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Abstra
t Lu
y-Ri
hardson (LR) is a 
lassi
al iterative regularization method

largely used for the restoration of nonnegative solutions. LR �nds appli
ations

in many physi
al problems, su
h as for the inversion of light s
attering data. In

these problems, there is often additional information on the true solution that

is usually ignored by many restoration methods be
ause the related measurable

quantities are likely to be a�e
ted by non-negligible noise.

In this arti
le we propose a novel Weakly Constrained Lu
y-Ri
hardson

(WCLR) method whi
h adds a weak 
onstraint to the 
lassi
al LR by intro-

du
ing a penalization term, whose strength 
an be varied over a very large
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range. The WCLR method is simple and robust as the standard LR, but of-

fers the great advantage of widely stret
hing the domain range over whi
h the

solution 
an be reliably re
overed. Some sele
ted numeri
al examples prove

the performan
es of the proposed algorithm.

Keywords Lu
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Mathemati
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1 Introdu
tion

In this work we 
onsider the 
ase of a Fredholm integral equation of the �rst

kind

I(θ) =

ˆ

K(θ,R)N(R)dR. (1)

where I(θ) represents the data evaluated at the independent variable θ, N(R)
is the unknown fun
tion that depends on the variable R, and K(θ,R) is a

known integral kernel with 
ompa
t support. The latter 
ondition implies that

equation (1) is ill-posed, meaning that the solution is not unique and does not

depend 
ontinuously on the data, i.e., small perturbations in I greatly a�e
t

the solution N .

We are going to 
onsider inverse problems of the form (1) 
oming from light

s
attering methods in opti
s [2, 6, 15�18℄, where the main goal of the opti
al

te
hnique is to re
over the parti
le-size distribution N(R) whi
h 
hara
ter-

izes the sample under investigation. Thus the solution N(R) is de�ned to be

positive (N > 0) with a positive support (R > 0). Among the various s
atter-

ing te
hniques, the most popular ones are Dynami
 Light S
attering (DLS),

Stati
 or Elasti
 Light S
attering (ELS) and Multi Wavelength Turbidimetry

(MWT). All of them 
an be easily implemented by using simple experimen-

tal setups (see for example [7℄ and referen
es therein), with the possibility of


hara
terizing simultaneously a very large number of parti
les, the 
hara
ter-

ization being 
arried out in situ and almost real time. Re
ent appli
ations of

these methods to parti
le sizing 
an be found in Refs. [25, 28℄ for the DLS

te
hnique, in Refs. [21, 30℄ for ELS, and Refs. [14, 31℄ for MWT.

The goal of an e�
ient, well performing inversion algorithm is the a

urate

and fast re
overy of the sample parti
le-size distribution over the largest pos-

sible range of parti
le radii. Indeed, inversion algorithms are expe
ted to work

pretty well only when the parti
le sizes to be re
overed lie within a given range

[Rmin, Rmax], whi
h depends on the range of the [θmin, θmax] independent vari-
able being probed. Although what follows is of general validity, in this paper

we will fo
us on the ELS te
hnique, where I(θ) represents the intensity of the

light s
attered by the sample at various s
attering angles θ. In the past we

have shown [12℄ that the dynami
al extension of the R−range (i.e., the ratio
[Rmax/Rmin]) whi
h 
an be probed, s
ales proportionally to [θmax/θmin] and,
therefore 
an be rather limited if the latter ratio is not su�
iently large. Typ-

i
ally in the ELS te
hnique, [Rmax/Rmin] ∼ [θmax/θmin] ∼ 10− 100, see [12℄.
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In order to obtain an inversion algorithm we have to dis
retize (1) and use

a numeri
al method for solving the resulting linear system

AN = I, (2)

where N ∈ R
m

and I ∈ R
n
are the dis
retizations of N(R) and I(θ), respe
-

tively and A ∈ R
n×m

. As mentioned above, sin
e K is 
ompa
t, the inverse

problem in (1) is ill-posed. In the dis
rete version this property is inherited by

the matrix A whi
h is severely ill-
onditioned, i.e., its singular values de
reases

to zero rapidly with no signi�
ant gap [19℄. In pra
ti
e, sin
e it is impossible to

avoid the presen
e of noise in the data, the dire
t inversion of A, for instan
e
be the Moore�Penrose pseudoinverse, leads to very poor approximations of

the original desired N. To re
over a meaningful approximation of the true so-

lution, a 
ommon approa
h is to resort to regularization, i.e., use numeri
al

methods that 
ompute a solution of a nearby well-posed problem, see [3,9℄ for


lassi
al regularization methods for inverse problems.

For large problems, a 
ommon approa
h is to adopt iterative methods that

require only matrix ve
tor-produ
ts. Among these iterative pro
edures, one

of the most popular ones is undoubtedly the 
lassi
al Lu
y-Ri
hardson (LR),

known also as Ri
hardson-Lu
y method [26, 29℄, whi
h has the remarkable

feature of ensuring nonnegativity of the solutions. LR is also quite simple to

implement, robust against noise and, provided that the iterative pro
edure is

stopped after a properly 
hosen number of steps, does not require any parame-

ter to be optimized. Furthermore, it is the spe
i�
 nature of our problem that

suggests the usage of the LR method, mainly be
ause the noise present on

the data is not additive, but multipli
ative white Gaussian noise as des
ribed

in Se
tion 4.5, and the operator A is severely ill-
onditioned and underdeter-

mined. These features suggest that methods relying on the minimization of

the Eu
lidean norm of the residual would not perform well on this spe
i�


problem. Moreover, in the 
onsidered setting, the knowledge of the norm of

the noise is not available and only some statisti
al information on it 
an be re-

trieved, implying that the 
lassi
al dis
repan
y prin
iple 
annot be employed.

Thus, a method like LR seems to be more e�e
tive than other methods based

on the minimization of the Eu
lidean norm.

On the other side, the LR method is known for being relatively slow and,

as mentioned above and reported in [12℄

1

, for being not so e�
ient when

when the range of re
overable radii is too large. The latter limitation o

urs

be
ause, for any given angular range [θmin, θmax], as parti
les be
ome smaller

and smaller (R ≪ λ/θmin), the angular distribution of the s
attered light tends

to be more and more uniform [I(θmin)/I(θmax) ∼ 1℄, thus 
arrying less and less
information on parti
le size. Conversely, for larger and larger parti
les (R ≫
λ/θmax), the angular distribution varies widely with a high signal dynami


range [I(θmin)/I(θmax) ≫ 1℄, but the shape of I(θ) tends to be independent

on parti
le size [23℄.

