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ABSTRACT 

The current transport system, based on the use of vehicles fueled almost exclusively by petroleum 

products, generates non-negligible social, environmental and economic impacts. In Italy, the 

increase in the levels of PM10 and PM2.5 between 2014 and 2018 has been attributed primarily to an 

increase in private car ownership and vehicle miles traveled by car. To overcome the problems 

associated with the current system, in recent years, particular attention has been paid to sustainable 

urban mobility at different levels. Governmental bodies, policy makers, transportation operators 

and academic researchers have focused on strategies and policies to reduce automobile travel and 

induce a modal shift in travel behavior. In particular, there has been increasing interest in soft 

measures which use information and communication tools to heighten people’s awareness and 

encourage them to change their travel behavior. 

The primary objective of this thesis is to explore the methodological processes able to 

guarantee that sustainable mobility policies seeking to reduce car use are accompanied by a 

quantitative assessment of the effects that this generates in the transport context. In particular, we 

focused on the role and weight of psycho-attitudinal variables (attitudes, perceptions, habits, etc.) 

in the process of choosing a sustainable mode of transport. 

The first part of the thesis presents the findings of a study focusing on unraveling the linkage 

among psycho-attitudinal factors related to bike use and the choice to cycle. In doing so, we 

constructed and estimated different econometric models (Integrated Choice Latent Variable model, 

GHDM model, Multivariate ordered probit) each aimed at shedding light on those aspects 

overlooked in the research. The context of the study were the urban areas of Cagliari and Sassari, 

main cities in Sardinia (Italy), where, despite the implementation of policies supporting bike use, 

cycling levels for commuting trips are still low. Our modeling estimation results reinforce the idea 

that promoting cycling through the implementation of awareness campaigns and educational 

programs, intended to improve peoples’ perceptions of the bike mode, can persuade them to 

consider the bike as an alternative means of transport to private motorized vehicles. Further, 

investments aimed at supporting use of the bike for leisure (e.g. cycle routes) may increase the 

number of people who choose to use the bike as an alternative means of transport for commuting or 

shopping. 

The second part of the work attempted to assess the short-term effect on travel mode choice 

of introducing a new sustainable form of transport into the choice set (hard measure) when 

implementing a VTBC program (soft measure). The transport context chosen for this experiment is 

a corridor linking the city center of Cagliari (Italy) to a university/hospital complex, where a new 

light rail route went into service in February 2015. For assessing changes in travel behavior in the 

short term, the modal shares observed in the first and second wave surveys were compared. Our 

results show that the combination of hard and soft measures achieved a change in travel behavior of 

34%, when the measure is not personalized, and 46% with the VTBC program. 



 

 

Finally, we evaluated the long-term effects of these measures and we investigated if any 

changes in the psycho-attitudinal factors and/or in socio-economic characteristics exist after 

implementation of those measures. In particular, the objective of the study is to analyze whether 

these changes in individual characteristics are able to affect mode choice from a modeling 

perspective, through the specification and estimation of Integrated Choice Latent Variable models 

that use, for the same sample, the data collected for these two moments in time. Our results indicate 

that psycho-attitudinal variables were not significantly different. over waves, showing that the 

impact of the psychological construct remained stable over time, even after the introduction of the 

new light rail. Additionally, we found some evidence that the variables that explain the psycho-

attitudinal variables could change over time. 
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INTRODUCTION 

The demand for urban mobility has grown substantially over the last few decades, to the extent that 

projections based on data for 2000 predict a three- to fourfold increase in passenger miles traveled 

by the year 2050 (Un-Habitat, 2013). The reason for this is the rapid population growth, especially 

the urban population as a consequence of urbanization. This, in turn, has led to the haphazard and 

uncontrolled development of cities and towns with major negative impacts on the environment. The 

proliferation of road infrastructure, the increase in the distance traveled and number of trips have 

created a strong dependence on the car. In Italy, 65.3% of journeys are made by car (mostly as 

driver), an increase of nearly eight points over the last 15 years (ISFORT 2018). 

The transport sector is the primary cause of the observed deterioration in urban air quality, 

road transportation having increased significantly. For example, in Italy, the increase in the levels 

of PM10 and PM2.5 between 2014 and 2018 has been attributed primarily to an increase in private 

car ownership and vehicle miles traveled by car (ISFORT, 2018); (PM10 and PM2.5 in 2018 in Italy 

were far higher than standards set by both the European Union and the World Health Organization, 

as per ISFORT, 2018). In the U.S., road transportation is estimated to contribute about 84% of the 

metric tons of CO2 equivalent of total transportation-based GHG emissions (US EPA, 2017), and 

the transportation sector as a whole is estimated to be responsible for about 29% of energy-related 

CO2 emissions (the next highest contributing sector, the industrial sector, is estimated to contribute 

about 22% of energy-related CO2 emissions; see US EPA, 2017). In addition to the substantial 

impacts on air quality and greenhouse gas (GHG) emissions, the transportation sector also 

contributes to several other externalities that impact the environment and urban quality of life, 

including noise pollution, public health and safety issues. 

Therefore, the current transport system, based on the use of vehicles fueled almost 

exclusively by petroleum products, generates non-negligible social, environmental and economic 

impacts. To overcome the problems associated with the current system, in recent years, particular 

attention has been paid to sustainable urban mobility at different levels. Governmental bodies, 

policy makers, transportation operators and academic researchers have focused on strategies and 

policies to reduce automobile travel and induce a modal shift in travel behavior. Many recent 

transportation plans have included Travel Demand Management (TDM) strategies as a means to 

create a more sustainable transportation system. Traditionally, TDM has been defined as any 

initiative endeavoring to influence traveler choices about whether to travel, which mode to use, and 

where to travel. Some examples include incentives to use higher occupancy modes (e.g., carpool, 

vanpool, transit) or non-motorized modes (cycling, walking), programs to encourage working or 

shopping from home (addressing whether to travel) or to reduce trip lengths (by combining trips or 
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shopping or working closer to home). In particular, there has been increasing interest in soft 

measures which use information and communication tools to enhance people’s knowledge (for 

example of transport alternatives), heighten people’s awareness and encourage them to change their 

travel behavior. 

However, the success of Travel Demand Management measures requires a deep knowledge 

of the determinants of mode choice. Understanding and predicting individual behavior is a complex 

task and a misrepresentation of the factors affecting individuals’ decisions can lead to an inaccurate 

prediction of the transportation demand, which may have an adverse effect on the cost-effective 

analyses of transportation plans and policies. A quantitative characterization of the impact of 

different behaviors on demand can be obtained through the construction of mathematical models. 

Traditional Discrete Choice Models (DCM), also called Random Utility models, are a widely used 

tool adopted by transportation and urban planners to assess and forecast traffic volumes, transit 

ridership, walking and cycling market share across transportation networks. Based on the 

microeconomic theory of utility, the particularity of these models is their ability to predict 

decisions at the individual level, based on objective personal characteristics (age, gender, income, 

etc.) and attributes of the choice alternatives (mainly time and cost). 

Different works have criticized this kind of approach and hold it responsible for the failure of 

policies in favor of sustainable mobility (Paulssen et al., 2014), as they simulate in an incomplete 

manner the cognitive process that leads to the formation of individuals’ tastes and preferences 

(Bamberg et al., 2003; Anable, 2005; Steg, 2005) and treat the unobserved psychological 

preliminaries of choice as contained in a "black box". Several studies have actually shown that, in 

addition to the objective characteristics of transport alternatives, cognitive aspects, such as habits, 

emotions, values, attitudes, perceptions, that are not directly observable, can affect individual 

behavior. For example, environmental concern has been found to have a positive effect on 

environmentally-friendly alternatives in several studies. Furthermore, specific attitudes towards the 

car alternative have been found to have an effect in mode choice studies (Anable, 2005). 

Only in the last two decades have models of disaggregate decision-making started to include 

latent constructs for capturing the impact of subjective factors on choice process. These kinds of 

models, called hybrid choice models (HCM) or integrated choice and latent variable (ICLV) 

models, proposed in the 1980's by McFadden (1986) and Train et al. (1987), only became popular 

in 2002 following the work of Ben-Akiva et al. (2002). ICLVs appear to be a powerful and useful 

method for improving existing representations of decision making (Vij and Walker, 2016) and 

providing recommendations for travel demand management policies. 

However, recent work in transportation research (Chorus and Kroesen, 2014) raised the 

question about the ability of ICLVs to derive policy implications that aim to change travel 

behavior, pointing out two potential issues. Firstly, latent attitudes and perceptions are partly 
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endogenous with respect to travel behavior, and the analyst cannot be sure about the direction of 

causality in attitudes, perceptions, and choices. Moreover, latent variables and the observed choice 

could be influenced by the same underlying, unmeasured factors. Secondly, the data collected are 

typically cross-sectional, measured at a single moment in time. This means only between-person 

comparisons based on differences in latent variables can be evaluated, and not within-person 

comparisons and how latent variables may change over time as a result of variation in socio-

economic (SE) characteristics or the implementation of travel demand management policies. 

Therefore, the objective of this thesis work is to identify the methodological processes that 

can guarantee that sustainable mobility policies seeking to reduce car use are accompanied by a 

quantitative assessment of the effects that this generates in the transport context. In particular, the 

thesis focuses on the role of psycho-attitudinal variables (attitudes, perceptions, habits, etc.) in the 

process of choosing a mode alternative through the use of cross-sectional and panel data. An in-

depth analysis is advantageous from both a policy point of view and for representing the decision-

making process. In fact, the implementation of effective strategies for the promotion of sustainable 

mobility, such as information campaigns that focus on those factors that could persuade people not 

to use the car, can benefit from an improved understanding of this phenomenon and help to avoid 

wasting limited resources, as well as failures that would diminish public support.  

The first part of the work focused on the analysis of the determinants influencing cycling 

behavior. Recently, there has been a surge of interest in cycling as a physically active 

transportation option able to bring immediate and multiple benefits at both the individual as well as 

the community level. However, the traditional random utility modeling approach failed in some 

cases to explain the process underlying the decision to cycle, making it necessary to incorporate 

those psychological factors attached to bicycle use and derived from its special characteristics. In 

particular, the aim was to accommodate psychological variables within the analytical framework 

and understand to what extent they affect the choice to use the bike. In doing so, we constructed 

and estimated different econometric models, each aimed at shedding light on those aspects 

overlooked in the research. The context of the study were the urban areas of Cagliari and Sassari, 

main cities in Sardinia (Italy), where, despite the implementation of policies supporting bike use, 

cycling levels for commuting trips are still low. 

In the second part of the work we analyzed the short-term effect on travel mode choice of 

introducing a new sustainable form of transport into the choice set (hard measure) when 

implementing an information measure (Personalized Travel Plan). The transport context chosen for 

this experiment is a corridor linking the city center of Cagliari to a university/hospital complex, 

where a new light rail route went into service. In particular, an attempt was made to overcome the 

critical issue concerning evaluation of the measure by creating a control group, so as to disentangle 

the effect of the structural measure from that of personalized information provision.  
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Next, we evaluated the long-term effects of these measures, along with an analysis that 

aimed to detect any changes in the psycho-attitudinal factors and SE characteristics. In particular, 

through the specification and estimation of ICLV models that used for the same sample the data 

collected for these two moments in time, we analyzed whether changes in individual characteristics 

were able to affect mode choice, and so the criticism raised against ICLV models is valid. 

The thesis is structured into three parts, each composed of different chapters and paragraphs. 

Part I reviews the state of the art in the research areas covered in the thesis work. In Part II we 

explore what determinants, objective and subjective, influence cycling behavior. In Part III we 

report the results, evaluated in the short- and long-term, of the combined implementation of a 

structural measure with an information measure.   
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PART 1 – LITERATURE REVIEW  

1.1.  INTRODUCTION 

This chapter reviews the state of the art in the research areas covered in the present thesis work. 

The discussion of this chapter is organized as follows. The first section (1.2) treats Travel Demand 

Management strategies, their strengths and weaknesses and the best way to evaluate their 

effectiveness. 

Then we describe the existing work in the area of discrete choice models (1.3). After a brief 

review of the determinants influencing travel behavior (1.3.1) and utility-based choice theory 

(1.3.2), we look at the mathematical formulation of logit and probit models from Section 1.3.3 to 

Section 1.3.7. We then turn to look at models of ordered discrete data in Section 1.3.8. Next, we 

present the ICLV model in Section 1.3.9 and the GHDM model in section 1.3.10. Finally, we 

describe goodness-of-fit measures (1.3.11) and aggregation and forecasting techniques (1.3.12).   

1.2.  TRAVEL DEMAND MANAGEMENT STRATEGIES 

1.2.1. Travel demand management definition 

Travel demand management (TDM) is defined as any initiative with the object of helping to 

alleviate the negative impact of car use (Taylor and Ampt, 2003; Loukopoulos, 2007). Other terms 

with similar meanings include transport system management (Pendyala et al., 1997), transportation 

demand management (Litman, 2003) and mobility management (Kristensen and Marshall, 1999, 

Rye 2002). 

These measures may vary in several attributes or dimensions, which are likely to affect the 

key outcome variables of effectiveness in reducing travel demand, political feasibility, and public 

attitudes (see Table 1). 

A widely accepted distinction is that between structural strategies, aimed at changing the 

physical and/or legislative context in which choices are made, and informational strategies, aimed 

at changing prevalent motivations, perceptions, cognitions and norms and motivating voluntary 

changes in transportation choices (Graham-Rowe et al., 2011). 

Travel demand management measures may also be distinguished between push and pull 

measures (Steg and Vlek, 1997). Push measures attempt to discourage car use by making it less 

beneficial (e.g. implementation of a congestion pricing measure). Pull measures encourage the use 

of alternative modes to the car by making them more attractive. Cheaper public transport fares or 

new bike lanes are examples of pull measures. 

 



 

6 

 

Table 1. Travel Demand Management Measures (adapted from Steg (2005) and Cairns et al. (2008) 

TDM Measures Examples 

Hard 

measures 

Physical change 

measures 

Improving public transport 

Improving infrastructure for walking and cycling 

Park & ride schemes 

Land use planning to encourage shorter travel times 

Technical changes to make cars more energy‐efficient 

Legal policies 

Prohibiting car traffic in city centers 

Parking control 

Decreasing speed limits 

Economic policies 

Taxation of cars and fuel 

Road or congestion pricing 

Kilometer charging 

Reducing costs of public transport 

Soft 

measures 

Informative measures 

Workplace/school travel plans 

Personalized travel planning 

Public transport information and marketing 

Travel awareness campaigns 

Work schedules and 

telecommuting 

Teleworking 

Compressed workweeks 

Flexible work schedules 

1.2.2. Structural measures 

Structural measures, also referred to as hard measures, aim to change the external context in which 

choices are made (Steg and Vlek, 2009). Depending on how behavioral changes may be elicited, 

three types of hard measures can be distinguished (Steg and Tertoolen, 1999). 

First, levels of car use can be reduced improving the relative attractiveness of alternative 

travel modes through physical changes such as the provision of new infrastructure for walking and 

cycling, the introduction of new public transport routes, or removing parking places. Recently, 

different natural experiment studies have found that interventions in the built environment may 

encourage a modal shift, supporting the association between the built environment and mode 

choice (e.g. Handy et al., 2005; Saelens and Handy, 2008; Pinjari et al., 2007; Ewing and Cervero, 

2010). Examples of structural measures include improved infrastructure for public transport, 

walking and cycling and reduction of car parking places. 

A second type of strategy to enforce car use is legal regulation measures. They can include 

prohibiting car traffic in city centers, decreasing speed limits, and introducing parking regulations. 

The assumption is that people will observe these regulations and in the longer term they will lead to 

changes in social norms (Gärling and Schuitema, 2007). However, such strategies require an 

adequate organization for supervision, monitoring and enforcement, with their success depending 

on majority public support, or at least compliance (Steg and Tertoolen, 1999).  

Third, financial/economic measures can help to diminish car use making it relatively more 

expensive. Examples of economic policies include congestion or road pricing, taxation of fuels and 

cars, and reducing costs of public transport. The main assumption underlying this kind of measures 
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is that people’s behavior is rational, and they choose the alternative with the highest utility at the 

lowest costs. 

1.2.3. Informative measures 

However, hard measures do not always produce the desired results as they do not succeed in 

making car use less appealing or triggering behavior change. Traveling by car offers many personal 

benefits, both instrumental (flexibility, shorter travel times, comfort) and psychological (feeling of 

freedom, etc.) (Steg, 2005), that make it difficult to change a choice that has become habitual, even 

though other alternatives, objectively more advantageous in time, cost, and so on, do exist (Gärling 

and Fuji, 2009). Furthermore, people who behave habitually are less likely to be interested in 

information about available alternatives and tend to make decisions that involve few cognitive 

resources (Verplanken et al., 1998). For all these reasons a structural measure may not be sufficient 

to influence car drivers to change their travel behavior: they need to be informed and educated to 

enhance their knowledge (for example of transport alternatives), heightening their awareness (for 

example of environmental impacts) and modifying attitudes, thereby strengthening the propensity 

to adopt non-motorized forms of travel (Steg et al., 1999). On the basis of the studies of these 

process, soft measures, known as Voluntary Travel Behavior Change (VTBC) programs (Ampt, 

2003), were developed. They aim to change individuals’ perceptions, motivations, knowledge and 

norms (Steg and Vlek, 2009), so as to steer them toward a more pro-environmental behavior. 

Informational strategies aim to enhance car users’ knowledge of behavioral alternatives and their 

pros and cons (Steg and Vlek, 2009). They may include social modeling (e.g. preeminent public 

figures using alternative travel modes) to strengthen social norms as well as individualized 

marketing (providing people with customized information about their travel options) (Gärling and 

Schuitema, 2007). Cairns et al. (2008) identified and defined 10 different soft measures, including:  

• Workplace/school travel plans, in which a package of measures is introduced at an 

individual school/ workplace to encourage students/employees to travel more sustainably;  

• Personalized travel planning (PTP), in which individuals are provided with personalized 

information, to make them aware of available sustainable means of transport and 

encourage their use;  

• Public transport information and marketing (PTIM), which includes advertising campaigns 

and the provision of information in more accessible formats;  

• Travel awareness campaigns, in which several media are involved and attempt to enhance 

general public awareness of the negative consequences of car use.  

