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In this paper, we demonstrate a new approach
to control flexural elastic waves in a structured
chiral plate. The main focus is on creating one-way
interfacial wave propagation at a given frequency by
employing double resonators in a doubly periodic
flexural system. The resonators consist of two beams
attached to gyroscopic spinners, which act to couple
flexural and rotational deformations, hence inducing
chirality in the system. We show that this elastic
structure supports one-way flexural waves, localized
at an interface separating two sub-domains with
gyroscopes spinning in opposite directions, but
with otherwise identical properties. We demonstrate
that a special feature of double resonators is in
the directional control of wave propagation by
varying the value of the gyricity, while keeping the
frequency of the external time-harmonic excitation
fixed. Conversely, for the same value of gyricity, the
direction of wave propagation can be reversed by
tuning the frequency of the external excitation.

This article is part of the theme issue ‘Modelling
of dynamic phenomena and localization in structured
media (part 2)’.

1. Introduction
Bloch–Floquet waves in periodic systems are generally
dispersive and may show interesting behaviour, such
as dynamic anisotropy and localization in different
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frequency regimes. In addition, waves in lattices having defects of a semi-infinite extent (such as
cracks, for example) bring additional analytical and numerical challenges.

An elegant analytical approach to study cracks in lattices was developed by Slepyan [1],
where the model is reduced to the analysis of a functional equation (or a system of functional
equations) of the Wiener–Hopf type, whose kernel incorporates information about dispersion
properties of the Bloch–Floquet waves in the periodic system. Quasi-static and dynamic problems
for cracks in different types of media, both linear and nonlinear, were investigated in depth by
Slepyan in [1–3] (see also [4–6]). In particular, the specified direction of crack propagation brings
a natural directional preference into the problem, and waves emanated from the crack tip may
have different physical features ahead of the crack and behind the crack front.

Directional preference and dynamic anisotropy for waves in lattice systems were studied in
[7,8]. Chiral systems bring new features complementing dynamic anisotropy with the special
property of one-way wave propagation. In the present paper, we analyse directional preference
phenomena for the case of a doubly periodic system of specially designed resonators, made of
elastic beams and gyroscopic spinners, connected to a Kirchhoff elastic plate. The chiral nature
of gyroscopic resonators enables us to break the symmetry and to form ‘one-way waveforms’
along interfaces. This unusual dynamic response of the structured elastic system is connected to
the novel dispersion properties of Bloch–Floquet waves supported by the corresponding doubly
periodic chiral systems, as discussed in the main text of the paper.

The concept of gyrobeams, developed in [9–12], highlights interesting features of elongated
flexural elastic systems, which include active chirality and a special type of coupling between
transverse displacements associated with flexural deformations. We note that active chirality is
qualitatively different from geometrically chiral passive systems, also discussed in the literature
(see [13–18]).

Recent papers [19,20] have demonstrated that gyrobeams can be understood in the context
of homogenization approximations for elongated elastic solids containing multiple spinners
connected along the axis of the solid. Although the classical models of gyroscopic conservative
systems (see [21]) are commonly used in engineering practice, additional novel spectral properties
have been studied for elastic systems including gyroscopic spinners, in the context of the theory
of elastic waves in chiral metamaterials [22–25].

The present paper addresses new features in the dynamic response of gyroscopic systems with
resonators that incorporate more than one spinner. The spectral problem for a beam with several
spinners can be solved analytically in the linear approximation framework [26]. This provides
a rich range of options to control vibrations of such systems by changing the gyricities of the
spinners. The term gyricity was introduced in [19,20] to characterize the gyroscopic action of
individual spinners. If an elastic flexural plate is attached to a doubly periodic array of such
resonators, an interface can be created by changing the sign of the gyricity in a sub-domain
of the plate. Appropriate choice of the forcing frequency will lead to the generation of a one-
way waveform, as shown in figure 1. Furthermore, the direction of wave propagation can be
reversed by the appropriate tuning of the gyricity of the spinners. Changing the direction of wave
propagation is not possible in a plate containing single-spinner resonators, investigated in [27].

The new work presented here delivers results which are substantially different from elastic
periodic systems without chiral resonators (see [28,29]). In particular, the latter systems do not
break time-reversal symmetry, which is the fundamental feature to generate one-way wave
propagation.

