for Fe atoms: their magnetic
moments are enhanced at the bottom interface but reduced at the top interface.
They have measured a change of the interface magnetic moments ∆µFe =

0.22,∆µT i = 0.25 for Fe and Ti respectively, in m = 16 case. Considering again
this difference for the two interfaces as the change in the same interface when the
electric polarization is switched, it is possible to estimated the surface ME coeffi-
cient, aS ∼ 2 × 10−18Tm2V −1, that is four orders of magnitude higher than that
for the Fe/vacuum interface [27]. Similar effects were predicted for Fe3O4/BaTiO3

[28] and Co2MnSi/BaTiO3 [29] interfaces.

1.5. MTJ and MFTJ

The phenomenon of electron tunneling has been known since the advent of quan-
tum mechanics and reflects the wave nature of electrons. It consist in the ability
of electrons to traverse a potential barrier that exceeds their kinetic energy. Tun-
nel junctions exploiting this quantum-mechanical effect are made of two metal
electrodes separated by a very thin insulating (e.g., Al2O3 or MgO) or a vacuum
barrier. Among the numerous useful electronic devices based on this phenomenon,
we mention:

• the Josephson junction, where tunneling occurs between two superconduc-
tors separated by a thin insulating layer, that has found important practical
applications in superconducting quantum interference devices (SQUIDs), in-
tegrated circuits, and particle detectors.[33]

• scanning tunneling microscopy (STM), the conventional tool for studying
the arrangement of individual atoms and molecules on surfaces.[34]

The advent of the so called “spintronic” has triggered an increasing interest in
electron tunneling, especially within heterostructures composed of magnetic and
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non-magnetic materials, to exploit the electron spin in data storage and processing
[36, 37].

By using ferromagnetic metal electrodes separated by a thin insulating barrier
leads to the idea of a magnetic tunnel junction (MTJ) [39], as seen in Figure
1.18, where a spin-dependent electron tunneling occurs. Basically, it happens
because the number of electrons parallel and antiparallel to the magnetization of a
ferromagnet has an imbalance that causes a measurable difference in the tunneling
current carried by majority- and minority-spin electrons [38].

Therefore, we can drive the tunneling current in the MTJ by an applied mag-
netic field that change the relative orientation of the magnetizations of the two
ferromagnetic layers [40, 41]. This phenomenon is known as tunneling magneto-
resistance (TMR) [42]. The key quantity is the TMR ratio, namely the relative
change in resistance of a MTJ between parallel and antiparallel magnetization
orientation. From the experimental side, the observation confirm a large and re-
producible TMR at room temperature [40]. This opens the the door to potential
application in spin-electronic devices such as magnetic field sensors and magnetic
random access memories (MRAMs), where an enormous effort of research has been
doing. In particular has been tried to enhance TMR and reduce MTJ resistance
by improving and tuning the properties of the ferromagnetic electrodes and the
insulating barrier. The Ref. [43] report a large TMR ratios up to 70%, close to
the limit reported in Ref [44] of the intrinsic spin polarization of 40–50% for 3d
ferromagnetic electrodes interfaced with amorphous Al2O3 barriers.

Now, combining the previously described MTJ and the FTJ it is possible to ob-
tain an artificial multiferroic material, where ferroelectric and ferromagnetic orders
coexist. Due to the interplay among magnetic, electric, and transport properties,
these multiferroic heterostructures reveal new physics and could be used to design
novel functional devices. Multiferroic tunnel junctions (MFTJs) exploit the ca-
pability to control electron and spin tunneling via ferromagnetic and ferroelectric
polarizations of the MFTJ constituents [45]. A schema of MFTJ is shown in 1.18:
it could be seen both as a particular type of MTJ where a ferroelectric thin film
serves as a tunneling barrier, or as a particular type of FTJ that has ferromagnetic
metal electrodes. The MFTJ represents a four-state resistance device where its
resistance can be switched both by electric and magnetic fields, since TMR and
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Figure 1.18.: A sketch of different types of junctions from [32]: (a) MTJ, (b) FTJ,
(c) MFTJ. In the first one the tunneling resistance depends on di-
rection of magnetization in the metallic electrodes. In the second
one, it depends on the polarization orientation of the ferroelectric
layer. In the third one, a join of the two previous resistance levels
occurs yielding to a four level resistance device depending on both
polarization and magnetization direction.

TER effects coexist, as reported by Zhuravlev et al [46, 47].

The heterostructure made with perovskite oxide films of SrRuO3 (as ferromag-
netic electrodes) and BaTiO3 (as ferroelectric barrier) has been taken as a model
of MFTJ and intensively studied by density functional calculations, revealing the
key functional properties of this device and predicting the coexistence of TMR and
TER effects. The Ref. [48] shows in detail as the TMR effect is the consequence of
wavefunction symmetry conservation across the epitaxial SrRuO3/BaTiO3 inter-
faces: in the parallel magnetic configuration, because of the symmetry both spin
channels contribute to the conductance, while in the antiparallel magnetic config-
uration, the conductance is strongly suppressed due to the symmetry mismatch,
yielding a sizable TMR. On the other hand, as previously described, the TER
effect originates from the asymmetric interface: RuO2/BaO at one interface and
TiO2/SrO at the other one create a different polarization profile when the ferro-
electric polarization is switched. Further, the ferroelectric polarization switching
and the interfacial magneto-electric effect influences the spin polarized tunneling
and TMR [49].
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Figure 1.19.: Experimental assessment of the tunneling resistance when an electric
or/and a magnetic fields are applied on a Fe/BaTiO3/LSMO sample.
Four level of resistance are recognizable but they are too close each
other. Images from [32].

Garcia et al. [50] assessed experimentally the impact of ferroelectric polariza-
tion of the barrier on spin-dependent tunneling, probing a MFTJs composed of an
La2/3Sr1/3MnO3 (LSMO) electrode, a BaTiO3 ferroelectric tunnel barrier (1 to 3
nm), and a Fe or Co counter-electrode. They found a large negative TMR at 4
K, reflecting a negative spin polarization for the Fe/BaTiO3 interface. By apply-
ing short voltage pulses of ±1 V, they observed reversible changes of the tunnel
resistance linked to the variation of the barrier height with the ferroelectric polar-
ization direction, with a TER of about 30%. More interestingly, the amplitude of
the TMR was also found to strongly depend on the direction of the ferroelectric
polarization. As can be seen for a typical junction in Figure 1.19(c), the TMR
measured at an applied bias voltage of –50 mV varies from a high value (–17%)
to a low value (–3%) when the electrical polarization points toward Fe or LSMO,
respectively. The observed change in TMR is consistent with the predicted change
of the spin polarization at the Fe/BaTiO3 interface and the induced magnetic mo-
ment on the interface Ti atoms, previously described. These results reveal that
the spin polarization of tunneling electrons can be electrically tuned in MFTJs by
switching the ferroelectric polarization of the barrier and demonstrate the exis-
tence of four level of resistance one for each combination of the ferroelectric and
ferromagnetic states. By the way, here the main problem of MFTJ’s applicabil-
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ity resides: resistance levels are too close each other, causing difficulties in the
read/write process.
Triggered by these important theoretical and experimental results, we started

an ab-initio study of a MFTJ, different in the ferroelectric barrier, that could go
in the direction to enhance the separation of the resistance levels, increasing the
TER effect.
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2. SrRuO3/PbTiO3/SrRuO3

MFTJ

In the following section I report the work published in the paper [127], whereby, as
principal investigator, I perform all the calculations and great part of the analysis of
their results, with my supervisor’s support. Briefly, we will see that first-principles
density functional calculations show that the SrRuO3/PbTiO3/SrRuO3 multifer-
roic junction with asymmetric (RuO2/PbO and TiO2/SrO) interfaces has a large
ferroelectric depolarizing field, whose switching changes the interface transmission
probabilities for tunneling electrons, leading to electroresistance modulation over
several orders of magnitude. The switching further affects the interface spin den-
sity, naturally driving magneto-resistance as well as modulated spin-dependent
in-plane resistivity, which may be exploited in field-effect devices.

2.1. Introduction and method

Multiferroic junctions are stacks of metallic ferromagnets and insulating ferro-
electrics where electroresistance and magneto-resistance modulation[101, 102] have
been obtained via polarization switching in the ferroelectric interlayer. Ferroelec-
tric (FE) materials –especially perovskite oxides– are used as tunnel barriers be-
tween metal electrodes. Polarization charges accumulate at the interfaces of the
finite FE layer with the rest of the stack, and cause a depolarizing field in the
FE. Despite the strong screening by the metal electrodes, a sizable field survives
in typical junctions. This persistence is the basis for nanoscale device concepts
for data storage.[103, 104, 105] A large (“writing”) external bias across the FE is
used to switch the FE depolarizing field and polarization, and a small (“reading”)
bias is then used to read the resistance of the stack in the newly realized state.
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This resistance may –in fact, in the present case, does– depend on polarization
(i.e. depolarizing field) orientation, for instance because of interface structure or
of asymmetries in potential profile along the junction and the associated tunnel-
ing probability. If that is the case, an electroresistance effect is realized. When
ferromagnetic (FM) electrodes are added to the junction, a multiferroic tunnel
junction (MFTJ) is realized. Electron tunneling from the electrode through the
FE barrier is now spin-dependent, and the tunneling current also depends on the
relative orientation of magnetization of the two electrodes, or on the local induced
magnetization. Thus, in MFTJs, tunneling magneto- and electro-resistance (TMR
and TER) effects coexist, leading to four distinct states accessible via electric and
magnetic external fields.[106, 107] Further, because of the same asymmetries, the
interface polarization charge is spin-polarized to a degree depending on polariza-
tion direction. MFTJs may thus exhibit interfacial magneto-electricity (ME), i.e.
changes in interface magnetization induced by FE polarization reversal, hence ulti-
mately driven by an electric field.[108, 27] The polarization switching changes sign
and value of the FE charge at a given interface, but also its relative majority or
minority spin content, establishing a tunable interface magnetization. Of course,
this will affect both the tunneling (typically ballistic) and the in-plane (typically
diffusive) transport in either spin channel. In this paper, we study with first-
principle calculations a SrRuO3/PbTiO3/SrRuO3 (SRO/PTO/SRO) multiferroic
tunnel junction, and specifically its tunneling electroresistance, interfacial ME cou-
pling, and in-plane transport. Due to the chemical asymmetry of the interfaces
and the strong polarization of the FE layer, the electroresistance modulation is
up to two orders of magnitude larger than in previous studies on BaTiO3-based
MFTJs.[106, 109] We also find a smaller but potentially useful tuning of in-plane
resistance, originating from polarization-induced magnetization changes. Interface
ME is present, with coupling coefficients similar to other MFTJs. [110] The elec-
tronic and atomic structure of the SRO/PTO/SRO junction is calculated within
density functional theory in the generalized gradient (GGA) approximation and
the projector augmented wave (PAW) as implemented in the VASP code.[111]
PTO has been relaxed in tetragonal symmetry, obtaining a=3.924 Å, c=4.176 Å,
Ti-O on-axis bonds 1.79 Å and 2.38 Å, FE energy gain over paraelectric 108 meV,
polarization P=0.86 C/m2. PTO cells with this structure and cubic SRO have
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been stacked keeping the in-plane lattice constant of PTO. The two interfaces be-
tween insulator and metal, RuO2/PbO at one side and TiO2/SrO at the other,
are labeled ‘Ru’ and ‘Ti’ below and are simulated in an in-plane 2×2 section.
The supercell has 7 layers of PTO and 6 layers of SRO as short-circuited ferro-
magnetic electrode, for a total of 260 atoms. We consider the two ferroelectric
states of PTO with polarization P pointing in opposite directions, perpendicular
to the interfaces; all the quantities pertaining to P pointing from RuO2/PbO to
the TiO2/SrO (“Ru to Ti”) are depicted in blue, while those for P pointing from
TiO2/SrO to RuO2/PbO (“Ti to Ru”) are in red. All configurations are reopti-
mized in length and relaxed with force tolerance 40 meV/Å, using a 4×4×1 k-point
Monkhorst-Pack mesh.

2.2. Results

2.2.1. Charge and potential

To analyze the total charge density (built adding narrow Gaussian charges at the
ions location to the electronic charge) and electrostatic potential in the junction in
the two polarization states, we feed their average over the sectional area A=4a2 of
our 2×2 planar cell to a one-dimensional square-wave filter to obtain the macro-
scopic average[112]

¯̄n(z) =
1

aA

z+a/2ˆ

z−a/2

dz′
ˆ

A

n(x, y, z′) dx dy. (2.1)

Similarly to Ref.[113], we extract the monopole component of the macroscopically
averaged density as

1

2
[¯̄n→(z − z0)− ¯̄n←(z0 − z)] (2.2)

combining the density profiles ¯̄n→ and ¯̄n← for the two P states (z0 is chosen to
minimize the monopoles and ends up near the midpoint of the FE layer). The re-
sults are shown in Fig.2.1. Secondly, the asymmetric interfaces of highly polarized
PTO produce quite different potential profiles for the two polarization directions,
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Figure 2.1.: Macroscopic average (top) of the total charge density, and its
monopole component (bottom) for the two directions of P in PTO.

without any symmetry-breaking layer of other materials interposed between elec-
trode and barrier.[109] This implies that the tunneling resistance along the junction
will be changed by the switching of PTO polarization. As suggested by simpli-
fied models,[31] for such asymmetric potential and large residual electric field one
expects a strong TER effect, which we now demonstrate calculating a) the semi-
classical tunneling conductance through the 1D potential profile of the junction,
and b) the transmission coefficient from the evanescent-wavefunction ratio in the
insulator.

2.2.2. Tunneling electroresistance: WKB

To quantify the TER in our junction, we first study the semiclassical tunneling
conductance through the 1D potential profile of the junction. An appropriate
model for the potential profile through which the electrons tunnel is the position-
dependent conduction band edge of the junction referred to Fermi energy EF .
To extract this profile, we calculate for the two polarization orientations the layer-
resolved local density of states (LDOS), which is displayed in Fig.2.3. The position
dependent PTO band edges shift along the junction at a rate determined by the
depolarizing field, whose value is in the mid 108 V/m as already indicated by the

43



Chapter 2. SrRuO3/PbTiO3/SrRuO3 MFTJ

Figure 2.2.: Asymmetric electrostatic potential profiles along c for opposite P’s in
PTO. The depolarizing field is ∼5×108 V/m.

averaged potential profile. We then extract from the LDOS the position of the
conduction edge in each layer, and use it to construct the potential profiles for the
two values of P, which, as shown in Fig.2.4, are strongly asymmetric. We then
calculate the tunneling probability in the semiclassical Wentzel-Kramers-Brillouin
approximation through these two profiles vs. injection energy, choosing the Fermi
energy as zero. (This describes electrons tunneling into the PTO conduction band.
Hole tunneling is neglected due to the large barriers and effective masses.) As
shown in Fig.2.5 the ratio G→/G←, i.e. the TER, is between 50 and 350 depending
on energy, and therefore up to two orders of magnitude larger than in BaTiO3/SRO
junctions.[106] The absolute values of G are comparable with those found for
similar junctions. We note that if we roughly estimate the writing voltage needed to
reverse the depolarizing field in this structure as the field times the PTO thickness
we find E·d∼2 V; thus, it would be safe to use a standard[115] reading voltage of
0.5-0.6 V, which would yield a near-maximum TER.

2.2.3. Tunneling electroresistance: Transmission function

The second indication of a giant TER effect comes from the two transmission
functions T→,←

(
k||
)
across the two interfaces in the two poling directions. For

not too thin a barrier, the transmission function of a tunnel junction could be
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Figure 2.3.: LDOS for the two polarization states.

factorized[117] as

T→
(
k||
)

= t→Ru

(
k||
)

exp
(
−2κ

(
k||
)
d
)
t→Ti

(
k||
)

T←
(
k||
)

= t←Ru

(
k||
)

exp
(
−2κ

(
k||
)
d
)
t←Ti

(
k||
) (2.3)

where d is the barrier thickness, κ
(
k||
)
is the lowest decay rate in the barrier and

t→,←Ru,Ti are the transmission probabilities from the left or right electrode into the
barrier across the interfaces (Ru or Ti respectively) for an electron with a given
k||, for both polarization directions. In our junction, the two interfaces differ both
chemically and electrostatically depending on the direction of polarization, hence
we have four different t’s to assess. Assuming the same exponential decay for the
two polarizations, we have

T→

T←
=

(
t→Ru

t←Ti

)
·
(
t→Ti

t←Ru

)
. (2.4)
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Figure 2.4.: CB edge potential profile for tunneling.

Figure 2.5.: Top: conductance in the WKB approximation for tunneling through
the 1D potential profiles shown in Fig. 2.4. Bottom: the TER between
the two P states, topping at about 350.

The two t ratios can be extracted from the ratio of the density of metal-induced
gap states at distance z from the two interfaces for the two poling directions, i.e.

∣∣ψ→,←Ru,Ti

∣∣2 ∝ t→,←Ru,Ti

(
k||
)

exp
[
−2κ

(
k||
)
z
]
. (2.5)

The upper panels of Fig.2.6 shows the wavefunctions as function of z for k||=0
at the Fermi energy along the junction for the two polarization directions, and
the lower panels display their ratios. Thus, t→Ru/t←Ti∼25 and t→Ti/t←Ru∼10, so that
the transmission ratio T→/T← is about 250, a measure of the TER comfortingly
similar to the WKB result shown above.
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Figure 2.6.: Probability densities at the Fermi energy and k||=0 (top) and their
ratio (bottom) for the two polarization directions near the interfaces.
Values taken at Ti sites

2.2.4. Interface barriers and the origin of asymmetry

The asymmetry giving rise to the large TER is of electronic origin. This can be
seen from the LDOS in Fig.2.3: at the Ru-Sr-Ti interface (bottom right in Fig.2.3),
the PbO layer opposes a large barrier to tunneling, while the TiO2 layer adjacent
to SRO is metallized; at the Ru-Pb-Ti interface (top left in Fig.2.3) the PbO layer
in contact with SRO is metallized, and the first barrier is the smaller one provided
by the TiO2 layer. Put differently, the conduction Schottky barriers between SRO
and PTO for the two interfaces are different; indeed, our estimated difference in
the conduction edge position at the interface agrees with the calculated[120] 0.7
eV difference between Schottky barriers of the two interfaces.[133] Since despite
the gap underestimate in GGA this difference is well reproduced, both the TER
and the absolute tunneling conductance should be considered quite accurate. We
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conclude that the smaller TER asymmetry in SRO/BaTiO3 is related to its lesser
or absent Schottky barrier asymmetry.[121] Ionic screening, in turn, presents no

Figure 2.7.: Cation displacement with respect to the plane of surrounding oxygens.

significant surprise: cationic displacements in the junction are rather well behaved,
as shown by Fig.2.7; they agree largely with previous estimates[120] and are fairly
similar to BTO/SRO (although here they are larger on average consistently with
the larger polarization of PTO).

2.2.5. Interface magnetoelectricity

We now consider the interface ME effect. We elect to estimate the interface ME
coefficient α assuming a linear magnetization-field relation

µ0∆M = αE. (2.6)

Given the likely importance of non-linearity for the high fields involved here, this
should be considered an order-of magnitude estimate. There is some latitude in
deciding which magnetization changes are to be considered, depending on the op-
erational procedure or application envisaged. In the present context, the natural
scenario is polarization switching: ∆M is the integrated difference of magnetiza-
tion density at each interface between the two polarization states. Clearly, two
interface-related ME coefficients will result, either one of which will be relevant
in practice depending on which interface is active in the specific experiment or
application. To operationally implement this scenario, one just needs to switch
P via the writing voltage. To calculate the ∆M ’s we define in analogy to the
charge density in Sec.2.2.1 the macroscopic averages of the magnetization density
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m
→(z) and m

←(z) for the two states Ru→Ti and Ru←Ti of PTO polarization.
In Fig.2.8 we report the planar and macroscopic averages To calculate the α’s we

Figure 2.8.: Planar and macroscopic averages of the magnetization in the two P
states.

conventionally choose the initial P state to be Ru→Ti and the final state Ru←Ti.
The magnetization changes at the Ru or Ti interface are

∆MRu =

ˆ

Ru

(m
→ −m←) dz

∆MTi =

ˆ

Ti

(m
→ −m←) dz, (2.7)

where the integrals are done near each interface between the region of zero mag-
netization within PTO and the region of constant magnetization within SRO,
specifically (see Fig.2.8) between 2 and 21 Å for the Ru interface, and 31 and 49
Å for the Ti interface. We choose as electric field in Eq.2.6 the depolarizing field
Edep, which is taken positive by convention (a different choice will simply change
the sign of both ME coefficients). We then obtain the ME coefficients as

αRu =
µ0∆MRu

Edep

, αTi =
µ0∆MTi

Edep

. (2.8)
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Table 3.1 summarizes the induced magnetizations (Eq.2.7) and the ME coefficients
at the two interfaces (Eq.2.8). Again the asymmetry in the interfaces shows up
dramatically. The ME coefficients are somewhat smaller than those predicted for
other similar MFTJs,[27, 110] despite our induced magnetizations being larger.
This is due to our assuming conservatively a switching electric field larger than
typical operational coercive fields of PTO. These may be 5 to 20 times smaller
depending on external conditions and sample properties (and hence the αs could
be larger by the same factors). Some additional insight can be gained by examin-

Table 2.1.: Magnetization changes (µB per interface cell) and ME coefficients
(10−11G·cm2/V) upon switching P from Ru→Ti to Ru←Ti.

Interface ∆M α
Ru –0.31 –0.11
Ti 4.46 1.62

ing in Fig.2.9 the atom-resolved average magnetic moments obtained integrating
the magnetization density within atomic spheres defined by the PAW construc-
tion. Consistently with its larger ME coefficient, the Ti interface (right side of
each panel) is more magnetically polarizable than the Ru interface. For Ru←Ti
polarization (right panel), magnetization builds up in the first Ru layers, spilling
over into the Ti metallized layer and through to the first insulating PbO layer. In
Ru→Ti polarization (left panel), the interface Ru’s lose some (and Ti and oxygens,
all) of their moment. At the Ru interface (left side of each panel), the magnetiza-
tion does not extend at all into PTO (specifically in the PbO layer) in either case,
and the SRO magnetization mostly redistributes among Ru’s and O’s in the first
and second layer, changing only slightly overall (see also Fig.2.8). In closing this
Section, we note that another possible choice for ∆M is the interface magnetiza-
tion density change with respect to zero electric field. In our case, this translates
into the magnetization difference at the two interfaces with or without the depo-
larizing field, i.e. for ferroelectrically-distorted or paraelectric PTO. As P, i.e. the
field, can be turned on in two ways, this procedure produces four ME coefficients,
α→Ru'α←Ru=0.62, α→Ti=0.14, α←Ti=1.75, in units of 10−11G·cm2/V. This polarization
“turn-on” scenario, unfortunately, is essentially impracticable. It would require
forcing PTO across its ferroelectric transition, e.g. by lowering the temperature
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2.2. RESULTS

Figure 2.9.: Atom-resolved magnetization (µB per atom) for the two polarization
states (a few SRO layers omitted).

across the Curie point Tc, with a small poling voltage applied to the junction to
select the desired P state. This is largely incompatible with device operation due
to the high Tc'500◦ C.

Figure 2.10.: In-plane spin-resolved conductivity vs chemical potential for the two
polarization states. Bottom: schematic device concept exploiting
conductivity modulation.

