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a b s t r a c t 

This paper presents a new methodology for design and implementation of signal processing systems on system-on- 

chip (SoC) platforms. The methodology is centered on the use of lightweight application programming interfaces 

for applying principles of dataflow design at different layers of abstraction. The development processes inte- 

grated in our approach are software implementation, hardware implementation, hardware-software co-design, 

and optimized application mapping. The proposed methodology facilitates development and integration of signal 

processing hardware and software modules that involve heterogeneous programming languages and platforms. 

As a demonstration of the proposed design framework, we present a dataflow-based deep neural network (DNN) 

implementation for vehicle classification that is streamlined for real-time operation on embedded SoC devices. 

Using the proposed methodology, we apply and integrate a variety of dataflow graph optimizations that are 

important for efficient mapping of the DNN system into a resource constrained implementation that involves co- 

operating multicore CPUs and field-programmable gate array subsystems. Through experiments, we demonstrate 

the flexibility and effectiveness with which different design transformations can be applied and integrated across 

multiple scales of the targeted computing system. 
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. Introduction 

Model-based design has been widely studied and applied over the

ears in many domains of embedded processing. Dataflow is well-known

s a paradigm for model-based design that is effective for embedded

igital signal processing (DSP) systems [1] . In dataflow-based model-

ng, signal processing applications are represented as directed graphs

dataflow graphs), and computational functions are modeled as ver-

ices (actors) in these graphs. Actors exchange data packets (tokens)

hrough unidirectional, first-in, first-out (FIFO) communication chan-

els that correspond to dataflow graph edges. Many dataflow-based de-

ign methods for DSP systems have been explored in recent years to

upport various aspects of design and implementation, including model-

ng and simulation; scheduling and mapping of actors to heterogeneous

latforms; and buffer management (e.g. see [1,2] ). 

The diversity of design scales and dataflow techniques that are rel-

vant to signal processing systems poses major challenges to achieving
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he fully potential that is offered by signal processing platforms under

tringent time-to-market constraints. While automated techniques, such

s those referred to above for scheduling and buffer mapping, are ef-

ective for specialized combinations of platforms and dataflow models

e.g., multicore CPUs and synchronous dataflow, respectively), they are

imited in their ability to support more comprehensive assessment of the

esign space, where the models and target platforms themselves have

reat influence on addressing implementation constraints and optimiza-

ion objectives. System designers must therefore resort to ad-hoc meth-

ds to explore design alternatives that span multiple implementation

cales, platform types, or dataflow modeling techniques. 

In this work, we propose a design methodology and an integrated

et of tools and libraries that are developed to help bridge this gap.

e refer to this methodology as the STMC Methodology or STMCM,

hich is named after the different institutions across which it is de-

eloped (Sassari, Tampere, Maryland, Cagliari). STMCM focuses on en-

bling experimentation across different levels of abstraction throughout
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he design process, and allowing designers to experiment productively

nd iterate rapidly on complex combinations of design options, includ-

ng dataflow models, heterogeneous target platforms, and integration

ith platform-specific languages and back-end tools. Special emphasis

s placed on enabling effective experimentation with hardware/software

esign trade-offs, as well as trade-offs involving performance, resource

tilization, and power consumption. These are trade-offs that are espe-

ially important and challenging to navigate efficiently in design pro-

esses for system-on-chip implementation of signal process systems. 

The utility of STMCM is facilitated by the use of lightweight dataflow

LWDF) programming [3] , and its underlying core functional dataflow

CFDF) model of computation [4] . LWDF provides a compact set of

pplication programming interfaces (APIs) that allows one to apply

ignal-processing-oriented dataflow techniques relatively easily and ef-

ciently in the context of existing design processes, target platforms,

nd simulation- and platform-oriented languages, such as MATLAB, C,

UDA, and VHDL. Additionally, CFDF is a general form of dataflow

hat accommodates more specialized forms of dataflow, such as Boolean

ataflow [5] , cyclo-static dataflow [6] , synchronous dataflow [7] , and

VC-CAL [8] as natural special cases. This accommodation of differ-

nt dataflow models in turn provides potential to integrate designs with

ther dataflow frameworks and DSP libraries, such as those described

n [8–13] . Furthermore, LWDF is granularity-agnostic, in the sense that

ctor complexity does not limit the applicability of the framework. 

To demonstrate the capabilities of STMCM in addressing the chal-

enges of mapping practical dataflow-based structures on heterogeneous

ignal processing platforms, we explore different implementations of a

eep neural network (DNN) for vehicle classification on a heteroge-

eous, embedded system-on-chip (SoC), the Xilinx Zynq Z-7020 SoC.

NN applications pose great challenges in their deployment on embed-

ed devices. Investigation of DNN implementations on embedded SoC

evices is challenging due to the limited resources for processing and

torage in these devices, and especially, due to the high computational

omplexity of DNNs. They involve very large and complex signal flow

tructures that involve intensive computation, data exchange, and multi-

ayer processing. These characteristics make embedded DNN implemen-

ation highly relevant as a case study for STMCM. 

. Related work 

Dataflow provides valuable model-based design properties for sig-

al processing systems, and has been adopted in a wide variety of tools

or both software and hardware design. For example, LWDF APIs for

UDA and C have been targeted in the DIF-GPU tool for automated

ynthesis of hybrid CPU/GPU implementations [14] . The CAL program-

ing language and the Open RVC-CAL Compiler (Orcc) toolset provide

 dataflow environment for generating dataflow implementations in a

umber of languages, such as C, Jade, and Verilog [8,9,15] (note that

he Verilog backend of Orcc has been discontinued and Xronos synthe-

izer has been replaced). The CAPH language and framework generate

ardware description language (HDL) code from high-level dataflow de-

criptions [10] . 

The work in [16] presents an integrated design flow and tools for

he automatic optimization of dataflow specifications to generate HDL

esigns. The Multi-Dataflow Composer (MDC) tool is a dataflow-to-

ardware framework able to automatically create multi-functional re-

onfigurable architectures. In addition to this baseline functionality,

DC offers three additional features: (1) a structural profiler to per-

orm a complete design space exploration, evaluating trade-offs among

esource usage, power consumption and operating frequency [17] ; (2) a

ynamic power manager to perform, at the dataflow level, the logic par-

itioning of the substrate to implement at the hardware level, and apply

 power saving strategy [18] ; (3) a coprocessor generator to perform

he complete dataflow-to-hardware customization of a Xilinx compliant

ulti-functional IP [16] . 
2 
All of the methodologies and tools described above are limited by the

rogramming language, adopted dataflow description, or implementa-

ion target. For example, HDL code can be highly optimized for a given

arget (such as a Xilinx FPGA) but not usable for an application specific

ntegrated circuit (ASIC) flow (e.g., see [15,19,20] ). Automatic methods

nd tools require significant effort in development and maintenance of

raph analysis and code generation functionality, and may be too costly

or models and design approaches that are not mature. Such scenarios

ay arise for emerging applications or platforms that do not match ef-

ectively with the models or methods supported by available tools. 

STMCM is complementary to these efforts that emphasize dataflow

esign automation. By applying LWDF APIs in novel ways, STMCM

acilitates implementation of and iterative experimentation with new

ataflow-based hardware/software architectures and design optimiza-

ion techniques. LWDF is applied as an integral part of STMCM be-

ause of LWDF’s minimal infrastructure requirements and its potential

or rapid retargetability to different platforms and actor implementation

anguages. Furthermore, LWDF does not have any restriction in terms

f actor granularity and can be extended with different combinations

f dataflow graph transformations, as well as other forms of signal pro-

essing optimizations (e.g., see [1] ). 

In [21] , we presented an efficient integration of the LWDF methodol-

gy with hardware description languages (HDLs). Building on this HDL-

ntegrated form of LWDF, we developed methods for low power signal

rocessing hardware implementation, and system-level trade-off explo-

ation. In this paper, we apply the hardware design techniques intro-

uced in [21] as part of a general methodology that spans software,

ardware, and mixed hardware/software design, implementation, and

rade-off exploration. Thus, while the focus in [21] is on rigorous inte-

ration across digital hardware design, lightweight dataflow program-

ing, and low power optimization, the emphasis in this paper is on

 methodology for applying LWDF concepts in an integrated manner

cross complete hardware/software development processes for embed-

ed signal processing systems. 

In summary, STMCM provides methods to seamlessly and compre-

ensively integrate LWDF-based actor implementation techniques with

esign processes for real-time, resource-constrained signal processing

ystems. STMCM can be used as an alternative to or in conjunction with

ore conventional automated dataflow tools (e.g., for disjoint subsys-

ems). STMCM requires more effort in programming compared to fully

utomated toolchains, however it provides more agility in terms of re-

argetability and experimentation, as described above. This is a useful

rade-off point to have available for model-based design of complex sig-

al processing systems. 

. Proposed design methodology 

Our proposed methodology STMCM is illustrated in Fig. 1 . As moti-

ated in Section 1 and Section 2 , STMCM is a design methodology that

mphasizes LWDF concepts, and is specialized for SoC-based signal pro-

essing systems. The upper part of Fig. 1 represents application-specific

nd algorithmic aspects, while the lower part represents the general part

f the methodology that is reusable across different applications. The up-

er part is illustrated concretely in the context of DNN system design;

his part can be replaced with other application/algorithm level design

spects when applying STMCM to other applications. 