One-way unidirectional waves immune to backscattering were firstly observed in photonic
crystals [30–34], motivated by the analogy with the edge states in topological insulators linked to
the quantum Hall effect. In elastic and mechanical systems, one-way edge and interfacial waves
have been generated in plates [35–38], elastic lattices with spinners [39–41], granular media [42]
and systems with coupled pendula [43]. We note that in most of these works, the formation of
one-way waveforms has been connected with ‘breaking the Dirac cones’ of the dispersion surfaces
via perturbation of the geometry and physical properties of the periodic system. In the present
case of a doubly periodic structure with double-spinner resonators, the mechanism of creating
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Figure 1. Displacement amplitude field in a plate with a doubly periodic array of chiral double resonators, consisting of two
beams with two gyroscopic spinners. The domain is divided into two regions with equal and opposite values of the gyricity of
the spinners. A time-harmonic force is imposed on one of the resonators, in the position indicated by the arrow. PML (Perfectly
Matched Layers) are introduced near the boundaries of the computational domain to avoid wave reflections. (Online version in
colour.)

waveforms in the ‘time-reversal’ mode does not require the presence of broken Dirac cones. The
details of the analysis are given in §4.

Localization phenomena in periodic systems have been extensively investigated in the
literature. In particular, distributed rotational inertia has been exploited to create localized
waveforms in arrays of Rayleigh beams [44–46]. Highly localized waves have been realized in
grids of axially and flexurally deformable beams by introducing the effect of pre-stress [47].
Trapping, enhanced transmission and control of flexural waves in thin elastic plates incorporating
periodic arrays of different types of resonators have been studied in [29,48–51]. In the present
work, the chiral properties of the resonators attached to the plate allow the breakage of time-
reversal symmetry of the system and, consequently, lead to the formation of one-way interfacial
waves if the domain is split into two regions with different signs of gyricity.

The structure of the paper is as follows. Section 2 includes the formal description of the model
and the special example of a spectral problem for an elastic beam connected to two gyroscopic
spinners. The eigenvalues are obtained in the closed analytical form, and their dependence on the
gyricity of the spinners is discussed in detail. In §3, we analyse Bloch–Floquet waves in a Kirchhoff
plate connected to a doubly periodic system of double-spinner resonators. Interfacial waves
possessing one-way preferential directionality are constructed and analysed in §4. Concluding
remarks and discussion are included in §5.

2. A plate incorporating a chiral flexural double resonator
We study flexural vibrations in a Kirchhoff plate connected to a chiral flexural resonator. As shown
in figure 2, the middle plane of the plate lies in the xy-plane and the axis of the resonator is parallel
to the z-axis. The resonator consists of two Euler–Bernoulli beams, connected to two gyroscopic
spinners at the points B and C. Accordingly, such a resonator will be referred to as a ‘double
resonator’ in the rest of the paper, to distinguish it from the ‘single resonator’ investigated in
[27], represented by a single beam and a gyroscopic spinner at the tip of the beam. As in [20,26],
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Figure 2. Model of a plate including a chiral flexural double resonator represented by two beams connected to two gyroscopic
spinners.

continuity of displacements and flexural rotations is prescribed at the junctions between the
beams and the spinners (points B and C in figure 2); in addition, the spinning motions of the
gyroscopic spinners are not transmitted to the beams, using the type of connection described
in [20]. We also assume that at the junction A, the beam axis always remains orthogonal to
the plate.

The equation of motion of the Kirchhoff plate in the time-harmonic regime is given by

�2Wp − β4
pWp = 0, (2.1)

where �2 is the biharmonic operator, Wp = Wp(x, y) is the amplitude of the plate’s transverse
displacement in the z-direction, βp = (ρphω2/D)1/4 is the frequency-like parameter for the plate,
ω is the angular frequency, ρp is the mass density of the plate, h is the thickness and D =
Eph3/[12(1 − ν2

p)] is the flexural stiffness of the plate, Ep and νp being the Young’s modulus and
Poisson’s ratio of the plate, respectively.

The governing equations of the Euler–Bernoulli beams in the time-harmonic regime are
expressed by

(U(j)
b )′′′′ − β4

b U(j)
b = 0, (V(j)

b )′′′′ − β4
b V(j)

b = 0 and Eb(W(j)
b )′′ + ρbω

2W(j)
b = 0, (2.2)

with j = 1, 2. In (2.2), the derivatives are taken with respect to z and U(j)
b = U(j)

b (z), V(j)
b = V(j)

b (z)

and W(j)
b = W(j)

b (z) (j = 1, 2) are the amplitudes of the transverse and longitudinal displacements
of the beams. Further, βb = (ρbAbω

2/(EbJb))1/4 is the frequency-like parameter for the beams,
Eb and ρb are the Young’s modulus and mass density of the beams, and Ab and Jb are the
beams’ cross-sectional area and second moment of inertia, respectively. Here, we assume that
the two beams have the same geometrical and material properties. The lengths l of the beams are
fixed.