2.2.6. In-plane conductivity modulation

The sizable interface asymmetry and ME coupling will influence the in-plane cur-
rent in the SRO layer. To assess this effect, we use the BoltzTraP[118] code to
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Chapter 2. SrRuO3/PbTiO3/SrRuO3 MFTJ

calculate the conductivity in the plane of the junction in the diffusive regime as

σαβ (T ;µ) =
1

Ω

ˆ
σαβ(ε)

[
−∂f (T ; ε)

∂ε

]
dε (2.9)

with
σαβ (ε) = e2

∑
ik

τi,kvα (i,k) vβ (i,k) , (2.10)

where i is a band index, τ a relaxation time, v the group velocity calculated from
the band structure, and f the occupation function. Assuming τ constant, we can
plot σ/τ vs chemical potential. Although the scattering mechanisms may not be
described in full detail, this approximation is quite sufficient to address conductiv-
ity ratios between polarization states. (We note in passing that diffusive conduc-
tivity is appropriate for in-plane transport, but may be inapplicable to tunneling
transport depending on the nature of the Fermi surface of the junction system.
In the present case this approach gives a TER ∼105 which, while consistent with
similar calculations for 1+6 PTO/SRO superlattices,[122] is probably significantly
overestimated.) The in-plane spin-resolved conductivity in the diffusive regime in
the two polarization states is shown in Fig.2.10. The total conductivity changes by
35% upon polarization switching. Also, the switching modulates the down to up-
spin conduction ratio (2.5 to 1.9) by ±15% compared to the calculated bulk value
(2.2). Such sizable modulations may be employed in in-plane field-effect devices
such as that sketched in Fig.2.10. The electrically-stored polarization orientation
could be read electrically from the current modulation in the metal channel, i.e.,
effectively, as a modulated resistivity; this could be done either with the total
current, or one of the spin components if polarized contacts are used. Another ap-
plication of this configuration may be a filter or modulator of the incoming current,
measuring the outgoing spin-polarized current calibrated to that of the bulk. Note
that our calculations measure the conduction within the whole PTO/SRO layer
system, and there is no way to single out the net contribution of each interface;
the exact values of the modulation will thus depend on SRO thickness, and will
change if one of the interfaces (e.g. SRO/substrate) is “ferroelectrically dead”.
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2.3. Summary

In conclusion, we considered a multiferroic tunnel junction with asymmetric in-
terfaces and a large-polarization FE. Very different potential profiles result for
the two polarization states, and lead to a giant TER of up to 350. The inter-
face charge accumulation is spin-polarized, with magnetization and magnetization
changes depending on the interfaces and on polarization orientation, with sizable
ME coefficients. The ME coupling affects the in-plane diffusive transport of the
junction changing the majority to minority conductivity ratio, as well as the total
conductivity. In particular, upon P inversion, the conductivity is modulated by
35% and its spin polarization by ±15%, which is presumably exploitable in prac-
tical applications. In forthcoming work we plan to study TMR, which may be
expected to be high also, as well as the effects of magnetic doping of the FE layer.
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3. V doping of PbTiO3

In this section, I report a conference proceeding [12], whereby I perform all cal-
culations aimed to ab initio predictions on the proper multiferroic (ferromagnetic,
insulating and ferroelectric) character of PbTiO3 doped with vanadium. V im-
purities coupled ferromagnetically carry a magnetization of 1 µB each. The cou-
pling is expected to be strong, since the paramagnetic solution is higher by 150
meV/vanadium, and no stable antiferromagnetic solution was found. The elec-
tronic gap in the doped system is about 0.2-0.3 eV in GGA, hence the system is
properly multiferroic. V doping increases the spontaneous polarization in PbTiO3,
with an approximate perceptual rate of 0.7 µC/cm2.
Here we report the first principles prediction of a multiferroic state of lead ti-

tanate doped with magnetic vanadium. PTO is a well-known tetragonal perovskite
with a high spontaneous polarization (86 µC/cm2) of displacive origin. PbVO3 also
happens to be tetragonal, and with an even higher spontaneous polarization (152
µC/cm2). Previous studies have shown its ground state to be an antiferromagnetic
insulator (C-type), making it not especially interesting as a multiferroic. Moti-
vated by our previous study of V-doped ferroelectric titanates [127], we examine
the magnetic properties of vanadium diluted within the robust PTO ferroelectric.
Ab initio calculations are performed within density functional theory in the gen-

eralized gradient approximation (GGA) by Perdew-Wang using the PAW method
[213] as implemented in the VASP code [210]. Standard cutoff is used for the plane
wave basis, and the k-point mesh for the bulk is 8×8×8 (appropriately rescaled for
defect super cells). The Berry phase technique is used to calculate the polarization
change upon V doping, using strings of 16 points in the polarization direction.
After studying PTO and PVO in the respective ferroelectric phases, we sub-

stituted V for one Ti in a 2×2×2 tetragonal supercell of ferroelectric PTO, i.e.
dopant concentration ∼12.5%. A selection of structure parameters (lattice con-
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Figure 3.1.: Density of states for V:PTO. Positive curve is majority spin, negative
is minority spin. Fermi energy is at 0 eV. Inset shows a zoom of the
gap peak. The dotted line is a V d-up.

stants, distance of V or Ti from neighbouring O along the polar axis) are collected
in Tab. 3.1. V has one excess electron compared to Ti, so it is, as expected,
spin-polarized with a moment of 1 µB. Orbital angular momentum is assumed to
be quenched. Fig. 3.1 displays the key result, i.e. the density of states (DOS) of
ferromagnetic V:PTO. As we can observe, a fully occupied peak appears in the
gap of PTO, placed so that a gap of about 0.2 eV survives. This DOS feature
is obviously related to the excess V electron occupying antibonding conduction
states. Indeed, as shown in the inset, the main contribution to that peak is that
of spin-up d orbitals of V. Thus, PTO doped with vanadium is a small-gap ferro-
magnetic insulator thanks to the unpaired electron of dopant vanadium. The gap
of PTO is of course underestimated due to the known [53] gap error of semi-local
functionals; it may well be that the small V-related gap be also somewhat larger
than calculated due to the same effects (self-interaction, xc discontinuity, etc.). In
the cell just discussed, V is ferromagnetic by construction, being coupled to its pe-
riodic images. To study an antiferromagnetic configuration we consider two V’s at
the same concentration in a 2

√
2×2
√

2×2 tetragonal cell. The two V are placed in
that cell as far as possible from each other. While the ferromagnetic configuration
is stable, the antiferromagnetic configuration is not. The V moments disappear

55



Chapter 3. V doping of PbTiO3

V:PTO PTO (Theor. / Expt.) PVO (Theor. / Expt.)
a 7.848 3.924 / 3.895 3.806 / 3.804
c 8.351 4.175 / 4.171 4.979 / 4.677

V-Otop 1.709 - 1.700 / 1.677
V-Odown 2.377 - 3.278 / 3.01
Ti-Otop 1.792 1.795 / 1.75 -
Ti-Odown 2.380 2.380 / 2.42 -

Table 3.1.: Cell parameters for V doped PTO, bulk PTO and PVO. Theoretical
values are calculated for this work in GGA approximation. Experimen-
tal values are from Ref. [101, 113]

Figure 3.2.: Majority spin density of the spin-polarized electron of V in the basal
plane (iso-level: 10−3 e/Å3). The state is anti-bonding with first-
neighbor O’s, has dxy-like nodal structure, and propagates through
dxy-like Ti states. Charge paths along the vertical axis are negligible.

and the system converges to a metallic Pauli paramagnet of zero moment, which
is about 300 meV higher in energy than the ferromagnet. Of course, this prevents
the evaluation of a coupling parameter for magnetic models, but the ferromagnet
seems quite stable nevertheless.

Inspection of the charge density of the impurity state (Fig. 3.2) suggests a
dxy-like nodal structure and coupling of V’s via V-O-Ti-O-... paths in the basal
plane, whereas hardly any density is to be found along the vertical axis. While the
V-centered state is, as expected, anti-bonding with first neighbors, the bonding
O-V states (which mimic those of the substituted Ti) appear to make for a larger
charge accumulation in the V-O bond region (Fig. 3.3), matching the shorter V-O
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Figure 3.3.: Total charge density (in arbitrary units) in the vertical plane across a
Ti-O bond in PTO (left) and a V-O bond in V:PTO. A slightly larger
bond charge can be appreciated in V:PTO.

bond length compared to Ti-O (1.71 vs 1.79 Å).
Following Ref.[102], the equilibrium concentration is [V]=Ns exp (−Ef (V) /kTg),

Finally, we estimated the changes in polarization induced by V doping. At 12.5%
V we find a polarization increase of 8.3 µC/cm2, which agrees nicely with 8.25
µC/cm2 obtained by linear interpolation between the bulk values of PTO and
PVO mentioned previously. Therefore, in terms of polarization, V does not seem
detrimental, but in fact benign.
During review we have become aware of a very recent study [54] of transition-

metal doping in a perovskite ferroelectric (BaTiO3), reporting results in general
agreement with the ones just presented.
To conclude this section, I mention a survey that I have just started about dop-

ing the SrRuO3/PbTiO3/SrRuO3 interfaces with vanadium (V). Our intention was
that of improving both TER and interfacial ME effects, with a further difference
at the interfaces due to a magnetic atom as V. We assessed the supercell where
one of the four interfacial Ti is substituted with a V atom, for both polarization
orientations. In essence, we did not find any significant difference in both electro-
static potential and induced spin density respect with we found for the undoped
heterostructure. However, it remain an open and interesting issue to investigate,
as an example the first next step could be the study of Ru interface doped with V
atom.
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4. Prediction of a native
ferroelectric metal

In the following, I report an on-going work where, using first-principles calcula-
tions, we predict that the layered perovskite Bi5Ti5O17 is a ferroelectric metal,
i.e. it has nonzero density of states (DOS) at the Fermi energy EF and metal-like
conductivity coexisting with spontaneous polarization in zero field and switchable
depolarizing field in a finite system. This is, to our knowledge, the first known
example of coexistence of native electric polarization and native metallicity in a
single bulk phase. My personal contribute has been about the search for depolar-
izing fields in the finite Bi5Ti5O17 system.

4.1. Introduction

The possibility that metals can support ferroelectricity is an intriguing open issue
in solid state physics. Anderson and Blount [203] showed that certain martensitic
phase transitions involve inversion symmetry breaking, formally implying the ex-
istence of a polar axis in metals. “Metallic ferroelectric” behavior has thus been
claimed for metals falling under this definition – i.e., undergoing centrosymmetric
(CS) to non-CS structural transition – such as [204] Cd2ReO7 and LiOsO3, or being
natively non-CS [205] such as (Sr,Ca)Ru2O6. The same label has been attached
to ferroelectric insulators whose polar distortion survives moderate metallicity in-
duced by doping or proximity (for example, residual local electric polarization in
BaTiO3−δ up to δ≈0.09, and incomplete metallic screening of depolarizing fields in
metal-ferroelectric magnetoresistive junctions [103, 11]). However, it is fair to say
that neither any of the systems mentioned, nor in fact any other to our knowledge,
actually embodies a ferroelectric metal, which should satisfy a minimal checklist
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4.2. STRUCTURE

arguably including i) nonzero density of states (DOS) at the Fermi energy EF
and metal-like conductivity, ii) spontaneous polarization in zero field, and iii) fi-
nite and switchable depolarizing field in a finite system. In this paper, we report
the first –to our knowledge– prediction of a genuine ferroelectric metal satisfiying
the above requirements, the layered perovskite Bi5Ti5O17 (Bi5517), which has a
large spontaneous polarization orthogonal to the plane of maximum conductivity,
a metallic DOS, and a depolarizing field (upon a moderate amount of doping with
Ca). Our focus are layered perovskite titanates AnTinO3n+2 [206, 207], whose
morphology foreshadowing low-dimensional behavior combines with their tunable
conduction charge: assuming fixed ionic charges for A3+ and O2−, Ti has nom-
inal ionicity (3+4/n), i.e., between 4+ for n=4 (the band insulator La2Ti2O7,
known for its record-high ferroelectric critical temperature of 1770 K) and 3+ in
the n=∞ limit (the Mott-insulating Ti-d1 perovskite LaTiO3). The metallic n>4
phases are not nearly as studied theoretically as the end compounds [208, 132].
Motivated by experimental reports of possible non-CS structures in n=5 phases
[209], here we study La5Ti5O17 (La-5517 hereafter) and Bi5Ti5O17 (Bi-5517). For
the first-principles density-functional calculations we combine the local density ap-
proximation to density-functional theory as implemented in VASP [210] and the
variational pseudo-self-interaction-corrected (VPSIC) density-functional approach
[132, 56] (successfully applied to many oxide heterostructures [211]) to analyze the
structural instabilities and the electronic structure. In the VPSIC code we use
ultrasoft pseudopotentials [212] with plane-wave cutoff 476 eV, and in VASP we
use projector augmented waves [213] and plane-wave cutoff 500 eV. Brillouin zone
integration is done on 4×4×4 and 12×4×8 grids for self-consistency and density-
of- states, respectively. For transport, we use a refined version of Bloch-Boltzmann
transport theory [214], interpolating the band structure over a 30×14×22 ab-initio
calculated k-point values. To compute the electronic polarization we use a modified
Berry phase [215] approach described below.

4.2. Structure

As shown in Fig.4.1, the n=5 layered titanate can be viewed as a stack of slabs
containing five [011]-oriented perovskite-like planes and with an AO termination.

59



Chapter 4. Prediction of a native ferroelectric metal

(We give directions in the pseudo-cubic setting defined by the principal axes of the
perovskite structure.) The crystal axes are b‖[011], which will be shown to coin-
cide with the polar axis, and a=[100], c=[01̄1], which define the plane hosting the
low-dimensional electron gas. Our supercell, comprising (as shown in Fig.4.1) two
5-layer blocks along b, is compatible with all structures of interest here. To identify
the ground state, we start from the high-symmetry (Immm space group) struc-
ture, and condense all its unstable distortions as obtained from a Hessian analysis
(a summary is in Table 4.1I). For La-5517, the ground state is CS Pmnn, bar-
ring the existence of polarization. (We also simulate the experimentally-proposed
structure of Ref. [209], but find it to be a high-energy non-equilibrium configu-
ration.) Inspired by the observation that perovskites where Bi3+ replaces La3+,
such as BiFeO3 [216], are usually ferroelectric due to the Bi3+ tendency to form
low-coordination bonds, we explored symmetry breaking in Bi-5517, obtained by
replacing all La atoms with Bi’s. As in La-5517, the Immm phase of Bi-5517
is a relatively high-energy saddle point (Table 4.1). However, at variance with
La-5517, Pmnn is also a saddle point for Bi-5517. We then condense the unstable
distortions of the Pmnn structure, preparing low-symmetry initial configurations
obtained by quasi-random off-centering of Bi atoms. We identify as lowest-energy
solution the non-CS Pm21n space group (i.e., with no mirror plane perpendicular
to the stacking direction [011]). The displacements of Bi cations (highlighted by
arrows in Fig.4.1) are of two basic types. The Bi’s at the block edges (Bie in Fig.
4.1) go off-center, but their displacements at the two block sides are symmetric
with respect to the central layer (an anti-ferroelectric configuration of sorts) and
give no net dipole; the same is true for the smaller displacements of the Bim in
the intermediate layer [217]. On the other hand, the Bic’s in the central layer of
the block, while CS in both Immm and Pmnn, move off-center in Pm21n; a net,
uncompensated electric dipole along b is expected, as we now discuss.

4.3. Polarization

As expected from its structure, Pm21n Bi-5517 indeed possesses a robust sponta-
neous polarization Ptot along the [011] direction. Table 2 reports the results. Re-
markably, the total calculated Ptot=33 µC/cm2 is in the same league as ferroelectric
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4.3. POLARIZATION

Figure 4.1.: Sketch of the structure of (a) Immm Bi-5517 and (b) Pm21n Bi-5517.
Bi is blue, O is red, and Ti is grey. The supercell axes are also in-
dicated (a=[100] is orthogonal to the page). Cell is doubled along
c to visualize the octahedral tilts. Panel (c) schematizes atomic dis-
placements in a single 5-layer block. Arrows mark the shifts of Bi
atoms from their high-symmetry positions. Bi displacements in the
edge (Bie) and intermediate layers (Bim) compensate in an approxi-
mate way, but Bic in the central layer goes off-center giving rise to an
uncompensated polarization along b.

perovskites (30 µC/cm2 for BaTiO3, for example). Ferroelectricity originates from
Bi atoms moving off-center in the perovskite framework (Fig.4.1); this displace-
ment is invertible with respect to the (011) plane, and should enable hysteresis.
The ferroelectric well depth of 0.31 meV/Å3 estimated from energy differences
suggests a critical temperature upward of 500 K, by comparison with La2Ti2O7.
As discussed below, Bi-5517 is a metal. The calculation of polarization in metals
is, to our knowledge, unprecedented. A technical qualification is therefore war-
ranted. The electronic component of the polarization has contributions Pval from
the occupied valence manifold and Pcond from the partially occupied conduction
manifold. We implement two strategies to evaluate the last and most critical term.
The first is based on the Berry phase approach, which shows that polarization in
crystals is the integrated current flowing through the system as atoms displace
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Chapter 4. Prediction of a native ferroelectric metal

Table 4.1.: Energy (eV/cell) and lattice constants (Å) of various phases of La-5517
and Bi-5517. a, b, c are the lengths of the crystal vectors, which are par-
allel to the [100], [011], and [01̄1] directions, respectively. The ground
states are Pm21n for Bi-5517 and Pmnn for La-5517. Other energies
are referred to these ground-states. Experimental lattice parameters
for La-5517 are also reported for comparison.

La-5517 Bi-5517
Phase E a b c E a b c
Immm 0.74 3.885 31.276 5.439 1.55 3.863 31.461 5.435
Pmnn 0 3.912 30.805 5.422 0.21 3.902 30.975 5.418
Pm21n – – – – 0 3.890 31.100 5.461
Expt 3.929 31.466 5.532 – – – –

Table 4.2.: Calculated polarization in µC/cm2 for the Pm21n ground-state of
Bi-5517. The reference CS state is Immm. The conduction-electron
contribution is calculated with both the Berry-phase approach and real-
space integration (in brackets).

Pion Pval Pcond Ptot

55.52 –14.62 –7.52 (–4.0) 33.38

from CS (λ=0) to non-CS (λ=1): The second, entirely independent strategy is to
obtain Pcond as the dipole associated to conduction electrons within 5-layer blocks
in Bi-5517. This procedure would be exact if the conduction charge were confined
within the block (which it largely is, the interblock overlap being small). In Fig.4.2
we compare the planar-averaged conduction charge of Pm21n and of a CS system
with Pm21n cell parameters and Immm atomic positions. The Pm21n displace-
ments produce an evident symmetry breaking, and a dipole appears within each
block; a strong 2D charge confinement is also apparent, in agreement with the
band structure analysis below. Pcond is the conduction contribution to the block
dipole,

4.4. Band structure and confinement

Pm21n Bi-5517, albeit polarized, is a metal, as can be seen in Fig. 4.3(a) from its
atom- and orbital-resolved DOS. The conduction-electron density is low, 2.9×1021
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Figure 4.2.: Conduction charge density of Bi-5517, planar-averaged along the
stacking direction (b is the lattice constant). nPm21n is calculated
in the ground-state non-CS Pm21n structure; nCS is calculated in a
fictitious CS system with Pm21n cell parameters and Immm atomic
positions. The density is interpolated on a very dense grid to reduce
real-space integration errors.

cm−3. The Fermi energy (EF) crosses the Ti 3d t2g band manifold approximately
0.4 eV above the conduction band bottom (CBB). The near-CBB DOS shows
that 40% of the conduction charge is confined within the central Ti layer, 25%
in the two layers on either side, and only 5% reaches the block-edge Ti layer.
The t2g CBB is split (see Fig. 4.3B) into dyz (rising in energy due to reduced
hopping along the stacking and its lobes being orthogonal to the stacking plane)
and dxy/dxz states (the hopping along x being unchanged by the stacking). In
turn, dxy and dxz are also split; only dxy has significant DOS below EF in one of
the 5-layer blocks, and only dxz in the other, clearly signaling orbital ordering in
the Pm21n phase. Fig. 4.3(c) highlights the anisotropy of the conduction bands of
Pm21n Bi-5517. The two occupied bands per block are doubled, there being two
blocks in the supercell; yet, the splitting due to inter-block coupling is negligible,
confirming good confinement within each block. The inset of Fig. 4.3(c) shows
that the bands in Γ-Y are completely flat, with no band crossing EF; hence, along
this path in the Brillouin zone the system is gapped. Figs. 4.4(a) and (b) show the
Fermi surface. The lowest-energy S1 consists of two disconnected parallel sheets,
while the higher S2 band contributes an elliptic tube. Along Γ-Y (the b or stacking
direction), the FS is very flat and resistivity should be high; along Γ-X (the a in-

63



Chapter 4. Prediction of a native ferroelectric metal

Figure 4.3.: (a): orbital- and atom-resolved DOS of Pm21n Bi-5517. The five
panels correspond to the five Ti layers in one block. Oa is in the
TiO (011) planes, Ob in the intermediate planes (apical to Ti). (b):
schematic energy splitting of the t2g orbitals. Cartesian x, y, z refer to
the elemental perovskite cubic cell, 45◦-rotated in the (y,z) plane with
respect to the (b, c) supercell axes. (c): conduction band structure;
inset: zoom along Γ-Y. S1 and S2 label the two occupied conduction
bands. ∆E is the gap along Γ-Y for kx=0.

plane direction) the light-mass S2 contributes to mobility, while S1 is disconnected.
Finally, along Γ-Z (the c direction) both sections contribute, but are expected to
yield low conductivity as they have much larger mass than along Γ-X. Indeed,
the resistivity (Fig. 4.4(c)) is largest along b (stacking direction), a half order of
magnitude lower along c, and another nearly two orders of magnitude lower along
the a axis (i.e. along octahedral apical bonds), so the conductivity is largely,
though not strictly, one-dimensional. The ordering of the conductivities is quite
consistent with experiments [207] for Pmnn La-5517. Interestingly, as Fig.4.4(d)
shows, a weak insulating upturn similar to La-5517 is reproduced inserting "defect-
like" small activation energies in the conductivity model.
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4.5. DEPOLARIZING FIELD

Figure 4.4.: Top (a) and 3D (b) views of the Fermi surface of Pm21n Bi-5517. S1

and S2 are the occupied conduction bands of Fig. 4.3(c). (c): calcu-
lated resistivity along the 3 supercell axes.

4.5. Depolarizing field

We now undertake the assessment of the depolarizing field in a finite Bi-5517 sam-
ple. This is far from trivial for several reasons. Even in insulating ferroelectrics,
in a slab in vacuum in periodic boundary conditions, the depolarizing field itself
may be sufficient to kill ferroelectricity. We verified that this occurs for PbTiO3,
using a slab containing 4 Ti (total volume about 450 Å3 including vacuum). If all
the bulk polarization charge is 0.8 C/m2 amassed at the surface of the slab (i.e.
for no screening from the material), it would generate a field of 90 GV/m, i.e. a
field energy of over 100 eV per simulation cell. We first keep the ions clamped in
the ferroelectrically-distorted configuration, and evaluate the pure electronic re-
sponse; the field is reduced to 5 GV/m, implying an effective electronic dielectric
constant of order 18, and the field energy goes down to 0.3 eV. As the ferroelectric
well depth of PbTiO3 is about 0.08-0.1 eV, one expects that his excess energy
may be sufficient to kill ferroelectricity. Indeed, relaxing the ions, we recover the
paraelectric geometry. We estimate (see also below) that this will not apply to
our Bi-5517 material. The bare field expected from ∆P is 37 GV/m with a field
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Figure 4.5.: Planar and macrocopic average of the local potential for a Bi-5517 slab
in vacuum. A 3D view of the conduction charge is also shown. The
large depolarizing field is a signature of ferroelectrics, indicating that
the surface polarization charge largely survives the metallic screening
due to the conduction charge rushing to the right side to screen the
positive polarization charge.

energy in the slab of 51 eV. However, the screened field (in a specific instance
to be discussed shortly) goes down to 0.6 GV/m, with a field energy of 0.02 eV.
From the energy differences discussed earlier, the energy to destabilize the cell to a
paraelectric state is 0.21 eV. So we are still comfortably on the ferroelectric-stable
side. The next issue is the slab termination. A side product of the PbTiO3 cal-
culation above is that we verified that both the symmetrically-terminated (BaO
surfaces on both sides) and asymmetrically-terminated (BaO and TiO2 termina-
tion respectively) slabs have essentially the same depolarizing field. This need
not, however, necessarily apply to our system, given the presence of free charge.
Starting with symmetric surface-terminated slabs, we observe that a symmetric
slab obtained from the bulk just adding vacuum above and below the primitive
cell has essentialy zero residual field in the vacuum (which would imply, due to
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periodic boundary conditions, that the slab has a macroscopic dipole); also, re-
laxations seem to largely remove the central Bi displacements. This is a token of
conduction charge screening: it turns out that conduction charge is bound into
surface states at the upper and lower surfaces. Adopting a different, somewhat
unrealistic, asymmetric termination with a TiO2 layer on one side and a BiO on
the other, leads to a large field. The planar and macroscopic averages of the local
potential along the b axis of a supercell containing a `slab=31 Å Bi-5517 slab and
`vac=20 Å of vacuum, with polarization pointing from left to right are shown in
Fig.4.5. Due to periodic boundary conditions, there is a finite field Eslab in the
interior of the slab, and a field Evac in vacuum. The effective field in the material,
obtained either from the region of linear potential or from Eslab/`bulk=Evac`vac, is
around 18 MV/cm. Unfortunately, the observed screened field results from con-
duction charge moving to surface states on the Ti-terminated surface, rather than
from screened polarization. Such charge at the surface naturally produces a field
in the slab and vacuum. Besides the behavior of the symmetrically-terminated
surface slab, a very strong support for the surface origin of the field in the case
discussed is provided by a calculation in yet another surface termination, whereby
we find a field opposite to that expected from polarization.