In STMCM, we apply the LWDF programming model through the

ightweight Dataflow Environment (LIDE). LIDE is a software tool for

ataflow-based design and implementation of signal processing sys-

ems [3,22] . LIDE is based on a compact set of application program-

ing interfaces (APIs) that is used for instantiating, connecting, and

xecuting dataflow actors. These APIs have been implemented in a va-

iety of implementation languages. For example, LIDE-C [22] and LIDE-

 [21] provide C and Verilog language implementations of the LIDE

PIs, respectively. 



L. Li, C. Sau and T. Fanni et al. Journal of Systems Architecture 93 (2019) 1–19 

Fig. 1. An illustration of STMCM in the context of DNN system design. 
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As mentioned in Section 1 and illustrated in Fig. 1 , core functional

ataflow (CFDF) [4] , is the form of dataflow that LWDF is based on.

n CFDF, each actor is specified as a set of modes. Each actor firing

perates according to one of the specified modes (called the “current

ode ” associated with the firing), and determines a unique next mode,

hich will be the current mode for the next firing. The production and

onsumption rates ( dataflow rates ) for the actor ports are constant for a

iven mode. However, different modes of the same actor can have dif-
3 
erent rates, which allows actors to exhibit dynamic dataflow behavior.

e present the switch actor as an example of CFDF actor. Switch actor

as three modes: Control, True and False. In Control mode, the switch

ctor consumes one token from Control port. In True or False mode, the

witch actor consumes one token from Data port and forward that token

o True or False Output port accordingly. The dataflow table and mode

ransition diagram between CFDF modes of switch actor are illustrated

n Fig. 2 . 
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Fig. 2. Switch actor in CFDF. (a) Switch Actor, (b) Dataflow Table, (c) Mode Transition Diagram between CFDF Modes. 
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The definition of a CFDF actor includes two functions called the en-

ble function and invoke function of the actor. The enable function checks

hether there is sufficient data available on the actor’s input edges and

ufficient empty space available on the output edges to fire the actor in

ts next mode. The invoke function executes an actor firing according

o the actor’s current mode, consuming and producing amounts of data

hat are determined by the fixed dataflow rates of the current mode.

he invoke function also determines the actor’s next mode, as described

bove. 

In the remainder of this section, we discuss in detail the application-,

oftware-, and hardware-specific processes illustrated in Fig. 1 . 

.1. Application-specific tools and processes 

In Fig. 1 , application-specific tools and associated design processes

re illustrated by gray blocks. Throughout this paper, we adopt a DNN

pplication as a concrete demonstration of how such application-specific

spects are used as an integral part of STMCM. The DNN-focused design

rocess illustrated in Fig. 1 starts with the derivation of DNN hyperpa-

ameters and the network configuration. Then the parameters associated

ith the derived DNN structure are extracted and the DNN algorithm is

arefully validated to ensure that target levels of accuracy are satisfied.

The block labeled “Design Requirements and Constraints ” refers to

he application- and platform-specific requirements and constraints on

he DNN implementation. Examples of these include the accuracy and

hroughput requirements for image classification DNN systems, and con-

traints on available power and hardware resources for a targeted SoC

latform. 

In the remainder of this section, we introduce the software-

elated and hardware-related design processes that provide the core of

TMCM. These processes are applied in an integrated manner for hard-

are/software co-design, as represented by the lower left hand part of

ig. 1 . Detailed explanations of the major components in STMCM are

rovided in Section 4.3 . 

.2. Software-related process 

In the next main phase of the proposed design methodology, the DNN

etwork configuration derived using application-specific, algorithm-

evel tools is mapped to a software implementation using LIDE-C. Note

hat LIDE-C is in no way restricted to DNN systems, and is instead de-

igned to support a broad class of dataflow-based signal and information

rocessing systems. For example, in the work of [23] , the design space

xploration of a digital predistortion system for wireless communica-

ion is based on implementation using LIDE-C. In [24] , LIDE-C is ex-

ended to support parameterized synchronous dataflow [25] modeling

nd applied to the implementation of an adaptive wireless communica-

ion receiver. In [26] , optimized vectorization techniques are applied to

IDE-based actors for throughput optimization, and demonstrated using

n Orthogonal Frequency Division Multiplexing (OFDM) receiver. For
4 
ore details about LIDE-C and the development of DNN components in

IDE-C, we refer the reader to [22,27] . 

Working with the LIDE-C implementation of the DNN, a number of

ptimization processes are carried out iteratively to streamline the soft-

are implementation in terms of the relevant design objectives and con-

traints. This iterative optimization process is illustrated in Fig. 1 by

he cyclic path that involves the blocks labeled Dataflow Representa-

ion, LIDE-C Implementation, and Optimized LIDE-C Implementation . The

roposed approach supports efficient application of commonly-used

NN software optimization methods such as for-loop tiling and buffer

emory sharing among dataflow graph edges. We refer the reader to

ection 4.1 for more details about these optimization methods and the

ntegration of them with the LIDE-C implementation. 

Next, software profiling is performed on the optimized LIDE-C im-

lementation of the DNN system to extract profiling data. This data is

xtracted for each dataflow component of the DNN architecture. In the

rofiling process applied in STMCM, the memory sizes of the buffers

nd execution time of the actors in the graph are measured. According

o the characteristics of DNN architecture, the DNN system is divided

nto multiple computation layers. In our application of STMCM, soft-

are profiling is specialized to DNN implementation by measuring the

otal memory sizes for the buffers both inside each layer and between

airs of adjacent layers. We also measure the total time complexity of

ach DNN layer. 

.3. Hardware-related process 

The dataflow model of the subgraph to accelerate is implemented

n hardware using LIDE-V. Hardware profiling based on the specific

mplementation platform is performed on the LIDE-V implementation.

his profiling is used to collect measurements on hardware performance

nd help identify possible optimizations. Details on hardware profil-

ng are demonstrated concretely through the case study presented in

ection 4.2 . Like the software implementation, the hardware implemen-

ation will in general go through multiple optimization iterations before

t is finalized. 

In LIDE-V, the hardware implementation of a dataflow actor is de-

omposed into implementations of its enable function and invoke func-

ion. These components are implemented as two coupled Verilog mod-

les — the actor enable module (AEM), and actor invoke module (AIM).

ataflow edges are implemented as dataflow edge modules (DEMs); we

nformally refer to DEMs also as “FIFOs ”. 

To provide fully distributed scheduling of actors, one can connect a

IDE-V actor scheduling module ( ASM ) to each actor. The ASM initiates

 new firing of its associated actor any time the actor is not already in

he firing mode, has sufficient data on its input edges, and has sufficient

mpty space on its output edges. Scheduling of LIDE-V actors is not re-

tricted to such a fully distributed scheduling approach. For example,

ith appropriately-designed control logic, subsets of actors can be se-

ialized to allow sharing of resources within the subsets. In this paper,
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owever, we restrict our attention to fully distributed scheduling. Fully

istributed scheduling of dataflow graphs has been analyzed in various

ontexts. For example, Ghamarian el al. have developed methods for

hroughput analysis of synchronous dataflow graphs that are scheduled

n a fully distributed manner [28] . Such analysis techniques can be ap-

lied to hardware subsystems in STMCM. 

The orthogonality (separation of concerns) among actor, edge, and

cheduler design in LIDE-V lays a valuable foundation for rigorous inte-

ration of power-management within the associated APIs. In particular,

e demonstrated in [29] and [21] that methods for asynchronous de-

ign, Globally Asynchronous Locally Synchronous (GALS) design, and

lock gating can be applied efficiently through natural extensions of the

IDE-V APIs. We also demonstrated the use of these extensions to power

ptimization. 

To manage complexity and improve reuse of subsystems within and

cross designs, one can encapsulate subgraphs in LIDE-V within hier-

rchical actors ( HAs ). An HA in LIDE-V appears from the outside as a

egular (non-hierarchical) LIDE-V actor with an associated AEM, AIM,

nd ASM. Execution of an HA as an actor in the enclosing dataflow

raph is coordinated by the external scheduler associated with the HA.

hen an HA is fired by its external scheduler, the internal scheduler of

he HA coordinates the firings of actors that are encapsulated within the

A (nested actors). The internal scheduler carries out the set of nested

ctor firings that must be completed for a given firing of the HA. An

xample of an HA with internal and external schedulers is discussed in

etail and illustrated in Fig. 6 . 

Since it appears from the outside as a regular actor, an HA can be

lock gated in exactly the same way, allowing the designer to efficiently

witch off the whole subgraph at appropriate times during operation. 

. Case study: A deep neural network for vehicle classification 

As a concrete demonstration of STMCM, we adopt a DNN use case

or automatic discrimination among four types of vehicles — bus, car,

ruck, and van. This implementation is based on a neural network de-

ign presented in [30] , where a network configuration — i.e., the num-

er and types of layers and other DNN hyperparameters — was care-

ully derived and demonstrated to have very high accuracy. The accu-

acy of the methods was validated with a database of over 6500 im-

ges, and the resulting prediction accuracy was found to be over 97%.

he work in this paper and the work in [30] have different focuses.

he work of [30] focuses on deriving hyperparameters, network design,

nd demonstrating network accuracy, and does not address aspects of

esource-constrained implementation or hardware/software co-design.

n this paper, we go beyond the developments of [30] by investigating

esource constrained implementation on a relevant SoC platform, and

ptimized hardware/software co-design involving an embedded multi-

ore processor and FPGA acceleration fabric that are integrated on the

latform. In [30] , the proposed DNN architectures are evaluated based

n the classification accuracy, while in our work on STMCM, the ob-

ectives that we are trying to optimize are system throughput, memory

ootprint and power efficiency. In addition, our work in this paper can

e generalized to the design and implementation of arbitrary DNN ar-

hitectures, and also it can be generalized beyond DNN applications to

ther signal and information processing applications; the architecture

f [30] is selected as a case study to concretely demonstrate the usage

f the methodology proposed in this paper. 

