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Abstract 

Background: Increasing age is a strong, independent, risk factor for atherosclerosis and 

cardiovascular disease. Key abnormalities driving cardiovascular risk in old age include 

endothelial dysfunction, increased arterial stiffness and blood pressure, and the pro-

atherosclerotic effects of chronic, low-grade, inflammation. The identification of novel 

therapies that comprehensively target these alterations might lead to a major breakthrough in 

cardiovascular risk management in the older population. Systematic reviews and meta-

analyses of observational studies have shown that methotrexate, a first-line synthetic disease-

modifying anti-rheumatic drug, significantly reduces cardiovascular morbidity and mortality 

in patients with rheumatoid arthritis, a human model of systemic inflammation, premature 

atherosclerosis, and vascular ageing.  

Methods and results: We reviewed the in vitro and in vivo studies investigating the effects of 

methotrexate on endothelial function, arterial stiffness, and blood pressure, and the potential 

mechanisms of action involved. The available evidence suggests that methotrexate might 

exert beneficial effects on vascular homeostasis and blood pressure control by targeting 

specific inflammatory pathways, adenosine metabolism, and 5' adenosine monophosphate-

activated protein kinase. Such effects might be biologically and clinically relevant not only in 

patients with rheumatoid arthritis but also in older adults at high cardiovascular risk. 

Conclusions: Methotrexate has the potential to be repurposed for cardiovascular risk 

management in old age in view of its putative pharmacological effects on inflammation, 

vascular homeostasis, and blood pressure. However, the further study and confirmation of 

these effects are essential in order to adequately design intervention studies of methotrexate in 

the older population.  

Key words: methotrexate, cardiovascular risk, ageing, atherosclerosis, endothelium, arterial 

stiffness, blood pressure, inflammation.  
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1. INTRODUCTION 

Atherosclerotic cardiovascular disease remains the leading cause of death worldwide in spite 

of significant advances in diagnosis, treatment, and prevention [1]. Two clinical 

manifestations of atherosclerotic cardiovascular disease, ischaemic heart disease and 

cerebrovascular disease, account for about 85% of all cardiovascular disease deaths [1]. 

Cardiovascular disease primarily affects the older population because of the lifelong 

accumulation of risk factors and the development of significant functional and structural 

alterations of the arterial wall that favour the development of atherosclerosis and thrombosis 

in this group [2-4]. Experimental and clinical evidence has also highlighted the important 

pathophysiological role of inflammation, driven by specific pro-atherosclerotic cytokines, in 

favouring vascular damage and atherosclerosis [4, 5]. The role of inflammation is further 

supported by the recent identification of a new cardiovascular risk paradigm, residual 

inflammatory risk. This describes a relatively large group, between 29-47% of patients with 

atherosclerotic cardiovascular disease, with persistently high inflammatory risk markers and 

cardiovascular risk despite maximal treatment with cardioprotective drugs, particularly statins 

[6]. However, available cardiovascular drugs do not specifically target pro-atherosclerotic 

inflammatory pathways. The identification of new agents with anti-inflammatory and 

vasculoprotective effects might significantly improve primary and secondary cardiovascular 

prevention, particularly in patients with residual inflammatory risk [6-10]. While a significant 

amount of research is focused on the discovery of such agents the study of human models of 

premature atherosclerosis and vascular ageing, in the context of a chronic pro-inflammatory 

state, might lead to the identification of previously unknown vasculoprotective effects of 

currently available anti-inflammatory and immunomodulating drugs. Repurposing these drugs 

for cardiovascular risk management would circumvent the need for time-consuming, highly-
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expensive drug discovery and development programs, therefore facilitating their routine use 

in clinical practice [11].  