Numerous PTP programs have been implemented worldwide over the last 20 years adopting 

different methodological approaches. Most of them are inspired by two popular works: IndiMark 
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(TravelSmart) and Travel Blending. IndiMark (TravelSmart) (Brög et al., 2009) is a social 

marketing approach that attempts to increase users’ knowledge of transport system. The program 

targets single individuals, but it is not fully customized as participants are only provided with a 

package of general information. IndiMark has been implemented in Australia, and several 

European countries. Travel Blending (Brög et al., 2009; Taylor and Ampt, 2003) aims to reduce the 

number of car trips through a “blend” of 1) different means of transport (car, public transport, bike, 

walk), and 2) of activities in space and time (Ampt, 1999). Since its approach provides a 

quantitative feedback tailored to each individual, the measure is implemented at a smaller scale 

than the TravelSmart approach. The program, consisting in two phases, has been implemented in 

Australia since 2002.  

Other early programs include Travel Feedback Programs (Fuji and Taniguchi, 2006), which 

are the most common mobility management tool in Japan. Participants in the program receive 

feedback (e.g. CO2 produced by car use) and useful information such as timetables and frequency 

of public transport service. TPF are programs conducted on a small scale by university researchers. 

The first TFP was implemented in 1999, followed by several to date.  

Following these experiences, different types of soft measures have been implemented in 

other countries. Despite being a sparsely populated country that does little promote the use of 

public transport, in Sweden soft measures have been implemented adopting various techniques 

(Friman et al., 2013). The programs have been conducted mainly in residential areas, at 

workplaces, or at schools and included travel plans, incentives, information and feedback 

provision. Casteddu Mobility Styles (Sanjust di Teulada, et al., 2015) is a VTBC program 

implemented in Cagliari, Italy, between 2011 and 2012 for promoting a light rail service. The 

program comprised two phases. In the first phase data on current travel behavior were collected via 

a smartphone app, which were then used to create a personalized travel plan (PTP). In the second, 

after PTP delivery, travel and activity patterns were observed to detect any changes in travel 

behavior. Interestingly, Hsieh et al. (2017) conducted a randomized social experiment in Taipei 

city aimed at examining the effect of implementing two different types of personalized travel plan 

interventions, action plans and coping plans. The action plan intervention mainly followed the 

PTPs assisting commuters to create alternatives to car use; in contrast, the action-plus-coping plan 

intervention combined the action plan intervention with a strategy triggering the participants to 

reflect on the potential barriers to switching from car use to public transport, so that it was possible 

to reinforce the formulated action plans or make the plans adjustable. In Valencia, Spain, between 

2010 and 2011, Arroyo et al. (2018) implemented a travel behavior change program based on three 

different actions following Cialdini’s principles of persuasions of (2009). In the first phase all the 

participants received a report with the characteristic of their past travel behavior and information 

concerning the available sustainable travel alternatives. Then they were invited to attend a talk 
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given by a cardiologist and a sports trainer on the relationship between health and physical activity. 

Finally, respondents were invited to watch a video session where people who had recently reduced 

car use were interviewed.  

1.2.3.1. Demonstrated effects of soft measures 

Analysis of all these experiences demonstrated that soft interventions have strengths and 

weaknesses. In the UK Cairns et al. (2008) describe several experiences of soft measure 

implementation, achieving an average reduction in car use (vehicle kilometres) of 4-5%. 

Workplace travel plans reduced car use by 10-30%, school travel plans by 8-15%. Personalized 

travel planning in households achieved a reduction in car driver trips of 7-15% in urban areas and 

2-6% in rural and smaller urban areas. The implementation of the program Casteddu Mobility 

Styles (Sanjust di Teulada, et al., 2015) showed that 30% of participants were observed to have 

changed their travel behavior and a general average decrease of 8% in the distance traveled and of 

11% in the number of trips made by car was observed.  

Two meta-analyses (a statistical technique that combines the results of multiple scientific 

studies in an effort to provide quantitative estimates of treatment effects) of previous research have 

also been conducted. Möser and Bamberg (2008) examined the data set of 141 studies evaluating 

three types of soft transport policy measures implemented in various countries. According to the 

authors, all the studies analyzed used a weak quasi-experimental evaluation design.1 The soft 

measures evaluated were divided into three categories: work travel plans, travel 

planning/awareness campaign/PT marketing and school travel plans. Across all three soft policy 

measures, the results showed percent point increase of the no-car use proportion from 39% to 46%. 

In particular, for work travel plans the analysis indicated a mean increase of 12% in the proportion 

of employees not commuting by car and a 5% increase of the trip proportion not conducted by car 

for travel planning/awareness campaign/PT marketing. In the second meta-analysis, Tanigushi et 

al. (2007) investigated the results of Travel Feedback Programs (TFP) conducted in Japan. The 

programs were classified into three categories depending on the location where they were 

conducted: residential areas, workplaces or schools. The authors limited their analysis to those 

programs implemented in residential areas, because of the higher number of reports and larger 

sample sizes. The analysis results indicated a 7.3% reduction in car use, a 68.8% increase in public 

transport, and a 10.4% and 7.5% increase in intentions to limit car use and increase public transport 

use, respectively. Closer analysis of just the TFP interventions that had control groups revealed a 

                                                      

1 Wall et al. (2011) in their article in response to the one by Möser and Bamberg (2008) criticized this 

assumption, stating that at least fifteen studies used control groups to evaluate interventions.  
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12.1% reduction in car use and a 38.6% increase in public transport as well. However, the total 

number of studies was small and most of them were based on small non-representative sample. 

Hence, PTP can reduce car usage by around 10% and lead to significant increases in 

walking, cycling, and public transport use. Other experiences have shown that ‘‘soft’’ measures, 

such as PTP, generally work better when used in conjunction with relevant infrastructure 

improvements (new cycle paths, new bus routes, new pedestrian crossings, etc.) or with the 

introduction of ‘‘sticks’’ such as parking charges or reduced capacity for road traffic or parked 

vehicles (Bonsall, 2009). Cairns et al. (2008) report that plans which included parking management 

measures achieved an average reduction in car driver trips of 24%, compared with 10% for those 

that did not. A study by Transport for London shows that the implementation of smarter choice 

measures combined with a road pricing measure achieved a reduction in total traffic levels of 8– 

17%, compared with 2–4% had they been applied alone (Cairns et al., 2008).  

1.2.3.2. Procedures for the success of soft measures 

Analysis of the numerous projects conducted over the past 20 years identified the key factors 

distinguishing a successful VTBC program (Meloni and Sanjust di Teulada, 2015): 

• Target mobility context: if the context in which the measure is to be implemented is 

inappropriate, it may be ineffective. 

• Target behavior and population: selecting clear and measurable behavioral goals 

facilitates behavior change (Davies, 2012). It is also essential to target a suitable 

segment of the population for the alternative to be promoted. This implies an in-

depth knowledge of participants’ socio-economic and psychological characteristics. 

• Removing barriers to behavior change. Barriers can be identified as: 

o External barriers, associated with the transport and social-economic context; 

o Internal barriers, associated with the psycho-motivational nature of the 

travel choice and reflecting the individuals’ point of view on the travel 

choice made (negative attitude toward a certain means of transport, poor 

awareness of automobile externalities, etc.); 

o Barriers caused by habitual behavior. 

• Personalization: this is the most effective tool for breaking down internal barriers to 

a sustainable means of transport (Fujii and Taniguchi, 2006). The greater the level of 

information customization of a VTBC program, the greater its effectiveness will be 

(Meloni and Sanjust di Teulada, 2015). The proposed alternative must take into 

account individuals’ limits and needs (Stopher, 2005). Another important element is 

the contact between the VTBC program team and participants, to exchange opinions 

and offer advice (Friman et al., 2019). 
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• Information: this is the core of a VTBC program. The information provided must be 

able to influence those psychological aspects crucial to mode choice. It should be 

useful, usable, used and readily acquired (Abrahamse et al., 2005). Feedback serves 

to compare the disadvantages of actual behavior with the advantages of sustainable 

behavior, as individuals are unable to quantify them. 

• Persuasion: information, by itself may be ineffective in evoking behavior change 

(Abrahamse et al., 2005). Information needs to be integrated with communication 

and persuasion techniques, based on the knowledge of individuals’ psychology 

(Meloni and Sanjust di Teulada, 2015). 

• Use of one of three behavioral approaches or a combination thereof: 1) behavioral 

theories and models such as the Theory of Planned Behavior (Ajzen, 1991), the 

Norm Activation Model (Schwartz, 1977), the Value-Belief-Norm theory (Stern et 

al., 1999), or the Theory of Interpersonal Behavior (Triandis, 1979); 2) behavior 

change theories such as Lewin’s Theory of Change, Transtheoretical Model 

(Prochaska et al., 1982), Self-Regulation Theories (Carver et al., 1989), or the 

Model of Implementation Intention (Gollwitzer, 1993); 3) DEFRA social marketing 

(Defra, 2008) and persuasion techniques (Cialdini, 2001). 

• Evaluating the effectiveness of interventions and monitoring: evaluation of a soft 

measure is important for researchers and policy-makers (Steg and Vlek, 2009). In 

general, these are assessed in terms of car use reduction (time traveled, distance, 

number of trips) and benefits for the single individual (kilocalories [kcal] burned]) or 

community (e.g., carbon dioxide [CO2] emissions reduction). Monitoring is another 

key factor for observing any changes in travel behavior and whether changes are 

long lasting. 

1.2.3.3. Criticism of soft measures 

Notwithstanding the above results and the well-known procedures for conducting a successful 

VTBC, some contrary opinions can also be found in the literature. Tertoolen et al. (1998) found 

that although information can affect attitudes, it does not affect travel behavior. Eriksson et al. 

(2006) found that information campaigns are considered by car drivers to be a relatively ineffective 

measure compared with improving public transport and increasing fuel taxes. One problem 

associated with information is the level of personalization, as it affects the effectiveness of the 

measure. Eriksson et al. (2008) found that less than 2% of respondents believed that improving 

timetable information would persuade them to use public transport. However, a high degree of 

personalization can be costly and difficult to achieve in large scale programs (Meloni and Sanjust 

di Teulada, 2015). Another problem is how to evaluate the effectiveness of a measure, particularly 
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in the absence of a control group. VTBC programs are often conducted within broader campaigns 

launched to reduce car travel, with a focus on the overall effect (Tørnblad et al., 2014). So, without 

a control group, it is difficult to assess the effectiveness of the implementation of a single measure 

and disentangle it from a combination of effects. A study by Fuji et al. (2009) shows that outcomes 

of 15 Travel Feedback Programs conducted in Japan differ depending on whether suitable control 

groups have been included in the study or not. Another problem that affects evaluation of VTBC 

programs is the variability in travel from day to day, from season to season, and in response to 

external stimuli (Stopher et al., 2009). Multi-day self-report surveys, with the compilation of a 2-

day activity diary among those who agreed to participate, may be the best option to overcome this 

problem (Stopher et al., 2009). Another criticism is that the evaluation is highly dependent on self-

reporting (Bonsall, 2009). A solution could be the use of passive GPS devices, which require 

almost no action on the part of respondents (Stopher et al., 2009). 

1.3. EXISTING DISCRETE CHOICE MODELS 

1.3.1. Determinants of travel choice behavior 

As mentioned in 1.2.3.2, a deep understanding of the determinants of mode choice is essential to 

design environmentally sustainable transport system in line with people’s preferences (Bhat, 1998; 

Vredin Johansson et al., 2005). Modal choice can be defined as the decision process that leads an 

individual to make a travel choice among different alternatives. This process can take place 

consciously or unconsciously and its analysis includes a wide range of factors from different 

disciplines (economy, sociology, geography and psychology) (De Witte et al., 2013). In their 

literature review De Witte et al. (2013) distinguish four major determinants of modal choices:  

• Socio-demographic indicators, which include age, gender, education, occupation, income, 

household composition and car availability. 

• Spatial indicators, that characterize the spatial environment in which the trip takes place. Some 

examples are density, diversity, proximity to infrastructure and services, parking availability. 

• Journey characteristics indicators such as travel motive, distance, travel time, travel cost, 

departure time, interchange. 

• Socio-psychological indicators, concerning the personal such as experiences, lifestyle, habits 

and perceptions. 
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Table 2. Classification of modal choice determinants (adapted from De Witte et al., 2013)  

Socio-demographic 

indicators 

Spatial indicators Journey characteristics 

indicators 

Socio psychological 

indicators 

Age 

Gender 

Education 

Occupation 

Income 

Household composition 

Car availability 

Density 

Diversity 

Proximity to infrastructure 

and services 

Parking availability 

Travel motive 

Distance 

Travel time 

Travel cost 

Departure time 

Interchange 

Experiences 

Lifestyle 

Habits 

Perceptions 

 

 

Traditionally, travel choices have been studied and analyzed using the rationalist approach 

that assumes that individuals take decisions based on utility maximization (see 1.3.2.) This 

microeconomic approach treats individuals as an "optimizing black box” who select the alternative 

that minimizes their travel times and costs. The factors included in these works are mostly travel 

time and costs, individual and household characteristics. More recently, different studies have 

started to include in their analysis spatial indicators (e.g. travel tour motivation and complexity, 

residential location and neighborhood type), treating demand for travel as a derived demand, where 

people travel to pursue activities distributed in space and time (De Witte et al., 2013). 

However, this representation of consumers as individuals with predetermined wants and 

needs is inconsistent with the findings from studies of social sciences (Vij and Walker, 2016) that 

suggest that socio-psychological indicators play a key role in influencing people's mode choice. 

These studies have frequently shown that subjective constructs such as perceptions, lifestyle,  

habits can often have a greater influence on behavior than that exerted by objective observable 

variables (see for example Bamberg et al., 2003; Anable, 2005; Beirão and Cabral, 2007) 

This is especially the case when exploring the choice process that leads to drive a car. Steg 

(2005) distinguishes three different factors, of a psychological nature, influencing the use of the 

car: instrumental motives, symbolic motives and affective motives. Instrumental motives are 

related to personal benefits deriving from the use of the car (such as its speed, flexibility, and 

convenience). Symbolic motives refer to the fact that people can, through the possession and use of 

the car, express their preferences and show their social status: in fact, they can compare the value 

of their cars - and therefore their social status - with that of others (Steg, 2005). Affective motives 

refer to emotions (freedom, light-heartedness, vitality) that are transmitted by driving the car. 

1.3.2. Utility-based choice theory 

The most common theoretical construct for deriving discrete outcome models is the random utility 

theory (RUM) (McFadden, 1974), which postulates the utility-maximizing behavior by the decision 

maker. 
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Let C = {c1, ..., cj, …, cn} be a finite set of mutually exclusive alternatives and Q a given 

homogenous population of decision makers. Each alternative cj ∈ C has associated a certain level 

of utility Uqj for each individual q. This utility is known to the decision maker but not by the 

modeler. The decision maker will choose alternative j if and only if Uqj > Uqi ∀i ≠ j, with i, j ∈ C.  

The modeler cannot observe the decision maker’s utility, but only some attributes of the 

alternative and the tastes and sociodemographic attributes of the decision-maker. Therefore, the 

modeler assumes that: 

𝑈𝑞𝑗 = 𝑉𝑞𝑗 + 𝜀𝑞𝑗                                                                                                                                             (1.1) 

Where 𝑉𝑞𝑗 is the observed part of the utility and εqj captures the factors that affect utility but are not 

included in Vqj. Vqj can be expressed as f (βq, xjq), where xjq represents a vector of measured 

attributes of alternative j as faced by decision-maker q and βn is a vector of parameters representing 

the tastes of decision-maker q, which is to be estimated from the data. Usually all parameters enter 

the utility function linearly, although, in many cases, the use of a non-linear formulation has clear 

advantages (see for example Mandel et al., 1997).  

Since the modeler does not know 𝜀𝑞𝑗, he treats these terms as random, meaning that the 

deterministic choice process is represented as a probabilistic phenomenon. The probability that 

decision maker q chooses alternative j is: 

𝑃𝑞𝑗 = 𝑃𝑟𝑜𝑏(𝑈𝑞𝑗 > 𝑈𝑞𝑖  ∀𝑖 ≠ 𝑗)   

= 𝑃𝑟𝑜𝑏(𝑉𝑞𝑗 + 𝜀𝑞𝑗 > 𝑉𝑞𝑖 + 𝜀𝑞𝑖  ∀𝑖 ≠ 𝑗)   

= 𝑃𝑟𝑜𝑏(𝜀𝑞𝑖 − 𝜀𝑞𝑗 < 𝑉𝑞𝑗 − 𝑉𝑞𝑖 ∀𝑖 ≠ 𝑗)                                                                                                    (1.2)  

with the unobserved part of utility varying randomly across respondents. The random vector εq 

possesses a joint density distribution f(εq), with zero mean and covariance matrix Ω. The 

cumulative probability can be written now as: 

𝑃𝑞𝑗 = 𝑃𝑟𝑜𝑏(𝜀𝑞𝑖 − 𝜀𝑞𝑗 < 𝑉𝑞𝑗 − 𝑉𝑞𝑖 ∀𝑖 ≠ 𝑗) 

= ∫ 𝐼(𝜀𝑞𝑖 − 𝜀𝑞𝑗 < 𝑉𝑞𝑗 − 𝑉𝑞𝑖 ∀𝑗 ≠ 𝑖)𝑓(𝜀𝑞)𝑑𝜀𝑞

𝜀

                                                                                    (1.3) 

where I(·) is the indicator function, equaling 1 if the term in parentheses is true and 0 otherwise. 

Different discrete choice models may be obtained from different specifications of the density, 

though the integral takes a closed form only for certain distributions of εq.  

Equation (1.2) shows that if a constant is added to the utility of all alternatives, or all utilities 

are multiplied by the same constant, the alternative with the highest utility does not vary, leading to 

the conclusion that the absolute level of utility is irrelevant and only differences in utility matter.   

The use of the RUM paradigm has many advantages, so that forcing choice models to that 

paradigm, where possible, is often found to be beneficial, even though there it could entail a loss of 

explanatory power or clarity of theoretical exposition of the model (Hess et al., 2018). The main 
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benefit of the RUM approach is its link with microeconomic theory and its large apparatus of 

methodologies and tests of behavior. Positioning the modeling approach within such an accepted 

behavioral framework helps in achieving acceptance for the approach, as it is always possible to 

provide evidence of its strength and weaknesses (Hess et al., 2018). 

1.3.3. The multinomial logit model 

The multinomial logit model is the simplest and one of the most used choice model forms 

(Domencich and McFadden, 1975). The logit model is obtained by assuming that each εqi is an 

independently, identically distributed (iid) extreme value (also called Gumbel) with variance π2/6. 

