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Sliding mode based robustification of consensus and
distributed optimization control protocols
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Abstract—This paper proposes a design approach, based on
the integral sliding mode control paradigm, devoted to give
robustness to multi-agent systems executing arbitrary distributed
optimization and consensus protocols which do not take this
feature into account. Robustness is understood as the capability
of rejecting the effect of exogenous disturbances, parameter un-
certainties, and uncertain couplings between the agents dynamics,
by achieving the same emerging behaviour as that corresponding
to a reference MAS designed to achieve a given coordination
objective in the nominal case. The proposed approach yields a
distributed state feedback which can seamlessly be integrated into
existing distributed optimization and cooperative control proto-
cols which are usually prone to disturbances and uncertainties
corrupting the MAS dynamics. Nonsmooth Lyapunov analysis
supports the claimed properties. Numerical simulations, showing
how popular distributed optimization and consensus protocols
can effectively be robustified are discussed.

Index Terms—Multi-agent systems, Sliding mode control, Dis-
tributed control, Robust control, Consensus, Nonsmooth analysis.

I. INTRODUCTION

D istributed control of Multi-Agent Systems (MASs) finds
application in many relevant domains such as smart grids
control [1], [2], sensor networks [3], multi-robot systems [4],
[5], distributed optimization [6], [7].

In particular, intense research efforts have been spent for
the so-called “leaderless consensus” problem, namely the
problem of designing local interaction rules such that the
agents approach/estimate, in a cooperative way, a common
unknown a-priory quantity consisting on the solution of a well-
defined coordination task. For instance, the mean of agent’s
initial conditions as in the average consensus problem.

Most of the existing consensus algorithms are designed
by exploiting the same tools of distributed optimization, for
instance, the sub-gradient descent method, [6], [8], [9], [10].
Thus, they can be treated as instances of a distributed opti-
mization.

However, since leader-less coordination tasks require ad-
hoc equilibrium conditions on the agents’ dynamics, their
convergence and stability properties are not preserved when
uncertainties corrupt their local dynamics [1]-[10].
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To face off robustness issues, and whenever agents consist
of physical systems affected by model mismatching or pertur-
bations, ad-hoc designs need to be carried out [11]-[22].

In the literature, the robustness issue has been addressed
from different perspectives. In [11], the consensus problem in
the presence of measurements errors is addressed by means of
linear consensus protocols with time-varying weights. In [12]
the so-called “e-consensus” is introduced, mostly character-
izing the effects of perturbations rather than attempting their
rejection or attenuation.

In [13], the finite-time synchronization problem is solved for
networks of perturbed single integrators affected by unknown
bounded couplings and disturbances. Moreover, in [14] under
certain restrictions on the directed switching communication
topology which was allowed to not be always connected, and
perturbations, it is shown that agents perform £-consensus.

Robust control techniques such as Sliding Mode Con-
trol [13], [14], [15], [16], Linear Matrix Inequality-based
schemes [17], Lipschitz finite-time controllers [18], and In-
ternal Model Control [19], [20] have also been exploited
for cooperative control applications. However, the complete
rejection of perturbations has been achieved only for specific
problems. For instance, the distributed tracking by the fol-
lower agents of a leader agent [1], [21], [22], or the agents
synchronization towards common quantities depending also by
the perturbations, see applications on clocks [13], [14], [18],
thermal [15] and Lagrangian systems [16].

Apart from the mentioned problems, only strategies capable
of guaranteeing a performance trade-off between robustness
and accuracy are available, see [11], [12], [17], [19], [20].

Main contribution: This paper presents a robust protocol
re-design process targeted to provide robustness in uncertain
MASs executing arbitrary distributed optimization and con-
sensus protocols which do not take robustness into account.

Robustness is understood as the capability of rejecting
disturbances, parameters uncertainties, and uncertain physical
couplings between agents. The contribution of the present pa-
per is relevant to distributed control and optimization protocols
which do not consider uncertain agents’ dynamics.

Under the standard assumption that an upper bound, pos-
sibly either state- or time-dependent, to the magnitude of
the uncertainties is available [1], [13]-[18], we show how
to design a robustified local interaction protocol to force a
desired emergent behaviour, expected for an ideal multi-agent
system of unperturbed d-dimensional integrators under a given
“reference” local interaction rule, to a multi-agent system with
d-dimensional first-order agents with nonlinear uncertain and
coupled dynamics.

In contrast with the few algorithms enabling the perturba-
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tions rejection, see for instance [13]-[18], with the method
proposed in this paper the consensus value is not influenced
by either uncertainties or perturbations. Thus, our proposal
is well-suited also to gradient-based distributed optimization
tasks, which may be affected by uncertainties and perturba-
tions corrupting the gradient descent direction provided by
the control terms. Our contribution is, thus, a general-purpose
redesign process rather than an ad-hoc design for a specific
application.