1

After the publi
ation of [12℄, it was realized that the method 
alled �modi�
ation of the

Chahine algorithm� proposed in that work, is identi
al to the LR algorithm.
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In this paper we propose a new method 
alled Weakly Constrained Lu
y-

Ri
hardson (WCLR), whi
h improves the 
lassi
al LR method by adding a

weak 
onstraint to the true solution asso
iated to a physi
al property (the

parti
le volume fra
tion 
on
entration) that is known or 
an be measured with

rather high a

ura
y. The introdu
tion of this additional knowledge a

elerates

remarkably the 
onvergen
e rate of the method and, at the same time, largely

improves the quality of the restoration. In parti
ular it allows to enlarge the

R−range by more than one order of magnitude, a property that is 
ru
ial in

many real appli
ations.

The pri
e to pay for adding the 
onstraint is the introdu
tion of a damping

parameter, γ, whi
h has to be properly adjusted. However, this task is not


riti
al at all be
ause the strength of γ 
an be varied over a very broad range

and its optimal value 
an be easily found by exploiting a se
ond physi
al

property (the parti
le number 
on
entration), whi
h needs to be known only

very roughly. Note that using a weak rather than an exa
t 
onstraint is a vital

feature of the WCLR method. Indeed, while imposing an exa
t 
onstraint

has the advantage of requiring no damping parameter, its implementation

(by using 
lassi
al optimization algorithms for linear 
onstrained problems)

might still need the tuning of other parameters and, due to unavoidable errors

always present in the estimate of the 
onstraint, it does not provide ne
essarily

an improvement in the quality of the restoration. Conversely, our WCLR is

quite simple to implement, it is �exible and robust against small (. ±2%)

un
ertainties asso
iated to the 
onstraint and, ex
ept for γ, does not require
any other parameter to be set in the same spirit of the 
lassi
al LR.

This work is stru
tured as follows. In Se
tion 2 we give some physi
al

details about the problem we are going to analyze. In parti
ular, Se
tion 2.1

des
ribes the dis
retization pro
ess, while Se
tion 2.2 
onsiders the 
onstrains

we are going to use. Se
tion 3 is devoted to the formulation of the mathemati
al

model and to the de�nition of our numeri
al method. The latter one is tested

and 
ompared with LR on some numeri
al examples in Se
tion 4. Se
tion 5 is

devoted to 
on
luding remarks and future work.

2 Physi
al details

In this se
tion we give some insight into the physi
al problem we are going to


onsider, i.e., the problem asso
iated to the inversion of elasti
 light s
attering

(ELS) data, where the main goal is to re
over the size distribution of the

parti
les present in the sample.

A

ording to ELS theory [23℄, when a sample made of polydisperse parti-


les 
hara
terized by a refra
tion index di�erent from that of the surrounding

medium is illuminated by a laser light of wavelength λ, part of the radiation is

going to be s
attered at angles di�erent from the in
ident dire
tion. If the par-

ti
les are homogeneously dispersed in the medium and their 
on
entration is

so low that they 
an be 
onsidered as non-intera
ting, the angular distribution

of the overall s
attered intensity, I(θ), is given by the sum of the intensities
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Fig. 1 (a): normalized behavior of the kernel K(θ, R) appearing in (1) as a fun
tion of the

s
attering angle θ for �ve parti
les with diameters d = 2R ranging from d = 0.01µm to

d = 100 µm; the normalization is su
h that K(θ = 0, R) = 1. (b): behavior of the kernel

amplitude K(θ = 0, R) as a fun
tion of the ratio R/λ. The straight lines with slopes 6 and

4 indi
ate that K(θ = 0, R) growths as ∼ R6
or ∼ R4

, the 
rossover o

urring at R ∼ λ.

s
attered by the single parti
les [23℄. Thus the system is linear and I(θ) 
an
be written as (1) where θ is the s
attering angle (the angle between the in-


ident laser beam and the dire
tion at whi
h the s
attered light is dete
ted),

N(R) is the unknown number-
on
entration density [cm−3 µm−1
℄ of parti
les

of radius R, and K(θ,R) is the (known) kernel of the system, representing the

intensity s
attered by a single parti
le of radius R at angle θ. Typi
ally, I(θ) is
dete
ted at a �nite number of angles θi (i = 1, .., n) within a bounded interval

[θmin, θmax].
If the parti
les are spheres, the kernel K(θ,R) is provided by the Mie

theory [22℄, a

ording to whi
h the angular distribution of I(θ) s
attered by

a parti
le of radius R is mostly 
on�ned to the di�ra
tion lobe θdiff ∼ λ/2R
and I(θ) amplitude strongly in
reases with parti
le radius as I ∼ R6

for small

parti
les (R ≪ λ) and I ∼ R4
for large parti
les (R ≫ λ). Figure 1(a) reports

an example of the behaviors of I(θ)/I(0) = K(θ,R)/K(0, R) versus θ over a

range of [2− 180 deg] for parti
les of di�erent diameters d = 2R from d = 0.01
to 100µm. As one 
an noti
e, for small parti
les I(θ) tends to be rather �at,

whereas for large parti
les I(θ) exhibits many os
illations and de
ays by many

order of magnitude over the reported θ range. At the same time the zero-angle

amplitude I(0) varies widely, passing from I(0) ∼ 10−11
at R/λ = 10−2

to

I(0) ∼ 108 at R/λ = 102, see Figure 1(b). Thus, it is 
lear that the inversion
of (1) might be
ome an unbearable task when the parti
le size distribution

N(R) to be re
overed 
ontains parti
les with very di�erent radii.