4.6. BTO/BZO superlattice

In view of the above negative results for the surface-terminated slab, we turn to
a different simulational device. To prevent termination effects from adulterat-
ing the effects intrinsic to BTO, we use a superlattice of alternating BTO (one
primitive cell, `BTO='31 Å) and Bi2Zr2O7 (BZO, one primitive cell, `BZO'27 Å).
Although we find it to be ferroelectric with P||c when relaxed in Cmc21 symmetry,
BZO is kept here in the paraelectric Cmcm structure. In this setting, BZO is an
unpolarized cladding layer providing seamless stoichiometric continuity on the A
cation site. This setting virtually eliminates the possibility of extrinsic surface-
or interface-state related fields. BZO also provides effective confinement of the
conduction electrons within BTO: examining the locally-projected DOS, we find
that the BTO/BZO conduction band offset is about 2 eV. Unfortunately, despite
a variety of attempts (including e.g. the application of external electric fields to
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nudge the system into a polarized state) we find that no residual field survives
in pure BTO. A posteriori, this is unsurprising. Let us imagine that conduction
charge (and compensating ions) is removed. The bare polarization field is then
45 GV/m (from only ionic and valence contributions). Ions and valence electrons
will screen this field with their dielectric response; assumin a dielectric constant of
50, the screened field is 0.9 GV/m. Now let us reinstate the conduction electrons
in the cell; even in the bulk, they counter the spontaneous P (see Table 4.2) with
a contribution of around –7 µC/m2; this alone gives a counter-field of 0.9 GV/m.
Indeed the conduction charge hardly needs to rearrange at all to screen out the
residual field in the superlattice. The difference of conduction densities in the bulk
and superlattice integrates to nearly zero, and has practically no dipole.

4.7. Doping: residual field and switching

We thus went on to ascertain whether a field would survive a smaller but still fully
metallic conduction density. To this end, we resort to Ca (i.e. hole) doping on
the Bi site. We study CaBi9Ti10O34 (CBTO below), i.e. BTO with one Ca per
primitive cell, in the same supercell setting with BZO as before. The conduction
density is now 1 electron/primitive cell or 1.5×1021 cm−3, so the Fermi level is well
into the conduction band. It turns out that this density reduction is sufficient to
preserve a finite, and in fact fully developed, depolarizing field in the superlattice.
The single conduction electron per cell is now mostly located in the block on the
right of the cell, i.e. at the positive end of the bare P vector, and is unable to
screen out P out entirely. This can be seen in Fig.4.6, which displays the conduction
charge superimposed on the macroscopic average of the potential (including the
interface offset; see SM). As Fig.4.5 shows, the final field in CBTO is a quite
respectable Edep=0.6 GV/m after self-consistency and ionic relaxation. Assuming
the same bare field as in BTO, from simple electrostatics (e.g. [219], Eq.3) one
can estimate the total effective dielectric constant of CBTO at about 65; this
matches reasonably the typical static dielectric constants of about 50 in La2Ti2O7,
the closest insulating materials for which data are available. Also, it suggests a
modest counteraction of the conduction electrons as in the undoped BTO case.
As already mentioned earlier on this amounts to a 20 meV field energy, which
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Figure 4.6.: Filter-averaged local potential and conduction charge of the
CBTO/BZO superlattice. The large field is a ferroelectricity
signature.

cannot affect ferroelectric polarization. The corresponding potential drop across
the BTO cell portion is now smaller than the GGA gap, i.e. there is no overlap
of the Fermi level on the valence band, and hence no attendant charge transfer.
Therefore, all the field we observe in Fig.4.6 is a product of screened spontaneous
polarization. As long as CBTO is sandwiched between cladding dielectric layers as
in the present setting, the switching of the depolarizing field is straightforward and
uneventful. Thus, CBTO satisfies all the requirements of a proper ferroelectric, and
as shown earlier, those of a metal as well. This qualifies CBTO as a genuine native
ferroelectric metal. If CBTO were to have direct metal contacts, a current flow is
expected (zero-voltage screening at electrode interfaces is known to be insignificant;
see e.g. Ref. [103]). As the voltage to be applied cannot exceed Egap, the current
density will never exceed that due to the present field, i.e. j=Edep/ρ. The energy
provided by the external voltage source acts to switch the polarization as well
as to make current flow. The two processes have an associated energy density,
respectively, equal to E dP/dt and Ej. The polarization current can be estimated
assuming that P switching occurs in 10 psec (relatively quickly). Then, the ratio
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of the polarization to the current term of the energy density is about 10−2. It is
thus probably likely that conditions leading to current flow will produce enough
energy to reverse P as well, were it only as a fluctuation.

4.8. Conclusions

In conclusion, we have designed a novel Bi-based layered-perovskite titanate where
native metallicity, specifically in the form of a conductive low-dimensional electron
gas, coexists with native ferroelectric polarization. The polarization develops in
the Pm21n ground state due to a Bi off-center displacement. A switchable depo-
larizing field exists in a finite Bi-5517 slab upon a moderate amount of Ca doping.
Besides its high conceptual significance, our finding opens interesting perspectives
for the innovative active elements where charge confinement, current flow, and
ferroelectric polarization are integrated in the same material.
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5.1. Pseudo-self-interacion correction approach

5.1.1. Self-interaction problem

The Density Functional Theory (DFT) in the Kohn-Sham (KS) formulation, along
with the local spin density (LSDA) (or generalized gradient) approximation, de-
scribe quasiparticle, namely interacting particle renormalized to independent par-
ticle in an effective potential. We have to keep in mind two main concept of this
description: first, it includes correlation between particles due to Coulomb repul-
sion, actually it is overestimated; second, its “band” feature does not limit the
particles interactions description; third, all states are defined as Bloch states with
a certain grade of “localization” depending on their norm confinement. Based on
these considerations, KS-LSDA scheme should manage to describe strongly cor-
related systems requiring a simultaneous treatment of delocalized and localized
states and their mutual interactions. However, standard KS-LSDA does often fail
in situations involving strong localization and predominant on-site interactions.
In the following, we will summarize the thesis of the paper [56], which is the

basement of the “pseudo-self-interaction correction” method. Briefly, they identify
the incomplete cancellation of Hartree (classical electrostatic) and exchange ener-
gies in the LSDA energy functional as the first major difficulty of KS-LSDA. This
lead to an undesired nonphysical contribution, the self-interaction (SI), which may
be minor, and effectively insignificant, for delocalized states, but it is important for
highly localized states, leading to serious errors and sometimes qualitative failures.
The pseudo-self-interaction-correction (pSIC) method is a KS-LSDA approach

in which the LSDA approximation is supplemented by a potential which removes
the SI for all states with nonzero orbital occupation. The pSIC method is thus
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configured as a practical extension of LSDA, aimed at including strongly correlated
materials in the treatment, but without loosing the precious simplicity of LSDA
which largely derives from its local density-dependent form of electron (i.e. Hartree
plus exchange-correlation) energy Ehxc[n(r)], and single-particle effective potential
Vhxc[n(r)]. Since the pSIC is not a radical departure from LSDA, it still offers its
invaluable ability to calculate a vast array of properties for large systems (several
hundreds atoms), limiting the computational cost at minimum. This is likely
the most valuable feature of pSIC, making it different from the majority of other
approaches that treat strong electron correlation from a first-principles perspective.

However, starting from LSDA and its local dependence on the one-particle elec-
tron density bears a serious downturn, namely the necessary inclusion of the in-
teraction of a particle with its self-generated potential that it is labelled as SI.
Employing the Janak formulation [58] to express quantitatively the SI, starting
from the expression for the local screening potential:

Vhxc(r) =
N−1∑
i=1

ˆ
dr′
|ψi(r′)|2

|r− r′|
+ Vxc [n(r)]− Vxc [nN(r)]

+ fN

ˆ
dr′
|ψN(r′)|2

|r− r′|
+ Vxc [nN(r)] , (5.1)

where the third and fourth term on the right hand accounts for Hartree and
exchange-correlation SI contributions of the Nth particle, and nN(r) = fN |ψN(r)|2

is the charge density and fN the orbital occupation of the same particle. The
Hartree SI is dominant, and has a linear dependence on fN , while in LSDA
Vxc[nN(r)] ∼ n

1/3
N .

It is worth to point out that this is definitely not the only, but surely the
most immediately recognizable shortcoming of the LSDA potential, and its most
apparent point of departure from the exact, unknown Kohn-Sham potential.

As we said, because of locality of potential, local exchange is significantly smaller
than the diagonal part of the Hartree potential, and this results in a substantial SI
contribution being left uncancelled, and LSDA eigenvalues depart from the mea-
sured electronic removal energies. This departure is strongly limited eliminating
the SI following the recipe of Perdew and Zunger [59] (PZ) that for free atoms
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recovers a very good agreement between eigenvalues and photoemission data. The
so called PZ-SIC procedure simply subtracts the SI energy from the total LSDA
energy functional ELSDAas follows:

ESIC [n] = ELSDA −
∑
i

(
Eh[ni] + ELSDA

xc [ni]
)
, (5.2)

where i represent all atomic quantum numbers, and the (spin-polarization de-
pendent) exchange-correlation energy is referred to the fully polarized state. From
this functional, applying the usual Kohn-Sham minimization procedure, an ‘al-
most’ SI-free single-particle equation for particle i results

V SIC [n, ni] = V LSDA[n]− Vh[ni]− V LSDA
xc [ni]. (5.3)

Here we point out an important detail: the explicit dependence of V SIC on the
charge density of state i. The SIC potential is thus orbital-dependent. This char-
acteristics does not imply any serious consequence for free atoms, but it becomes
crucial for extended states, making difficult the removal of SI in those systems.
Indeed, the majority of interesting (especially strongly correlated) materials are
are characterized by a mixture of localized and hybridized valence charge, so that
the presence and the relevance of SI cannot be a priori ruled out and should be
evaluated case-by-case. As we said, the SI effect strongly depends on electron lo-
calization: in the strong localization limit, the Hartree term is dominant over local
exchange, whereas in weak localization limit the first term is almost balanced by
the second, reducing the SI error. Moreover, orbital character is another impor-
tant discriminant between low-SI and high-SI states. Typically, highly-localized
d and f, and to a lesser extent, radially nodeless 2p electrons are high-SI, rather
independently on the specific surrounding chemical environment. A good example
of the SI dependence from the occupation of states is that of wide-gap semicon-
ductor such as ZnO and GaN. These systems have a fully occupied d states that
in LSDA calculations stay 3 eV higher in energy then the corresponding excitation
energies. The agreement is recovered in within LSDA itself reducing the occupa-
tion of those states to one-half. This empirical criterion known as Slater’s rule,
can in fact explained by the presence of SI.
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This concept of SI depending on occupation remains valid in extended systems,
but a radical change occurs, if we move to a Bloch view where electron charge
spreads throughout the system and cannot be uniquely assigned to a specific ionic
center. Finding a viable and quantitative interpretation of charge localization
in extended systems is thus a strict condition to the introduction a practically
quantifiable and physically sound notion of SI.

Wide literature about the diverse and practically valuable strategies imple-
mented exist: the PZ-SIC (sometime referred to as LSDA-SIC in literature) di-
rectly subtract from the energy functional the LSDA SI of the single-particle
state, as illustrated by equations (5.2,5.3). This formulation has been practi-
cally implemented in the LMTO (linear-muffin-tin orbital) basis, as well as in the
ASA (atomic sphere approximation) . A formally alternative is, though substan-
tially equivalent, the PZ-SIC approach exploiting the properties of the Wannier
functions. For details about these different approaches, see references inside [56].
Briefly, in PZ-SIC the necessary requirement to define a non-vanishing SI is assum-
ing fully localized, thus non-Bloch like, solutions for the SIC Hamiltonian. Though
this is perfectly legitimate in principle, however, abandoning Bloch’s theorem and
translational symmetry in favor of localized states may give rise to very serious
complicancies at both the methodological and interpretative level. Moreover, apart
from differences due to specific implementations, in general the PZ-SIC seem to
have an strong tendency to charge localization, which causes a large overcorrection
of single-particle energies with respect to their LSDA energies.

In 1996 Vogel, Kruger, and Pollmann [60] (VKP) introduced a radically simpli-
fied procedure to parametrize the SI in terms of atomic counterparts and extract
it from the band energy of wide-gap insulators. In this strategy the Bloch-state
view is fully conserved, and it is assumed that some degree of localization, and
then an ‘effective’ SI, is present in the Bloch states, and must be removed. The
procedure is based on pseudopotential (PP) formalism modified to include the an-
gular moment-dependent atomic SI within each PP projector and make it SI-free
by construction:

V pSIC
l (r) = V PS

l (r)− VH [nl(r)]− V LSD
xc [nl(r)],
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where V PS
l is the usual ion-core PP (minus a long-range local part which is cus-

tomarily subtracted and treated separately), and the second and third terms are
the SI atomic part for angular moment l (assuming radial symmetry, so that only
l-dependence survives), and nl = |φl|2 the corresponding atomic charge. The
PP projector acting on Bloch states is then written in the usual fully-separable
Kleinman-Bylander (KB) form

V̂ pSIC =
∑
l

∣∣∣V pSIC
l φl

〉〈
φlV

pSIC
l

∣∣∣〈
φl

∣∣∣V pSIC
l

∣∣∣φl〉 . (5.4)

This procedure had satisfying results for a series of wide-gap insulators and
especially for the fairly ionic II-VI compounds. The success of this approach is
comprehensible observing the case of bulk ZnO. There, each group of valence
bands have a rather well defined atomic-angular character, and each of them (Zn
3s, 3p, 3d, and O 2s, 2p) is corrected by its own atomic SI, according to equation
(5.4). While this turns out to be a good assumption for II-VI wide-gap insulators,
in general it is not. This is because the bands that have predominant angular
character suffer from a reduced SI than the corresponding orbitals in the free atom,
mainly for three reasons: first, charge spreading, especially dominant in covalent
or metallic bonding, largely dilutes the effects of SI. Second, hybridization among
different atomic states is more likely than bands characterized by a sharp orbital
character. Third, in the pSIC scheme in equation (5.4) highly localized (e.g. Zn
3d, O 2s), moderately localized (O 2p) and weakly localized (Zn 3s, 3p) bands are
all corrected by the full atomic SI, even if they are not occupied. This is the key
aspect of VKP scheme success, but it is also a questionable aspect, since the SI
should vanish for empty states. Based on these considerations, the applicability
of the VKP pSIC approach is limited to a very restricted number of cases and a
suitable generalization of the formalism is needed, in order to overcome a good
portion of these shortcomings, and defining an efficient and generally applicable
band theory approach for strongly correlated materials.
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5.1.2. The essence of pSIC

In the following, we will see the basic concepts of the pseudo-SIC method as devel-
oped by Filippetti and Spaldin [57], starting from the idea of the VKP approach
seen before. Basically they formulate an approach that extends the applicability of
pSIC to a large variety of cases. The key concepts at the basis of this generalization
could be summarized as:

• an atomic SI projector is a generally valid form even outside the PP formalism
and can be built and exploited in a single-particle scheme, but

• the SI projector cannot be purely atomic. It must depend on the specific
chemical environment to simulate the charge distribution of the real system
in effective way;

• the latter dependence should conserve the virtues of LSDA: state-independence,
locality of the effective single-particle potential, and invariance under unitary
transformation of the eigenstates;

• as in the ordinary PP formalism, the SIC projector must be transferable,
unique and fixed once for all for any given atomic species.

Based on these principles, they proposed a pSIC projector similar to Kleinman-
Bylander (KB) form [61],

V̂ σ
SIC =

∑
i

|γσi 〉 〈γσi |
Cσ
i

, (5.5)

where
γσi (r) = V σ

HXC [nσi (r)]φi(r)

is the usual KB projection function, but now V σ
HXC is in place of the usual PP

potential, and

Cσ
i = 〈φi|V σ

HXC [nσi ] |φi〉

the normalization factor of the KB PP. The Kohn-Sham pSIC equations then
become [

−∇2 + V̂PP + V̂ σ
HXC − V̂ σ

SIC

]
|ψσnk〉 = εσnk |ψσnk〉 ,
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where VPP is the ordinary PP projector, replaced, where possible, by the nuclear
potential in an all-electron scheme, and εσnk and ψσnk the Kohn-Sham eigenvalues
and eigenfunctions.

In the VKP approach, V σ
HXC [nσi ] is simply the i-state atomic potential at full

occupation. Filippetti and Spaldin proposed a simple but effective way to intro-
duce in V σ

HXC [nσi ] the dependence on the true chemical environment, i.e. writing
nσi (r) = pσi |φi(r)|

2 : φi is still the atomic orbital, but its weight into the density
is determined by an effective occupation number pi (analogous to the Janak frac-
tional occupation number in free atoms fi, Eq. (5.1) of previous section). In the
extended system case, it is possible to calculate it in self-consistent way as atomic
orbital projection onto the manifold of the occupied Bloch states:

pσi =
∑
nk

fσnk 〈ψσnk |φi〉 〈φi |ψσnk〉 , (5.6)

where the fσnk are Fermi occupation numbers. This expression has two important
advantages. First, the treatment to insulators and metals alike is easily generalized.
Second, it introduces an intuitive, automatic scaling of the amount of SI attributed
to each Bloch state according to its atomic character. Indeed, it has two limits: in
the lower pσi = 0 (unoccupied state), the pSIC correction vanishes and the Kohn-
Sham equations reduce to that of the ordinary LSDA; in the upper pσi = 1, the
pSIC correction is fully atomic-like. In other words, the pσi have the important
role of charge localization parameters for the Bloch states, in the sense we have
seen before. Notice that since they do not depend on each individual Bloch state
(n,k) they represent an average localization measure, avoiding the downturns of
the PZ-SIC.

However, the introduction of pσi bears a problem: it requires the recalculation
of V σ

HXC [nσi ] at each self-consistency iteration for each atom and angular compo-
nent, resulting in an increased computational cost with respect to the plain LSDA
scheme, especially for large-size systems. To avoid this problem, the potential
V σ
HXC [nσi ] has been expressed as a parametric function of the orbital occupations,

that in linear approximation becomes

V σ
HXC [nσi ] = α pσi V

σ
HXC

[
|φi|2

]
,
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where α is a relaxation coefficient always set equal to 1/2 (for more insightful
discussion on the role of this coefficient we refer to [56]). In this way V σ

HXC

[
|φi|2

]
=

V σ
HXC [nσi ; pσi = 1], namely the atomic SI potential for the fully occupied orbital is

set in the initialization procedure, while only pσi is recalculated during the self-
consistency cycle.

The atomic SIC potential is further approximated in reference [57] by its radial
counterpart, introducing atomic quantum numbers l,ml and the atomic label ν,
and become:

VHXC
[
nσν,l,ml(r)

]
= α pσν,l,ml VHXC [nν,l(r); 1] , (5.7)

where nν,l(r) is the radial pseudo-charge density of orbital (l,ml ). Substituting
this expression in equation (5.5), the pSIC projector can be rewritten, in covariant
form, as

V σ
SIC =

∑
ν,l,ml,m

′
l

|γν,l,ml〉α pσν,l,ml,m′l
〈
γν,l,m′l

∣∣
Cν,l,ml,m′l

, (5.8)

with the projectors

γν,l,ml(r) = VHXC [nν,l(r); 1]φν,l,ml(r).

The normalization coefficients

Cν,l,ml,m′l =

ˆ
drφν,l,ml(r)VHXC [nν,l(r); 1]φν,l,m′l(r), (5.9)

are purely atomic and can be set as in the ordinary KB PP formalism, while all
the dependence on the specific environment is contained in the orbital occupation
numbers. The equation 5.8 contains in essence all the key ingredients of the pSIC
approach.

The following section is dedicated to the generalization to the Vanderbilt ultra-
soft PP scheme (USPP) [212] whereby this method is actually implemented. Before
concluding this section, we comment the Figure 5.1, in which the effect of pSIC
is exemplified in four different case with different weight of correlation: Al as a
simple metal, Si as a covalent semiconductor, ZnO as a ionic insulator, and CuO
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Figure 5.1.: Schematic picture from [56] that shows the effect of self-interaction
removal in different types of materials: from the top, a metal (Al), a
wide-gap (ZnO) and a narrow gap (bulk Si) semiconductor, a corre-
lated insulator (CuO).
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as a Mott insulator.
In the case of Al, since its half-filled band around EF is constitute of Bloch states

having the same orbital character, V̂ σ
SIC shifts down with the same energy all these

states, and we do not observe any effects and thus any differences with standard
LDSA band structure. For Si, valence and conduction bands, while obviously
separated by the energy gap, have a substantially similar orbital character, namely
a sp3 hybridized states, on average over all k-points. For occupied valence states
the SIC is small, basically because they are rather delocalized. Thus the pSIC
and LSDA band structures are much similar, and the gap error is only partially
corrected: the indirect gap changes from 0.4 eV in LSDA to 0.7 eV in pSIC, still
much smaller than the experimental 1.17 eV. This might seem disappointing, but
actually for gap assessing of covalent semiconductors, the problem stem from the
DFT method itself.
Now we consider more interesting ZnO case. The key point is that in this proto-

typical wide-gap insulator the valence and conduction manifolds have significantly
different orbital character [63]. Hence, the fully occupied valence O 2s, 2p and Zn
3d bands are downshifted by an amount close to their atomic SIC counterparts,
while conduction Zn 3s, 3p bands remain nearly unchanged. As a result, the pSIC
description shows a largely increased energy gap and appreciably downshifted Zn
3d bands. Finally, CuO illustrates how the pSIC approach works for Mott insula-
tors: in LSDA no energy gap opens and the system is (erroneously) metallic and
non magnetic, with EF cutting near the top of the hybridized O 2p-Cu 3d band
manifold. Within pSIC, the filled O 2p and Cu 3d bands are downshifted in energy,
except for one band per Cu corresponding to the only unoccupied state (orbital
character dz2 in the picture) which remains unchanged, so that a fundamental gap
opens up, and the correct insulating spin-polarized ground state is restored.
We refer the reader to the paper [56] for a review of recent applications demon-

strating the usefulness and accuracy of the pSIC method.

5.1.3. pSIC-USPP formulation

In this section, I reproduce the pSIC-USPP formulation as presented in [56].
The PP approach is a methodological milestone in the application of first-
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principles calculations to realistic, large-size systems. While originally confined
to the study of covalent semiconductors and metals using plane-waves basis set,
nowadays the PP technique is considered reliable and efficient for any material,
and implemented in most codes. This is helpful for the implementation of pSIC,
whose basic ingredients closely mirror those of the ordinary PP techniques. Some
complication in the pSIC formalism is introduced, however, in the case of USPP,
which release the norm-conservation condition on the pseudo wavefunctions by
freezing-in part of the valence charge close to the ion-core. In this way, the pseudo
wavefunctions and the respective PP can be very smooth (i.e. ‘ultrasoft’), and
expressed in plane-waves basis with a formidable saving of computing cost. The
USPP is a key ingredient of plane-waves basis set implementations, especially
for systems with localized charge, and allows the simulation of large-size systems
needed e.g. to treat doping in a realistic manner with atomic substitutions in
supercell. Thus, we consider the pSIC generalization to USPP an integral part of
an efficient and practically viable plane-waves basis implementation. In the USPP
approach the electron charge density is

nσ(r) =
∑
nk,σ

fσnk |ψσnk(r)|2 +
∑
nk,σ

fσnk
∑
αα′

〈ψσnk |βα 〉Qαα′(r)〈 βα′|ψσnk〉 ,

where α = [n, l,m,R] and α = [n′, l′,m′, R] are orbital quantum numbers and
atomic positions R, and βα the USPP projector functions. The first term within
square brackets is the ultrasoft charge, the second term the ‘augmented’ charge,
i.e. the portion of pseudo valence charge density localized within the atomic core
radii, where

Qαα′(r) = φAEα (r)φAEα′ (r)− φPSα (r)φPSα′ (r),

is the ‘frozen’ atomic augmented charge, obtained as difference between all electron
(φAEα ) and pseudo (φPSα ) atomic charges.