With this assumption, the choice probability for alternative i and individual q is given by (Train, 

2009): 

𝑃𝑞𝑖 =
ⅇ𝑉𝑞𝑖

∑ ⅇ𝑉𝑞𝑗
𝑐𝑗∈𝐶

                                                                                                                                         (1.4) 

If utility is specified to be linear in parameters 𝑉𝑖𝑞 = 𝜷′𝒙𝑞𝑖, the logit probability becomes: 

𝑃𝑞𝑖 =
ⅇ

𝜷′𝒙𝑞𝑖

∑ ⅇ
𝜷′𝒙𝑞𝑗

𝑐𝑗∈𝐶

                                                                                                                                          (1.5)    

As demonstrated by McFadden (1974), the log-likelihood with these choice probabilities is 

globally concave in parameters β.  

The multinomial logit model satisfies the axiom of independence of irrelevant alternatives 

(IIA), meaning that the relative probability of choosing one alternative over another is independent 

of the attributes or even existence of other alternatives. Another effect of the IIA property is that 

the cross elasticities of logit probabilities are uniform, thus the percentage change in the probability 

of choosing alternative i, given a percentage change in attribute m of alternative j, is constant for all 

i≠j (Ben-Akiva and Lerman, 1985; Mokhtarian, 2016). Even though in different travel behavior 

contexts the IIA property is not a realistic assumption (see Ben-Akiva and Lerman, 1985 and Train, 

2009), there are however also cases where the IIA is valid and its employment is a considerable 

advantage, such as when we want estimated model parameters on a subset of alternatives for each 

sampled decision maker or we are only interested in analyzing choices among a subset of 

alternatives (Train, 2009).  

1.3.3.1. The role of the scale parameter 

As stated in  utility can be expressed as 𝑈𝑞𝑗
∗ = 𝑉𝑞𝑗 + 𝜀𝑞𝑗

∗  , where the unobserved part has variance 

𝜎2 × (𝜋2/6). Since the scale of utility is irrelevant and only differences in utilities matter, 𝑈𝑞𝑗 can 

be divided by σ without changing behavior, so that: 

𝑈𝑞𝑗 =
𝑉𝑞𝑗

𝜎
+ 𝜀𝑞𝑗                                                                                                                                             (1.6) 
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Where 𝜀𝑞𝑗 = 𝜀𝑞𝑗
∗ /𝜎. The choice probability can be expressed as 

𝑃𝑞𝑖 =
ⅇ

𝑉𝑞𝑖
𝜎

∑ ⅇ

𝑉𝑞𝑗
𝜎

𝑐𝑗∈𝐶

                                                                                                                                          (1.7)          

If 𝑉𝑞𝑗 is linear in parameters with coefficients 𝛽∗, the choice probability is: 

𝑃𝑞𝑖 =
ⅇ

(𝜷∗/𝜎)′𝒙𝑞𝑖

∑ ⅇ
(𝜷∗/𝜎)′𝒙𝑞𝑗

𝑐𝑗∈𝐶

                                                                                                                                   (1.8)  

with each coefficient scaled by 1/𝜎. The parameter 𝜎 is called scale parameter, because it scales 

the utility to reflect the variance of the unobserved portion of utility (Train, 2009). Because σ 

cannot be identified, only the ratio 𝛽∗/𝜎 can be estimated.  

We assumed that the variance of unobserved factors is the same for all individuals in the 

sample. However, in some situations, the variance of the error terms can vary among different 

segments of the population. Swait and Louviere (1993) examine the role of the scale parameter in 

discrete choice models, investigating the several reasons that lead the variances to differ over 

observations. 

1.3.4. The nested logit model 

To overcome the IIA limitation in simple MNL models a class of models known as generalized 

extreme value models was developed by McFadden (1978). All the models are based on the use of 

the extreme-value distribution, which allows for various levels of correlation among the 

unobserved part of utility across alternatives.  

The nested logit (NL) model is one of the more commonly used models in this class. The 

idea behind a nested logit is to divide the choice set into nests of alternatives, in such a way that for 

any two alternatives that are in the same nest, the ratio of probabilities is independent of the 

attributes or existence of all other alternatives and for any two alternatives in different nests, the 

ratio of probabilities can depend on the attributes of other alternatives in the two nests (this sets up 

an IIA violation in the nest). 

Mathematically, McFadden (1981) has shown the NL disturbance assumption leads to the 

following model structure for observation q choosing outcome i in nest j is 

𝑃𝑞(𝑖) =
ⅇ𝜷′𝒙𝑞𝑖+𝜙𝑖𝐿𝑞𝑖

∑ ⅇ𝜷′𝒙𝑞𝐼+𝜙𝐼𝐿𝑆𝑞𝐼

𝐼

                                                                                                                           (1.9) 

𝑃𝑞(𝑗|𝑖) =
ⅇ

𝛽𝑗|𝑖
′ 𝒙𝑞

∑ ⅇ
𝜷𝐽|𝑖

′ 𝒙𝑞

𝐽

                                                                                                                                  (1.10)  
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𝐿𝑆𝑞𝑖 = 𝑙𝑛 (∑ ⅇ𝜷𝐽|𝑖
′ 𝒙𝑞

𝑗

)                                                                                                                            (1.11) 

where Pq(i) is the unconditional probability of observation q having discrete outcome i, the x are 

vectors of observed characteristics, the β are vectors of estimable parameters, Pq(j|i) is the 

probability of observation q having discrete outcome j conditioned on the outcome being in 

outcome category i, J is the conditional set of outcomes (conditioned on i), I is the unconditional 

set of outcome categories, LSiq is the inclusive value (logsum), and ϕi is an estimable parameter. 

Note that this equation system implies that the unconditional probability of having outcome j is:  

𝑃𝑞(𝑗) = 𝑃𝑞(𝑖) × 𝑃𝑞(𝑗|𝑖)                                                                                                                              (1.12) 

1.3.5. The heteroskedastic logit 

Instead of capturing correlations among alternatives, the analyst may only want to allow different 

variances on the random components across alternatives. Bhat (1995) developed a random utility 

model with independent, but non-identical error terms distributed with a type I extreme value 

distribution, called heteroskedastic logit.  

The random utility of alternative i, Uqi, is specified as Uqi = Vqi + εi, where Vqi is the 

systematic component of the utility of alternative i which is a function of observed attributes of 

alternative i and observed characteristics of the individual q, and εi is the random component of the 

utility function. It is assumed that the random components in the utilities of the different 

alternatives have a type I extreme value distribution and are independent, but non-identically 

distributed. It is also assumed that the random components have a location parameter equal to zero 

and a scale parameter equal to θi for the ith alternative. Thus, the probability density function and 

the cumulative distribution function of the random error term for the ith alternative are: 

𝑓(𝜀𝑖) =
1

𝜃𝑖
ⅇ

− 
𝜀𝑖
𝜃𝑖ⅇ−ⅇ

− 
𝜀𝑖
𝜃𝑖   𝑎𝑛𝑑 𝐹𝑖(𝑧) = ∫ 𝑓(𝜀𝑖)𝑑𝜀𝑖 = ⅇ−ⅇ

− 
𝑧

𝜃𝑖

𝜀𝑖=𝑧

𝜀𝑖=−∞

                                                     (1.13) 

Thus, the choice probabilities for this heteroskedastic logit are: 

𝑃𝑞𝑖 = ∫ ∏ 𝛬 [
𝑉𝑖 − 𝑉𝑗 + 𝜀𝑖

𝜃𝑗
]

𝑗∈𝐶,𝑗≠𝑖

1

𝜃𝑖
𝜆 ( 

𝜀𝑖

𝜃𝑖
)

𝜀𝑖=+∞

𝜀𝑖=−∞

𝑑𝜀𝑖                                                                              (1.14) 

where λ (∙) and Λ(∙) are the probability density function and cumulative distribution function of the 

standard type I extreme value distribution, respectively, 

𝜆 (𝑡) = e−𝑡ⅇ−e−𝑡
  𝑎𝑛𝑑 𝛬(𝑡) = ⅇ−ⅇ−𝑡

 . 

The integral does not take a closed a form, but it can be approximated by simulation. 
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1.3.6. The multinomial probit model 

An attractive solution to overcome the limits of multinomial logit model is to use the multinomial 

probit (MNP) framework (Hausman & Wise, 1976; Daganzo, 2014). The multinomial probit model 

assumes that the underlying utility functions follow a joint multivariate normal (MVN) distribution 

with zero mean and arbitrary covariance matrix. This means that the variances may be different, 

and the error terms may be correlated in any fashion, so that probit models can accommodate 

random taste variation, allow any pattern of substitution and handle panel data.  

The only limitation of probit models is that the normal distribution assumption for model 

parameters might be inappropriate in some situations and can lead to issues in results interpretation. 

A prominent example concerns cost coefficient values. In a probit model with random taste 

variations, the normal distribution assumption for price coefficient would imply the presence of 

people with a wrongly positive price coefficient. The same applies to travel time coefficients, 

which, in a transportation context, are expected to be negative. Other than this limitation, the probit 

model is quite general. 

The MNP choice probabilities are defined as: 

𝑃𝑞𝑖 = 𝑃𝑟𝑜𝑏(𝑉𝑞𝑖 + 𝜀𝑞𝑖 > 𝑉𝑞𝑗 + 𝜀𝑞𝑗 ∀ 𝑗 ≠ 𝑖)             

= ∫ 𝐼(𝑉𝑞𝑖 + 𝜀𝑞𝑖 > 𝑉𝑞𝑗 + 𝜀𝑞𝑗 ∀ 𝑗 ≠ 𝑖)𝜙(𝜀𝑞)𝑑𝜀𝑞                                                                                (1.15)

𝜀𝑞

 

Where I(·) is the indicator function and 𝜙(𝜀𝑞) is the density of εq given by: 

 𝜙(𝜀𝑞) =  
1

(2𝜋)
𝐽
2|𝛴|

1
2

ⅇ−
1 
2

𝜀𝑞
′ 𝛴−1𝜀𝑞                                                                                                              (1.16) 

The integral is over all values of εq and does not have a closed form, hence it must be 

evaluated numerically through simulation. 

In the case of a binary probit model, it can be shown (Ortúzar and Willumsen, 2010) that the 

choice probability can be expressed as: 

𝑃1 = 𝜙[(𝑉1 − 𝑉2)/𝜎𝜀]                                                                                                                                (1.17) 

with 𝜎𝜀 defined as 

𝜎𝜀
2 = 𝜎1

2 + 𝜎2
2 − 2𝜌𝜎1𝜎2 

where ρ is the correlation coefficient between the utilities U1 and U2. 

1.3.7. The mixed multinomial logit model 

The mixed logit (ML) model, also called random parameter or error-component logit, is a 

generalization of the standard logit model and can approximate any random utility model to any 

degree of accuracy (McFadden and Train, 2000). The first applications of mixed logit date to the 

early 1980s for evaluating market demand for car attributes (Boyd and Mellman, 1980; Cardell and 
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Dunbar, 1980). The current form originated from the work of Train et al. (1987), Ben-Akiva et al. 

(1993), Bhat (1998), Brownstone and Train (1998) for cross-sectional data, Revelt and Train 

(1998), Bhat (2000) for panel data.  

Mixed logit choice probabilities are calculated as the integrals of multinomial logit 

probabilities over a density distribution of parameters that can vary randomly across customers, 

such as 

𝑃𝑞𝑖 = ∫ 𝐿𝑞𝑖(𝛽)𝑓(𝛽) 𝑑𝛽                                                                                                                             (1.18) 

Where 𝐿𝑞𝑖(𝛽) is the logit probability evaluated at parameters 𝛽 for individual q and alternative i 

𝐿𝑞𝑖 =
ⅇ

𝑉𝑞𝑖(𝜷)

∑ ⅇ
𝑉𝑞𝑗(𝜷)

𝑐𝑗∈𝐶

                                                                                                                                      (1.19)  

and 𝑓(𝛽) is a density function. If 𝑓(𝛽) is degenerate at fixed parameters b ( (𝛽) = 1 for 𝛽 = 𝑏 and 

𝑓(𝛽) = 0 otherwise), the choice probability becomes the simple multinomial logit formula.  

The mixing distribution 𝑓(𝛽) can be discrete or continuous. In the first case the mixed logit 

becomes the latent class model, used in many fields such as psychology and marketing (see Greene 

and Hensher, 2003). In the second case, given a choice of distribution 𝑓(𝛽) , described by a set of 

parameters θ, the mixed logit choice probability is given by 

𝑃𝑞𝑗 = ∫ 𝐿𝑞𝑖
(𝛽)𝑓(𝛽 ∣ 𝜃) 𝑑𝛽                                                                                                                      (1.20) 

1.3.7.1. Model specification 

The mixed logit model can be derived under different behavioral specifications, each approach 

being conceptually different, though mathematically equivalent.  

The more classical derivation is based on random coefficients structure, in which the 

coefficients vary over decision makers in the population with density 𝑓(𝛽). The utility of person q 

from alternative j is specified as 

𝑈𝑞𝑗 = 𝜷𝑞
′ 𝒙𝑞𝑗 + 𝜀𝑞𝑗                                                                                                                                     (1.21) 

where 𝑥𝑞𝑗 are observed variables, βq is a vector of coefficient of these variables representing a 

person’s tastes and 𝜀𝑞𝑗 is a random term iid extreme value. The density function 𝑓(𝛽) is a function 

of parameters θ and can take different forms such as normal, lognormal, uniform or triangular.  

For a given value of βq, the conditional probability for choice i is standard logit, since the 𝜀𝑞𝑗 

are iid extreme value: 

𝐿𝑞𝑖(𝛽𝑞) =
ⅇ

𝜷𝑞
′ 𝒙𝑞𝑖

∑ ⅇ
𝜷𝑞

′ 𝒙𝑞𝑗

𝑗

                                                                                                                                 (1.22)  
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However, it is not possible to know the true value of βq and therefore to condition on β. So, 

the unconditional choice probability is given by the integral of the expected value of Lqi weighted 

by the density of βq. The unconditional probability is  

𝑃𝑞𝑖 = ∫
ⅇ𝜷𝑞

′ 𝑥𝑞𝑖

∑ ⅇ𝜷𝑞
′ 𝑥𝑞𝑗

𝑗

𝑓(𝛽) 𝑑𝛽                                                                                                                     (1.23) 

The second interpretation of the mixed multinomial logit model is that of the error-components 

specification. In this case the utility of an alternative j for a decision-maker q can be specified as: 

𝑈𝑞𝑗 = 𝛼′𝑥𝑞𝑗 + 𝜇𝑞
′ 𝑧𝑞𝑗 + 𝜀𝑞𝑗                                                                                                                      (1.24) 

Where 𝑥𝑞𝑗 is a vector of observed variables relating to the alternative j, 𝑧𝑞𝑗is a vector of 0 and 1 

terms which determine what error-components enter the utility of alternative j, 𝛼 is a vector of 

fixed coefficients, µ is a vector of random terms with zero mean and a covariance matrix Σ, and εqj 

is iid extreme value. The unobserved portion of utility is 𝜂𝑞𝑗 = 𝜇𝑞
′ 𝑧𝑞𝑗 + 𝜀𝑞𝑗. With 𝑧𝑞𝑗 containing 

only zero entries ∀j, the model reduces to a standard multinomial logit. If 𝑧𝑞𝑗 is different from zero, 

correlation among alternatives is introduced: 𝐶𝑜𝑣(𝜂𝑞𝑖 , 𝜂𝑞𝑗) = 𝐸(𝜇𝑞
′ 𝑧𝑞𝑖 + 𝜀𝑞𝑖)(𝜇𝑞

′ 𝑧𝑞𝑗 + 𝜀𝑞𝑗) =

𝑧𝑞𝑖
′  𝑊𝑧𝑞𝑗, where W is the covariance of µq. 

The choice probability for alternative j is then obtained by integration over the distribution of µq, 

with 

𝑃𝑞𝑖 = ∫
ⅇ𝛼′𝑖+𝜇𝑞

′ 𝑧𝑞𝑖

∑ ⅇ𝛼′𝑥𝑞𝑗+𝜇𝑞
′ 𝑧𝑞𝑗

𝑗

𝑓(𝛾𝑞 ∣ 0, Σ) 𝑑𝛾𝑞                                                                                            (1.25) 

1.3.8. Models of ordered discrete data 

Many transportation applications involve the assessment of influences on a choice amongst ordered 

discrete alternatives (Greene and Hensher, 2010). Examples include situations where respondents 

are asked to provide ratings, ordered opinions or categorical frequency. Although these response 

data are discrete, use of standard or nested multinomial discrete models is not a proper way to 

model data of an ordered nature. To address the problem of ordered discrete data, ordered 

probability models have been developed (McKelvey and Zavoina, 1975). 

An ordered-response model postulates the presence of a latent continuous variable for each 

individual q, such that 

𝑦𝑞
∗ = 𝜷′𝒙𝑞 + 𝜀𝑞                                                                                                                                           (1.26) 

where β’ is the vector of parameters to be estimated and xq and εq are vectors of explanatory 

variables and random error term, respectively. Using this equation, observed ordinal data, y, are 

defined as 
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𝑦𝑞 = 1 𝑖𝑓 𝑦𝑞
∗ ≤ 𝜇0 

𝑦𝑞 = 2 𝑖𝑓 𝜇0 < 𝑦𝑞
∗ ≤ 𝜇1 

𝑦𝑞 = 3 𝑖𝑓 𝜇1 < 𝑦𝑞
∗ ≤ 𝜇2                                                                                                                            (1.27) 

𝑦𝑞 = ⋯ 

𝑦𝑞 = 𝐼 𝑖𝑓 𝑦𝑞
∗ ≥ 𝜇𝐼−2 

where the μ are unknown parameters, known as "cut-points" or “threshold parameters”, to be 

estimated and ordered from the lowest to the highest. I is the highest integer ordered response. 

Once a distribution for ε is specified, the probability of I specific ordered responses for each 

observation q can be calculated exactly. If εq is assumed to be normally distributed across 

observations with mean = 0 and variance =1 an ordered probit is obtained. The probabilities are as 

follows: 

𝑃(𝑦𝑞 = 1) = Ф(−𝜷′𝒙𝑞) 

𝑃(𝑦𝑞 = 2) = Ф(𝜇1 − 𝜷′𝒙𝑞) − Ф(𝜷′𝒙𝑞) 

𝑃(𝑦𝑞 = 3) = Ф(𝜇2 − 𝜷′𝒙𝑞) − Ф(𝜇1 − 𝜷′𝒙𝑞)                                                                                (1.28)     

… 

𝑃(𝑦𝑞 = 𝐼) = 1 − Ф(𝜇𝐼−2 − 𝜷′𝒙𝑞) 

where Ф(∙) is the cumulative normal distribution and the threshold μ0 is set equal to 0 (this implies 

that one need only estimate I-2 thresholds). 

