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Background and aims: Artificial intelligence (AI) is increasing its role in diagnosis of patients 

with suspicious coronary artery disease. The aim of this manuscript is to develop a deep 

convolutional neural network (CNN) to classify coronary computed tomography angiography 

(CCTA) in the correct Coronary Artery Disease Reporting and Data System (CAD-RADS) 

category. 

Methods: Two hundred eighty eight patients who underwent clinically indicated CCTA were 

included in this single-center retrospective study. The CCTAs were stratified by CAD-RADS 

scores by expert readers and considered as reference standard. A deep CNN was designed and 

tested on the CCTA dataset and compared to on-site reading. The deep CNN analyzed the 

diagnostic accuracy of the following three Models based on CADRADS classification:  Model A 

(CADRADS 0 vs CADRADS 1-2 vs CADRADS 3,4,5), Model 1 (CADRADS 0 vs CADRADS>0), 

Model 2 (CADRADS 0-2 vs CADRADS 3-5).  Time of analysis for both physicians and CNN were 

recorded. 

Results: Model A showed a sensitivity, specificity, negative predictive value, positive 

predictive value and accuracy of 47%, 74%, 77%, 46% and 60%, respectively. Model 1 

showed a sensitivity, specificity, negative predictive value, positive predictive value and 

accuracy of 66%, 91%, 92%, 63%, 86%, respectively. Conversely Model 2 demonstrated the 

following sensitivity, specificity, negative predictive value, positive predictive value and 

accuracy: 82%, 58%, 74%, 69%, 71%, respectively. Time of analysis was significantly lower 

using CNN as compared to on-site reading (530.5±179.1vs104.3±1.4 seconds, p:0.01) 

Conclusions: Deep CNN yielded accurate automated classification of patients with CAD-RADS.  
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Introduction 

 

Cardiac computed tomography angiography (CCTA) is an excellent non-invasive technique for 

the assessment of stable coronary artery disease (CAD) 1, 2.  

Thus application of CCTA in clinical practice is rapidly increasing especially considering  its 

potential role as a gatekeeper for invasive coronary angiography3. Several classification 

systems for reporting of CCTA have been created with a recent introduction of CAD-RADS4. 

In CAD-RADS classification the final score of CCTA is based on patient based analysis.  Each 

vessel is evaluated using the following scale: 0=absence of CAD; 1=stenosis between 1-24%;  

2= stenosis between 25-49%; 3=stenosis between 50-69%; 4=stenosis between 70-99% or 

>50% left main or three vessels >70%; 5=total occlusion; N=non diagnostic studies.  

The CAD-RADS classification affords to have a simple classification for CAD, identifying 

patients that may require additional functional testing or invasive angiography.  

Furthermore, CAD-RADS classification has a pivotal role in terms of prognosis. Indeed, as 

shown by Xie et al. patients with CAD-RADS 5 showed a 5 year event significantly higher 

compared with CADRADS 0 5.  

Despite the majority of cardiac imaging interpretation and reporting being is performed by 

readers, it is important to consider that machine learning or deep learning (DL) approaches 

may allow the evaluation of images in a short time compared to humans 6. The application of 

artificial intelligence (AI) in cardiac imaging represents an interesting novelty in terms of both 

diagnosis and prognosis 7.  

Convolutional neural networks (CNN) are the most powerful Deep Learning technique used 

for diagnostic classification and prediction, starting from medical images 8.  

Considering the impact on clinical practice of CAD-RADS classification and the relative short 

time of analysis of the AI approach, we analyzed the effect of a novel CNN technique for 

CADRADS classification in patients referred for clinically indicated CCTA. 



Methods 

Study Population 

We retrospectively analyzed the examinations of patients who underwent CCTA for clinical 

purposes from 2016 to 2018. Exclusion criteria were heart rate≥80 bpm despite intravenous 

administration of beta blockers, atrial fibrillation and BMI ≥ 35Kg/m2. The study was 

approved by the Institutional ethical committee. All patients provided written informed 

consent.  