The KS equations are generalized as[
−∇2 + VLOC(r) +

∑
αα′

|βα 〉Dσ
αα′〈 βα′ |+ V σ

HXC(r)

]
ψσnk(r) = εσnkŜψ

σ
nk(r),

where VLOC(r) is the long-range local part of the pseudopotential, Dσ
αα′ the non-
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local part and S the overlap matrix which generalizes the orthonormality condition

Ŝ = 1 +
∑
αα′

|βα 〉qαα′〈 βα′ | ,

where qαα′ are the integrals of the augmented chargesQαα′(r), and
〈
ψσnk

∣∣∣Ŝ∣∣∣ψσn′k′〉 =

δn,n′δk,k′ . Finally, the non-local pseudopotential projector is made up of two con-
tributions

Dσ
αα′ = D̃αα′ +

ˆ
dr (VLOC(r) + V σ

HXC(r))Qαα′(r). (5.10)

The first term on the right-hand side of equation 5.10 is the usual Kleinman-
Bylander projector, and contributes to the ‘bare’ pseudopotential (i.e. it is cal-
culated within the atomic reference configuration). The second term is specific
to the USPP formalism, and represents the action which the local and screening
potentials exert on the augmented charges. Since this term depends on V σ

HXC , it
has to be updated during the self-consistency cycle. With USPP, two elements
of the pSIC formalism must be appropriately generalized. First, the occupation
numbers pσi introduced in equation 5.6 becomes

pσν,l,ml,m′l =
∑
nk

fσnk

〈
ψσnk

∣∣∣Ŝφν,l,ml 〉〈φν,l,m′lŜ∗∣∣∣ψσnk〉 ,
where the overlap matrix S now ensures the correct normalization. Since the non-
local part of the USPP depends on the screening potential itself (see Eq. 5.10) it
must also be descreened by its SI

V̂ σ
AUG−SI =

∑
ν,l,ml

∑
αα′

|βα〉
(
α pσν,l,ml,ml

ˆ
drV α

HXC [nν,l(r); 1]Qαα′(r)

)
〈βα′ | .

This expression, reported in reference [57], is the exact SI (in the sense of the PZ
procedure) of the augmented USPP potential, but has the disadvantage of being
slightly non-covariant. Actually, an alternative, approximated but covariant form
is used [56]. Thus, the KS equations for the pSIC-USPP approach are:[

−∇2 + V̂LOC(r) +
∑
αα′

|βα 〉Dσ
αα′〈 βα′ |+ V̂ σ

HXC(r)
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−
(
V̂ σ
SI + V̂ σ

AUG−SI

)]
|ψσnk〉 = εσnkŜ |ψσnk〉 ,

where V̂ σ
SIC is given by equations (5.5,5.7,5.9).

5.2. Dielectric function

The intent of this section is to remind the relation between the microscopic and
macroscopic description of the interaction between a material and the electro-
magnetic field [64]. While in a macroscopic picture we exploit Maxwell’s equations
to define macroscopic quantities like absorption, light scattering, reflectivity, that
are measurable by spectroscopy experiments, in the microscopic one, we use ideas
such as the excitation of an electron as a consequence of the absorption of a photon,
or the creation of an electron-hole pair, etc.

Therefore we need a relation ables to link these two distant pictures, namely
band structure of a solid, and in particular electronic excited states, with optical
properties of solids involved in the experiments. The frequency-dependent dielec-
tric function ε(ω) plays exactly this central role.

5.2.1. From Maxwell equations to dielectric function

We start from the famous Maxwell’s equation in presence of matter:

∇×H =
1

c

∂D

∂t
+

4π

c
jext. (5.11)

Complex dielectric function stem from the specification of the constitutive equa-
tion D = D[E,H]. Indeed, in case of negligible non-linear effect, it is possible to
define a linear relation for it that also defines the complex dielectric tensor ε

D(r, t) =

ˆ
dr′
ˆ
dt′ε(r, r′, t− t′)E(r′, t′).

For our purpose we forget the tensor nature of ε and write it as a function of
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frequency, having the relation

D(ω) = ε(ω)E(ω). (5.12)

We remind the important relation ε(−ω) = ε∗(ω), that steam from that D(r, t)

is real.
Next, we consider the relation that connect the electric field E with its derived

field D via polarization P :
D = E + 4πP, (5.13)

and the linear relation between P and the macroscopic electric field E via electric
susceptibility:

P = χeE, (5.14)

and joining them, we have
ε = 1 + 4πχe. (5.15)

Now from Eq. (5.11) and Eq. (5.12), and considering that external sources are
zero, jext = 0, we have

∇×H(ω) = −iωε(ω)

c
E(ω) = −iω

c
E(ω)− iω4π

c
P (ω)

where we have used Eq.s (5.14) and (5.15).
Finally, from the Ohm’s law (Eq. (5.12)), we obtain

ε = 1 +
4ωiσ

ω
,

which shows the link between the dielectric function ε and the conductivity σ of a
material.
Without external sources, Maxwell’s equation of electric field yields

∇2E =
µε

c2

∂E

∂t2
.

The general solution of this equation is

E = E0e
i(K·r−ωt), (5.16)
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where |K|2 = ω2

c2
µε. Supposing a propagation along x direction, so K = ω

c

√
µεx,

we have
E(x, t) = E0e

iω
c
x
√
µεe−iωt.

Considering a propagation in vacuum, imposing σ = 0, µ = ε = 1, we have the
plane wave solution

E(x, t) = E0e
iω(x

c
−t).

The solution (5.16) inside a medium of finite conductivity is the damped wave

E(x, t) = E0e
iω
c
xN e−iωt, (5.17)

where we have introduced the complex refractive index N = ε = ν + iκ .

The refraction index and the extinction coefficient are the real and the imaginary
part of N , respectively. They are related to the real ε1 and the imaginary part ε2

of ε, through ε1 = ν2−κ2, ε2 = 2νκ relations, where ν and κ are not independent,
since ε1 and ε2 are related by the Kramers Kronig relations [68]. Thus, Eq. (5.17)
becomes

E(x, t) = E0e
iω
c
xνei

ω
c
xκe−iωt.

From it, we can define the optical skin depth δ as the distance where the ampli-
tude of the field is reduced by 1/e,

δ =
c

ωκ
,

and the absorption coefficient α as the inverse distance where the intensity of the
field (proportional to |E(x)|2) is reduced by 1/e:

α =
2ωκ

c
=
ωε2

νc
, (5.18)

that gives a linear relation between the absorption coefficient and the imaginary
part of the dielectric function. As a reminder, we note that all these quantities are
frequency dependent, in the most general case.
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5.2.2. Microscopic-Macroscopic connection

Considering a N-electrons system exposed to an electro-magnetic perturbation, its
Hamiltonian H0 changes its kinetic term according to

∑
j

1

2
p2
j −→

∑
j

1

2

(
pj −

A(rj, t)

c

)2

,

where A is the vector potential of the electro-magnetic field in the Coulomb gauge
(∇ · A = 0 and scalar potential φ = 0) and pj − A(rj, t)/c can be seen as a
generalized velocity v. If we neglect non-linear effects in 1/c, we can separate
Hamiltonian in two parts as H = H0 +H1 where the second term is the radiation
perturbative field

H1 = −1

c

∑
j

A(rj, t) · pj.

This term can be treated within the well known time-dependent perturbation
theory, in order to find the transition probability (per unit time), which allows for
the absorption of the incoming radiation:

Pi→f = 2π |〈f |A(rj, t) · pi| i〉|2 δ(Ef − Ei − ω),

where the initial and final states |i〉, |j〉 and Ei, Ef are eigenfunctions and eigen-
values of the many-body Hamiltonian H0, respectively. If now, one specifies the
perturbation A

A(r, t) = A0êe
i(q·r−ωt) + c.c.

with ê is the polarization vector and q is the wave vector of the radiation, the
transition probability becomes

Pi→f = 2π

(
A0

c

)2

|ê ·Mif |2δ(Ef − Ei − ω), (5.19)

where Mif = 〈f |eiq·rp| i〉.
The absorption coefficient is defined as the energy absorbed in the unit time in

the unit volume divided by the flux of energy
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α(ω) =
ωW (ω)

u(c/ν)
,

where c/ν is the speed of the light in the matter, the average energy density
u =

ν2A2
0ω

2

2πc2
and the number of transition per unit time per unit volume W (ω) is

given by the sum of (5.19) over all possible transitions. Thus, α(ω) becomes

α =
4π

νωc

2∑
ij

|ê ·Mif |2δ(Ef−Ei−ω).

In the case of solid system, the many-body level i can be substituted by a
double index v, k, band and wave vector indices (in the first Brillouin zone) in
a single particle picture. In addition, the transmitted momentum q can usually
be neglected, since its wavelength in light is very small, around 400 − 700nm−1.
Therefore, considering only vertical transitions, i.e. from an occupied state v, k to
an empty state c, k, and using reciprocal space to better exploit the translational
invariance of an infinite solid, one obtains the imaginary part of the complex
dielectric function, ε2, from the macro absorption coefficient (5.18)

ε2 = 2
4π2

Ω
lim
q→0

1

q2

∑
v,c,k

∣∣〈ck + q
∣∣eiq·r∣∣ vk〉∣∣2 δ(εck+q−εvk−ω). (5.20)

By using the Kramers-Kronig relations, the expression of the real part ε1(ω)

can be obtained. The Eq. (5.20) is particularly important because it represents a
connection between the macroscopic optical constants such as absorption index and
the microscopic structure of the material, namely the band structure of a solid.
We just note that releasing the single particle approximation more complicated
relations are needed to describe dielectric function ε2.

5.2.3. Implementation within pseudo-SIC code

The calculation of dielectric function is part of the most of the DFT codes, such
as VASP [210] and QuantumESPRESSO [69]. We have ported the routine for
computation of ε(ω) from this last code, because of its similarity with our in-house
code PWSIC that implements the pSIC method. Following the epsilon.x man page
(see online repository of [69]), we report some detail of how the dielectric tensor
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is computed.

The imaginary part of the dielectric tensor εα,β2 (ω) can be viewed as a response
function that comes from a perturbation theory with adiabatic turning on:

εα,β(ω) = 1 +
4πe2

ΩNkm2

∑
n,n′

∑
k

M̂α,β

(Ek,n′ − Ek,n)2
...

...

{
f(Ek,n)

Ek,n′ − Ek,n + ~ω + i~Γ
+ ...

...
f(Ek,n)

Ek,n′ − Ek,n − ~ω − i~Γ

}
(5.21)

where Γ is the adiabatic parameter and, for the total energy conservation it must
tend to zero. This is the way in which the Dirac Delta function appears and this
means that every excited state has an infinite lifetime, i.e. is stationary.

εα,β2 (ω) =
4πe2

ΩNkm2

∑
n,n′

∑
k

M̂α,βf(Ek,n)

(Ek,n′ − Ek,n)2
...

...

[
δ(Ek,n′ − Ek,n + ~ω) + δ(Ek,n′ − Ek,n − ~ω)

]
(5.22)

This situation is nonphysical because the interaction with electromagnetic field
(even in the absence of photons, i.e. spontaneous emission) gives an intrinsic
broadening to all exited states, hence the lifetime is finite and Γ must be greater
than zero. In the limit of small but non vanishing Γ the dielectric tensor turns
into the Drude-Lorentz one:

εα,β2 (ω) =
4πe2

ΩNkm2

∑
n,k

df(Ek,n)

dEk,n

ηωM̂α,β

ω4 + η2ω2
+ ...

...+
8πe2

ΩNkm2

∑
n6=n′

∑
k

M̂α,β

Ek,n′ − Ek,n
...

...
Γωf(Ek,n)[

(ωk,n′ − ωk,n)2 − ω2
]2

+ Γ2ω2
(5.23)
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where the input parameters Γ and η are respectively intersmear and intrasmear
parameters, namely the former is the Drude-Lorentz broadening parameter for
the interband contribution, and the second is the broadening parameter for the
intraband, i.e. metal Drude like term, in case of Gaussian broadening applied
during the self-consistent calculations. Finally, by means of the Kramers-Kronig
transformation, the real and complex part of dielectric function are calculated.

Now, we consider the squared matrix elements that is defined as follow:

M̂α,β = 〈uk,n′ |p̂α|uk,n〉〈uk,n|p̂†β|uk,n′〉 (5.24)

∝ u?k,n′(r)
d

dxα
uk,n(r)u?k,n(r)

d

dxβ
uk,n′(r) (5.25)

the double index reveals the tensorial nature of ε2(ω), since it depends on the
probing direction, while |uk,n〉 is one of the components of the single particle Bloch
function obtained by the DFT calculation. Since also PWSIC works on a plane
wave set, the Bloch functions of the matrix element 5.24 are decomposed as follow:

|ψk,n〉 = eiG·ruk,n =
1√
V

∑
G

an,k,Ge
i(k+G)·r (5.26)

and consequently:

M̂α,β =

(∑
G

a?n,k,Gan′,k,GGα

)(∑
G

a?n,k,Gan′,k,GGβ

)
. (5.27)

Defined in this way the matrix element accounts only for interband transitions,
i.e. vertical transition in which the electron momentum k is conserved (optical ap-
proximation). In standard optics the intraband transitions give a neglectable con-
tribution due to the very low momentum transferred by the incoming/outcoming
photon.

In all cases illustrated above the non-local contribution due to the pseudopo-
tential is neglected. In fact the correction to the matrix element that take into
account the non-local part of the Hamiltonian it’s not implemented. Thus in
the following, we summarize this problem as reported by Kageshima and Shiraishi
[70]. The main problem stays in the calculation of the momentum matrix element,
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fundamental for optical properties computation, as in ε(ω), defined as

Pmn = 〈φm |p|φn〉 , (5.28)

within the pseudopotential framework. Generally speaking, φn are wave function
of the nth electronic state, and p is the momentum operator. If wave functions
were all-electron, the calculating of these momentum matrix elements, by their first
derivative, would be calculated correctly. When the wave functions are obtained by
the pseudopotential method, they are smoother around the atomic cores in order to
minimize the number of base functions, compared with the actual wave functions
that have more oscillation nearby the atomic cores. Such core-localized differ-
ences could affect momentum matrix elements calculated from Eq.(5.28) within
the pseudopotential approach.

In their paper [70], Kageshima and Shiraishi introduce a core-repair term to cal-
culate the momentum matrix using both norm-conserving or non-norm-conserving
pseudopotential schemes.

The idea is to calculate the element Pmn between the mth state and the nth
state, adding a atomic-dependent core-repair term. In such way Pmn becomes

Pmn = 〈ψm |p|ψn〉+
∑
i,j,I

〈
ψm|βIi

〉
pIij
〈
βIj |ψn

〉
, (5.29)

where pIij is defined as

pIij =
〈
φIi |p|φIj

〉
−
〈
ψIm |p|ψIn

〉
. (5.30)

The second term of Eq. (5.29) is exactly the core-repair term and pIij is the
core-repair coefficient. In these equations, ψm is the pseudo-wavefunction of the
mth state, φIi is the ith actual wave function of the isolated I th atom, ψIi is the ith
pseudo-wavefunction of the isolated I th atom, and βIi is the projector extracting
the part corresponding to ψIi from pseudo-wavefunctions. As we can note all the
core-repair coefficients can be calculated from Eq. (5.30) for isolated atoms, hence
only once for each element, directly from the pseudopotential calculation. As
authors note, equation (5.29) is very efficient in practical calculations reducing the

91



Chapter 5. Background

time spent in computing the momentum matrix elements using pseudopotentials.
Two key factor are important: the core-repair coefficients are essentially atomic, so
they have to be calculated only once for each element; and in the case of separable-
type pseudopotentials the values for

〈
ψm|βIi

〉
have already been calculated during

the calculation. Furthermore, since the norm-conserving feature has not been
assumed in deriving Eqs. (5.29) and (5.30) the core-repair term is valid for non-
norm-conserving pseudopotentials as well. This allows the use of the Vanderbilt
ultrasoft pseudopotentials to calculate the electronic and structural properties of
materials with first-row or transition-metal elements, which are not easy to be
calculated using general norm-conserving pseudopotentials.
We have begun to implement in our PWSIC code this core-repair contribution

following this scheme and starting from the relative VASP routine that calculate
it [71], even if properly modify since it is written for PAW scheme. However,
our core-repair routine has not been full completed and tested yet. Hence, in the
following we will assume that the dielectric function has been calculated without
this correction. This is not critical for many materials as shown in [70, 71]. Some
trial calculations of dielectric function have been performed to test the correct
working of the implemented routine, for bulk material such as diamond, Si, SiC,
GaAs, GaN, yielding to comparable results with those reported in Refs. [70, 71].
Concluding, I report in Figure 5.2 (top) the imaginary part of dielectric function

of Ga2O3, calculated with PWSIC code together with that reported by He et al
in [161] (bottom). The two spectra are in general agreement, considering also the
different method used (Hybrids in the second one).
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Figure 5.2.: Imaginary part of dielectric function ε(E) of Ga2O3 calculated with
PWSIC code (top) and from Ref. [161] (bottom).
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6. CaCu2Ti4O12

Below, I report a work published in the paper [199], wherein I perform non-collinear
calculation for some spin configuration of the paramagnetic phase and their rela-
tive dielectric functions. Moreover, I dealt with GW assessment of the gap. To
summarize the work, we report the electronic properties of the quadruple per-
ovskite CaCu3Ti4O12 as obtained via several density-functional based methods,
and propose a new interpretation of optical experiments to the effect that four
distinct transitions (with onset around 0.7, 1.5, 2.5, and 3.4 eV) contribute to the
spectrum. The comparison with experiment is satisfactory, especially after we ac-
count for the effects of spin disorder, which does not close the fundamental gap
but suppresses the transition intensity. Our comparison shows that some of the
methods we employ tend to strongly overestimate the gaps for standard values of
the respective adjustable parameters.

6.1. Introduction

The popular line “If it’s been measured, why are you calculating it ?” attributed
to Volker Heine emphasizes the need for electronic structure theory to harness
its predictive and interpretive potential. In this paper, we revisit the low-energy
optical properties of the quadruple perovskite CaCu2Ti4O12 (CCTO henceforth,
risen to popularity a decade ago[123] because of its anomalous dielectric response),
heeding the advice implicit in Heine’s remark in two distinct respects. Firstly, the-
oretical predictions predated reliable experiments, and here we provide a new and
improved interpretation of the latter. Secondly, electronic structure theory often
revisits known results to provide additional insight and to validate its predictive
power in retrospect. In this spirit we apply to CCTO several density-functional-
theory (DFT) state-of-the-art methods, which yield a mixed bag of good and bad

94



6.1. INTRODUCTION

news. Some advanced methods appear to be struggling, while others yield satis-
factory agreement with experiment.

6.1.1. Motivation

Early experimental reports[123] on CCTO circa 2002 had suggested a fundamental
gap in excess of 2.5 eV. Values as low as 0.2 eV obtained in DFT local-density-
approximation (LDA) calculations[124] were, not unreasonably, discounted in view
of the known gap underestimation problem of local and semilocal functionals.
Looking at the LDA bands, however, we realized that the lowest gap might be a
low-energy transition between localized and predominantly Cu-like states, rather
than the natural dipole-allowed transition between O p valence and Ti d conduc-
tion bands, a situation analogous to other Mott-like insulators.[125] Therefore, in
2006 we used[127] self-interaction corrected LDA (PSIC),[57] known by then to re-
produce quite accurately the gaps in many Mott-like cuprates,[56] to find out how
beyond-LDA bands would look like in the Cu-dominated gap region. We found
that the fundamental gap (indirect, forbidden, and between mostly Cu-like states)
was only about 0.6 eV, moderately increased in absolute value over the LDA value.
This surprising result seemed to point to smaller-than-usual correlation effects in
the nearly filled 3d Cu(II) shell; put differently, the on-site interaction, which self-
interaction corrections largely restore to its correct size, appeared to be rather
more screened at Cu sites in CCTO than in other magnetic Cu oxides.[56, 128]
Systematic experiments (see Sec.6.3.3 below) first appeared in 2008, when Kant
et al. inferred[129, 130] from optical conductivity an electronic structure qualita-
tively matching that suggested by LDA[124] and, to a somewhat larger extent, by
PSIC,[127] with weak Cu-dominated transitions starting at about 0.5-0.7 eV. In
2011, a different picture was proposed,[131] to the effect that the “Cu-Cu” transi-
tion would start at about 1.8 eV, based on reflectivity measurements interpreted
via GGA+U (Generalized Gradient Approximation +U). The calculations used a
U–J parameter much smaller than the usual value for Cu oxides (reminding us
of the low-correlation argument), yet it produced a fundamental gap much larger
than previously obtained by PSIC. This suggested that it would be a good idea to
revisit and expand our previous investigation applying further advanced methods
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to CaCu3Ti4O12 to help sort out the matter and provide a robust interpretation.
In this work, we discuss the electronic properties of CCTO based on results from
several different DFT-based methods. We eventually propose an interpretation of
experiments, as well as further experimental tests, based on one of them, the varia-
tional PSIC method[132] (VPSIC henceforth). Our conclusion in summary is that
CCTO has a multifold interband absorption due to its unusual Cu-induced upper-
valence and lower-conduction band structure, and that the fundamental transition
peaks around 0.7-0.8 eV (1500 nm), while the absorption peaking at 1.8 eV (700
nm) is an O p valence band to Cu d conduction band transition, at variance with
the previous interpretation.[131] More intense absorptions between 2.5 to 4 eV are
due to transitions into the higher-lying Ti d conduction band. The fundamental
gap is a Mott-like gap in the sense that the system has an odd electron count,
the gap open between strongly localized and spin-polarized states, and would not
exist in the absence of magnetic moments. We account for spin disordering in the
paramagnetic (PM) phase in which most measurements are performed: the funda-
mental gap survives unscathed the breakdown of magnetic order, but the intensity
of the transition across that gap is suppressed. As a test of the suggested picture,
we point out features that should be observable in low- vs high-temperature opti-
cal and energy-loss spectroscopy experiments. Besides VPSIC, and GGA/LDA, we
calculate the electronic structure using GGA+U, a hybrid functional, and many-
body perturbation theory. Our theory-experiment comparison indicates that some
advanced methods end up quite far from experiment, overestimating severely the
gaps, whenever standard values are used for the adjustable parameters they depend
on, a conclusion that has obvious methodological implications. Also, the correc-
tions to local- or semilocal- functional eigenvalues provided by VPSIC are close
to those of non-self-consistent one-shot GW, suggesting that the "beyond-local"
correlation is described by VPSIC with similar accuracy.

6.2. Methods

As usual in the business of ab initio optical properties, we elect to interpret the
eigenvalues and eigenvectors of Kohn-Sham equations as quasiparticle energies
and states. This is justified by the Kohn-Sham equations being formally identical

96



6.2. METHODS

to Hedin-Lundqvist quasiparticle equations[126] if the self-energy Σ is identified
with the exchange-correlation potential; for LDA, e.g., ΣLDA(r,r′,E)≡δ(r–r′)δ(E)
Vxc

LDA(r), and similarly for functionals containing some degree of non-locality and
implicit energy dependence such as hybrids or PSIC.[56] It is obviously inter-
esting, therefore, to compare results obtained by different exchange-correlation
functionals. This is done in Sect.6.4, in particular 6.4.1; In the same spirit,
we also discuss in Sect.6.4.3 “many-body” corrections to semilocal functionals,
both empirical and based on G0W0 non-self-consistent many-body perturbation
theory.[140] In recent years, methods going beyond the local or semi-local ap-
proximation have become more affordable, and we are in the position to evaluate
their relative merits under the assumption stated above. The optical conduc-
tivity, extinction coefficient, and electron-energy-loss function are extracted from
the dielectric function ε̃(ω) calculated within the random phase approximation
from the joint density of states obtained with the variational version of pseudo
self-interaction-corrected LDA (VPSIC).[57, 56, 132] We also calculate gaps and
transitions with Ceperley-Alder LDA,[134] Perdew-Becke-Ernzerhof GGA,[135]
the Dudarev GGA+U functional,[136] the Heyd-Scuseria-Ernzerhof (HSE) hybrid
functional.[137] To avoid bias due to changes in volume, we use the cubic magnetic
primitive cell (40 atoms) at the experimental lattice constant of 7.38 Å with inter-
nal coordinates optimized with GGA, imposing a threshold of 0.01 eV/Å on force
components. CCTO is cubic, so that Ti-O octahedra and Cu-O plaquettes are
all identical geometrically (see Fig.6.1); also, the positions of Ti, Cu and Ca are
fixed by symmetry; those of the O’s are determined by the Ti-O distance, 1.959 Å,
and the Cu-O distance, 1.963 Å. VPSIC uses ultrasoft pseudopotentials and plane
waves in a home-made custom code with cutoff 475 eV. All other methods are
implemented in VASP[210] and use the PAW[213] method with cutoff 400 eV. We
employ standard k-point meshes (4×4×4 for self-consistency and up to 12×12×12
for density-of-states or dielectric function calculations). In the optics calculations,
the imaginary part ε2 of the dielectric function is calculated directly, whereas the
real part is obtained via the Kronig-Kramers relations (for standard relations, see
e.g. Ref.[141]); we use up to 2000 bands in the summation over empty states (for
the G0W0 calculations, see the discussion in Sec.6.4.3), which are amply sufficient
to converge both the imaginary and real parts of the dielectric constant at the
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Figure 6.1.: Crystal structure of CCTO.

energies of interest (below about 10 eV). Some of the techniques employed involve
adjustable parameters. The Dudarev GGA+U version depends on parameter U–J,
applied to Cu d states. The HSE hybrid, in turn, is tuned via the fraction α of
screened Hartree-Fock exchange and the screening cut-off wavevector µ. In the
current VPSIC formulation, screening of the self-interaction by the environment is
quantified by a constant which may be treated as a parameter. However, we keep
it fixed, as in all past applications, at a value based on a Slater-transition-state
concept explained in Ref.[57].

