Journal of Scientific Computing manuscript No.
(will be inserted by the editor)

Weakly constrained Lucy-Richardson with applications
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Abstract Lucy-Richardson (LR) is a classical iterative regularization method
largely used for the restoration of nonnegative solutions. LR finds applications
in many physical problems, such as for the inversion of light scattering data. In
these problems, there is often additional information on the true solution that
is usually ignored by many restoration methods because the related measurable
quantities are likely to be affected by non-negligible noise.

In this article we propose a novel Weakly Constrained Lucy-Richardson
(WCLR) method which adds a weak constraint to the classical LR by intro-
ducing a penalization term, whose strength can be varied over a very large
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range. The WCLR method is simple and robust as the standard LR, but of-
fers the great advantage of widely stretching the domain range over which the
solution can be reliably recovered. Some selected numerical examples prove
the performances of the proposed algorithm.

Keywords Lucy-Richardson Algorithm - Light Scattering - Particle Sizing
Mathematics Subject Classification (2000) 65R32 - 78A46 - 78A10

1 Introduction

In this work we consider the case of a Fredholm integral equation of the first
kind
1(0) = /K(@,R)N(R)dR. (1)

where I(0) represents the data evaluated at the independent variable 6, N(R)
is the unknown function that depends on the variable R, and K(6,R) is a
known integral kernel with compact support. The latter condition implies that
equation (1) is ill-posed, meaning that the solution is not unique and does not
depend continuously on the data, i.e., small perturbations in I greatly affect
the solution N.

We are going to consider inverse problems of the form (1) coming from light
scattering methods in optics [2,6,15-18], where the main goal of the optical
technique is to recover the particle-size distribution N(R) which character-
izes the sample under investigation. Thus the solution N(R) is defined to be
positive (N > 0) with a positive support (R > 0). Among the various scatter-
ing techniques, the most popular ones are Dynamic Light Scattering (DLS),
Static or Elastic Light Scattering (ELS) and Multi Wavelength Turbidimetry
(MWT). All of them can be easily implemented by using simple experimen-
tal setups (see for example [7] and references therein), with the possibility of
characterizing simultaneously a very large number of particles, the character-
ization being carried out in situ and almost real time. Recent applications of
these methods to particle sizing can be found in Refs. [25, 28] for the DLS
technique, in Refs. [21,30] for ELS, and Refs. [14,31] for MWT.

The goal of an efficient, well performing inversion algorithm is the accurate
and fast recovery of the sample particle-size distribution over the largest pos-
sible range of particle radii. Indeed, inversion algorithms are expected to work
pretty well only when the particle sizes to be recovered lie within a given range
[Rimin, Rmax|, which depends on the range of the [fmin, Omax] independent vari-
able being probed. Although what follows is of general validity, in this paper
we will focus on the ELS technique, where I(6) represents the intensity of the
light scattered by the sample at various scattering angles 6. In the past we
have shown [12] that the dynamical extension of the R—range (i.e., the ratio
[Rimax/Rmin]) which can be probed, scales proportionally to [fmax/Omin] and,
therefore can be rather limited if the latter ratio is not sufficiently large. Typ-
ically in the ELS technique, [Rmax/Rmin] ~ [fmax/0min] ~ 10 — 100, see [12].
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In order to obtain an inversion algorithm we have to discretize (1) and use
a numerical method for solving the resulting linear system

AN =1, 2)

where N € R™ and I € R™ are the discretizations of N(R) and I(6), respec-
tively and A € R™*™. As mentioned above, since K is compact, the inverse
problem in (1) is ill-posed. In the discrete version this property is inherited by
the matrix A which is severely ill-conditioned, i.e., its singular values decreases
to zero rapidly with no significant gap [19]. In practice, since it is impossible to
avoid the presence of noise in the data, the direct inversion of A, for instance
be the Moore—Penrose pseudoinverse, leads to very poor approximations of
the original desired N. To recover a meaningful approximation of the true so-
lution, a common approach is to resort to regularization, i.e., use numerical
methods that compute a solution of a nearby well-posed problem, see [3,9] for
classical regularization methods for inverse problems.

For large problems, a common approach is to adopt iterative methods that
require only matrix vector-products. Among these iterative procedures, one
of the most popular ones is undoubtedly the classical Lucy-Richardson (LR),
known also as Richardson-Lucy method [26,29], which has the remarkable
feature of ensuring nonnegativity of the solutions. LR is also quite simple to
implement, robust against noise and, provided that the iterative procedure is
stopped after a properly chosen number of steps, does not require any parame-
ter to be optimized. Furthermore, it is the specific nature of our problem that
suggests the usage of the LR method, mainly because the noise present on
the data is not additive, but multiplicative white Gaussian noise as described
in Section 4.5, and the operator A is severely ill-conditioned and underdeter-
mined. These features suggest that methods relying on the minimization of
the Euclidean norm of the residual would not perform well on this specific
problem. Moreover, in the considered setting, the knowledge of the norm of
the noise is not available and only some statistical information on it can be re-
trieved, implying that the classical discrepancy principle cannot be employed.
Thus, a method like LR seems to be more effective than other methods based
on the minimization of the Euclidean norm.

