
Contrasting patterns in leaf traits of Mediterranean shrub communities along an elevation

gradient: measurements matter

Giandiego Campetella1, Stefano Chelli1*, Camilla Wellstein2, Emmanuele Farris3, Giacomo Calvia4,

Enrico Simonetti1, Lubov Borsukiewicz5, Sula Vanderplank6, Michela Marignani4

1 School of Biosciences and Veterinary Medicine, Plant Diversity and Ecosystems Management 

Unit, University of Camerino, Via Pontoni 5, I-62032 Camerino, MC, Italy. 
2 Faculty of Science and Technology, Free University of Bozen-Bolzano, Piazza Università 5, I-

39100 Bozen, Italy.
3 Department of Chemistry and Pharmacy, University of Sassari, Via Piandanna 4, I-07100 Sassari, 

SS, Italy.
4 DISVA, University of Cagliari, Viale Sant’Ignazio da Laconi, 13, I-09123 Cagliari, Italy.
5 Lviv University Botanical Garden, Botanical Garden of Lviv, Ivan Franko str. Cheremshyna, 44 

Street. Cyril and Methodius, 4, Lviv, 79014 Ukraine.
6 San Diego State University Research Foundation, 5250 Campanile Drive, San Diego, CA 92182 

USA.

* Corresponding author: stefano.chelli@unicam.it

1

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

2



ABSTRACT

We assessed the changes in community weighted mean (CWM) and variability of specific leaf area

(SLA) and leaf area (LA) of different Mediterranean shrub communities along an elevation gradient

in the island of Sardinia (Italy). Furthermore, we explored the relative contribution of species

turnover and intraspecific variation to shifts in CWM values along the gradient. 

Forty sampling units (5x5m) were selected in a probabilistic way along a 1,300 m elevation gradient

which crossed four thermotypes (thermometric belts). Leaf traits were measured in each sampling

unit. ANOVA and a trend test for monotonic changes in variance were used to assess respectively

CWM differences and variability in both the leaf traits across thermotypes. Variance decomposition

of CWM values was used to identify the role of inter- and intraspecific variation.

SLA and LA responded differently along the studied gradient in terms of abundance weighted mean

values and variability: CWM of SLA showed the lowest values in the driest thermotype, while LA

in the more humid one; SLA variability showed a significant increasing trend with increased water

availability, while LA variability did not show any pattern. The contribution of intraspecific trait

variation was significant for both the leaf traits, but higher for SLA, where negative covariation

between inter- and intraspecific variation was detected.

We highlight the importance of simultaneously considering measurements of both leaf traits to

understand the functional response of communities in Mediterranean environments. Moreover,

neglecting intraspecific variation in leaf traits, even along steep gradients with relevant species

compositional changes, can result in the underestimation of the amount of trait variation in response

to environmental changes.

Keywords: community weighted mean; interspecific and intraspecific variation; leaf area; plant 

functional traits; specific leaf area, trait-environment relationship.

Running head: Leaf traits variation in Mediterranean shrublands
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INTRODUCTION A large number of studies have identified relationships between traits and

environmental conditions (Garnier et al. 2016 and references therein), such as climate and soil

properties at different scales and in different regions and systems (e.g. Ackerly 2004; Wright et al.

2004; Ordonez et al. 2009). However, the extent to which such patterns can be generalized beyond

the studied scale/region/system is still unknown (Shipley et al. 2016). In particular, despite the

Mediterranean biogeographic region being one of the world's most important reservoirs of plant

diversity (Medail and Quezel 1999) and one of the most vulnerable areas of the planet to climate

change (Thuiller et al. 2005; Cuttelod et al. 2009; Moreno and Oechel 2012), the trait-environment

relationship is still poorly investigated (Chelli et al. 2019). Here temperature is expected to increase

(Senatore et al. 2011) together with an increase in weather extremes in both the sense of heavy

rainfall and summer heat waves, with a high incidence of drought (ISAC-CNR 2009). In this

context, shedding light on the trait-environment relationship along temperature and water stress

gradients can help to interpret vegetation response under changing climatic conditions (Scherrer et

al. 2017).