This review discusses the vascular alterations associated with ageing, and their similarities 

with those reported in rheumatoid arthritis, an autoimmune condition characterized by chronic 

systemic inflammation and high cardiovascular risk. It also discusses the epidemiological and 

clinical studies investigating the association between the use of the first-line disease 

modifying anti-rheumatic drug (DMARD) methotrexate and cardiovascular risk, the in vitro 

and in vivo studies on the vasculoprotective effects of methotrexate and the mechanisms 

involved, and the potential repurposing of this drug for cardiovascular risk management, 

particularly in the older patient population. 

 

2. VASCULAR AGEING: PATHOPHYSIOLOGY AND CLINICAL 

IMPLICATIONS 

The vascular alterations occurring with advancing age primarily consist of endothelial 

dysfunction and an increase in arterial stiffness and blood pressure in the context of a chronic, 

low-grade, non-specific pro-inflammatory state (Figure 1).  

2.1 Endothelial dysfunction 

The endothelium, primarily through the synthesis of the key messenger nitric oxide (NO) by 

the enzyme endothelial NO synthase (eNOS), plays a key role in the modulation of arterial 

stiffness, peripheral vascular resistance, and blood pressure. This is supported by 

experimental and human studies showing that the pharmacological inhibition of eNOS causes 

a significant increase in arterial stiffness, peripheral vascular resistance, and blood pressure 

[12-14]. The endothelium also exerts atheroprotective effects by preventing leukocyte 

adhesion, vascular smooth muscle cell hypertrophy and proliferation, and platelet aggregation 
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[15-17]. There is good evidence that advancing age per se is associated with reduced 

synthesis and/or increased degradation of endothelial NO [18, 19]. One possible reason for 

the impaired synthesis of NO is the reduced availability and/or oxidation of the critical eNOS 

cofactor tetrahydrobiopterin. This leads to the synthesis of superoxide, instead of NO, by 

“uncoupled” eNOS [20]. This phenomenon has been observed in experimental models of 

ageing [21, 22]. Another factor potentially involved in the reduced synthesis of NO with 

advancing age is represented by an increased activity of arginase, an enzyme that competes 

with eNOS for the substrate L-arginine [23]. Several studies have also investigated the factors 

responsible for the increased degradation of NO associated with ageing. In particular, the 

presence of high local concentrations of reactive oxygen species (ROS), in the context of 

chronic inflammation and stimulation of the cytokine tumour necrosis factor (TNF)-, and the 

activation of the renin-angiotensin-aldosterone system, are likely to favour excessive NO 

degradation [24-26]. In addition to the dysregulation of NO metabolic pathways, an 

imbalance between other endogenous vasodilators and vasoconstrictors, favouring 

vasoconstriction, arterial stiffening, and blood pressure elevation, has also been reported with 

advancing age. In particular, increasing concentrations of the endogenous vasoconstrictors 

endothelin-1, prostaglandin H2, and thromboxane A2, have been observed in experimental and 

human ageing [27-30]. Furthermore, an impairment of the vasodilating effects of prostacyclin 

has been reported with advancing age [31].  

High ROS concentrations can also favour endothelial cell senescence, a phenomenon 

characterized by the interruption of the cell cycle and specific phenotypic changes [32]. These 

alterations cause a further increase in the synthesis and release of inflammatory cytokines, 

mediated by the activation of specific pathways such as the nuclear factor NF-B, p38 

mitogen-activated protein kinases, the DNA damage response pathway, and the transcription 

factor GATA-4 [33, 34]. Therefore, endothelial cell senescence significantly contributes to 
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the pro-inflammatory state of the arterial wall and the development of vascular damage and 

atherosclerosis [35, 36]. 

2.2 Increased arterial stiffness and blood pressure 

The strong and independent association between advancing age and increased stiffness of the 

large conduit arteries, particularly the thoracic and abdominal aorta, is well documented [37]. 