2.1 Dis
retization of the Fredholm Integral Equation

We now des
ribe the dis
retization of (1). Let us 
onsider that only a �nite

number of θi (i = 1, ..., n) 
an be a

essed experimentally and within a limited

range [θ1, θn]. Thus, if the parti
le size distribution N(R) is approximated

by a histogram 
onstituted by m bins (or 
lasses) delimited by the radii rj ,
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j = 0, 1, ..., m, the equation (1) be
omes

I(θi) =

m
∑

j=1

Ai,jNj , i = 1, 2, . . . , n, (3)

where Nj is the number 
on
entration density [cm−3 µm−1
℄ of the parti
les

belonging to the j-th 
lass of width ∆rj = rj − rj−1 and

Ai,j =

ˆ rj

rj−1

K(θi, r) dr. (4)

When the 
lasses are narrow enough, we 
an pinpoint them in terms of their

average radius Rj = (rj + rj−1)/2 and width ∆Rj :=∆rj , where ∆rj = rj −
rj−1. Thus Nj∆Rj represents the number 
on
entration of parti
les belonging

to the j − th 
lass and the term Ai,j/∆rj is the average intensity s
attered at

angle θi by a single parti
le with average radius Rj . Note that (3) is a set of

n linear equations in whi
h the left-hand side I(θi) are the data provided by

the experiment, the matrix entries Ai,j are known and Nj are the unknowns

to be re
overed.

Although somewhat arbitrary, it is often 
onvenient to 
hoose the rj grid

points so that, within the range [r0, rm], all the m 
lasses are 
hara
terized

by the same relative width α = ∆Rj/Rj . This 
an be a

omplished by s
aling

rj a

ording to the geometri
al progression

rj = r0 a
j ,

where a = (Rm/R1)
1/(m−1)

and r0 = 2R1/(1 + a). In this way the average

radius and the width of ea
h 
lass s
ale as

Rj = R1 a
j−1, ∆Rj = ∆R1 a

j−1, j = 1, ..., m, (5)

thus α = 2[(a − 1)/(a + 1)] and for a & 1, α ≈ a − 1. A sket
h layout and

dis
retization s
heme of the 
lasses is reported in Figure 2. Typi
ally if we want

to 
over three orders of magnitude in size, i.e. Rm/R1 = 103 with α = 0.02,
approximately m = 350 
lasses are ne
essary.

2.2 Constraints

The very �rst 
onstraint we 
an impose is that

Nj > 0, j = 1, . . . ,m, (6)

This 
omes from the simple observation that the number of parti
le 
annot be

negative.

A more interesting 
onstraint is related to the integral of N(R) obtaining

cN =

m
∑

j=1

Nj∆Rj , (7)
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Fig. 2 Dis
retization s
heme of equation (1)

where cN represents the parti
le number 
on
entration [cm−3
℄, i.e., the to-

tal number of parti
les 
ontained in the sample divided by the sample vol-

ume. This 
onstraint 
an be applied whenever the number of parti
les 
an be


ounted, a somewhat di�
ult task that 
an be 
arried out only under some

experimental 
onditions.

The last 
onstraint is related to the parti
le volume fra
tion 
on
entration

cV , whi
h is given by the total volume o

upied by the parti
les divided by

the sample volume

cV =

m
∑

j=1

Njvj∆Rj , (8)

where

vj =
1

∆Rj

ˆ Rj+∆Rj/2

Rj−∆Rj/2

(4/3)πR3dR (9)

is the average volume of one parti
le belonging to the jth 
lass. Clearly, for

very narrow 
lasses (∆Rj/Rj ≪ 1), vj ≈ (4/3)πR3
j .

Remark 1 The 
onstraint (8) on cV is of parti
ular signi�
an
e be
ause in most

experiments the volume 
on
entration is a quantity that 
an be measured quite

easily and with high a

ura
y.

In our method we would like to exploit both 
on
entration 
onstraints (7)

and (8) (the positiveness 
onstraint, (6), being ful�lled automati
ally, see be-

low), but they are not equivalent from a physi
al point of view. As mentioned

out above, whereas an a

urate value of cV 
an be easily obtained experi-

mentally, the estimate of cN might be somewhat troublesome and a�e
ted by

large errors. Thus, we propose a weakly 
onstrained version of the LR algo-

rithm based on the cV 
onstraint alone, and we will use the estimate of cN
only for 
ross-
he
king the self-
onsisten
y of the inversion pro
edure, i.e., for

estimating the damping parameter that weight the 
onstraint on cV .
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3 The Weakly Constrained Lu
y-Ri
hardson method

We now des
ribe how the physi
al model translates into the linear algebra

language. The linear system (3) is 
ompa
tly rewritten as

AN = I (10)

where A ∈ R
n×m

, N ∈ R
m

and I ∈ R
n
.

Similarly, the three 
onstraints of Se
tion 2.2 
an be rewritten as:

(i) From (6) N > 0, meaning that Nj > 0, for j = 1, . . . ,m;

(ii) From (7)

cN = N
t∆R, (11)

where 0 < ∆R ∈ R
m
, with (∆R)j = ∆Rj de�ned in (5) for j = 1, . . . ,m;

(iii) From (8)

cV = N
t
V =

m
∑

j=1

VjNj . (12)

where 0 < V ∈ R
m

and Vj = vj∆Rj , being vj de�ned in (9).

This information will be used in the following to de�ne a simple and e�e
tive

iterative pro
edure to 
ompute a solution of (10), where, ex
ept from the pos-

itiveness (i), the 
onstraints (ii)-(iii) are not all stri
tly satis�ed, but are used

to improve the 
omputed approximation or to estimate possible parameters.

Note that equations (11) and (12) 
an be seen as weighted ℓ1�norm be
ause

both V and ∆R are nonnegative, so we 
an de�ne

‖N‖1,V = N
t
V, ‖N‖1,∆R

= N
t∆R.

As stated at the end of Se
tion 2.2, we are going to use dire
tly only a weighted

version of the 
onstraint (iii).

In order to insert the 
onstraint (iii) we opportunely pad the matrix A and

the right-hand side I. Let γ > 0 be a �xed real number and de�ne

ϕ =
〈Ai,j〉
〈Vj〉

, (13)

where 〈Ai,j〉 = 1
NM

∑

i,j

Ai,j and 〈Vj〉 = 1
N

∑

j

Vj are the arithmeti
 averages of

the entries of the matrix A and the ve
tor V, respe
tively. We de�ne

Ã =

(

A
γϕVt

)

and Ĩ =

(

I

γϕcV

)

. (14)

Note that, sin
e the fa
tor γϕVj = γ < Ai,j > (Vj/ < Vj >) appearing in (14),
must have the same dimensional units as < Ai,j >, γ is 
orre
tly a dimension-

less parameter. As a 
onsequen
e, its e�e
t of (14) is independent on the units

of both Ai,j and Vj .
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In this way we have inserted the 
onstraint (iii)in our system weighted by γ.
The value of γ determines the strength of the 
onstraint and its e�e
tiveness.