 

CCTA Acquisition and Analysis 

Patient preparation to CCTA and CCTA protocol 

In patients with heart rate ≥ 65 bpm, without any contraindications to β-blockade therapy, 

metoprolol with a titration dose up to 25 mg was administered 9. Sublingual nitrates were 

administered 5 minutes before the CCTA acquisition 10.   

CCTA acquisition was acquired using the following two CT scanners: Discovery CT 750 HD and 

Revolution CT (GE Healthcare, Milwaukee, IL). In the CCTA protocol of Discovery CT 750 HD, 

the following CT protocols were used:  slice configuration 64×0.625 mm, with adapted tube current 

and tube voltage based on the BMI of patient 11.  

The CCTA protocol with the Revolution CT (GE Healthcare, Milwaukee, IL) was based on the 

following parameters: slice configuration 256×0.625 mm with tube current and tube voltage based 

on the BMI.  

In both CT scanner protocol 50-70 ml of contrast medium (Iomeron 400 mg/mL, Bracco, Milan, 

Italy) was administered through the antecubital vein at an infusion rate of 5 mL/sec, followed by 50 

mL of saline solution at the same infusion rate of contrast agent. In both CT scanners, CCTA was 

performed using the bolus tracking technique. 

All images for both CT scanners were reconstructed using filtered back projection and in 75% or 

40-80% of cardiac cycle based on the ECG-triggering acquisition used 12. In selected cases with 



poor image quality, the dataset was reconstructed by using intracycle motion correction as 

previously described 12, 13.  

  

Image quality analysis   

Subjective image quality was assessed by two cardiac imaging radiologists (VP and GM) with five 

and seven years of experience in cardiovascular imaging using the following four point Likert scale: 

1= non-diagnostic, 2= adequate image quality, 3= good image quality; 4= excellent image quality.  

Regarding objective image quality, the image noise was measured by manually drawing a region of 

interest (ROI) 20 mm in diameter in the aortic root, above the origin of the left main coronary artery 

(LM) and expressed as the standard deviation (SD) of vessel attenuation. Signal to noise ratio 

(SNR) for each coronary segment was calculated by dividing the coronary attenuation of proximal 

segments and image noise. Contrast to noise ratio (CNR) was obtained by dividing the difference 

between attenuation of coronary and surrounding tissue with the image noise 14.   

Coronary arteries were analyzed using the segmentation model according to the American Heart 

Association (AHA) 15. 

 

CAD-RADS score and coronary plaque evaluation 

The pool of CCTA examinations were reconstructed then analyzed in consensus by five 

different random couples between 10 radiologists and cardiologists (GP, MG, MG, AB, SD, GP, 

VP, GR, AC, DA).  The experience of cardiac imagers involved in analysis ranged from 5 to 10 

years. A CAD-RADS score was attributed for each examination. In cases of disagreement a 

cardiac imager (AIG) with ten years of experience in cardiovascular imaging adjudicated the 

final CAD-RADS score.  

Based on composition of plaque, in patients with CADRADS >0, coronary plaques were 

identified and classified as calcified, mixed and soft in all vessels 16.  



Considering that CADRADS score is based on patient analysis, the burden of coronary artery 

disease of stenosis in other vessels was evaluated and classified according to the SCCT 

guidelines 17.   

According to the CADARADS classification the following three models were created:  Model A= 

CADRADS 0 vs CADRADS 1-2 vs CADRADS 3-5. Subsequently two models were derived from 

Model A:  Model 1 =(CADRADS 0 vs CADRADS 1-5) and Model 2 =(CADRADS 0-2 vs CADRADS 

3-5). Time of analysis for each CCTA analysis of CNN and on-site reading were recorded and 

compared. 

  

 

Deep learning methods 
 

Dataset generation 

Each CCTA scan was composed of 256 slices and stored in a DICOM format. For each sample, 

we removed the first 16 slices, selected the next  (excluding the slices not representing the 

heart), placed them in an 11x11 squared image and resized each image to 512x512 pixels. 

Axial images were provided to CNN algorithm in the same cardiac phase used for the clinical 

reporting. All CCTA images did not include any annotation.   