The primary structural abnormalities underlying this phenomenon are represented by a 

reduction in elastic fibres and a concomitant increase in the amount of collagen in the arterial 

wall [38]. The accumulation of cardiovascular risk factors with ageing, particularly 

hypertension, has been proposed as the primary mechanism responsible for the increase in 

arterial stiffness, through an impairment in endothelial function and NO synthesis and an 

increase in sympathetic nervous system activity [39-44]. An additional factor that likely 

contributes to the increase in arterial stiffness with ageing is represented by a systemic pro-

inflammatory state [45]. Although the exact mechanisms responsible for the inflammation-

induced increase in arterial stiffness are unclear, the detrimental effect of specific 

inflammatory pathways on endothelial NO synthesis and the concomitant dysregulation of 

other pathways, such as the mechanistic target of rapamycin, the 5' adenosine 

monophosphate-activated protein kinase (AMPK), and sirtuins, might play a role [46-50].  

An increase in large artery stiffness causes a further increase in systolic blood pressure and a 

reduction in diastolic blood pressure, with a consequent increase in pulse pressure [51]. 

Markers of increased arterial stiffness, such as the augmentation index and pulse-wave 

velocity, and higher systolic and pulse pressure values increase cardiac afterload and 

independently predict cardiovascular morbidity and mortality in middle-age and older adults 

[52-55]. At the same time, a reduction in diastolic blood pressure might critically impair 

coronary perfusion, with the consequent risk of myocardial ischaemia and adverse 

cardiovascular outcomes [56, 57].   
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3. RHEUMATOID ARTHRITIS: A HUMAN MODEL OF PREMATURE 

VASCULAR AGEING AND ATHEROSCLEROSIS 

Rheumatoid arthritis is a chronic disabling autoimmune condition that is characterized by 

chronic local and systemic inflammation, joint pain, stiffness, and fatigue. Patients with 

rheumatoid arthritis also suffer from so-called “extra-articular” manifestations that affect 

several organs and systems and further contribute to disability and poor quality of life [58]. 

The disease-modifying anti-rheumatic drugs (DMARDs), cornerstone of treatment in 

rheumatoid arthritis, suppress the immune system, reduce local and systemic inflammation, 

and maintain physical and functional independence [58].   

Rheumatoid arthritis is associated with higher mortality compared to the general population 

[59]. The excess mortality in rheumatoid arthritis is primarily due to cardiovascular death, 

with a standardized mortality ratio of 1.46 compared to the general population [60]. It is 

postulated that the state of chronic systemic inflammation in rheumatoid arthritis, and the 

activation of pro-atherosclerotic cytokines such as TNF-, interleukin 1 (IL-1), and 

interleukin-6 (IL-6), favours endothelial dysfunction, vascular damage and atherosclerosis 

(Figure 1) [61-64]. However, traditional risk factors, such as hypertension, diabetes, obesity, 

and hypercholesterolaemia, also contribute to the pathogenesis of vascular dysfunction and 

the risk of adverse cardiovascular outcomes in this group [65].  

Endothelial dysfunction is common in rheumatoid arthritis and affects both macrovascular 

and microvascular beds [66, 67]. In particular, microvascular endothelial dysfunction affects 

approximately 33% of patients even in the absence of overt cardiovascular disease [61]. This 

might account for the reduced coronary flow reserve, and consequent increased risk of 

ischaemic heart disease, reported in patients with rheumatoid arthritis and other similar 
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autoimmune conditions [68]. In addition to the potential role of inflammatory pathways and 

traditional cardiovascular risk factors, the accumulation of the potent endogenous inhibitor of 

eNOS synthase, asymmetric dimethylarginine (ADMA), might also play a role in the 

pathogenesis of endothelial dysfunction in rheumatoid arthritis [69-71]. 