On the other side, the LR method is known for being relatively slow and,
as mentioned above and reported in [12] !, for being not so efficient when
when the range of recoverable radii is too large. The latter limitation occurs
because, for any given angular range [fmin, Omax], as particles become smaller
and smaller (R < A/0min), the angular distribution of the scattered light tends
to be more and more uniform [I(0min)/I(Omax) ~ 1], thus carrying less and less
information on particle size. Conversely, for larger and larger particles (R >
A/Omax), the angular distribution varies widely with a high signal dynamic
range [[(Omin)/I(0max) > 1], but the shape of I(6) tends to be independent
on particle size [23].

I After the publication of [12], it was realized that the method called “modification of the
Chahine algorithm” proposed in that work, is identical to the LR algorithm.
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In this paper we propose a new method called Weakly Constrained Lucy-
Richardson (WCLR), which improves the classical LR method by adding a
weak constraint to the true solution associated to a physical property (the
particle volume fraction concentration) that is known or can be measured with
rather high accuracy. The introduction of this additional knowledge accelerates
remarkably the convergence rate of the method and, at the same time, largely
improves the quality of the restoration. In particular it allows to enlarge the
R—range by more than one order of magnitude, a property that is crucial in
many real applications.

The price to pay for adding the constraint is the introduction of a damping
parameter, v, which has to be properly adjusted. However, this task is not
critical at all because the strength of v can be varied over a very broad range
and its optimal value can be easily found by exploiting a second physical
property (the particle number concentration), which needs to be known only
very roughly. Note that using a weak rather than an ezact constraint is a vital
feature of the WCLR method. Indeed, while imposing an exact constraint
has the advantage of requiring no damping parameter, its implementation
(by using classical optimization algorithms for linear constrained problems)
might still need the tuning of other parameters and, due to unavoidable errors
always present in the estimate of the constraint, it does not provide necessarily
an improvement in the quality of the restoration. Conversely, our WCLR is
quite simple to implement, it is flexible and robust against small (< +2%)
uncertainties associated to the constraint and, except for «, does not require
any other parameter to be set in the same spirit of the classical LR.

This work is structured as follows. In Section 2 we give some physical
details about the problem we are going to analyze. In particular, Section 2.1
describes the discretization process, while Section 2.2 considers the constrains
we are going to use. Section 3 is devoted to the formulation of the mathematical
model and to the definition of our numerical method. The latter one is tested
and compared with LR on some numerical examples in Section 4. Section 5 is
devoted to concluding remarks and future work.

2 Physical details

In this section we give some insight into the physical problem we are going to
consider, i.e., the problem associated to the inversion of elastic light scattering
(ELS) data, where the main goal is to recover the size distribution of the
particles present in the sample.

According to ELS theory [23], when a sample made of polydisperse parti-
cles characterized by a refraction index different from that of the surrounding
medium is illuminated by a laser light of wavelength A, part of the radiation is
going to be scattered at angles different from the incident direction. If the par-
ticles are homogeneously dispersed in the medium and their concentration is
so low that they can be considered as non-interacting, the angular distribution
of the overall scattered intensity, I(f), is given by the sum of the intensities
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Fig. 1 (a): normalized behavior of the kernel K (6, R) appearing in (1) as a function of the
scattering angle 6 for five particles with diameters d = 2R ranging from d = 0.01 um to
d = 100 wm; the normalization is such that K(60 = 0, R) = 1. (b): behavior of the kernel
amplitude K (0 = 0, R) as a function of the ratio R/\. The straight lines with slopes 6 and
4 indicate that K (0 = 0, R) growths as ~ R% or ~ R*, the crossover occurring at R ~ .

scattered by the single particles [23]. Thus the system is linear and I(f) can
be written as (1) where 6 is the scattering angle (the angle between the in-
cident laser beam and the direction at which the scattered light is detected),
N(R) is the unknown number-concentration density [cm ™3 um™!] of particles
of radius R, and K (0, R) is the (known) kernel of the system, representing the
intensity scattered by a single particle of radius R at angle 0. Typically, I(0) is
detected at a finite number of angles ; (i = 1, .., n) within a bounded interval
[Omin, Omax] -

If the particles are spheres, the kernel K(6, R) is provided by the Mie
theory [22], according to which the angular distribution of I(6) scattered by
a particle of radius R is mostly confined to the diffraction lobe Oqi¢ ~ A/2R
and () amplitude strongly increases with particle radius as I ~ RS for small
particles (R < \) and I ~ R* for large particles (R > )). Figure 1(a) reports
an example of the behaviors of 1(0)/1(0) = K(6, R)/K (0, R) versus 0 over a
range of [2 — 180 deg] for particles of different diameters d = 2R from d = 0.01
to 100 wm. As one can notice, for small particles () tends to be rather flat,
whereas for large particles () exhibits many oscillations and decays by many
order of magnitude over the reported 0 range. At the same time the zero-angle
amplitude I(0) varies widely, passing from I(0) ~ 107t at R/\ = 1072 to
1(0) ~ 10® at R/X = 102, see Figure 1(b). Thus, it is clear that the inversion
of (1) might become an unbearable task when the particle size distribution
N(R) to be recovered contains particles with very different radii.

