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Abstract

Tikhonov regularization is one of the most popular methods for the solution of
linear discrete ill-posed problems. In many applications the desired solution is
known to lie in the nonnegative cone. It is then natural to require that the ap-
proximate solution determined by Tikhonov regularization also lies in this cone.
The present paper describes two iterative methods, that employ modulus-based
iterative methods, to compute approximate solutions in the nonnegative cone of
large-scale Tikhonov regularization problems. The first method considered con-
sists of two steps: first the given linear discrete ill-posed problem is reduced to
a small problem by a Krylov subspace method, and then the reduced Tikhonov
regularization problems so obtained is solved. The second method described ex-
plores the structure of certain image restoration problems. Computed examples
illustrate the performances of these methods.
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1. Introduction

Many applications in science and engineering require the solution of least-
squares problems of the form

min
x∈Rn

‖Ax− b‖, (1)

where A ∈ Rm×n is a large matrix whose singular values “cluster” at the origin
and the vector b ∈ Rm is contaminated by error. In particular, the matrix is
severely ill-conditioned and may be rank-deficient. Matrices of this kind arise
from the discretization of linear ill-posed problems such as Fredholm integral
equations of the first kind and, therefore, the minimization problem (1) is re-
ferred to as a linear discrete ill-posed problem. Applications include remote
sensing and image restoration. In the latter application the kernel of the in-
tegral equation is known as the point-spread function (PSF) and describes the
blur-contamination of an unavailable image that one would like to restore. The
vector b represents known error-contaminated data and can be expressed as

b = btrue + η, (2)

where btrue is an unknown error-free vector associated with b and η represents
the error in b. We will refer to η as noise. In image restoration applications,
btrue represents an unavailable blur-contaminated, but noise-free, image, while
b represents an available image that has been contaminated by both blur and
noise. The noise may stem from measurement and/or discretization errors. We
will assume that a fairly sharp bound,

‖η‖ ≤ δ, (3)

for the error is available. Throughout this paper ‖ · ‖ denotes the Euclidean
vector norm or the spectral matrix norm. The error-free system of equations,
Ax = btrue, is assumed to be consistent. We will comment on this requirement,
as well as on the bound (3), further below.

Let A† denote the Moore–Penrose pseudoinverse of A. We would like to
determine xtrue = A†btrue. The minimum norm solution of (1) can be expressed
as A†b. Due to the severe ill-conditioning of A and the presence of the error η
in b, the vector

A†b = A†btrue +A†η = xtrue +A†η

typically is dominated by the propagated error A†η and then is not a useful
approximation of xtrue. Generally, a much better approximation of xtrue can be
determined by first replacing the least-squares problem (1) by a nearby min-
imization problem that is less sensitive to the error η in b. One of the most
popular replacement methods is Tikhonov regularization, which in its simplest
form yields the minimization problem

min
x∈Rn

{

‖Ax− b‖2 + µ ‖x‖2
}

, (4)
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where the scalar µ > 0 is referred to as the regularization parameter. The normal
equations associated with this minimization problem are given by

(AtA+ µIn)x = Atb, (5)

which shows that (4) has the unique solution

xµ =
(

AtA+ µIn
)−1

Atb. (6)

for any fixed µ > 0; see, e.g., [1, 2, 3] for properties of Tikhonov regularization.
The superscript t denotes transposition and In is the identity matrix of order
n.

The Tikhonov minimization problem (4) has two terms: the first one is a
fidelity term that ensures that the solution xµ approximately fits the observed
data, and the second one is a regularization term that penalizes the Euclidean
norm of xµ. The balance between data fitting and penalization is determined
by the regularization parameter µ. An imprudent choice of µ makes xµ a poor
approximation of xtrue: if µ is too small, then the error η will be propagated and
amplified in xµ, while if µ is too large, then xµ will be over-smoothed without
displaying details that xtrue may possess.

The discrepancy principle provides an approach to determine a suitable value
of µ. It prescribes that µ > 0 be chosen so that

‖Axµ − b‖ = τδ, (7)

where τ > 1 is a user-chosen parameter independent of δ. This is a nonlinear
equation for µ, which can be solved, e.g., by Newton’s method; see Section 3.
The discrepancy principle requires a bound (3) for the error η to be available, as
well as the error-free minimization problem associated with (1) to be consistent;
see [1, 4] for discussions. We will use the discrepancy principle in the computed
examples reported in Section 4. However, the solution methods discussed in this
paper also can be applied in conjunction with other techniques for determining
a suitable value of µ > 0, including the L-curve criterion and generalized cross
validation; see [5, 4, 6, 7] for discussions and comparisons of many methods for
determining a suitable value of the regularization parameter.

Due to the fact that many singular values of the matrix A cluster at the ori-
gin, the least-squares problem (1) may be numerically rank-deficient. Therefore,
it is generally beneficial to impose constraints on the computed solution that
the desired solution xtrue is known to satisfy. For instance, in image restoration
problems the entries of the vector (6) represent pixel values of the image. Pixel
values are nonnegative and, therefore, it is generally meaningful to solve the
constraint minimization problem

x+
µ = argmin

x≥0

{

‖Ax− b‖2 + µ ‖x‖2
}

(8)

instead of (4). Here x ≥ 0 is intended component-wise. A closed form of the
solution x+

µ generally is not available.
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Let Ω denote the nonnegative cone and let PΩ be the orthogonal projector
from Rn to Ω. Thus, we determine PΩ(z) for z ∈ Rn by setting all negative
entries of z to zero. An approximation of x+

µ is furnished by

xΩ
µ = PΩ(xµ) = PΩ

(

(

AtA+ µI
)−1

Atb
)

. (9)

When xtrue ≥ 0, the vector xΩ
µ generally is a better approximation of xtrue than

xµ. However, typically x+
µ is a much more accurate approximation of xtrue than

xΩ
µ . This depends, at least in part, on the fact that the condition number of

the matrix A restricted to Ω typically is smaller than the condition number of
A; the latter is defined as the ratio between the largest and smallest singular
values of A; see, e.g., [8].