In the Mediterranean biogeographic region, shrublands are one of the most important and

widespread vegetation types (Naveh and Whittaker 1979; Cowling et al. 1996; Shoshany and

Karnibad 2011). Such vegetation is dominated by evergreen shrubs usually with small and

sclerophyllous leaves as part of their drought tolerance strategy (Mooney and Dunn 1970).

Of all plant traits, those of leaves are among the most important when it comes to water-use

strategies (Wilson et al. 1999; Vendramini et al. 2002). Specific Leaf Area (SLA, the light-

capturing surface area per unit of dry biomass, Poorter et al. 2009), is generally recognized as one

of the most significant trait to study water and nutrient availability impacts on plant growth (Wright

et al. 2001; Reich et al. 2014; Wellstein et al. 2017). Leaf Area (LA) is another trait which has

significant implications regarding the regulation of leaf temperature and water-use efficiency during

photosynthesis (Ackerly et al. 2002). SLA and LA are two fundamental traits influencing

community structure and functioning of Mediterranean ecosystems (Gross et al. 2013).

In community level studies based on average trait values for species, LA and SLA usually showed

parallel changes, which suggests that these traits are linked in their functional strategy associated

with water and/or nutrient availability (Ackerly et al. 2002 and references therein). Accordingly,

global studies showed a decrease in LA and SLA along with decreasing water and/or nutrient

availability (Poorter et al. 2009; Wright et al. 2017). However, comparative studies accounting for

species trait variability suggested that LA and SLA may not be strictly related (e.g. Ackerly et al.

2002), thus highlighting the importance of approaches taking into account both leaf traits and their

intraspecific variation along environmental gradients.
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Decreased plant growth rates are associated with lower SLA values (Wellstein et al. 2017 and

references therein), and are often found under conditions of water stress (Chapin 1991), as they can

improve water-use efficiency (Wright et al. 2001). LA shows a similar trend, with small leaves

reducing resistance in the boundary layers and allowing the plant to maintain lowered temperatures

and higher photosynthetic water-use efficiency when solar radiation is high and water availability is

low (Wright et al. 2001; Ackerly et al. 2002). In short, SLA and LA are good proxies of broad

resource-use strategies and are negatively correlated with many other hard and soft leaf traits (e.g.,

leaf toughness, leaf longevity, leaf dry matter content, stomatal conductance; Wright et al. 2002;

Reich et al. 2003; Wright et al. 2004; Hoffmann et al. 2005).

Few papers deal with changes in leaf traits along environmental gradients of shrubs communities in

Mediterranean-type climates (e.g., Ackerly et al. 2002; Ackerly 2004; Anacker et al. 2011,

conducted in North American chaparral), confirming the above described patterns of SLA and LA.

Additional studies used leaf traits to explore assembly rules along aridity gradients in shrublands of

the Mediterranean basin (e.g., Gross et al. 2013; Le Bagousse-Pinguet et al. 2015).

Looking at a single trait allows the range and distribution of values to inform the relationship

between ecosystem function and community structure (Ackerly et al. 2002). In order to summarize

the functional composition of plant communities for a certain trait taking into account species

abundances, Garnier et al. (2004) proposed the so-called ‘community-weighted mean trait values’

(CWMs).

Changes in community composition along climate and soil gradients are expected to be strongly

represented in leaf traits, due to their reflection of water-use strategies (Le Bagousse-Pinguet et al.

2017). Increased variability in these leaf traits is expected when conditions are favorable for plant

life, e.g., water and temperature stress are reduced; soils are more fertile (Ackerly et al. 2002;

Hoffmann et al. 2005; Cornwell and Ackerly 2009). In contrast, habitat filtering may occur in the

face of extreme aridity or a reduction in water availability, reducing the distribution of SLA and LA

values within the community, and suggesting that species with high stress tolerance do not

generally inhabit broad environmental ranges (Thuiller et al. 2004). 

Most studies focusing on trait-environment relationships along gradients used only mean trait

values per species (usually weighted by species proportions), assuming that between-species trait

variation is generally considerably greater (e.g. Cornelissen et al. 2003) than within species

variation. However, it is clear that some traits are more variable than others (Siefert et al. 2015), and

a growing number of studies confirm that intraspecific variation could play a relevant role to shifts

in community-level trait measures (i.e., Lepš et al. 2011; Kichenin et al. 2013) and assembly rules

(i.e., Jung et al. 2010; Le Bagousse-Pinguet et al. 2015) along environmental gradients. In
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particular, both SLA (Wellstein et al. 2013, 2017; Liancourt et al. 2015) and LA (Fraser et al. 2009)

showed a certain intraspecific variation, with SLA demonstrating a larger one (Rozendaal et al.