In parti
ular the larger γ the stronger the e�e
t of the 
onstraint will be.

The new extended system be
omes

ÃN =

(

A
γϕVt

)

N = Ĩ =

(

I

γϕcV

)

(15)

Sin
e, the entries of the matrix Ã and Ĩ are nonnegative and, a

ording to

(i), we are looking for a nonnegative solution of (15), the LR methods appears

to be an ex
ellent 
andidate for undertaking this task. Indeed, provided that

the initial guess N
0 > 0, the k+1 approximated solution of equation (15) 
an

be re
ursively written in term of the k−iterate as

N
k+1 =

N
k

a
◦
(

Ãt · Ĩ

Ĩk

)

, k = 0, 1, . . .

where

•
• and • ◦ • are respe
tively the entry-wise division and multipli
ation

and • · • is the usual matrix-ve
tor multipli
ation. The ve
tor a ∈ R
m

is

de�ned as

aj =

n+1
∑

i=1

(

Ãt
)

j,i
=

n
∑

i=1

Ai,j + γϕVj , j = 1, . . . ,m, (16)

and Ĩ
k
is

Ĩ
k = ÃNk =

(

ANk

γϕ
∥

∥N
k
∥

∥

1,V

)

.

Let us 
onsider the j − th 
omponent of N
k+1

:

Nk+1
j =

Nk
j

aj

[

Ãt · Ĩ

Ĩk

]

j

=
Nk

j

aj
ξj , (17)

the fa
tor ξj is

ξj =
n+1
∑

i=1

(

Ãt
)

j,i

(

Ĩ

)

i
(

Ĩk
)

i

=
n+1
∑

i=1

(

Ã
)

i,j

(

Ĩ

)

i
(

Ĩ

)k

i

=
n
∑

i=1

Ai,j
Ii

Iki
+ γϕVj

cV

ckV
, (18)

with ckV =
∥

∥N
k
∥

∥

1,V
. Combining (16) and (18) with (17), we obtain

Nk+1
j = Nk

j

∑n
i=1 Ai,j

Ii
Ik
i

+ γ 〈Ai,j〉 Vj

〈Vj〉
cV
ck
V

∑n
i=1 Ai,j + γ 〈Ai,j〉 Vj

〈Vj〉
Vj

, j = 1, . . . ,m. (19)

where we have expli
itly reported the expression for ϕ given in (13). We 
an

see that 
onstraint (iii) is not blended with the other term, it is de
oupled from

the data �tting part and is weighted by γ. Moreover, the nonnegativity of N
k

is simply preserved starting with N
0 > 0, e.g., N0 = 1, where 1 represents the

ve
tor with entries all equals to 1.
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3.1 Heuristi
 interpretation

We now want to give an heuristi
 interpretation of the formulation of (15).

A standard approa
h for passing from a 
onstrained least square problem to

an un
onstrained problem is the well-known quadrati
 penalization te
hnique

[5℄. In our 
ase, 
onsidering the 
onstraint (iii), we obtain the minimization

problem

min
N

‖AN− I‖22 + (γϕ)2
(

‖N‖1,V − cV

)2

, (20)

where ‖ · ‖2 denotes the Eu
lidean norm and (γϕ)2 is the penalization pa-

rameter. This 
an be seen as a regularized version of the problem (2), where

the parameter (γϕ)2 balan
es the trade o� between the data �tting and the

penalization term.

De�ne

Ψ (N) = ‖AN− I‖22 + (γϕ)2
(

‖N‖1,V − cV

)2

= N
tAtAN− 2NtAt

I+ I
t
I+ (γϕ)2

(

N
t
VV

t
N− 2cV N

t
V + c2V

)

.

The gradient of Ψ(N) is

∇Ψ(N) = 2[AtAN−At
I+ (γϕ)2(VV

t
N− cV V)].

Assume that Vj 6= 0 for all j. Then Ψ(N) is 
oer
ive. In fa
t

Ψ(N) ≥ γϕ

(

min
j

{Vj}Nt
1− cV

)2

→ ∞ as ‖N‖2 → ∞.

Thus the minimum of Ψ exists, by Weierstrass theorem, and satis�es

∇Ψ(N) = 0. (21)

The fun
tional Ψ is 
onvex, but not stri
tly 
onvex, sin
e, in general, N (A) ∩
N (Vt) 6= {0}, where by N (A) we denote the null spa
e of A. Thus, 
ondition
(21) is only ne
essary and the minimum is not unique. However, sin
e the

fun
tional is 
oer
ive, we have that the minimumN
∗
of Ψ satis�es ‖N∗‖2 < ∞.

In other words we have proven the following

Proposition 1 The fun
tional Ψ de�ned above admits a global minimizer N
∗

su
h that

(a) ‖N∗‖2 < ∞;

(b) ∇Ψ(N∗) = 0.

Condition (21) 
an be rewritten equivalently as

(

At γϕV
)

(

A
γϕVt

)

N =
(

At γϕV
)

(

I

γϕcV

)

, (22)

Re
alling the de�nitions of Ã and Ĩ, we 
an see that (22) is simply the normal

equations of (15). This, 
oupled with (i), leads to the idea of looking for a

nonnegative solution of (15).
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3.2 Estimation of γ

The parameter γ weights the 
onstraint (iii) on cV de�ned in (12), but larger

values of γ not ne
essarily lead to better restorations in pra
ti
e (see Figures 4

and 6). This shows that the use of a 
onstrained optimization algorithm does

not ne
essarily provide better re
onstru
tions.

The estimation of the optimal value of γ, i.e., the one that minimizes

the re
onstru
tion error, 
an be somewhat tri
ky and the 
hoi
e of γ is not

straightforward, thus we propose to use an a posteriori strategy using the


onstraint (ii) on cN .
Let us 
all Nγ the nonnegative solution of (22) obtained with a 
ertain


hoi
e of γ and suppose to know exa
tly cN . Thus, we expe
t that the best


hoi
e for γ is the one that, beside providing the best re
onstru
tion for Nγ ,

minimizes also the error on cN . Therefore, we 
hoose γ = γopt su
h that

γopt = argmin
γ

{|cN − ‖Nγ‖1,∆R
|}. (23)

In pra
ti
e, as we will see in Se
tion 4, the 
hoi
e rule (23) is not so stri
t

be
ause there is a large range of γ-values around γopt where the re
onstru
-

tion is equally good and even a value of γ very far from γopt would provide

a

urate results. This feature is of fundamental importan
e be
ause, whenever

the 
onstraint cN is not known and 
an be only roughly estimated (as it might

happen experimentally), γopt 
annot be determined with high a

ura
y and

the 
ondition (23) would be inappli
able.