One of the aims of the present paper is to discuss the solution of the con-
strained Tikhonov regularization problem (8) by the modulus-based iterative
method described by Zheng et al. [9], who discuss the application of this kind
of method to the solution of nonnegative constrained least-squares (NNLS) prob-
lems,

min
x≥0

‖Ax− b‖, (10)

with a matrix A ∈ Rm×n that is either well conditioned or ill conditioned. We
restrict our attention to matrices whose singular values cluster at the origin.
This allows us to determine accurate approximate solutions of (8) in a Krylov
subspace of, generally, fairly small dimension. The computational effort there-
fore generally is smaller than when solving minimization problem (10) with a
general rectangular matrix A ∈ Rm×n with m ≥ n.

We also consider the situation when A is a block circulant with circulant
blocks (BCCB) matrix. Such matrices arise in certain image restoration prob-
lems. We describe a modulus-based iterative method for the NNLS problem (10)
that exploits the structure of A. The fast Fourier transform (FFT) is applied
to obtain an efficient solution method.

This paper is organized as follows: Section 2 reviews results about modulus-
based iterative methods discussed in [10, 11, 12, 9]. We apply a modulus-based
iterative method to the solution of large-scale constrained Tikhonov regulariza-
tion problems of the form (8). These problems are reduced to small size ones by
a Krylov subspace method. This reduction decreases the computational effort
required for the solution of the constrained Tikhonov regularization problem
considerably. Section 3 describes our Krylov subspace-based method for the
solution of (8) and Section 4 contains a few computed examples. The latter sec-
tion also illustrates how the BCCB structure of the matrix A can be exploited.
Concluding remarks can be found in Section 5.

We conclude this section with some comments on related work on the com-
putation of a nonnegative approximate solution of problem (10) with a large
matrix A, whose singular values cluster at the origin. The importance of being
able to solve this kind of problem has spurred the development of a variety of
methods. Nagy and Strakoš [13] described a curtailed steepest descent method
that determines nonnegative solutions. Active set methods based on Tikhonov
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regularization were developed in [14, 15] and barrier methods for Tikhonov reg-
ularization were discussed in [16, 17, 18]. A discussion of many optimization
methods, including active set and barrier methods, was provided by Nocedal
and Wright [19]. In our experience, it is beneficial to use methods that exploit
special properties or structure of the matrix A. The fact that the matrix A
can be approximated well by a matrix of low rank makes our Krylov subspace
modulus-based method competitive with available Krylov subspace methods,
because it only requires the computation of one Krylov subspace of modest di-
mension. This subspace then is used repeatedly. When A ∈ Rn×n is a BCCB
matrix, fast solution methods are based on the fact that matrix-vector products
with A can be evaluated in only O(n log n) arithmetic floating point operations
(flops) with the aid of the FFT.

2. Modulus-based iterative methods for constrained least-squares prob-

lems

This section summarizes results discussed in [11, 12, 9] of interest for the
solution methods of the present paper. Other recent discussions on modulus-
based iterative methods were provided by Bai [10] and Bai and Zhang [20],
where further references can be found.

We reduce the constrained least-squares problem (10) to a linear comple-
mentarity problem, which we will solve by a modulus-based iterative method.
The following result can be found in Cottle et al. [21, Page 5, Definition 3.3.1
and Theorem 3.3.7]. It is also shown in [9, Theorem 2.1].

Theorem 1. Let M be a symmetric positive semidefinite matrix. Then the
nonnegatively constrained quadratic programming problem,

min
x≥0

(

1

2
xtMx+ ctx

)

,

denoted by NNQP(M, c), is equivalent to the linear complementarity problem,

x ≥ 0, Mx+ c ≥ 0, and xt (Mx+ c) = 0,

denoted by LCP(M, c).

The results below, shown in [11, 12, 9], are consequences of the above theo-
rem.

Corollary 2. Let M ∈ Rn×n be symmetric and positive definite and let c ∈ Rn.
Then the problems NNQP(M, c) and LCP(M, c) have the same unique solution.

Corollary 3. The NNLS problem (10) is equivalent to LCP(AtA,−Atb),

x ≥ 0, r = AtAx −Atb ≥ 0, and xtr = 0.

It has a unique solution when A is of full column rank.
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Theorem 4. Let D be a positive definite diagonal matrix and define for y =
[y1, y2, . . . , yn]

t ∈ Rn the vector |y| = [|y1|, |y2|, . . . , |yn|]t ∈ Rn.

(i) If (x, r) is a solution of LCP(AtA,−Atb), then y = (x−D−1r)/2 satisfies

(

D +AtA
)

y =
(

D −AtA
)

|y|+Atb. (11)

(ii) If y satisfies (11), then

x = |y|+ y and r = D(|y| − y)

is a solution of LCP(AtA,−Atb).