The likelihood function over the population of Q observations is 

𝐿( 𝑦 ∣∣ 𝛽, µ ) = ∏ ∏[Ф(𝜇𝑖 − 𝜷′𝒙𝑞) − Ф(𝜇𝑖+1 − 𝜷′𝒙𝑞)]
𝛿𝑖𝑞

𝐼

𝑖=1

𝑄

𝑞=1

                                                        (1.29) 

where 𝛿𝑖𝑞 is a dummy variable taking the value of 1 if the observed discrete outcome for the 

observation q is i, zero otherwise. The corresponding log-likelihood function is: 

𝐿𝐿 = ∑ ∑ 𝛿𝑖𝑞𝑙𝑛[Ф(𝜇𝑖 − 𝜷′𝒙𝑞) − Ф(𝜇𝑖+1 − 𝜷′𝒙𝑞)]

𝐼

𝑖=1

𝑄

𝑞=1

                                                                    (1.30) 

If the assumption is made that εq is logistically distributed across observations with mean=0 

and variance=1, an ordered logit model results. In such case, probabilities are expressed as: 

𝑃(𝑦 = 1) =
ⅇ[−𝜷′𝒙𝑞]

1 + ⅇ[−𝜷′𝒙𝑞]
 

𝑃(1 < 𝑦 < 𝐼) =
ⅇ[𝜷′𝒙𝑞−𝜇𝑦−1]

1 + ⅇ[𝜷′𝒙𝑞−𝜇𝑦−1]
−

ⅇ[𝜷′𝒙𝑞−𝜇𝑦]

1 + ⅇ[𝜷′𝒙𝑞−𝜇𝑦]
                                                                          (1.31) 

𝑃(𝑦 = 𝐼) =
ⅇ[𝜷′𝒙𝑞−𝜇𝐼−1]

1 + ⅇ[𝜷′𝒙𝑞−𝜇𝐼−1]
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Figure 1. Illustration of an ordered probability model with µ0 = 0 (from Washington et al., 2010) 

The most natural way to interpret model parameter β is to determine how a marginal change 

in one of the explanatory variables xk changes the distribution of the outcome variable, i.e. all the 

outcome probabilities. These marginal probability effects can be calculated as 

𝜕𝑃(𝑦𝑞 = 𝑘)

𝜕𝑥
= [𝜙(𝜇𝑖−1 − 𝛽𝑥𝑞) − 𝜙(𝜇𝑖 − 𝛽𝑥𝑞)]𝛽                                                                            (1.32) 

where ϕ(∙) is the standard normal density. In case of discrete variables, it is more appropriate to 

consider the changes in probability before and after the change in the variable instead of the partial 

effects using: 

∆𝑃(𝑦 = 𝑘|𝑥𝑞 , 𝑥̃𝑞) = 𝑃(𝑦𝑞 = 𝑘|𝑥̃𝑞) − 𝑃(𝑦𝑞 = 𝑘|𝑥𝑞)                                                                        (1.33) 

where all elements of 𝑥̃𝑞are equal to 𝑥𝑞 except for the v-th element, which is equal to 𝑥̃𝑞𝑣 = 𝑥𝑞𝑣 +

∆𝑥𝑞𝑣  for the discrete change ∆𝑥𝑞𝑣  in the variable 𝑥𝑣 .  

1.3.8.1. The generalized ordered probit/logit 

A limitation of the ordered probit/logit is that it assumes that the thresholds μ are the same for 

every individual in the sample. This can lead to biased and inconsistent estimates of the effect of 

variables (Srinivasan, 2002; Eluru et al., 2008). Following the formulation proposed by Terza 

(1985), the latent propensity can be expressed as:  

𝑦𝑞
∗ = 𝜷𝑞

′ 𝒙𝑞 + 𝜀𝑞 ,       𝑦𝑞 = 𝑘 𝑖𝑓 𝜇𝑞,𝑘−1 < 𝑦𝑞
∗ <  𝜇𝑞,𝑘                                                                            (1.34) 

The β vector and the µ thresholds are now subscripted by the index q to indicate that these 

parameters can vary across ordered alternatives of different individuals due to observed and 

unobserved factors. 

The thresholds µq,k , now a function of exogenous attributes of the decision maker with 

corresponding parameter vectors, are expressed as 
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𝜇𝑞,𝑘 = 𝜇𝑞,𝑘−1 + 𝛼𝑞,𝑘 + 𝛾𝑞,𝑘
′ 𝑧𝑞,𝑘                                                                                                              (1.35) 

To immediately guarantee the ordering of the thresholds (−∞ < 𝜇𝑞,1 < 𝜇𝑞,2 < ⋯ < 𝜇𝑞,𝐼 < ∞ ) 

for each and every individual q, Eluru et al. (2008) proposed the following specific parametric 

form of the thresholds: 

𝜇𝑞,𝑘 = 𝜇𝑞,𝑘−1 + ex p(𝛼𝑞,𝑘 + 𝛾𝑞,𝑘
′ 𝑧𝑞,𝑘)                                                                                                   (1.36) 

where zqk is a set of exogenous variables associated with the k-th threshold (excluding a constant), 

𝛾𝑞,𝑘
′  is a corresponding vector of coefficients, and 𝛼𝑞,𝑘 is a parameter associated with the outcome 

level k = 1, 2, …, I-2. 

1.3.8.2. The multivariate ordered probit 

While applications of the ordered response models are quite widespread, many of them are 

confined to the analysis of a single outcome. However, respondents’ answers to different questions 

could be related and the analyst might want to include this phenomenon in the analysis. To account 

for possible within-outcome correlation, a multivariate ordered-response system framework can be 

used (for a complete discussion of the problem the reader is referred to Srinivasan and Bhat 2005; 

Ferdous et al., 2010; Greene and Hensher, 2010). 

A multivariate ordered response model structure assumes an underlying set of multivariate 

continuous latent variables whose horizontal partitioning maps into the observed set of ordered 

outcomes. Such an ordered response system allows the use of a general covariance matrix for the 

underlying latent variables, which translates to a flexible correlation pattern between the observed 

ordered outcomes. 

Let q be an index for individuals (q = 1, 2, …, Q) and let i be the index for ordered variables 

(i = 1, 2, …, I), where I is the total number of dependent variables for each individual. Let the 

observed level for individual q and variable i be kqi. As seen in the previous paragraph the latent 

propensity y* for each category can be written as: 

𝑦𝑞𝑗
∗ = 𝛽𝑗

′𝑥𝑞𝑗 + 𝜀𝑞𝑗,     𝑦𝑞𝑗 = 𝑘      𝑖𝑓 𝜇𝑗
𝑘−1 < 𝑦𝑞𝑖

∗ <  𝜇𝑗
𝑘                                                                       (1.37) 

The εqj terms are assumed to be independent and identical across individuals (for each and all 

i). For identification reasons, the variance of each εqj term is normalized to 1. However, the model 

allows correlation in the εqi terms across variables i for each individual q. If 𝜀𝑞 =

(𝜀𝑞1, 𝜀𝑞2, 𝜀𝑞3, … , 𝜀𝑞𝐼 )
′
, then εq is multivariate normally distributed (MVN) with a mean vector of 

zeros and a correlation matrix Σ as follows: 

𝜀𝑞~𝑁 [(

0
0
⋮
0

) , (

1 𝜌12 𝜌13

𝜌21 1 𝜌23

⋯
⋯

𝜌1𝐼

𝜌2𝐼

⋮ ⋮ ⋮ ⋱ ⋮
𝜌𝐼1 𝜌𝐼2 𝜌𝐼3 ⋯ 1

)]                                                                                  (1.38) 

Or  
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𝜀𝑞~𝑁[0, Σ] 

The off-diagonal terms of Σ capture the error covariance across the underlying latent 

continuous variables of the different ordinal variables. In other words, the off-diagonal terms Σ 

capture the effects of common unobserved factors that influence the propensity of ordered response 

levels for each attitudinal variable. As a special case, if all the correlation parameters are zero, the 

model system collapses to a set of independent ordered response probit models. The parameter 

vector of the multivariate ordered probit model is 

𝛿 = (𝛽1
′ , 𝛽2

′ , … , 𝛽𝐼
′; 𝝁1

′ , 𝝁2
′ , … , 𝝁𝐽

′ ; 𝛺′ )
′
                                                                                                   (1.39) 

where 𝜇𝑗 = (𝜇𝑗
1, 𝜇𝑗

2, … , 𝜇𝑗
𝐾𝑖−1

 )
′
 for j = 1, 2, …, J and 𝛺′ are the off-diagonal terms of Σ matrix. Let 

the actual observed ordered response level for individual q and dependent variable i be mqi. Then, 

the likelihood function (L) for individual q may be written as:  

𝐿𝑞(𝛿) = Pr (𝑦𝑞1 = 𝑚𝑞1, 𝑦𝑞2 = 𝑚𝑞2, … , 𝑦𝑞𝐼 = 𝑚𝑞𝐽)                                                                        (1.40)  

1.3.9. The Integrated Choice Latent Variable Model 

Microeconomic theory has tended to consider decision makers as rational self-interested actors 

engaged in a constant process of evaluating the costs and benefits associated with any choice, 

trying to maximize their personal well-being given market constraints (Vij and Walker, 2016). 

Traditional discrete choice models have focused their analysis on observable variables, such as 

product attributes and socioeconomic characteristics, and treated consumers as optimizing black 

boxes with predetermined wants and needs is at odds (Vij and Walker, 2016). However, as seen in 

1.3.1, this approach is in contrast with the findings from studies in the social sciences which have 

shown that choice behavior can also be influenced by psychological factors such as affections, 

attitudes, norms, and preferences (Ben-Akiva et al., 1999). 

Only in the last two decades have models of disaggregate decision-making started to include 

latent constructs for capturing the impact of subjective factors on choice process. These kinds of 

models, called hybrid choice models (HCM) or integrated choice and latent variable (ICLV) 

models, proposed in the 1980's by McFadden (1986) and Train et al. (1987), only became popular 

in 2002 following the work of Ben-Akiva et al. (2002). As a result, an increasing number of 

researchers have begun to adopt these models in transportation and logistics contexts. Some 

examples include the study of travel mode choice (Paulssen et al., 2014; Vij et al., 2013; 

Kamargianni and Polydoropoulou, 2013; Abou-Zeid and Ben-Akiva, 2011), route choice (Bhat et 

al., 2015; Prato et al., 2012), departure time (Thorhauge et al., 2016), fuel/vehicle type choice 

(Daziano and Bolduc, 2013; Glerum et al., 2013), freight (Bergantino et al., 2013), etc. 
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1.3.9.1. Methodology Framework 

In the general formulation of the ICLV models, two components can be distinguished: the latent 

variable model and the discrete choice model (Figure 2).  

The latent variable model is composed of a set of structural equations, which describe the 

latent variables (e.g. attitudes, perceptions) in terms of observable exogenous variables, and a 

group of measurement equations that link the latent variable to indicators. Because the latent 

constructs are not observable, the analyst obtains information about them from observed responses 

to questions of a survey: the indicators, which can be continuous, binary or ordered variables. By 

simultaneously integrating discrete choice and latent variable models, the latent variables can be 

seen as explanatory variables included in the utilities of choice alternatives.  

 

Figure 2 Framework for Integrated Choice Latent Variable model (from Ben-Akiva et al., 2002 and Daziano and Bolduc, 

2013) 

1.3.9.1.1. Structural equations 

For the latent variable model, the distribution of the latent variable given the explanatory variables 

is required. For example: 

𝑥𝑞
∗ = ℎ(𝒙𝑞; 𝝀) + 𝜔𝑞  and  𝜔𝑞~𝐷(0, 𝛴𝜔)                                                                                               (1.41) 

where xq is a vector of explanatory variables (observed or latent), λ is a vector of K parameters (to 

be estimated from data) and ωq is the (random) error term. Note that the most common 

specification for the function h is linear:  

ℎ(𝑥; 𝛾) = 𝜆0 + ∑ 𝜆𝑘𝒙𝑘                                                                                                                           (1.42)

𝐾

𝑘=1

 

For the discrete choice part of the model, the distribution of the utilities is 



 

26 

 

𝑈𝑞 = 𝑉(𝒙𝑞 , 𝒙𝑞
∗ ; 𝜷) + 𝜀𝑞 and 𝜀𝑞~𝐷(0, 𝛴𝜀)                                                                                            (1.43) 

Note that the systematic part of the random utility is a function of both observable and latent 

variables. 

1.3.9.1.2. Measurement equations 

The latent variable model requires the distribution of the indicators conditional on the values of the 

latent variables  

𝐼𝑞 = 𝑚(𝑥𝑞 , 𝑥𝑞
∗ ; 𝛼) + 𝜐𝑞 and 𝜐𝑞~𝐷(0, 𝛴𝜐)                                                                                             (1.44) 

where In is the reported value, x* is the latent variable, xq is a vector of explanatory variables, α a 

vector of parameters and υn is the random error. 

The measurement equation of the discrete choice model is defined by a dummy variable 

that takes the value one if the alternative chosen has the highest utility, zero otherwise: 

y𝑖 = {
1, 𝑖𝑓 𝑈𝑖 = 𝑚𝑎𝑥𝑗{𝑈𝑗}

0  𝑜𝑡ℎⅇ𝑟𝑤𝑖𝑠ⅇ
                                                                                                                       (1.45)  

1.3.9.1.3. Likelihood function 

If the latent variable were not present, the likelihood function would be 

 𝑃(𝑦|𝑥; 𝛽; 𝛴𝜀)                                                                                                                                              (1.46) 

The choice model can take different forms, e.g., logit, nested logit, probit, ordered probit, 

ordered logit, and can include the combination of different choice indicators such as stated and 

revealed preferences. 

In a setting with the latent variables, if error components ε and ω are independent, the likelihood 

function is the integral of the choice model over the distribution of the latent constructs 

𝑃(𝑦|𝒙; 𝜷, 𝝀, 𝜮𝜀, 𝜮𝜔) = ∫ 𝑃(𝑦|𝒙, 𝒙∗; 𝜷, 𝜮𝜀)

𝒙∗

𝑔(𝒙∗|𝒙; 𝝀, 𝜮𝜔)𝑑𝒙∗                                                      (1.47) 

which is an integral of dimension equal to the number of latent variables in x* and g is the density 

function of the latent variable. 

To characterize the unobserved latent variables and improve the accuracy of estimates of the 

structural parameters, indicators are introduced. Assuming the error components (ω, ε, υ) are 

independent, the joint probability of observing variables y and I is: 

𝑃(𝑦, 𝐼|𝒙; 𝜶, 𝜷, 𝝀, 𝛴𝜀 , 𝛴𝜐, 𝛴𝜔) = ∫ 𝑃(𝑦|𝒙, 𝒙∗; 𝜷, 𝛴𝜀)𝑓(𝐼|𝒙, 𝒙∗; 𝜶, 𝛴𝜐)

𝒙∗

𝑔(𝒙∗|𝒙; 𝝀, 𝛴𝜔)𝑑𝒙∗           (1.48) 

Note that the first term of the integrand corresponds to the choice model, the second term to 

the measurement equation from the latent variable model, and the third term to the structural 

equation from the latent variable model.  
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By jointly constructing the indicators in the latent variable model with the distribution 

function of the measurement relationship, the indicators do not only permit to identify the latent 

variables, but also provide efficiency in estimating the full model.    

1.3.9.1.4. Distribution of the error terms 

Different distributional assumptions about ε lead to different forms of the ICLV models. A 

common choice is to assume that each element of ε is i.i.d. Gumbel across alternatives and 

decision-makers with location zero and scale one, leading to a multinomial logit kernel for the 

discrete choice sub-model. If the vector ε is normally distributed with a mean of zero and 

covariance matrix Ω the discrete choice sub-model will be a multinomial probit (Bhat and Dubey, 

2014; Kamargianni et al., 2015).  

Alternatively, the vector ɛ could be a mixture of normally distributed and Gumbel distributed 

vectors, resulting in the mixed logit kernel. Walker and Ben-Akiva (2002) have included the mixed 

logit model in the ICLV to include individual taste variations in terms of alternative attributes and 

the panel effect due to the combination of revealed preference and stated preference data. Similarly, 

other authors (see for example Daly et al., 2012; Jensen et al., 2013; Meloni et al., 2013; Soto et 

al., 2018) treated the panel effect using a mixed logit specification within the ICLV. With the 

mixed logit specification it is also possible to associate random coefficients with latent variables, 

whose effects over the choice process may vary significantly across individuals. For instance, 

Yáñez et al. (2010) estimated a mixed ICLV model with random parameter associated with cost 

and two latent variables.  

1.3.9.1.5. Ordered choice model in the latent variable model 

The indicators measuring the latent variables are normally measured with scales (e.g. Likert scale) 

leading to ordinary variables. Nevertheless, various authors (e.g. Habib and Zaman, 2012; Paulssen 

et al., 2014; Scagnolari et al., 2015) assume continuous indicators and linear relationships between 

the latent variables and their indicators, overlooking the ordinal nature of indicators. Daly et al. 

(2012) point out the inconsistency of this approach and suggest replacing the continuous 

specification by an ordered specification (ordered probit/logit). They conclude that this 

specification is qualitatively better as the use of an ordered model contributes to an improved 

explanation of choice behavior. 

1.3.9.1.6. Estimation 

To estimate the unknown parameters of the ICLV model maximum likelihood techniques are used. 

The model estimation process maximizes the logarithm of the sample likelihood function 
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𝑚𝑎𝑥 ∑ 𝑙𝑛[𝑃(𝑦, 𝐼|𝒙; 𝜶, 𝜷, 𝝀, 𝛴𝜀 , 𝛴𝜐, 𝛴𝜔)]

𝑄

𝑞=1

                                                                                           (1.49) 

The likelihood function includes multi-dimensional integrals, with dimensionality equal to 

that of the integral of the underlying choice model plus the number of latent variables.  

The proper way to estimate ICLV models is to use a simultaneous approach that jointly 

estimates the parameters of the structural equation and the parameters of the choice model, using 

both the indicators and the choice data (Bierlaire, 2018). The simulated maximum likelihood 

estimation method, like those developed for traditional mixed logit models, is used in the majority 

of studies (Bhat and Dubey, 2014). However, while these simulation techniques work quite well for 

the traditional mixed logit, their use in ICLV models has been problematic because of the 

prohibitive computational time of the estimation and convergence problems.  

For these reasons, in some cases, sequential estimation is preferred. The sequential 

estimation method involves first estimating the latent variable model, using standard latent variable 

estimators. The second step is to include latent variables in the estimation process of the choice 

model. However, the two-step estimation method leads to consistent, but inefficient estimates. 