The design is based on a distributed implementation of the
Integral Sliding Mode Control (ISMC) paradigm [23]. Close
to the spirit of this study, in [24] the ISMC was used to
robustify centralized LQ controllers. Attempts to integrate the
ISMC approach within MASs were made in [21] and [22]
for leader-follower applications. Despite ISMC assumes full
state availability, its design is here reformulated in a way
that the communication constraints are met, and each local
controller only needs its own state information and that of its
neighbors. This approach can be interpreted as a method to
force an uncertain networked system to track the emerging
behaviour exhibited by a reference MAS tasked to solve a
given coordination problem, either consensus or distributed
optimization task.

Since the resulting control protocol is discontinuous, Filip-
pov theory [25] and nonsmooth Lyapunov analysis support the
treatment [26], [27]. Preliminary results, limited to the average
consensus problem and without involving nonsmooth analysis
concepts were presented in [28].

Paper organization: In Section II the adopted notation
and basic notions on nonsmooth theory are summarized. The
problem formulation and the proposed solution are described
in Section IIl along with the stability analysis. A suitable
smooth reformulation of the proposed protocol devoted to
alleviate chattering in practical implementation is discussed in
Section IV. Numerical case studies are discussed in Section V.
Finally, in Section VI, some concluding remarks are given.

II. MATHEMATICAL PRELIMINARIES AND NOTATIONS

A. Notation: The sets of natural and strictly positive real
numbers are denoted by N and R>¢. For d € N and a column
vector x = (x1,...,x4)T € R?, x; € R, let xT be its transpose, and
let x|y = X%, |xi|, ||x[| = max;{x;} be the 1- and co-norms
ofx.Let1=(1,...,1)TeR”and 0 = (0,...,0)T € R” whereas
I, € RP*7 is the identity matrix. For x and y, let xT-y and x®y
be the scalar and the Kronecker product. xT-y < |xT-y| < ||x]| -
||ly||. The gradient of a function V (x) : R¢ — R with respect to
its argument is denoted by VV. Let .% be a set of points in
R?, co{.#} and €6{.7} denote the convex hull and the convex
closure of .. Let diag((R”)") = {(x,...,x) € (R")"|x € RP},
for n € N. We denote by sign(-) : RY — R the operator which
outputs a vector whose entry is 1 if the sign of the corre-
sponding input vector element is positive, —1 if it is negative, O
otherwise. V. ={1,...,n} denotes the set of n agents operating
over a communication network whose topology is encoded
by a directed graph G(V,E). E C {V x V} is the set of edges
representing the communication links with real weights a;; >
0 < (i,/) € E, a;j =0 otherwise. The “closed neighborhood”

of agent i is denoted by N;={i} U {jeV : (i,j) €E}.
The vector collecting the states of all the agents within N;
is denoted by xjen;.

B. Filippov solutions: Consider the differential equation
(1) = g(x,1) )

where g : R” x R — R? is measurable and essentially locally
bounded, i.e., 3 G(x,1):]g(x,1)|| < G(x,t) except on sets of
Lebesgue measure zero .4 in R”.

Definition 1 ([25]): A vector function x(t) € R” is a
“Filippov solution” of (1) on T :=[to,11], if x(t) is absolutely
continuous on 7 and for almost all t € T satisfies the
differential inclusion

x(t) € K[g(x,1)] = ﬂ ﬂ co g(B(x,r)—=A,1), (2)

>0 pu(A)=0

where B(x,r) is an open ball, centered at x = x(t), of radius
r >0 and Ny y)—o denotes the intersection over all sets N
of Lebesgue measure zero in RP. |
Since K[g(x,7)] : R? x R — 2%” is locally bounded, upper
semi-continuous with nonempty compact convex values, the
Filippov solutions’ existence is guaranteed [25]. Details on
how to derive differential inclusions can be found in [26].

C. Tools for nonsmooth stability analysis: From Rade-
macher’s Theorem, locally Lipschitz functions are differen-
tiable almost everywhere (a.e.). Next, we recall the definition
of Clarke’s generalized gradient of a locally Lipschitz function.

Definition 2 (Clarke’s generalized gradient [29]): Let
V(x) : R? — R be Lipschitz near x € RP, N be any set of
zero measure in RP, and Wy C RP is the set of points where
V fails to be differentiable, the Clarke’s generalized gradient
of Vis dV(x) = co{limVV(x;) : x; > x,x; ¢ Wy U4} A

The set-valued map dV consists of all the convex combina-
tions between all of the possible limits of VV at neighboring
points of x where V is differentiable. A function V (x) is regular
at x provided that it is Lipschitz near x, and admits directional
derivatives at x for all directions. Continuously differentiable
functions at x are also regular at x. Also, convex functions
which are Lipschitz near x are regular at x (cf. [30, Chapter 2]).
Next, we recall a fundamental property of Filippov solutions.