The junction conditions defining the connection between the plate and the beam were derived
in [27] and employ the notion of ‘logarithmic rotational spring’. The derivation of these junction
conditions is presented in appendix A. After imposing continuity of displacements and rotations
between the beam and the plate, the beam can be studied on its own, substituting the junction
conditions at the connection between the beam and the plate with boundary conditions for the
beam. For a circular plate of radius R, clamped at its boundary and connected at its centre



5

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A378:20190350

................................................................

to a beam with circular cross-section of radius a = εR, the boundary conditions at point A are
given by

Y(1)
b (0) = 0, (2.3)

EbJb(Y(1)
b )′′(0) = − 4πD(1 + ε2)

1 − ε2 + (1 + ε2) log(ε)
(Y(1)

b )′(0), (2.4)

EbAb(W(1)
b )′(0) = 16πD(1 − ε2)

R2[(1 − ε2)2 − 4ε2 log2(ε)]
W(1)

b (0), (2.5)

where

Y(j)
b (z) =

⎛
⎝U(j)

b (z)

V(j)
b (z)

⎞
⎠ (j = 1, 2). (2.6)

In (2.3), we have taken into account that in a Kirchhoff plate, the in-plane displacement
components are assumed to be zero. When ε = a/R � 1, the conditions (2.4) and (2.5) reduce to

EbJb(Y(1)
b )′′(0) = − 4πD

log(ε)
(Y(1)

b )′(0) (2.7)

and

EbAb(W(1)
b )′(0) = 16πD

R2 W(1)
b (0), (2.8)

respectively. Since the effect of the boundary becomes negligible when ε→ 0, the conditions (2.7)
and (2.8) can also be used when the beam is attached to any point of the plate and when the plate
has a non-circular shape and other boundary conditions, provided that R is understood as an
‘equivalent’ radius. In particular, the junction conditions (2.7) and (2.8) can be employed for the
elementary cell with quasi-periodicity boundary conditions, analysed in §3.

Each gyroscopic spinner is characterized by mass m, moment of inertia I1 about its axis of
revolution and moments of inertia I0 about the two axes perpendicular to the axis of revolution
and passing through the base of the spinner. We assume that the lengths of the gyroscopic
spinners are negligible in comparison with the lengths l of the beams. We indicate by Ω (1) and
Ω (2) the gyricities of the two spinners, which are generally different. As discussed in [19,20], the
gyricity Ω of a spinner is given by

Ω = φ̇ + ψ̇ = Const, (2.9)

where φ̇ and ψ̇ are the precession and spin rates, respectively. According to (2.9), the gyricity
remains constant throughout the motion.

At the junction point B, we prescribe continuity of displacements and flexural rotations:

Y(1)
b (l) = Y(2)

b (l), W(1)
b (l) = W(2)

b (l) and (Y(1)
b )′(l) = (Y(2)

b )′(l). (2.10)

According to the formulation developed in [19,20], the effect of the gyroscopic spinners is replaced
by the following effective junction conditions, representing the balance of bending moments,
shear forces and axial forces:

EbJb(Y(1)
b )′′(l) = EbJb(Y(2)

b )′′(l) + C(1)(Y(1)
b )′(l),

EbJb(Y(1)
b )′′′(l) = EbJb(Y(2)

b )′′′(l) − mω2Y(1)
b (l),

and EbAb(W(1)
b )′(l) = EbAb(W(2)

b )′(l) + mω2W(1)
b (l),

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.11)

where

C(j) =
(

I0ω
2 −iωI1Ω

(j)

iωI1Ω
(j) I0ω

2

)
(j = 1, 2). (2.12)
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At point C, we impose the following effective boundary conditions:

EbJb(Y(2)
b )′′(2l) = C(2)(Y(2)

b )′(2l),

EbJb(Y(2)
b )′′′(2l) = −mω2Y(2)

b (2l),

and EbAb(W(2)
b )′(2l) = mω2W(2)

b (2l).

⎫⎪⎪⎪⎬
⎪⎪⎪⎭

(2.13)

We remark that the matrix C(j) (j = 1, 2) couples the equations of angular momentum balance
when Ω (j) �= 0.

(a) An auxiliary spectral problem for the double resonator
It is important to note that the boundary conditions (2.4) and (2.5) include ε and log(ε). This
reflects on the singular perturbation associated with the junction of the one-dimensional beam
and the two-dimensional flexural plate. A simplified approach without the singular perturbation
would lead to the boundary conditions corresponding to a fixed hinge. This approach is still
useful for predicting one-way wave propagation discussed in §4 and it will be considered in this
section.