In relation to Fig. 1 , we apply the results from [30] in the block la-

eled “derivation of hyperparameters and DNN design ” as part of the

esign methodology that is demonstrated in this paper. Fig. 3 illustrates

he complete DNN architecture that we implement in this work. For

ore details about this use case, such as the dataset, the derivation of

he DNN architecture and the application of the use case in vehicle clas-

ification, we refer the reader to [30] . 

The DNN network design is composed of two convolutional layers,

wo dense layers and one classifier layer, as depicted in Fig. 3 . The first
5 
onvolutional layer takes an RGB image (3 ×96 ×96) as input, and pro-

uces 32 feature maps, each with dimensions (48 ×48). The second con-

olutional layer takes these 32 feature maps as input and produces 32

maller feature maps, each having dimensions (24 ×24). We refer to a

ubsystem that processes multiple input images to produce a single fea-

ure map as a branch . Thus, the first and second convolutional layers

ave 32 branches each. The two dense layers combine to transform the

eature maps into a (1 ×100) vector, which is then multiplied in the

lassifier layer by a (100 ×4) matrix to determine the (1 ×4) classifi-

ation result. Each of the four values in the result corresponds to the

ikelihood that the vehicle in the input image belongs to one of the four

ehicle types (i.e., bus, car, truck and van). 

The studied use case is relatively easy to solve compared to com-

on image recognition benchmarks, such as MSCOCO [31] , or Ima-

eNet [32] . Therefore, one can reach high accuracy with a relatively

imple network requiring significantly lower resources than common

etwork topologies intended for mobile use (such as Mobilenets). As

uch, the focus of our work is not in mobile devices (e.g., smartphones),

ut in simpler IoT devices targeted to solving less complex machine

earning problems at low cost. For further details on the DNN network

esign and hyperparameter specifications, we refer the reader to [30] . 

The specific platform and associated platform-based tools that we

mploy are based on the Xilinx Zynq Z-7020 SoC. The remainder of

his Section focuses on details associated with STMCM and its associ-

ted design processes. These details are presented concretely through

he development of this DNN case study. 

.1. Software implementation and optimization 

In this section, we discuss dataflow-graph- and actor-level optimiza-

ions and associated design iterations, as illustrated in Fig. 1 by the

locks labeled Dataflow Representation, LIDE-C Implementation, and

ptimized LIDE-C Implementation. We start with a dataflow graph im-

lementation that is derived using LIDE-C [3,22] , which provides a C-

anguage implementation of the LWDF APIs so that CFDF-based actors

nd dataflow graphs can be implemented in a structured manner using

. The initial (sequential) LIDE-C design is developed in a design phase

hat corresponds to the block labeled LIDE-C Implementation in Fig. 1 . 

After validating the correct, dataflow-based operation of the initial

NN dataflow graph implementation in LIDE-C, we experiment with

arious transformations at the actor, subgraph, and dataflow graph lev-

ls. Here, we exploit the orthogonality of actor, edge, and graph imple-

entation in LIDE-C, which allows designers to flexibly and efficiently

erform experimentation with a wide variety of transformations, and

ith different combinations of applied transformations. The actor-level

ransformations performed here are focused on optimization methods

pplied to the convolution actor, which is a major performance bottle-

eck in the design. The subgraph-level transformations involve memory

anagement optimizations performed on FIFOs both inside each sub-

raph (DNN layer) and between pairs of adjacent layers. 

.1.1. Actor-level optimization 

We demonstrate actor-level optimization at this stage of the design

rocess using the convolution actor in our DNN example. In our LIDE-C

mplementation of this actor, we apply a transformation of the convo-

ution computation that is commonly used to simplify the design, and

mprove classification speed. The transformation involves loop tiling to

educe the cache miss rate. The utility of loop tiling in DNN implemen-

ation has been demonstrated previously, for example, in [33] . Using

oop tiling, we decompose the main loop of the convolution computa-

ion into an inner loop that iterates within contiguous “strips ” of data,

nd an outer loop that iterates across strips. Applying loop tiling in this

ay allows one to enhance cache reuse based on an array size (strip

ength) that fits within the cache. 

Fig. 4 shows a segment of code from our application of the tiling

ransformation to the convolution actor. 
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Fig. 3. DNN for automatic discrimination of four types of vehicles. 
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Through the orthogonality provided by the model-based design rules

n LIDE-C, this transformation can be applied at a late stage in our design

rocess, in a way that is interoperable with previously applied trans-

ormations, and in a way that requires no modifications to other ac-

or or edge implementations. In this case, no modification is needed

o the dataflow graph scheduler implementation as well, although for

ome transformations, scheduler adjustments can be useful to integrate

ransformed actors into the overall system in an optimized way. The
6 
FDF-based APIs (enable and invoke functions) in LIDE-C for scheduler

mplementation allow the designer to experiment efficiently with such

cheduling adjustments as needed. 

.1.2. Buffer memory management 

A major challenge in resource-constrained implementation of a DNN

rchitecture is managing the large volume of data transfers that are car-

ied out during network operation. Each DNN layer typically processes
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Fig. 4. The code segment that implements loop 

tiling within the LIDE-C actor for convolution. 
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Table 1 

Layer-level software profiling. Here, the row labeled “T ” gives the exe- 

cution time of each layer, and the row labeled “T% ” gives the percentage 

of the total DNN execution time that is attributed to each layer. 

Layer Total 

1 2 3 4 5 

T [ms] 18.71 22.08 0.0149 0.0034 0.0036 40.812 

T% 45.84 54.10 0.04 0.01 0.01 100 

Table 2 

Actor-level software profiling. 

Layer Convolutional layer 1 Convolutional layer 2 

Actor Conv Add M&ReLU Conv Add M&ReLU 

T ic [ 𝜇s] 230.10 0.03 0.025 59.77 0.005 0.006 

Layer Dense Layer 3 Dense Layer 4 Output Layer 5 

Actor Mult ReLU Mult ReLU Mult Softmax 

T ic [ 𝜇s] 5.1 0.0012 0.029 0.0012 0.0023 0.0031 
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 large amount of data, and requires memory to store the input data

rom the previous layer or subsystem, the intermediate data during the

omputation processing, and the computation results that will be trans-

itted to the following layer or subsystem. 

Consider, for example, the buffer memory costs (the storage costs

ssociated with the dataflow graph edges) for the DNN of Fig. 3 . In our

IDE-C implementation, the second convolutional layer requires the

ost buffer memory. In this layer, each of the 32 branches is composed

f 32 convolution actors, 31 addition actors and one actor performing

oth maxpooling and ReLU (Rectified Linear Unit). Given that the size

f the input feature map processed by each branch is 48 ×48 pixels, the

uffer memory required for actor communication inside each branch is

𝑚𝑎𝑔𝑒 _ 𝑠𝑖𝑧𝑒 × ( 𝑛𝑢𝑚𝑏𝑒𝑟 _ 𝑜𝑓 _ 𝑐 𝑜𝑛𝑣 _ 𝑎𝑐 𝑡𝑜𝑟𝑠 + 𝑛𝑢𝑚𝑏𝑒𝑟 _ 𝑜𝑓 _ 𝑜𝑢𝑡𝑝𝑢𝑡 _ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 _ 𝑚𝑎𝑝𝑠 ) , 
hich is 48 × 48 × (32 + 1) = 76 , 032 pixels. Thus, the total buffer mem-

ry inside the second convolutional layer is 76 , 032 × 32 = 2 , 433 , 024
ixels. The buffer memory required for data communication between

he first and the second layer can be computed as 48 × 48 × 32 = 73 , 728
ixels. 

In STMCM, we apply a buffer memory optimization technique that

s useful for resource-constrained DNN implementation. In particular,

e incorporate a new FIFO abstract data type (ADT) implementation

n LIDE-C, called shared FIFO , that enables multiple dataflow edges in

 graph to be implemented through FIFO ADT instances that share the

ame region of memory. Such buffer sharing in dataflow implementations

as been investigated in different forms for various contexts of auto-

ated scheduling and software synthesis (e.g., see [34–36] ). In STMCM,

e make it easy for the system designer to apply buffer sharing ex-

licitly within her or his implementation rather than depending on its

mplicit support through the toolset that is used. This is an example

f the agility that is supported in STMCM, as described at the end of

ection 2 . 

Again, by exploiting the orthogonality among dataflow compo-

ents, buffer sharing in STMCM is performed only on the targeted

ataflow edges and requires no modification to other actors or sub-

raphs. Through the support for such separation of concerns in LIDE-

, different ADT implementations for a FIFO or group of FIFOs can be

nterchanged without affecting overall system functionality. 

There are three key aspects to our application of shared FIFOs in our

IDE-C DNN implementation. First, at the input of each convolutional

ayer L , input data from the previous layer is stored centrally instead of

eing copied separately into each branch of L . Second, edges in different

ayers share the same memory so that the memory is time-division mul-

iplexed between the layers — the processing of a given layer overwrites

emory in its shared FIFOs without introducing conflicts that affect the

omputation results. Third, actors operate on data from shared input

IFOs directly through their read pointers into the FIFO (rather than

rst copying the data locally within the actor’s internal memory). This

ind of copy-elimination is similar to dataflow memory management

echniques introduced by Oh and Ha [35] . 