Proof. The results can be shown by using [10, Theorem 2.1].

We will in the remainder of this section assume that the matrix A has full
column rank. This requirement is satisfied by the matrix Ã used in the following
section; see (15). Theorem 4, and in particular (11), suggest the fixed-point
iteration

(D +AtA)yk+1 = (D −AtA) |yk|+Atb, (12)

which is the basis for the following algorithm.

Algorithm 1. Let y0 ∈ Rn be an initial approximate solution of (11) and let
D be a positive definite diagonal matrix.

x0 = y0 + |y0|
for k = 0, 1, 2, . . .

yk+1 = (D +AtA)−1 ((D −AtA) |yk|+Atb)
xk+1 = yk+1 + |yk+1|

end

This algorithm is a special case of the modulus-based matrix splitting iter-
ative methods proposed in [10]. Its convergence was investigated in [9] based
on the analysis of HSS methods by Bai et al. [22]. The case of interest to us is
when D = αIn with α > 0. This iterative method is analyzed in [11, 12]. We
discuss the convergence of the iterates yk for completeness. Let y∗ denote the
solution of (11) for D = αIn, Then

yk+1 − y∗ = (αIn +AtA)−1(αIn −AtA)(|yk| − |y∗|)

and we obtain

‖yk+1 − y∗‖ ≤
∥

∥(αIn +AtA)−1(αIn −AtA)
∥

∥ ‖|yk| − |y∗|‖
≤

∥

∥(αIn +AtA)−1(αIn −AtA)
∥

∥ ‖yk − y∗‖ .

The matrix (αIn +AtA)−1(αIn −AtA) is symmetric. Therefore,

∥

∥(αIn +AtA)−1(αIn −AtA)
∥

∥ = max
λj∈λ(AtA)

∣

∣

∣

∣

α− λj

α+ λj

∣

∣

∣

∣

, (13)
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where λ(AtA) denotes the spectrum of AtA. Since A is of full rank, λj > 0 for
all j. Therefore,

∣

∣

∣

∣

α− λj

α+ λj

∣

∣

∣

∣

< 1 ∀j.

Hence,
∥

∥(αIn +AtA)−1(αIn −AtA)
∥

∥ < 1,

which shows convergence of the iteration (12) for D = αIn with α > 0. The
rate of convergence generally increases when (13) decreases. Replacing λ(AtA)
in the right-hand side of (13) by its convex hull gives an optimization problem
whose solution easily can be determined,

α∗ = argmin
α∈R

{

max
λmin≤λ≤λmax

∣

∣

∣

∣

α− λ

α+ λ

∣

∣

∣

∣

}

=
√

λminλmax. (14)

Here λmin and λmax denote the smallest and largest eigenvalues of AtA, respec-
tively. Thus, the relaxation parameter α∗ gives a near-optimal rate of conver-
gence.

3. Krylov subspace methods for nonnegative Tikhonov regularization

This section describes the application of the modulus-based iterative method
to Tikhonov regularization with nonnegativity constraint (8). We discuss how
the computational effort for large-scale problems can be reduced by using a
Krylov subspace method with a fixed Krylov subspace. Comments on how to
exploit BCCB structure of A conclude this section.

We first rewrite the minimization problem (8) in the form of the previous
section. Thus,

min
x≥0

{

‖Ax− b‖2 + µ ‖x‖2
}

= min
x≥0

∥

∥

∥

∥

[

A√
µIn

]

x−
[

b
0

]∥

∥

∥

∥

2

= min
x≥0

∥

∥

∥
Ãx− b̃

∥

∥

∥

2

, (15)

where we assume that µ > 0. Then the matrix Ã ∈ R(m+n)×n is of full column
rank and the minimization problem (15) satisfies the conditions in Section 2.
Therefore, the iterates determined by Algorithm 1 will converge.

When the matrix A is large and without exploitable structure, the computa-
tion with Algorithm 1 with D = αIn may be expensive. In particular, factoring
the matrix αIn + ÃtÃ in order to solve the linear systems of equations with
this matrix required by Algorithm 1 may be unattractive or infeasible. We are
interested in trying to reduce the computational effort required for solving these
linear systems of equations. One way to achieve this is to solve them by the con-
jugate gradient method. It is convenient to use the CGLS implementation [23].
This solution approach is discussed in [9] and also is illustrated in Section 4.
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The present paper describes an alternative way to reduce the computational
effort. We first determine an initial reduction of A to a small bidiagonal matrix
with the aid of Golub–Kahan bidiagonalization. The Krylov solution subspace
generated by this reduction method then is reused for all linear systems of
equations with the matrix αIn + ÃtÃ that have to be solved.