The plate provides translational and rotational stiffness to the double resonator, thus behaving
as a flexural foundation. In the limit case when ε→ 0 in (2.4) or in (2.7) and Jb is constant,
the bending moments at the junction between the plate and the double resonator tend to zero.
Accordingly, the conditions (2.4) and (2.7) take the form

(Y(1)
b )′′(0) = 0. (2.14)

In this situation, the eigenfrequencies and eigenfunctions of the double resonator are determined
by solving the differential equations (2.2) with the boundary conditions (2.3), (2.14) and (2.5) (or
(2.8)) at A, the junction conditions (2.10) and (2.11) at B, and the boundary conditions (2.13) at C.

We note that the amplitudes of the transverse displacements Ub and Vb and of the longitudinal
displacement Wb are decoupled. In the following, we focus attention on the flexural vibrations of
the double resonator, associated with Ub and Vb. In order to obtain a closed-form solution for
the eigenfrequencies, we assume that the mass of the beams is negligible in comparison with the
mass of the gyroscopic spinners. Consequently, the transverse displacement amplitudes Ub and
Vb are cubic functions in z (see (2.2) when ρb = 0).

When Ω (1) =Ω (2) =Ω , the double resonator has 14 non-zero eigenfrequencies, 7 of which are
positive while the other 7 are negative and with the same absolute values. The two remaining
eigenfrequencies are zero. The relations between the gyricity Ω and the eigenfrequency ω can be
written explicitly as

Ω1,2(ω) = {72(EbJb)3 − 36(EbJb)2L(2I0 + 5mL2)ω2 − 2I0m2L7ω6

+ EbJb[mL4(54I0 + 11mL2)ω4 ± (5184(EbJb)4

+ 11088(EbJb)2m2L6ω4 − 648EbJbm3L9ω6 + 25m4L12ω8)1/2]}/
{2I1L[36(EbJb)2 − 27EbJbmL3ω2 + m2L6ω4]ω},

and Ω3,4(ω) = {−72(EbJb)3 + 36(EbJb)2L(2I0 + 5mL2)ω2 + 2I0m2L7ω6

− EbJb[mL4(54I0 + 11mL2)ω4 ± (5184(EbJb)4

+ 11088(EbJb)2m2L6ω4 − 648EbJbm3L9ω6 + 25m4L12ω8)1/2]}/
{2I1L[36(EbJb)2 − 27EbJbmL3ω2 + m2L6ω4]ω}.

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.15)

The functions Ωk(ω) (k = 1, . . . , 4) are plotted in figure 3b. For the choice of parameters detailed
in the caption of figure 3, the curves intersect at four points on the horizontal axis Ω = 0, which
represent the double eigenfrequencies for the case when the spinners neither spin nor precess. The
curves also intersect when Ω �= 0; one of these common points is shown in the inset of figure 3b.
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Figure 3. (a) Double resonator, hinged at z = 0. (b) GyricityΩ versus eigenfrequencyω for the double resonator in (a), where
the two beams are assumed to be massless (ρb = 0). The eigenfrequencies are associated with flexural vibrations. The inset
shows amagnified view of one of the intersections, including the points where the eigenfunctions are evaluated. (c) GyricityΩ
versus eigenfrequencyω in the casewhen the beamshave inertia (ρb = 2700 kg m−3). In the calculations,we have considered
aluminium beams (Eb = 70 GPa) of length l = 1 m and circular cross-section of radius a= 0.02 m, and gyroscopic spinners of
massm= 5 kg and moments of inertia I0 = 4 kg m2 and I1 = 2 kg m2.

When Ω �= 0, the eigenfunctions of the double resonator show coupling between flexural and
rotational motions. The direction of rotation depends on the curve where the eigenfrequency
is computed. As an example, we study the dynamic behaviour of the resonator in the
neighbourhood of the intersection displayed in the inset of figure 3b. The points P to S have
the following values of eigenfrequency and gyricity: ω= 22 rad s−1 and Ω = 233.156 rad s−1 at P;
ω= 22 rad s−1 and Ω = 307.844 rad s−1 at Q; ω= 26 rad s−1 and Ω = 232.958 rad s−1 at R; finally,
ω= 26 rad s−1 and Ω = 307.685 rad s−1 at S. The corresponding eigenfunctions are illustrated
in electronic supplementary material, videos S1–S4. It can be seen that at the eigenfrequencies
P and S, the resonator rotates in the counter-clockwise direction in the xy-plane, while at the
eigenfrequencies Q and R, it rotates in the clockwise direction.