Improvements resulting from our application of shared FIFOs are

emonstrated quantitatively in Section 5.1 . 
7 
.1.3. Software profiling 

In this subsection, we demonstrate the process of software profiling,

s illustrated in Fig. 1 , in the context of our optimized LIDE-C imple-

entation of the DNN architecture. The implementation platform is an

ntel i7-2600K running at 3.4GHz. Table 1 and Table 2 show layer- and

ctor-level software profiling measurements, respectively. 

In Table 2 , T ic denotes the invoke to firing completion time of a given

ctor. This is the average time that elapses between the time that an

ctor firing is initiated and when the firing completes. We also refer to

 ic as the average execution time of the associated actor. The abbrevia-

ions Add, Conv, Mult, and M&ReLU stand, respectively, for Addition,

onvolution, Multiplication, and Maxpool-and-ReLU. 

Layer- and actor-level software profiling provide insight into the pro-

essing complexity of actors in each layer. According to Table 1 , the

onvolutional layers account for 99.94% of the system execution time.

lso, the execution time of Layer 2 is very close to that of Layer 1. In

oth convolutional layers, the Conv actors account for most of the pro-

essing time compared with the other two actors — Add and M&ReLU

in the convolutional layers. Additionally, the average execution time

f the Conv actors in Layer 2 is only about a quarter of that of the Conv

ctors in Layer 1. This is primarily because each of the Conv actors in

ayer 1 processes input images of size 96 ×96, while the Conv actors in

ayer 2 process input feature maps that have size 48 ×48. 

.2. Hardware implementation and design exploration 

In this section, we describe the main capabilities of the design flow

epicted in Fig. 1 with respect to design and implementation of hard-

are accelerators. These capabilities are represented by the blocks in

he region labeled “Hardware-related Process ”. 
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Fig. 5. LIDE-V implementation for the accelerated SFM. 
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Table 3 

Measured data associated with actor execution times and waiting (idle) 

times. 

SFM t tot 232,831 

T ic T ci firings Tot ( Tot %) T ii / T ic 

Deinterleave 3 2 9216 27,648 (11.87) 1.67 

Convolution 2402 2 96 230,592 (99.04) 1.00 

Sum 107 2297 96 10,272 (4.41) 22.46 

Maxpool&ReLU 195 4613 48 9360 (4.02) 24.66 
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For example, through a preliminary hardware profiling phase of the

NN application described in Section 4.2.1 , we can identify three hard-

are design aspects that are interesting to investigate in detail — the

doption of clock gating techniques, exploitation of asynchrony that is

nherent in dataflows, and exploration of different levels of actor gran-

larity. 

We demonstrate the hardware-related design process of STMCM us-

ng a hardware accelerator that is introduced in [21] . The accelerator

rovides a subsystem for producing feature maps from the first convo-

utional layer of the DNN application. In the remainder of this paper,

e refer to this subsystem as the Subtree for Feature Map (SFM). 

Due to the interfacing consistency that is maintained across LIDE

ctor implementations in different languages, one can readily convert

he LIDE-C based SMF subsystem implementation into hardware by re-

lacing each software actor with a hardware module that is designed

n LIDE-V, and by connecting the derived hardware actors with LIDE-V

IFOs. Following the general approach of realizing LIDE actors in hard-

are, each LIDE-V actor implementation is decomposed into an AEM

nd AIM. The AEM is reusable among different actors in our implemen-

ation, although in general it can be useful to have specialized AEM

mplementations that are streamlined for the specific requirements of

ndividual actors [21] . 

The hardware implementation diverges from the LIDE-C design in

wo major ways. First, we feed the input data in an interleaved format,

educing the complexity of the hardware interface and driver software

ince there is only one input FIFO to manage. Second, the hardware ac-

ors are designed to produce one row per firing instead of entire images.

his reduces the FIFO size requirements in the first layer from 96 ×96

ixels to only 96 pixels. The hardware actors in our implementation are

cheduled using a fully distributed approach. 

The resulting SMF is shown in Fig. 5 . The implemented hardware

s verified against reference outputs extracted from the LIDE-C imple-

entation. In this Figure, production and consumption rates (dataflow

ates) are annotated next to actor ports, and w is the input image width.

he convolution actor has multiple operating modes (CFDF modes) with

ifferent consumption rates. 

.2.1. Hardware profiling 

We employ hardware profiling in STMCM to extract execution time

ata, which is later used to guide the process of iterative design op-

imization. In this section, we demonstrate hardware profiling in the

ontext of our DNN application. Profiling is performed using the target

latform, which in our demonstration is the Zynq Z-7020 SoC. We pro-

le the LIDE-C implementation on the ARM A9 MPCores provided by

he target platform and develop a first version implementation of the

FM on this platform and extract execution time data from this imple-

entation. 

Table 3 depicts various data associated with execution times and

aiting times for the SFM hardware accelerator illustrated in Fig. 5 .

ere, the symbol t tot represents the total time necessary to execute the

FM; T ic is the average time period between an actor invocation and its

orresponding firing completion; T is the average time period that an
ci 

8 
ctor has to wait to be fired after its previous firing completion; firings

s the number of firings of a given actor during execution of SFM; Tot ,

alculated as ( T ic ) × ( firings ), gives the total execution time of a given

ctor during the execution of SFM ; 𝑇 𝑖𝑖 = ( 𝑇 𝑖𝑐 + 𝑇 𝑐𝑖 ) denotes the average

ime period between the beginning of one invocation to the beginning

f the next; and the ratio T ii / T ic measures the extent of actor idleness. 

This rich collection of metrics, which is supported by the underlying

FDF model computation, provides various insights on the dataflow-

ased system architecture and its implementation. For example, the

 ii / T ic ratio provides insight on differences in processing speed that are

seful in exploiting the inherent asynchrony between dataflow actors. 

From analysis of our hardware profiling results ( Table 3 ), we can

erive different versions of the SFM hardware accelerator with different

rade-offs among power consumption, system throughput, and hardware

esource cost. Firstly, looking at column Tot %, we see that all of the ac-

ors except for Convolution are inactive throughout most of the execu-

ion time. The maximum proportion of active time among these actors

s 11.87%, reached by Deinterleave. Gating the clock of these frequently

nactive actors can provide more energy efficient accelerator operation

y eliminating dynamic power consumption during idle phases. 

Furthermore, the Deinterleave and Convolution actors have rela-

ively small idleness levels ( T ii / T ic ), with a waiting time T ci equal to

 clock cycles for both of them. On the other hand, Sum and Max-

ool&ReLU exhibit much larger waiting times and idleness levels. An

mportant hint coming from the T ci values is that, thanks to the inher-

nt asynchrony of dataflow actors, it is possible to partition the design

nto different clock regions working at different frequencies, thus ob-

aining a GALS design. In particular, the Deinterleave and Convolution

ctors can be placed in one clock region (Region 1), driven by clock 1 ,

hile Sum and Maxpool&ReLU can be placed in another region (Region

), driven by clock 2 . On the basis of the measured T ii / T ic values, we can

et clock 2 to be 20 times slower than clock 1 . 

Moreover, the subgraph included in Region 2 can be encapsulated

nto a hierarchical actor (see Section 3.3 ). This actor, seen from the

outside ”, is like any other LIDE-V actor. The actor and its encapsulated

ubsystem can be clock gated or clocked with a different frequency, pro-

iding additional candidate solutions for SFM accelerator optimization.

.2.2. SFM Exploration 

Based on the hardware profiling analysis discussed in Section 4.2.1 ,

e explored six different variants of the SFM design: 
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Fig. 6. An illustration of the hierarchical actor associated with Design SFM h . 
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• SFM a : This is an asynchronous design where actors belonging to dif-

ferent logic regions run at different clock frequencies. In particu-

lar, the clock frequency for clock 1 is set to 100 MHz, and the clock

frequency for clock 2 is set to 5 MHz. Referring to Fig. 5 , the only

modification required in the design is the replacement of FIFOs that

are placed between the two clock regions. These FIFOs need to be

replaced with asynchronous FIFOs — for this purpose, we employ

the clock domain crossing (CDC) FIFOs presented in [21] . CDC FI-

FOs are designed with read and write logic that can be driven by

different clocks. At the same time, their module interfaces conform

to standard LIDE-V edge interfaces so they can replace other FIFO

implementations without requiring changes to actors that commu-

nicate with them. 

• SFM CG : Based on our hardware profiling results, we apply clock gat-

ing to the Deinterleave, Sum and Maxpool&ReLU actors. To be clock

gated, a LIDE-V actor needs only the instantiation of a clock gat-

ing module (CGM) [21] . The CGM involves a BUFG primitive that

physically enables/disables the clock signal in the target SoC. Thus

for each clock gated actor A in SFM CG , a CGM is instantiated and

connected to the clock inputs of A and to the read- and write-clock

inputs, respectively, of the FIFOs that A reads from and writes to. 

• SFM aCG : This design incorporates both asynchronous design and

clock gating techniques. As in SFM a , the FIFOs between the two clock

regions are replaced with CDC FIFOs. Additionally, the Deinterleave,

Sum and Maxpool&ReLU actors are clock gated as in SFM CG , and a

CGM is instantiated for each of these actors. 

• SFM h : This is a hierarchical SFM design, which can be viewed as

a baseline for evaluating our enhanced hierarchical design SFM hCG 

(defined below). In SFM h , Region 2 (see Fig. 5 ) is encapsulated in

a hierarchical actor H . An illustration of this hierarchical actor is

provided in Fig. 6 . The subgraph that is encapsulated by H contains

three actors A1, A2 and B . We denote this subgraph by G H . Actors

A1 and A2 correspond to Sum 1 and Sum 2 , respectively, which are

two actors that add outputs from the three convolution actors. Actor

B corresponds to the Maxpool&ReLU actor. 