Application of ℓ ≪ min{m,n} steps of Golub–Kahan bidiagonalization to A
with initial vector u1 = b/‖b‖ gives the decompositions

AVℓ = Uℓ+1Bℓ+1,ℓ, AtUℓ = VℓB
t
ℓ,ℓ, (16)

where Uℓ+1 = [u1, u2, . . . , uℓ+1] ∈ Rm×(ℓ+1) and Vℓ = [v1, v2, . . . , vℓ] ∈ Rn×ℓ

have orthonormal columns, Uℓ ∈ Rm×ℓ is made up of the first ℓ columns of Uℓ+1,
Bℓ+1,ℓ ∈ R(ℓ+1)×ℓ is lower bidiagonal with positive diagonal and subdiagonal
entries, and Bℓ,ℓ is the leading ℓ× ℓ submatrix of Bℓ+1,ℓ; see, e.g., [8] for details
on the decompositions (16). We assume for now that ℓ is chosen small enough
so that the decompositions (16) with the stated properties exist. For future
reference, we note that the columns of Vℓ span the Krylov subspace

Kℓ(A
tA,Atb) = span{Atb, (AtA)Atb, . . . , (AtA)ℓ−1Atb}. (17)

Substituting x = Vℓy, y ∈ Rℓ, into (5) and determining an approximate
solution by a Galerkin method gives the equation

V t
ℓ (A

tA+ µIn)Vℓy = V t
ℓ A

tb,

which with the aid of the decompositions (16) can be expressed as

(Bt
ℓ+1,ℓBℓ+1,ℓ + µIℓ)y = e1

∥

∥Atb
∥

∥ . (18)

Here and below ej denotes the jth column of an identity matrix of appropriate
order. The reduced Tikhonov equation (18) is the normal equation associated
with the least-squares problem

min
y∈Rℓ

∥

∥

∥

∥

[

Bℓ+1,ℓ

µ1/2Iℓ

]

y − µ−1/2eℓ+2‖Atb‖
∥

∥

∥

∥

. (19)

We solve the latter instead of (18) for y = yµ for reasons of numerical stability.
For each fixed µ > 0, the least-squares problem (19) can be solved in only O(ℓ)
arithmetic floating-point operations; see Eldén [24] for details on the solution of
least-squares problems of the form (19).

We turn to the determination of µ > 0 by the discrepancy principle. Sub-
stituting xµ = Vℓy into (7) and using (16) gives the reduced problem

‖Bℓ+1,ℓy − e1‖b‖ ‖ = τδ, (20)

where y solves (19).

Proposition 5. Introduce the function

φℓ(µ) = ‖b‖2et1(µ−1Bℓ+1,ℓB
t
ℓ+1,ℓ + Iℓ+1)

−2e1. (21)
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Then the solution µ > 0 of
φℓ(µ) = τ2δ2 (22)

determines a solution y = yµ of (19) that solves (20). The vector xµ,ℓ = Vℓyµ
satisfies (7).

Proof. It follows from (16) that

Atb = AtUℓe1‖b‖ = v1 e
t
1B

t
ℓ+1,ℓe1‖b‖.

Substituting this expression and the solution of (18) into the left-hand side of
(20) gives

‖Bℓ+1,ℓ(B
t
ℓ+1,ℓBℓ+1,ℓ + µIℓ)

−1e1‖Atb‖ − e1‖b‖ ‖2

= ‖Bℓ+1,ℓ(B
t
ℓ+1,ℓBℓ+1,ℓ + µIℓ)

−1Bt
ℓ+1,ℓe1 − e1‖2 ‖b‖2. (23)

The identity

Bℓ+1,ℓ(B
t
ℓ+1,ℓBℓ+1,ℓ + µIℓ)

−1Bt
ℓ+1,ℓ − Iℓ+1 = −(µ−1Bℓ+1,ℓB

t
ℓ+1,ℓ + Iℓ+1)

−1

can be shown, e.g., by multiplication by Bℓ+1,ℓB
t
ℓ+1,ℓ + µIℓ+1 from the right-

hand side. Substitution into (23) gives

‖Bℓ+1,ℓyµ − e1‖b‖ ‖2 = ‖b‖2et1(µ−1Bℓ+1,ℓB
t
ℓ+1,ℓ + Iℓ+1)

−2e1.

This shows (21). The fact that the vector xµ,ℓ satisfies (7) follows from (16)
and (20).

Proposition 6. Let φℓ(µ) be defined by (21). Then the function ν → φℓ(1/ν)
is strictly decreasing and convex for ν > 0. Moreover,

lim
µ→∞

φℓ(µ) = ‖b‖2.

In particular, Newton’s method applied to the solution of the equation φℓ(1/ν) =
τ2δ2 with initial approximate solution ν0 to the left of the solution converges
monotonically and quadratically.

Proof. The decrease, convexity, and limit follows from the representation

φℓ(1/ν) = ‖b‖2et1(νBℓ+1,ℓB
t
ℓ+1,ℓ + Iℓ+1)

−2e1.

Newton’s method converges monotonically and quadratically for decreasing con-
vex functions when the initial iterate is smaller than the solution. The initial
iterate ν0 can be chosen to be zero with

lim
νց0

φℓ(1/ν) = ‖b‖2, lim
νց0

d

dν
φℓ(1/ν) = −2‖b‖2‖Bt

ℓ+1,ℓe1‖2.
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In actual computations it typically suffices to choose ℓ ≪ min{m,n}. We
apply Algorithm 1 to the reduced Tikhonov minimization problem (18). Thus,
we replace AtA in the algorithm by

Tℓ,µ = Bt
ℓ+1,ℓBℓ+1,ℓ + µIℓ. (24)

Since the matrix Bℓ+1,ℓ is small, we can easily determine its largest singular
value σmax. Typically, zero is a quite sharp lower bound for the smallest singular
value. The largest eigenvalue of Tℓ,µ is σ2

max + µ and the smallest eigenvalue
is bounded below by, and is generally close to, µ. We will use the relaxation
parameter

α =
√

(σ2
max + µ)µ (25)

for the algorithm; cf. (14). This yields the following scheme.