Bahamonde-Birke and Ortúzar (2014) introduced a method to correct the bias due to sequential 

estimation, though they only refer to the case of a multinomial logit model.  

To address this issue, Bhat and Dubey (2014) proposed a different model formulation for the 

ICLV model, based on a multivariate probit (MNP) kernel and estimated using Bhat’s maximum 

approximate composite marginal likelihood (MACML) inference approach (Bhat, 2011). With this 

approach, the dimensionality of integration in the composite marginal likelihood (CML) function 

that needs to be maximized is independent of the number of latent variables and the number of 

ordinal indicators variables, but only depends on the number of alternatives. 

1.3.9.2. Criticism of ICLV models 

Recent work in transportation research (Chorus and Kroesen, 2014) raised the question about the 

ability of ICLVs to derive policy implications that aim to change travel behavior, pointing out two 

potential issues. Firstly, latent attitudes and perceptions are partly endogenous with respect to travel 

behavior, and the analyst cannot be sure about the direction of causality in attitudes, perceptions, 

and choices. Moreover, latent variables and the observed choice could be influenced by the same 

underlying, unmeasured factors. Secondly, the data collected are typically cross-sectional, 

measured at a single moment in time. This means only between-person comparisons based on 

differences in latent variables can be evaluated, and not within-person comparisons and how latent 

variables may change over time as a result of variation in socio-economic (SE) characteristics or 

the implementation of travel demand management policies. However, Vij and Walker (2016) argue 
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that even if forecasting by means of an ICLV model has no added value from an econometric point 

of view, they could still be a useful tool to explain mode choice and to suggest how public policies 

and TDM measures may be designed to promote sustainable mobility. 

1.3.10. The Generalized Heterogeneous Data Model 

The development and spread of new measurement tools and technologies has given rise to new 

ways of collecting and storing data. As a result, an increasing quantity of data (big data), often 

characterized by complex interdependent structures, is now available. These complex 

configurations often need to be treated with unconventional statistical methodologies, which 

sometimes require great computational effort. Multivariate data including mixtures of nominal 

outcomes, ordinal variables, count variables and continuous variables are an example of non-

standard correlated data.  

The easiest approach to handle these complex data structures is to carry out separate analysis and 

ignore the dependencies. However, this kind of approach is inefficient because it fails to account 

for any associations that exist between the mixed variables.  

Another approach would be to transform discrete variables into continuous variables through 

some scoring scheme. Conversely, all the variables can be treated as discrete if the continuous ones 

are discretized with a grouping criteria treatment. However, one problem associated with these 

techniques is the subjectivity in the numerical scoring scheme adopted or the loss of information 

due to categorization of continuous variables (de Leon and Chough, 2013). 

Recently, Bhat proposed a different way of treating mixed data, formulating the Generalized 

Heterogeneous Data Model (GHDM) (Bhat, 2015). The model is an evolution of the Integrated 

Choice and Latent Variable models developed by Bhat and Dubey (2014), and jointly handles 

mixed types of dependent variables by representing the covariance relationships among them 

through a reduced number of latent factors.  

1.3.10.1. The GHDM formulation 

The GHDM model consists of two components: the latent variable structural equation model 

(SEM), and the latent variable measurement equation model (MEM).  

In the SEM component, latent variables relevant to the endogenous outcomes of the MEM system 

are hypothesized, based on theoretical psychological considerations and earlier 

qualitative/quantitative studies. These latent variables are expressed as linear functions of 

exogenous observed variables and stochastic error terms. A general covariance structure for the 

latent variables is adopted, therefore, no causal relationship between latent variables is allowed.  

In the MEM component, the endogenous variables are described as functions of both latent 

variables and exogenous variables. The measurement equations have different characteristics 
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depending on the type of dependent variable (continuous, ordinal, count, or nominal), however all 

have continuous underlying functions.  

Let q be the index for individual (𝑞 = 1,2, … , 𝑄), which we will suppress in parts of the 

presentation below. Assume that all error terms in the GHDM model for an individual are 

independent of other individual error terms.   

1.3.10.1.1. Structural Equation Model 

Let 𝑧𝑙
∗ be the lth latent variable (l = 1, 2, …, L) for a specific person. Write 𝑧𝑙

∗ as a linear function 

of covariates: 

𝑧𝑙
∗ = 𝜶𝒍

′ 𝒘 + 𝜂𝑙 ,                                                                                                                                            (1.50) 

where 𝑤 is a (𝐷̃ × 1) vector of observed covariates (excluding a constant), 𝛼𝑙 is a corresponding 

(𝐷̃ × 1) vector of coefficients, and 𝜂𝑙 is a random error term assumed to be standard normally 

distributed for identification purposes (see Stapleton, 1978). Next, define the (𝐿 × 𝐷̃) matrix 𝛼 =

(𝛼1, 𝛼2, … , 𝛼𝐿)′, and the (𝐿 × 1) vectors 𝑧∗ = (𝑧1
∗, 𝑧2

∗,..., 𝑧𝐿
∗)′ and 𝜼 = (𝜂1, 𝜂2, 𝜂3, … , 𝜂𝐿)′. Let 

𝜼~𝑀𝑉𝑁𝐿[𝟎𝑳, 𝜞], where 𝟎𝑳 is an (𝐿 × 1) column vector of zeros, and 𝜞 is an (𝐿 × 𝐿) correlation 

matrix. In matrix form, we may write Equation (1) as: 

𝒛∗ = 𝜶𝒘 + 𝜼.           

1.3.10.1.2. Measurement Equation Model Components 

Consider N ordinal outcomes (indicator variables) for the individual, and let n be the index for the 

ordinal outcomes (𝑛 = 1,2, … , 𝑁). Also, let 𝐽𝑛 
be the number of categories for the nth ordinal 

outcome (𝐽𝑛 ≥ 2)
 
and let the corresponding index be𝑗𝑛(𝑗𝑛 = 1,2, … , 𝐽𝑛). Let 𝑦𝑛

∗ be the latent 

underlying continuous variable whose horizontal partitioning leads to the observed outcome for the 

nth ordinal variable. Assume that the individual under consideration chooses the 𝑎𝑛
𝑡ℎ ordinal 

category. Then, in the usual ordered response formulation, for the individual, we may write: 

𝒚𝒏
∗ = 𝜸𝒏 + 𝒅𝑛

′ 𝒛∗ + 𝜺𝒏, and 𝜓𝑛,𝑎𝑛−1 < 𝑦𝑛
∗ < 𝜓𝑛,𝑎𝑛

                                                                            (1.51)        

where 𝛾𝑛 is a scalar constant, 𝑑𝑛 is an (𝐿 × 1) vector of latent variable loadings on the nth 

continuous outcome, the 𝜓 terms represent thresholds, and 𝜀𝑛 is the standard normal random error 

for the nth ordinal outcome. For each ordinal outcome, 𝜓𝑛,0 < 𝜓𝑛,1 < 𝜓𝑛,2 … < 𝜓𝑛,𝐽𝑛−1 < 𝜓𝑛,𝐽𝑛
; 

𝜓𝑛,0 = −∞, 𝜓𝑛,1 = 0, and 𝜓𝑛,𝐽𝑛
= +∞. For later use, let 𝜓𝑛 = (𝜓𝑛,2, 𝜓𝑛,3 … , 𝜓𝑛,𝐽𝑛−1)′ and 𝜓 =

(𝜓1
′ , 𝜓2

′ ,...,ψ𝑁
′ )′. Stack the N underlying continuous variables 𝑦𝑛

∗ into an (𝑁 × 1) vector 𝑦∗, and the 

N error terms 𝜀𝑛 into another (𝑁 × 1) vector 𝜀. Define 𝛾 = (𝛾1, 𝛾2, … , 𝛾𝑁)′ [(𝑁 × 1)
 
matrix] and 

𝑑 = (𝑑1, 𝑑2,...,d𝑁)
 

[(𝑁 × 𝐿)
 

matrix], and let 𝐼𝐷𝐸𝑁𝑁 be the identity matrix of dimension N 

representing the correlation matrix of 𝜀 (so, 𝜀~𝑀𝑉𝑁𝑁(0𝑁, 𝐼𝐷𝐸𝑁𝑁); again, this is for identification 

purposes, given the presence of the unobserved 𝑧∗ vector to generate covariance. Finally, stack the 
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lower thresholds for the decision-maker 𝜓𝑛,𝑎𝑛−1(𝑛 = 1, 2, . . . , 𝑁)
 
into an (𝑁 × 1)

 
vector 𝜓𝑙𝑜𝑤 

and 

the upper thresholds 𝜓𝑛,𝑎𝑛
(𝑛 = 1, 2, . . . , 𝑁) into another vector 𝜓𝑢𝑝. Then, in matrix form, the 

measurement equation for the ordinal outcomes (indicators) for the decision-maker may be written 

as: 

𝒚∗ = 𝜸 + 𝒅𝒛∗ + 𝜀, ψ
𝑙𝑜𝑤

< 𝑦∗ < 𝜓𝑢𝑝                                                                                                     (1.52)                                                                                       

Consider G nominal (unordered-response) variables (𝑔 = 1,2,3, … , 𝐺), with Ig being the 

number of alternatives corresponding to the gth nominal variable (Ig≥2) and 𝑖𝑔 being the 

corresponding index (𝑖𝑔 = 1,2,3, … , 𝐼𝑔). Let the individual under consideration choose the 

alternative 𝑚𝑔 for the gth nominal variable and assume the usual random utility structure for each 

alternative 𝑖𝑔:  

𝑈𝑔𝑖𝑔
= 𝑏𝑔𝑖𝑔

′ 𝑥 + 𝜗𝑔𝑖𝑔

′ (𝛽𝑔𝑖𝑔
𝑧∗) + 𝜍𝑔𝑖𝑔

,                                                                                                    (1.53)  

where 𝑥 is a fixed (𝐴 × 1) vector of exogenous variables (including a constant), 𝑏𝑔𝑖𝑔
 is an (𝐴 × 1) 

column vector of corresponding coefficients and 𝜍𝑔𝑖𝑔
is a normal error term. 𝛽𝑔𝑖𝑔

 is a (𝑁𝑔𝑖𝑔
× 𝐿) -

matrix of variables interacting with latent variables to influence the utility of alternative 𝑖𝑔, and 

𝜗𝑔𝑖𝑔

′  is an (𝑁𝑔𝑖𝑔
× 1) -column vector of coefficients capturing the effects of latent variables and its 

interaction effects with other exogenous variables . Let 𝜍𝑔 = (𝜍𝑔1, 𝜍𝑔2,...,ς
𝑔𝐼𝑔

)′ (𝐼𝑔 × 1 vector), and 

𝜍𝑔~𝑀𝑉𝑁𝐼𝑔
(0, 𝛬𝑔).  

Define 𝑈𝑔 = (𝑈𝑔1, 𝑈𝑔2, … , 𝑈𝑔𝐼𝑔
)′ (𝐼𝑔 × 1 vector), 𝑏𝑔 = (𝑏𝑔1, 𝑏𝑔2, 𝑏𝑔3, … , 𝑏𝑔𝐼𝑔

)′ (𝐼𝑔 × 𝐴 

matrix), and 𝛽𝑔 = (𝛽𝑔1
′ , 𝛽𝑔2

′ , … , 𝛽𝑔𝐼𝑔

′ )′ (∑ 𝑁𝑔𝑖𝑔

𝐼𝑔

𝑖𝑔=1
× 𝐿 ) matrix. Also, define the (𝐼𝑔 ×

∑ 𝑁𝑔𝑖𝑔

𝐼𝑔

𝑖𝑔=1
)matrix 𝜗𝑔, which is initially filled with all zero values. Then, position the (1 × 𝑁𝑔1) 

row vector 𝜗𝑔1
′  in the first row to occupy columns 1 to 𝑁𝑔1 , position the (1 × 𝑁𝑔2) row vector 𝜗𝑔2

′  

in the second row to occupy columns 𝑁𝑔1+1 to 𝑁𝑔1 + 𝑁𝑔2, and so on until the (1 × 𝑁𝑔𝐼𝑔
) row 

vector 𝜗𝑔𝐼𝑔

′  is appropriately positioned. Further, define 𝜛𝑔 = (𝜗𝑔𝛽𝑔)(𝐼𝑔 × 𝐿 matrix), 𝐺 = ∑ 𝐼𝑔
𝐺
𝑔=1 , 

𝐺̃ = ∑ (𝐼𝑔 − 1),𝐺
𝑔=1  𝑈 = (𝑈1

′ , 𝑈2
′ , ... ,U𝐺

′ )
′
  (𝐺 × 1 vector), 𝜍 = (𝜍1, 𝜍2, ... ,ς

𝐺
)′ (𝐺 × 1 vector), 𝑏 =

(𝑏1
′ , 𝑏2

′ , … , 𝑏𝐺
′ )′(𝐺 × 𝐴 matrix), 𝜛 = (𝜛1

′ , 𝜛2
′ ,...,ϖ𝐺

′ )′(𝐺 × 𝐿matrix), and 𝜗𝑣ⅇ𝑐 = Vech(ϑ1, 𝜗2, … , 𝜗𝐺) 

(that is, 𝜗𝑣ⅇ𝑐 is a column vector that includes all elements of the matrices 𝜗1, 𝜗2, … , 𝜗𝐺). Then, in 

matrix form, we may write Equation (6) as: 

𝑈 = 𝑏𝑥 + 𝜛𝑧∗ + 𝜍,  

where 𝜍~𝑀𝑉𝑁𝐺(𝟎𝐺 , 𝛬), with 𝛬 as follows: 
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),matrix(

0000

0000

0000

0.000

3

2

1

GG

G





































=

Λ

Λ

Λ

Λ

Λ                                                                   (1.54)  

Let 𝛿 be the collection of parameters to be estimated: 𝛿 =

[Vech(α),Vech(Γ), 𝛾,Vech(d), 𝜓, 𝜗𝑣ⅇ𝑐,Vech(Λ)], where the operator “Vech(∙)" vectorizes all the 

non-zero unique elements of the matrix/vector on which it operates. We will assume that the error 

vectors 𝜼, 𝜀, and 𝜍 are independent of each other. Additional details on the GHDM formulation, 

including sufficiency conditions for identification of model parameters, and the MACML 

estimation approach for the formulation may be found in Bhat (2015).  

1.3.11. Goodness of fit and model selection 

1.3.11.1. The use of the t-test for significance of coefficient estimates 

The t-test is mainly used to test if an estimated parameter in the model is significantly different 

from some known constant, often zero. The t-test for nonlinear models is used in the same way as 

the t-test in nonlinear regression, except that it is valid only asymptotically and thus for large 

samples. The critical values at which we reject the null hypothesis and hence we accept that an 

attribute has a relevant effect are percentiles of a standardized normal distribution, which for two-

tailed tests at the usually 10% and 5% level of significance are ±1.65 and ±1.96 respectively.  

1.3.11.2. The likelihood ratio test 

For more complex hypotheses than the ones regarding individual parameters, the likelihood ratio 

test can be used. To determine if a model is statistically significant, it is possible to test the null 

hypothesis that all the coefficients, except for the alternative specific constant, are zero. The test 

statistic is 

−2(𝐿𝐿𝑚𝑎𝑟𝑘ⅇ𝑡 𝑠ℎ𝑎𝑟ⅇ 𝑚𝑜𝑑ⅇ𝑙 − 𝐿𝐿ⅇ𝑠𝑡𝑖𝑚𝑎𝑡ⅇ𝑑 𝑚𝑜𝑑ⅇ𝑙)                                                                                   (1.55) 

where 𝐿𝐿𝑚𝑎𝑟𝑘ⅇ𝑡 𝑠ℎ𝑎𝑟ⅇ 𝑚𝑜𝑑ⅇ𝑙 is the loglikelihood of a model with only constants (market share 

model) and 𝐿𝐿ⅇ𝑠𝑡𝑖𝑚𝑎𝑡ⅇ𝑑 𝑚𝑜𝑑ⅇ𝑙 is the loglikelihood of the estimated model. The statistic is 

asymptotically χ2 distributed with 𝐾 − 𝐽 + 1 degrees of freedom, where K is the number of 

parameters and J is the number of alternatives in the choice set. 

Another useful application of the likelihood ratio test is to test if an explanatory variable is 

generic or alternative-specific, with the former possessing the same weight across all alternatives. 

The likelihood ratio test statistic for the null hypothesis of generic attribute is 

−2(𝐿𝐿𝑟ⅇ𝑠𝑡𝑟𝑖𝑐𝑡ⅇ𝑑  𝑚𝑜𝑑ⅇ𝑙 − 𝐿𝐿ⅇ𝑠𝑡𝑖𝑚𝑎𝑡ⅇ𝑑 𝑚𝑜𝑑ⅇ𝑙)                                                                                       (1.56)  
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Where 𝐿𝐿𝑟ⅇ𝑠𝑡𝑟𝑖𝑐𝑡ⅇ𝑑  𝑚𝑜𝑑ⅇ𝑙 denote the loglikelihood of the model with a generic specification 

(restricted model). The statistic is asymptotically χ2 distributed with number of degrees of freedom 

equal to the number of linear restrictions.  

1.3.11.3. Goodness of fit measures 

To evaluate how a model fits a set of observations and compare models with different 

specifications it is useful to calculate goodness of fit measures. A commonly used statistic is the 

likelihood ratio index (rho squared): 

                𝜌2 = 1 −
𝐿𝐿ⅇ𝑠𝑡𝑖𝑚𝑎𝑡ⅇ𝑑 𝑚𝑜𝑑ⅇ𝑙

𝐿𝐿𝐸𝐿
                                                                                                     (1.57) 

Where 𝐿𝐿𝐸𝐿 is the loglikelihood of the model estimated with all the parameters equal to 0 (equally 

likely model). 𝜌2 is a function of the sample data, the choice set size and the number of parameters, 

hence it can be used only for comparing models when the previous are the same. For this reason, 

we also use the adjusted likelihood ratio index (rho-squared bar): 

𝜌
2

= 1 −
𝐿𝐿ⅇ𝑠𝑡𝑖𝑚𝑎𝑡ⅇ𝑑 𝑚𝑜𝑑ⅇ𝑙 − 𝐾

𝐿𝐿𝐸𝐿
                                                                                                            (1.58) 

where K is the number of parameters. The introduction of a penalty term for the number of 

parameters permits to compare models with different number of attributes.  