When H is viewed as a single actor from the outside, a firing of H

starts when the internal scheduler I_ASM_HA for G H receives the in-

voke_HA signal from the external scheduler E_ASM_HA . Inside the

subgraph G H , the invoke_HA signal is received by ASM_A1 , which is

l  

9 
the ASM of actor A1 . Once ASM_A1 receives the invoke_HA signal,

the firing of the subgraph G H starts. 

• SFM hCG : This design is the same as SFM h , except that the Deinter-

leave actor and the hierarchical actor are clock gated. It is impor-

tant to highlight that the application of clock gating at the region

level is advantageous if the execution times of the actors within the

region are overlapped. In this design, however, the execution times

of the three actors are not overlapped. When one actor is executed,

the others wait in an idle state and waste power. Therefore, we ex-

pect that this configuration would not be really effective in reducing

power consumption as SFM CG in the targeted DNN case. However,

we include the test in our explorations to present the complete wide

variety of options made available by STMCM (even if some of them

may be less efficient than others for this particular application sce-

nario). 

• SFM auto : This is a version of the SFM that is synthesized and im-

plemented by enabling the automatic power optimization available

within the adopted Xilinx Vivado environment. This design applies

fine-grain clock-gating and fine-grain logic-gating at the Verilog

level and excludes all of the higher-level, dataflow-based optimiza-

tions (coarse-grain asynchronous design, clock-gating, and hierar-

chical decomposition) that are applied in the other five investigated

designs. Thus, SFM auto is useful as a common baseline to assess the

higher-level models and transformations provided by STMCM com-

pared to existing off-the-shelf synthesis techniques. 

.3. Joint hardware/software implementation and optimization 

This section shows how the proposed design flow (summarized in

ig. 1 ) provides a variety of interesting hardware/software co-design

mplementation choices and optimization possibilities. In particular,

hese features are represented by the “Co-design-related Process ” area

f Fig. 1 . For a given high-level LWDF model, the interaction between

oftware (see Section 4.1 ) and hardware (see Section 4.2 ) actors or sub-

raphs can be shaped and refined depending on the specific constraints

nd requirements of the application. 

In particular, we demonstrate two main implementation aspects that

an be efficiently explored with STMCM: parallelism across actor exe-

ution, and the adopted communication interfaces. The degree of paral-

elism can be tuned depending on the number of software and/or hard-
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are cores adopted for the execution of a certain computational step,

hile different communication interfaces allow different levels of cou-

ling between hardware and software actors. Both of these dimensions

or exploration therefore represent important sources of trade-offs to

onsider during the implementation process. 

For the purpose of our co-design explorations, the DNN application

as been split into two parts to be executed respectively in software

PS) and hardware (PL). Here, PS and PL stand for Processing System

nd Programmable Logic, respectively. In our experiments, we consider

he SFM subsystem introduced in Section 4.2 as the portion of DNN

pplication that will be accelerated in the PL, while the remaining part,

nvolving the second convolutional layer, two dense layers and final

lassification layer, will be executed by the PS. 

Note that the first convolutional layer constitutes only one of the

ain computationally intensive steps of the DNN application. Accord-

ng to software profiling results that are based on the SoC platform that

e applied for hardware/software co-design (see Table 8 ), the first con-

olutional layer only accounts for about 27% of the prediction time.

or this reason, the speedup brought by hardware acceleration to the

verall DNN application is not dramatic, as will be discussed further

n Section 5 . However, the results concretely demonstrate how STMCM

an be applied to perform extensive design space exploration across a

ariety of diverse designs to achieve system performance enhancement

nder highly-constrained hardware resource availability. 

The SFM accelerator has been integrated into the LIDE-C design pre-

ented in Section 4.1 by replacing the SFM software implementation

ith function calls to driver software that is capable of offloading the

omputation to the PL. We have experimented with using a Linux kernel

river based on the Userspace I/O (UIO) framework [37] , and a driver

hat is independent of the Linux kernel and operates by directly access-

ng memory with the mmap system call. The UIO approach is more suit-

ble for production use, while mmap works well for prototyping, and

his latter approach has been used in this work for evaluation. The PS

nd PL can communicate by means of AXI interfaces exploiting General

urpose (GP) ports; 32-bit width PS master or slave ports with 600 Mbps

andwidth for both read and write channels; High Performance (HP)

orts or Accelerator Coherency Ports (ACP); and 64-bit width PS slave

orts with 1200 Mbps bandwidth for both read and write channels. 

Fig. 7 depicts the reference configuration for the co-design explo-

ations. In order to integrate the accelerator into the SoC, a generic AXI

rapper for hardware dataflow subgraphs has to be provided. The wrap-

er is compliant with the adopted AXI interface and lets the programmer

ccess the input and output FIFOs of the dataflow graph and monitor

heir populations. For this purpose, the wrapper includes all the neces-

ary logic for the communication management. 

In our hardware acceleration approach, we map the SFM subsystem

o hardware. This subsystem produces a 48x48 feature map on each ex-

cution. Thus, in order to perform the entire first convolutional layer

f the DNN application, which must produce 32 48x48 feature maps,

he SFM accelerator has to be executed 32 times with the appropriate

onvolution coefficients. For each of these SFM executions, the PS will

end the corresponding convolution coefficients to the accelerator. The

nput image, which remains the same across all 32 executions, is sent

nly once from the PS and stored within a local buffer within the ac-

elerator. All 32 executions of the SFM access the input image from this

ocal buffer. In this way, we avoid the large amount of data transfer that

ould be required if the input image had to be sent separately from the

S to the PL for each SFM execution. Upon completion of each SFM ex-

cution, the PS retrieves the resulting feature map from the accelerator.

In the remainder of this section, we discuss in detail three different

ets of co-design implementations and optimizations that are facilitated

y STMCM: 

• the amount of parallelism that is exploited in the software and hard-

ware subsystems; 
10 
• two alternative communication interfaces that offer different trade-

offs in terms of resource requirements and execution speed; and 

• local buffering to avoid redundant transmission of common data

across different branches of the SFM accelerator. 

These three sets of co-design explorations are discussed further in

ection 4.3.1, Section 4.3.2 , and Section 4.3.3 , respectively. 

.3.1. Exploiting parallelism 

STMCM allows the designer to experiment efficiently with the

mounts of parallelism that are exploited in both the hardware and

oftware subsystems (see the dashed squares in Fig. 7 ). In particular,

epending on the specific application requirements, multiple parallel in-

tances of software cores or hardware accelerators can be utilized. While

oftware cores are able to execute all DNN application steps, hardware

ccelerators can only perform the steps that they have been conceived

or. Generally speaking, hardware accelerators achieve higher efficiency

han software cores when executing a given computational step, both in

erms of execution time and resource efficiency (resource utilization and

onsumption). 

In the targeted Xilinx Zynq Z-7020 SoC platform, a pair of homoge-

eous cores is available, so that the maximum degree of software par-

llelism in our implementations is 2. The available cores are both ARM

9 MPCores with two levels of cache and access to a 512 Mb off-chip

DR RAM. In our experiments, we have exploited software parallelism

or the two most computationally intensive steps of the application —

he two convolutional layers. 

When using FPGA fabric, designers have the possibility to utilize as

uch parallelism as the FPGA resources allow. In this work, we have

nvestigated three alternative designs that utilize 1, 2 or 4 parallel SFM

nstances, respectively, in the same hardware accelerator. In the first

ase, the accelerator is executed 32 times in order to complete the 32

ranches of the first convolutional layer. This design executes a differ-

nt branch with different convolution coefficients for each accelerator

nvocation. In the second case (2 parallel SFM instances), the accelerator

xecution time is halved, but for each run, two new sets of convolution

oefficients are necessary. Finally, with 4 parallel SFM instances, only 8

ccelerator executions are needed, with each requiring the updating of

our different sets of coefficients. 

.3.2. Communication interfaces 

During the process of co-design exploration, STMCM gives the de-

igner significant flexibility to select interfaces for communicating data

etween the hardware and software subsystems. This flexibility is pro-

ided by the general dataflow model of computation that underlies

TMCM. Flexibility in selecting a communication interface can be very

seful in the context of resource- or performance-constrained design.

his is demonstrated, for example, by the work of Silva et al., which

nalyzes trade-offs among the different AXI interface options [38] . 

We investigated the usage of two different AXI communication inter-

aces located at the extremes of the resource-versus-performance trade-

ff: 

• the memory-mapped AXI4-lite ( mm-lite ) interface; and 

• FIFO-based AXI4-stream ( stream ) interface. 

Compared to the stream interface, the mm-lite interface has lower

esource requirements, but it also exhibits lower performance. The mm-

ite interface uses memory-mapped, one-by-one transfer of data items.

he interface is particularly intended for control signals and small-scale

ata accesses. It does not need any additional modules beyond those

epicted in Fig. 7 , and it uses only one of the PS master GP ports. For

xample, the execution of one branch of the first layer requires the input

mages (3 RGB images with 96 ×96 pixels each) and kernel coefficients

3 kernels with 5 ×5 coefficients each). Since the mm-lite interface uses

 separate data transfer operation for each pixel, this results in a total

f 3 × 96 × 96 + 3 × 5 × 5 data transfer operations. Once the accelerator
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Fig. 7. Reference configuration for hardware/software co-design exploration in our experiments. 
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ompletes its computation, the mm-lite interface requires 48 ×48 data

ransfer operations to enable the processor to read the output feature

ap. 