2.1 Discretization of the Fredholm Integral Equation

We now describe the discretization of (1). Let us consider that only a finite
number of §; (i =1, ..., n) can be accessed experimentally and within a limited
range [0, 0,,]. Thus, if the particle size distribution N(R) is approximated
by a histogram constituted by m bins (or classes) delimited by the radii r;,
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j=0,1, ..., m, the equation (1) becomes
I0:) =Y Ai;N;,  i=12,...n, (3)
j=1

where N; is the number concentration density [cm ™3 um™!] of the particles
belonging to the j-th class of width Ar; =r; —r;_1 and

T
Ai,j = / K(HZ, 7’) dT. (4)
Tj—1
When the classes are narrow enough, we can pinpoint them in terms of their
average radius R; = (r; + r;—1)/2 and width AR;:=Ar;, where Ar; = r; —
rj—1. Thus N; AR; represents the number concentration of particles belonging
to the j —th class and the term A; ;/Ar; is the average intensity scattered at
angle 6; by a single particle with average radius R;. Note that (3) is a set of
n linear equations in which the left-hand side I(0;) are the data provided by
the experiment, the matrix entries A; ; are known and NN; are the unknowns
to be recovered.

Although somewhat arbitrary, it is often convenient to choose the r; grid
points so that, within the range [rg, ,,], all the m classes are characterized
by the same relative width o« = AR;/R;. This can be accomplished by scaling
r; according to the geometrical progression

Ty =road’,

where a = (R,,/R1)"(™~Y and ry = 2R;/(1 + a). In this way the average
radius and the width of each class scale as

Rj=Ria 1, AR; = ARy d’ ™!, j=1,..,m, (5)

thus o = 2[(a — 1)/(a+ 1)] and for a 2 1, o &~ a — 1. A sketch layout and
discretization scheme of the classes is reported in Figure 2. Typically if we want
to cover three orders of magnitude in size, i.e. R,,/R1 = 10® with a = 0.02,
approximately m = 350 classes are necessary.

2.2 Constraints

The very first constraint we can impose is that
N; >0, 7=1,...,m, (6)

This comes from the simple observation that the number of particle cannot be
negative.
A more interesting constraint is related to the integral of N(R) obtaining

cn =Y N;AR;, (7)

j=1
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Fig. 2 Discretization scheme of equation (1)

where cy represents the particle number concentration [em ™3], i.e., the to-
tal number of particles contained in the sample divided by the sample vol-
ume. This constraint can be applied whenever the number of particles can be
counted, a somewhat difficult task that can be carried out only under some
experimental conditions.

The last constraint is related to the particle volume fraction concentration
cy, which is given by the total volume occupied by the particles divided by
the sample volume

Cy = ZNJ"UJ‘AR]‘, (8)
j=1
where
1 R;+AR; /2 5
v; = (4/3)7R°dR 9)
’ AR] /IZJ‘AR]‘/Q

is the average volume of one particle belonging to the j** class. Clearly, for
very narrow classes (AR;/R; < 1), v; ~ (4/3)nRS.

Remark 1 The constraint (8) on cy is of particular significance because in most
experiments the volume concentration is a quantity that can be measured quite
easily and with high accuracy.

In our method we would like to exploit both concentration constraints (7)
and (8) (the positiveness constraint, (6), being fulfilled automatically, see be-
low), but they are not equivalent from a physical point of view. As mentioned
out above, whereas an accurate value of ¢y can be easily obtained experi-
mentally, the estimate of ¢y might be somewhat troublesome and affected by
large errors. Thus, we propose a weakly constrained version of the LR algo-
rithm based on the ¢y constraint alone, and we will use the estimate of ¢y
only for cross-checking the self-consistency of the inversion procedure, i.e., for
estimating the damping parameter that weight the constraint on cy .
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3 The Weakly Constrained Lucy-Richardson method

We now describe how the physical model translates into the linear algebra
language. The linear system (3) is compactly rewritten as

AN =1 (10)

where A € R"*™ N € R™ and I € R™.
Similarly, the three constraints of Section 2.2 can be rewritten as:

(i) From (6) N > 0, meaning that N; >0, for j =1,...,m;
(ii) From (7)
en = N'AR, (11)

where 0 < AR € R™ , with (AR)j = ARj definedin (5) forj = 1,...,m;
(iii) From (8)

cv =N'V =>"V;N;. (12)

j=1
where 0 <V € R and V; = v; AR;, being v; defined in (9).

This information will be used in the following to define a simple and effective
iterative procedure to compute a solution of (10), where, except from the pos-
itiveness (i), the constraints (ii)-(iii) are not all strictly satisfied, but are used
to improve the computed approximation or to estimate possible parameters.

Note that equations (11) and (12) can be seen as weighted ¢;-norm because
both V and AR are nonnegative, so we can define

||N||1,V = NtVa ||N||1,AR = NtAR

As stated at the end of Section 2.2, we are going to use directly only a weighted
version of the constraint (iii).

In order to insert the constraint (iii) we opportunely pad the matrix A and
the right-hand side I. Let v > 0 be a fixed real number and define

o= "

where (A; ;) = wr2.Ai; and (V) = >V are the arithmetic averages of
0

; j
the entries of the matrix A and the vector V, respectively. We define

A- (V;Vt> and  T= (WICV). (14)

Note that, since the factor yoV; = v < A; ; > (V;/ < V; >) appearing in (14),
must have the same dimensional units as < A4, ; >, 7y is correctly a dimension-
less parameter. As a consequence, its effect of (14) is independent on the units
of both A; ; and V.
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In this way we have inserted the constraint (iii)in our system weighted by ~.
The value of v determines the strength of the constraint and its effectiveness.
In particular the larger « the stronger the effect of the constraint will be.