Finally, to increase and balance the number of samples (100 in each class) and to reduce the 

overfitting, we performed the data augmentation strategy, rotating and zooming images  18. At 

the end, the dataset was composed of 6 classes, each one of 100 samples. 

 

CNN Architecture  

The 2D-CNN used in this study was designed after testing several combinations of 

hyperparameters. The keras R package in the framework of Tensorflow was used to build and 

test the CNN. The convolutional section of the network consisted of three consecutive layers 

of blocks, each one containing a sequence of three convolutional layers (32 filters 3 x 3 px) 



and a max-pooling layer. Before each max-pooling layer, a batch normalization strategy was 

implemented to reduce the overfitting of the training model 19. Each convolutional layer was 

composed of 32 filters (3 x 3 px) and the pooling windows size was 2 x 2. The number of 

neurons in the output layer corresponded to the number of classes in a specific classification 

analysis. To handle the overfitting a dropout strategy was implemented before the first 

hidden layer (dropout rate: 0.5) 19. The ReLU activation function 19 was used for each neuron 

(densely connected and convolutional ones), except for the output layer ones (activation 

function: ‘softmax’). Finally, we used the Back Propagation optimizer to minimize the 

categorical cross entropy and implemented the ‘early stopping’ strategy as a regularization 

method to prevent overfitting. The designed CNN is sketched in Figure 1. 

 

The main endpoints of the study were: 

a) Evaluation of diagnostic accuracy of CNN for differentiation between Model A, Model 1 

and Model 2. 

b) Univariate and multivariate analysis for identification of predictive factors for failure 

of CNN were analysed. 

c) Comparison of time of analysis between the CNN approach versus on-site reading. 

 

 

Statistical analysis 

To evaluate the overall classification performance a 5-fold Cross Validation was implemented 

(Figure 2). For each iteration, a training set is generated, combining four folds (80 samples 

per class); the remaining fold (20 samples per class) was used as test set. The training  set is 

used to learn the CNN parameters (Figure 3, supplemental material), while on the test set the 

standard evaluation metrics (i.e., sensitivity, specificity, negative predicted value, positive 

predicted value, and accuracy, and the area under the curve) are calculated. 



Intra- and inter-observer reliability were calculated using the kappa score by considering all 

subjects and by splitting subjects by class.   

Univariate and multivariate logistic regression analyses were used to identify independent 

factors associated with a CNN misreading of the CAD-RADS score. A p-value < 0.05 was 

considered significant. Statistical analysis was performed using SPSS 25 (SPSS Inc, Chicago, 

IL) and R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

Results 

Two hundred eighty eight examinations were evaluated (CADRADS 0: 50 exams; CADRADS 1: 

50 exams; CADRADS 2: 50 exams; CADRADS 3: 50 exams; CADRADS 4: 50 exams; CADRADS 5: 

38 exams). Two example cases of CADRADS 0 and CADRADS 5 are summarized in Figure 4.  

The baseline characteristics of the overall population were summarized in Table 1.  

The subjective image quality was good for all coronary segments showing a high inter-reader 

and intra-reader reproducibility Tables 2 and 3 (supplemental material). 

The diagnostic accuracy of the 2D-CNN approach was analyzed for Model A demonstrating a 

sensitivity, specificity, negative predictive value, positive predictive value and accuracy of 

47% (20-74%), 74% (54-94%), 77% (68-86%), 46% (31-61%) and 60% (54-66%), 

respectively.  

From Model A, two further models were derived, Model 1 and Model 2, showing a sensitivity, 

specificity, negative predictive value, positive predictive value, accuracy and area under curve 

of 66% (53-79%), 91% (54-94%), 92% (89-96%), 63% (50-75%), 86% (82-90%), 89% (84-

94%), respectively and 82% (76-88%), 58% (50-67%), 74% (66-82%), 69% (63-76%), 71% 

(66-76%), 78% (75-82%), respectively. The results concerning Model 1 and 2 are 

summarized in Table  4 and Figure 5.  

On multivariate analysis, the analysis tailored for plaque analysis showed on multivariate 

analysis, that plaque characteristics, degree of stenosis as well as subjective image quality did 

not influence the predictive value of Model A (Table 5).  