6.3. VPSIC results vs. experiment

This Section compares the VPSIC optical functions of CCTO with two distinct sets
of experimental data. In Sec.6.4 we will examine and discuss the gaps provided by
the other methods. We will be switching units several times to ease the comparison
with experiment.

6.3.1. Band structure

CCTO is G-type antiferromagnetic (AF) on the Cu lattice with a Neél temperature
of 25 K. Its band structure obtained by LDA and VPSIC is displayed in Fig.6.2.
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Figure 6.2.: LDA vs VPSIC bands of CCTO. Arrows indicate schematically the
four transitions discussed in the text.

The LDA and VPSIC bands are rather similar in structure and energy separation.
The near-gap bands connected by the transition marked ‘1’ in Fig.6.2 are domi-
nated by O-hybridized Cu-like spin-polarized states. The top valence band and the
bottom conduction band are fully spin-polarized, and as can be seen in the orbital-
and site-projected density of states (DOS) as obtained by VPSIC in Fig.6.3, their
projections on any given Cu site have opposite polarization. As usual, the removal
of self-interaction tend to increase all the gaps. The largest increases are found
for the transitions marked ‘3’ and ‘4’ in Fig.6.2 to the upper conduction band
of predominantly Ti character, i.e. for the standard charge transfer gaps. The
local orbital character of the near-gap spin-polarized states is completely deter-
mined by Cu d and ligand O’s in each plaquette (see Fig.6.4), in accordance with
the DOS of 6.3. As far as optical absorption is concerned, the band structure in
Fig.6.2 suggests that four distinct relevant absorptions are expected, marked ‘1’
to ‘4’. The first transition is between O-hybridized Cu-like bands, between 0.5
and 0.9 eV (2000-1000 nm, 4000-7000 cm−1). A large joint DOS is expected due
to extended parallel-band sectors especially around the X point; also, despite the
similar character of the initial and final states, the matrix elements should not
be suppressed, because this is an intersite transition (intrasite transitions are for-
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bidden by the spin conservation selection rule). The second transition is between
valence O p and low-conduction Cu d bands in the range 1.4-1.9 eV (800-650 nm,
11000-15000 cm−1), which is not expected to be suppressed selection-rule-wise.
The third absorption is Cu d upper-valence to Ti d-O p conduction at 2.6-3.0 eV
(500-400 nm, 21000-24000 cm−1), which is expected of average intensity; finally,
an intense O p-Ti d transition should start at 3.4 eV (350 nm; 27500 cm−1). The

Figure 6.3.: Atom-projected DOS of CCTO from VPSIC in the near-gap region,
projected on the Cu and O atoms of a plaquette in the xy plane.

lower conduction band of Cu character is affected only weakly by self-interaction
corrections, and accordingly the lower-energy O p–Cu d and Cu d–Cu d transi-
tions ‘1’ and ‘2’ change moderately compared to LDA. This feature is key to our
interpretation, and, as we will see in Sec.6.4, it is not shared by other methods.
The small magnetic fundamental gap ‘1’ may be labeled as Mott-like, since it de-
pends on the interplay of spin polarization, Hund coupling, and on-site repulsion,
and it is coherent with the textbook definition U–ct, i.e. it includes (thanks to
self-interaction removal) the cost U of adding an electron in the empty d state as
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well as the hopping t, which is included in the band width.[133] Since even LDA
finds this gap (albeit barely), the on-site correlation acting on these states must
not be especially strong. Further, the stronger O p-Cu d hybridization plays a role
in reducing the gap in CCTO compared to e.g. in YBa2Cu3O6, whose gap[128] is
1.2 eV.

Figure 6.4.: Magnetization density in CCTO. All three kinds of Cu-O plaquettes
are visible.

6.3.2. Paramagnetic vs antiferromagnetic phase

Before delving into the comparison, we need to discuss the role of spin disorder.
The experiments we consider are done well above the Néel temperature TN=25 K of
the AF phase of CCTO, and therefore probe the paramagnetic (PM) phase. Since
PM CCTO is insulating experimentally, it is most likely a collection of thermally
disordered, randomly oriented Cu moments, rather than a zero-moment Pauli-
type PM (in the latter phase, CCTO is found to be a metal). The fundamental
transition, labeled ‘1’ in Figs.6.2 and below, is between Cu-like spin-polarized
states (see Fig.6.2 and Fig.6.3) and is spin-selective in the sense that spin-allowed
transitions only occur with matrix elements involving same-spin sites of the Cu
lattice. In the PM, we expect the intensity of transition ‘1’ to be reduced, because
spin mixtures will be involved. To expect a good match with experiment, this
suppression should be assessed and accounted for. Our motivation here is not
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to sample in detail the PM configurations (which is outside our scope and well
beyond “naive” sampling techniques); rather we need to show a) that a gap survives
in the misaligned-spin, i.e. non-AF-ordered, system when moments are nonzero,
and b) that the intensity of the transition between the spin-polarized states is
suppressed. While seemingly trivial, point a) is worth making directly. Most many-
body physicists scoff at the notion that any ab initio method can (as the PSIC
does) obtain good gaps and magnetism in systems (CuO,[153, 154] LaTiO3,[132]
LaNiO3/LaAlO3 superlattices[205] etc.) where LDA or GGA fail, because these
are usually studied under the assumption of magnetic order. Indeed, our result
shows, albeit at the simplest possible level, that a disordered-moments PM does
indeed have a gap (this was shown earlier[142] for MnO with essentially the same
electronic-structure technique (and a much better spin-disorder sampling). Point
b) is not unexpected: misaligned spins are in mixed up-down states (referred to
a given quantization axis), so that projections of spin states on one another are
no longer just unity or zero. Transitions connecting sites that were same-spin
in the AF will be suppressed, and others between opposite-spin sites will gain
nonzero amplitude. How these two effects play out quantitatively needs to be
explored directly. To assess the degree of intensity suppression of absorption ‘1’
in the PM phase, we perform non-collinear-magnetization calculations whereby
the six Cu moments in the primitive cell are oriented randomly, but directionally
constrained to give a total magnetic moment of zero– that is, mimicking in effect
one of the thermally accessible configurations of the disordered paramagnet. The
non-collinear spins in the PM model are constrained by a penalty function: if that
penalty is turned off, the AF ground state is recovered. Spin-orbit coupling is not
included in these calculations. Since the low energy bands obtained with semi-
local-functionals and self-interaction corrections are quite similar (see Fig.6.2), we
use GGA to access the non-collinear and penalty-function features of VASP. As
we are only interested in the effect on the lowest gap, we display the low energy
portion of the GGA absorption for the PM (aligned to match the VPSIC gap)
together with the VPSIC absorption. The key result, as can be seen from the
bands in Fig.6.5, is that the gap remains nonzero in the disordered PM, and close
to the AF value. This should help dispel the myth that the distruction of magnetic
order will lead to metallicity in ab initio calculations. Indeed, it does not, as long
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as magnetic moments survive.[142] A related result relevant to our interpretation
below is that, as we surmised, the fundamental absorption is indeed suppressed
in the PM compared to the AF, whereas the rest of the spectrum is practically
unchanged. This improves agreement with experiments done at high temperature,
as we discuss in the next Section. We report only the low energy portion of the
PM optical constants (up to about 1.5 eV), since spin disorder only affects the
spin-polarized transition ‘1’. We note in passing that the metallic Pauli-PM phase
(not shown) shows typically metallic optical features such as a Drude peak at
low-frequency, which are not observed in any of the experiments.
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Figure 6.5.: GGA bands for the CCTO cell with non-collinear spins mimicking the
disordered PM.

6.3.3. Comparison with experiments

Based on diffuse reflectance measurements, Ref.[131] suggests as lowest-energy
transition an indirect-gap absorption peaking at 700 nm, and attributes it to tran-
sitions from the mainly Cu-like upper valence states to the mainly Cu-like first
conduction band, i.e. to transition ‘1’ of our band structure in Figs.6.2 and 6.3.
Higher-energy intense absorptions are attributed to O p-Ti d dipole transitions.
[131] This interpretation is based on GGA+U calculations with U–J=6.5 eV, a
rather low value for Cu oxides, which nevertheless pushes transition ‘1’ up to the
needed 1.7-1.8 eV (see the discussion in Sec.6.4). To compare with this experiment
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Figure 6.6.: Extinction coefficient for PM and AF CCTO calculated with VPSIC.
Compare with Fig.7b (inset) of Ref.[131].

directly, we calculate the extinction coefficient (Fig.6.6) and conductivity (Fig.6.7
and 6.9; see the discussion below) from the dielectric function ε̃(ω)=ε1+iε2 (the
strongest dependence is on the imaginary part ε2). Based on these results, and
in particular the extinction coefficient displayed in Fig.6.6 (to be compared e.g.
with the inset of Fig.7b of Ref.[131]), we propose a different interpretation than
that just outlined: the peak at 700 nm is the O p-Cu d labeled ‘2’ in Fig.6.2 and
6.6, which is also an indirect transition; the shoulder at 400-450 nm is the O p-Cu
d labeled ‘3’; and finally the main peak at 300 nm is due to the main interband
O p-Ti d transition, labeled ‘4’. The fundamental transition, which connects the
upper valence and bottom conduction Cu-like states and is labeled ‘1’ in Figs.6.2
and 6.6, is instead at lower energy, peaking at about 1500 nm in the AF phase.
However, in the PM the intensity of this absorption is suppressed. As no exper-
imental data were reported[131] in this wavelength region, it is probable that no
significant signal was detected. Account for spin disorder resolves the potential
discrepancy. Conversely, our result suggests that similar experiments in the AF
phase at low temperature (and pure, untwinned, magnetically ordered crystals)
should reveal this low-energy transition, providing a direct experimental coun-
tercheck of our interpretation. We now come to wide-range dynamic conductivity
measurements,[129] which also seem to suggest a multigap spectrum. Tauc ex-
trapolation at low energy is difficult due to low intensity and the probable indirect
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Figure 6.7.: Tauc relation for CCTO (exponent for indirect forbidden transitions)
calculated with VPSIC. Compare with Fig.6.8.

character of the transition, but a very weak indirect transition starting at about
5000 cm−1, can be inferred.[129, 130] Another more intense transition follows at
about 1.5-1.7 eV and finally the intense allowed absorption peaks at 3 eV. These
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Figure 6.8.: Experimental Tauc relation[130] for CCTO, to be compared with
Fig.6.7. Lines are possible fits for indirect forbidden transitions whose
intercepts with the frequency axis identify the minimum gap. Figure
by courtesy of P. Lunkenheimer.

features are reasonably well reproduced by our calculation for the PM in Fig.6.7,
as can be seen comparing with the experimental data in Fig.6.8, where the Tauc
fits suggest an onset (i.e. a minimum gap) at about 0.6-0.9 eV. This assignment
is only tentative as there is no clear linear behavior over an extended frequency
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range. Comparing AF and PM results, it appears that the seemingly strongly for-
bidden character of the fundamental transition is mainly a token of spin disorder,
rather than of interband matrix element suppression. Indeed, intrasite d-d transi-
tions would be suppressed by Laporte’s selection rule, but here they are effectively
intersite, because of the spin structure of the material; the fundamental transition
in the AF is in fact quite prominent (Fig.6.6 and Fig.6.7). A related result from
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Figure 6.9.: Dynamical conductivity for CCTO calculated with VPSIC. Compare
with Fig.7 of Ref.[129].

Ref.[129] is that DC conductivity is Arrhenius-activated with a 0.2 eV character-
istic energy. We attribute this simply to thermal carriers excitation across the
fundamental gap. The latter is 0.6 eV in VPSIC, but we have estimated from
a single GGA calculations including spin-orbit (not shown in the Figures) that
the spin-orbit splitting of the upper valence and lower conduction bands (both
having sizable Cu character) will reduce the gap to about 0.3 eV. In closing this
Section, we point out that beside low-temperature optical absorption another pos-
sible countercheck on our suggestions is electron-energy-loss spectroscopy, again
in the 0.5-1 eV range. As shown in Fig.6.10, the energy-loss function –Im[1/ε̃(ω)]
has a marked peak at 0.9 eV in the AF (i.e. at low temperature) which is strongly
suppressed in the PM (i.e. at high temperature) because of spin disorder. The
sharp main plasmon at 13.5 eV (Fig.6.10, inset) is the same in the AF and PM.
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Figure 6.10.: Energy-loss function of AF and PM CCTO. The inset shows the main
plasmon in the AF.

6.4. Results with other functionals

Having obtained a satisfactory interpretation of the electronic structure of CCTO
using VPSIC, we examine and compare the main band gaps obtained by GGA+U
and the HSE hybrid functional. As mentioned earlier, GGA+U in the version
employed here depends on the U–J parameter; we apply to the Cu d shell a U–
J ranging from 0 to 8 eV (a value of 8 or 9 eV is standard[128] for Cu oxides).
The HSE hybrid depends on the fraction α of screened Hartree-Fock exchange
and the screening cut-off wavevector µ: we consider α=0, 0.1, and 0.25, the latter
being the proper HSE recipe (while varying α, we keep the standard µ=0.2 Å−1);
then we explore values of µ from 0.1 to 0.5 Å−1, at the standard α=0.25 (large
µ means strongly screened Fock exchange at all wavevectors, recovering GGA as
µ→∞). The HSE standard value has a theoretical foundation in the formulation
of the functional, and has the merit of being system-independent. That said, we
deem this exploration worthwile, as the α and µ parameters have been, on occasion,
adjusted away from their standard value to cure various different issues in cuprates
and titanates. Finally we discuss quasiparticle corrections from GGA-based G0W0

many-body perturbation theory; G0W0 has no adjustable parameter per se, but
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uses the GGA bands to evaluate the Green’s function and screened interaction,
whence the quasiparticle energies, and is not self-consistent.

6.4.1. Parameter dependence of main gaps in HSE and

GGA+U

In this Section we show a selection of band gaps of AF CCTO as function of
the relevant adjustable parameters of the various methods. The gaps we consider
(with reference to the labeling of Fig.6.2) are the fundamental gap, i.e. the ‘1’
transition; the main charge transfer gap, i.e. the ‘4’ transition; the upper valence-
upper conduction gap, i.e. the ‘3’ transition; and the minimum gap between
the Cu-like lower conduction band and the Ti-like upper conduction band, i.e.
roughly the difference of the ‘4’ and ‘1’ transitions, labeled ‘Cudn-Ti’. (As the
values are taken at the Γ point, the values may seem occasionally inconsistent
with the previous results, but deviations are tenths of an eV, i.e., as will be seen,
an order of magnitude less than the discrepancy with experiment.) These gaps
are shown for GGA+U as function of the U–J parameter in Fig.6.11, for HSE as
function of the mixing parameter α in Fig.6.12 and of the screening parameter µ in
Fig.6.13. By construction, plain GGA is recovered in each of the limits of vanishing
U–J, α, and 1/µ. As expected, all valence-to-conduction gaps increase rapidly
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Figure 6.11.: (Color online) GGA+U gaps vs U–J.

with U–J, α, and 1/µ. The ‘1’ transition increases fastest in all cases, and the
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Figure 6.12.: (Color online) HSE gaps vs α, with µ fixed at 0.2 Å−1.
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Figure 6.13.: HSE gaps vs 1/µ, with α fixed at 0.25

conduction-conduction gap diminishes. This means that, relative to the valence
band, the Cu-like lower conduction bands are pushed up in energy more than the
Ti-like upper conduction bands, opposite to what is observed in VPSIC. This effect
is especially strong in GGA+U: the ‘1’ transition ends up being larger that the ‘4’
(which at standard U–J is 45% underestimated), i.e. the empty Cu band is pushed
into the Ti band. This is due to the fact that the U correction acts efficiently on
the Cu-like bands by enhancing both spin polarization and orbital polarization.
The former widens the ‘1’ gap; the latter cleans up the O p valence from Cu-like
character, pushing it down and widening somewhat the apparent charge transfer
gaps. We do not apply a U on Ti. That would only have minor, if any, effects: Ti
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orbitals are not spin-polarized, and U would only leverage orbital polarization, i.e.
it would purge the valence and Cu-like states of what little Ti orbital content they
have, thereby widening modestly, if at all, the relative gaps (at least for physically
sensible values: of course one may always hope to get some effect for unphysically
large U’s). In conclusion, to obtain a ‘1’ transition in the vicinity of 1 eV or
less, U–J should be between 2 and 3, which is tiny by Cu-oxide standards. In
HSE, all gaps increase linearly with α (Fig.6.12), with the ‘1’ transition increasing
faster than the others. As Fig.6.13 shows, all the gaps decrease as µ increases, i.e.
when the Hartree-Fock exchange is gradually screened away. At standard α the
HSE functional gives a fairly good ‘4’ transition, 4.1 eV at Γ. The ‘1’ transition
is overestimated hugely at over 3 eV, whereas, depending on which experiments
one believes and whatever uncertainties one may attach to them, that gap is in
the range of 0.5-1.5 eV at most. To obtain such a value one should either use a
small α in the vicinity of 0.05, or, probably better, a more or less standard value
like 0.15 to 0.25 with a larger than usual µ (as large as 1.6 Å for α=0.25). One
way of stating this is that, compared to the upper bands, the Cu d bands gets
too large a “correlation" correction (in the commonly-used, if questionable, sense
of “any correction needed beyond semilocal DFT”) from standard HSE, and that
the correction should be more “screened” than it is, consistently with the smaller-
than-usual U–J mentioned above for GGA+U. An additional issue enhancing the
sensitivity of Cu states to U-like corrections may have to do with the fact that
the band structure of CCTO is dominated by long range hoppings.[143] Whatever
the final answer, this overcorrection cannot be attributed (not straightforwardly,
anyway) to self-interaction removal, which operates –although in different guises–
in both HSE and VPSIC, and has moderate effects on the Cu states in the latter.
It is worth reiterating that the parameters in common use in the literature are
those at the high end of the range considered here. U–J up to 8 or 9 eV is quite
usual in Cu oxides,[128] and α=0.25, µ=0.2 Å−1 is the standard HSE recipe. For
those values, both GGA+U and HSE produce an electronic structure whereby the
Cu-like conduction states are way too high in energy, and the gap is too large by a
factor of at least 3. Used in their default setting, GGA+U and HSE would predict
a fundamental gap ‘1’ of 2.2 eV and 3.2 eV respectively, whereas experiments
and VPSIC agree that CCTO has a gap of less than 1 eV. Besides, the multiple
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absorptions involved in the CCTO spectra are not reproduced, as they end up
being squashed by the overcorrection into a single high-onset-energy transition.

6.4.2. Discussion

There are some general conclusion to be drawn from the results just discussed.
At the very bottom, GGA+U, HSE, and VPSIC are all semiempirical methods,
in that they depend on some sort of parameter. One recognizes, though, that
these parameters intervene very differently in each method. By construction,
GGA+U is the most directly affected by its internal parameters. These can be
estimated to some degree on a non-empirical basis from atomic quantities[144] or
from linear response,[145] but in all cases they are externally-determined system-
dependent inputs (occasionally even dependent on internal parameters or external
conditions[146] within the same system), and not self-consistent and internal, so
that in the end they are simply regarded as adjustable by most practitioneers.
Whether this is admissible or desirable is as much a philosophical as an oper-
ational question that depends on the specific objectives of an investigation. In
the present case we found that the consolidated parameter recipe simply does not
seem to function. One may (we don’t) elaborate further about which atom and
shell the correction should be applied to (e.g. would U’s on Ti or O p make a
difference: we argued above that they would not cure the problem), adding more
parameters: this would probably bring us no nearer to a solution. As mentioned,
HSE’s standard recipe has a theoretical foundation in the formulation of the func-
tional, and has the merit of being system-independent (beside the practicality of
including screening at the functional formulation level, and not a posteriori as
in other hybrids[147] based on, again, empirical estimates[149] of the screening).
That said, the α and µ parameters have been adjusted away from their standard
value to cure various different issues (structure, electronic properties, magnetism,
etc.) in many occasions, among which cupric oxide CuO.[150] It is only fair to dis-
cuss in this context the parametric dependence built into VPSIC. For a detailed
treatment we defer to the original work[57] and to a recent review,[56] which also
discusses in detail the analogies and differences with GGA+U and hybrids. In
short, the screening of atomic self-interaction corrections by the environment is
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described by a single parameter αs=1/2, a value based on a Slater transition-
state argument.[57] The dependence on αs of relevant quantities in solids has been
studied,[151] and the result is that αs=1/2 is indeed the optimal value on aver-
age over a vast class of materials. We systematically use that value,[56] hence
effectively we do not regard αs as a parameter at all. In a case where a detailed
comparison has been carried out,[152] VPSIC has been found to perform similarly
to HSE; discrepancies (and controversy) did occur in other cases, however, espe-
cially on cupric oxide.[150, 153, 154] Since we are dealing with a titanate that is
strongly characterized by cuprate-like electronic features,[156] it is appropriate to
recall the solid success record of VPSIC on the electronic and structural properties
of Cu oxides of various composition and dimensionality. It describes correctly the
magnetic and insulating (anywhere from semiconducting to high-insulator) char-
acter of YBa2Cu3O6,[128] monoclinic CuO,[153] GeCuO3,[157] Ca-doped YCuO
cuprate,[158] all of which are metals and non magnetic in GGA. This is further,
strong circumstantial evidence supporting the use of VPSIC as reference for the
other methods in CCTO, even if one were to gloss over the experimental evidence
discussed above.

6.4.3. Quasiparticle corrections

It has long been customary to estimate quasiparticle energies as density-functional
eigenvalues supplemented by “self-energy corrections".[148, 149] In many materials,
these corrections are dominated by a “scissor operator”, i.e. a k- and energy-
independent relative shift of conduction and valence bands. A simple empirically-
determined scissor correction[149] is ∆'9/ε∞ eV. CCTO has a high-frequency
dielectric constant ε∞=ε1(ω=0)=12.6, so the correction is ∆∼0.7 eV. The resulting
total minimum gap is roughly 0.85 eV, essentially in the VPSIC (and experimental)
ballpark. Thus, the VPSIC and empirical scissor give similar corrections to local
functionals, despite being completely unrelated. Next we calculate the same sort of
correction using G0W0 non-selfconsistent quasiparticles.[140] The latter calculation
is rather difficult to converge in general, and particularly for this large system. We
use a softer O potential enabling a cutoff of 280 eV, which does not seem to affect
the eigenvalues much. (The use of the specialized potential PAW sets provided
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with VASP for GW calculations is prevented by their large energy cutoff; this
should not be a serious problem, as the standard PAWs we use do contain high-
energy projectors and should perform rather well in the low-energy range we deal
with here.) To assess convergence in k and in the number of bands for the virtual-
transitions summation we used 2×2×2 and 4×4×4 k-grids and between 256 and
4092 bands. For a typical bulk material the latter choice would be overkill, but
our system has of order 130 occupied bands per spin channel, so this setting seems
necessary. Note also that that energy convergence in GW is more critical than
in the standard joint-DOS calculations in the previous Sections: in the latter,
unoccupied bands are only used in the Kronig-Kramers relation, whereas in GW
they enter the evaluation of all energy-dependent parts of the self-energy.

Table 6.1.: Corrections to (semi)local transition energies (in eV, rounded to tenths
of eV, labeled as in Fig.6.2).