Unlike the mm-lite interface, which performs data transfers one-by-

ne, the stream interface employs a DMA engine that transfers data be-

ween processor memory and the accelerator in blocks, where the block

ize can be up to 256 bytes. Successive data items within a block are

ransferred in consecutive clock cycles. The stream interface requires

 DMA engine, as mentioned above, and additional FIFO buffers, and

herefore incurs significant overhead in terms of resource requirements.

ote that the additional hardware required by the stream interface is

ot depicted in Fig. 7 . The DMA engine is configured through one of

he PS master GP ports, and requires two different PS slave HP ports

o directly access the memory where data to be transferred to/from the

ccelerator is stored. 

To execute one branch of the first DNN layer, the stream inter-

ace performs (a) 96 memory-to-accelerator DMA operations to send

he input images, with 96 ×3 pixels for each DMA operation, and (b)

ne memory-to-accelerator DMA operation to send 5 ×5 ×3 kernel co-

fficients. Additionally, the stream interface needs 48 accelerator-to-

emory DMA operations to retrieve the computed feature map, with

8 pixels for each DMA operation. 

.3.3. Local buffering 

As mentioned previously, we incorporate local buffering of image

ixels in the SFM accelerator to avoid redundant transmission of com-

on data across different branches of the accelerator. This local buffer-
11 
ng optimization is applied to both the mm-lite-interface- and stream-

nterface-based accelerator implementations. 

For an accelerator configuration with a single SFM instance, the in-

ut image data is transferred to the accelerator only during execution

f the first branch. After being transferred, this data is retained in a

ocal buffer within the accelerator for reuse by the remaining 31 execu-

ions. For accelerator configurations that have multiple (parallel) SFM

nstances, the input image is also transferred only once to the accelera-

or. For these configurations, the image data is reused by the remaining

xecutions of all of the SFM instances. Thus, our incorporation of lo-

al buffering optimization eliminates input image data transfers for all

ranches except the first one. 

. Results 

In this section, we present experimental results to demonstrate the

esign and implementation methods provided by STMCM based on the

etailed case study presented in Section 4 . The main contribution of

his section is to demonstrate that the proposed methodology facilitates

fficient experimentation with alternative dataflow-based architectures,

esign optimization methods, and implementation trade-offs. 

.1. Embedded software implementation 

In this section we present results of our experimentation using

TMCM to explore alternative embedded software implementations. We

ocus specifically on the optimized application of loop tiling and buffer

emory management. 
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Table 4 

Memory requirements (in pixels) for the first two layers. In bracket in the last column: the percentage of memory requirement of DNN 

with shared FIFOs with respect to that of DNN with common FIFOs. 

FIFOs Convolutional layer 1 Convolutional layer 2 Total 

Conv. Add Maxpool&ReLU Conv. Add Maxpool&ReLU 

Common FIFOs 6,875,136 1,806,720 1,179,648 368,640 5,128,192 2,433,024 92,160 17883520 

Shared FIFOs 2,525,184 921,984 0 0 2,768,896 0 0 6,216,064 (34.8) 
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Table 5 

Resource utilization. In parentheses: the percentage of utilization with re- 

spect to the resources available on the targeted FPGA. 

Available LUTs REGs BUFGs BRAMs DSPs 

53200 106400 32 140 220 

SFM 5188 (9.75) 3472 (3.26) 1 (3.1) 11 (7.9) 13 (5.9) 

SFM a 5430 (10.20) 3687 (3.47) 2 (6.3) 11 (7.9) 13 (5.9) 

SFM CG 5206 (9.79) 3496 (3.29) 5 (15.6) 11 (7.9) 13 (5.9) 

SFM aCG 5479 (10.30) 3704 (3.48) 6 (18.8) 11 (7.9) 13 (5.9) 

SFM h 5170 (9.72) 3472 (3.26) 1 (3.1) 11 (7.9) 13 (5.9) 

SFM hCG 5198 (9.77) 3480 (3.27) 3 (9.4) 11 (7.9) 13 (5.9) 

SFM auto 5230 (9.83) 3472 (3.26) 1 (3.1) 11 (7.9) 13 (5.9) 
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.1.1. Loop tiling 

As introduced in Section 4.1.1 , in the optimization of our LIDE-C

mplementation of the DNN application, we explored loop-tiled convo-

ution actor designs with different tile sizes. Specifically, we measured

he number of cache load misses and the cache load miss rates during ex-

cution of a convolution actor. The valid tile sizes for each convolution

ctor were those within the range of 1 to D , where D is the dimension

f input images to the actor. For example, for the convolution actors

n Layer 1, which process input images with size 96 ×96 pixels, we ex-

lored tile sizes within the range of 1–96. 

Fig. 8 shows the number of cache load misses and cache load miss

ate under different tile sizes for convolution actors with different input

mage dimensions (48 ×48, 96 ×96, 750 ×750, and 1500 ×1500). As

e can see from the results, the cache load miss rates are very small for

mage dimensions D ∈ {48, 96, 750}. This indicates that the data can be

ully stored or almost fully stored in the cache with any valid tile size. 

For 𝐷 = 1500 , however, there is significant variation in the cache

oad miss rate across different tile sizes. The rate reaches its lowest value

hen the tile size is approximately 400. With careful setting of the tile

ize, loop tiling significantly reduces the cache miss rate for convolution

ctors that have relatively large image dimensions. 

Additionally, we can see that there is a large average CPU cycle count

or small tile sizes in all figures. We expect that this is due to the over-

ead caused by the additional for loops that are introduced by the loop

iling transformation. 

In summary, based on our simulation analysis for small image di-

ensions (96 ×96 and 48 ×48), loop tiling does not help to reduce the

ache miss rate on the target platform, and furthermore, it introduces

verhead due to the additional for loops. Thus, loop tiling should not

e applied to this DNN application for low image dimensions. However,

ur experiments also show that for larger image dimensions, loop tiling

oes help to improve the efficiency by reducing the cache load miss rate.

.1.2. Buffer memory management 

Fig. 9 shows the amount of memory required for data storage in

ach DNN layer. We report memory requirements in this section in

erms of pixels. In our experiments, we used a 4-byte floating point

ata type for each pixel. Fig. 9 also shows the amount of data com-

unication that is needed between adjacent layers, and the amount

f memory that must be active simultaneously during the compu-

ation associated with each layer. The memory needed for input is

alculated as 𝑖𝑛𝑝𝑢𝑡 _ 𝑖𝑚𝑎𝑔𝑒 _ 𝑠𝑖𝑧𝑒 × 𝑛𝑢𝑚𝑏𝑒𝑟 _ 𝑜𝑓 _ 𝑖𝑛𝑝𝑢𝑡 _ 𝑖𝑚𝑎𝑔𝑒𝑠 . The memory

eeded for execution of each layer is calculated as 𝑖𝑛𝑝𝑢𝑡 _ 𝑖𝑚𝑎𝑔𝑒 _ 𝑠𝑖𝑧𝑒 ×
 𝑛𝑢𝑚𝑏𝑒𝑟 _ 𝑜𝑓 _ 𝑖𝑛𝑝𝑢𝑡 _ 𝑖𝑚𝑎𝑔𝑒𝑠 + 1) × 𝑛𝑢𝑚𝑏𝑒𝑟 _ 𝑜𝑓 _ 𝑜𝑢𝑡𝑝𝑢𝑡 _ 𝑓𝑒𝑎𝑡𝑢𝑟𝑒 _ 𝑚𝑎𝑝𝑠 . 

As we can see from Fig. 9 , the processing in Layer 2 requires the

argest amount of active memory, and a minimum of 2,525,184 pixels

ust be allocated for buffer storage. The memory size can be optimized

ubject to this constraint through the application of shared FIFOs, which

ere introduced in Section 4.1.2 . The buffer memory allocation that we

ropose for this DNN application based on shared FIFOs is illustrated in

ig. 10 . 

Table 4 summarizes the memory requirements for dataflow edges

FIFO buffers) and actors in the two convolutional layers, which require

ost of the memory among the five layers. These memory requirements

re shown both with and without the use of shared FIFOs. As discussed

n Section 4.1.2 , actors operate on data from shared input FIFOs directly
12 
ithout copying data to its internal memory. Thus, convolution actors

nly need memory for its intermediate computation results. Add and

axpool&ReLU actors do not require additional memory. The results

resented in this table quantitatively demonstrate the utility of shared

IFOs for this application. In particular, the application of shared FIFOs

educes the memory requirements by 65%. 

.2. Hardware implementation 

In this section, we investigate trade-offs among the variants of the

FM design that were introduced in Section 4.2.2 . STMCM and the un-

erlying LIDE-V approach allow one to perform such trade-off explo-

ation, based on different combinations of high-level optimization tech-

iques, in a systematic manner. In particular, STMCM allows the de-

igner to focus on different strategies for instantiating, configuring, and

oordinating different combinations of actor and buffer (edge) imple-

entations, and eliminates the need for modification inside the actor

nd edge implementations. We exploited these advantages of STMCM

hen deriving the results presented in this section. 

Table 5 depicts resource utilization data that is extracted from the

ost-place and route reports generated by the Xilinx Vivado tool using

he targeted Zynq Z-7020 SoC. From the results in Table 5 , we see that

he different design variants all exhibit similar levels of resource cost.

he asynchronous designs SFM a and SFM aCG incur the highest resource

osts due to the additional logic required by the CDC FIFOs. The number

f BUFGs varies significantly among the different designs, depending on

he number of clock domains and the number of clock gated actors. 

Each of the implemented designs has been simulated in order to gen-

rate a switching activity file, which has been back-annotated to Vivado

ower Estimation to extract power consumption data. Since the designs

ave different execution times, the energy consumption levels do not

ary in the same proportions as the power consumption levels. Table 6

ummarizes the power consumption, execution time and energy con-

umption of the six alternative designs. 