To obtain an estimation of γopt we 
ompute Nγ for a small set of possible

γ and sele
t the one that minimizes |cN − ‖Nγ‖1,∆R
|.

Summarizing, our weakly 
onstrained LR (WCLR) algorithm is the follow-

ing:

1. �x N
0 = 1 and a small set of possible values for γ;

2. 
ompute Nγ for every γ;
3. 
hoose the solution Nγopt


orresponding to γopt de�ned in (23).

4 Numeri
al Examples

In this se
tion we report some numeri
al examples aimed at as
ertaining how

our algorithm performs against the 
lassi
al LR method, i.e., when γ = 0.
We will also show how to �nd the optimal value γopt, 
onsistently with what

des
ribed above.

4.1 Generation of matrix A

The n×mmatrixA was 
omputed by numeri
ally integrating equation (4) with

the kernel K provided by the Mie theory [22℄ and illustrated in Figure 1. The

number of angles was n = 100, s
aled a

ording to a geometri
al progression
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with θmin = 2 deg and θmax = 180 deg. The bins for the re
overed distribution

were also 
hosen a

ordingly to a geometri
al progression (see Se
tion 2.1)

with Rmin = 10−3 µm and Rmax = 103 µm and their number was m = 600. In
this way all the bins were 
hara
terized by the same relative width ∆Rj/Rj ≈
0.023.

4.2 Generation of arti�
ial test data

The generation of arti�
ial test data was 
arried out by supposing to know a

true solution for the system Ntrue and 
omputing the noise-free data as

Itrue = ANtrue.

Then the real data were obtained by adding to Itrue a (fra
tional) random

white Gaussian noise, so that the noise level is proportional to Itrue and inde-

pendent from point to point. If we indi
ate with ǫ the fra
tional noise level,

the noisy I be
omes

I = Itrue ◦ (1+ ǫe) , (24)

where e is a ve
tor whose entries are realizations of a random variable su
h

that (e)j ∼ N (0, 1). Typi
al values for ǫ are in the interval [10−3, 10−2].

4.3 Inversion pro
edure and stopping 
riteria

The arti�
ial test data in (24) were inverted by �xing a value of the parameter

γ and using the iterative algorithm given by (19). The iterative pro
edure was

stopped a

ording to the following 
riteria:

(1) First of all we impose a minimum number of iterations kmin = 105, whi
h is
ne
essary for the WCLR (or the LR) algorithm to work properly. The min-

imum number of iterations kmin was estimated by inverting noiseless data

and 
he
king that 105 iterations are enough for retrieving the expe
ted

distribution with high a

ura
y (RRE . 10−2
, see below, Se
tion 4.4).

We also 
he
ked that for noisy data with noise levels typi
al of our prob-

lem (∼ 1%) when the pro
edure would prefer to stop at a number of

iterations k < kmin(see below points 3. and 4.), for
ing it to 
ontinue up

to kmin = 105 does not spoil signi�
antly the quality of the distribution.

(2) We also impose a maximum number of iterations kmax = 106, whi
h en-

sures that the inversion stops even when the 
riteria below reported are

not met.

(3) For any kmin < k < kmax the pro
edure is stopped a

ordingly to a relative

dis
repan
y prin
iple, whi
h is a modi�ed version of the 
lassi
al dis
rep-

an
y prin
iple, largely used with iterative regularization methods [9℄. As

relative dis
repan
y parameter we de�ne the quantity

ǫk =
1√
n

∥

∥

∥

∥

I
k − I

I

∥

∥

∥

∥

2

, (25)
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where I
k = ANk

and the division is 
omponent-wise. The value of ǫk in

(25) 
orresponds to the mean relative standard deviations between the

input noisy data (24) and the ones re
overed after k iterations. Note that

ǫk di�ers from the 
lassi
al parameter used in the dis
repan
y prin
iple

(

∥

∥I
k − I

∥

∥

2
) be
ause, aside for the 
onstant term 1/

√
n, it weights the

relative and not the absolute square deviations between input and re
on-

stru
ted data. This 
hoi
e was enfor
ed by the fa
t that the noise added

to the data was 
hosen to be proportional to Itrue and, therefore only an

ǫk de�ned as in (25) ensures that all the data points are equally weighted.

Moreover, the exa
t noise level ǫ‖Itrue ◦ e‖2 of the single experiment is

unknown and hen
e the 
lassi
al dis
repan
y prin
iple 
annot be used.

A

ording to (25), the algorithm was therefore stopped after k = k∗ iter-

ations so that

ǫk∗ ≤ ǫ, (26)

where ǫ is the fra
tional noise level introdu
ed in (24).

(4) Finally whenever, for kmin < k < kmax, 
ondition (26) is not met but ǫk
attains a minimum and begins to in
rease (the sequen
e {ǫk} de
reases

for small values of k, but is not always monotoni
 de
reasing for large k),
the pro
edure is stopped in 
orresponden
e of the minimum.

Sin
e the value of ǫk 
an os
illate, we say that we have rea
hed a minimum

for ǫk if ǫk < ǫk+1 < ǫk+2 < . . . < ǫk+10, i.e., if ǫk has in
reased for 10

onse
utive iterations.

When su
h a minimum is rea
hed before kmin, the pro
edure is stopped

at k = kmin.

In the following we will denote with Kit the number of iterations at whi
h the

pro
edure is a
tually stopped and the 
orresponding ǫKit
will be 
alled Mean

Relative Standard Deviation (MRSD).

4.4 Evaluation parameters

The a

ura
y of the inversion algorithm was evaluated by 
omparing the re-

trieved distribution with the true one. However, sin
e from a physi
al point of

view, volume (or mass) distributions are mu
h more signi�
ant than number

distributions, we 
ompared retrieved and true distributions on the basis of

volume-fra
tion density distributions, de�ned as

φ(R) = N(R)v(R),

here φ(R) has the dimensions of [µm−1
℄.