Figure 3b shows that the same eigenfrequency can be obtained with two different values of
gyricity, and the corresponding modes of vibration are characterized by opposite directions of
rotation. This result will be exploited in §4 to change the direction of one-way wave propagation,
while keeping the frequency of the time-harmonic excitation constant.

Figure 3c illustrates how gyricity varies with angular frequency when the beams possess
inertia. In particular, it is assumed that their density is ρb = 2700 kg m−3. Figure 3c was obtained
with a finite-element model built in Comsol Multiphysics (v. 5.3). The main effect of adding
distributed inertia to the beams is to move the curves to lower values of ω. However, this effect is
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not significant in the range of frequencies displayed in figure 3c, for the choice of parameters
considered here. Accordingly, the simplified model discussed in this section gives important
insight into the dynamic behaviour of the double resonator at low frequencies, even when the
beams have distributed mass.

3. Doubly periodic array of double resonators attached to a plate
In this section, we study the propagation of Bloch–Floquet flexural waves in an infinite plate
connected to a doubly periodic array of double resonators, described in §2. The double resonators
are arranged in a square pattern, where the side length of the elementary cell is denoted by L
(figure 4). The position of each resonator is defined by the vector rnm = (nL, mL), where n, m ∈ Z.

In the elementary cell x = (x, y) ∈ (−L/2, L/2) × (−L/2, L/2), the governing equation for the
plate’s displacement amplitude is given by

D�2Wp − ρphω2Wp − Nz(0,ω)δ(x) + Mx(0,ω)
∂

∂y
δ(x) − My(0,ω)

∂

∂x
δ(x) = 0, (3.1)

where Nz(z,ω), Mx(z,ω) and My(z,ω) represent the axial force and bending moments transmitted
by the beam, and δ(x) is the Dirac delta function. Bloch–Floquet quasi-periodicity conditions relate
the displacements and rotations at the junctions between the plate and the double resonators:

Wp|x=nL,y=mL = Wp|x=0,y=0 eik·rnm ,

and ∇Wp|x=nL,y=mL = ∇Wp|x=0,y=0 eik·rnm ,

⎫⎬
⎭ (3.2)

where k = (kx, ky)T is the wavevector. Non-trivial solutions of (3.1) and (3.2) lead to the dispersion
relation for the periodic system, which shows how the angular frequency ω depends on the
wavevector k.

The analytical approach formulated above has been described in detail in [27]. It has also been
demonstrated in [27] that the boundary conditions (2.4) and (2.5) produce equivalent results to
the numerical computations performed in Comsol Multiphysics, for the case of massless plate and
beams and of a single spinner per beam.

Here, the dispersion diagrams are determined numerically with a bespoke finite-element
model developed in Comsol Multiphysics. The governing equation of the plate is given by (2.1)
and the rod is modelled as an Euler–Bernoulli beam. In the finite-element model the singular
perturbation based on the small parameter ε is not used, and the connection between the
two-dimensional plate and the one-dimensional beam incorporates continuity of displacements
and rotations. The gyroscopic spinners are modelled implementing the effective junction and
boundary conditions (2.10)–(2.13). At the boundaries of the elementary cell, we apply Bloch–
Floquet conditions:

Wp|x=L/2 = Wp|x=−L/2 eikxL,
∂Wp

∂y

∣∣∣∣
x=L/2

= ∂Wp

∂y

∣∣∣∣
x=−L/2

eikxL,

Mxx|x=L/2 = Mxx|x=−L/2 eikxL, Mxy|x=L/2 = Mxy|x=−L/2 eikxL,

Vx|x=L/2 = Vx|x=−L/2 eikxL,

Wp|y=L/2 = Wp|y=−L/2 eikyL,
∂Wp

∂x

∣∣∣∣
y=L/2

= ∂Wp

∂x

∣∣∣∣
y=−L/2

eikyL,

Myy|y=L/2 = Myy|y=−L/2eikyL, Myx|y=L/2 = Myx|y=−L/2 eikyL,

and Vy|y=L/2 = Vy|y=−L/2 eikyL,

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

(3.3)
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Figure 4. Infinite plate with double resonators arranged in a square array. The elementary cell is highlighted in grey.

where Mxx = −D(Wp,xx +νWp,yy ), Myy = −D(Wp,yy +νWp,xx ), Mxy = Myx = −D(1 − ν)Wp,xy are
the moments and Vx = Mxx,x +Mxy,y, Vy = Myy,y +Myx,x are the shear forces.