Algorithm 2. Choose the number of Golub–Kahan bidiagonal steps, ℓ, and
compute the decompositions (16). Determine a regularization parameter µ that
satisfies (22) as described in Proposition 6. Compute the solution y = yµ of (19)
and define the initial approximate solution x0 = PΩ(Vℓyµ) of (8). Determine the
largest singular value of the matrix Bℓ+1,ℓ and define the relaxation parameter
(25). Let Tℓ,µ be given by (24).

b̂ = e1 ‖Atb‖
y0 = V t

ℓ x0

ỹ0 = V t
ℓ |Vℓy0|

for k = 0, 1, 2, . . . until convergence

yk+1 = (αIℓ + Tℓ,µ)
−1

(

(αIℓ − Tℓ,µ)ỹk + b̂
)

ỹk+1 = V t
ℓ |Vℓyk+1|

end

x = Vℓỹk+1 + |Vℓỹk+1|

The above algorithm computes the magnitude of every entry of an n-vector
at each step. Therefore, a transformation from the ℓ-dimensional subspace,
where the vectors yk live, to Rn is required. Every step demands the solution
of a linear system of equations of the form

(αIℓ + Tℓ,µ) z = d

for some vector d. The solution z can be computed by solving a least-squares
problem analogous to (19).

We remark that the Krylov subspace (17) is invariant under shifts of AtA
by a multiple of the identity, i.e.,

Kℓ(A
tA,Atb) = Kℓ(A

tA+ αIn, A
tb).

It follows that the shifted matrix αIℓ + Tℓ,µ in Algorithm 2 corresponds to the
shifted matrix αIn + (µIn +AtA).
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We described above how to determine the regularization parameter µ by first
reducing equation (7) to an equation with a small matrix (20). When restoring
images we sometimes may impose periodic boundary conditions without affect-
ing the quality of the computed restoration significantly. This yields a BCCB
blurring matrix A ∈ R

n×n, which can be diagonalized by the unitary Fourier
matrix F ∈ Cn×n,

A = F ∗ΣF. (26)

Here the matrix Σ is diagonal, possibly with complex entries, and the super-
script ∗ denotes transposition and complex conjugation; see, e.g., [25] for details.
We can transform the Tikhonov minimization problem (4) to a minimization
problem with a diagonal matrix, and we also can transform (7) to an equa-
tion with a diagonal matrix. These transformations allow easy computation of
the regularization parameter µ > 0 such that the solution (6) satisfies (7) by
Newton’s method analogously as described above. Moreover, Algorithm 1 with
D = αIn can be executed efficiently when A has the factorization (26). This is
illustrated in the following section.

4. Numerical examples

This section presents a few numerical examples that illustrate the perfor-
mance of the algorithms described. An example in one space-dimension from
theRegularization ToolsMATLAB package [26] and examples in two space-
dimensions obtained with the Restore Tools MATLAB package [27] will be
discussed. We compare four methods: classical unconstrained Tikhonov regu-
larization (6), projected Tikhonov regularization (9), and Algorithms 1 and 2.
In Algorithm 1, we solve linear systems of equations with the matrix D+AtA by
the CGLS method; see [23]. In all examples, D = αIn with α > 0. Algorithm 3
below illustrates how the availability of a factorization of the form (26) can be
exploited.

At step k of Algorithm 1, we have to solve the linear system of equations

(AtA+ µIn + αIn)yk+1 = (αIn −AtA− µIn)|yk|+Atb, (27)

which is equivalent to the least-squares problem

yk+1 = argmin
y

∥

∥

∥

∥

∥

∥





A√
µIn√
αIn



 y −





b−A|yk|
−√

µ|yk|√
α|yk|





∥

∥

∥

∥

∥

∥

2

= argmin
y

∥

∥Āy − ȳk
∥

∥ ,

for a suitably defined matrix Ā ∈ R(m+2n)×n and vector ȳk ∈ Rm+2n. We
terminate the iterations with the CGLS method at iteration k of Algorithm 1
as soon as

∥

∥Āt(Āy − b̄)
∥

∥ <
10−2

k

∥

∥Ātb̄
∥

∥ , for k = 0, 1, . . ..

This stopping criterion takes the scalings of A and b into account. Both execu-
tion times and accuracy of the methods in our comparison are tabulated. The
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accuracy of a computed approximation x of xtrue is measured by the relative
error

RE(x) =
‖x− xtrue‖
‖xtrue‖

.

The iterations with Algorithms 1 and 2 are terminated when two consecutive
iterates yk and yk+1 are close enough, i.e., as soon as

‖yk+1 − yk‖
‖yk‖

< s,

where s is a user-supplied constant. We set s = 10−4 in all examples. The
regularization parameter µ is determined by the discrepancy principle, i.e., µ is
chosen such that (7) holds, where δ = ‖η‖ and τ = 1.01.