The presence of endothelial dysfunction, with the consequent impairment in NO synthesis, 

leads to an increase in arterial stiffness in patients with rheumatoid arthritis [72]. Age, disease 

duration and severity, rheumatoid factor status, systolic blood pressure, leukocyte count, 

cholesterol fractions, and use of TNF- inhibitors have shown independent associations with 

arterial stiffness in this group [73-75]. This suggests, similar to endothelial dysfunction, a 

combined contribution of specific disease markers, inflammatory markers and traditional 

cardiovascular risk factors to the pathogenesis of arterial stiffening in rheumatoid arthritis. An 

increase in arterial stiffness in rheumatoid arthritis exerts detrimental effects on blood 

pressure, cardiac afterload, and clinical outcomes that are similar to those described with 

ageing [76-78]. Studies on the relationship between rheumatoid arthritis and the incidence and 

prevalence of hypertension, when compared to the general population, have provided 

conflicting results [79]. However, recent evidence suggests sub-optimal diagnosis and 

undertreatment of hypertension in this group, with consequent adverse effects on arterial 

structure and function [80-82]. 

 

4. METHOTREXATE AND CARDIOVASCULAR DISEASE 

Methotrexate is a relatively old, first-line, DMARD for the treatment of rheumatoid arthritis 

[83]. Notably, it is the only synthetic DMARD that has been shown to significantly reduce 

cardiovascular and all-cause mortality in this group [84]. Several studies have investigated the 

associations between methotrexate treatment and cardiovascular risk, endothelial function, 
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arterial stiffness, and blood pressure, in patients with and without rheumatoid arthritis or other 

autoimmune disorders. 

4.1 Methotrexate and cardiovascular risk 

Two systematic reviews and meta-analyses of observational studies in patients with 

rheumatoid arthritis and other autoimmune disorders have reported a significant reduction in 

cardiovascular events with methotrexate. The first meta-analysis of 10 studies in 66,334 

patients showed that methotrexate use was associated with a significant reduction in total 

cardiovascular events (risk ratio, RR, 0.79, 95% CI 0.73 to 0.87) [85]. Similarly, the second 

meta-analysis of eight studies in 65,736 patients reported that the use of methotrexate was 

associated with a significant reduction in total cardiovascular events (RR 0.72, 95% CI 0.57 

to 0.91) [86]. Following the publication of these meta-analyses, a population-based 

retrospective study investigated the association between methotrexate treatment and risk of 

ischaemic stroke in rheumatoid arthritis (n=7,904). The use of methotrexate was associated 

with a lower risk of ischaemic stroke during the first seven years of follow-up (adjusted 

hazard ratio, HR, 0.33, 95% CI 0.17 to 0.63). However, it was also associated with a higher 

risk of ischaemic stroke during the following three years (adjusted HR 3.36, 95% CI 1.70 to 

6.61) [87]. A more recent observational study has specifically investigated the associations 

between methotrexate use and risk of cardiovascular events in 23,994 older patients with 

rheumatoid arthritis diagnosed after the age of 65 years. The use of methotrexate both in the 

previous 12 months and during the first year of follow-up was associated with a significant 

reduction in cardiovascular risk (HR, 0.79, 95% CI 0.70 to 0.88; and HR 0.84, 95% CI 0.72 to 

0.96, respectively). However, a longer methotrexate exposure did not have a significant effect 

on cardiovascular risk (HR 0.98, 95% CI 0.95 to 1.01) [88].  

In contrast with the overall results of observational studies, methotrexate treatment failed to 

show significant cardioprotective effects in a recent multicentre randomized placebo-
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controlled trial in patients with high cardiovascular risk but without autoimmune disorders. In 

this study, 4,786 patients with a previous history of myocardial infarction or multivessel 

coronary artery disease and concomitant type 2 diabetes or metabolic syndrome were 

randomized to methotrexate treatment (target weekly dose 15-20mg) or matching placebo. 

After a median follow-up period of 2.3 years, methotrexate treatment was not associated with 

a significant reduction in a composite end-point non-fatal myocardial infarction, non-fatal 

stroke, or cardiovascular death (HR 0.96, 95% CI 0.79 to 1.16) [89]. The results of this study 

need to be interpreted with caution as both patients randomized to methotrexate and those 

randomized to placebo received oral folic acid 1mg daily for the duration of the study [89]. 