Theorem 1 (Chain rule [27]): Let x(r) be a Filippov solu-
tion to (2) on an interval containing t and V : RP xR — R be
a Lipschitz and regular function. Then V (x(t),t) is absolutely
continuous, (d/dt)[V (x(t),t)] exists a.e. and

N (K)o

¢V (xt)

d a.e. y7 L
7 V(x(2),t)] € V(x,1) :=

Theorem 2 (Generalized Lyapunov Theorem [26]): If
) V(x):RP - R V(0)=0, and V(x) >0V x#0, and 2)
x(t) : R —= R? and V (x(t)) is absolutely continuous on |ty,)
with generalized time derivative

d
- on {t|x(t) #0}

then x converges to zero in finite-time.

[V(x()])<—€e<0 ae.
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III. PROBLEM FORMULATION AND MAIN RESULTS

Consider MAS composed of n agents enabled to exchange
information with each other through a communication network
whose topology is encoded by a directed time-invariant graph
G(V,E). The agents’ dynamics are described by

xi(t) = mi(-ijNl‘at) +Mi(l), xi(o) S Rda S V7 (4)

where x; = (x;1,...,%;.4)7 is the state of the agent i and u; € R?
is the local control vector. The nonlinear term m;(xjen;,?)
denotes the uncertain agent’s dynamics which are allowed
to depend on the state of agents in the closed neighborhood
of agent i so as to account for possible uncertain couplings
between agents, perturbations and parameter uncertainties.

Model (4) may represent generators connected to the power
system [1], [2], [31], coupled oscillators [31], [32], mobile
robots [4], [5], or else. The uncertain term m;(-,¢) is not
required to be smooth but simply essentially locally bounded.

Assumption 1: Let m;(-,t) : Rx,..., xR xR = R be a
nominal model of m;(-,t) in (4), and let m;(-,t) = m;(-,t) —
m;(-,t) be the model mismatch. We assume m;(-,t) to be
unknown and essentially locally bounded. Particularly, there
exists a known state- and time-dependent scalar upper bound
function &;(-,1), called “safety margin”, such that

77 (xjen;, )]l <™ 8i(xjen; 1)- L

Remark 1: Whenever an internal model characterization
of the uncertainties is not available the knowledge of a safety
margin is widely accepted, and ubiquitous in the sliding-mode
control area [1], [8], [13]-[16], [18]-[22], [23]-[26], [33],
[34]-[37]. It can be derived on the basis of the uncertainties
structure, or by means of “worst case” considerations. It
would be small, if the nominal part of m;(-,t) is known with a
sufficient degree of accuracy. Otherwise, it would be large thus
vielding large, and possibly unnecessary, control effort. This
drawback can be alleviated if adaptive (or “anti-chattering”)
versions of sliding mode control are adopted [35], [36]. In
Section 1V, a similar reformulation for the proposed control
strategy, that sacrifices the ideal accuracy to counteract the
control authority thereby limiting the effects of a large-in-
magnitude discontinuous control, is provided.

Preliminary considerations: Most of the works in the
literature address consensus, distributed control and distributed
optimization problems by the design of local interaction rules
i) 1 RYx,..., xR x R — R? between agents modeled as
ideal continuous-time integrators unaffected by uncertainties,
ie.

%(0) e RY,

(1) = fiRjen;1), ieV. (5)

where f;(-,1) abides the topological constraints of the commu-
nication links represented by a given graph G(V,E). Without
loss of generality, since it represents a feasible coordination
protocol, f;(-,7) is assumed essentially locally bounded.

Problem formulation: Instead of developing and proving
the convergence properties of an ad-hoc control protocol robust
to perturbations, we aim to develop a general methodology
which can be applied to any existing distributed local inter-
action protocol f;(-,#) and implemented by perturbed agents

modeled as in (4) instead of ideal d-dimensional integrators
as in (5).

In particular, let £;(0) = x;(0) in (5), where x;(0) is the
initial state of the agents (4), we design a control input u;(r)
for (4) such that the state trajectories of the agents (4) match
the “nominal” solutions of (5) since the initial time instant,
ie.,

x,-(t):)?i(t), VieV. (6)

YVt GRgo,

Main results: Next, we provide the main results.