For assessing the a

ura
y of the inversion pro
edure, we de�ne a γ-dependent
Relative Restoration Error (RRE) as

RRE(γ) =
‖φγ − φtrue‖2

‖φtrue‖2
,
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whi
h 
orresponds to the relative average root mean square (r.m.s.) deviations
between the retrieved and true mass distributions.

Similarly, for assessing the a

ura
y on the re
onstru
tion of the two pa-

rameters cN and cV that 
hara
terize the true distribution, we de�ne the

quantities

DN(γ) =

∣

∣

∣
‖Nγ‖1,∆R

− cN

∣

∣

∣

cN
and DV (γ) =

∣

∣

∣
‖Nγ‖1,V − cV

∣

∣

∣

cV
,

whi
h represent the relative errors between cN and cV and the 
orresponding

re
overed parameters.

4.5 Numeri
al results

In the following numeri
al tests, the WCLR and LR algorithms were 
ompared

for several values of γ in a given range of re
overable radii. The latter one was


hosen to be a subset of the original range de�ned in Subse
tion 4.1, so that

Rmax/Rmin = 100. For ea
h γ, the tests were repeated 30 times, with di�erent

noise realizations (of the same ǫ level).

Test 1 In the �rst test we show that, when the distribution to be re
overed is


hara
terized by parti
les that produ
e signals whose features are: (a) asymp-

toti
ally 
onstant at low angles and (b) exhibit a dynami
 range between �rst

and last angle of several order of magnitudes (see d = 0.1µm or d = 1.0µm

urves in Figure 1(a)), the original LR and our WCLR algorithms are quite

equivalent. To this aim, we sele
ted as true number distribution Ntrue a Gaus-

sian 
entered in the middle of the re
overable range [Rmin, Rmax], i.e., with an

average value 〈R〉 = 1µm and standard deviation σR = 0.1µm. The parti
le

number 
on
entration was (arbitrarily) 
hosen to be cN = 1016 cm−3
and the

r.m.s. noise level added to the data was ǫ = 0.01. The inversion was 
arried

out by trimming the re
overable parti
le radii in the range [0.1µm− 10µm],
so that number of bins was m = 200. Correspondingly, the matrix used in

this test was obtained by sele
ting a proper subset (100× 200) of the original
(100× 600) matrix 
omputed at se
tion 4.1. The value of γ ranges from zero

(original LR) to γ = 106 and Kit = 106.
The �ndings of this test show that our algorithm performs equally well in-

dependently of the γ−value (0− 104) and its performan
es were quite similar

to the ones provided by the original LR algorithm. This is shown in Figure 3

where data re
onstru
tions and average re
overed distributions are highly a
-


urate and, as matter of fa
t, indistinguishable between our algorithm (run

with γ = 1) and the 
lassi
al LR algorithm (γ = 0).

Test 2 The e�e
tive di�eren
e between the two algorithms be
omes evident

only when the parti
les are 
lose to the boundaries of the [Rmin, Rmax] range.
For this se
ond test we sele
ted a Gaussian distribution 
hara
terized by large
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Fig. 3 Test 1:Comparison between the original LR (blue symbols) and our WCLR algorithm

(red symbols) run with γ = 1 for a Gaussian distribution with an average value 〈R〉 = 1µm
and standard deviation σR = 0.1µm. (a) Re
onstru
ted (symbols) and true (line) signals.

(b) Re
onstru
ted (symbols) and true (line) distributions. The two algorithms performs

equally well and, as matter of fa
t, both results (a) and (b) are almost indistinguishable.

parti
les, i.e., with 〈R〉 = 100µm and σR = 10µm. The noise level added to

the data was ǫ = 0.01, the inversion was 
arried out in the range [10µm −
1000µm] (so that m = 200), and γ was varied in the range [10−2 − 107].

Di�erently from the �rst test, the e�e
t of 
hanging γ is quite relevant,

as shown in Figure 4 where the behaviors of the parameters Kit, whi
h we

re
all that denotes the number of iterations, (a), MRSD (b), RRE (
), DN

(d), and DV (e) are reported as a fun
tion of γ. First of all we observe that

there is a broad range of γ ∼ [10−1 − 105] where the inversion pro
edure was

stopped at a number of iterationsKit ≤ 106 (see Figure 4(a)). Correspondingly,
within this range, the re
onstru
tion parameter MRSD (see Figure 4(b)) was


omparable with the noise level added to the data, meaning that the iterative

pro
edure was mu
h faster and stopped a

ordingly to the relative dis
repan
y

prin
iple (26).

Then, whereas DV (see Figure 4(d)) de
reases monotoni
ally with in
reas-

ing γ (whi
h is 
onsistent with the fa
t that the stronger the 
onstraint, the

higher the a

ura
y of its re
overed value), the parameters des
ribing the a

u-

ra
y of the retrieved distribution, RRE (see Figure 4(
)) and the a

ura
y on

the re
overed number 
on
entration, DN (see Figure 4(e)), exhibit very broad

valleys whose �at regions 
over almost the same range of γ ∼ [101 − 105].
Thus, the 
hoi
e of an optimal value for γ is not 
riti
al at all and any value


hosen in the 
entral part of this interval (for example γopt ∼ [102−104]) leads
both to small errors in the re
overy of cN and to very a

urate distribution

re
onstru
tions, as shown in Figure 5(e-f-g). Conversely, for values of γ out-

side this range, the re
overy of cN be
omes in
reasingly less and less a

urate

and, at the same time, the distributions are more and more poorly re
overed,

as shown in all the other panels of the �gure. In parti
ular, we would like to

point out the remarkable mismat
hing between the true distribution and the

one re
overed in Figure 5(a), showing that the 
lassi
al LR algorithm (γ = 0)
is totally unable to perform su
h a task.
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Fig. 4 Test 2: Behavior as a fun
tion of γ of the average parameters Kit (number of

iterations) (a), MRSD (b), RRE (
), DN (d), and DV (e) for a Gaussian distribution with

〈R〉 = 100 µm and σR = 10µm. The error bars are the standard deviations asso
iated to

the various parameters deriving from the noise (ǫ = 0.01) present on the data (error bars

larger than the data points are not displayed).