Oral folic acid treatment has been shown to enhance endothelial function and reduce blood 

pressure and arterial stiffness in human studies [90-92]. These effects might have translated 

into a beneficial effect on cardiovascular risk, as recently documented in other studies [93, 

94]. Therefore, the administration of folic acid in the placebo group might have diluted the 

potential beneficial effects of methotrexate on cardiovascular risk in the active group.    

4.2 Methotrexate, endothelial function, arterial stiffness, and blood pressure 

Animal studies have shown conflicting results on the effects of methotrexate on endothelial 

function. Some studies reported negative effects [95, 96], whereas others described a 

significant improvement in endothelial function [97, 98]. However, the doses of methotrexate 

administered in these studies, between 24 and 490mg/day, are considerably higher than the 

doses typically prescribed in patients with autoimmune disorders, between 1 and 4mg/day. In 

human studies, methotrexate, singly or combined with other DMARDs, has been shown to 

enhance endothelial function in patients with inflammatory arthritis and rheumatoid arthritis 

[99-101].  

In a study in patients with rheumatoid arthritis, methotrexate treatment did not reduce arterial 

stiffness [102]. By contrast, in a repeated cross-sectional study of patients with rheumatoid 
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arthritis, methotrexate treatment was independently associated with reduced pulse-wave 

velocity, a marker of arterial stiffness, measured over 24 hours, after adjusting for age, 

gender, body mass index, rheumatoid arthritis disease severity and use of folic acid [103].    

Observational cross-sectional and prospective studies in rheumatoid arthritis have also shown 

that methotrexate use is associated with lower systolic and diastolic blood pressure and 

reduced incidence of hypertension, when compared to other DMARDs or no treatment [103-

108]. In one of these studies, the associations between methotrexate treatment and lower 

blood pressure were also observed for 24-hr measures of peripheral and central blood pressure 

[103]. Twenty-four-hour averages of systolic and diastolic blood pressure are significantly 

superior to clinical blood pressure in terms of cardiovascular risk stratification [109]. 

Furthermore, measures of central blood pressure can better explain, when compared to 

peripheral blood pressure, the effects of different blood pressure lowering strategies on 

cardiovascular end-points [110]. In other studies, methotrexate has been shown to prevent the 

temporal increase in blood pressure mediated by arterial stiffness in rheumatoid arthritis, a 

phenomenon also reported with advancing age [111-113]. 

Therefore, the results of human studies generally support the hypothesis that methotrexate 

might exert beneficial effects on endothelial function, arterial stiffness, and blood pressure in 

patients with rheumatoid arthritis. Given the described similarities in the pathophysiology of 

arterial wall dysfunction between rheumatoid arthritis and ageing, it is plausible that the 

putative vasculoprotective effects of methotrexate might also be biologically and clinically 

relevant in the older patient population. The following sections discuss the pharmacology of 

methotrexate and the possible mechanisms responsible for the vasculoprotective effects of 

this drug.    
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5. PUTATIVE MECHANISMS OF METHOTREXATE-MEDIATED 

VASCULOPROTECTION 

The intracellular polyglutamate forms of methotrexate inhibit the enzymes dihydrofolate 

reductase, thymidylate synthase, and aminoimidazole carboxamide ribonucleotide (AICAR) 

transformylase (ATIC) [114]. In particular, ATIC inhibition, with the consequent 

accumulation of the substrate AICAR, leads to the inhibition of the enzymes adenosine 

deaminase and adenosine monophosphate deaminases, responsible for the catabolism of 

adenosine (Figure 2) [115]. Adenosine is an important extracellular signalling molecule, with 

a half-life of a few seconds, that exerts significant anti-inflammatory effects through the A2A 

and A3 receptors [116]. These effects are likely to mediate the musculoskeletal anti-

inflammatory and immunomodulatory effects of methotrexate in rheumatoid arthritis and 

other autoimmune disorders. However, the anti-inflammatory actions of adenosine might also 

exert vasculoprotective effects by preventing the increase in vascular permeability and 

endothelial cell damage induced by inflammatory stimuli, inhibiting vascular smooth muscle 

cell proliferation and suppressing atherosclerosis in experimental models [117-120]. 