Algorithm 1 - Robust protocol design process
a) Choose a reference essentially locally bounded interac-
tion rule fi(-,) for (5) tasked to solve a given distributed
control or optimization problem, for agents modeled as ideal
d-dimensional integrators interacting over a time-invariant
directed G(V,E);
b) In accordance with Assumption 1, choose a func-
tion/value for the “safety margin” &;(-,7), which represents
an upper-bound for the uncertain terms 7;(-,7);
¢) For each agent, implement the local control input as

ui(t) = filxjen;,t) —mi(xjen;,t) — ki(xjen;,t) - V||xi — zill1
%i(t) = filxjens ), zi(0) = x;(0) (7)

where z; € R? is an auxiliary control variable, k;(-,¢) : R?
..xRY xR —Ris a function of class €9;

d) If the local control gain k;(-,), for each agent, bounds
from above the safety margin §(-,#), according to Theo-
rem 3 the state trajectories of the agents (4) track exactly
those of the desired reference local interaction rule (5).

X

Theorem 3: Consider the uncertain MAS dynamics (4) with
the local control (7). Let Assumption I be in force, and £;(0) =
xi(0) in (5). If ki(-,t) > &;(-,t) then relation (6) is in force.

Proof: We first substitute (7) into (4) to obtain a compact
representation of the collective network dynamics

(1) = m(x,1) + f(x,1) - k(x,))V[|e -z ©®)

2(t) = f(x,1), 2(0)==(0) ©)
where = = (x],....x})7T, z = (¢f,...,z}))T, and f =
(ff.....f1)T are column vectors in (R?)", whereas

k(1)
k(x,r) = diag(ki (xjen,, 1) @ Iz, ..., kn(xjen, 1) @ Iy)

m(x,t)= (1 (xjen,, )T, ..., Mn(Xjen,,1)T)T (10)

kn (1)

Let us define the argument of the nonsmooth term in (8) as
o(t) =x(t) - z(), (11)

The subset of elements of o = (o7,...,07)7 related to agent
i is denoted as o; € R, and the ¢-th entry of o; is denoted as

o c (RY)".

oio(t) =x0(t) —zi (1), ieV,(=1,2,....d. (12)
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We now rewrite (8), (9) in the new (x,0) coordinates as

(1) = m(z,1) + f (@,1) — k(z,1) - Vo (t)]
o(t) =m(x,t)—k(x,t)-V]o@)|.

13)
(14)

Note that, whenever an entry oy of o(t) equals zero for
some ¢, the corresponding entry of the V||o(7)||; is not defined
in traditional sense. To draw conclusions on the stability of
(13)-(14), their solutions must be understood in the Filippov
sense. Due to Assumption 1, the right hand side of (13)-
(14) is essentially locally bounded. Thus, from Definition 1,
they admit a Filippov solution [25]. The differential inclusion
associated with (14) is as follows

6 (1) € Km(a,1) — k(z,0)-V|o@)[h]. (15

Let us now choose as Lyapunov functional candidate the
nonsmooth, locally Lipschitz, regular function

d
Vien)=le®li=Y Y o) (16)

iev (=1

which, due to that fact that o-(0) = 0, it satisfies the condition
V(o (0)) =0, cf. (9) and (11). According to Definition 1, the
solution o (r) of (15) is absolutely continuous on a compact
interval. This in turn implies the absolute continuity of V(o).

Let dV be the Clarke’s generalized gradient of (16). Since
the entries k;(-,¢) of (10) are €, then from Properties 2), 5),
6), and 7) of [26, Theorem 1], the generalized time derivative
of V along (15) meets (3), and satisfies

di[V(aﬂ ere () ¢"-K[m(z,1) —k(z,1)-V|o()|i]
! ¢eav
c )¢ Km(z,0)]—k(z,)-0V(a(t)))
¢eadv
c N ¢ (p—k(mr)-p) (17)
¢eav

which holds, analogously with [26, equation (28)], a.e. for all
¢ €9V, some f € JV, and some p € K[ri(x,t)]. Moreover,
let us note that (17) holds for all ¢ € dV, thus we can choose

C:a.rgmin{HCH2 : ceav}. (18)

In accordance with the notation in (10)-(12), let us first rewrite
¢=l,....¢HT, p=(p],....p})T, where {;; and p;s be
the (-th entry of, resp., ¢; and p;. Let k;(-,r) = k;(-,7) be
a diagonal entry for the local gain matrix k;(-,z) in (10)
satisfying k;(-,¢) — 8(-,¢) > ¢, for some & > 0. From (18)
and by substituting (10) into (17), it yields that

d
E[V(U)] < N Z(|CiT'Pi‘—ki'HCi||2)
ceav i
< N Xl lpiel—k-lee?) a9
¢eav it
< = N X (e lel+6e (16>~ ¢l ))-
¢ceav it