Determination of a near-optimal relaxation parameter α for Algorithms 2
is straightforward. We have to compute the largest and smallest eigenvalues of
the matrix Tℓ,µ in the algorithm; see the discussion preceding (25). We turn to
Algorithm 1. This algorithm requires the estimation of the largest and smallest
eigenvalues of the matrix AtA+µIn; see (27). We briefly comment on how these
eigenvalues can be computed when the matrix A is large. Let A be scaled to
have norm about unity. Since A stems from the discretization of an ill-posed
problem, it has many singular values close to the origin. It follows that an
accurate estimate of the smallest eigenvalue of the matrix AtA + µIn is given
by µ. An estimate of the largest eigenvalue of this matrix can be determined
by computing an estimate of the largest singular value of A. This can be done
quite inexpensively with the implicitly restarted Golub–Kahan bidiagonalization
algorithm irbla described in [28]. The dominant computational work with this
algorithm consists of the evaluation of a few matrix-vector products with the
matrices A and At. The discussion and computed examples presented in [29]
indicate that the irbla algorithm typically only requires the evaluation of a
few of these matrix-vector products to determine the largest singular value of
a matrix of a linear discrete ill-posed problem (1). The computation of an
estimate of the largest singular value of A, and hence of the largest eigenvalue
of AtA+ µIn, is quite inexpensive.

In image restoration problems A is a blurring matrix. For a typical row j,
blurring matrices satisfy etjAe = 1, where e = [1, 1, . . . , 1]t. However, both etjAe
and etjA

tAe may differ from one for certain j. In particular, etjA
tAe may be

significantly larger than one for some j values. The size of max1≤j≤n |etjAtAe|
depends on the boundary conditions used; see, e.g., [30] for a discussion. We
conclude that for some image restoration problems, the largest singular value
of A is close to unity and does not have to be computed. However, certain
image restoration problems, in particular problems with anti-reflective boundary
conditions, may require that the largest singular value of the blurring matrix be
computed as described above.

All the computations in this section were carried out in MATLAB version
9.0.0.341360 (R2016a) on a laptop computer with an Intel i7-6700HQ @ 2.60
Ghz CPU and 8 GB of RAM. The computations were done with about 15
significant decimal digits.
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Figure 1: Shaw test problem: (a) desired solution xtrue (solid curve) and error-contaminated
data vector btrue (dashed curve), (b) computed solutions obtained with classical Tikhonov xµ

(dashed gray curve), projected Tikhonov x
Ω
µ (solid gray curve), Algorithm 1 (dashed black

curve), and Algorithm 2 (solid black curve).

Method RE CPU time Iterations
Tikhonov 0.073600 0.39441 –

Projected Tikhonov 0.052816 0.40583 –
Algorithm 1 0.029923 0.61289 36
Algorithm 2 0.024316 0.062824 37

Table 1: Shaw test problem: relative errors (RE) and CPU times in seconds for standard
Tikhonov (4), projected Tikhonov (9), Algorithm 1, and Algorithm 2. For the last two
algorithms also the number of iterations is displayed. The smallest error is shown in boldface.
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Shaw. We consider a modified version of the shaw example in [26]. To show the
effectiveness of our methods, we use the discretized integral operator from shaw

and the exact solution xtrue from the phillips example, also from [26]. We
choose this solution vector because it is nonnegative with many vanishing com-
ponents. The discretized operator is represented by a matrix A ∈ R

1024×1024.
Thus, xtrue ∈ R1024 represents the desired solution and the noise-free data vec-
tor is given by btrue = Axtrue. We add 5% white Gaussian noise to btrue to
obtain the noise-contaminated vector b in (1); cf. (2).

Figure 1(a) shows the vectors xtrue and b. For Algorithm 2, we use a Krylov
subspace of dimension ℓ = 30. Table 1 displays CPU times as well as the relative
errors in the computed approximations of xtrue determined by the different
methods. Algorithm 2 is seen to require fewer iterations and less CPU time
than the other methods. The standard Tikhonov method is implemented by first
computing the singular value decomposition of A. We remark that Algorithm 2
performs particularly well for discrete ill-posed problems (1) with a matrix A
whose singular values decay to zero fairly quickly, because in this situation
the dimension ℓ of the Krylov subspace can be chosen fairly small. When the
singular values decay slowly and, therefore, ℓ has to be chosen rather large,
Algorithm 1 may be competitive with Algorithm 2.

We now compare Algorithm 2 with an active set method designed for the
solution of nonnegatively constrained linear discrete ill-posed problems (10).
Our comparison is with the method described in [15]. The performances of this
active set method and the one discussed in [14] are quite similar. We therefore
only compare with the former. It is based on repeatedly reducing the large
problem (1) to a problem of small size with the aid of a few steps of Golub–
Kahan bidiagonalization of the matrix A or of a matrix AD. Here D is a
diagonal matrix with diagonal entries one or zero. The diagonal entries are zero
if the corresponding variable is in the active set. The reduction of A or AD
by Golub–Kahan bidiagonalization proceeds until an approximate solution that
satisfies the discrepancy principle has been found. If the computed approximate
solution satisfies the constraints, then we are done; otherwise those variables
that violate the constraint are projected into the feasible set and the active
set is updated. This means that the matrix D is updated. If the projected
solution satisfies the discrepancy principle, then we also are done; otherwise
a partial Golub–Kahan bidiagonalization of the new matrix AD is computed.
The computations proceed in this manner until a feasible approximate solution
of (10) that satisfies the discrepancy principle has been found. Updating the
active set only when the discrepancy principle holds gives a much faster method
than if the active set were updated as soon as a constraint is violated. However,
this updating strategy may allow “cycling”. It is discussed in [14] how cycling
can be detected and avoided. Computed examples in [14, 15] show the active
set methods to perform well when the noise level is not small. However, for
small noise levels many partial Golub-Kahan bidiagonalizations may have to be
computed. This requires the evaluation of many matrix-vector products (MvPs)
and can make the methods slow. We remark that the evaluation of these MvPs
is the dominating work for large-scale problems.
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Noise Level Method RE MvPs

0.1%
Active set method 0.018188 36

Algorithm 2 0.013495 30 (ℓ = 15)

0.05%
Active set method 0.0093832 47

Algorithm 2 0.013320 30 (ℓ = 15)

Table 2: Shaw test problem: relative errors (RE) and number of MvPs for the active set
method [14] and for Algorithm 2. Results are shown for two noise levels.