Transition ‘1’ ‘2’ ‘3’ ‘4’
∆(VPSIC–LDA) 0.5 0.7 1.1 1.4
∆(G0W0–GGA) 0.7 1.0 1.1 1.4
∆(empirical) 0.7

In the area of optics, at the simplest level of approximation, it has long been
customary to address "beyond-LDA" (or GGA) corrections to eigenvalues or gap
energies. We adopt this view and obtain the corrections as the differences of eigen-
values within GW and GGA, and VPSIC and LDA respectively. This should keep
bias at a minimum in the comparison of the different technical settings (potentials,
chosen volume, DFT functionals, ...) and codes, besides hopefully providing some
error cancellation. The corrections are reported in Table 6.1 for the X point. From
the above partial convergence study in bands and k-points, we judge that they are
converged to within 0.1 eV. Interestingly, the GW and empirical corrections agree
well for the low energy gap; the GW and VPSIC corrections are also in decent
overall agreement, and in particular they appear to depend on energy, i.e. higher
bands are corrected more than the lower ones. In particular, the differences be-
tween Cu and O p upper valence, and Cu and Ti conduction states are the same
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in VPSIC and GW, i.e. the Cu d empty band remains well clear of the Ti empty
bands in both cases. Also, the lowest-energy GW gaps have the same character
and order as in VPSIC, the first gap being indirect between R and X and the
second direct at X and less than 0.1 eV larger, i.e. the low-energy band topology
appears similar in the two cases. Thus, overall, the corrections to local-functional
eigenvalues provided by VPSIC are close to those of non-self-consistent one-shot
GW, suggesting that much of the "beyond-local" correlation is indeed provided by
VPSIC with similar accuracy, at least in this material.

6.5. Summary

We examined the electronic structure of CaCu3Ti4O12 as obtained via several
different density-functional based methods, and proposed a new interpretation of
experiments to the effect that four distinct transitions contribute to the spectrum.
The comparison of results from VPSIC calculations with experiment is satisfactory,
especially after we account for the effects of spin disorder, which does not close
the fundamental gap but suppresses the intensity of the fundamental transition.
GGA+U and HSE at the standard values of their internal parameters overestimate
drastically the fundamental gap, hence the conclusion that their corrections to the
position of the flat Cu d bands should be more “screened” than they are. On the
other hand, the corrections to local- or semilocal- functional eigenvalues provided
by VPSIC are close to those of non-self-consistent one-shot GW, suggesting that
the "beyond-local" correlation is described by VPSIC with similar accuracy.
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This Chapter provides our contribution to that field of research which deal with
Transparent Conducting Oxides, labeled as TCOs. This class of materials exhibits
both transparency and electronic conductivity at the same time. Due to this key
feature, these materials have found widespread use in many technological appli-
cations, such as displays, low-emittance windows, electrochromics, photovoltaics
and flexible electronics, where, they are exploited mostly as transparent contacts.
In the last decade an increasing number of research groups have dedicated their
studies on TCOs materials, suggesting both new materials and approaches. This
interest is pushed mainly by an always increasing demand in various areas for
electronic devices with enhanced performances, based on green materials and pro-
cessing, and higher efficiency. Contrary to what we may believe, since the long
history in the application of TCOs, a complete theoretical understanding is not
still achieved nor a reliable way of prediction of the properties of new materials.
This occurs especially in amorphous mixed metal oxide TCOs materials, where
the basic transport physic has not been understood yet, although they are very
promising from the experimental point of view.
Currently, just a few TCOs material dominate the scene in industry. Mostly,

they are a small set of oxide materials such as SnO2, In2O3, InSnO, and ZnO. For
example, the Fluorine-doped tin oxides (SnO2:F) is the most used in production
of energy efficient windows, where the tin oxide coatings increases the efficiency
in preventing radiative heat loss, yielding the thermal emittance from ∼ 0.84,
for uncoated glass, to ∼0.15. The Indium-Tin-Oxide (In2O3:Sn, mostly known as
ITO) is present in the majority of flat panel display applications as transparent
electrode. More recently, amorphous In-Zn-O has become a possible replacement.
Although, TCOs are predominantly n-type material, one of the current research

challenge in TCOs field is that of the development of p-type materials with com-
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parable conductivities to their n-type counterparts. In fact, those p-type materials
observed exhibit stability problems and they are difficult to reproduce. The other
open research area just begun is that of amorphous TCOs materials, that is ex-
perimentally well promising, but it is much harder to be accessed by the theory,
since its well-known difficulties to approach non periodic materials.
We refer to the book “Handbook of Transparent Conductors“ for a complete

review on TCOs materials [67].

7.1. Theoretical and experimental investigation of

optical absorption anisotropy in β − Ga2O3

In the following section, it is reproduced the paper (to be published) about the
work developed in collaboration with Prof. Fornari experimental research group, at
the University of Parma, about an investigation of optical absorption anisotropy in
β−Ga2O3. The entire theoretical part was developed by me with the support of my
supervisor. Briefly, polarized optical absorption measurements were carried out on
bulk β−Ga2O3. The bandgap edge is seen to be a function of light polarization and
crystal orientation, with the lowest onset occurring at polarization in the ac crystal
plane around 4.5-4.6 eV; polarization along b unambiguously shifts the onset up
by 0.2 eV. Theoretical analysis, performed using different advanced computation
methods, clearly indicates that the shift of the b onset is due to a suppression of
the transition matrix elements of the three top valence bands at Γ point.

7.1.1. Introduction

The semiconducting sesquioxides, and among them β−Ga2O3, have been employed
as transparent conducting oxide (TCO) electrodes in fabrication of solar cells, dis-
plays, electronic, and opto-electronic devices for several decades [[174, 175, 176]].
The interest was confined to such application as the conductivity of these metal-
oxides was invariably n-type, and attempts to effectively dope p-type failed. The
key requirements of TCO electrodes are indeed high electrical conductivity and
good transparency, while crystallographic perfection is a minor issue. Further-
more, for a long period no high-quality substrates and epilayers were available,
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which in turn impeded the development of a truly full-oxide electronics. Recently,
β−Ga2O3 has attracted renewed attention, as large single crystals [[177, 178, 179]]
and high-quality homo- and hetero-epitaxial layers became available [[180, 181]],
which paved the way to novel application areas, namely: substrates for GaN-based
LEDs [[183, 184]] and high-power transistors [[185, 186]]. As in many previous
cases, this technological breakthrough triggered much research on the fundamen-
tal materials properties, which in turn produced improved materials. Some basic
properties of the most stable β phase of Ga2O3 are known with a good degree of
confidence. Its crystallographic structure, for example, belongs to the monoclinic
system (space group C2/m) with lattice constants a = 12.23 Å, b = 3.04 Å, c = 5.08
Å, and an angle γ=103.73° between a and c [[174, 175, 187]]. With regard to op-
tical and electronic properties, first-principles calculations and Angular-Resolved
Photo-Electron Spectroscopy (ARPES) [[188, 189, 190, 191]] concur that the min-
imum gap is between the Γ point of the conduction band and the (quasi) M point
of the valence band. However, being the valence band top quite flat, the difference
between the valence maxima at M and Γ is only a few meV. Thus, the effective
near-edge optical behaviour is, essentially, that of a Γ direct-bandgap material,
with anisotropic valence bands and largely isotropic conduction band. The rather
scattered band gap values of bulk Ga2O3 measured by optical absorption (from
4.5 to 4.9 eV), see for example [[179, 192, 193]], indicate that in many of the
previous literature reports the effect of bandgap anisotropy and sample geometry
was not critically considered. This is quite surprising given the pioneering work
of Matsumoto et al. [[194]] in 1974, followed by a reappraisal in 1997 by Ueda
et al. [[195]]. The principal motivation to the present work was indeed to clarify
in what way the optical properties of bulk β −Ga2O3 are affected by the valence
band structure. Accurate optical absorption experiments were carried out, also on
unexplored crystal orientations, and critically discussed in view of the results of
ab initio computation. With respect to papers [[194, 195]], new experimental data
and a physical interpretation of the optical anisotropy are provided.
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7.1.2. Experimental and theoretical methods

The samples investigated in this work were (010) and (-201)-oriented wafers grown
by Edge-defined Film Fed Growth at Tamura Corporation. They were nominally
undoped (carrier concentrations 2.4 and 1.7 1017 cm−3 respectively) and 0.65 mm
thick. Polarized absorption was measured at room temperature and normal in-
cidence in the 800-200 nm range by means of a Varian 2390 spectrophotometer
and a Glan-Taylor polarizer. As described further below, we oriented the electric
field vector E parallel to the crystallographic axes a, b, and c. It must be noted
that what is denoted for simplicity E||a is actually the direction orthogonal to the
bc plane, which indeed is 13° away from a. We also performed measurements on
Sn-doped samples (1.0− 3.2x1018 cm−3) and found that the absorption edges are
comparable to those of the undoped counterparts, as long as the same geometry
set-up is employed. Therefore, the following discussion will focus on the results
obtained on undoped β −Ga2O3.
To interpret and support the experimental results, ab initio calculations using

several density-functional-related methods were performed. Specifically, hybrid
(HSE) [[196]] and self-interaction corrected (VPSIC) [[132, 56]], GGA (general-
ized gradient) and LDA (local density) functionals, and many-body perturbation
theory in the non-self-consistent G0W0 and self-consistent-Green’s-function GW0

[[197]] approximations were used. HSE and GW are the VASP-PAW implemen-
tations [[84, 210]]. The level of agreement with experimental data was generally
good, always well within 10% and down to 2% on the absolute values of the gap.
Confirming recent results on magnetic Mott insulators [[199]] the best performance
in comparison with experiment is that of VPSIC. The technical ingredient were
essentially standard [[200]].

7.1.3. Results and discussion

Figure 7.1 reports the spectra obtained for nominally undoped β−Ga2O3 at normal
incidence on the (010) surface with polarizations E||c and E||a. Correspondingly,
absorption edges at 4.54 and 4.57 eV were observed. The absorption anisotropy
between E||c and E||a is thus only 0.03 eV. However, the picture changes drastically
as we consider an orientation whereby E||b.
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Figure 7.1.: Absorption spectra of a (010) sample at normal incidence for polar-
ization E||c and E||a, respectively (a), and schematic of sample orien-
tation, axes, and polarizations (b).

In Figure 7.2 we report spectra obtained on a (-201) oriented sample; in this
crystal orientation, it is easy to probe the E||b configuration as well as E||[102]
(clearly b⊥[102]). The E||[102] absorption edge at 4.52 eV is in line with those
just reported for c and (quasi) a polarization, as expected from [102] being a
combination of the a and c vectors. However, the onset of the absorption for E||b
is at 4.72 eV, that means 0.2 eV higher in energy. This is a direct evidence for
anisotropy and confirms the previous observations in [[194, 195]].

Summarizing the experimental results, the lowest absorption edge at 4.54 eV
is for polarization E||c, followed by the close 4.57 eV onset when E||a, while E||b
gives a clearly separated 4.72 eV. In Figure 3 we report the absorption coefficient
µ predicted by VPSIC-GGA at the experimental volume and internal coordinates
relaxed according to quantum forces. It is plotted in Tauc form with exponent 2
as the data in Figs. 7.1 and 7.2, so that it linearizes for a direct dipole-allowed
gap (the direct gap at Γ is indeed almost identical to the indirect minimum gap,
which is invisible in absorption on the intensity scale of the direct transition).
The edge of the absorption is obtained by linear extrapolation of (hνµ)2 to zero
absorption. µ is obtained in the standard way from the calculated imaginary part
of the frequency-dependent dielectric tensor. The latter is almost diagonal, but
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Figure 7.2.: Absorption spectra of a (-201) sample with polarization E||b and
E||[102], respectively (a), and schematic of sample orientation, axes
and polarization (b).

sizably anisotropic due to the low symmetry of the crystal.

Clearly, there are distinct absorption edges as function of polarization, and their
energetic order is E||c < E||a < E||b, in agreement with experiments. For E||c the
onset is at 4.65 eV compared to experimental 4.54 eV: 2% off is an excellent result
for the standards of ab initio theory, which may miss gap values by as much
as 100%. For E||a the onset is higher by just 0.1 eV, vs the 0.03 eV observed
experimentally (see Fig.7.1), again a very satisfactory result, also considering the
actual orientation for the a axis. For E||b, the onset is 0.5 eV higher than for E||c,
again in satisfactory agreement with experimental data (Fig.7.2). Although the
VPSIC theoretical results are able to reproduce well the experimental data, we have
to note that experimental results are systematically a bit lower than theoretical
predictions. This discrepancy could be related either to the earlier absorption
onset typical of optically thick samples, which ultimately may lead to a slight
underestimation of the bandgap edges, or to computation accuracy or to both
factors. In Figure 7.4 we reported the direct gap obtained by all the computation
methods employed vs the crystal cell volume. Some considerations have to be made
when looking at the data presented here. First, theoretically predicting the crystal
cell volumes has always some inherent uncertainty (in this case VPSIC provides the
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Figure 7.3.: Tauc plot of the absorption coefficient, showing the polarization-
dependent onsets.

volume closest to experiment). Secondly, the dependence on microscopic structural
details is modest (VPSIC eigenvalues in the experimental and GGA cells are almost
identical). Finally, the pressure derivative of the gap extrapolated from the data is
3 meV/kbar, in line with previous reports [[201]]. The agreement with experiment
is overall reasonable. Partially self-consistent GW0 is closest to experiment and
VPSIC, which is in itself an interesting theoretical finding.

As a final point, it must be observed that the apparent upward shift of the onset
for E||b stems from a suppression of the matrix elements for the transition from
the top valence bands. The absorption is proportional to |e · Pvc|2, where e is the
polarization and Pvc = (< Pa >,< Pb >,< Pc >), where e.g. < Pb > is the matrix
element between valence and conduction states of the momentum component Pb
along the b axis. A smaller < Pb > implies weaker absorption for E||b. In Figure
5a we show the matrix elements along the three axes at the Γ point, along with
relevant bands and wavefunctions. Clearly < Pb > from the top three valence
bands is essentially zero, and this causes the suppression of the absorption. The
reason is that the initial and final wavefunctions sketched in Fig. 5b have the
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Figure 7.4.: Gap vs volume as obtained from hybrid and self-interaction corrected
functionals, as well as from GW0 many-body perturbation theory.
The line Exp marks the cell volume obtained from experimental lattice
parameters [[174]].

same parity along b, and therefore the matrix-element integral is zero [[202]] (in
addition, the valence states have a very small amplitude). The recovery of the
matrix element at the fourth-from-top band below the valence top shows that the
anisotropy shift is essentially the distance of that specific band from the valence
top.

7.1.4. Conclusions

In conclusion, the theoretical analysis (especially as provided by the VPSIC method)
of optical absorption results on (010)- and (-201)-oriented β−Ga2O3 samples ori-
ented provides a physical interpretation of the absorption anisotropy phenomena.
With respect to previous experimental reports, this work also included measure-
ments with polarized light along unexplored crystal orientations. The lowest ab-
sorption onset was at about 4.55 eV in (010)-oriented wafers. In this case, whatever
the polarization on the ac plane, only minor shifts of the bandgap were found. For
(-201)-oriented samples, light polarization along b has the strongest effect as it
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Figure 7.5.: (left) Matrix element (top) along the crystal axes vs energy from va-
lence top, and bands near the valence top. Along b the matrix el-
ement is suppressed (note the log scale). The bands show that the
anisotropy shift of the E||b onset is related to the distance of the top
to fourth-from-top bands. (right) Along b the Γ-point wavefunction
Ψ(n, y;x = z = k = 0) of the three top valence bands are very small,
and have the same parity as the conduction band (real part: top;
imaginary part: bottom; note the different scales).
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shifts the absorption edge towards higher energy by 0.2 eV. For this specific case,
the theory indicates that the large shift is actually due to suppression of the tran-
sition matrix elements of the three top valence bands.

7.2. Structure and gap of low-x (Ga1−xInx)2O3

alloys

Here, it is reproduced the conference proceeding [167] where we study the electronic
and local structural properties of pure and In-substituted β-Ga2O3 using density
functional theory. Our main result is that the structural energetics of In in Ga2O3

causes most sites to be essentially inaccessible to In substitution, thus limiting
the maximum In content to somewhere between 12 and 25 \% in this phase. We
also find that the band gap variation with doping is essentially due to “chemical
pressure", i.e. volume variations with doping. As second author of this paper, I
have only supported the first investigator in the preparation of calculations and
during the analysis of results.

7.2.1. Introduction

Ga2O3 is attracting interest recently as a material for high-power transport and
ultraviolet optical absorbers, owing to its wider band gap and larger electric break-
down voltage compared to e.g. GaN. Combined with In2O3 (already widely used
as transparent conducting oxide), Ga2O3 originates a new materials system which
is tunably insulating, easily n-doped (not so easily p-doped), and potentially mag-
netic (as In2O3 can be made ferromagnetic [159] through magnetic doping, the
same may well apply to Ga2O3). Further, the band-engineering and nanostruc-
turation concepts from popular semiconductor systems such as, e.g., AlGaAs or
InGaN may be exported to these materials, and thus to a whole new region of
high absorption energies and breakdown voltages. This may enable the design of
devices based on Ga2O3/(Ga1−xInx)2O3 such as high-power field effect transistors
and far-UV photodetectors or emitters.
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i) ii) iii)

Figure 7.6.: Monoclinic β-Ga2O3 viewed along the b-axis (i), c-axis (ii) and a-axis
(iii). The structure can be seen as a collection of zigzag double chains
of edge-sharing GaO6 units (violet and green Ga-octahedra) linked by
single chains of vertex-sharing GaO4 (blue Ga-tetrahedra).

7.2.2. Ga2O3

Gallium oxide, Ga2O3, exists in various polymorphs, the most stable being mono-
clinic β-Ga2O3 at ambient condition [164]. The monoclinic phase, shown in Figure
7.6, belongs to the C2/m space group. The unit cell contains 20 atoms, with two
crystallographically nonequivalent Ga atoms in tetrahedral and octahedral like co-
ordinations in the lattice. Geometry and volume optimizations as well as electronic
structure calculations have been done using density-functional theory (DFT) in the
generalized gradient approximation (GGA), and the Projector Augmented-Wave
(PAW) method as implemented in the VASP code [210]. The bulk Brillouin zone
is sampled on a 4×8×6 Monkhorst-Pack grid. The calculated lattice parameters
compare well with experiment [166] (in parenthesis): a=12.46 Å (12.23), b=3.08
Å (3.04), c=5.88 Å (5.80), θ=103.65◦ (103.7).

The band structure of Ga2O3, similarly to other binary Ga compounds, has
mainly O 2p character in the upper valence band and Ga s content in the bottom
conduction band. The direct gap appears at the Γ point. GGA underestimates it at
about 2 eV, as expected of semilocal functionals. Adding an empirical self-energy
correction [173] involving the high-frequency dielectric constant, we obtain a gap
of 4.2 eV, not far from the experimental range of 4.5-5 eV [160, 162].Surprisingly,
the precise value of the gap is still uncertain even in recent work [162]. The
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reason for this is probably the significant anisotropy of the absorption, which we
have analyzed (and will report elsewhere [172]) with hybrid-functional, pseudo
self-interaction corrected, and GW0 many-body perturbation-theory calculations
(known to be free of the typical LDA/GGA gap errors). For the present purposes,
we just note that these advanced methods confirm that a direct minimum gap at
zone center between 4.2 eV (hybrids) and 4.7 eV (self-interaction-correction), and
also confirm the pressure derivative of the gap to be 3 meV/kbar essentially as in
GGA (see below).

7.2.3. Low-In-content alloying

Because unalloyed In and Ga oxides have different structures (bixbyite and mon-
oclinic β, respectively) the high-In and low-In-content alloying limits will behave
quite differently, and at intermediate concentrations the two phases are likely to
mix in an complicated way. The experimental alloying of Ga2O3 with In2O3 in-
deed faces significant limitations [162], with β-Ga2O3-like and bixbyite-like X-ray
spectra at low x and high x respectively, and a mixed-phase region at midrange
x. In particular the β-Ga2O3-like phase persists only up to about 15% or so [162].
Thus, keeping in mind that the large-x end of the alloying spectrum will have
to be treated differently, here we tackle the low-x end substituting In for Ga in
β-Ga2O3 at nominal concentrations of 3, 6, 9, and 12 % (one to four In atoms per
80-atom or 32-cation supercell). Our results naturally suggest an interpretation
for the observed behavior. We optimize (in volume, shape, and internal coordi-
nates) supercells of Ga2O3 with In→Ga substitutions sampling some of the various
possible octahedral and tetrahedral sites and combinations thereof as function of
composition (i.e. In concentration). The supercells contain 1×2×2 unit cells (80
atoms), so we an approximate backfolding (4×4×2) of the bulk k-point grid. The
calculations at 3% In (one "isolated" In atom per 80-atom cell) show that In only
substitutes octahedral Ga: tetrahedral sites are ruled out by a huge excess energy
cost of 1.1 eV. Therefore, half the cation sites are essentially inaccessible to In,
and hence the amount of In that can actually be incorporated into Ga oxide is
automatically halved – to put it differently, all available sites would be occupied
already at 50% nominal In content. Even reaching this limit, though, is quite
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Figure 7.7.: Left: different pairings patterns of In in Ga2O3. Right: structure of
the 12% sample.

unlikely. Indeed, In incorporation is not arbitrary in terms of configuration. At
6% In content, i.e two In atoms per supercell, one can estimate the energetics of
pairing (or, rather, non-pairing) of In in Ga2O3. In Figure 7.7, left, we display the
preferential couplings. The energy of configuration ’0’ is chosen as zero; the struc-
tures numbered ’1’ to ’4’ are in progressively unfavorable energetic order, with ’1’
at 16 meV, ’2’ at 50 meV, ’3’ at 100 meV, ’4’ at 125 meV. In the configuration
labeled ’*’, In atoms occupy adjacent octahedra; this structure is 250 meV higher
than the ’0’-configuration. Clearly, In atoms tend to avoid one another, and it is
likely that at the common growth temperatures of 850 K the typical configura-
tions will be such as our ’0’ and ’1’ above. Inspecting the structure, this suggests
that well below a half, and probably closer to a quarter, of the octahedral sites
can be occupied by In with a reasonable energy cost; when these are filled, the
formation of some mixed β/bixbyite phase may be preferable to substitution in
the β phase. This brings the effective solubility in the original β-Ga2O3 structure
down to between 12% and 25% as found in experiment [162]. Consistently with
the above configurational restrictions on pairing, the admissible arrangements at
9% and especially 12% In content are few. For example, the structure used at
12% is in Figure 7.7, right. The resulting structures are probably a fairly decent
model of the alloy, given the very limited configurational freedom of In already at
these concentrations. (Cluster-expansion work is ongoing on miscibility at finite
temperature and will be reported elsewhere.) We calculated the gap and the vol-
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Figure 7.8.: Left: direct gap at zone center as function of In concentration. Right:
normalized volume of In-doped Ga2O3 as function of concentration.

ume change with concentration of (Ga1−xInx)2O3 in the 80-atom supercell for the
structures mentioned. The gap is in Figure 7.8, left, and the volume is in the same
Figure, right. Although the gap is underestimated (a token of using GGA), its
concentration change of 17 meV/% is quite similar to 20 meV/% experimentally
[162]. Using the the volume change with x and the bulk modulus, we can evalu-
ate the concentration derivative as a pressure derivative, obtaining 2.5 meV/kbar.
This is similar to the Ga2O3 value of 3 meV/kbar [172, 161], which suggests that
the gap is mainly affected by volume change, and marginally by other factors. In
this light, the agreement with experiment therefore falls in line with expectations
from previous work [171].

7.2.4. Conclusions

In summary, we have performed first-principles DFT-GGA calculations on the
electronic and local structural properties of In-containing Ga2O3. The energetics
of In in Ga2O3 limits the maximum In content to somewhere between 12 and 25
%. We also find that the gap variation with doping is essentially due to “chemical
pressure", i.e. volume variations with doping.
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7.3. Low In solubility and band offsets in the

small-x β-Ga2O3/(Ga1−xInx)2O3 system

In the following, I reproduce our recent publication [55] where, based on first-
principles calculations, we show that the maximum reachable concentration x in
the (Ga1−xInx)2O3 alloy in the low-x regime (i.e. In solubility in β-Ga2O3) is
around 10\%. We then calculate the band alignment at the (100) interface be-
tween β-Ga2O3 and (Ga1−xInx)2O3 at 12%, the nearest computationally treatable
concentration. The alignment is strongly strain-dependent: it is of type-B stag-
gered when the alloy is epitaxial on Ga2O3, and type-A straddling in a free-standing
superlattice. Our results suggest a limited range of applicability of low-In-content
GaInO alloys. As second author of this paper, I have only supported the first
investigator in the preparation of calculations and during the analysis of results.