Using the calculus for generalized gradients it holds
vV (0) = ([—1,1]%)", which is the unit cube in (R?)". More-
over, due to (7), dV(c(0)) = ([-1,1]9)". By letting o;, be as

in (12), we further observe that if o;, = 0, then the element
dViy of dV is multi-valued and belongs to the convex set
[—1,1], where dV;; = d|o;|. On the other hand, dV; = {+1}
if 6,0 >0, or dV;y = {—1} if 6;¢ < 0. Due to the convexity
of V, and by [29, Proposition 2.2.9], for 6, # 0, it results that
dViyN(—1,1) = @. Thus,

arg_min [Ge(n)] =1, V 6;#£0,
l

20
¢ip€adV; (20)

and, from (19) and (3), it follows that (d/dt) [V (x(¢),t)] <
—min;ev{€&} onr € [0,0). By invoking Theorem 2, and thanks
to (9) and (11), we conclude that: a) the dynamics of (14)
are finite-time stable; b) o = 0 is an invariant set for ¢ > 0.
Moreover, since (16) is radially unbounded, o = 0 is a globally
finite-time stable equilibrium for (4), (7). In particular, for all
intervals of time ¢ of measure zero for which one or more
entries o ¢(r) of (11) are zero, according to [25], they can be
disregarded. Whereas, if one or more o;,(t) = 0 are zero on
a set ./ of time values ¢ of positive measure, since Filippov
solutions are absolutely continuous, and o (¢) is a Filippov
solution, then in the same positive time intervals the derivative
of the corresponding Filippov solution for those elements
which are zero is zero as well, i.e. 6;¢(f) =0 a.e.ont € /.
Thus, if o(1) =0 a.e. on ¢ € 4, then &(t) €** {0}, t € .
Since 0 = x — z =0 is an invariant set, then x(r) = z(r)
V t € Rxg. Thus, the solution z(¢) of (4), (7), is driven by
the right-hand side of (9), which is in turn equivalent to the
nominal reference behaviour (5), thus yielding (6). |

The convergence properties of (8)-(9) are independent from
the given task in (5). Thus, Algorithm 1 can be seamlessly im-
plemented on agents with dynamics affected by uncertainties
and unknown perturbations.

Remark 2: This research is focused on agents modeled
by relative degree one uncertain dynamics as in (4), thus
our results are applicable to the vast literature on first-order
continuous-time agents related to consensus and distributed
optimization problems. First-order systems are important in
the context of multi-agent systems because by approximating
the agents’ dynamics it is possible to address formally the
behavior of large scale complex networks. Our proposed
robustifying control protocol is thus a general approach to add
robustness to uncertainties to all distributed control protocols
designed in absence of uncertain dynamics for agents as in (4).

IV. CHATTERING ALLEVIATION

Due to the finite switching frequency of a real sliding
mode control implementation, high-frequency chattering may
arise on the local agents dynamics when implementing (7).
In digital realization, such a switching frequency is at most
equal to the inverse of the sampling-time 7. Besides this,
due to the worst-case estimation of &;(-,), the magnitude of
ki(-,1) can be larger then necessary. To alleviate the chattering,
common practice is to smooth-out the “sign” functions by
means of some continuous sigmoid or saturation approximat-
ing functions [34]. Another approach entails the replacement
of the discontinuous term with an estimation of the so-called
“equivalent control”, obtained as the output of a low pass filter
fed by the discontinuous signal [37, Chapter 2.2 and 2.4].
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Chattering can also be alleviated by resorting to the high-
order sliding mode control algorithms [33], by means of which
one can transfer the discontinuity on the higher-order time
derivatives of the actual plant control at the price, however, at
the price of an increase in the information demand about the
state of the controlled plant. In the present paper we refer to a
chattering alleviation solution originally proposed in [23]. The
resulting algorithm, specialized to the present scenario, is

up = —1mi(xjen;,t) + fi(xjen;,t) — ki(xjen; 1) - wi (1)
T wi+w; = Vxi —zil)i (22)
zi = fi(xjen;st) +ki(xjen; 1) - (V[xi —zil[i —wi). (23)

Now, the switching control term in ;(z), originally in (7),
has been replaced by the continuous signal w;(¢) which is
obtained by (22) as the output of a low pass first-order filter
fed by V||lx; —z]||;. Besides, the dynamics of the auxiliary
variables z;(¢) has been reformulated as well as compared
to (7). The reason will be more clear later on.

A proper choice for the time-constant 7; of the filter is
a trade-off between two conflicting requirements. Indeed, a
too small value of 7; yields a filter output still affected by
high frequency components, thereby still causing chattering
in the agent dynamics. On the other hand, a too large value
of 7; yields a decrease in the accuracy (namely, the agent’s
trajectories will deviate too much from the ideal ones that
were achieved with the discontinuous local interaction rule).

The adopted method offers the advantage, over the alter-
native anti-chattering approaches that it still provides for the
appearance of an ideal sliding motion along the manifold
xi(t) — zi(t) = 0, thereby making its achieved performance
more predictable. We do not however claim that this method is
superior to the others, as the actual performance may vary case
by case and depending on the actual form of the uncertainty
to be rejected. Every anti-chattering method, on the contrary,
presents a trade-off, to be properly achieved case by case,
between the removal of the high-frequency components from
the plant control and the resulting, unavoidable, decrease in
terms of accuracy and robustness.