The new extended system becomes

AN = (WAVt)N:i: (WICV> (15)

Since, the entries of the matrix A and I are nonnegative and, according to
(i), we are looking for a nonnegative solution of (15), the LR methods appears
to be an excellent candidate for undertaking this task. Indeed, provided that
the initial guess NV > 0, the k + 1 approximated solution of equation (15) can
be recursively written in term of the k—iterate as

NF [T

Nl = o[ At = |, k=0,1,...
a Ik

where 2 and e o e are respectively the entry-wise division and multiplication

and e - e is the usual matrix-vector multiplication. The vector a € R™ is

defined as

n+1 n
aj:Z(At)j_:ZAi,jJr’WVj, j=1,....m, (16)
=1 =l
and TF is )
= l AN
it = AN* = ( N > _
e INF[, v
Let us consider the j — th component, of N*+1:
NEL Nk
NE+HL 20 | At | = _Jéj; (17)
J a; Ik ) a;

the factor &; is

n+1 i n+1 i .
¢ = ; (At)j,i (Ik)) _ ; (A)m— Ei)'i _ > Ai,jl% +ij27:, (18)
d

with c"“, = HNk

3

/N

Combining (16) and (18) with (17), we obtain

v

Sy Avg 1t v (Aig) iy
i 1 J Tt I (V) v j7=1,...,m. (19)

NJ]’H_1 = N; n Vv,
>im1 Aig +v(Aig) Vi

where we have explicitly reported the expression for ¢ given in (13). We can
see that constraint (iii) is not blended with the other term, it is decoupled from
the data fitting part and is weighted by ~. Moreover, the nonnegativity of N¥
is simply preserved starting with N° > 0, e.g., N° = 1, where 1 represents the
vector with entries all equals to 1.
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3.1 Heuristic interpretation

We now want to give an heuristic interpretation of the formulation of (15).
A standard approach for passing from a constrained least square problem to
an unconstrained problem is the well-known quadratic penalization technique
[5]. In our case, considering the constraint (iii), we obtain the minimization
problem

2
. 2

min AN = 1) + (v9)* (INll, v = ev) (20)

where || - ||2 denotes the Euclidean norm and (yp)? is the penalization pa-

rameter. This can be seen as a regularized version of the problem (2), where
the parameter (yp)? balances the trade off between the data fitting and the
penalization term.

Define

¥ (N) = [AN =13 + ()2 (INIy =)
=N'A"AN — 2N'A'T+ I'T + (vp)? (N'VV'N — 2y N'V + 7)) .
The gradient of ¥(IN) is
V¥ (N) = 2[A*AN — AT+ (vp)*(VVIN — ¢y V)]
Assume that V; # 0 for all j. Then ¥(IN) is coercive. In fact

2
U(N) > v (min{I/j}Ntl — cv> — o0 as ||NJ, — oo.
J

Thus the minimum of ¥ exists, by Weierstrass theorem, and satisfies
V¥ (N) = 0. (21)

The functional ¥ is convex, but not strictly convex, since, in general, N'(A) N
N (V") # {0}, where by N'(A) we denote the null space of A. Thus, condition
(21) is only necessary and the minimum is not unique. However, since the
functional is coercive, we have that the minimum N* of ¥ satisfies ||[N*||, < oco.
In other words we have proven the following

Proposition 1 The functional ¥ defined above admits a global minimizer N*
such that

(a) [|N*[], < oo;
(b) VI#(N*) = 0.

Condition (21) can be rewritten equivalently as

(A" 7pV) (7;Vt>N:(At Wv)(ﬂjw), (22)

Recalling the definitions of A and I, we can see that (22) is simply the normal
equations of (15). This, coupled with (i), leads to the idea of looking for a
nonnegative solution of (15).
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3.2 Estimation of ~

The parameter v weights the constraint (iii) on ¢y defined in (12), but larger
values of v not necessarily lead to better restorations in practice (see Figures 4
and 6). This shows that the use of a constrained optimization algorithm does
not, necessarily provide better reconstructions.

The estimation of the optimal value of ~, i.e., the one that minimizes
the reconstruction error, can be somewhat tricky and the choice of v is not
straightforward, thus we propose to use an a posteriori strategy using the
constraint (ii) on cy.

Let us call N, the nonnegative solution of (22) obtained with a certain
choice of 7 and suppose to know exactly ¢y. Thus, we expect that the best
choice for ~ is the one that, beside providing the best reconstruction for N,
minimizes also the error on cy. Therefore, we choose v = v,p¢ such that

Yopt = argmvinﬂcjv - ||Nv||17AR 1} (23)

In practice, as we will see in Section 4, the choice rule (23) is not so strict
because there is a large range of v-values around 7, where the reconstruc-
tion is equally good and even a value of v very far from 7,p¢ would provide
accurate results. This feature is of fundamental importance because, whenever
the constraint ¢y is not known and can be only roughly estimated (as it might
happen experimentally), vopt cannot be determined with high accuracy and
the condition (23) would be inapplicable.

To obtain an estimation of v,p¢ we compute N, for a small set of possible
7 and select the one that minimizes [cy — [[N4[|; Ag |-

Summarizing, our weakly constrained LR (WCLR) algorithm is the follow-
ing:

1. fix N = 1 and a small set of possible values for v;
2. compute N, for every ~;

3. choose the solution N corresponding to Yop¢ defined in (23).