2006; Siefert et al. 2015).

In this paper, we aimed to assess the patterns of community level leaf traits (namely, SLA and LA)

along an elevation gradient (1,300 m) spanning four thermotypes or thermometric belts, defined on

the basis of temperature data condensed in two indexes (It = thermometric index; Tp = positive

annual temperature), following Rivas-Martìnez et al. (2011) method, and mapped by Canu et al.

(2015) in Mediterranean shrubland ecosystems in the island of Sardinia (Italy). We measured leaf

traits at plot level in order to take into account intraspecific variability. 

In particular, we propose the following hypotheses:

H1 SLA and LA at community-level should be significantly lower in the most arid climate

(thermotype 1) compared to the most cool and moist environment (thermotype 4).

H2 The variability of both leaf traits (in terms of variance) should increase (niche differentiation)

toward the cooler and moister end of the gradient (thermotype 4). 

Furthermore, we disentangled the contribution of interspecific (i.e. species turnover) and

intraspecific trait variation to shifts in CWM values along the gradient, hypothesizing (H3) a

significant influence of intraspecific variation in both leaf traits.

MATERIALS AND METHODS

Study area

Sardinia, the second largest island in the Mediterranean Sea (ca. 24,090 km2), has a unique flora as

a result of the unique geological history that played an essential role in shaping plant diversity

(Medail and Quezel 1999; Mansion et al. 2008). The Sardinian flora consists of 2,301 native

vascular plants (Bartolucci et al. 2018), of which more than 170 are endemic to the island:

concentrated mainly in the mountains (Cañadas et al. 2014). This study has been conducted in the

NE part of Sardinia (Figure 1), locally known as the Gallura subregion, with constant geology in the

altitudinal gradient, being characterized by Hercynian granites, having homogeneous slopes and

patterns of degradation. Furthermore, the selected area is also considered homogeneous from a

biogeographic standpoint (Fenu et al. 2014). Altitude range in this area is from 0 (coast) to 1354 m

(top of Mt. Limbara massif). This altitudinal gradient allows five different thermotypes to occur in

the study area (Canu et al. 2015). Thermotypes are described on the basis of thermicity indexes

developed by the Worldwide Bioclimatic Classification System (Rivas-Martìnez et al. 2011).

Annual mean temperature ranged from 16.6°C in the coastal area to 10.5°C at the top of Mt.

Limbara; annual rainfall ranged from 560 mm to 1160 mm.
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Potential natural vegetation of the area (sensu Farris et al., 2010) is represented by different forest

types depending on the thermotypes: the coastal thermo-Mediterranean belt is characterized by the

presence of Phoenician juniper vegetation (Oleo-Juniperetum turbinatae and Erico-Juniperetum

turbinatae on southern and northern slopes, respectively). Wild olive (Olea europaea) vegetation is

prevalent in the lower meso-Mediterranean belt, holm-oak (Quercus ilex) vegetation prevails at

both the upper meso-Mediterranean (Galio-Quercetum ilicis) and sub-Mediterranean and

Temperate belts (Saniculo-Quercetum ilicis). 

The intense past sylvo-pastoral management, that included the use of fire and extensive plantations

of alien trees, changed the landscape and determined the current situation where the shrublands

represent the most abundant plant communities present in the area.

Sampling design

To study a strong climatic gradient, we needed strata that could represent the range of temperatures

and water stresses characterizing our study area, stretching from the coastline to the inner areas of

Sardinia. To describe this gradient, we adopted a modified version of the thermotypes recognized in

the bioclimatic map of Sardinia (Canu et al. 2015) where we unified the upper belts into a unique

“temperate” cacuminal belt, to obtain 4 different thermotypes describing the whole transect (Figure

1): upper Thermomediterranean (T1); lower Mesomediterranean (T2); upper Mesomediterranean

(T3) and lower Supratemperate (T4).