Here, taking into account the closed loop dynamics (4),
(21)-(23), by straightforward manipulations one gets also in
the present case the discontinuous differential equation (14)
and the corresponding differential inclusion (15). By anal-
ogous considerations, therefore, the trajectories of (4), (22)
are constrained onto the invariant set o () = (t) = 0 ae.
V t € Ryp. Thus, the sliding motion generated by the control
protocol (21)-(23) is the same as that in the original control (7).

Follows that the proposed anti-chattering reformulation pro-
vides stronger and more predictable robustness properties then,
for instance [34] and [37], where no sliding motion can be es-
tablished, since the discontinuous terms are replaced by some
continuous approximations [23]. By inspection of (14) and
(23) it is evident that the sliding motion is established on the
dynamics of the auxiliary control variable z;(¢) in (23), instead
of in the agent dynamics (4), as the case of the protocol (7).

However, due to the different dynamics (23) of the auxiliary
variable z; with respect to (7), agents trajectories will be
different. By means of lengthy computations, taking advantage

Fig. 1. Graph topologies for numerical simulations on, respectively, directed
for Case 1 (left-plot), and undirected for Case 2 (right-plot).

of the treatment presented in [23], [37], one derives that
the agents trajectories obtained using the anti-chattering local
interaction rule (21)-(23) differ from the ideal ones, achieved
using the discontinuous local interaction rule (7) by an O(1;)
mismatch. This result should not be surprising, indeed by
substituting 7; = 0 into (21)-(23) one recovers (7).

V. NUMERICAL CASE STUDIES

Two popular distributed control problems, referred as Case 1
and Case 2, are taken into account to validate the proposed dis-
tributed control strategies. In Case 1, the proposed scheme (7)
is applied to robustify the traditional average consensus pro-
tocol for the distributed estimation of the average value of the
agents’ initial state over a weight-balanced directed graph. In
Case 2 the strategy (7) is instead applied to robustify a MAS
designed to solve a distributed optimization problem. Finally,
Case 3 considers the chattering alleviation strategy (21)-(23)
applied to the average consensus test Case 1, and the resulting
performance is compared with that achieved by means of (7).

Simulation set-up: Simulations were performed on the
MATLAB®/Simulink environment with the Euler fixed-step
solver and sampling time 7; = 1073 seconds. In both the
test cases, an uncertain MAS consisting of n =9 agents is
considered. The communication topologies for the tests are
time-invariant and depicted in Fig. 1, resp., see the left-plot
for Case 1 and the right-plot for Case 2. Each agent has two
state variables (d = 2) with initial conditions

%i(0) = (x:,1(0),x;2(0))T = (i, —0)T,

The uncertain drift term m; (x; € N;,¢) in (4) takes the form

Vi=1,2,...,9. (24

m; (Xjen;,t) = mi(x;) +mi(xjen; 1),
where the known term is given by

_ -1 0.1
mi(xi) = ( 01 -1 )xi’

and whereas the unknown term is as follows
a;(t) bi(x,t) ci(x)
~ ——
ﬁ’l,’(',l) = 3;-sign(sin(5; - 1)) + Z &j- sin((x; —x‘/‘) 1)+ & xg,
JeN;

) (25)
where &; € R?*2, B; € R, 4; € R?, and &; € R are randomly
chosen uncertain parameters selected within the following
ranges: &’ € [<0.2,0.2], B; € [0,5], 4 € [3,30], &; € [~1,0],
Vi, j=1,2, £ =1,2. In accordance with (25), a;(¢) denotes
exogenous time-dependent perturbations, b;(xjcn,,t) repre-
sents the uncertain time-varying physical couplings among
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neighboring agents, and ¢;(x) models local uncertainties on the
agent dynamics. A worst-case conservative upper-estimation of
the uncertain term is made as follows ||i#;(+,1)]| < §;(+,2) =
6+0.2-||x;(¢)]|, on the basis of which the local gain k;(-,¢),
to be used in (7) and (21)-(23), must satisfy k;(-,¢) > 6+0.2-
||x;(7)|l- Here, we intentionally set k;(-,#) = 10+ ||x;()||»
thus greater than necessary to shown some interesting features
of the proposed chattering alleviation reformulation (21)-(23)
of the nonsmooth control method (7).