Yopt

4 Numerical Examples

In this section we report some numerical examples aimed at ascertaining how
our algorithm performs against the classical LR method, i.e., when v = 0.
We will also show how to find the optimal value 7,p¢, consistently with what
described above.

4.1 Generation of matrix A
The nxm matrix A was computed by numerically integrating equation (4) with

the kernel K provided by the Mie theory [22] and illustrated in Figure 1. The
number of angles was n = 100, scaled according to a geometrical progression
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with Omin = 2deg and O, = 180 deg. The bins for the recovered distribution
were also chosen accordingly to a geometrical progression (see Section 2.1)
with Ruyin = 1072 wm and Ryay = 10% pm and their number was m = 600. In
this way all the bins were characterized by the same relative width AR;/R; ~
0.023.

4.2 Generation of artificial test data

The generation of artificial test data was carried out by supposing to know a
true solution for the system Ny, and computing the noise-free data as

Itrue = ANtrue-

Then the real data were obtained by adding to Iiue a (fractional) random
white Gaussian noise, so that the noise level is proportional to Ity and inde-
pendent from point to point. If we indicate with e the fractional noise level,
the noisy I becomes

I=TIuueo(1l+ee), (24)

where e is a vector whose entries are realizations of a random variable such
that (e); ~ N(0,1). Typical values for € are in the interval [1073,1072].

4.3 Inversion procedure and stopping criteria

The artificial test data in (24) were inverted by fixing a value of the parameter
~ and using the iterative algorithm given by (19). The iterative procedure was
stopped according to the following criteria:

(1) First of all we impose a minimum number of iterations ki, = 10°, which is
necessary for the WCLR, (or the LR) algorithm to work properly. The min-
imum number of iterations ky;, was estimated by inverting noiseless data
and checking that 10° iterations are enough for retrieving the expected
distribution with high accuracy (RRE < 1072, see below, Section 4.4).
We also checked that for noisy data with noise levels typical of our prob-
lem (~ 1%) when the procedure would prefer to stop at a number of
iterations k < kmin(see below points 3. and 4.), forcing it to continue up
t0 kmin = 10° does not spoil significantly the quality of the distribution.

(2) We also impose a maximum number of iterations kpy., = 10°, which en-
sures that the inversion stops even when the criteria below reported are
not met.

(3) For any kpin < k < kmax the procedure is stopped accordingly to a relative
discrepancy principle, which is a modified version of the classical discrep-
ancy principle, largely used with iterative regularization methods [9]. As
relative discrepancy parameter we define the quantity

IF -1
I

1

6]67%

; (25)



Title Suppressed Due to Excessive Length 13

where I¥ = AN and the division is component-wise. The value of € in
(25) corresponds to the mean relative standard deviations between the
input noisy data (24) and the ones recovered after k iterations. Note that
¢) differs from the classical parameter used in the discrepancy principle
(|[1* — I||2) because, aside for the constant term 1/y/n, it weights the
relative and not the absolute square deviations between input and recon-
structed data. This choice was enforced by the fact that the noise added
to the data was chosen to be proportional to Ii.ue and, therefore only an
ex, defined as in (25) ensures that all the data points are equally weighted.
Moreover, the exact noise level €||Iie © €]]2 of the single experiment is
unknown and hence the classical discrepancy principle cannot be used.
According to (25), the algorithm was therefore stopped after k = k* iter-
ations so that

e < €, (26)

where € is the fractional noise level introduced in (24).

(4) Finally whenever, for kpin < k < kmax, condition (26) is not met but e
attains a minimum and begins to increase (the sequence {e;} decreases
for small values of k, but is not always monotonic decreasing for large k),
the procedure is stopped in correspondence of the minimum.
Since the value of ¢ can oscillate, we say that we have reached a minimum
for e if € < €11 < €y < ... < €xt10, i-€., if €; has increased for 10
consecutive iterations.
When such a minimum is reached before k., the procedure is stopped
at k = kmin-

In the following we will denote with Kj; the number of iterations at which the
procedure is actually stopped and the corresponding ex,, will be called Mean
Relative Standard Deviation (MRSD).

4.4 Evaluation parameters

The accuracy of the inversion algorithm was evaluated by comparing the re-
trieved distribution with the true one. However, since from a physical point of
view, volume (or mass) distributions are much more significant than number
distributions, we compared retrieved and true distributions on the basis of
volume-fraction density distributions, defined as

here ¢(R) has the dimensions of [um ™.
For assessing the accuracy of the inversion procedure, we define a y-dependent
Relative Restoration Error (RRE) as

RRE(’Y) — ||¢'Y B QstrueHQ,

||¢tru6||2



14 Alessandro Buccini et al.

which corresponds to the relative average root mean square (r.m.s.) deviations
between the retrieved and true mass distributions.

Similarly, for assessing the accuracy on the reconstruction of the two pa-
rameters cy and cy that characterize the true distribution, we define the
quantities

INyll1,ar — e NSy —ev

and Dy(y)=+———,
CN cy

Dy ()

which represent the relative errors between ¢y and ¢y and the corresponding
recovered parameters.

4.5 Numerical results

In the following numerical tests, the WCLR and LR algorithms were compared
for several values of v in a given range of recoverable radii. The latter one was
chosen to be a subset of the original range defined in Subsection 4.1, so that
Rimax/Rmin = 100. For each ~, the tests were repeated 30 times, with different
noise realizations (of the same ¢ level).