Furthermore, primarily through the A2A receptors, adenosine favours the opening of the Kv 

and KATP channels in vascular smooth muscle cells, with consequent membrane 

hyperpolarization, relaxation and vasodilation, and also stimulates NO synthesis by 

endothelial cells [121-123]. Although the direct vasodilatory effects of adenosine might 

account for the reported blood pressure lowering effects of this messenger, central 

mechanisms are also involved in the hypotensive response [124-126]. The role of adenosine 

in the regulation of blood pressure and arterial stiffness is further demonstrated by human 

studies showing that the pharmacological inhibition of the adenosine receptors A1 and A2A 

causes an acute increase in both parameters [127, 128]. Adenosine also inhibits the activity of 

the sino-atrial node, with a consequent reduction in heart rate [129, 130]. This phenomenon, 
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together with the additional bradycardic effects of adenosine mediated by the central nervous 

system, might also account for a reduction in arterial stiffness given the established effect of 

increasing heart rate on arterial stiffness both in animal models and in humans [126, 131-

133].   

The accumulation of AICAR, resulting from methotrexate-induced inhibition of ATIC, 

activates AMPK (Figure 2) [134]. Both AICAR and AMPK have been shown to stimulate 

endothelial NO synthesis and reduce blood pressure in experimental models [135-139]. 

AMPK might also play an important role in the regulation of arterial stiffness. This is 

supported by studies showing that the deficiency of the ageing-suppressor gene klotho 

accelerates the increase of arterial stiffness during a high-fat diet in mice, through the 

inhibition of AMPK expression [140]. By contrast, stimulation of AMPK prevents the 

increase in arterial stiffness in klotho-deficient mice [141].  

Recent studies also suggest that methotrexate, either directly or through AICAR accumulation 

and/or AMPK activation, can significantly reduce the expression and/or the concentrations of 

the pro-atherosclerotic cytokines, TNF-, IL-1, and IL-6. These cytokines have been shown 

to play an important role in favouring endothelial dysfunction, vascular damage, and 

atherosclerosis both in rheumatoid arthritis and in models of experimental ageing [142-145]. 

Therefore, the available in vitro and in vivo evidence supports the hypothesis that 

methotrexate might exert a unique combination of vasculoprotective effects through the 

accumulation of adenosine and AICAR, stimulation of AMPK, and down-regulation of TNF-

, IL-1, and IL-6 (Figure 3). However, further experimental and human investigations are 

warranted to establish the exact role of these biomarkers in mediating the effects of 

methotrexate treatment on surrogate and clinical cardiovascular end-points in intervention 

studies. 
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6. METHOTREXATE AND VASCULAR PROTECTION IN OLD AGE: 

PRACTICAL CONSIDERATIONS 

The routine use of methotrexate for cardiovascular risk management might represent an 

attractive treatment option in the older patient population for a number of reasons. Treatment 

with methotrexate is associated with gastroenterological, haematological, renal, neurological, 

pulmonary and mucocutaneous toxicity [146, 147]. However, with appropriate dosing and 

monitoring, serious adverse events are relatively infrequent both in observational studies and 

in randomized controlled trials, between 2.1-5.5% [148-150]. Furthermore, in a study that 

specifically investigated the safety of methotrexate in 33 older patients with rheumatoid 

arthritis (mean age 78.8 years) followed for two years, treatment was discontinued in two 

patients because of abnormal liver function tests and in other two patients because of 

gastrointestinal side effects. No serious adverse events were described in this study [151]. 