Case 1 (Robust average consensus): Consider the widely
known linear average consensus algorithm [3], implemented
over a directed weight-balanced and strongly connected graph
as that in the left-plot of Fig. 1, with edge weights aj» = ax3 =
azs =2 and a;; = 1 otherwise with (i, j) € E. The reference
dynamics (5) for the uncertain MAS (4), (25) is as

fl( ]EN7 )7

with the reference local interaction rule chosen as follows

Za,j £i(r) —%j t))

JjeN;

£(0) =x(0), VieV, (26)

fil%jen;st) = 27
The top-left pair of plots in Fig. 2 show the trajectories

of the desired unperturbed MAS (26)-(27). The steady-state

consensus value is

9

Y (x2,1(0),x2(0)) T =

i=1

(xi,x5)T = (5,-5)7, VieV. (28)

O —

To compare our proposed method with a naive robustifica-
tion approach based simply on the cancellation of the known
terms of the agents’ dynamics through feedback, we consider
the control law u;(t) = fi(xjen,,t) — fi(x;), whose resulting
state trajectories are depicted in the top-right pair of plots
in Fig. 2. As expected, due to uncertainties and perturbations
neither a consensus among states, nor the estimation of the
expected quantity (28) are achieved. In the bottom of Fig. 2 the
agents trajectories obtained using the proposed robustification
algorithm (7), (27) are displayed. According to Theorem 3,
agents display the nominal behaviour of the reference MAS
(26), 27).

The right plot of Fig. 3 shows the error signal es(t) =
x4,1(¢) — %41 (7). It confirms that the state trajectory obtained
in the unperturbed case and that obtained in the perturbed case
using the proposed control (7) are almost coincident from the
initial time on (apart from a small error which is due the finite
switching frequency of the numerical implementation). The
price paid for a such high accuracy, which size is an order of
the sampling-time Ty, is that the control (7) is discontinuous,
as displayed in the left plot of Fig. 6, thus high frequency
chattering in the control loop may appear.

Case 2 (Robust distributed optimization): Let us now
consider the convex optimization problem

minimize Y, hi(x) (29)
iev
subject to xi=xj, ¥V (i,]) €E, (30)

where x; € R? and functions h;(-) are chosen as follows

1 ' .
hi(xi) = S Quxi+ Pl + Ri-el™, i€V 31

Perturbed scenario

Nominal scenario

Fig. 2. Results on Case 1. Top-left: Agents trajectories in the perturbation-free
scenario (26)- (27). Top-right: Agents trajectories in the perturbed scenario
(4) under the control law u; = f; — m;. Bottom: Agents’ trajectories in the
perturbed scenario (4) under the robust local control (7), (27).

%104

€41 (t)

Fig. 3.

Results on Case 1.
robustification control term ky - V||x4(f) —z4(¢)|| of the proposed nonsmooth

Comparison between the evolution of the

control method (7), and the resulting steady accuracy eq ; (1) = x4.1 (1)
for the “Case 1: Robust average consensus” discussed in Section V.

7)?451(1‘)

with 1= (1,1)T, and, R; =0.5, R, = 0.8, R3 = 0.9, and,

Q1:<8% 01)7Q2_(O4 02)7Q3 (02 8%)

Py = (~10,10)T, Py = (~20,20)7

whereas R4 = 2R1, R5 = 2R2, R(, = 2R3, R7 = 3R1, Rg =
3R;, Ry=3R;3,and, Q4 =2Q1, Q5 =2Q2, Qs =2Q3, Q7=
3Q1, Qs =3Q2, Q9 =3Q3, and, P, =2P;, Ps =2P,, P =
2P;, P =3P, Py =3P,, Py =3P;. The solution of the
nonlinear convex programming problem (29), (30) is

, Py = (—30,30)T

(x},x5)T = (3.27,-3.02)T. (32)

Assuming the cost functions (31) to be private, thus avail-
able only to the agent i, we now aim to solve problem
(29), (30) by means of a distributed algorithm which abides
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Nominal scenario Perturbed scenario

0
=Ry \
;_E z* Es,z_ * N . __‘k&“\_a - TR
o0t 0
0 0.5 1 0 0.5 1 1.5
O¢ S
S A | x* (f-';'@'\:‘, R e =
s EZ77 A el
5 3
-10 -10
0 0.5 1 0 0.5 1 1.5

.”I,'U (f)

Fig. 4. Results on Case 2. Top-left: Agents’ evolution in the perturbation free
scenario (26), (33). Top-right: Agents’ evolution in the perturbed scenario (4)
under the control law u; = f; —m;. Bottom: Agents’ evolution in the perturbed
scenario under the robustifying control (7), (33).

the communication constraints represented by the undirected
graph in the right-plot of Fig. 1 with unitary edge weights,
aij =1 V(i,j) € E. To solve the proposed problem, we de-
sign the reference local interaction rule (or state update) as
proposed in [9], [7], i.e., by adding the co-state additional
control variables v; € R? to each agent, representing Lagrange
multipliers. Thus, the graph G is connected and undirected,
the MAS (5) converges to the minimizers (32) by means of
the following reference local interaction rule (see [9], [7]),

fi= { # }:fi(ﬁjeN,»)v (33)
where
—H1-Vhi(x)+ L (xj—x)+ ¥ (vi—vi)
fz() — JEN; JEN;
—- ¥ (xi—xj) ’