The study area was defined creating a grid of 1 km2 units including the Limbara massif and

extending eastward toward the Olbia coastline (40 km gradient): regarding the other relevant

environmental factors, we can consider geology (also soil), erosion patterns, history (including fire

regime and cutting) and animal influence as constant along the bioclimatic gradient.

From the original 495 quadrats, we excluded i) all the mixed quadrats crossing two thermotypes,

and ii) all quadrats showing a land cover characterized by less than 50% of shrubs and garrigues

(CLC Regione Sardegna). Among the remaining quadrats, within each of the four strata we selected

five sampling quadrats; in each sampling quadrat, we performed a random selection of 2 sampling

units 5 x 5 m. As a whole, we sampled 40 sample units of 25 m2 divided in 4 thermotypes (2 sample

units x 5 quadrats x 4 thermotypes) where we registered the complete species list and visually

estimated the species coverage (%) during May 2016 (Appendix 1).

In each sampling unit, we selected all the species contributing to reach a relative cumulative

coverage of 80%. For each species, five leaves in full sun were sampled from five mature and

healthy individuals; such sampling size adequately captures leaf traits intraspecific variability in

Mediterranean contexts (Petruzzellis et al. 2017). In total, 900 individuals belonging to 33 species,

including shrubs and herbs, were selected for leaf traits measurements (Appendix 1). We measured
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SLA and LA following standard protocols (Pérez-Harguindeguy et al. 2013): leaf area was

measured within few hours after collection; subsequently leaves were oven-dried for 72 hours at

70°C and leaf dry mass was measured to calculate SLA. Community weighted mean values (CWM,

Garnier et al. 2004) were then calculated according to species plot-level cover values (i.e., we

averaged the species trait values from individual measurements taken in a given plot and used it to

calculate CWM of that plot). According to recent methodological studies (e.g. Peres-Neto et al.

2017; Zelený 2018), measuring traits for each species at each site, and using these plot-level trait

measurements to calculate CWM, avoid the classic problem with inflated Type I error.

Data analysis

We analyzed the data to test the differences existing along the gradient, according to the following

variables:  i) Community composition – to observe differences in terms of species composition and

abundance we performed a NMDS (standardized samples by total, Bray-Curtis resemblance). We

integrated NMDS results with PERMANOVA (Anderson et al 2001; fixed factor: thermotypes,

9999 permutation, unrestricted permutation of raw data, Bray-Curtis resemblance)and a

PERMDISP analyses, a test of the homogeneity of multivariate dispersions within groups, as

PERMANOVA makes the implicit assumption that dispersions are roughly constant across groups;

ii) Changes of CWM values - to test if CWM values of SLA and LA significantly changed

according to the four thermotypes (H1), we used ANOVA for multiple samples and Bonferroni

post-hoc test; iii) Trend in leaf traits variance - to test for changes in the variance of leaf traits

along the gradient (H2), we used a trend test for monotonic trend in variance suggested by

Neuhauser and Hothorn (2000). The test is based on the finite-intersection approach, the Brown–

Forsythe transformation, and Kendall’s tau coefficient (Noguchi and Gel 2010; Gastwirth et al.

2015). The finite-intersection approach (Mudholkar et al. 1993) combines p values of the

component test statistics, which correspond to a finite number of nested hypotheses. Fisher’s p

value combination method (Fisher 1934) is used in this study. Finally, to distinguish iv) the relative

contribution of inter- and intraspecific variation on community-level trait values (H3) we

followed the approach proposed by Lepš et al. (2011). This method is based on the decomposition

of the total sum of squares (SSspecific) of the plot-level trait variance related to a certain

environmental variable into “interspecific” (or “fixed”) (SSinterspecific), “intraspecific” (SSintraspecific) and

“covariation” (SScov) components, so that SSspecific = SSinterspecific + SSintraspecific + SScov (Kichenin et al.

2013). Firstly, for each plot, we calculated “specific” plot-average trait values using species trait

values as measured on that plot (which includes both inter- and intraspecific components), and

“interspecific” (or “fixed”) plot-average trait values using species trait values averaged over all

plots along the selected environmental gradient (which takes into account only species turnover and
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removes the intraspecific variability component). Secondly, we calculated “intraspecific” plot

averages as the difference between “specific” and “interspecific” plot-average trait values (thus

removing the component of interspecific variability). Thirdly, the “covariation” component (i.e., the

effect of covariation between interspecific and intraspecific trait variation) was obtained as follows:

SScov = SSspecific - SSinterspecific - SSintraspecific. As environmental variables we used both categorial (i.e.,

thermotype) and continuous ones (i.e., temperature seasonality and Potential EvapoTranspiration,

PET; Canu et al. 2015).