1.3.11.4. The Percentage Right or First Preference Recovery (FPR) Measure 

The Percentage right or First Preference Recovery (FPR) proposed by Foerster (1979), is an 

aggregate measure that calculates the percentage of individuals who actually choose the alternative 

to which the model assigns the greatest probability. However, the FPR could be an ambiguous 

criterion of model performance in the sense that too high a value of FPR may be an indication of 

poor model performance, rather than viceversa. Because of this, for any model, we compare the 

FPR with the chance recovery (CR) and the expected value of FPR (ER). The chance recovery is 

given by: 

𝐶𝑅 = ∑

(
1

𝑁𝑞
)

𝑄
                                                                                                                                          (1.59)

𝑞
 

where Q is the number of individuals and Nq the number of available alternatives for each 

individual q. The expected value of FPR can be expressed as: 

𝐸𝑅 = ∑ 𝑃𝑞
𝑞

                                                                                                                                                (1.60) 
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where Pq is the computed (maximum) probability associated with the best option for individual q. If 

the three measures are relatively close the model is reasonable but uninformative; if FPR and ER 

are similar, with a value larger than CR, the model is reasonable and informative; finally, if FPR is 

very much larger or very much smaller than expectations, we have to conclude that the model does 

not explain the variation in the data (inconsistent data) and should be rejected (see Gunn and Bates 

(1982) and Ortúzar and Willumsen (2011) for a complete discussion of the problem).   

1.3.12. Aggregation and forecasting 

Discrete choice models allow us to estimate probabilities at the level of individual decision makers. 

However, the analyst is often interested in the prediction of some aggregate measure, so that he can 

make forecasts and examine the average response to change in some factor. We report here three 

aggregate indicators: market share, elasticities and willingness to pay (WTP). 

Market share. For a population of Q individuals, the market share of an alternative I 

according to the model is the weighted sum of the probabilities of each individual: 

             𝑃𝑖𝑄 =
1

𝑄
∑ 𝑤𝑞𝑃𝑞(𝑖)                                                                                                                      (1.61)

𝑞

 

Elasticities. Because choice probabilities are a function of observed variables, it is useful to 

know to what extent these probabilities vary in response to a change in one of the explanatory 

variables. The calculation of demand elasticities is a common way to address this problem.  

The aggregate direct elasticities, defined as the percent change in the market share for 

alternative i following a change of one percent in the value of a variable 𝑥𝑖, is 

𝐸𝑥𝑖
𝑖 =

∑ 𝑤𝑞𝑃𝑞(𝑖)𝐸𝑥𝑖𝑞
𝑖𝑄

𝑞=1

∑ 𝑤𝑞𝑃𝑞(𝑖)𝑄
𝑞=1

                                                                                                                           (1.62) 

where 𝑥𝑖 is an attribute of alternative i, 𝑤𝑞is the sample weight of observation q, 𝑃𝑞(𝑖) is the 

probability that an individual q chooses alternative i and 𝐸𝑥𝑖𝑞
𝑖  is the disaggregate direct elasticity of 

the demand for observation q with respect to a variation in variable 𝑥𝑖𝑞. The disaggregate elasticity 

is: 

𝐸𝑥𝑖𝑞
𝑖 =

𝜕𝑃𝑞(𝑖)

𝜕𝑥𝑖𝑞

𝑥𝑖𝑞

𝑃𝑞(𝑖)
                                                                                                                                    (1.63) 

It is also possible compute the extent to which the probability of choosing an alternative i changes 

if there is a variation in an observed variable of alternative j. The aggregate cross elasticities are 

given by the following expression: 

𝐸𝑥𝑗
𝑖 =

∑ 𝑤𝑞𝑃𝑞(𝑖)𝐸𝑥𝑗𝑞
𝑖𝑄

𝑞=1

∑ 𝑤𝑞𝑃𝑞(𝑖)𝑄
𝑞=1

                                                                                                                           (1.64) 
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where 𝐸𝑥𝑗𝑞
𝑖  is the disaggregate cross elasticity for individual q with respect a change in variable 𝑥𝑗𝑞. 

The disaggregate cross elasticity is  

𝐸𝑥𝑗𝑞
𝑖 =

𝜕𝑃𝑞(𝑖)

𝜕𝑥𝑗𝑞

𝑥𝑗𝑞

𝑃𝑞(𝑖)
                                                                                                                                   (1.65)  

To summarize, an aggregate cross elasticity represents the percentage change of probability in the 

market share in response to a change of 1% in the value of the attribute 𝑥𝑗𝑞.  

Willingness to pay. Willingness to pay measures the amount of money at or below which a 

consumer will definitely pay for one unit of change in the attribute 𝑥𝑖 of choice alternative i. It is 

given by: 

𝑊𝑇𝑃𝑞(𝑖) =
𝜕𝑈𝑞(𝑖)/𝜕𝑥𝑖

𝜕𝑈𝑞(𝑖)/𝜕𝑐𝑜𝑠𝑡𝑖
                                                                                                                      (1.66) 

The aggregate WTP over a sample of Q individuals is: 

𝑊𝑇𝑃(𝑖) = ∑ 𝑤𝑛𝑊𝑇𝑃𝑞(𝑖)

𝑄

𝑞=1

                                                                                                                     (1.67) 
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PART 2 - ASSESSMENT AND FORECASTING OF 

BIKE USE IN AN URBAN CONTEXT 

2.1.  INTRODUCTION 

A key element of the multi-dimensional toolbox of sustainable transportation strategies aimed at 

easing traffic congestion and reducing environmental impact is the encouragement of the use of 

active transportation travel modes such as walking, bicycling and bicycle-sharing. In particular, 

there has been a surge of interest in bicycling (Pucher and Buehler, 2017) as a physically active 

transportation option able to bring immediate multiple benefits at both an individual as well as a 

community level. These physical activity benefits include a reduction in the incidence of obesity 

and the concomitant mental and physical health benefits, improved cardiovascular fitness and 

decreasing heart disease, diabetes, high blood pressure, and several forms of cancer side effects, 

reduced community parking space that can then be utilized for green use, no mobile source 

emissions, affordable accessibility to activity locations, and flexibility in departure time compared 

to public transport.  

Understanding why in many countries where cycling share is low, individuals perceive the 

bicycle as a form of recreation more than as a means of transport, is of special interest. This is so 

even though many localities and communities have invested in infrastructure and policies to 

promote bicycling, including separate bicycling lanes, continuous bicycle facilities, safe and secure 

bicycle parking facilities, car parking prohibitions on roadways (or sections of roadways close to 

intersections), reduced speed limit laws, and even shower/locker rooms at work places. In Italy, as 

reported by Legambiente in its 1st Report on Bike Economy and Urban Cycling in Italy, published 

in 2017, despite the fact that between 2008 and 2015 the cycling infrastructure in major cities has 

increased by 50%, in the same period the percentage of Italians using the bicycle as a mode of 

transportation has remained unchanged. In fact, it was 3.6% in 2008 and remained at 3.6% in 2015. 

Hence, it is not surprising that many studies have been aimed at better understanding what 

deters individuals from bicycling to work (and, conversely, what encourages it). And this body of 

research has been rapidly growing only within the past few years. However, there are some 

research gaps in investigating biking behavior and more in-depth research will benefit transport 

planners and public health officials in improving their understanding of urban biking behavior. One 

is the consideration of the choice of biking for different purposes under a comprehensive analytical 

framework, which would examine behavioral linkages between them. The other is accommodating 

psychological variables within a modeling framework and understanding to what extent they affect 

the choice to use the bike. In fact, the traditional random utility modeling approach failed in some 
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cases to explain the decision process leading people to cycle, making it necessary to incorporate 

those psychological factors attached to bicycle use and derived from its special characteristics. 

This work provides knowledge and tools for the proper incorporation of the bicycle as an 

option in travel demand models, with different methodologies developed to contribute to this line 

of research. To achieve this general object, several steps were taken. In particular: 

• We investigate the impact of habitual behavior in the choice of biking to work, estimating a 

mode choice model where biking is one of four alternative modes 

• We study specifically whether psycho-attitudinal factors vary among people with different 

cycling experience, for any purpose, and to quantify the determinants influencing cycling 

frequency  

• We explore the relationships among psycho-attitudinal factors related to bicycling, 

urbanization level and socio-demographics for bicycle commuting and cycling for other 

purposes 

• We examine how facilitators to cycling are perceived by different segments of individuals, 

in view of assessing how to best promote cycling in an urban area. 

For this purpose, we designed a survey in order to explore all those attributes affecting bicycle 

choice, including the less investigated ones (socio-economic characteristics, physical 

characteristics, psycho-attitudinal factors or/and trip characteristics). 

The survey was conducted among a group of employees from different local authorities but 

within similar territorial contexts (fairly homogeneous in socio-economic terms) who commute 

daily to work to explore why, under similar conditions, individuals choose different travel modes. 

The chapter is organized as follows: Section 2.2 provides a literature review of the different 

determinants influencing the choice to cycle for transport and of the different methodological 

frameworks adopted. Section 2.3 describes the survey designed for data collection and provides a 

descriptive analysis for highlighting differences, if any, in socio-economic characteristics, physical 

characteristics, psycho-attitudinal factors or/and trip characteristics among different segments of 

individuals. The remaining sections describe the different model results.  

2.2.  DETERMINANTS ASSOCIATED WITH BICYCLE USE  

Several studies have investigated the key variables associated with bicycle use, especially those 

related to the bicycle mode choice problem (Heinen et al., 2010; Muñoz et al., 2016). In their 

review Muñoz et al. (2016) identify two categories of explanatory variables, depending on how 

they are measured: objective, related to individual socio-economic characteristics, trip 

characteristics, built environment, natural environment and cycling facilities, and subjective, 

associated with the personal sphere of each individual. 
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2.2.1. Socio-economics characteristics 

Socio-economics characteristics have always been an important category of determinants in 

travel behavior research. Regarding gender, most conclude that men cycle more than women, but 

this tendency could be related to cycling culture (Heinen et al., 2010; Fernández-Heredia et al., 

2014). Some studies (e.g. Garrard et al., 2008; Emond et al. 2009; Akar et al. 2013) report that in 

countries with low rates of cycling males are more likely to use bike than females. Both Garrard et 

al. (2008) and Bhat et al. (2015), the former in the Australian, the latter in the US context, suggest 

that women tend to be more safety-conscious than men and are more likely to perceive the negative 

consequences of sharing roads with motorized vehicles. By contrast, in countries with high cycling 

rates, such as the Netherlands and Denmark, cycling is more evenly spread over the two genders 

(Heinen et al., 2013).  

Instead, the relation between cycling and age seems to be unclear. Some state that cycling 

levels decline with age (Dill & Voros 2007; Pucher et al. 1999; Heinen et al., 2013; Muñoz et al., 

2016) but others (Bhat et al., 2015; Wardman et al., 2007; De Geus, 2007) declare that age is not a 

significant determinant.  

Also, the relation between cycling and level of income is ambiguous. If some (Stinson and 

Bhat, 2004; Dill and Voros, 2007) observe a positive relationship between income and use of the 

bike, Parkin et al. (2008) affirm that in England there is a link between lower incomes and lower 

bicycle share. This latter finding is in line with studies conducted in other contexts (Schwanen and 

Mokhtarian, 2005; Guo et al., 2007).  

The level of education is another factor that can be related to bike usage, though previous 

research has reported mixed findings. For example, Bhat et al. (2017) find that highly educated 

individuals have greater propensity to cycle. They suggest that a high education level is associated 

with a high level of environmental awareness and consequently, with a greater tendency to use 

environmental-friendly modes of transportation. Conversely, Cervero et al. (2009) show that the 

likelihood to cycle for non-recreational activities decreases with education level. 

In general, car availability is widely reported as being negatively related to bicycle choice 

(Wardman et al., 2007; Heinen et al., 2013; Fernández-Heredia et al., 2016; Bhat et al., 2017). 

Interestingly, Ton et al. (2019) do not find any relationship between the availability of cars and 

bicycle use in the Netherlands.  

Household size and composition are known to be related to mode choice as well. Some 

studies reported that the number of children (Bhat et al., 2017) or the number of household 

members (Fernández-Heredia et al., 2016), are negatively associated with bike commuting. 
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2.2.2. Trip characteristics 

Trip characteristics, such as travel time and cost, are widely recognized as key aspects in 

travel behavior. Travel time has been found to have a huge influence on travel mode choice 

(Börjesson and Eliasson, 2012), also on bicycle use. Previous studies have shown that cyclists 

prefer short travel times (Stinson & Bhat 2005; Fu & Farber, 2017). Hunt and Abraham (2007) 

found that biking is competitive with all other motorized means of transport under certain 

distances. Akar and Clifton (2009) discovered that people with flexible departure time were more 

likely to cycle. Only a few studies have examined the association between cost and cycling (Handy 

et al., 2014). Cycling is almost free, and for Bergström and Magnusson (2003) this is one of the 

reasons why commuters choose to cycle. Other research shows that also the cost of other means of 

transport, e.g. parking tolls and fees, influence the choice to cycle (Rodrı́guez, and Joo, 2004; 

Buehler, 2012). 

Beside travel time, distance is one of the most common factors taken into consideration (Heinen et 

al., 2010). In general, it has been found that the greater the distance the lower the bike share in 

mode choice for commuting (Parkin et al., 2008; Heinen et al., 2013). Non-cyclists often indicate 

long distances as a deterrent to commute by bike (Dickinson et al., 2003; Stinson e Bhat, 2004). 

Moreover, there could be a maximum admissible travel distance that differs among individuals and 

gender (Heinen et al., 2010). Regarding gender, some studies suggest that women tend to cover 

shorter distances by bike than men (Howard and Burns, 2001; Garrard et al., 2008) 

2.2.3. Natural environment 

Natural environment is another important explanatory factor in bike choice for utilitarian 

purposes. In contrast to motorized transport, cycle choice is strongly determined by topography, 

weather and climate (Heinen et al., 2010). Hilliness and the presence of steep slopes have a 

negative effect on bike use (Cervero & Duncan 2003; Parkin et al., 2008; Cervero et al., 2009; 

Winters et al., 2010; Goetzke & Rave, 2011; Buehler & Pucher, 2012), and maximum gradient 

seems more important than average gradient (Menghini, et al., 2010). A well-known example of 

this is bike share in the City of York (UK) and the City of Bradford (UK) (Heinen et al., 2010). 

York, with slopes of more than 3% on only 5% of its surface area, has a cycling share of 13.1%. 

Bradford, which is characterized by steep slopes throughout its surface area, only has a cycling 

share of 0.8%. Moreover, Motoaki & Daziano (2014) found that hilly topography (slope 

inclination) has a relation with the physical condition of the cyclist, i.e. the fitter the cyclist, the less 

bothersome a steeper route.  

The weather (temperature, rain, wind, snow) can influence bicycling as well. Previous 

research shows that cycling is more common in summer (Stinson & Bhat, 2005; Guo et al., 2007; 

Sener et al., 2009; Böcker et al., 2013). Rain and snow are considered as some of the most 
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unfavourable weather conditions that stop people from cycling (Nankervis, 1999; Sears et al., 

2012; Motoaki & Daziano, 2015). A less widely considered variable is temperature, that has been 

found to have a non-linear effect, with cold and very hot weather negatively associated with bike 

use (Ton et al., 2019).  

Another seasonality aspect is linked to the number of hours of daylight (Muñoz et al., 2016). 

Stinson and Bhat (2004) and Gatersleben and Appleton (2007) showed that darkness has a negative 

effect on cycling. In particular, women are more concerned about this aspect (Bergström and 

Magnusson, 2003; Cervero and Duncan, 2003). 

2.2.4. Built environment 

A large body of literature has investigated the relationship between the built environment 

and bike travel behavior. Different terms have been used when referring to the built environment. 

Urban design refers to the design of buildings and infrastructure within an urban area and can 

include both their arrangement and their appearance in connection with their function (Handy et al., 

2002). Land use is the way in which human activities are distributed across space, including the 

location and density of different activities, that can be classified in residential, commercial, office, 

industrial, and other activities. The transportation system, in the specific case of bike use, includes 

the physical infrastructure of roads, bike paths, bike trails, bridges, and so on, as well as the 

presence of those complementary infrastructures such as showers and dressing rooms. Here we 

consider the built environment consisting of urban design, land use, and the transportation system. 

2.2.4.1. Urban design and land use 

Looking in more detail at the urban design and land use problem, it has been observed that 

higher levels of urban density positively influence the decision to ride a bike (Baltes, 1996; Cervero 

and Duncan, 2003; Pucher and Bueheler, 2006; Zharan et al., 2008; Parkin et al., 2008; Fraser and 

Lock, 2011; Wang et al., 2016; Braun et al., 2016). This can be explained by the fact that, 

compared to low-density areas, denser urban areas are characterized by shorter distances between 

origins and destinations. Interestingly, Witlox and Tindermans (2004) found that depending on the 

place of residence there are differences with regard to the chosen mode, with residents in urban 

areas more likely to use the bike than in the suburbs. Dill and Voros (2007) observed that 

individuals who live in neighborhoods closer to downtown were more likely to make utilitarian 

bike trips. Stinson and Bhat (2004) found a higher bicycle commuting propensity for individuals 

residing in urban areas compared with those residing in suburban and rural areas. 

Beside density, another key factor is the land-use mix, which depends on the level of 

diversity of land-use types (commercial industrial, residential and so on) across a neighborhood. 

Areas with a traditional layout, street-level shops and residences above make travel distances 

smaller and so easier to cycle from home to shops or places of work (Cervero and Duncan, 2003; 
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Pucher and Buehler, 2006; Heinen et al., 2010; Habib et al., 2014; Braun et al., 2016; Muñoz et al., 

2016; Winters et al., 2017; Ton et al., 2019). Another important element regards the aesthetics, as it 

has been shown that the presence, among others, of parks, street plants and garbage bins are 

positively associated with cycling (Sacks, 1994; Heath et al., 2006; Fraser and Lock, 2011; Habib 

et al., 2014; Wang et al., 2016; Ton et al., 2019). 

Despite the large number of studies on cycling and neighborhood characteristics analysis, far 

less attention has been given to the residential self-selection problem. Many of the studies listed 

above considered the characteristics of residential location as an exogenous variable in the decision 

to cycle, ignoring the possibility of the residential neighborhood choice process of households 

(Pinjari et al., 2008). In fact, bike travel may not only be influenced by residential location, but 

individuals could choose their home because they intend to cycle, preferring to live in areas that 

allow them to do so easily. Although this issue has been largely investigated in studies of walking 

as well as travel behavior more generally (see Bhat and Guo (2007) and Cao et al. (2009) for a 

complete overview of the problem), little research exists on the role of residential preference 

specifically influencing bicycle use. Pinjari et al. (2008) present a joint model of residential 

neighborhood type choice and bike ownership, showing that ignoring self-selection may lead to an 

underestimation of the impact of neighborhood attributes on bicycle ownership. Pinjari et al. 