Test 1 In the first test we show that, when the distribution to be recovered is
characterized by particles that produce signals whose features are: (a) asymp-
totically constant at low angles and (b) exhibit a dynamic range between first
and last angle of several order of magnitudes (see d = 0.1 um or d = 1.0 um
curves in Figure 1(a)), the original LR and our WCLR algorithms are quite
equivalent. To this aim, we selected as true number distribution Nt a Gaus-
sian centered in the middle of the recoverable range [Rmin, Rmax], i-€., with an
average value (R) = 1 um and standard deviation o = 0.1 um. The particle
number concentration was (arbitrarily) chosen to be ¢y = 1016 em ™2 and the
r.m.s. noise level added to the data was ¢ = 0.01. The inversion was carried
out by trimming the recoverable particle radii in the range [0.1 um — 10 um)|,
so that number of bins was m = 200. Correspondingly, the matrix used in
this test was obtained by selecting a proper subset (100 x 200) of the original
(100 x 600) matrix computed at section 4.1. The value of v ranges from zero
(original LR) to v = 10% and Kj; = 10°.

The findings of this test show that our algorithm performs equally well in-
dependently of the y—value (0 — 10*) and its performances were quite similar
to the ones provided by the original LR algorithm. This is shown in Figure 3
where data reconstructions and average recovered distributions are highly ac-
curate and, as matter of fact, indistinguishable between our algorithm (run
with v = 1) and the classical LR algorithm (y = 0).

Test 2 The effective difference between the two algorithms becomes evident
only when the particles are close to the boundaries of the [Rmin, Rmax] range.
For this second test we selected a Gaussian distribution characterized by large
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Fig. 3 Test 1:Comparison between the original LR (blue symbols) and our WCLR algorithm
(red symbols) run with v = 1 for a Gaussian distribution with an average value (R) = 1 um
and standard deviation op = 0.1 um. (a) Reconstructed (symbols) and true (line) signals.
(b) Reconstructed (symbols) and true (line) distributions. The two algorithms performs
equally well and, as matter of fact, both results (a) and (b) are almost indistinguishable.

particles, i.e., with (R) = 100 um and or = 10 um. The noise level added to
the data was e = 0.01, the inversion was carried out in the range [10 um —
1000 zm] (so that m = 200), and v was varied in the range [10~2 — 107].

Differently from the first test, the effect of changing « is quite relevant,
as shown in Figure 4 where the behaviors of the parameters Kj;, which we
recall that denotes the number of iterations, (a), MRSD (b), RRE (c), Dy
(d), and Dy (e) are reported as a function of ~. First of all we observe that
there is a broad range of v ~ [10~! — 10°] where the inversion procedure was
stopped at a number of iterations Kj; < 108 (see Figure 4(a)). Correspondingly,
within this range, the reconstruction parameter M RSD (see Figure 4(b)) was
comparable with the noise level added to the data, meaning that the iterative
procedure was much faster and stopped accordingly to the relative discrepancy
principle (26).

Then, whereas Dy (see Figure 4(d)) decreases monotonically with increas-
ing v (which is consistent with the fact that the stronger the constraint, the
higher the accuracy of its recovered value), the parameters describing the accu-
racy of the retrieved distribution, RRE (see Figure 4(c)) and the accuracy on
the recovered number concentration, Dy (see Figure 4(e)), exhibit very broad
valleys whose flat regions cover almost the same range of v ~ [10! — 10°].
Thus, the choice of an optimal value for « is not critical at all and any value
chosen in the central part of this interval (for example Yope ~ [10% —10%]) leads
both to small errors in the recovery of ¢y and to very accurate distribution
reconstructions, as shown in Figure 5(e-f-g). Conversely, for values of v out-
side this range, the recovery of ¢y becomes increasingly less and less accurate
and, at the same time, the distributions are more and more poorly recovered,
as shown in all the other panels of the figure. In particular, we would like to
point out the remarkable mismatching between the true distribution and the
one recovered in Figure 5(a), showing that the classical LR, algorithm (v = 0)
is totally unable to perform such a task.
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Fig. 4 Test 2: Behavior as a function of v of the average parameters Kj; (number of
iterations) (a), MRSD (b), RRE (c), Dy (d), and Dy (e) for a Gaussian distribution with
(R) = 100 pm and or = 10 wm. The error bars are the standard deviations associated to
the various parameters deriving from the noise (e = 0.01) present on the data (error bars
larger than the data points are not displayed).

Finally, we would like to point out that the rather similar behaviors between
RRE and Dy guarantees that, in a real experiment where the parameter RRE
cannot be measured because ¢ire(R) is not known, the optimal range for vopt
can be inferred by looking at the behavior of Dy (Figure 4(d)). The fact that
such a range is remarkably broad (~ 2 — 3 orders of magnitude) ensures that
even a huge uncertainty on the value of ¢y would not affect significantly the
accuracy with which ¢¢ue(R) will be reconstructed.

Test 8 In this test we selected a distribution close to the left side of the range,
namely a Gaussian with (R) = 0.05 um and or = 0.005 um. In this case, as
shown in Figure 1, the I(0) data are rather flat; therefore, for not corrupting
completely their behavior, the noise level added to the data was e = 0.001. The
inversion was carried out in the range [0.005 um — 0.5 um] (so that m = 200),
and v was varied in the range [10~7 — 10?].