Finally, we would like to point out that the rather similar behaviors between

RRE andDN guarantees that, in a real experiment where the parameter RRE

annot be measured be
ause φtrue(R) is not known, the optimal range for γopt

an be inferred by looking at the behavior of DN (Figure 4(d)). The fa
t that

su
h a range is remarkably broad (∼ 2− 3 orders of magnitude) ensures that

even a huge un
ertainty on the value of cN would not a�e
t signi�
antly the

a

ura
y with whi
h φtrue(R) will be re
onstru
ted.

Test 3 In this test we sele
ted a distribution 
lose to the left side of the range,

namely a Gaussian with 〈R〉 = 0.05µm and σR = 0.005µm. In this 
ase, as

shown in Figure 1, the I(θ) data are rather �at; therefore, for not 
orrupting


ompletely their behavior, the noise level added to the data was ǫ = 0.001. The
inversion was 
arried out in the range [0.005µm− 0.5µm] (so that m = 200),
and γ was varied in the range [10−7 − 102].

Figure 6 shows the behavior of the parameters Kit (Number of iterations)

(a), MRSD (b), RRE (
), DN (d), and DV (e), whereas the 
omparison be-

tween the re
overed distribution and φtrue(R) is shown in Figure 7 varying γ
in the range [10−6 − 103]. As for the large parti
les, there is an even larger

optimal range γopt ∼ [10−3 − 101], where 
onvergen
e rate is faster and both

distribution re
onstru
tion and cN re
overy are very a

urate. We re
all that

γopt 
an be safely identi�ed by the 
riterion (23) thanks to the very broad

and shallow minimum region of the 
urve of DN in Figure 6(d). Finally, note
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Fig. 5 Test 2: Comparison between the average re
overed distributions (red symbols) ob-

tained with our algorithm at various γ-values (γ = 0 is LR) and a true Gaussian distribution

φtrue(R) with with 〈R〉 = 100 µm and σR = 10µm. The error bars are the standard devia-

tions asso
iated to the bins of the re
overed histogram due to the noise (ǫ = 0.01) presents
in the data.

that, also in this 
ase, the original LR algorithm is totally unable to re
over

the true distribution (see Figure 7(a)).

4.6 Errors on the cV 
onstraint

In this se
tion we report an example of the e�e
ts of small systemati
 errors

on the 
onstraint cV with respe
t to the quality of the re
overed distributions.

We investigated the spe
i�
 
ase of the true distribution used in Figure 7,

i.e., a Gaussian distribution with 〈R〉 = 0.05µm and σR = 0.005µm, and we

supposed to have errors δcV varying within a range of±10%. Then for any �xed

value of γ and we investigated how the re
overed distributions deteriorates as

δcV is in
reased. This analysis was 
arried out following the same pro
edure

des
ribed for the previous tests, and was repeated for 8 di�erent values of γ
spanning the range γ ∼ [10−5 − 102] (1 point per order of magnitude).

The main result is summarized in the �rst panel of Figure 8, where the

behavior of the parameter RRE is reported as a fun
tion of the per
entage

error δcV . As expe
ted, within the optimal range γopt ∼ [10−3 − 101], the
minimum of RRE o

urs at zero error and in
reases as δcV be
omes larger

and larger, but as long as δcV . ±2%, its value remains . 2− 3× 10−2. This
trend is 
learly not followed by values of γ that are outside this optimal range

be
ause, even at zero error as shown in Figure 6(a), the inversion algorithm
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Fig. 6 Test 3: Behavior as a fun
tion of γ of the average parameters Kit (a), MRSD

(b), RRE (
), DN (d), and DV (e) for a Gaussian distribution with 〈R〉 = 0.05µm and

σR = 0.005 µm. with 〈R〉 = 100 µm and σR = 10 µm. The error bars are the standard

deviations asso
iated to the various parameters deriving from the noise (ǫ = 0.001) present
on the data (error bars larger than the data points are not displayed).

Fig. 7 Test 3: Comparison between the average re
overed distributions (red symbols) ob-

tained with our algorithm at various γ-values (γ = 0 is LR) and a true Gaussian distribution

φtrue(R) with with 〈R〉 = 0.05µm and σR = 0.005µm. The error bars are the standard de-

viations asso
iated to the bins of the re
overed histogram due to the noise (a ǫ = 0.001)
present on the data.
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Fig. 8 E�e
ts of systemati
 errors on the cV 
onstraint with respe
t the quality of the

re
overed distributions in the 
ase of a true Gaussian distribution φtrue(R) with with 〈R〉 =
0.05µm and σR = 0.005µm: (a) Behavior of RRE versus the per
entage error δcV ; (b)
behavior of MRSD versus the per
entage error δcV ; (
)-(d)-(e): 
omparison between the

true distribution (solid line) and the average re
overed distributions (red symbols) obtained

with γ = 10−2
and −5%, 0% and +5% per
entage errors. The standard deviations asso
iated

to the bins of the re
overed histograms are due to the noise (a ǫ = 0.001) present on the

data.

is not able to work properly. The other important parameter des
ribing the

performan
es of the inversion algorithm in presen
e of systemati
 errors on cV
is the behavior ofMRSD (see Figure 8(b)). As shown, within the optimal range

γopt ∼ [10−3−101] and for errors . ±5%, all theMRSD values are 
ompatible

with the fra
tional statisti
al errors on the data (ǫ = 10−3
). Outside these

ranges, MRSD tends to in
rease be
ause 
onvergen
e is slowed down and 106

iteration are not su�
ient or be
ause signal re
onstru
tions are very poor

whatsoever.

In the last three panels of Figure 8 we report an example of the distributions

re
overed for γ = 10−2
at errors on cV equal to −5%, 0% and +5%. As

expe
ted, the 
entral distribution (panel d, 0% error) mat
hes very a

urately

the input ones (RRE≈ 8.7 × 10−3
), whereas the other two are 
learly less

a

urate, being RRE≈ 3.2 × 10−1
for the −5% error and RRE≈ 8.8 × 10−2

for the +5% error, but still very meaningful from a physi
al point of view.

5 Con
lusions

In this paper we have proposed a simple and e�e
tive variant of the LR method

by adding a weak 
onstraint to be imposed as a penalty term on the re
ov-

ered solution. The new method, 
alled Weakly Constrained Lu
y-Ri
hardson

(WCLR), was applied and tested on the inversion of simulated elasti
 light

s
attering data, whose aim is to re
over the number-size, Ntrue(R), or volume-
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size, φtrue(R), distributions of the parti
les 
omposing the sample over the

largest possible interval of parti
le sizes.