In these experiments, the clock frequencies of the synchronous de-

igns and of Region 1 (CLK 1) in the asynchronous designs are all set

o 100 MHz, which is the maximum achievable frequency for the tar-

eted platform. For Region 2 (CLK 2) in the asynchronous designs, the

requency is set to 5 MHz. This setting of 5 MHz is derived from the

ardware profiling data (see Table 3 ) as 1/20 of CLK 1. These clock fre-

uencies are specified in Table 6 with the suffix _F , where F represents

he frequency value in MHz. 
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Fig. 8. Performance evaluation of convolution actors with different image dimensions: (a) 48 ×48, (b) 96 ×96, (c) 750 ×750, (d) 1500 ×1500. 

13 
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Fig. 9. Buffer memory and communication requirements in the DNN architecture. 

Fig. 10. Buffer memory allocation for the DNN application. 

Table 6 

Dynamic power consumption, execution time and energy con- 

sumption of the different SFM variants. In parentheses: the per- 

centage difference with respect to the baseline SFM . 

Power [ mW ] Time [ns] Energy [ 𝜇J ] 

SFM 115 2,329,165 268 

𝑆𝐹𝑀 𝑎 _ 5 89 (-22.61) 2,407,300 ( + 3.354) 214 (-20.01) 

SFM CG 89 (-22.61) 2,329,245 ( + 0.003) 207 (-22.61) 

𝑆𝐹𝑀 𝑎𝐶𝐺 _ 5 88 (-23.48) 2,408,100 ( + 3.389) 212 (-20.89) 

SFM h 117 ( + 1.74) 2,329,155 (-0.000) 273 ( + 1.74) 

SFM hCG 105 (-8.70) 2,329,175 ( + 0.000) 244 (-8.70) 

SFM auto 113 (-1.74) 2,329,165 ( + 0.000) 263 (-1.74) 
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According to Table 6 , the clock gated designs SFM CG and 𝑆𝐹 𝑀 𝑎𝐶𝐺 _ 5 

ave the best capabilities for saving energy, reducing the total energy

onsumption by 22.61% and 20.89%, respectively. Design 𝑆𝐹 𝑀 𝑎𝐶𝐺 _ 5 

aves less energy than SFM since the former employs one more BUFG.
CG 

14 
urthermore, in 𝑆𝐹 𝑀 𝑎𝐶𝐺 _ 5 , the actors in the slower domain (Region 2)

re active for a relatively large portion of the execution time, and thus,

hey cannot be switched off for large proportions of time. In contrast,

ccording to Table 3 , the Deinterleave actor in Region 1 can be switched

ff for almost 90% of the total execution time. 

The designs 𝑆𝐹 𝑀 𝑎𝐶𝐺 _ 5 and 𝑆𝐹 𝑀 𝑎 _ 5 , both of which employ two clock

omains with CLK 1 at 100 MHz and CLK 2 at 5 MHz, have similar ca-

abilities to save energy. The former design is slightly more energy ef-

cient compared to the latter. The results for these two designs show

hat the energy saved by switching off the actors, when inactive, and

lso the saving of the unused logic in the CDC FIFOs counterbalance the

nergy overhead due to the additional circuitry. 

As expected, SFM h has a small amount of energy overhead due to the

ogic necessary to encapsulate Sum1, Sum2 and Maxpool&ReLU into the

ierarchical actor. The design SFM hCG , among the clock gated designs,

s not as advantageous as the previously analyzed designs in terms of en-

rgy saving. This is because even though it employs only three BUFGs,

he hierarchical actor is switched off only when none of the underly-
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Table 7 

Resource occupancy for different SFM accelerator implementations. In 

parentheses: the percentage of utilization with respect to the resources 

available on the targeted FPGA. The bottom part of the table depicts the 

percentage of variation with respect to HW1-mm. 

Available LUTs REGs BRAMs DSPs 

53200 106400 140 220 

HW1-mm 5395(10.14) 4668(4.39) 43 (30.71) 13 (5.91) 

HW2-mm 10890 (20.47) 8197 (7.70) 54 (38.57) 26 (11.82) 

HW4-mm 21474 (40.36) 16331(15.35) 76 (54.29) 52 (23.64) 

HW2-mm + 101.85 + 75.60 + 25.58 + 100.00 

HW4-mm + 298.04 + 249.85 + 76.74 + 300.00 

Table 8 

Performance of different co-design solutions. The top part of the table de- 

picts execution time in milliseconds (ms). The bottom part depicts the per- 

centage of execution time variation for each configuration with respect to 

SW1. 

input Layer Prediction 

1 2 3:5 

SW1 118.9 640.3 1594.7 34.4 2388.2 

SW2(L1) 118.7 368.3 1609.8 34.0 1639.5 

SW2(L1,L2) 117.4 354.7 842.1 33.8 1348.0 

SW2(L2)/HW1(L1)-mm 118.9 118.5 856.7 35.4 1129.5 

SW2(L2)/HW2(L1)-mm 118.4 74.6 866.5 35.1 1094.5 

SW2(L2)/HW4(L1)-mm 117.9 54.5 859.0 35.4 1066.8 

SW2(L1) -0.13 -42.48 + 0.95 + 1.12 -10.75 

SW2(L1,L2) -1.22 -44.61 -47.19 -1.72 -43.56 

SW2(L2)/HW1(L1)-mm -0.00 -81.49 -46.28 + 2.89 -52.71 

SW2(L2)/HW2(L1)-mm -0.40 -88.36 -45.66 + 2.09 -54.17 

SW2(L2)/HW4(L1)-mm -0.81 -91.48 -46.13 + 2.85 -55.33 
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ng actors are working. This means that, for instance, while Sum1 is

ctive, the actors Sum2 and Maxpool&ReLU will have an active clock

ven when the actors are in an idle state (so that they keep wasting

nergy). Finally SFM auto is the design with the smallest energy saving,

nly 1.74% compared to SFM . Even considering the same optimization

echnique (clock gating), the level on which it is applied turns out to

e fundamental: at a low level (single flip-flops in SFM auto ) only the dy-

amic power of a restricted number of gates can be saved. On the other

and, at a coarse-grain level (groups of dataflow actors in SFM CG ), it

s possible to act also on the clock tree, which is highly effective for

mproving power saving. 

.3. Hardware/software co-design results 

In this section, we investigate different hardware/software co-design

onfigurations. As anticipated in Section 4.1 , depending on the portion

f the application that is accelerated in hardware and on the given re-

uirements and constraints, different design choices regarding the hard-

are/software communication interface lead to different trade-offs be-

ween resource requirements and performance. For the SFM accelerator,

e investigated several implementation and optimization solutions, ex-

loring three key aspects: exploiting parallelism, communication inter-

aces and local buffering (see Section 4.3 ). In this section, by an SFM

ccelerator , we mean specifically a hardware accelerator. 

Different software and hardware configurations that we explored in

ur co-design exploration are summarized as follows. 

• SW1 — The application runs in software on a single ARM core. This

design can be viewed as a baseline design without any optimization

or hardware acceleration. Comparisons between this baseline design

and alternative designs are discussed in the remainder of this section.

• SW2 — The application runs in software by using both of the ARM

cores on the target platform. 

• HW1 — A single-branch SFM accelerator is employed to execute the

first convolutional layer. 

• HW2 — An SFM accelerator with two parallel branches. In this con-

figuration, a local buffer is shared between the branches. 

• HW4 — An SFM accelerator with four parallel branches. Again, a

local buffer is shared among the branches. 

For multicore software implementations and hardware implementa-

ions with multiple branches, the layer or layers that are executed in

arallel (i.e., intra-layer parallelism is exploited) are indicated in paren-

heses. Similarly, hardware configurations are annoated with -mm or -s

epending, respectively, on whether a memory-mapped AXI-lite com-

unication interface is used, or a FIFO-based AXI-stream interface is

sed. 

For example, SW2(L1, L2) represents a software-only implementa-

ion in which layer 1 and layer 2 are executed in parallel. As another

xample, SW2(L2)/HW2(L1)-mm represents a hardware/software im-

lementation based on configurations SW2 and HW2; in this implemen-

ation, layer 2 is executed across multiple cores, layer 1 is parallelized

n hardware with 2 parallel branches, and AXI-lite is used as the com-

unication interface. 

Note that the SFM accelerators are able to execute only the first con-

olutional layer. Thus, in all of the DNN system implementations, the

ccelerators are coupled with one of the software configurations. 

.3.1. Resource costs of accelerator implementations 

Table 7 depicts the resource occupancy in the targeted Zynq Z-7020

evice for the different SFM accelerator implementations that we ex-

erimented with. As expected, a higher level of parallelism (going from

W1-mm to HW4-mm) requires more resources, and our experiments

ere help to quantify the associated trends. For example, fine-grained

nd computation-related resources (LUTs, REGs and DSPs) increase lin-

arly with the number of parallel branches placed in the accelerator

about +100% with one more branch and about +300% with three
15 
ore branches), while coarse-grained memory resources (BRAMs) ex-

ibit a gentler slope. We expect that this gentler slope results because

he primary BRAM-demanding module, the local buffer, is shared across

arallel branches. 

The results above indicate that when the DNN architecture is made

eeper (i.e., as the number of convolutional layers is increased), the

iggest restriction will be the hardware resource limitations. Usually, as

 DNN is made deeper, more parallel branches are needed to complete

he computation without compromising the processing speed and more

emory resources are needed to store the intermediate feature maps.

owever, deeper networks do not necessarily imply more computational

omplexity. For example, the well-known ResNet101, which has 101

ayers, needs less computation than the 16-layer VGG16 because the

GG layers are significantly larger [39,40] . 