Figure 6 shows the behavior of the parameters Kj; (Number of iterations)
(a), MRSD (b), RRE (c), Dy (d), and Dy (e), whereas the comparison be-
tween the recovered distribution and ¢¢rue(R) is shown in Figure 7 varying
in the range [107% — 10%]. As for the large particles, there is an even larger
optimal range Yopt ~ [107% — 10'], where convergence rate is faster and both
distribution reconstruction and cy recovery are very accurate. We recall that
Yopt can be safely identified by the criterion (23) thanks to the very broad
and shallow minimum region of the curve of Dy in Figure 6(d). Finally, note



Title Suppressed Due to Excessive Length 17

2.0 7 20p 20—
— 1.5} 3 1s 15k (© el
E E ] £ F = Yirue 1
= 1.0F 4 1.0F 1.0F e
— E b E F ]
50.5, 4 0.5F 05F E
3z I : : ]

0.0F w4 0.0F 00F E

L n | I Lol 11 1l i 1o Y

20F 2.0 Y —

£ L £ — 3 ]

— 1.5F 1.5F 15 ® ~y=10" 3
g | ] ‘ : O]
Z 10} 1 10F 1.0F E
= E: ‘ ]
& 05f 1 05fF 0.5F E
p=S E El F F E
0.0F 4 0.0 00F E

Lo nl 1 1l 1 Il Lol PR | N il

2.0p 2.0 . : 2.0¢ . .
=15 st r=100 3 sk @) 7= 10°
g 1.0 3 10F - (I)Lme 1 10b - ¢uue 1
—~_ I
o5 1 o5t 1 osf ] E
= &

0.0f 1 00F i 0.0F ol e E

10' 10° 10° 10" 102 103 10" 102 10°
R (pm) R (um) R (um)

Fig. 5 Test 2: Comparison between the average recovered distributions (red symbols) ob-
tained with our algorithm at various y-values (v = 0 is LR) and a true Gaussian distribution
¢true(R) with with (R) = 100 um and or = 10 um. The error bars are the standard devia-
tions associated to the bins of the recovered histogram due to the noise (e = 0.01) presents
in the data.

that, also in this case, the original LR algorithm is totally unable to recover
the true distribution (see Figure 7(a)).

4.6 Errors on the ¢y constraint

In this section we report an example of the effects of small systematic errors
on the constraint ¢y with respect to the quality of the recovered distributions.
We investigated the specific case of the true distribution used in Figure 7,
i.e., a Gaussian distribution with (R) = 0.05 um and o = 0.005 um, and we
supposed to have errors dcy varying within a range of £10%. Then for any fixed
value of v and we investigated how the recovered distributions deteriorates as
dcy is increased. This analysis was carried out following the same procedure
described for the previous tests, and was repeated for 8 different values of ~
spanning the range v ~ [1075 — 10?] (1 point per order of magnitude).

The main result is summarized in the first panel of Figure 8, where the
behavior of the parameter RRFE is reported as a function of the percentage
error dcy. As expected, within the optimal range Yopt ~ [1072 — 10'], the
minimum of RRE occurs at zero error and increases as dcy becomes larger
and larger, but as long as dcy < +2%, its value remains < 2 — 3 x 1072, This
trend is clearly not followed by values of v that are outside this optimal range
because, even at zero error as shown in Figure 6(a), the inversion algorithm
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Fig. 7 Test 3: Comparison between the average recovered distributions (red symbols) ob-
tained with our algorithm at various y-values (v = 0 is LR) and a true Gaussian distribution
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present on the data.
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Fig. 8 Effects of systematic errors on the cy constraint with respect the quality of the
recovered distributions in the case of a true Gaussian distribution ¢¢rue(R) with with (R) =
0.05um and or = 0.005 um: (a) Behavior of RRE versus the percentage error dcy; (b)
behavior of MRSD versus the percentage error dcy; (¢)-(d)-(e): comparison between the
true distribution (solid line) and the average recovered distributions (red symbols) obtained
with v = 1072 and —5%, 0% and 45% percentage errors. The standard deviations associated
to the bins of the recovered histograms are due to the noise (a e = 0.001) present on the
data.

is not able to work properly. The other important parameter describing the
performances of the inversion algorithm in presence of systematic errors on cy
is the behavior of MRSD (see Figure 8(b)). As shown, within the optimal range
Yopt ~ [1073 —10'] and for errors < £5%, all theMRSD values are compatible
with the fractional statistical errors on the data (e = 1073). Outside these
ranges, MRSD tends to increase because convergence is slowed down and 108
iteration are not sufficient or because signal reconstructions are very poor
whatsoever.

In the last three panels of Figure 8 we report an example of the distributions
recovered for v = 1072 at errors on cy equal to —5%, 0% and +5%. As
expected, the central distribution (panel d, 0% error) matches very accurately
the input ones (RRE~ 8.7 x 1073), whereas the other two are clearly less
accurate, being RRE~ 3.2 x 107! for the —5% error and RRE~ 8.8 x 1072
for the +5% error, but still very meaningful from a physical point of view.

5 Conclusions

In this paper we have proposed a simple and effective variant of the LR method
by adding a weak constraint to be imposed as a penalty term on the recov-
ered solution. The new method, called Weakly Constrained Lucy-Richardson
(WCLR), was applied and tested on the inversion of simulated elastic light
scattering data, whose aim is to recover the number-size, Ni;ue(R), or volume-
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size, dirue(R), distributions of the particles composing the sample over the
largest possible interval of particle sizes.