(2011) use an integrated simultaneous multi-dimensional choice model to capture the jointness of 

residential location, auto ownership, bicycle ownership, and commute tour mode choices. They 

found that some socio-demographic variables influence both bike ownership and residential 

location choices, indicating, for the authors, the presence of a residential self-selection effect. 

However, one limitation of these works is that their sub models are only a function of 

socioeconomic and trip characteristics variables and do not include in their analysis any 

psychological factors. Another limitation concerns the use of bike ownership level as a dependent 

variable, assuming that the ownership of a bicycle automatically leads to its use. Recently, Ettema 

and Nieuwenhuis (2017) explored whether and to what extent built-environment factors, travel 

attitudes and reasons for location choice affect the use of different travel modes within two years 

after relocation. They show that active travel attitudes positively influence cycling frequency and 

the variable cycling accessibility, being a reason for location choice, has a stronger impact, in terms 

of magnitude, than locational factors. 

2.2.4.2. Infrastructure 

Several studies have revealed the existence of a relationship between bike infrastructure and 

cycling levels, as it may encourage cycling by augmenting awareness and raising visibility, 

increasing perceived safety and decreasing the number of conflict points with motorized vehicles 

and pedestrians (Braun et al., 2016). Bike infrastructure can come in different forms: 
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• in mixed traffic, where cyclists share the full roadway with other traffic without any 

longitudinal separation; 

• on-road bicycle lanes, usually designated with a white stripe, a bicycle icon on the 

pavement and signage; 

• cycle tracks, similar to bike lanes but physically more separated from motorized 

vehicles, for example with a curb, vehicle parking, or other barriers; 

• off-street paths, completely separated from motor vehicle traffic and usually 

designed to accommodate non-motor vehicle traffic. 

Results from aggregate cross-sectional studies in Europe and in US indicate that cities with 

more extensive networks of bicycle lanes and paths have higher shares of bicycle commuting (Dill 

and Carr, 2003; Parkin et al. 2008; Buehler and Pucher, 2012; Santos et al., 2013). Using the data 

of 43 cities in US, Dill and Carr (2003) show that that for typical U.S. cities with a population of 

more than 250,000, each additional mile of bike lanes per square mile is associated with a one 

percent increase in the share of workers commuting by bicycle. Buehler and Pucher (2012) use a 

dataset on the length of bike lanes and paths in 2008 collected directly from 90 of the 100 largest 

U.S. cities to show a similar positive association between bike commute rates and the presence of 

both off-street paths and on-street lanes. In the attempt to identify factors that influence modal split 

for journeys to work in 112 medium-size cities in Europe, Santos et al. (2013) found that bicycle 

share is positively associated with length of the bicycle network. 

Disaggregate revealed-preference studies indicate that a bike network could increase the 

likelihood to bicycle for utilitarian purposes (Hunt and Abraham, 2007; Dill and Voros, 2007; Bhat 

et al., 2017) as well. Some works report in general a predilection for bicycle paths to both bicycle 

lanes and roads without bicycle facilities (Braun et al., 2016). However, in some cases the findings 

of these studies are contradictory. For instance, Krizek and Johnson (2006) found that living within 

400 m of an on-street bicycle lane but not of off-street facilities, was associated with a greater 

likelihood to use the bike in the Twin Cities of Minneapolis and St. Paul, Minnesota. On the other 

hand, Moudon et al. (2005) report that close proximity to bike paths in Seattle, Washington, 

increases the likelihood to cycle by 20%, but they found no effect for bike lanes, while Winters et 

al. (2010) found that neither type of infrastructure was correlated with cycling in Vancouver, 

British Columbia. 

Also stated-preference studies investigated the preference for different infrastructure types. 

Aultman-Hall et al. (1997) use GIS software to investigate bicycle commuter routes in Guelph, 

Canada. Their results indicate that cyclists do not divert too much from the shortest path and found 

little use of off-road trails, with a preference for in-traffic facilities. Abraham et al. (2002) 

investigate cyclist preferences in the context of route choice in Calgary, Canada, finding that 
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cyclists prefer off-street cycling facilities and low-traffic residential streets. Stinson and Bhat 

(2003) found that respondents preferred bicycling on minor residential streets to major arterials, 

likely because of the low traffic volumes on residential streets. They also detected a positive effect 

linked to the presence of some types of bicycle facilities and a preference for routes designed for 

bicycle use, with bicycle lanes being the most preferred facility type, followed by separate paths. 

Wardman et al. (2007) used RP/SP data to understand the likelihood of cycle commuting, finding 

that the best forecasting scenario to increase the number of bike commuters over the base situation 

is when all travel time would be spent on a completely segregated cycleway. 

This whole discussion is further complicated by the influence of personal characteristics. In 

fact, preferences for different types of infrastructure may differ across socio-economic groups and 

across experienced and non-experienced cyclists (Heinen et al., 2010). Some studies provided 

evidence that women have stronger preferences for segregation from motorized vehicles than men 

(Gardner, 1998; Berggren et al., 2012; Caulfield et al., 2012; Akar et al., 2013; dell’Olio et al., 

2014; Aldred et al., 2017). Regarding age, some works reported that older people prefer cycle 

infrastructure separated from motor traffic, others detected no differences (Aldred et al., 2017). 

Stinson and Bhat (2005) found that, for both experienced and inexperienced users, separation from 

motorized traffic through separate bicycle paths or clearly designated bicycle lanes are among the 

most important attributes in route choice decisions, with all these variables considered more 

important by inexperienced users. Taylor and Mahmassani (1996) observed that for experienced 

cyclists bike lanes are not considered to be more attractive than wide curb lanes. However, it is 

worth highlighting that many of these studies generally measure the preferences of existing cyclists 

rather than the ability of facilities to entice new cyclists (Handy et al., 2014). 

The question of bicycle infrastructure is very much related to safety. Two types of safety can 

be identified: objective and subjective safety. Objective safety is ‘real’ safety for cyclists, measured 

in terms of the number of bicycle‐related incidents per million inhabitants. Subjective safety refers 

to how individuals perceive safety and is mostly measured in terms of the stated safety experience 

of users or other respondents. Most cyclists are reluctant to cycle on a particular infrastructure or 

across an intersection if they perceive it as dangerous (Lawson et al., 2013). Therefore, 

understanding subjective measures of safety plays an important role in cycling promotion.  

The mere provision of bicycle facilities may not be sufficient to encourage use of the bike 

(Fernández-Heredia et al., 2014). It has been shown that the provision of a well-designed network, 

with direct routes and a small number of stops, clearly contribute to the attractiveness of the bicycle 

as a transport mode (Rietveld and Daniel 2004). In fact, often cities have bike lanes that go 

nowhere, end in unsafe conditions, or pass through dangerous intersections. Different studies 

indicate that continuity and connectivity are key ingredients to attract users and make cycling more 

viable and comfortable for the everyday commuter. A work by Caulfield et al. (2012) revealed that 
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direct routes with short journey times were found to be the most important positive variable for 

existing cyclists and non-cyclists in determining route choice. Similarly, Bhat et al. (2015) found 

that routes with a continuous bicycle facility (the whole route has a bicycle lane or wide outside 

lane) are preferred to those with a discontinuous facility. 

2.2.4.3. End-of-trip facilities and transit integration 

Fewer studies have considered the role of end-of-trip facilities such as bicycle parking and 

showers, although their presence can positively contribute to cycling.  

Bicycle parking can protect bicycles from theft, damage, and weather and their presence may 

facilitate cycling (Heinen and Bueheler, 2019). The vast majority of studies show a positive 

relationship between parking at workplaces and bicycle mode choice. For example, Wardman et al. 

(2007) found an improvement in cycle market share, introducing bike parking at work, particularly 

the provision of indoor parking. Hunt and Abraham (2007) established that the provision of bike 

parking at destination has a positive effect equivalent to a reduction of 26.5 minutes cycling in 

mixed traffic. They also report that for young cyclists, particularly for under-16s, secure parking is 

more important than for other age groups. Only a few papers have focused on bicycle parking at the 

residential location and only one (Nkurunziza et al., 2012) shows a positive relationship between 

the presence of parking at home and the likelihood to cycle. Bike parking is also a key aspect in 

integrating bicycling with transit. In particular in Europe and in Japan a large amount of bike 

parking has been provided at both suburban rail and metro stations (Martens, 2007; Harden, 2008; 

Pucher and Buehler, 2009; Pucher et al., 2010), while their presence is less common at bus stops, 

due to the lack of bike racks on buses (Pucher et al., 2010).  

Besides the above, another determinant in the choice to use the bike is the presence of 

complementary infrastructure such as showers, dressing rooms and lockers on site (Abraham et al., 

2002; Wardman et al., 2007; Sener et al., 2009; Heinen et al., 2013; Hamre and Buehler, 2014). 

Interestingly, Abraham et al. (2002) found that cyclists and non-cyclists value the provision of 

showers to the same extent. However, the research findings in this area are ambiguous. Taylor and 

Mahmassani (1996) found that showers at workplace were a disincentive to bike and ride for males 

and was not relevant for females. In the same vein, Stinson and Bhat (2004) found that the presence 

of showers and clothing lockers were not relevant variables in modeling the propensity to commute 

by bike.  

2.2.5. Bicycle access  

People are not able to cycle if they do not have access to a bicycle, and several studies indicate that 

the possession of a bicycle is the strongest predictor of bicycling in transportation (Wardman et al., 

2007; Heinen et al., 2013; Fernández-Heredia et al., 2016).  
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Interestingly, some studies consider bike ownership as the dependent variable in their 

modeling framework. Yamamoto (2009) studied the effects of the built environment on motorcycle 

and bicycle ownership as well as car ownership in Japan and Malaysia. Handy et al. (2010) 

estimate a nested logit model to jointly examine bike ownership and level of cycling experience 

jointly in six small US cities. Habib et al. (2014) estimate a joint econometric model of bike usage, 

choice of purposes of biking and bike ownership level, in Toronto. Maness and Cirillo (2016) 

present a latent class discrete choice model to explore the effect of social influence on bike 

ownership in US. Recently, Huang et al. (2017) applied a joint mixed multinomial logit-ordered 

model to explore the impacts of metro transit on the ownership of four mobility instruments, 

including the bicycle, in China. 

The importance of bicycle access in the choice to cycle is also demonstrated by the number 

of programs, facilitating bike ownership or enabling temporary use of a bicycle, implemented 

throughout the world (Pucher et al., 2010). In particular, bike sharing programs, which have been 

around since 1960s, have recently begun to receive large scale acceptance as a feasible 

transportation alternative (Fishman, 2016; Nikitas, 2018; Barbour et al., 2019). In Barcelona the 

proportion of trips by bicycle increased from 0.75% to 1.76% (Demaio, 2009) and in Paris from 

1.0% to 2.5% (Nadal, 2007) thanks to bike sharing systems. Fishman et al. (2016) using the data 

from bike share programs in Melbourne, Brisbane, Washington D.C., London, and Minnesota 

found a significant reduction in motor vehicle use due to the presence of this kind of system. Li et 

al. (2018), who studied bike sharing in East Asia, reported benefits such as reductions in 

greenhouse gas emissions and fuel consumption and increased public transport use.  

2.2.6. Subjective factors 

2.2.6.1. Perceptions of environmental and cycling facilities 

Recent research has started to focus on how individuals can be influenced in their choice to cycle 

by their perceptions related to variables that can be measured objectively, such as hilliness, 

weather, traffic risks, distance and bicycle facilities. In fact, perceptions are subjective 

representations of objective factors and depend on many personal characteristics and experiences. 

Hence, their effect may play a much larger role than the objective environment. In an analysis of 

the relationship between the objectively measured and perceived built environments, Ma et al. 

(2014) show that the latter had a direct and significant effect on bicycling behavior, while the direct 

effect of the objective environment on bicycling behavior became insignificant when controlling 

for perception. 

A key aspect of perceptions is the concept of risk. Fear of riding in motorized traffic could 

be felt as an obstacle to cycle (Rietveld and Daniel, 2004; Garrard et al., 2008; Fernández-Heredia 
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et al., 2014). However, perception of risk is a subjective matter that is not always correlated with 

actual risk (Fernández-Heredia et al., 2014). 

2.2.6.2. Psychological indicators 

The other subgroup of subjective variables includes those factors that are not explicitly 

identified by the users but are suspected to have an influence on the choice to cycle, such as 

personal attitudes, self-efficacy and social norms (Heinen et al., 2010; Fernández-Heredia et al., 

2014; Muñoz et al., 2016). Almost all studies using this psychometric approach conduct their 

analysis following the Theory of Planned Behavior (Ajzen, 1985), which assumes that attitudes, 

subjective norms and perceptions can affect actual behavior (Maldonado-Hinarejos et al. (2014), 

Lois et al. (2015), Fernández-Heredia et al. (2016), and Muñoz et al., 2016). Others use the 

Transtheoretical Model of Behavior Change (Prochaska et al., 1992) for their analysis (Gatersleben 

and Appleton, 2007; Thigpen et al., 2015), focusing on how people’s attitudes and perceptions vary 

for each stage of change.  

Attitudes refer to the general evaluation individuals have about places, objects, or activities. 

It has been found that a positive attitude toward cycling increases the likelihood of using the bike 

(Dill and Voros, 2007; Sener et al., 2009; Muñoz et al., 2013; Fernández-Heredia et al., 2014; 

Muñoz et al., 2016; Gao et al., 2019). Heinen et al. (2011) found that an increase in distance 

corresponds with a decrease in the average value of attitudes toward the various characteristics of 

bicycle travel.  

Earlier research also confirmed the importance of social norms. Dill and Voros (2007) found 

that people living in households with other adults who cycled regularly, have co-workers who cycle 

to work, or people who see adults cycling on their street frequently are more likely to be regular 

cyclists themselves. Similarly, Muñoz et al. (2016) show that the influence of friends, family and 

co-workers/classmates also fosters the decision to cycle for commuting purposes.  

Further, habit can shape bike behavior over attitudes. Stinson and Bhat (2004) stated that 

cycling more in leisure time could increase the frequency of bicycle use for commuting. In a study 

of cycling in six small U.S. cities, Xing et al. (2010) found that while over one-quarter of cyclists 

only cycled for leisure and sport, only 10% cycled only for transportation and the majority cycled 

for a mix of recreational and transportation purpose, suggesting a relationship between the two. 

Among a sample of Korean cyclists, Park et al. (2011) found that 57% of commuter-cyclists began 

as leisure-cyclists. A broader perspective has been adopted by Kroesen and Handy (2014) who 

argue that the effect of bicycle commuting on non-work cycling is greater than vice versa. 

However, this study uses a sample from a country, the Netherlands, with a high level of cycling. 
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2.2.7. Methodological approach 

From a methodological point of view, previous research has used a variety of statistical and 

econometric models including descriptive analysis, discrete choice models and structural equation 

models to understand either bicycle mode choice or its frequency. 

2.2.7.1. Aggregate level methods 

Aggregate-level methods predict demand by mode for an area served by a facility, based on the 

characteristics of the area served, such as population and land use mix. Aggregate methods include 

measures of potential demand, comparison studies, aggregate behavior studies or a mixture of these 

(Maldonado et al., 2014). In particular: 

• Facility Demand Potential: these methods predict the maximum potential demand for 

bicycles by characterizing facilities and using population characteristics, proximity to 

activity centers, and trip distribution. Often, they are used to prioritize projects based on 

potential usage.  

• Comparison Studies: These studies compare bicycle levels before and after a change in the 

travel context or an improvement in bike facilities. Counts on existing facilities also have 

been used to forecast demand for proposed facilities with similar characteristics. 

• Aggregate Behavior Studies: these studies estimate models to predict mode split or other 

travel behavior characteristics at a zonal level, such as for residents of census sections or 

metropolitan areas. An example of methods is regression analysis. 

2.2.7.2. Discrete choice models 

Several studies have developed discrete choice models to investigate the relation between 

explanatory variables and the likelihood to cycle (see Table 3). Regarding data collection, some 

works used revealed preference (RP) data, others stated preference (SP) data. Most studies use 

specifications based on logit formulations (Muñoz et al., 2016). Some works investigate the choice 

between cycling or not cycling, while others have focused on quantifying the factors influencing 

the choice between cycling and other modes. Finally, some research works analyze cycling 

frequency through the construction of ordered data models.  
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Table 3. Discrete choice models used for modeling bicycle choice 

Authors Year Data collection Methodology Location 

Taylor and 

Mahmassani 
1996 SP Nested logit Texas 

Stinson and Bhat 2004 RP Ordered logit Austin, TX 

Ryley 2006 RP/SP Multinomial logit 
West Edinburgh, 

Scotland 

Hunt and Abraham 2007 SP Binary logit Edmont, Canada 

Wardman et al. 2007 RP/SP Hierarchical logit 
Different towns in 

UK 

Parkin et al. 2008 RP Binary logit model UK 

Akar and Clifton 2009 SP Multinomial logit 
University of 

Maryland 

Sener et al. 2009 RP 
Bivariate ordered 

probit 
Austin, TX 

Börjesson and 

Eliasson 
2010 SP Binary logit Stockholm 

Handy et al. 2010 RP Nested Logit USA 

Yi et al. 2011 RP/SP Hierarchical logit Sidney 

Akar et al. 2013 RP Multinomial logit 
Ohio State 

University 

Heinen et al. 2013 RP Binary Logit 
Delft and Zwolle, 

Netherlands 

Hamre and 

Buehler 
2014 RP Multinomial Logit Washington DC 

Braun et al. 2016 RP Binary Logit Barcelona 

Bhat et al. 2017 RP 
Spatial generalized 

ordered probit 
USA 

Ton et al. 2019 RP Multinomial Logit Netherlands 

Gao et al. 2019 RP Tobit Netherlands 

 

2.2.7.3. The incorporation of latent variables in bicycle mode choice studies 

As explained in 2.2.6, a particularly appealing characteristic of the more recent commute 

bicycling-oriented research efforts is the explicit recognition that, in addition to objective factors 

(such as individual and household socio-demographics, variables characterizing the bicycling 

facilities environment, and trip characteristics), subjective factors linked to individuals’ attitudes, 

perceptions, beliefs and social norms also play an important role in commute bicycling decisions. 