7.3.1. Introduction

The wide-band gap and large-breakdown-voltage insulator Ga2O3 is attracting in-
terest for high-power transport, transparent electronics, and ultraviolet sensing
applications. Combined with In2O3 (already widely used as transparent conduct-
ing oxide), Ga2O3 may originate a new (Ga1−xInx)2O3 materials system enabling
the band-engineering and nanostructuration concepts from popular semiconductor
systems (such as, e.g., arsenides and nitrides) in a previously impervious region of
high absorption energies and breakdown voltages. In this Letter we provide two
key pieces of information for this endeavor, namely the maximum concentration
of indium in the alloy and the interface band offset, which are hitherto unknown
to our knowledge. We first address the degree of miscibility of Ga2O3 and In2O3.
The parent materials have different structures (monoclinic β and cubic bixbyite,
respectively), so the low-In and high-In-content alloying limits will be different,
with likely complicated phase mixing at intermediate concentrations [162, 163].

129



Chapter 7. Ga2O3

7.3.2. Solubility of In in Ga2O3

Here we consider the alloying of β-Ga2O3 with In, and show, based on ab initio
calculations, that In can be incorporated into β-Ga2O3 at most at the 10% level at
typical growth temperatures. This agrees with the most recent estimate [163] of
around 10%. We then address the band offsets at the (100) interface of β-Ga2O3 to
the (Ga1−xInx)2O3 alloy, both epitaxial on Ga2O3 and free-standing. Given that x
is at most around 10%, we study the offset in the computationally-affordable case
of 12% In. We find that the alignment is of type-B staggered when the alloy is epi-
taxial on Ga2O3, and type-A straddling in a free-standing superlattice. Alloying
of monoclinic β-Ga2O3, the stable phase at ambient condition [164], is simulated
by substituting Ga with In at various nominal concentrations and configurations.
The interface is then simulated by a superlattice supercell. All optimizations
(internal geometry, volume, etc.) and electronic structure calculations are done
within density functional theory (DFT) in the generalized gradient approxima-
tion (GGA), and the projector-augmented wave (PAW) method as implemented
in the VASP code [210]. The PAWs include occupied d states in the valence for
both cations. For the alloy calculation we use an 80-atom (32-cation) supercell
containing 1×4×1 20-atom conventional cells, and for the interface calculation a
160-atom (32-cation) 2×2×2 supercell. The k-point sampling is on a 2×4×2 grid.
We work at the calculated lattice parameters a=12.46 Å, b=3.08 Å, c=5.88 Å,
θ=103.65◦, which compare well with experiment [166, 167]. We choose as dilute
limit the concentration of 3% In, i.e. one “isolated" In atom per 80-atom cell. Be-
sides being computational feasible, 3% is actually a quantitatively accurate dilute
limit: the formation energy calculated in the standard way [168] is Ef (1)=0.24
eV/In, which yields a concentration of 2.7% at the typical growth temperature
Tg=775÷800 K [162, 163]. The chemical-potential reservoir for In is the bixbyite
phase of In2O3, which might occur in nanograins embedded in Ga2O3. Indium
substitution at tetrahedral sites costs δEt=1.1 eV more than at octahedral sites;
thus the tetrahedral-site occupation probability is lower than that of octahedral
sites by a factor exp (−δEt/kBTg)∼0.5-1×10−7. Therefore, the In concentration
in Ga2O3 cannot exceed the value whereby the octahedral sites are all occupied,
i.e. 50%. Because the Ga2O3 structure is made up of double rows of octahedra
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N = 1 N = 2 N = 3

N = 4 N = 5 N = 6

Figure 7.9.: Sketch of different configurations of In on the Ga2O3 simulation super-
cell. Occupied octahedra in the β structure double-rows are darkened.

sharing sides and connected by tetrahedra, there is limited configurational lee-
way for In placement in the system (see Fig.7.9; for a more realistic depiction see
e.g. Ref.[167]). We evaluate the energetics of In substitution in various configu-
rations (a sample is depicted in Fig.7.9) at concentrations between 6% and 25%,
i.e. for 2 to 8 In atoms in the 80-atom, 32-cation 1×4×1 cell, and extrapolate
numerically to 16 atoms per cell (tetrahedral sites are neglected). We find that
two In’s prefer to sit on different double-rows or, failing that (as inevitably is the
case for growing x), on first-neighbor octahedra in adjacent subrows, which lo-
cally resemble the native In2O3 bixbyite structure. The formation energy per In
decreases slightly for two and three In per cell, then increases steadily. For the
configurations in Fig.7.9 we find that the excess formation energies over that of
a single In are δEf (2)=–0.044, δEf (3)=–0.019, δEf (4)=+0.021, δEf (5)=+0.074,
δEf (6)=+0.144, δEf (7)=+0.171, δEf (8)=+0.180, in eV/In (the last two are not
shown in the Figure). The cell is kept at the volume of the undoped material,
which is strictly correct in the dilute limit [169]; at higher concentration we ac-
count for an enthalpic energy cost (see below). The concentration is evaluated as
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the thermal average of the In population in the supercell (M=32 cation sites)

x =
〈N〉
M

=
1

M

∑M
N=1N exp [−βgF (N)]∑M
N=1 exp [−βgF (N)]

, (7.1)

where βg=1/kBT g and F (N)=Ef (1)+δEf (N)–TgS+δH is the free energy per In
in the N -In substituted cell. E is the formation energy, S the formation vibra-
tional entropy (we estimate it from the Debye temperature of the two bulk oxides,
and find TgS'0.015 eV), and δH'0.09 eV is the energy cost related to the inter-
nal pressure building up in the constrained cell. δH is estimated as the energy
difference (per In) between the constrained and volume-relaxed cell; if cell-length
changes are allowed along a given direction, as would occur in epitaxy, δH de-
creases by about one third. In any event, as we have seen, entropy and enthalpy
provide only small corrections over the structural energy Ef discussed above. The
thermal population average, Eq.7.1, gives a concentration of 9%, with an error
bar of +2% and –1% estimated varying the δE’s between 0.5 and 1.5 times those
calculated. Again, this low solubility follows from tetrahedral sites being ruled
out and from In occupying only about 3 out of 16 octahedral sites in the cell on
(thermal) average.

7.3.3. Interfaces

Having established the small solubility of In in Ga2O3, we come to the band
offsets. The correct way of calculating band offsets [170] is as the sum ∆Eb+∆V

of the interface jump ∆V in electrostatic potential between the two regions being
interfaced, and the difference ∆Eb of the band edge of interest in each of the two
materials, taken separately each in their own internal potential. As mentioned, we
use a 2×2×2 160-atom cell, depicted in Fig.7.10, upper panel, to describe the (100)
interface: half of the supercell along the (100) axis is pure Ga2O3, and the other
half is a Ga-In alloy. We pick the concentration of 12% as it is near the maximum
achievable (as discussed previously), and because, given the energetics constraints,
the configurational freedom of In is very limited, and there is no serious need for
a detailed In configurations sampling, which would be computationally unfeasible.
We choose the (100) interface for computational convenience; it remains to be
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assessed how much the offsets change with orientation. This super-unit cell repeats

Figure 7.10.: Upper panel: simulation cell for the (100) superlattice (for definite-
ness we display the epitaxial geometry). Lower panel: the electro-
static potential of the superlattice, showing small but definite bulk
regions on either side of the interface. The potential is aligned with
the lower side of the cell.

periodically the two layers, effectively producing a superlattice; we find that the
thickness of the layers is sufficient to reproduce identifiable bulk regions on either
side of interface, with flat, bulk-like average potential, as shown in Fig.7.10, lower
panel. We study this superlattice in two strain states, epitaxial and free-standing;
in the former case we fix the lattice constants in the b-c crystal plane and the
monoclinic angle to those of Ga2O3, and relax the a lattice parameter; in the second
case, we optimize all lattice parameters. The internal coordinates are optimized
in all cases. As schematized in Fig.7.11, at the (100) interface between Ga oxide
and the alloy at 12% In, we find an alignment of type-B staggered when the
alloy is epitaxial on Ga2O3, and type-A straddling in a free-standing superlattice;
the valence offsets from Ga2O3 to (Ga1−xInx)2O3 are –0.14 eV (Ga2O3-epitaxial)
and 0.15 eV (free-standing), and the conduction offsets are –0.41 eV (epitaxial)
and –0.05 eV (free-standing). This considerable difference is due almost entirely
to strain-induced shifts of the valence band maximum (VBM) and conduction
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GaO GaInO
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Staggered gap - Type B

(Epitaxial)

Figure 7.11.: Schematic of the staggered and straddling offset for, respectively,
the epitaxial and free-standing superlattice configurations.

band minimum (CBM), whereas the electrostatic interface alignment is hardly
insensitive to strain. This indicates that a marked dependence on the strain state,
and hence on the growth quality, is to be expected. Importantly, given the limited
In solubility, this is about as much of an offset as can be expected between Ga2O3

and (Ga1−xInx)2O3. There seems to be no measurement of the quantities just
discussed, and we hope our prediction will stimulate work in this direction. We
expect the above estimate to be rather accurate. Our interface is between materials
differing only very slightly due to compositional changes, so that beyond-DFT
corrections to the band edges will essentially cancel out; on the other hand, strain-
induced band-edge shifts are known to be well described by standard functionals
[171]. By the same token, in this case, the gap error also essentially cancels out,
so the absolute value of the gap is immaterial to the offsets. For completeness, we
mention that the GGA gap is about 2 eV, i.e., as expected, a 60% underestimate
compared to experiment [162, 172]. Adding an empirical self-energy correction
[173] involving the calculated high-frequency dielectric constant, we obtain a gap
of 4.2 eV, not far from the most recent experimental and theoretical beyond-DFT
estimates of 4.6 and 4.7 eV, respectively, to be discussed elsewhere [172]. As
reported previously [167], the gap rates of change with composition and volume
are also close to experiment [162].
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7.3.4. Conclusions

In summary, we have performed first-principles calculations on the bulk and inter-
face properties of the Ga2O3/ (Ga1−xInx) system. Importantly, we find that In is
soluble in Ga2O3 only up to a maximum of about 10%. The band offset between
Ga oxide and the alloy at 12% In is of type-B staggered when the alloy is epitax-
ial on Ga2O3, and type-A straddling in a free-standing superlattice. The valence
offsets from Ga2O3 to (Ga1−xInx)2O3 are –0.14 eV (Ga2O3-epitaxial) and 0.15 eV
(free-standing), and the conduction offsets are –0.41 eV (epitaxial) and –0.05 eV
(free-standing).
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8. A working progress project:
XAS in pseudo-SIC taste

8.1. Brief introduction on XAS

In this section we present a brief introduction on the XAS, and on the XANES in
particular, from both experimental (briefly) and theoretical point of view.
Wilhelm Conrad Röntgen (March 28, 1845 – February 10, 1923) discovered X-

rays and in the same day he detected absorption of X-rays by matter (November
8, 1895). Some days later, he also realized that different materials display different
degrees of transparency, as he realized from the famous image of his wife’s hand
wearing a ring.
Starting from this first and simple observations, the discovery of X-rays have had

a big echo because of its applicability but also for their quick expansion through-
out the world. Indeed, the transparency noticed by Röntgen found a practical
application almost immediately in clinical Medicine: clinical X-rays transparency
images made Radiology the most productive diagnostic method to date.
Soon X-rays were also tested in detail for scientific reasons, giving benefit to

many and different branches of Science. In particular, we remind the development
of a field of X-ray-based research on solid matter that started over half a century
after Röntgen’s discovery: X-ray Absorption Fine Spectroscopy (XAFS). XAFS is
the modern development of X-ray Absorption Spectroscopy (XAS), a branch of X-
ray-based Physics that began over ten years later than Röntgen’s X-ray discovery,
and a couple of years later than X-ray Diffraction (XRD), the first widespread
form of application of X-rays for scientific purposes.
At the beginning, the XRD technique had an extraordinary success that over-

shadowed XAS that was poorly considered or even underestimated for a long time.
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Indeed, solid-state research took off thanks to XRD ability to determine the lattice
structure of ordered matter. Only during the second half of last century the XAS
began to be used where the XRD could nothing, basically in studying amorphous
materials, highly disordered systems and liquid solutions. A great contribution
to the understanding and the spreading of this technique was given by the recent
developed of powerful and brilliant X-ray sources like synchrotrons and storage
rings, at one side, and the availability of powerful computers, and computational
methods as well, that increase theoretical comprehension of the experimental re-
sults.

Nowadays XAFS is considered the best tool to study innovative materials and
to assess their technological applications. Different research field are exploiting
XAFS method, as solid-state Physics and Chemistry, to investigate new materials;
Biology to characterize natural and synthetic biomolecules; and Earth’s scientists,
to characterize amorphous or even glassy materials. As a proof of that, it is
the enormous number of requests for time reaching synchrotron laboratories from
industrial and public costumers to have access to one of the X-ray absorption
methods. We cite, for example, Mottana and Marcelli review [72] for a full review
on XAS.

X-rays are absorbed by all matter through the photo-electric effect. An X-ray is
absorbed by an atom when its energy is transferred to a core-level electron which
is ejected from the atom. The X-ray absorbing atom is left in an excited state
with an empty electronic level, namely a core hole. Any excess energy from the
X-ray is given to the ejected photo-electron. With modern XAS technique a fine
tuning of the incident photon energy is accessible and allow us to choose both the
chemical species of absorbing atom and its core level where the electron is exited
from. In Fig. 8.1 the X-ray absorption and different atomic level are schematically
represented.

When an electron absorbs the incident X-ray we observe an edge in the resulting
spectrum. The edges have different names depending on the core level of exited
electron: K and L1 for 1s and 2s level, L2 and L3 for 2p levels, M1 to M5 for 3s
to 3d levels, are the most common. The Fig. 8.2 shows the absorption K-edge
of a Nickel atom (top) and three L-edges of Eu atom (bottom). As we can see,
the structure of these spectra are quite detailed and extends over several hundreds
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Figure 8.1.: A pictorial view of the absorbing mechanism of a X-ray by the 1s core
electron and the relative jump to the continuum.

of eV. This means that different phenomena are involved in the excitation of the
electron depending on the energy of incident X-ray. Indeed a separation in two
regimes are commonly used: from the pre-edges (−10 eV before the main peak)
to the near-edge (+30 − 50 eV far from the main peak) is the XANES (X-ray
absorption near edge structure) regime; far from the main peak to about the next
peak is the EXAFS (Extended X-ray absorption fine structure ) regime.

The EXAFS spectrum is the result of the interference effect of the high en-
ergy photoelectron the interacts with scattering neighbour atoms. It has seen as
a composition of sine waves of different amplitude representative of the differ-
ent scattering paths undertaken by the photoelectron wave and mathematically
described by EXAFS equation:

χ(k) =
∑
j

Njfj(k)e−2k2σ2
j

kR2
j

sin(2kRj + δj(k))

Therefore, starting from the knowledge of photo-electron scattering properties
of the neighboring atom, namely the scattering amplitude f(k) and the phase-
shift δ(k), it is possible analyze EXAFS spectra by fitting the experimental data
with this equation, providing quantitative information on: distance to neighboring
atoms as average bond length Rj, coordination number and type of the neighboring
atoms Nj, mean-square disorder of bond length σ2

j .

From now on, we focus on XANES regime since it has been the object of our
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Figure 8.2.: (top) Experimental Ni K-edge spectrum in Ni bulk within a 1 keV
wide energy range, where XANES and EXAFS regions of interest are
highlighted. (bottom) Three different L-edges in Eu spectrum .
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studies.
In the XANES regime we probe the first accessible empty states near the absorb-

ing atom, or in other words we investigate its conduction band structure. Thus,
this provides information on the chemistry of the specific atom we are considering,
namely the average oxidation state, the local coordination environment and the
electronic structure or empty density of states.
More precisely, XANES directly probes the angular momentum of the unoccu-

pied electronic states, irrespective of their nature: bound or unbound, discrete or
broad, atomic or molecular. The spectrum is the result of the electronic tran-
sition from an initial atomic state to a final not atomic-like state. This tran-
sition, as we will see better later, is mainly governed by dipole selection rules
∆l = ±1,∆j = ±1,∆s = 0. Thus, in atomistic view, the primary transitions will
be from s level to p level (s→ p) for K (1s core electron) and L1 (2s core electron)
edges; from p level to d level (p → d) for L2 (2p1⁄2) and L3 (2p3/2) edges. But
in a molecular or crystal view the final state is usually not atomic-like and may
have mixing, namely a certain amount of hybridization with other orbitals. This
is often the interesting part of the XANES, giving us information of the type of
bonding formed by probed atom.
Usually the interpretation of XANES spectra is not straightforward and often

requires sophisticated theoretical understanding. The XANES spectrum is the-
oretically accessible via the computation of the absorption cross section. This
is given by the Fermi golden rule as a sum of probabilities per unit of time of
making a transition from an initial state to an unoccupied final state through an
interaction Hamiltonian [73]. Electronic transitions involved in X-ray absorption
spectroscopy are mainly governed by the electric dipole operator, and secondly
by a quadrupole component. The main difficulty of any absorption cross section
calculation lies in the solution of the Schrödinger equation for the final and initial
states. The choice of the method used to solve the Schrödinger equation depends
on the localized or delocalized character of final states.
Probably the best way to describe the transition is to incorporate core-hole inter-

actions in the two-particle Bethe-Salpeter (BS) equation, as proposed by Soininen
and Shirley [74]. Among the other many-body approaches we remind the crystal
field multiplet theory [75] which has been widely used with success but it need
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many adjustable parameters and is extremely time consuming.

However, in the case of K-edge XANES spectra, the core-hole is frozen at one
atomic site and the many-particle approach can be reduced to a single particle
calculation. Thus the initial state does not represent a big problem, being a
simple atomic state. The main problem is how to describe and calculate the
final state that includes the exited electron in the conduction bands, the atomic
hole and the relaxation of the whole conduction bands structure yielded by the
core hole attraction. First attempts to give an interpretation of XANES spectra
were made with band structure calculations and local projected densities of empty
states (commonly called LDOS) of system without a core hole in the final state.
(see for instance Refs. [76]). The importance to include the effect of the core hole
was observed by Schwartz and Buenker (1976) [77] that introduce the so called
Z+1 method, in which they replace the excited atom by the next element in the
Periodic Table to simulate the absence of a core electron. Another way to model the
electronic excitation was introduced by Slater [78] (and further works [79]) where
half an electronic occupation is promoted from a core state to an excited state. The
excitation energy corresponds to the difference between the final and initial state
eigenvalues, and includes relaxation effects up to second order. Alternatively one
may calculate excitation energies as differences in total energy ∆SCF between the
system in which a whole electron is promoted from a core state to an excited state
and the system in the ground state. However, straightforward implementation of
either the Slater transition state theory or the ∆SCF approach requires doing a
DFT calculation for each individual excited state.

Density-functional theory DFT approaches [81, 82, 80] have been successfully
applied to K-edges of weakly correlated materials. In a pseudopotential frame-
work, by using supercell approaches, large systems (several hundreds of atoms)
can be a priori treated. The charge density for such large cells is easy to calculate
self-consistently by using pseudopotentials. In this approach, however, the final
state for the XAS cross section is not directly accessible like in the LCAO frame-
works [83] where the reconstruction of initial and final state is included in the
method itself. Thus, the use of the projector augmented wave PAW [84] method
gives a real benefit, because it allows to reconstruct the all-electron wave func-
tion and consequently to obtain XAS intensities unaffected by the presence of a
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pseudopotential. In addition a further problem steam from high number of empty
states at many k-points in the Brillouin zone for which the diagonalization of
the Hamiltonian has to be done. To tackle this problem a method based on the
continued-fraction approach based on the recursion method of Haydock, Heine and
Kelly [86, 85] within PAW formalism [80], permits to span XAS spectra up to the
far edge region in a calculation time negligible comparing with the calculation time
of the self-consistent charge density in large systems. This approach is presented
in [80, 91] and we will report it in detail in next sections.

In ab-initio DFT methods, the core-hole interaction is included in a supercell
approach by generating a pseudopotential with a core hole in the desired atomic
core level and considering the absorbing atom as an impurity, then the relaxed
structure is self-consistently calculated. Several methods have been used, strongly
dependent on the system under investigation. The most simple one is that does
not account for the core hole (None Core-Hole), especially in those compounds
where its effect is supposed to be negligible, as in metals. The most common is
that accounts for a full core hole in the probed atom (Full Core Hole), but the
exited electron is usually removed from the system [81]. This method has been
used in those condensed matter where the final state are not too much localized.
In the case of small test molecules and clusters, the accounting for half core-
hole (HCH) has provided good agreement with experiment [88]. In the XCH
description, a full core-hole is generated into the probed atom, but this time the
excited electron remains in the self-consistent calculation with the constrain to
be in the first conduction band, or during the pseudopotential generation the
core electron is located in the first empty atomic orbital. Prendergast and Galli
[87] reproduced the XAS spectra of water in different phases, founding a good
agreement between their calculated spectra using XCH and the experimental ones.
They also compared XCH description with FCH and HCH reporting similar spectra
trends in all approaches, but an increase of spectra quality with XCH method
especially in the pre-edge region was noted and ascribed to the presence of localized
exited electron at low energies.

However, in the presence of moderate or strong correlation DFTmethods has two
main shortcomings. The first is the unsatisfactory treatment of electron-electron
interaction in the DFT functional. The second is the huge kinetic-energy cutoffs of
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norm-conserving pseudopotentials involved when transition metals and rare earths
are studied and the need to simulate large supercells with reduced symmetry that
increase much the computational time. A partial remedy for the lack of correlation
effects is the use of the DFT+U approximation [89], that has shown to improve
the agreement with experimental data in the pre-edge region of correlated 3d
transition-metal compounds [90, 91]. For what concern the second problem, in [91]
has been developed a modified version of Lanczos procedure suitable for ultrasoft
pseudopotentials, since it is known they can be used use with low cutoffs, about 20-
40 Ry, also for transition metals and rare-earth compounds, reducing significantly
the computational time.

As we have already said in previous sections, since pseudo-SIC approach manage
to describe correlated material in a very satisfactory agreement with experiment,
we think that could produce accurate XAS spectra likewise.

8.2. XANES calculation in pseudopotential

scheme

In the following we report the method to calculate the XAS cross section developed
within PAW formalism by M. Taillefumier et al. [80] and its extension to the
ultrasoft (US) pseudopotential scheme reported by C. Gougoussis et al. [91]. This
extension is of crucial importance for the applicability of this procedure within the
pSIC-DFT method, as it is based on US pseudopotentials.

(We will follow almost exactly the previous cited references.)

8.2.1. XAS cross section

In a monoelectronic approach, the X-ray absorption cross section σ(ω) can be
written as

σ(ω) = 4π2α~ω
∑
f

|Mi→f |2δ(Ef − Ei − ~ω), (8.1)

where ~ω is the photon energy, α is the fine structure constant and Mi→f are the
transition amplitudes between an initial core state |ψi〉 with energy Ei, localized
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on the absorbing atom site R0, and an all electron final state
∣∣ψf〉 with energy Ef

Mi→f =
〈
ψf
∣∣D∣∣ψi〉. (8.2)

D is a transition operator coupling initial and final states. In the electric quadrupole
approximation, D is given by ε · r

(
1 + i

2
k · r

)
, where ε and k are the polarization

vector and the wave vector of the photon beam, respectively. Within the frozen
core approximation,

∣∣ψi〉 is a core state that can be taken from an all electron
ground state atomic calculation. In the impurity model,

∣∣ψf〉 is an excited empty
state that is solution of the Schrodinger equation for a potential that includes a
core-hole on the absorbing atom.

8.2.2. PAW formalism

In the following, the transition amplitude of Eq. 8.2 is formulated within the PAW
formalism, as originally described by Blochl [84]. We only recall the main aspects
of the method that are needed to give a simple expression for the Mi→f terms.
Within the PAW formalism, the final state all electron wave functions

∣∣ψf〉 are
related to the corresponding final pseudo wave functions

∣∣ψ̃f〉 through a linear
operator T : ∣∣ψf〉 = T

∣∣ψ̃f〉. (8.3)

T differs from identity by a sum of local atom-centered contributions, that act only
within spherical core regions centered on each atomic site R, called augmentation
regions or ΩR :

T = 1 +
∑
R,n

[∣∣φR,n

〉
−
∣∣φ̃R,n

〉] 〈
p̃R,n

∣∣. (8.4)

Here
∣∣φR,n

〉
and

∣∣φ̃R,n

〉
are the all electron and pseudo partial waves, respectively,

which coincide outside ΩR. The vectors
〈

˜pR,n
∣∣, called projector functions [84],

are equal to zero outside ΩR and satisfy the condition
〈

˜pR,n
∣∣φR′,n′

〉
= δRR′δnn′ .