Table 2 illustrates that, differently from the active set method [15], Al-
gorithm 2 does not require more computational effort when the noise level is
reduced. We compare Algorithm 2 in terms of accuracy of the computed restora-
tion and in terms of the number of MvP evaluations required. For Algorithm 2
the number of MvPs needed depends only on the dimension of the Krylov solu-
tion subspace used. Since we use Golub–Kahan bidiagonalization, the compu-
tation of a solution subspace of dimension ℓ requires the evaluation of 2ℓ MvPs.
Table 2 displays results for two noise levels. The table shows that when the
noise level decreases the number of MvP evaluations required by the active set
method [15] increases, while it does not for Algorithm 2. In fact, it may be pos-
sible to choose a Krylov subspace of smaller dimension for Algorithm 2 for small
noise levels and this would reduce the number of MvP evaluations required.

Grain. We turn to image deblurring in two space-dimensions. We blur the true
image Grain from [27] using a non-symmetric PSF and add 10% white Gaussian
noise; see Figure 2. Anti-reflective boundary conditions are imposed; see [31] for
details. There is no fast transformation that can be applied to diagonalize the
blurring matrix A. Therefore, we use Algorithm 2 to compute a restoration. We
compare this algorithm to standard and projected Tikhonov regularization (4)
and (9), respectively, and to Algorithm 1, in which the inner linear systems of
equations are solved by the CGLS method; cf. the discussion at the beginning
of Section 4. In Algorithm 2, we apply a Krylov subspace of dimension ℓ =
100. Table 3 displays CPU times and the errors in the computed restorations
determined by these methods. We see that Algorithm 1 requires about the same
computing time as standard and projected Tikhonov regularization, and that
Algorithm 2 is much faster than Algorithm 1. Moreover, Algorithm 2 gives the
most accurate restoration. This is confirmed by visual inspection of Figure 3.

In this and the following examples, Tikhonov regularization (5) is imple-
mented by solving the least-squares problem

min
y∈Rn

∥

∥

∥

∥

[

A√
µIn

]

y −
[

b
0

]∥

∥

∥

∥

,

by the CGLS method. Here 0 ∈ Rn denotes the zero vector. The µ-value is
determined as follows. Let C denote the blurring matrix obtained by using
periodic boundary conditions. We compute µ that satisfies (22), where we
substitute the matrix Bℓ+1,ℓ in (21) by C and exploit the factorization (26).
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(a) (b) (c)

Figure 2: Grain test problem: (a) true image (238 × 238 pixels), (b) non-symmetric PSF
(17× 17 pixels), (c) blurred and noisy image with RE=0.41503.

Method RE CPU time Iterations
Tikhonov 0.33043 9.2475 –

Projected Tikhonov 0.30239 9.2726 –
Algorithm 1 0.27633 8.1002 24
Algorithm 2 0.27491 4.7601 18

Table 3: Grain test problem: relative errors (RE) and CPU times in seconds for standard
Tikhonov (4), projected Tikhonov (9), Algorithm 1, and Algorithm 2. For the last two
algorithms also the number of iterations is displayed.

Proceeding in this way yields a suitable value of the regularization parameter
µ in a computationally efficient manner. We remark that we are primarily
interested in the errors in the solutions determined by the different methods.
Therefore it is not necessary to implement the standard Tikhonov method as a
black box method.

Peppers. We now present an example with a larger image. This example illus-
trates that Algorithm 2 may require much less CPU time than Algorithm 1.
Figure 4 displays the true image, the motion PSF used for blurring, and the
blurred and noise-contaminated image. The noise is 3% white Gaussian. Since
the image is generic, we impose anti-reflective boundary conditions; see [31] for

(a) (b) (c) (d)

Figure 3: Grain restorations by (a) standard Tikhonov, (b) projected Tikhonov, (c) Algo-
rithm 1, (d) Algorithm 2.
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(a) (b) (c)

Figure 4: Peppers test problem: (a) true image (496 × 496 pixels), (b) motion PSF (21 × 21
pixels), (c) blurred and noisy image with RE=0.10793.

Method RE CPU time Iterations
Tikhonov 0.31718 39.667 –

Projected Tikhonov 0.28645 44.192 –
Algorithm 1 0.16160 1.1621× 103 55
Algorithm 2 0.095639 33.573 32

Table 4: Peppers test problem: relative errors (RE) and CPU times in seconds for standard
Tikhonov (4), projected Tikhonov (9), Algorithm 1, and Algorithm 2. For the last two
algorithms also the number of iterations is displayed.

a discussion.
Similarly as above, we compare standard Tikhonov regularization (4), the

projected version (9), and Algorithms 1 and 2. We set ℓ = 100 in the latter
algorithm. Table 4 provides the relative errors of the computed restorations
and the CPU times for the methods. Algorithm 2 can be seen to outperform all
the other methods both with respect to accuracy in the computed restoration
and computing time. In particular, while Algorithm 1 yields a restoration of
high quality, it requires too much CPU time to be attractive. Figure 5 displays
the restorations. The imposition of the nonnegativity constraint during the
computations can be seen to give a restoration of higher quality than standard
and projected Tikhonov regularizations (4) and (9).