All statistical analyses were performed in R, version 3.2.2 (R Development Core Team 2015). In

particular the following R packages were used: package vegan (function betadisper) for the analysis

of multivariate homogeneity of group dispersion; package lawstat (function neuhauser.hothorn.test)

for the trend test for monotonic trend in variance (Neuhauser and Hothorn 2000); Package cati

(function traitflex.anova) for the analysis on the relative contribution of inter- and intraspecific

variation on community weighted mean values (Lepš et al. 2011).

RESULTS

Community composition and species assemblages

We found shrub communities, physiognomically referred to as Euphorbio dendroidis-

Calicotometum villosae prevalent at the upper Thermomediterranean belt (T1), Pistacio lentisci-

Calicotometum villosae dominant at the lower Mesomediterranean (T2), Erico-Arbutetum 

widespread at the upper Mesomediterranean (T3) and Ericetum scopario-arboreae dominating at 

sub-Mediterranean and Temperate belts (T4, Farris et al. 2007; Galié et al. 2015). Plant 

communities differ between thermotypes (PERMANOVA p<0.05 for all pairwise tests; PERMDISP

p>0.05). The sub-Mediterranean and Temperate Ericetum scopario-arboreae (belt T4) is the 

community that mostly diverged from the others (NMDS, figure 2), on the contrary Euphorbio 

dendroidis-Calicotometum villosae of the Thermomediterranean belt (T1) is the community that, 

being statistically different from the others, appeared less distinct from Pistacio lentisci-

Calicotometum villosae and Erico-Arbutetum(T2 and T3)

Community-level traits variation

Significant differences between community-level SLA values have been found (p<0.05). In detail,

T1 (SLA=8.83 mm2*mg-1) and T4 (SLA=13.51 mm2*mg-1) were significantly different according to

Bonferroni post-hoc test (p<0.05; Figure 3a). Furthermore, we observed a significant increase in

variability along the gradient from T1 to T4 (Test Statistic=3.115; p<0.01). Regarding LA, ANOVA

showed significant differences between thermotypes (p<0.05). Differences were found between T2
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(LA=410.04 mm2), T3 (LA=407,87 mm2) and T4 (LA=102,33 mm2; p<0.05; Figure 3b), with the

lowest mean values found at T4. No significant trends in LA variability were detected along the

gradient.

Contribution of inter- and intraspecific variation

The contributions of inter- and intraspecific variability in explaining the response of community-

level SLA and LA variation to the three environmental variables (i.e., thermotype, temperature

seasonality, PET) were both significant only for “thermotypes” (p<0.01; Figure 4). On the contrary,

along the temperature seasonality gradient the contribution of species turnover was significant only

for SLA (p<0.05), while along the PET gradient both the components were not significant for both

leaf traits. For SLA, the total variability effects were significant for all the three variables (p<0.05)

and was highest for the variable “thermotype” (19.61%). Here species turnover and intraspecific

variability showed a similar contribution (turnover = 42.05%; intraspecific = 36.04%), but there

was a strong negative covariation (-58.48%) between the effects of inter- and intraspecific

variability on CWM values of SLA. For LA the total variability effects were significant only for

“thermotype” (26.36%; p<0.01). Here species turnover showed a higher contribution (23.88%) with

respect to intraspecific variability (12.25%), with a negative covariation (-9.77%).

DISCUSSION

Our study explored the leaf trait-environment relationship along an elevation gradient across four

thermotypes in Mediterranean shrubland ecosystems. The large environmental gradient included

four types of compositionally different plant communities. SLA and LA showed different patterns

in both abundance-weighted values and variability along the gradient. Additionally, the studied leaf

traits differed in the relative contribution of species turnover and intraspecific variation to their

changes at community level along the gradient, with SLA showing a relevant contribution of

intraspecific variation, higher with respect to LA. Overall, our results highlight the importance of

approaches considering simultaneously different traits and their intraspecific variability, even in

studies encompassing steep environmental gradients (Lepš et al. 2011; Kichenin et al. 2013;

Derroire et al. 2018; Garnier et al. 2018).