The index n refers to the angular momentum quantum numbers (l,m) and to an
additional number, used if there is more than one projector per angular momentum
channel. The

∣∣φR,n

〉
form a complete basis for any physical non-core all electron
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wave function within ΩR
1. Therefore the

∣∣φ̃R,n

〉
are also a complete basis for

any physical pseudo wave function
∣∣ψ̃f〉 within ΩR, i.e. for

〈
r
∣∣χR

〉
any function

centered on an atomic site R and equal to zero outside ΩR,∑
n

〈
ψ̃
∣∣p̃R,n〉〈φ̃R,n

∣∣χR

〉
=
〈
ψ̃
∣∣χR

〉
. (8.5)

Substituting Eq. 8.4 in Eq. 8.3 and then Eq. 8.3 in Eq. 8.2, the transition
amplitude Mi→f becomes

Mi→f =
〈
ψ̃f
∣∣D∣∣ψi〉+

∑
R,n

〈
ψ̃f
∣∣p̃R,n〉〈φR,n

∣∣D∣∣ψi〉−∑
R,n

〈
ψ̃f
∣∣p̃R,n〉〈φ̃R,n

∣∣D∣∣ψi〉. (8.6)

In Eq. 8.6, the initial wave function
〈
r
∣∣ψi〉 is localized on the site of the absorb-

ing atom, R0, then only the R0 term has to be considered in each sum. Further-
more it should be noticed that

〈
r
∣∣D∣∣ψi〉 is zero outside the ΩRo region. Therefore

we can make use of Eq.8.5 for the third term of Eq.8.6, which thus vanishes with
the first term. The transition amplitude Mi→f is then reduced to one term. Now,
introducing ∣∣ϕ̃R0

〉
=
∑
R,n

∣∣p̃Ro,n

〉〈
φR0,n

∣∣D∣∣ψi〉, (8.7)

we obtain the following simple expression for the X-ray absorption cross section

σ(ω) = 4π2α~ω
∑
f

|
〈
ψ̃f
∣∣ϕ̃R0

〉
|2δ(Ef − Ei − ~ω). (8.8)

Thus Eq.8.8 expresses the XAS cross section in terms of single-particle states
obtained from a pseudopotential calculation. Note that in Eq.8.7 there is an
infinite number of projectors. Practically only a few projectors are needed to
achieve convergence.
The calculation of XANES spectra from Eq.8.8 has the problem of determining

many empty states
∣∣ψ̃f〉. Indeed, the addition of unoccupied bands significantly

increases computing time and then limits the size of the supercells. In the following
section 8.2.4, we show how the recursion method permits the cross section Eq.8.8

1The solutions of the radial Schrödinger equation for the isolated atom is a natural choice for
the all electron partial waves.
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to be rewritten as a continued fraction, so that only occupied bands have to be
calculated.

8.2.3. Ultrasoft pseudopotential extension

Here we report the formulation of XAS cross section 8.8 for the ultrasoft pseu-
dopotentials reported in [91].

In an ultrasoft scheme the norm of the pseudopartial waves is different from
the norm of the corresponding all-electron partial waves. For this reason it is
customary to define [212] the integrated augmentation charges qR,nm as

qR,nm =
〈
φR,n

∣∣φR,m

〉
−
〈
φ̃R,n

∣∣φ̃R,m

〉
.

The S operator defined in the ultrasoft scheme25 is then

S = 1 +
∑
R,m,n

∣∣p̃R,n〉qR,nm〈p̃R,m∣∣ = 1 +
∑
R

QR.

The pseudo-Hamiltonian H̃ and the pseudoeigenfunctions
∣∣ψ̃f〉 satisfy the fol-

lowing equation:25
H̃
∣∣ψ̃f〉 = EfS

∣∣ψ̃f〉. (8.9)

Multiplication of Eq. 8.9 by S−1/2 leads to

S−1/2H̃S1/2
∣∣ψ̃f〉 = EfS

1/2
∣∣ψ̃f〉.

The following identity hold (for proof see Appendix of [91]):

π
∑
f

∣∣ψ̃f〉δ (Ef − x)
〈
ψ̃f
∣∣ = lim

γ→0
J
[
G̃(x)

]
, (8.10)

where x is a real number and

G̃(x) = S−1/2 1

x− S−1/2H̃S−1/2 − iγ
S−1/2

Using Eqs. 8.10and 8.8, the XAS cross section can finally be written in a suitable
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form for a standard Lanczos procedure

σ(ω) = 4πα~ω lim
γ→0
J
[〈
φ̃Ro

∣∣G̃(~ω + Ei)
∣∣φ̃Ro

〉]
. (8.11)

where Ei is the energy of the initial state that in a pseudopotential scheme is
determined up to an overall constant. In the case of a unit cell having multiple ab-
sorbing sites, which are equivalent under the point-group symmetry of the crystal,
Ei is the same for all the absorbing atoms and the choice of Ei simply corresponds
to a rigid shift in the overall spectrum. On the contrary, in the case of nonequiva-
lent absorbing sites in the unit cell, the value of Ei depends on the absorbing site
due to the core-level shift. In this case the choice of Ei is not arbitrary and careful
determination of the core-level shift is needed. For simplicity in this work we con-
sider only examples in which there are only equivalent absorbing sites in the unit
cell. The determination of the core-level shift in the case of multiple nonequivalent
absorbing sites will be given elsewhere. Thus in what follows we choose the energy
Ei to be the Fermi level, in the metallic case, the highest occupied state, in the
insulating case.

8.2.4. Lanczos recursion method

Here a recursion method to solve the XAS cross section 8.11 for US pseudopotential
scheme is presented, following the [91].

Equation 8.11 can be calculated using the Lanczos recursion method [86, 85].
The quantity

〈
φ̃Ro

∣∣G̃(E)
∣∣φ̃Ro

〉
is evaluated using the continued fraction,

〈
φ̃Ro

∣∣G̃(E)
∣∣φ̃Ro

〉
=

〈
φ̃Ro

∣∣S−1
∣∣φ̃Ro

〉
a0 − E − iγ − b21

a1−E−iγ−
b22

...

where the real numbers ai and bi are computed recursively by defining the vectors∣∣ui〉 such that ∣∣u0

〉
=

s−1/2
∣∣φ̃Ro

〉√〈
φ̃Ro

∣∣S−1
∣∣φ̃Ro

〉 ,
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S−1/2H̃S−1/2
∣∣ui〉 = ai

∣∣ui〉+ bi+1

∣∣ui+1

〉
+ bi

∣∣ui−1

〉
.

The ai and bi coefficients are defined as

ai =
〈
ui
∣∣S−1/2H̃S−1/2

∣∣ui〉,
bi =

〈
ui
∣∣S−1/2H̃S−1/2

∣∣ui−1

〉
.

This is essentially a standard Lanczos process where the initial vector is
∣∣ui〉

and the Hamiltonian H̃ is replaced by S−1/2H̃S−1/2. However this is not the more
efficient way to carry out the Lanczos chain since two multiplications by S−1/2 are
involved and the S matrix is of the same order as the Hamiltonian, namely, the
dimension is given by the number of plane waves in the calculation the kinetic-
energy cutoff. Thus any application of S−1/2 costs as much as the application of
H̃.
A more efficient way to implement the Lanczos process is obtained by defining

the auxiliary vectors
∣∣ti〉, namely,

∣∣ti〉 = S1/2
∣∣ui〉.

Using this definition, the Lanczos process can now be directly carried out on the∣∣ti〉vectors as ∣∣t0〉 =

∣∣φ̃Ro

〉√〈
φ̃Ro

∣∣S−1
∣∣φ̃Ro

〉 ,
H̃S−1

∣∣ti〉 = ai
∣∣ti〉+ bi+1

∣∣ti+1

〉
+ bi

∣∣ti−1

〉
,

where the new Lanczos vectors
∣∣ti〉 are no longer orthogonal but

〈
ti
∣∣S−1

∣∣tj〉 = δi,j.
If during the Lanczos chain the vectors

∣∣t̃i〉 = S−1
∣∣ti〉 are stored then the ai and bi

coefficients can be defined as
ai =

〈
t̃i
∣∣H̃∣∣t̃i〉,

bi =
〈
t̃i
∣∣H̃∣∣t̃i−1

〉
,

Now, each iteration needs only one multiplication by S−1, one multiplication by
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H̃, and four Lanczos vectors stored in memory, namely,
∣∣ti−1

〉
,
∣∣t̃i−1

〉
,
∣∣ti〉 and ∣∣t̃i〉.

To achieve an efficient implementation of the Lanczos process, particular care
needs to be taken in inverting the S matrix to calculate S−1. Direct inversion of
the S matrix is unfeasible being the order of the matrix given by the number of
plane waves. Using the definition of S in terms of the Np ultrasoft projectors,
the calculation of S−1 can be performed very efficiently by simple products and
inversions of matrices of the order of Np×Np, as it was demonstrated in Appendix
of [91].

8.3. Implementation within pseudo-SIC

The method presented in Ref. [91], and reported in the previous section 8.2,
has been implemented in the tool XSPECTRA that belongs to the Quantum
ESPRESSO (QE) software package [92, 69].
We decided to import the main procedures of XSPECTRA tool within our code

(PWSIC) because the latter is an old fork of PW code of QE, so they share most
of the basic architecture. In addition, we think that the SI correction play its
rule only in the calculation of quantity

〈
φ̃Ro

∣∣G̃(E)
∣∣φ̃Ro

〉
, performed by Lanczos

routine where the pseudo-SIC Hamiltonian could be easily substituted to the LDA
or GGA Hamiltonian used in the standard routine.
Since we need of both core and valence all-electron wavefunctions of the absorb-

ing atom to calculate 8.3, the pseudopotential used by XSPECTRA are accord-
ingly modified to contain that additional information. Our program PWSIC uses
a modified version of original program of Vanderbilt [93] to calculate the US pseu-
dopotentials, thus we edited it to produce all-electron wavefunctions as output as
well.
Here, I will picture schematically main steps of the routine that performs the

calculation of XAS cross section:

• For each k point of a complete grid:

– calculation of projector
∣∣p̃Ro,n

〉
needed by function

∣∣ϕ̃R0

〉
, defined in

(8.7);

149



Chapter 8. A working progress project: XAS in pseudo-SIC taste

– calculation of function
∣∣ϕ̃R0

〉
, using 1s core and valence orbitals of ab-

sorbing atom from pseudopotential, and normalization of
∣∣ϕ̃R0

〉
;

– perform the Lanczos method on
∣∣ϕ̃R0

〉
, applying the pseudo-SIC Hamil-

tonian,

– and production of Lanczos ai and bi coefficients, stored in a separated
file for an eventual post-processing.

• Perform the plot of XAS spectrum from Lanczos coefficients, cutting the
occupied state as explained in [94].

8.3.1. First test applications

Below, I will account for some calculations of K-edges XAS spectra for different
systems, performed using the PWSIC method supplemented by the XAS routine.
I have chosen the same systems which were used in [91, 90] to have as better
comparison as possible for my results, proving then the validity the method. I
performed some trials on systems with and without core-hole in the absorbing
atom, with different sizes, to see the effect of core-hole; with different number of
projector per l-channel; employing simple LDA approximation or pSIC procedure.
The pseudopotential used are ultrasoft, corrected by SI with the procedure explain
in Section 5.1.3, and containing only one 1s electron (depending on case); plane
waves were expanded with a energy cutoff of 30-40 Ry depending on the system;
reciprocal-space integrations were performed using a full Monkhorst-Pack k-point
grid. The calculations presented account for only the electric dipole component
(some quadrupole calculations has been performed but will not be showed), which
has always been performed after a self-consistent calculation of charge density of
the probed supercell (including or not the 1s core-hole). The zero of energy is
determined from the self-consistent calculation: in the metallic case the Fermi
level has been chosen while in the insulating case the highest occupied state.

SiO2 α-quartz

I will consider here SiO2 α-quartz, which have a hexagonal unit cell with lattice
parameters a = 4.9141 Å and c = 5.4060 Å [95]. The XANES Si K-edge spectrum
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was calculated for a 2x2x2 (72 atoms) supercell with core-hole in one of Si atom.
A 2x2x2 grid of k-points was used for charge density calculation, while a 3x3x3
grid was used for Lanczos recursion. Notice that only the c-axis parallel dipole
component is shown. The top figure 8.3 shows the comparison of experimental
spectrum with one calculated using QE in LDA approximation (taken from [91])
that represents our reference. The bottom figure 8.3 is divided into two panel. In
the top panel, I show the spectra obtained using QE and PWSIC codes in LDA
approximation, but both employ a US pseudopotential for Si and O atoms, with
one Si modified to have the 1s core-hole. As we can see, the agreement is very
good, except for an underestimation of the main peak in the PWSIC spectrum.
The QE one is almost identical to that shown in the top of the Figure 8.3 and
thus to the experimental one. This confirm that the pseudopotential that I have
generated is valid and is not the cause of the underestimation of the main peak.
As we will see for the diamond spectra, this feature is common and needs a deeper
understanding.

The bottom panel contains two main information. The first is the effect of core-
hole presence which is necessary for a good description of the main peak, shown
by the difference of the black curve respect with the other two’s. The second is
the effect of the additional empty 4s, 4p orbitals contained in the pseudopotential
of the absorber atom. The standard configuration of Si atom is [Ne]3s2 3p2, but
since we are interested in 1s→ p empty states transitions, we need to add more p
states, 4p in this case (4s is not necessary, but it was included as well). Actually,
as expressed in Eq. 8.7, we would need an infinite number of projectors, but
usually a good result is obtained with only two projectors. Observing the blue
and red curves, it is easy to see a better agreement of the spectra of the latter in
all the energy range, especially around 10 eV and after 25 eV. Of course, I used
a pseudopotential with 2 projectors for p states to calculate the spectrum of the
supercell with core-hole show in the top panel.

Diamond

Figure (8.4) (top) shows the result of the K-edge XANES calculation for a 2x2x2
(16 atoms) supercell of diamond with and without the 1s core-hole in one Carbon

151



Chapter 8. A working progress project: XAS in pseudo-SIC taste

atom chosen as absorber, from a QE calculation with LDA approximation. For
similar reason explained for SiO2 case, I generated a C pseudopotential containing
two p projectors. The grid of k-point for the charge density and for Lanczos recur-
sive method was a 4x4x4. In the bottom part of Figure (8.4), I show the spectra
obtained from the routine implemented in PWSIC with and without core-hole,
using both LDA (top panel) and pSIC (bottom panel) methods, to be compared
with the top part of the Figure (8.4). Very good agreement is observed, giving
another proof of the good working of the routine. To be noted that, the application
of pSIC method continues to reproduce the correct general shape of spectra, but
we cannot show here its effect, as it could be guessed since pSIC and LDA band
structure for diamond are much similar. Again, an underestimation of the main
peak is observed for both methods used, as in previous SiO2 case.

Copper

Here, I consider the K-edge XANES spectra of metal Cu bulk, which crystallizes
in the fcc structure with lattice parameter 3.601 Å [96], at room temperature. In
this case, I used a 3x3x3 supercell with 27 Cu atoms, in which one of them is the
absorber containing a 1s core-hole and two p projectors. Since it is a metal, LSDA
is sufficient to access the correct band structure. I used a 2x2x2 k-points grid for
charge density, and a 3x3x3 grid for XAS calculation. The agreement between
experimental (bottom, dotted line) and calculated (top) spectrum is well shown
in the Figure 8.5. All A, B, C, D and E peaks are well localized. We remind
that the calculated spectrum shown in the bottom of the Figure 8.5 come from a
calculation where a more dense k-point grid was used [91].

La2CuO4

La2CuO4 is the parent compound of high-Tc superconductors. It is an antifer-
romagnetic correlated insulator considered as a challenge for density-functional
theory. Experimentally, La2CuO4 is an insulator with a gap around 2 eV [97]
and exhibits an antiferromagnetic order with a magnetic momentum on copper
atoms around 0.5 µb. At low temperatures La2CuO4 present a weak orthorhom-
bic distortion of the tetragonal structure. In our pSIC calculation we neglect the
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orthorhombic distortion and consider the tetragonal structure having a = 5.357 Å
and c = 13.143 Å [98]. Our electronic structure calculation of the tetragonal cell
with 28 atoms, without a core-hole, and a 4x4x4 k-points grid gives a gap around
1 eV and a magnetization of about 0.66 µB.

For the Cu K-edge XAS dipolar cross section calculation, I used the same pseu-
dopotential used for pure metal copper, with a core-hole inside, and a grid of
4x4x4 k-points for Lanczos recursion. The result for c-axis parallel component of
spectrum is pictured in Figure 8.6 (bottom) together with the experimental and
GGA+U spectra (top) taken from [91]. The general agreement in very good, since
all the three features are reproduced at the right energy.

NiO

Nickel oxide is a prototype of correlated material or Mott insulator, in which
the elementary excitation is a charge transfer from O valence states to mainly
Ni conduction states located above the valence top. The pSIC approach allows to
access to a correct gap value and a magnetic moment, as reported in [56]. Whereas
the XAS calculation with the implemented procedure is still an open problem, as
I will explain below.

The NiO experimental crystal structure was probed. The paramagnetic-cell
group space is Fm3̄m where Ni occupies the 4a position and O the 4b. The cubic
lattice parameter is a = 4.1788 Å [99] and our antiferromagnetic fcc cell contains
16 atoms. I used a 4x4x4 k-points grid for both charge density and Lanczos
calculation. Since the addition of the core-hole avoid the convergence of charge
density calculation, we had access only to a spectrum that is not influenced by
core-hole attraction. The problem need to be investigated deeper, but likely it can
be solved considering a large supercell in which the core-hole replicas are more
distant and their interaction could be lower. Nonetheless, Figure 8.7 shows a quite
good agreement between experimental and pSIC spectra. In particular, peaks E,
D and C are very well reproduced, whereas peak B is downshifted by around 2 eV.
This peak is due to d states above the valence top. The problem comes from the
fact that I obtain a reduced band gap, around 3 eV, due to a low accuracy of my
charge density calculation. The interpretation of peak A is quite controversial (see
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[90]) and we will not further discuss it here, but we say that since it much depend
on the core-hole presence, we can not access to it yet.

Figure 8.3.: (top) Experimental and calculated, using QE/XSPECTRA, Si K-edge
XAS spectra of SiO2 as they appear in Ref. [91]. (bottom) Compar-
ison between QE/XSPECTRA and PWSIC calculated spectra (top
panel) and the effect of core-hole and of the projectors in the spetrum
calculation (bottom panel). In both figures, only the parallel to c-axis
component of XAS cross section is shown.
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Figure 8.4.: (top) C K-edge XAS spectrum in Diamond calculated in LDA approx-
imation using QE/XSPECTRA code. (bottom) Same spectra calcu-
lated with PWSIC code using LDA (top panel) and pSIC (bottom
panel) approximations, including or not the presence of the core-hole.
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Figure 8.5.: (top) Calculated Cu K-edge XAS spectrum in bulk copper using
PWSIC code. (bottom) Experimental and theoretical spectra as
shown in Ref. [91] where LDA approximation and QE/XSPECTRA
code were used.
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Figure 8.6.: (top) Cu K-edge XAS spectrum of La2CuO4 calculated with PWSIC
in the presence of core-hole. (bottom) Experimental and theoreti-
cal spectra as shown in Ref. [91] where GGA+U approximation and
QE/XSPECTRA code were used. In both figures, only the parallel to
c-axis component of XAS cross section is shown.
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Figure 8.7.: Ni K-edge XAS spectrum of the correlated insulator NiO in its an-
tiferromagnetic phase calculated in PWSIC code, compared with ex-
perimental spectrum from Ref. [100].
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In this concluding section, I will summarize all main outcomes of various works
developed during my PhD and presented in this thesis.
In chapter 2, a study of the SrRuO3/PbTiO3/SrRuO3 multiferroic junction has

been reported. A large ferro-electric polarization and two different potential pro-
files, due to asymmetric interfaces, have been assessed. Morover, both giant tun-
neling electro-resistance and the interface magneto-electric effect has been shown.
The latter effect modulates, upon the inversion of polarization, the in-plane spin
conductance and it could be exploitable in pratical applications. As it has been
done for the well known SrRuO3/BaTiO3/SrRuO3 MFTJ, to complete the study
of our MFTJ, we plan to study the tunneling magneto-resistance, which we may
expect to find as large as TER. Another interesting research line is that of mag-
netic doping of the FE layer or the interfaces. The latter doping, in particular, was
started with the substitution of an interface Ti atom with a Vanadium to observe
the influence on the TER and ME effects.
Around the same area is located our work, presented in chapter 3, on the pos-

sibility of doping the PbTiO3 with Vanadium with the aim of adding magnetic
properties to a ferroelectric material. In fact, we have found that V:PTO is a fer-
roelectric insulator with a stable ferromagnetic phase, thus a proper multiferroic
compound.
In chapter 4, I have reported an on-going investigation about what we consider

the first ferroelectric metal: the layered perovskite Bi5Ti5O17 (Bi-5517). We have
demonstrated the coexistence of metallicity, mainly localized in low-dimensional
electron gas, and native bulk ferroelectric polarization. The crucial point of as-
sessing a residual field in a finite slab of Bi-5517 is still under development. The
slab separated by vacuum presented here was the first attempt to accomplish this
target. Thought we have shown that we find the existance of survival polarization,
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we think that this effect could be a product of dangling bonds of one termination,
that capture part of the free conduction electrons. To avoid this problem we have
studied a Bi-5517 slab grown on top of the Bi2Zr2O10 perovskite that is an insula-
tor with a very similar structure of Bi-5517. Since in this system the polarization
disappears because of conduction electrons, we have tried to dope the Bi-5517 with
a single Ca atom, in place of a Bi atom, to reduce the amount of free charge. This
system has shown a residual polarization, even though remaining metallic. We
are convinced that this first investigation will open the way to significative both
conceptual and applicative perspectives.

In chapter 6, we have presented an investigation of the electronic structure of
CaCu3Ti4O12 performed comparing different density functional based methods,
proposing a new interpretation of the four optical transitions observed experimen-
tally. This work represents another good proof to validate the reliability of pSIC
approach, that along with the account for the effect of spin disorder, though ap-
proximate, is able to reproduce the experimental spectrum and explain the correct
origin of its features.

In chapter 7, we have reported three different works about the promising TCO
material Ga2O3. The first study (Section 7.1) has been developed in collaboration
with the research group of Prof. Fornari at the University of Parma, with the aim
of characterizing the gap of Ga2O3 in its β phase. The crucial aspect of this work
has been the use of the routine that calculate the dielectric function, implemented
in our code PWSIC. Thank to the accuracy in band structure calculation of pSIC
method, the calculated spectra has turned out to be in very good agreement with
the experimental ones, confirming the anisotropy of optical absorptions.

Motivated by the previous study, we develop a further investigation on the dop-
ing of Ga2O3 with In, reported in sections 7.2 and 7.3. We perform ab-initio
DFT-GGA calculations of the electronic and local structural properties depending
on In concentration. Next, we have found the maximum In solubility in β−Ga2O3

around 10%, that is the first theoretical assessment and close to recent experimen-
tal value. In addition, we study the band alignment of interface between β-Ga2O3

and (Ga1−xInx)2O3 at 12%, in different growth conditions. This should be the first
theoretical investigation in this type of interfaces that are considered promising
in the searching of new TCO materials for electronic applications. Indeed, we are
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currently perfoming an opposite study focused on the doping of In2O3 with Ga,
obtaining interesting results.
Finally, in chapter 8, I have showed the first test applications of the routine

for XAS cross section calculation that exploits the pSIC approach. Observing
the calculated spectra compared with both experimental and calculated by QE
code, we have the evidence that the porting of routine is properly working and
the correction to the band structure provided by pSIC method allows to reproduce
the main aspects of experimental spectrum. Although the routine porting is not
completed and the role of core-hole deserves further investigations, we think that
the capability to reproduce XAS spectra exploiting the pSIC method may surely
open the way to a deeper knowleadge of experimental spectra coming from a wide
range of materials, expecially strong correleted ones, difficult to be accessed with
standard DFT functional, in a more accurated form respect to LDA+U method,
and limiting the computational cost respect with GW method. Materials such as
transition metal oxides, CuO for example, and doped cuprates, known for their
superconductive properties, are all well described by pSIC method, hence they rep-
resent first candidates to be probed by XAS routine. Secondly, we could devote our
attention to give a theoretical support to XAS spectra of some complex molecules,
frequently studied by chemists by using experimental XAS. Problably too ambi-
tious, the investigation, using calculated XAS, of two-dimensional electron gas at
the interface between oxides, whereas accessed by experimental XAS.
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