(a) (b) (c) (d)

Figure 5: Peppers restorations by (a) standard Tikhonov, (b) projected Tikhonov, (c) Algo-
rithm 1, (d) Algorithm 2.
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Atmospheric Blur. Our last example considers the test data AtmoshpericBlur50
from [27]. Figure 6 shows the true image, the PSF, and the observed image.
Using the knowledge of the true image, we are able to determine an approxi-
mation of the noise level in the data, which turns out to be a little more than
1%. Due to the large black area near the boundary, we may impose periodic
boundary conditions on the matrix A without significantly reducing the quality
of the computed restoration. This makes A a BCCB matrix and matrix-vector
products with matrices of the form A+cIn, where c is a scalar, can be computed
in only O(n log(n)) flops with the aid of the FFT. The FFT also can be applied
to solve linear systems of equations with a matrix of the form A + cIn in only
O(n log(n)) flops. We remark that when the available contaminated image is
represented by m ×m pixels, each circulant matrix that makes up A is of size
m × m, and A has m circulants blocks along the diagonal. Thus, A ∈ R

n×n

with n = m2.
The spectral factorization (26) of A can be computed in O(n log(n)) flops.

This factorization allows the solution of (7) for µ > 0 by Newton’s method with
each iteration requiring only O(n log(n)) flops. Using (26), we obtain

AtA+ µI = F ∗(|Σ|2 + µIn)F.

The smallest eigenvalue of this matrix generally is µ or very close to µ. Let
σmax = ‖Σ‖. We will use the acceleration parameter

α =
√

(σ2
max + µ)µ, (28)

which is close to the optimal one (14).
The following algorithm is a modification of Algorithm 1 that exploits the

BCCB structure of A. It uses the matrix

Sµ = |Σ|2 + µIn.

Algorithm 3. Compute the decomposition (26) and determine a regularization
parameter µ that satisfies (22) as outlined above. Determine the relaxation
parameter (28) and an initial approximate solution x0 of (8).

b̂ = ΣFb
y0 = Fx0

ỹ0 = F |F ∗y0|
for k = 0, 1, 2, . . .until convergence

yk+1 = (αIn + Sµ)
−1

(

(αIn − Sµ) ỹk + b̂
)

ỹk+1 = F |F ∗yk+1|
end

x = F ∗ỹk+1 + |F ∗ỹk+1|

Table 5 compares the CPU time required and accuracy achieved with Algo-
rithm 3 to those for standard and projected Tikhonov regularizations (4) and
(9), respectively, and to those for Algorithm 1. Algorithm 3 imposes periodic
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Method RE CPU time Iterations
Tikhonov 0.28354 4.4644 –

Projected Tikhonov 0.26822 4.4766 –
Algorithm 1 0.22901 98.349 131
Algorithm 3 0.22757 1.4647 109

Table 5: Satellite test problem: relative errors (RE) and CPU times in seconds for standard
Tikhonov (4), projected Tikhonov (9), and Algorithm 3. For the last algorithm also the
number of iterations is displayed.

(a) (b) (c)

Figure 6: Satellite test problem from [27]: (a) true image (256× 256 pixels), (b) PSF defined
by atmospheric blur (256 × 256 pixels), (c) blurred and noisy image (256 × 256 pixels) with
RE=0.76267.

boundary conditions, while the other methods are implemented with zero Dirich-
let boundary conditions. The table shows Algorithm 3 to be the fastest and to
give the most accurate restoration. The superior quality of the restoration de-
livered by Algorithm 3 is confirmed by Figure 7, which displays the restorations.
Algorithm 3 can be seen to yield a restoration with a more homogeneous black
background than the other methods. Figure 8 displays a detail of the lower-right
corner of the restored images in a different color map.

We do not compare with Algorithm 2 in this example, because Algorithm 3
yields a more accurate restoration faster than the former. While Algorithm 2
performs well for many linear discrete ill-posed problems, Algorithm 3 gives
superior restorations when the image is such that periodic boundary conditions
can be imposed without creating significant boundary artifacts.

Algorithms analogous to Algorithm 3 can be developed for reflective and
anti-reflective boundary conditions when the PSF is quadrantally symmetric,
i.e., when the PSF is symmetric with regard to the horizontal and vertical
axes. As an example, the PSF for Gaussian blur is quadrantally symmetric.
For reflective boundary conditions the algorithm can be based on the discrete
cosine transform [32] and for anti-reflective boundary conditions on the discrete
sine transform [33, 34].
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(a) (b) (c) (d)

Figure 7: Satellite restorations by (a) Tikhonov, (b) projected Tikhonov, (c) Algorithm 1, (d)
Algorithm 3.

(a) (b) (c) (d)

Figure 8: Satellite restoration details (lower right corner) by (a) Tikhonov, (b) projected
Tikhonov, (c) Algorithm 1, (d) Algorithm 3.

5. Conclusions

This paper applies modulus-based iterative methods to nonnegative Tikhonov
regularization. The discrepancy principle is used to determine the regularization
parameter. Efficient solution methods are described. Several numerical exam-
ples in one and two space-dimensions illustrate the efficacy of the proposed
methods.
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