Changes in CWM values and variability

Our results showed significantly different values of community-level SLA between the two

extremes of the gradient, with lower values in the driest thermotype. On the contrary, community-

level LA values were significantly different only between T2-3 and T4, leading us to confirm H1 of

lower leaf traits values in the most arid thermotype only for SLA. Regarding trait variability, our
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hypothesis (H2) of increasing variability of both leaf traits toward the cooler and moister end of the

gradient (T4) is confirmed only for SLA, while LA showed the lowest level of variability in the

cooler and moister extreme of the gradient. Variation in the patterns of SLA and LA in the present

study accross the climatic gradient confirm the expectation that the two leaf traits are not strictly

correlated if species variability is properly accounted. The advantage of looking at variation within

a trait (instead of using average and fixed trait values) allows us to seperate the behaviour of the two

traits (as in Ackerly et al. 2002).

The lowest community level SLA values were found in the driest thermotype, which reflects the

increase in water use efficiency in a more arid environment (Wright et al. 2001; Wellstein et al.

2017). Low SLA values and decreased plant growth rates usually reflect water stress (Chapin 1991).

Moreover, T1 is characterized by the lowest SLA variability, most likely indicating a strong habitat

filtering generating a convergence in leaf strategy to cope with drought in our system (see also

Wright et al. 2002). Under drought conditions, leaves tend to have a denser mesophyll layer, and

cells with thicker cell walls, this helps avoid wilt (Shield 1950; Poorter et al. 2009; Wellstein et al.

2017). The increase in SLA variability along the gradient can be explained by the occurrence of

more benign conditions, thus allowing the coexistance of species/individuals with different

functional strategies related to water-use based on different mechanisms of coexistence (see

Wellstein et al. 2014).

Low LA generally leads to high water stress tolerances, whereas species equipped with large leaves

are better suited to mesic environments (Westoby et al. 2002). Accordingly, we would expect larger

and more variable LA due to more benign conditions in terms of temperature and water availability

in T4. However, our results indicated that different habitat filtering mechanisms are acting on this

trait leading to both low values of abundance-weighted mean and variability in the two extremes of

the gradient. Our findings are consistent with those of Gross et al. (2013), who found a quadratic

relationship between functional diversity and mean LA values along a rainfall gradient in

Mediterranean shrublands. We propose different explanations for the unexpected strong

convergence to low mean LA values in T4. Firstly, LA is a key trait that is strongly influenced by

air temperature (Wright et al. 2017). Noctural low temperatures in particular seem to have the most

significant impact on LA (Wright et al. 2017 and references therein). The T4 is in fact the only

thermothype having average lower temperatures in the coldest month approaching 0°C (0.4°C in the

locality Vallicciola at 1040 m a.s.l. on Limbara massif), and an average snow cover of 3-4 weeks

every year (Farris et al. 2007). Secondly, functional trade-offs between different plant traits could

be significant in combined trait responses to increase the variety of ways that plants can respond to

environmental stress (Givnish 1984; Marks and Lechowicz 2006; West et al. 2012). Thirdly, LA is

more strongly anchored to species identity than SLA, and thus more responsive to species turnover.
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These results correspond to the ones of Kichenin et al. (2013) who found a major contribution of

interspecific variability in explaining the response of LA to elevation. Since T4 is characterized by

plant communities that mostly diverged from the others in terms of species composition, here the

compositional changes were reflected by dramatic changes in functional strategy in terms of LA.

Accordingly, plant communities of T4 were dominated by Erica arborea and Erica scoparia, both

characterized by small persistent linear leaves. On the contrary, for SLA the species compositional

changes between T2-3 and T4 were not reflected by a functional shift. In other words, the different

plastic behaviour of these two leaf traits could be behind the unexpected pattern of LA in T4

outlining the relevance of intraspecific variation. In contrast to the majority of many other leaf

traits, SLA is related to the cell volume ratio of leaf parenchyma to epidermis cells, making it more

plastic than traits dependent on subcellular processes (Kichenin et al. 2013). Mitchell and Bakker

(2014) found SLA variation to be mostly based on plasticity with low relevance of ontogeny or

local adaptation. For size dependency of SLA and further discussion see Milla et al. (2008).