JEN;
with u; = 50, gy = 100. Furthermore, (25) changes as fol-
lows to account for the additional control variables v; in the
reference local interaction rule
i (%) + 1 (X jen; 1)
mi(xjeMJ) = (34)
0

Similarly to the results shown in Fig. 2 for Case 1, the
top-left pair of plots of Fig. 4 shows the agents trajectories
of the nominal reference MAS. The top-right pair of plots of
Fig. 4 shows the trajectories obtained in the presence of the
uncertain perturbations using a naive robustification approach
based simply on the cancellation of the known terms of the
agents dynamics through feedback, we consider the control
law u;(t) = fi(xien;,t) — mi(x;), which does not converge any

77L4' 1

()

Fig. 5. Results on Case 3. Actual behaviour of the unknown uncertain
dynamics g (-,1) = ma(-,t) — g (-,1). There, the time-varying uncertain terms
as and by of (25) has been intentionally set to zero within the time interval
te2,4).

T = 10_4

3 =10"*
4 x107"1

(- t) - wa(t)

~

(=)

ka(-,t) - wy(t)
0

Fig. 6. Results on Case 3. Evolution of the robustification control term wy ; (¢)
of the chattering alleviation reformulation (21)-(23) of the proposed nons-
mooth control (7) with respect to the unknown local uncertain term s (-,t)
(left-column), and the resulting steady accuracy es(t) = x4 () — £4.1()
(right-column) for two values of filter’s time-constant 7;. Both tests refers
to the “Case 1: Robust average consensus” test case.

longer to the minimizers of (29), whereas the bottom plots of
the same figure show the trajectories obtained in the presence
of the uncertain perturbations using the proposed robustified
protocol (7). It can be seen that the trajectories coincide with
those of the reference unperturbed case thus restoring the
correct convergence to the minimizer x* in (32), which solves
the considered optimization problem (29)-(30).

Case 3 (Chattering alleviation): Here the chattering al-
leviation strategy (21)-(23) is tested and the corresponding
performance is compared with that achieved using the original
formulation of the proposed strategy provided in (7). This
analysis refers to the average consensus test in Case 1. Tests
with two different values of the filter time-constant 7;, which
represents the unique additional tuning parameter associated to
the smoothed version of the control, are provided. The results
are shown in Fig. 6 for the fourth agent. The test labeled by
7,=10"% and 7; = 103 refer to two different realizations of
the chattering alleviation reformulation (21)-(23).

During these tests, and accordingly with Fig. 5, we have
artificially set to zero the uncertain terms a4 (t) and b4(-,t) of
the fourth agent in (25) within the time interval 7 € [2,4). This
has been made to verify that, using the chattering alleviation
strategy, the control magnitude becomes smaller when the
actual uncertainties and perturbations become smaller as well.
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The results of the comparative analysis are reported in
Fig. 6. The plots in the two lines contains the results obtained
with 7; = 10~* and 7; = 1073, whereas the first and second
columns contain, respectively, the comparison of the robus-
tification control k4(-,#)- w4 (z) of the chattering alleviation
control (21)-(23) with respect to the unknown local uncertain
term 74(-,¢), and the state error e4 | = x4,1 — %4, between the
actual and nominal reference trajectory.

From the plots in the left-column of Fig. 6 it is evident that
as 7; grows the actual control term “k4(-,#)ws 1 (¢)” becomes
smoother and smoother. It is also seen that, for 7 € [2,4), where
the uncertainties’ magnitude is smaller, the magnitude of the
control also reduces in accordance with the time evolution of
the uncertainties to be rejected. This, instead, was not the case
when the original protocol (7) was adopted. There, the control
always switch between the extreme values of the convex set
associated to the discontinuous control term, thus actuating
a larger then necessary control effort, cf. Fig. 6 with Fig. 3.
The plots in the right column further shows that the accuracy
e4,1(t) linearly depends on T;, as stated in Section IV.

VI. CONCLUSIONS

A robust protocol design process, based on the integral slid-
ing mode control paradigm, devoted to provide robustness to a
MAS affected by perturbations and uncertain agent dynamics
executing given reference local interaction rules designed for
agents modeled as d-dimensional continuous-time integrators,
is presented. The method preserves the communication con-
straints between agents specified by the graph, and makes the
trajectories of the uncertain MAS track exactly those of a
reference MAS tasked to achieve a given coordination task in
the nominal case. Future work will tackle the application of the
proposed method to problems related to the control of smart
grids. The same “robustification” task could be investigated
from an input-output perspective, thereby considering agents
with dynamics with relative degree greater than one or by
relaxing the agents state availability assumption.
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