In the numerical computations, we consider an aluminium plate with Young’s modulus
Ep = 70 GPa, Poisson’s ratio νp = 0.3 and density ρp = 2700 kg m−3. The side length of the square
elementary cell is L = 2 m and the thickness of the plate is h = 0.01 m. The beams, which are also
made of aluminium, have length l = 1 m and a circular cross-section of radius a = 0.02 m. The
gyroscopic spinners have the same gyricityΩ , mass m = 5 kg and moments of inertia I0 = 4 kg m2

and I1 = 2 kg m2.
Figure 5 shows the dispersion diagrams for the periodic system when (a) Ω = 0, (b) close to

Ω = 200 rad s−1 and (c) close to Ω = 268.8 rad s−1. The dispersion surfaces are presented on the
left, while the band diagrams calculated along the path Γ X M YΓ in the reciprocal space (shown
in the insets) are plotted on the right. The band diagrams are symmetric with respect to Γ because
the elementary cell is square, even though the structure is chiral. We also note that the number of
dispersion surfaces is infinite since the system possesses distributed inertia.

When Ω = 0, namely when the spinners neither spin nor precess, no stop-bands are observed
at low frequencies (figure 5a). Conversely, when Ω �= 0 narrow stop-bands are created in the
low-frequency regime, as shown in figure 5b,c. We point out that the value Ω = 268.8 rad s−1,
used in figure 5c, has been chosen so that the lower limit of the second stop-band of the
corresponding dispersion diagram matches that of the dispersion diagram in figure 5b, obtained
for Ω = 200 rad s−1 (see also figure 6). Electronic supplementary material, video S5 presents a
comparison of the slowness contours for the three values of Ω considered in figure 5 as the
angular frequency ω is varied.

When Ω �= 0, the flexural vibrations in the plate are coupled with the rotational motion
of the double resonators around the z-axis. Electronic supplementary material, videos S6 and
S7 show the eigenfunctions of the elementary cell at the point M of the reciprocal space
(where k = (π/L,π/L)T) and for Ω = 200 rad s−1, at the frequencies indicated by ‘a’ and ‘b’,
respectively, in figure 5b. These frequencies correspond to the limits of the pass-bands. In
electronic supplementary material, video S6, the rotation of the double resonator about the z-axis
is counter-clockwise, while in electronic supplementary material, video S7, it is clockwise. This
observation is of fundamental importance for the generation of one-way waves, as described in
§4. We also point out that the eigenfunctions in electronic supplementary material, videos S6 and
S7 are similar, respectively, to those shown in electronic supplementary material, videos S1 and
S2, which were determined for a double resonator hinged at the bottom end and made of massless
beams.

Electronic supplementary material, videos S8 and S9 show the eigenfunctions of the
periodic cell at the frequencies denoted by ‘c’ and ‘d’ in figure 5c, corresponding to Ω =
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Figure 5. Dispersion surfaces (left) and band diagrams (right) when the gyricity of the spinners is (a) Ω = 0, (b) Ω =
200 rad s−1 and (c)Ω = 268.8 rad s−1. The grey regions in the band diagrams represent the stop-bands of the system.

268.8 rad s−1. These videos highlight that the rotation of the double resonator at the lower (higher)
frequency is clockwise (counter-clockwise), in contrast to that observed for Ω = 200 rad s−1. The
eigenfunctions in electronic supplementary material, videos S8 and S9 have shapes similar to
those in electronic supplementary material, videos S3 and S4, respectively.

Figure 6 shows the eigenfrequencies of the periodic system at point M (where k = (π/L,π/L)T),
calculated for different values of Ω . The direction of rotation of the double resonator remains
constant as we move along a single curve. Similar features have been observed with reference to
figure 3. The horizontal dashed line indicates the frequency defining the lower limit of the second
stop-band for Ω = 200 rad s−1, which coincides with that corresponding to Ω = 268.8 rad s−1.
However, these frequencies lie on two different lines, that is why the directions of rotation
in electronic supplementary material, videos S6 and S8 are opposed though the frequency is
identical.
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The dispersion analysis performed in this section will be useful in predicting the frequencies
of external harmonic excitations at which one-way wave propagation will occur, as discussed in
the following section.

4. One-way interfacial waves
Gyricity introduces preferential directionality into the system. In the periodic structure studied
in §3, the eigenfunctions calculated at the lower and upper limits of a stop-band generally show
a different direction of rotation of the double resonators (see, for instance, the eigenfunctions
calculated at the points ‘a’ and ‘b’ in figure 5b and illustrated in electronic supplementary material,
videos S6 and S7). Accordingly, gyricity can be exploited to force waves to propagate in one
direction, determined by the direction of rotation of the double resonators. When the direction
of rotation is changed (refer, for example, to the vibration modes associated with points ‘c’ and
‘d’ in figure 5c and presented in electronic supplementary material, videos S8 and S9), we expect
waves to travel in the opposite direction.