Considering that plaque imaging did not influence the diagnostic accuracy in Model A we 

focused on plaque imaging in derived Model 1 and Model 2.  



Regarding Models 1 and 2, multivariate analysis showed that presence of plaque, regardless of 

the composition, was an independent predictor of success in Model 1; conversely, in Model 2, 

the presence of stenosis>50% was a predictor of failure (Tables 6). 

After the evaluation of CCTA image quality and diagnostic accuracy of 2D CNN we analyzed 

the impact of time consumed in terms of CAD-RADS classification and we observed that time 

of analysis was significantly higher (p= 0.01) for on-site physicians reading as compared to 

the CNN approach (530.5±179.1 vs. 104.3±1.4 seconds, p:0.01). 

 

 

 

 

Discussion 

Our study is the first to describe the application of AI for CADRADS classification. In clinical 

practice, it is important to correctly identify the CADRADS category. Patients in CADRADS 0 

do not appear to derive benefit from medical therapy, while patients with CADRADS 1-2 may 

have benefit by medical treatment and patients with CADRADS 3-5 may necessitate further 

testing of ischemia or invasive coronary angiography. The main results of our study are that 

Model A did not show a good diagnostic accuracy and area under curve, therefore the 2D CNN 

approach seems to have poor diagnostic accuracy if the model includes the three classes. A 

more simplified approach of CAD-RADS classification was shown in Model 1 and Model 2.  

Model 1 was composed by two subgroups of patients that differ for clinical management 

based on CCTA results.  Contrary to Model A, Model 1 showed good diagnostic accuracy for 

detection of patients positive and negative for presence of CAD regardless of plaque 

composition and grade of stenosis.  Finally, Model 2 was composed of two subgroups that 

mainly differ on the therapeutic approach after the results of CCTA. In the subgroup of 

CADRADS 0-2, patients may derive benefit of medical therapy while the subgroup of 



CADRADS 3-5 may have benefit from further tests of ischemia or invasive coronary 

angiography 20. Compared to Model 1, Model 2 showed a lower diagnostic accuracy and AUC 

with a high degree of stenosis as a major independent predictor of misclassification. 

Nowadays the non-invasive assessment of CAD is mainly focused on evaluation of calcium 

score (CS) and CCTA.  Both CS and CCTA provide information useful for planning of treatment 

strategy and prognostic stratification; therefore, considering the pivotal role of these CT 

acquisitions a ML approach has been developed 7, 21. Artificial intelligence, similar to our 

manuscript, appears to be important for the diagnosis of CAD22, furthermore using some 

algorithms it is possible also to provide information concerning CAD in non-gated CT images 

23.    

Moving on details ,Takx et al. described the possibility to evaluate CS using non-contrast, non-

gated CT using a low dose protocol23. In particular Takx and colleagues using a supervised 

pattern recognition system  k-nearest neighbor with support vector machine classifiers for 

identification of CS demonstrated a good reliability when compared with CS calculated by 

manual delineation 23.  

One of the application of AI in CCTA was shown by Kang et colleagues 22.  The authors using a 

two-step ML approach which incorporated a support vector machine, demonstrated a 

sensitivity, specificity, accuracy and AUC of 93%; 95%, 94% and 94% in diagnosing CAD.   

This promising technique did not differentiate the entity of CAD furthermore and the authors 

did not specify the time spent for each analysis 22. Another interesting technique for the 

evaluation of CAD in CCTA using an automated algorithm was described by Dey et al. 24. The 

authors quantified the non-calcified and calcified plaque using an automated algorithm and 

discovered a good agreement when compared with human evaluation 24.  

The aforementioned manuscripts regarding the application of AI in diagnostic pathway of 

CAD differ by the algorithm of AI used. Despite in our manuscript we used the 2D CNN 



approach unlike the others articles that used different algorithms of AI we have in common 

the main purpose represented by the simplification of diagnostic pathway.  

Despite the aforementioned studies analyzing the impact of AI in cardiac imaging, none of 

them evaluate its role in CADRADS classification.   

 In this article, the main finding is represented by the ability of CNN to differentiate with high 

diagnostic accuracy patients with CADRADS 0 and CADRADS>0. 