These data support the overall safety and tolerability of methotrexate treatment in older 

patients.  

A potential advantage of methotrexate treatment, particularly in a patient group that is often 

exposed to the unwanted consequences of inappropriate polypharmacy and complex 

medications regimens, is the once-weekly administration. This less intensive dosing regimen 

might ensure treatment adherence, which remains a significant issue in the routine 

management of cardiovascular risk in older patients [152, 153]. Furthermore, the key role of 

polyglutamates in mediating the vasculoprotective effects of methotrexate, if demonstrated in 

longitudinal studies, might translate into a favourable pharmacokinetic profile, in terms of 

treatment efficacy and safety, given the relatively long half-life of these intracellular forms of 

the drug [154]. This would ensure a sustained effect of methotrexate on vascular homeostasis 

and blood pressure in case of occasional dose missing. Furthermore, it would minimize the 
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risk of acute post-dose orthostatic hypotension, a frequent and potentially serious side effect 

of cardiovascular and non-cardiovascular medications in the older population [155]. 

However, the hypothesis that methotrexate can be repurposed for the management of 

cardiovascular risk in older patients needs to be robustly investigated in appropriately 

designed intervention studies, using either placebo or other DMARDs as comparator, in 

patients with different degrees of vascular dysfunction, combinations of risk factors, and 

residual inflammatory cardiovascular risk. Such trials should investigate the short- and long-

term effects of methotrexate on surrogate markers of vascular damage (e.g. endothelium-

dependent vasodilation, arterial stiffness, and blood pressure) as well as “hard” clinical end-

points (e.g. non-fatal myocardial infarction and stroke, cardiovascular mortality and all-cause 

mortality). The use of DMARDs or other anti-inflammatory agents as comparator is required 

to test whether methotrexate exerts vasculoprotective effects that are either independent of 

inflammation or are mediated by methotrexate-specific inflammatory targets. Additionally, 

intervention studies should assess whether the potential vasculoprotective effects of 

methotrexate are mediated by intracellular polyglutamates and/or genetic polymorphisms of 

methotrexate transporters and target enzymes [156]. 

 

7. CONCLUSIONS 

Patients with rheumatoid arthritis exhibit premature vascular ageing and have an increased 

cardiovascular risk in the context of a chronic systemic pro-inflammatory state. The 

identification of effective vasculoprotective therapies in rheumatoid arthritis might lead to 

their additional use in the older patient population, the main group suffering from the burden 

of atherosclerotic cardiovascular disease. Observational studies in patients with rheumatoid 

arthritis have shown that the DMARD methotrexate can reduce cardiovascular morbidity and 

mortality. In vitro and in vivo studies suggest that methotrexate might exert a unique 
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combination of anti-inflammatory and vasculoprotective effects through the accumulation of 

adenosine and AICAR, stimulation of AMPK, and down-regulation of TNF-, IL-1, and IL-6. 

However, adequately designed intervention studies are warranted to determine the exact role 

of methotrexate in cardiovascular risk management in the older patient population.    
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Figure legends 

Figure 1: Mechanisms mediating the increased cardiovascular risk in rheumatoid arthritis and 

advancing age. 

Figure 2: Intracellular effects of methotrexate. ATIC, aminoimidazole carboxamide 

ribonucleotide (AICAR) transformylase; FAICAR, 5-formamidoimidazole-4-carboxamide 

ribotide; IMP, inosine monophosphate; AMP, adenosine monophosphate; AMPK, 5' 

adenosine monophosphate-activated protein kinase; 5’-NT, 5’-nucleotidase; -, inhibition; +, 

activation. 

Figure 3: Putative mechanism mediating the potential vasculoprotective effects of 

methotrexate. AICAR, aminoimidazole carboxamide ribonucleotide; AMPK, 5' adenosine 

monophosphate-activated protein kinase; TNF, tumour necrosis factor, IL, interleukin. 
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