In this section, we consider an infinite structure made of square cells, characterized by the
same geometrical and material parameters taken for the periodic cell analysed in §3. In the
numerical simulations, the computational domain consist of a plate connected to a 50 × 50 array
of chiral double resonators. A time-harmonic force of amplitude 1 N and parallel to the xy-plane is
applied to one resonator, in particular, to the upper gyroscopic spinner. We note that the direction
of application of the force is not important. This force generates bending moments, which are
transmitted to the plate. Due to the gyroscopic effect, the force produces two bending moments,
in both the perpendicular and parallel directions with respect to the direction of the force. PML
(Perfectly Matched Layers) are inserted at the boundaries of the structure. They are designed as
plate elements with damping, whose parameters are tuned in order to minimize reflections of
waves from the boundaries (as in [27]).

We start by studying the system shown in figure 7a. The domain is divided into two regions,
characterized by equal and opposite values of gyricity, as indicated by the circular arrows. In this
case, the interface between the two regions is horizontal and straight (see the dot-dashed line in
the figure). The force is applied to the upper gyroscopic spinner of the double resonator in the cell
highlighted in grey, just below the interface. PML are set at the boundaries of the computational
domain.

Using a finite-element model built in Comsol Multiphysics, we have determined the response
of the chiral structure to the time-harmonic force. In figure 7b, we show the displacement
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Figure 7. (a) Schematic representation of a plate with a 50 × 50 array of double resonators; displacement amplitude fields
in the plate when gyricity is (b)Ω = 200 rad s−1 and (c)Ω = 268.8 rad s−1, produced by a time-harmonic force with two
different angular frequencies (ω= 26.67 rad s−1 andω= 30.85 rad s−1). (Online version in colour.)

amplitude Wp in the plate when the gyricity is Ω = 200 rad s−1 and when the angular frequency
of the time-harmonic force is ω= 26.67 rad s−1 (top part) and ω= 30.85 rad s−1 (bottom part). The
frequency ω= 26.67 rad s−1 falls within the second stop-band of the dispersion diagram for the
corresponding periodic system (figure 5b), above point ‘a’. The frequency ω= 30.85 rad s−1 is
instead located inside the third stop-band, above point ‘b’. It is apparent that, in both cases, a
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Figure 8. (a) Same system as in figure 7a, but with a zigzag interface; displacement amplitude fields due to a time-harmonic
force of angular frequencyω= 26.67 rad s−1, when the gyricity is (b)Ω = 200 rad s−1 and (c)Ω = 268.8 rad s−1. (Online
version in colour.)

one-way interfacial wave is produced by the excitation. In figure 1, the gyricity was the same
(Ω = 200 rad s−1) and the angular frequency of the external excitation was ω= 5.03 rad s−1; this
frequency lies in the first stop-band of the dispersion diagram of the corresponding periodic
system. Figures 1 and 7b demonstrate that the direction of wave propagation can be changed
by varying the frequency of the external force, while keeping the gyricity the same.

Figure 7c presents the contour diagram of the plate’s displacement amplitude Wp for the
same frequencies ω and for a different value of gyricity, namelyΩ = 268.8 rad s−1. The dispersion
diagram for the corresponding periodic system is shown in figure 5c. The frequency ω=
26.67 rad s−1 lies in the second stop-band above point ‘c’, while ω= 30.85 rad s−1 falls within
the third stop-band above point ‘d’. We note that the frequencies ω= 26.67 rad s−1 and ω=
30.85 rad s−1 are located in the second and third stop-bands of both dispersion diagrams in
figures 5b,c. This is the reason that one-way interfacial waves are generated for both values of Ω .
However, the direction of propagation changes with the gyricity, because the direction of rotation
of the double resonators is different for Ω = 200 rad s−1 and Ω = 268.8 rad s−1, as discussed in §3
(see also figure 6). Figure 5b,c demonstrates that the direction of one-way wave propagation can
be reversed if the gyricity is changed while the frequency of the external force is kept constant.
This may be very important for practical applications.