Based on results of our manuscript, it may be possible to use a CNN algorithm in clinical 

practice and rule out the presence of CAD in a relatively short time.  Considering that the 

prevalence of normal coronaries is high in patients even with an increased pretest probability 

25, 26 it is plausible that CCTA interpretation may be accelerated by the application of CNN 

algorithms as shown in Figure 6.  

Another important finding is the possibility to correctly predict with high diagnostic accuracy 

Models 1 and 2, independently of the image quality of CCTA acquisition. Indeed both SNR and 

CNR do not appear to influence CADRADS classification using CNN. The latter finding is 

important, especially when employing low dose CCTA protocols.  

Some limitations should be mentioned in this manuscript.  

First, a small sample size was used for the study. A larger, multicenter study, involving a 

larger sample size may increase the diagnostic accuracy in all three models used in the 

manuscript.  

Second, we speculate that for Model 1, the CNN approach was able to better identify patients 

with plaque because an increase in CADRADS score is correlated with more calcified and soft 

plaque and subsequently a larger amount of data for the training set. 

Third, most of the CCTA were acquired using the latest generation CT, therefore it is 

important to consider that the application of CNN algorithms may provide different results 

with poor image quality.  



In conclusion, this new CNN approach can be helpful for identification of patients with 

CADRADS 0 in a short time of analysis using a good image quality dataset.  Further studies 

with a larger population need to be performed in order to improve the diagnostic accuracy of 

CNN. 
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Figures 

Figure 1. Graphical sketch of the designed CNN architecture.Three consecutive convolutional 

blocks, each one composed of 3 convolutional layers (light blue squares) and a max pooling 

layer (green square), are followed by a densely connected network (2 hidden layers (violet 

squares) and an output layer (yellow square)). During the CNN training, some neurons are 

dropped out (red crossed circles) and others are active (blue circles).  

 



Figure 2. Overview of the deep learning analysis. First, the whole dataset was split in 5 folds, 

each one composed of 20 samples per class. Then, a cross validation procedure was 

implemented: 4 folds were selected to train the CNN (training set) and build the model; the 

fifth fold was used to test the learned model (test set) and to assess the performance.  

 

Figure 3: Figure representing the input image provided to the 2D-CNN. 

 

Figure 4. A 53-year-old woman with family history of cardiovascular disease, palpitations 

and dyspnea. CAD RADS 0: (A) Absence of pathology in left anterior descending artery, (B) 

circumflex artery and (C) right coronary artery.  

A 67-year-old man with dyslipidemia and severe left ventricular dysfunction by 

echocardiography. CAD RADS 5: (D) Severe stenosis of the proximal left anterior descending 

artery, (E) absence of pathology of circumflex artery and (F) occlusion of mid portion of right 

coronary artery (arrow).  

 

Figure 5. Receiver operating characteristic  curve (ROC) showing the predictive accuracy of 

Convolutional Neural Networks to distinguish between CADRADs 0, CADRADS>0 (Model 1) 

and CADRADS 0-2, CADRADS 3-5 (Model 2). 

 

Figure 6. Simulation of the diagnostic algorithm in a clinical setting using CNN for CADRADS 

classification. 
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Table 1 . Baseline characteristics of the overall population 

Characteristics Values 

Number, n 288 

Age (y), mean ± SD 60.6 ± 12.4 

Male, n (%) 198 (69) 

Body mass index (kg/m²), mean ± SD 25.8 ± 4.5 

Risk factors  

Hypertension, n (%) 96 (33) 

Smoker, n (%) 46 (16) 

Hyperlipidemia, n (%) 86 (30) 

Diabetes, n (%) 21 (7) 

Family history, n (%) 96 (33) 

Clinical history  

Chest pain, n (%) 65 (23) 

Dyspnea, n (%) 15 (5) 

Palpitation, n (%) 4 (1) 

Positive stress test, n (%) 31 (10) 

Follow-up of known CAD, n (%) 35 (12) 

Valvular disease, n (%) 12 (4) 

Arrhythmias, n (%) 43 (15) 

Dilated cardiomyopathy, n (%) 6 (2) 

Intravenous β-blocker  

Number of patients, n (%) 155 (54) 

Dose (mg), mean ± SD 9.8 ±  4.7 

Heart rate during the scan  

Minimum heart rate (bpm), mean ± SD 55.4 ± 9.6 

Mean heart rate (bpm), mean ± SD 60.6 ± 10.5 

Maximum heart rate (bpm), mean ± SD 74.4 ± 31.7 

Radiation exposure  

Dose length product, mean ± SD 264.9 ± 125.5 

CAD, coronary artery disease; SD, standard deviation. 
 