For this problem, there are two physi
al 
onstraints related to the knowl-

edge of the parti
le number, cN , and volume, cV , 
on
entrations, whi
h 
orre-

spond, mathemati
ally, to the integral of Ntrue(R) and φtrue(R), respe
tively.
Both 
onstraints 
an be determined experimentally but, whereas cV 
an be

measured with high a

ura
y, the estimation of cN 
an be a�e
ted by large

errors. Thus in this paper we used as a 
onstraint only cV and exploited cN
for determining a a posteriori 
riterion for adjusting the strength, γ, of cV .

By the use of extensive numeri
al simulations, we have shown that the

optimal value γopt, i.e., the one that provides the highest a

ura
ies in the

re
overy of both cN and φtrue(R) (or Ntrue(R)), is not 
riti
al at all be
ause
there is a broad range (∼ 2 − 4 orders of magnitude) of γ-values around γopt
where both restorations are equally good. Thus, in a real experiment where

φtrue(R) is not known, the optimal γopt 
an be inferred only by looking at cN
and, thanks to the fa
t that the γ-range is so wide, even a huge un
ertainty

on the value of cN would not a�e
t signi�
antly the a

ura
y on the re
overed

distributions.

We have also provided a new proto
ol for stopping the iterative pro
e-

dure, whi
h is based on the four 
riteria des
ribed in Se
t. 4.3. Although su
h


riteria rely on the 
hoi
e of the two parameters kmin and kmax whi
h for
e

the pro
edure to stop at kit so that kmin < Kit < kmax, the a
tual values of

Kit very rarely are 
ast on the extremes of su
h a range. Thus, the parti
ular


hoi
e for kmin and kmax does not a�e
t the results of the method. It must be

said, however, that the tuning of kmin is a little bit tri
ky be
ause 
onvergen
e

depends on the features of the distribution to be re
overed and, at the same

time, on the noise level present on the data. In our 
ase where su
h a level is

∼ 1% or less, we found that for not too narrow bell shaped distributions (rela-

tive width σ/ < R >∼ 10% or larger) the use of a single value kmin = 105 was
a reasonable 
ompromise. In the extremely rare 
ase that the best restoration

is obtained at an iteration lower than kmin, we do not observe the insurgen
e

of artifa
ts, or they are at least fairly weak, be
ause WCLR algorithm has a

very stable 
onvergen
e, espe
ially against reasonable levels (∼ 1%). In any


ase, for higher noise levels, a prepro
essing denoising pro
edure 
ould always

be applied. In 
on
lusion therefore, although kmin 
ould have been optimized

from 
ase to 
ase, the single value kmin = 105 allowed us to re
over a

urately

distributions spanning the entire [Rmin, Rmax] range, without introdu
ing a

further adjusting parameter in the pro
edure.

Our numeri
al simulations show that, when the parti
le sizes to be re
ov-

ered lie within a range extension 
omparable with that of the measurements,

WCLR and LR are fairly equivalent: they are both simple, robust and, pro-

vided that the iterative pro
edure is stopped after a large enough number of

steps, equally a

urate. The only slight di�eren
e is that, whereas LR truly

requires no adjusting parameter, in the 
ase of WCLR, the only adjustable

parameter would be γ, but as mentioned above, it 
an be varied over su
h a

large range of values that, as a matter of fa
t, does not need to be optimized.
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When the two algorithms are tested over a wider range of parti
le sizes, WCLR

permits to extend widely the range over whi
h the distributions 
an be reli-

ably re
overed with respe
t to LR. In parti
ular, by using the LR algorithm

we would not able to re
over parti
le size distributions with parti
les as large

as 100µm or as small as 50nm. This is 
learly shown in panels (a) of Figs. 5

and 6. In the spe
i�
 
ase of elasti
 light s
attered data inversion investigated

in this work where the probed s
attering angles were between [2◦−180◦], su
h
a range 
an be stret
hed more than one order of magnitude, passing from

[Rmin −Rmax] ∼ [0.1− 10]µm to ∼ [0.05− 100]µm.

In Subse
tion 4.6 we also investigated the e�e
t of having small systemati


errors on the knowledge of the 
onstraint cV with respe
t to the quality of

the re
onstru
ted distributions. Our �ndings show that, as long as the error

on cV is within ±2%, the quality of the re
onstru
ted distributions is well

preserved and the use of a weak 
onstraint is advantageous with respe
t to a

strong 
onstraint. This feature is fundamental in pra
ti
al appli
ations where,

typi
ally, the relative a

ura
y on cV is of the order of a few per
ents.

As we stated in the Introdu
tion the nature of the problem itself suggested

that the LR algorithm would have been a good 
hoi
e, while other methods,

in parti
ular the ones whi
h relies on the minimization of the Eu
lidean norm,

would have been ine�e
tive.

The main drawba
k of the proposed approa
h is still the requirement of a

fairly high number of iterations, even though we have shown that the number

of iterations required by WLCR is mu
h smaller than the one required by the

standard LR method. However, the dimension of the problem at hand, while

not small, is not too large (as seen in the examples in Se
tion 4) and thus the

overall 
omputation e�ort is limited even when a high number of iterations is

required.

It will be subje
t of future studies the 
ombination of the te
hniques pro-

posed in this paper with more e�
ient methods from the literature, starting

from the work in [8, 27℄. In parti
ular, it would be interesting to insert the

methods from [13℄ in our framework, as well as the to 
ombine our approa
h

with Modulus-Method for ill-posed problems, see [1℄ and referen
es therein.

Finally, we would like to point out that variants of the 
lassi
al Lu
y-

Ri
hardson, like those in [4, 24℄, 
ould be useful for further improving our al-

gorithm. We would also like to stress that, although in this arti
le our WCLR

method has been tested and its performan
es as
ertained for the spe
i�
 opti-


al problem related to the inversion of the elasti
 light s
attering data, the pro-

pose method 
an be in prin
iple applied to any other problem where some 
on-

straints asso
iated to integrals of the distribution to be re
overed are known.

Examples of su
h problems are again in the �elds of opti
s with the te
hnique

known as multi-spe
tral extin
tion turbidity [10, 11℄ or in the �eld of stere-

ology, an interdis
iplinary methodology that is 
on
erned with the re
overing

of the 3D properties of a sample from its 2D se
tions (see for example [20℄

and referen
es therein). Work is in progress for extending WCLR to these

problems.
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