For a similar structure, an interface has been introduced containing corners as shown in
figure 8a. Figure 8b,c presents the fields of transverse displacement amplitude in the plate
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when the angular frequency of the external excitation is ω= 26.67 rad s−1 and the gyricity of
the spinners is either Ω = 200 rad s−1 (figure 8b) or Ω = 268.8 rad s−1 (figure 8c). The directions
of wave propagation for the two values of gyricity are identical to those shown in figure 7b,c,
respectively. When ω= 30.85 rad s−1, the direction of propagation is the opposite to that when ω=
26.67 rad s−1; the results are not given here for brevity. The simulations of figure 8b,c demonstrate
the robustness of interfacial waves. It is also demonstrated how efficiently interfacial waves may
be guided around corners with minimal backscattering.

5. Conclusion
In this paper, we have shown that a plate with a doubly periodic array of gyroscopic resonators
offers the possibility of creating one-way interfacial waveforms. The dynamic response to
an external force can be predicted from the dispersion analysis of the corresponding infinite
periodic system, in particular, from the determination of the stop-bands and the analysis of the
eigenfunctions at the edges of the pass-bands.

The simulations presented in §4 demonstrate the versatility of the proposed flexural system,
where one-way waves can be generated for any frequency of the external excitation by tuning the
gyricity and where the direction of propagation can be chosen ad libitum, depending on the needs.

The mechanism of creating one-way waveforms does not require breaking Dirac cones. It has
also been demonstrated that there is minimal backscattering from the corners along the interfaces.

Although the analysis has been presented for resonators containing two spinners of identical
gyricities, the work allows for a significant extension to the case of multiple spinners of different
gyricities.
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Appendix A. Conditions at the junction between the plate and the beam
We consider a circular Kirchhoff plate of radius R, clamped at the boundary and containing a
circular rigid inclusion of radius a, as shown in figure 9. We follow the procedure described in
[27,52] to derive the relationships between bending moments and rotations and between shear
force and transverse displacement at the connection between the plate and the beam, where the
latter is modelled by the rigid inclusion.

The conditions at the clamped boundary of the plate are given by

Wp|r=R = 0 and
∂Wp

∂r

∣∣∣∣
r=R

= 0. (A 1)

We assume that the rigid inclusion is subjected to a time-harmonic displacement of amplitude
W0 in the z-direction and a time-harmonic rotation of amplitude Ψ around the y-axis. Hence, the
conditions at the boundary of the inclusion are expressed by

Wp|r=a = W0 − Ψ a cos(θ ) and
∂Wp

∂r

∣∣∣∣
r=a

= −Ψ cos(θ ). (A 2)
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Figure 9. Circular plate clamped at the boundary and including a circular rigid inclusion.

For the sake of simplicity, we assume zero rotation around the x-axis. Of course, the relationship
between bending moment and rotation around the x-axis is similar to that derived in the following
for the y-axis.

The displacement in the plate, satisfying the governing equation (2.1), has the form

Wp(r, θ ) = A0J0(βpr) + B0Y0(βpr) + C0I0(βpr) + D0K0(βpr)

+ [A1J1(βpr) + B1Y1(βpr) + C1I1(βpr) + D1K1(βpr)] cos(θ ), (A 3)

where Jn(βpr) and Yn(βpr) (n = 0, 1) are the Bessel functions of the first and second kind,
respectively, while In(βpr) and Kn(βpr) (n = 0, 1) are the modified Bessel functions of the first
and second kind, respectively. The coefficients A0, . . . , D0 and A1, . . . , D1 are determined from
the boundary conditions (A 1) and (A 2).

The shear force Vz and the bending moments Mx and My are given by [52]

Vz =
∫ 2π

0
Vr|r=aa dθ . (A 4)

Mx =
∫ 2π

0
(−Mr + Vra)|r=a sin(θ )a dθ , (A 5)

My =
∫ 2π

0
(Mr − Vra)|r=a cos(θ )a dθ , (A 6)

where

Vr = −D

[
∂

∂r
(∇2Wp) + (1 − νp)

1
r
∂2

∂r∂θ

(
1
r
∂Wp

∂θ

)]
(A 7)

and

Mr = −D

[
νp∇2Wp + (1 − νp)

∂2Wp

∂r2

]
. (A 8)

We note that in this case Mx = 0.
The static limits of Vz and My are given by

Vstatic
z = lim

βp→0
Vz = 16πD(a2 − R2)

(a2 − R2)2 − 4a2R2 log2(a/R)
W0 (A 9)

and

Mstatic
y = lim

βp→0
My = 4πD(1 + a2/R2)

1 − a2/R2 + (1 + a2/R2) log(a/R)
Ψ , (A 10)

respectively. Calling ε = a/R, we finally derive the conditions (2.4) and (2.5), with the signs chosen
in accordance with the adopted convention for the bending moments and axial force in the beam.
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