 

 



Table. 2.  Comparison of Image Quality of all classes of patients by Readers 1 and 2. 

 

All classes 

Reader 1 Reader 2 Cohen's Kappa 

LM 3.2 ± 0.5 3.6 ± 0.5 0.93 

Proximal_LAD 3.6 ± 0.5 3.6 ± 0.5 0.89 

Mid_LAD 3.5 ± 0.6 3.5 ± 0.6 0.90 

Distal_LAD 3.2 ± 0.8 3.1 ± 0.8 0.90 

LAD 3.5 ± 0.6 3.5 ± 0.6 0.92 

D1 2.9 ± 0.7 2.9 ± 0.7 0.89 

Proximal_LCX 3.3 ± 0.6 3.3 ± 0.6 0.93 

Mid_LCX 3.2 ± 0.7 3.2 ± 0.6 0.92 

Distal_LCX 2.8 ± 0.8 2.8 ± 0.8 0.89 

LCX 3.1 ± 0.6 3.1 ± 0.6 0.94 

M1 2.8 ± 0.8 2.8 ± 0.8 0.93 

Proximal_RCA 3.5 ± 0.6 3.5 ± 0.6 0.95 

Mid_RCA 3.5 ± 0.6 3.5 ± 0.7 0.95 

Distal_RCA 3.4 ± 0.7 3.4 ± 0.7 0.96 

RCA 3.5 ± 0.6 3.5 ± 0.6 0.97 

PLA 3.4 ± 0.6 3.3 ± 0.6 0.93 

PDA 3.3 ± 0.7 3.3 ± 0.7 0.93 

Patient 3.4 ± 0.6 3.4 ± 0.6 0.93 

LM, left main coronary; LAD, anterior descending artery; D1, first diagonal artery; LCX, circumflex artery; 
M1, first obtuse marginal branch; RCA, right coronary artery, PLA, postero-lateral branch; PDA, posterior 
descending artery.   

 

 

 

 

 

 

 

 

 



Table. 3  Comparison of Image Quality of all classes of patients by the same Reader in two different 

lectures 

 

All classes 

First Lecture Second Lecture Cohen's Kappa 

LM 3.2 ± 0.5 3.6 ± 0.5 0.90 

Proximal_LAD 3.6 ± 0.5 3.6 ± 0.5 0.87 

Mid_LAD 3.5 ± 0.6 3.5 ± 0.6 0.85 

Distal_LAD 3.2 ± 0.8 3.1 ± 0.8 0.86 

LAD 3.5 ± 0.6 3.5 ± 0.6 0.87 

D1 2.9 ± 0.7 3.0 ± 0.7 0.86 

Proximal_LCX 3.3 ± 0.6 3.3 ± 0.6 0.95 

Mid_LCX 3.2 ± 0.7 3.1 ± 0.7 0.93 

Distal_LCX 2.8 ± 0.8 2.7 ± 0.8 0.87 

LCX 3.1 ± 0.6 3.1 ± 0.6 0.93 

M1 2.8 ± 0.8 2.8 ± 0.8 0.91 

Proximal_RCA 3.5 ± 0.6 3.5 ± 0.6 0.93 

Mid_RCA 3.5 ± 0.6 3.5 ± 0.6 0.94 

Distal_RCA 3.4 ± 0.7 3.4 ± 0.7 0.93 

RCA 3.5 ± 0.6 3.5 ± 0.6  0.94 

PLA 3.4 ± 0.6 3.3 ± 0.6 0.88 

PDA 3.3 ± 0.7 3.2 ± 0.7 0.88 

Patient 3.4 ± 0.6 3.4 ± 0.6 0.93 

LM, left main coronary; LAD, anterior descending artery; D1, first diagonal artery; LCX, circumflex artery; 
M1, first obtuse marginal branch; RCA, right coronary artery, PLA, postero-lateral branch; PDA, posterior 
descending artery.   