The relative contribution of intraspecific variation

Our finding of a similar relative contribution of inter- and intraspecific community-level SLA

variation (55% and 45%, respectively) along the gradient of four thermotypes, confirms the

plasticity of this trait (Liancourt et al. 2015; Siefert et al. 2015; Wellstein et al. 2017). Kichenin et

al. (2013) found similar patterns along a 900 m elevation gradient spanning subalpine and alpine

plant communities in New Zealand. However, the effect of species turnover can be more marked

along other environmental gradients (here, e.g. with temperature seasonality), as also showed by

Lepš et al. (2011). Regarding LA, the relative contribution of species turnover is twice as big as

intraspecific variation (66.1% and 33.9%, respectively) along the gradient of four thermotypes.

Despite the plastic behaviour that this trait has shown (Fraser et al. 2009), we demonstrated that its

changes at the community level were mostly dependent on species turnover (Rozendaal et al. 2006;

Siefert et al. 2015). These results lead us to confirm H3 on a significant influence of intraspecific

variation in both leaf traits, but with a larger role of this component for SLA. It is most likely that

SLA varies with high temperature and low water availability at the intraspecific level (Ackerly

2004; Poorter et al. 2009; Wellstein et al. 2017) which are known to strongly decrease with

increasing elevation in Mediterranean contexts. 

Moreover, our results provide relevant implications for future studies focusing on leaf trait-

environment relationship in Mediterranean contexts. Indeed, the measurements of individual traits

within species show that trait-based community responses to environmental changes are not

adequately predicted using leaf traits mean values (Lepš et al. 2011). This is in part due to the

influence of intraspecific trait variation (Garnier et al. 2018; Kickenin et al. 2013). In particular, the
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significantly negative covariation between inter- and intraspecific SLA variation suggests that there

is a negative compensation between them. For example, in species with high SLA, individuals with

lower SLA values may be promoted, and in species of lower SLA, individuals with higher values

are promoted. This topic is worthy of further research, as significant uncertainty remains about the

complex responses of plant communities to the environment (Lepš et al. 2011).
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FIGURES

Figure 1. Study area and scheme of the sampling design. T1-T4 gradient is represented by white to 

dark grey areas. The selected sampling quadrats are highlighted in black; each quadrat includes two 

sampling units 5 x 5 m.
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Figure 2. Non-metric multidimensional scaling (NMDS) plot of a 2-dimensional solution (Bray-

Curtis similarities, standardized samples by total, abundance data - stress 0.13). We represented the 

species showing a higher correlation to the ordination axes (Spearman rho>0,6). Species are 

labelled as follows: Ave_bar: Avena barbata; Orn_com: Ornithopus compressus; Asp_alb: 

Asparagus albus; Tri_cam: Trifolium campestre; Cis_mon: Cistus monspeliensis; Bri_max: Briza 

maxima; Gal_ele: Galactites elegans;  Vic_vil: Vicia villosa;  Cis_sal: Cistus salviifolius; Que_ile: 

Quercus ilex; Eri_arb: Erica arborea; Bra_ret: Brachypodium retusum; Rub_ulm: Rubus ulmifolius;

Car_car: Carex caryophyllea; Vio_riv: Viola riviniana; Cra_mon: Crataegus monogyna; Eri_sco: 

Erica scoparia.
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Figure 3. Boxplots of community-level SLA (a) and LA (b) for each thermotype (increasing 

elevation and decreasing heat and water stress from T1 to T4). Significant differences between 

mean values are indicated by different letters according to ANOVA (p<0.05).
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Figure 4. Decomposition of total variability in community weighted mean SLA (a) and LA (b) 

values into interspecific (species turnover), intraspecific and covariation effect explained by 

temperature seasonality, PET and thermotypes. Covariation strength is represented by the interval 

between the “total variability” and the sum of inter- and intraspecific variability effects. A value of 

total variability that is lower than the sum of inter- and intraspecific variability effects indicates 

negative covariations, and a value of total variability that is higher than the sum of inter- and 

intraspecific variability effects indicates positive covariations. Statistical significance (*) of inter-, 

intraspecific and total variability effects are indicated on the graph, when significant.
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