For this problem, there are two physical constraints related to the knowl-
edge of the particle number, ¢y, and volume, ¢y, concentrations, which corre-
spond, mathematically, to the integral of Niue(R) and ¢irue(R), respectively.
Both constraints can be determined experimentally but, whereas cy can be
measured with high accuracy, the estimation of ¢y can be affected by large
errors. Thus in this paper we used as a constraint only ¢y and exploited cy
for determining a a posteriori criterion for adjusting the strength, v, of ¢y .

By the use of extensive numerical simulations, we have shown that the
optimal value vops, 4.e., the one that provides the highest accuracies in the
recovery of both ¢y and ¢irue(R) (or Nyrue(R)), is not critical at all because
there is a broad range (~ 2 — 4 orders of magnitude) of y-values around ~yopt
where both restorations are equally good. Thus, in a real experiment where
®true(R) is not known, the optimal y,p¢ can be inferred only by looking at cy
and, thanks to the fact that the y-range is so wide, even a huge uncertainty
on the value of ¢y would not affect significantly the accuracy on the recovered
distributions.

We have also provided a new protocol for stopping the iterative proce-
dure, which is based on the four criteria described in Sect. 4.3. Although such
criteria rely on the choice of the two parameters ki, and kpynax which force
the procedure to stop at kit so that knin < Kit < kmax, the actual values of
Ky very rarely are cast on the extremes of such a range. Thus, the particular
choice for kpin and kmax does not affect the results of the method. It must be
said, however, that the tuning of k., is a little bit tricky because convergence
depends on the features of the distribution to be recovered and, at the same
time, on the noise level present on the data. In our case where such a level is
~ 1% or less, we found that for not too narrow bell shaped distributions (rela-
tive width o/ < R >~ 10% or larger) the use of a single value ky,;, = 10° was
a reasonable compromise. In the extremely rare case that the best restoration
is obtained at an iteration lower than k,i,, we do not observe the insurgence
of artifacts, or they are at least fairly weak, because WCLR algorithm has a
very stable convergence, especially against reasonable levels (~ 1%). In any
case, for higher noise levels, a preprocessing denoising procedure could always
be applied. In conclusion therefore, although ki, could have been optimized
from case to case, the single value ki, = 10° allowed us to recover accurately
distributions spanning the entire [Ryin, Rmax] range, without introducing a
further adjusting parameter in the procedure.

Our numerical simulations show that, when the particle sizes to be recov-
ered lie within a range extension comparable with that of the measurements,
WCLR and LR are fairly equivalent: they are both simple, robust and, pro-
vided that the iterative procedure is stopped after a large enough number of
steps, equally accurate. The only slight difference is that, whereas LR truly
requires no adjusting parameter, in the case of WCLR, the only adjustable
parameter would be v, but as mentioned above, it can be varied over such a
large range of values that, as a matter of fact, does not need to be optimized.
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When the two algorithms are tested over a wider range of particle sizes, WCLR,
permits to extend widely the range over which the distributions can be reli-
ably recovered with respect to LR. In particular, by using the LR algorithm
we would not able to recover particle size distributions with particles as large
as 100pm or as small as 50nm. This is clearly shown in panels (a) of Figs. 5
and 6. In the specific case of elastic light scattered data inversion investigated
in this work where the probed scattering angles were between [2° — 180°], such
a range can be stretched more than one order of magnitude, passing from
[Rmin — Rmax| ~ [0.1 — 10] pm to ~ [0.05 — 100] pm.

In Subsection 4.6 we also investigated the effect of having small systematic
errors on the knowledge of the constraint ¢y with respect to the quality of
the reconstructed distributions. Our findings show that, as long as the error
on cy is within +2%, the quality of the reconstructed distributions is well
preserved and the use of a weak constraint is advantageous with respect to a
strong constraint. This feature is fundamental in practical applications where,
typically, the relative accuracy on cy is of the order of a few percents.

As we stated in the Introduction the nature of the problem itself suggested
that the LR algorithm would have been a good choice, while other methods,
in particular the ones which relies on the minimization of the Euclidean norm,
would have been ineffective.

The main drawback of the proposed approach is still the requirement of a
fairly high number of iterations, even though we have shown that the number
of iterations required by WLCR. is much smaller than the one required by the
standard LR method. However, the dimension of the problem at hand, while
not small, is not too large (as seen in the examples in Section 4) and thus the
overall computation effort is limited even when a high number of iterations is
required.

It will be subject of future studies the combination of the techniques pro-
posed in this paper with more efficient methods from the literature, starting
from the work in [8,27]. In particular, it would be interesting to insert the
methods from [13] in our framework, as well as the to combine our approach
with Modulus-Method for ill-posed problems, see [1] and references therein.

Finally, we would like to point out that variants of the classical Lucy-
Richardson, like those in [4,24], could be useful for further improving our al-
gorithm. We would also like to stress that, although in this article our WCLR
method has been tested and its performances ascertained for the specific opti-
cal problem related to the inversion of the elastic light scattering data, the pro-
pose method can be in principle applied to any other problem where some con-
straints associated to integrals of the distribution to be recovered are known.
Examples of such problems are again in the fields of optics with the technique
known as multi-spectral extinction turbidity [10,11] or in the field of stere-
ology, an interdisciplinary methodology that is concerned with the recovering
of the 3D properties of a sample from its 2D sections (see for example [20)]
and references therein). Work is in progress for extending WCLR. to these
problems.
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