.3.2. Comparison of co-design solutions 

Table 8 presents performance results for different software-only and

ardware/software solutions that we investigated using STMCM. In par-

icular, the table reports the execution time in terms of milliseconds

ms) for different execution phases: reading the input file (column in-

ut), computing the first and the second layers, and computing the deep

ayers (Layers 3, 4 and 5). The table also reports the execution time of

he overall application (prediction) for different degrees of software and

ardware parallelism. 

The reference time is given by the execution of the entire DNN ap-

lication on a single ARM core (SW1), which is capable of completing

he prediction in about 2.4 seconds. From this reference configuration,

t is also possible to appreciate the computational load of the different

pplication phases. The heaviest part is Layer 2, which is responsible

or more than 65% of the overall execution time, while most of the re-

aining load is attributable to Layer 1 (around 25%), and to reading of

he input file (about 5%). For this reason, software parallelization has

een evaluated only on Layer 1 (SW2(L1)), and on both Layers 1 and 2

ogether (SW2(L1,L2)). 
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Table 9 

Differences in resource costs between communication interfaces when ap- 

plied to HW1. In parentheses: percentage of utilization with respect to the 

resources available on the targeted FPGA. The bottom part of the table de- 

picts the percentage utilization variation with respect to HW1-mm. 

Available LUTs REGs BRAMs DSPs 

53200 106400 140 220 

HW1-mm 5395(10.14) 4668(4.39) 43 (30.71) 13 (5.91) 

(1) HW1-s 5784 (10.87) 4357 (4.09) 43 (30.71) 13 (5.91) 

(2) FIFOs (stream) 212 (0.40) 242 (0.23) 10 (7.14) 0 (0.00) 

(3) DMA (stream) 1490 (2.80) 1881 (1.77) 3 (2.14) 0 (0.00) 

(1) + (2)+(3) 7486 (14.07) 6480 (6.09) 56 (40.00) 13 (5.91) 

HW1-s + 7.21 -6.66 + 0.00 + 0.00 

(1) + (2)+(3) + 38.75 + 38.81 + 53.49 + 0.00% 
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The execution time needed by each of the major execution phases is

lmost halved when two cores are adopted. A precise 50% reduction is

ot reached because of the software overhead necessary to manage mul-

itasking. With software parallelization only, the overall execution time

s reduced to 1.13 seconds, about 44% less than the SW1 configuration.

ardware acceleration and related parallelization are only applied to

he first convolutional layer, while only software parallelization is ap-

lied to Layer 2. If we consider only the execution time of layer 1, then

W2(L2)/HW1(L1) reduces execution time by more than 80% compared

o SW1, and more than 65% compared to SW2(L1,L2). 

If multiple branches of Layer 1 are processed in parallel, the hard-

are accelerator achieves further performance benefits — a time sav-

ng up to 88% for a 2-branch configuration (SW2(L2)/HW2(L1)-mm),

nd up to 91% for a 4-branch configuration (SW2(L2)/HW4(L1)-mm).

hese performance improvements are with respect to SW1. Note that the

peed-up obtained by doubling the number of branches (going from 1 to

 and from 2 to 4) is less than 2 in either case (1.6 from 1 to 2 and 1.4

rom 2 to 4). This is due to the software overhead related to managing

ultiple branches. Due to the limited computational load of Layer 1, the

enefits of hardware acceleration and parallelization on the overall sys-

em are somewhat limited. The best solution, SW2(L2)/HW4(L1)-mm,

equires 1.07 seconds to perform the whole application, 55% less than a

ull software execution on a single core (SW1) and 21% less than a full

oftware execution on two cores (SW2(L1,L2)). 

Another aspect that has been studied in our co-design experi-

ents is the interfacing between system components. As discussed in

ection 4.3.2 , the adopted communication interface between software

nd hardware portions of a design can have a significant impact on

verall system performance. In our co-design experiments, we have ap-

lied two very interfaces — mm-lite and stream, which are discussed in

ection 4.3.2 . 

Table 9 helps to understand differences between the resource costs

f these two interfaces. The first row of this table shows resource avail-

bility on the target platform. The second and third rows show resource

osts for the HW1-mm accelerator, and HW1-s accelerator. The fourth

nd fifth rows show resource costs for FIFO and DMA modules (external

o the accelerator) that are necessary for the stream interface. The sixth

ow shows total resource costs induced by use of the stream interface
Table 10 

Results pertaining to the impact of the communication interface on execut

different DNN application steps. The bottom part depicts the execution tim

File input [ms] Layer 1 

input tx [ 𝜇s] coeffs tx [ 𝜇s] output tx [ 𝜇s]

HW1-mm 118.9 5222 15 2339 

HW1-s 117.5 854 5 2333 

HW1-s dir 118.3 418 3 2333 

HW1-s -1.17 -83.65 -66.67 -0.26 

HW1-s dir -0.49 -92.00 -80.00 -0.26 

16 
the sums of the costs in the preceding three rows). The last two rows

f the table represent percentage increases in resource costs relative to

he HW1-mm accelerator. 

From Table 9 , we see that the HW1-mm and HW1-s accelerators

lone require approximately the same amount of resources: HW1-s

equires 7.21% more LUTs and 6.66% less REGs compared to HW1-

m. However, when the overhead due to the DMA and FIFO modules

ecessary for AXI-stream communication is considered, significantly

ore resources are required when the stream interface is used: about

8% more LUTs and REGs are required by the overall stream design

(1)+(2)+(3)), while over 50% more BRAM cost is incurred. 

To make the stream interface a useful option in our system design, its

ignificant increase in resource costs should be accompanied by tangible

dvantages in execution performance. Table 10 shows results pertaining

o the impact of the communication interface on execution time. In or-

er to better expose the effects of the selected communication interface,

etails on data transfers (input, convolution coefficients and outputs) be-

ween the hardware (accelerator) and software subsystems is reported.

or the HW1-s design, two different sets of results are reported depend-

ng on whether program data is directly accessible by the DMA engine.

or one set, the program data is located in a memory that is not directly

ccessible by the DMA. This scenario corresponds to the design that we

ave implemented. It requires an additional copy of the program data

n a memory that is accessed directly by the DMA. For the other set, the

rogram data is located in a memory that is directly accessible by the

MA. This set is indicated in Table 10 using the annotation HW1-s dir .

e have not implemented HW1-s dir; instead, we have estimated the

orresponding results to gain some idea about the maximum achievable

erformance. Details on the estimation approach are omitted for brevity.

The results in Table 10 demonstrate the utility of the resource-

ungry HW1-s design, and quantify its clear ability to outperform HW1-

m. In particular, the input data and transmission of convolution coef-

cients are respectively about 84% and 67% faster when the AXI-stream

rotocol is adopted. This leads to an estimated time saving of up to 92%

nd 80%, respectively, when the DMA has direct access to the program

ata (HW1-s dir). 

On the other hand, the output data transmission time is the same

mong all of the reported configurations. We expect that this is because

he outputs are produced in a row-by-row fashion (48 data units at a

ime), and the timing of output production is determined by the compu-

ation latency, which is greater than the communication latency for all

f the interfacing configurations. However, looking at the total Layer

 and DNN application execution times, we see that the advantages

f adopting the stream interface are no longer visible. Indeed, for the

onsidered SFM accelerator, the input data is transmitted only during

he first branch execution due to our use of local buffering. Addition-

lly, even though the coefficients are transmitted for each branch, their

ransmission requires a relatively small amount of time. 

These results involving communication interface selection illustrate

he importance of comprehensive system-level evaluation of alternative

esign options, which is one of the key parts of the design process that

s facilitated by STMCM. 
ion time. The top part of the table depicts the execution time of the 

e variation of each configuration with respect to HW1-mm. 

Layer 2 [ms] Layers 3, 4, 5 [ms] Prediction [ms] 

 total [ms] 

118.5 856.7 35.4 1129.5 

114.6 864.3 34.9 1131.3 

114.1 869.5 35.0 1137.0 

-3.27 + 0.87 -1.39 + 0.16 

-3.69 + 1.49 -1.22 + 0.66 
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. Conclusion 

In this paper, we have introduced a design methodology, called the

TMC Methodology or STMCM, and an integrated set of tools and li-

raries that support the application of this methodology. STMCM is

eveloped to assist designers of signal processing systems in exploring

omplex design alternatives that span multiple implementation scales,

latform types, and dataflow modeling techniques. We have demon-

trated the capabilities of STMCM through a detailed case study involv-

ng a deep neural network (DNN) for vehicle classification. The demon-

tration encompasses dataflow-based application modeling, profiling,

mbedded software optimization, hardware accelerator design, hard-

are/software co-design, and hardware/software interface design, all

n the context of mapping the given DNN into an efficient implementa-

ion on a resource-constrained, system-on-chip platform. Through this

ase study, it is shown how STMCM provides a unified, model-based

ramework for conducting comprehensive empirical evaluations of di-

erse hardware/software design alternatives. Through its application of

ightweight dataflow techniques, STMCM is complementary to dataflow

ools that emphasize specialized design flows and high degrees of au-

omation. Useful directions for future work involve applying STMCM in

ovel ways that exploit these complementary relationships. Addition-

lly, we believe that an automatic code generator producing the corre-

ponding hardware/software co-design code given the hyperparameters

uch as the number of layers and/or number of feature maps would be

ery impactful. Implementation criteria could be integrated such that

he generated network can be optimized based on different constraints

nd objectives. 
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