 

 

 

 

 

 

 

 



 

Table 4.  Diagnostic accuracy for Model 1 and Model 2 
 

 

 
Model 1 (95%CI) Model 2 (95%CI) 

Sensitivity  
 

66% (53-79%) 
 

 
82% (76-88%) 

 

Specificity 
91% (87-95%) 

 
58% (50-67%) 

 

Positive predictive value 63% (50-75%) 69% (63-76%) 

Negative predictive value 
 

92% (89-96%) 
 

 
74% (66-82%) 

 

Accuracy 
 

86% (82-90%) 
 

 
71% (66-76%) 

 

Area under curve 
 

89% (84-94%) 
 

 
78% (75-82%) 

 

True positive 
 

35 
 

125 

False positive 
 

21 
 

159 

True negative  
 

210 
 

77 

False negative  
 

18 
 

27 

Model 1, CAD-RADS 0 vs CAD-RADS 1-5; Model 2, CAD-RADS 0-2 vs CAD-RADS 3-5  

 

 

 

 

 

 

 

 



 

Table 5.  Univariate analysis for model  A 
 

  

CADRADS 0 vs CADRADS 1-2 vs CADRADS 3-5 Univariate  

 
OR (95%CI) p Value 

BMI 1.021(0.966-1.08) 0.455 

Mean HR 0.992(0.969-1.017) 0.542 

Plaques   

No plaques - - 

Fibrotic 1.136(0.450-2.867) 0.787 

Calcific 1.617(0.844-3.099) 0.147 

Stenosis > 50% 1.269(0.743-2.057) 0.333 

SNR 1.028(0.957-1.104) 0.447 

CNR 1.020(0.95-1.094) 0.588 

BMI, body mass index; HR, heart rate; SNR, signal to noise ratio; CNR, contrast to noise ratio 

 

  



Table 6.Univariate and multivariate analysis for Model 1 and 2 
 

Model 1 (CAD-RADS 0 vs CAD-RADS 1-5) 

 Univariate  Multivariate  

 
OR (95%CI) p Value OR (95%CI) p Value 

BMI 0.987(0.909-1.073) 0.762   

Mean HR 0.995(0.962-1.03) 0.775   

Plaques     

No plaque - - - - 

Fibrotic 0.125(0.027-0.581) 0.008 0.142(0.030-0.671) 0.014 

Calcific 0.216(0.103-0.451) <0.001   0.291(0.121-0.701) 0.002 

Stenosis > 50% 0.351(0.164-0.751) 0.007 0.592(0.236-1.481) 0.262 

SNR 1.066(0.968-1.175) 0.196   

CNR 1.064(0.967-1.171) 0.202   

Model 2 (CAD-RADS 0-2 vs CAD-RADS 3-5) 

 Univariate  Multivariate  

 
OR (95%CI) p Value OR (95%CI) p Value 

BMI 1.038(0.979-1.100) 0.217   

Mean HR 0.998(0.973-1.024) 0.893   

Plaque     

No plaque - - - - 

Fibrotic 2.074(0.632-6.804) 0.229 1.511(0.445-5.132) 0.508 

Calcific 4.381(1.785-10.754) 0.001 2.420(0.896-6.534) 0.081 

Stenosis > 50% 3.350(1.949-5.759) <0.001 2.476(1.349-4.543) 0.003 

SNR 0.984(0.911-1.063) 0.684   

CNR 0.980(0.909-1.058) 0.606   

BMI, body mass index; HR, heart rate; SNR, signal to noise ratio; CNR, contrast to noise ratio 

 













• Deep CNN yielded accurate automated CAD-RADS classification in patients with 

suspicious CAD. 

• CAD-RADS classification is significant faster compared to human evaluation.  

• CNN can reduce the time of CCTA reporting in the next future.  
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