This recognition may be attributed to the general finding of the presence of substantial unobserved 

individual heterogeneity in the evaluation of bicycle infrastructure attributes, as well as the 

observation that individuals with similar socio-economic and bicycling environment characteristics 

tended to manifest quite different commute bicycling behavior. Some earlier studies in the past 

decade, such as Sener et al. (2009), considered such unobserved factors, but only implicitly, by 

allowing random distributions to capture sensitivity variations across individuals to route attributes 

(that is, taste heterogeneity). But this random distribution approach treats unobserved psychological 
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preliminaries of choice (i.e., attitudes and preferences) as being contained in a “black box” to be 

integrated out. On the other hand, with the development of ICLV models it is possible to unpack 

the unobserved heterogeneity and have deeper understanding of bicycling choice by considering 

“soft” (latent) psychometric measures of individual attitudes and perceptions. 

The use of ICLV models is well established in this field. Kamargianni and Polydoropoulou 

(2013) estimate an ICLV model to study the impact of the latent variable willingness among 

teenagers to walk or cycle in mode choice. The same survey was also used by the study 

Kamargianni et al. (2014) to test Bhat and Dubey (2014) ICLV probit kernel model. Habib et al. 

(2014) present an integrated econometric model of bike ownership and choice of biking for 

utilitarian and/or recreational purposes using simultaneous estimators and three latent variables, 

namely the impact of comfort, safety awareness and perceptions of bikeability (in terms of quality 

of bike facilities). Maldonado-Hinarejos et al. (2014), using data from a stated preference 

experiment, develop an ICLV model using sequential estimation. They incorporate attitudes toward 

cycling, perceptions of the image associated with cycling and the stress arising from safety 

concerns, identified using a principal component analysis in the utility to commute by bike. 

Motoaki and Daziano (2015) estimate a hybrid choice latent class model to investigate the effects 

of weather (temperature, rain, and snow), cycling time, slope, cycle facilities (bike lanes), and 

traffic on cycling decisions. Fernández-Heredia et al. (2016) estimate a hybrid model to study the 

intention to bicycle combining a structural equations model that captures intentions and a choice 

model. Sottile et al. (2019) use a hybrid choice model to estimate the effect of people's perception 

on the propensity to bike, finding that, besides individual characteristics, latent aspects related to 

the perception of the context and of the bicycle as a means of transport, strongly affect the 

propensity to cycle. 

2.2.7.4. Inference 

There are a few studies that use forecasting techniques for bike share prevision. Wardman et al. 

(2007) evaluate the likelihood to commute by bike under a variety of scenarios, including modest 

financial incentives, cycle facilities for around half the journey to work and good parking and 

shower facilities at work in the British context.  

Goetzke and Rave (2011) found that in a case study in Germany in a scenario with the 

introduction of new cycling infrastructure, bike share increases only for shopping and errand trips. 

Moreover, commuting trips by bicycle seemed to be largely independent of any policy variables.  

Hamre and Buehler (2014) found that in the region of Washington DC in a scenario simply 

introducing bike/walk facilities (showers/lockers and/or bike parking) walk share for commuting 

increases from 1.4% to 2.1% and cycle share from 0.5% to 1.0%.  
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Maldonado-Hineros et al. (2014) use an Integrated Choice Latent Variable model, in the 

London (UK) context, to evaluate choice behavior in three different policy scenarios: (a) a scenario 

in which the image of cycling increases by one scale point for each related attitudinal and 

perceptual indicator (b) a scenario in which cycle parking facilities are improved for all travelers 

assumed to have access to locked cycle parking compounds (c) the combination of scenarios (a) 

and (b). The results show that under both the image enhancement and parking facility improvement 

scenarios the cycling mode share increases, and that in combination the increase in market share is 

mildly super-additive. Nevertheless, cycling is predicted to draw demand principally from public 

transport and walking rather than from the car.  
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2.3.  DATA COLLECTION 

The data used in this study originates from an on-line survey implemented by the Regional 

Government of Sardinia (RAS) and the Research Centre for Mobility Models (CRiMM) at the 

University of Cagliari, Italy, in the metropolitan areas of Cagliari and Sassari (Italy). Potential 

candidates were contacted both via mailing lists provided by the universities of Cagliari and Sassari 

and the Regional Government of Sardinia (around 9,600 invitation mails were sent) and through a 

promotional campaign conducted via traditional communication channels and social media. 

A total of 4,691 individuals responded to the survey. However, following careful screening - 

excluding incompleteness or missing crucial information - the final sample size includes 2,128 

individuals (corresponding to 45.4% of respondents).  

The on-line questionnaire, built on a SaaS (Software as a service) platform called WUFOO 

(www.wufoo.com), comprised three sections:  

1. Bicycles and cycle paths 

The first section aimed to identify for what purpose people choose to cycle, as well as their 

impressions and opinions about cycling and cycle paths from cyclists and non-cyclists. 

o Cyclists section: to be completed by those who stated they cycled, to identify what 

type of bike they used, for what purpose, distance traveled for each purpose, type 

of route cycled; 

o Bicycles and cycle paths: to be completed by cyclists and non-cyclists. 

Respondents are asked to express their agreement/disagreement (on a Likert scale 

from 1 to 5) with regard to a series of statements concerning the bicycle and its 

use, existing cycle paths and factors that are likely to encourage people to cycle or 

to cycle more; 

o Reasons for not cycling: to be completed by those who stated they did not cycle. 

Non cyclists are asked to indicate the importance (on a Likert scale from 1 to 5) of 

a series of factors that influence the decision not to cycle. 

2.  Description of home-work trip 

The second section aimed to identify the form of transport used for the home-work trip, especially 

to obtain a detailed description for the car-as-driver, public transport and bicycle modes. 

o Modes used: workplace address, means of transport used to reach workplace, 

departure time, means of transport not usually available for the home-work trip; 

depending on the trip mode reported (car-as-driver, public transport and bicycle) the 

respondent is directed to a specific section for describing the trip 
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o Car as driver: time taken to walk from home to where car is parked, in-vehicle travel 

time, time taken looking for a parking place at destination, type of parking and if paid 

parking, cost; any stops along the way; 

o Public transport (alone or combined with other means of transport): time taken to walk 

to the bus stop/station, waiting time, in-vehicle travel time (and on board second mode 

if travelling by a combination of modes), time taken on alighting from bus/train to 

walk to final destination, type of ticket used; 

o Cycling: duration of trip, type of parking, alternative means of travel in bad weather, 

mode used prior to taking up cycling. 

3. Socio-economic information 

Lastly, the third section contains questions of a socio-economic nature: 

o Socio-economic information: address, age, gender, occupation, education, income, 

marital status, number and age of children living at home, number of household 

members, number of cars and bicycles in the household, possession of driving license; 

o Information about height and weight: for the purpose of calculating body mass index 

and evaluating the correlation with active transportation (bicycle); 

o Possession of a smartphone and type; 

o E-mail address for participating in the prize draw. 

2.3.1.  Socio-economic characteristics 

The sample is distributed throughout the island of Sardinia (70.1% in the metropolitan city of 

Cagliari and in the province of South Sardinia, 25.6% in the metropolitan area of Sassari and the 

remaining 4.3% divided between the other Sardinian provinces).  

Regarding individual characteristics (Table 4), the sample is practically equally divided 

between females and males with a slight preponderance of the latter. In terms of age distribution, 

the sample was composed as follows, 18-30 (3.8%), 31-40 (16.6%), 41-60 (72.8%), over 60 

(6.8%). 

The level of education of the sample is quite high. This is not surprising as a large number of 

respondents who completed the questionnaire worked at Cagliari and Sassari universities, where it 

is more feasible to find individuals with a degree or a postgraduate diploma. In particular, 36.3% 

had a high school diploma, 34.7% had a bachelor’s or master’s degree and 23.0% pursued a PhD 

program.  

The majority of respondents (93.4%) are employees, while 5.9% are students/graduate 

students. The remaining quota (0.8%) stated they were unemployed or retired. As for personal 

monthly income, 6.3% stated they earned less than € 1,000 a month, 66.2% € 1.000-2.000, 13.6% € 

2000-4000, 13.8% > € 4.000. Analysis of marital status shows that the majority of individuals are 
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married/living with partner in a household with an average of 3 members. Almost all have a driving 

license and own a car. The average number of cars per household is 2, slightly less for bicycles, 

though 79.6% reported owning at least one. 

Another interesting aspect analyzed, that can be significant when considering active mobility 

vs non active mobility but often overlooked in most studies, was the body mass index (BMI) that 

was calculated based on the data on people’s height and weight. The BMI is a biometric datum, 

based on the ratio of a person’s weight to height squared and is used as an indicator of ideal weight. 

On average the sample had normal weight with an average BMI of 23.62 kg/m2. 

Table 4. Data description 

Variables N. [%] AVG. 

Total sample 2,128   

Gender (male) 1029 48.4%  

Age  - 48.02 

Age 18-30 82 3.9%  

Age 31-40 341 16.0%  

Age 41-60 1559 73.3%  

Age > 60 146 6.9%  

Level of education 

Low (High school and lower) 901 42.3%  

Medium (Graduate) 738 34.7%  

High (Higher than Master’s degree) 489 23.0%  

Employment status 

Student 125 5.9%  

Worker 1987 93.4%  

Unemployed or retired 16 0.8%  

Marital status: married 1550 72.8%  

With children 1159 54.5%  

# of members in the household    - 2.88 

Driving license 2098 98.6%  

Personal car available 1930 90.7%  

# of cars per household - - 1.72 

# of bikes per household - - 1.54 

Personal income per month 

Income 0-1000 € 140 6.6% - 

Income 1000-2000 € 1382 64.9% - 

Income 2000-3000 € 205 9.6% - 

Income >3000 € 301 14.1% - 
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2.3.2.  Transport analysis 

As was to be expected from the above results on car ownership, practically the entire sample 

(94.0%) had access to a car for the home-work commute, 82.4% could travel to the workplace by 

public transport, 51.9% by bicycle and lastly 43.0% on foot (Table 5). In spite of the fact that 

almost half the sample could active commute to work either on foot or by bike or both, the private 

car dominates the modal split, in keeping with the Sardinian population as a whole. In fact, 67.5% 

of the respondents choose to commute by car (67.5%), followed by walking (22.6%), transit (9.9%) 

and cycling (7.9%).  

Table 5. Transport analysis 

 Observed mode share 

[%] 

Availability 

[%] 

Private car 67.5% 94.0% 

Public transport 9.9% 82.4% 

Walking 14.7% 43.0% 

Cycling 7.9% 51.9% 

 

2.3.3.  Analysis of bicycle use 

Analysis of the questionnaires revealed that around 50% of the sample (1063 individuals) stated 

they used the bike for some purpose or another ( 

Figure 3). Further analysis revealed the following share by frequency:  

• I never use the bike (50.0% of the sample);  

• I use the bike 1-10 times per year (14.6% of the sample);  

• I use the bike 1-5 times per month (14.2% of the sample);  

• I use the bike more than once a week (14.7% of the sample);  

• I use the bike everyday (6.5% of the sample). 

 

Figure 3. Results on the share of people using a bike by frequency (frequency scale 0=never; 1=1-10 times per year; 2=1-

5 times per month; 3=more than once a week; 4=daily) 
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Table 6 shows the results of the share of people using a bicycle by frequency and by 

purpose. As can be clearly seen, all individuals who choose to cycle use the bike for leisure and 

sport. Instead, 55.8% of the sample reported they never used the bike for shopping or for 

commuting (63.6%). This finding is in line with other countries where cycling share is low, and 

individuals perceive the bicycle as a form of recreation more than as a means of transport. 

Table 6. Analysis of cycling frequency by purpose for those who decide to cycle. 

Cycling frequency 

Choice = Use the bike (1063 individuals) 

Leisure and 

sport 
Shopping Work 

Never 0 (0.0%) 593 (55.8%) 676 (63.6%) 

1-10 times per year 366 (34.4%) 236 (22.2%) 127 (11.9%) 

1-5 times per month 342 (32.1%) 146 (13.7%) 65 (6.1%) 

More than once a week 297 (27.9%) 211 (10.8%) 98 (9.2%) 

Daily 58 (5.4%) 0 (0.0%) 97 (9.1%) 
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2.3.3.1. Comparisons: socio-economic characteristics for different levels of 

cycling 

Table 7 gives the socio-demographic variables of respondents for different levels of cycling. No 

significant differences were detected between bike users and non-users. The most interesting 

difference concerns bicycle ownership per household. Indeed, bike users tend to own more bikes in 

their household than individuals who do not choose to cycle. 

Table 7. Socio-economic characteristics for different levels of cycling 

 Frequency of bike use 

 
Never 

1-10 times per 

year 

1-5 times per 

month 

More than once 

a week 
Every day 

 N. % N. % N. % N. % N. % 

Questionnaires completed 1065 50.1% 310 14.6% 303 14.2% 311 14.6% 139 6.5% 

Gender (male) 423 39.7% 128 41.3% 159 52.5% 212 68.2% 107 77.0% 

Age (average) 49.07 - 46.13 - 46.49 - 47.46 - 48.82 - 

18-30 24 2.3% 20 6.5% 14 4.6% 19 6.1% 5 3.6% 

31-40 164 15.4% 59 19.0% 53 17.5% 44 14.1% 21 15.1% 

41-60 786 73.8% 215 69.4% 223 73.6% 232 74.6% 103 74.1% 

>60 91 8.5% 16 5.2% 13 4.3% 16 5.1% 10 7.2% 

Level of education           

Low (High school and 

lower) 
451 42.3% 107 34.5% 94 31.0% 172 55.3% 77 55.4% 

Medium (Graduate) 381 35.8% 110 35.5% 125 41.3% 85 27.3% 37 26.6% 

High (Higher than 

Master’s degree) 
233 21.9% 93 30.0% 84 27.7% 54 17.4% 25 18.0% 

Employment status           

Student 46 4.3% 30 9.7% 21 6.9% 22 7.1% 6 4.3% 

Employed 1011 94.9% 277 89.4% 281 92.7% 287 92.3% 131 94.2% 

Unemployed or retired 8 0.8% 3 1.0% 1 0.3% 2 0.6% 2 1.4% 

With Children 581 54.6% 170 54.8% 163 53.8% 171 55.0% 74 53.2% 

Married 757 71.1% 230 74.2% 224 73.9% 236 75.9% 103 74.1% 

# members of household 

(average) 
2.83 - 2.99 - 2.88 - 2.96 - 2.81 - 

Driving License 1049 98.5% 308 99.4% 300 99.0% 305 98.1% 136 97.8% 

Own car 978 91.8% 276 89.0% 274 90.4% 275 88.4% 127 91.4% 

# of cars (average) 1.71 - 1.82 - 1.72 - 1.73 - 1.52 - 

# of bikes (average) 0.97 - 1.98 - 2.07 - 2.19 - 2.32 - 

Monthly personal income           

Income 0-1000 € 52 4.9% 37 11.9% 16 5.3% 22 7.1% 13 9.4% 

Income 1000-2000 € 706 66.3% 183 59.0% 205 67.7% 206 66.2% 82 59.0% 

Income 2000-3000 € 148 13.9% 46 14.8% 41 13.5% 50 16.1% 20 14.4% 

Income >3000 € 159 14.9% 44 14.2% 41 13.5% 33 10.6% 24 17.3% 
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2.3.4.  Analysis of built environment characteristics                                             

A crucial aspect in the choice to use the bike concerns the built environment that in many cases 

may represent a barrier to the choice to use the bike. Table 8 provides a summary of participants’ 

built environment characteristics. The micro-environments of the home address area (presence of 

bike lanes and percentage of green areas) were assessed within the GIS environment using a buffer 

of 400 m radius. Using the digital land use maps downloaded from the Sardinian Government 

website, it was possible to calculate the characteristics of the residence location (urban or 

suburban). 

It is apparent from Table 8 that no significant differences were found among cycling 

frequency categories. The majority of individuals live in urban areas and fewer than half have 

access to a bike lane within 400m of home.  

Table 8. Built environment characteristics 

Variables 

Cycling frequency 

Never 
1-10 times 

per year 

1-5 times 

per month 

More than 

once a week 
Everyday 

% of individuals living in urban areas 79.1% 72.2% 74.3% 79.6% 83.0% 

% of individuals who have access to a bike 

lane within 400m of home 
48.7% 48.7% 45.1% 47.1% 59.2% 

Average % of green areas within 400m of 

home per individual 
5.2% 5.3% 5.1% 4.9% 5.1% 

2.3.5. Analysis of psycho-attitudinal characteristics 

Psycho-attitudinal characteristics were measured by means of the questions of the 5-point Likert 

scale (1 = Totally disagree to 5 = Totally agree). Specifically, the questionnaire contained three 

questions for measuring: 

• The perception of the bicycle as a means of transport at the personal (in terms of travel 

time, travel cost, comfort, health, etc.) and societal level (environment, quality of life, 

standard of living). 

• The perception of bikeability in terms of usefulness and safety. 

• Facilitators of cycling with reference to the context characteristics (e.g. existence of bike 

lanes in urban area, presence of racks and secure parking, integration with the public 

transport service). 

Overall most respondents recognized the advantages associated with cycling in terms of cost, 

travel times, benefits for health and the environment, as can be seen from the average values close 

to 5 for items A1, A4, A6, A7, A9 and A11.  
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Table 9. Analysis of the responses regarding perception of the bicycle as a means of transport at the personal 

FIRST QUESTION “The perception of the 

bicycle as a means of transport at the 

personal and societal level” 

1=Totally 

disagree 
2=Disagree 3=Neutral 4=Agree 5=Totally agree 

AVG 

N. % N. % N. % N. % N. % 

A1. It is a rapid means of transport (it avoids 

queues and traffic)  
60 2.8% 138 6.5% 402 18.9% 411 19.3% 1117 52.5% 4.12 

A2. Cycling in traffic is not dangerous 1184 55.6% 497 23.4% 295 13.9% 91 4.3% 61 2.9% 1.75 

A3. It is not likely to be stolen and there are 

no adequate parking areas  
863 40.6% 463 21.8% 403 18.9% 263 12.4% 136 6.4% 2.22 

A4. It is not expensive 36 1.7% 30 1.4% 99 4.7% 225 10.6% 1738 81.7% 4.69 

A5. It does not imply exposure to bad 

weather and air pollution 
605 28.4% 518 24.3% 601 28.2% 279 13.1% 125 5.9% 2.44 

A6. It avoids wasting time looking for 

parking 
68 3.2% 78 3.7% 226 10.6% 359 16.9% 1397 65.6% 4.38 

A7. It is healthy 25 1.2% 18 0.8% 121 5.7% 274 12.9% 1690 79.4% 4.69 

A8. It is easy to carry heavy items 1102 51.8% 476 22.4% 340 16.0% 127 6.0% 83 3.9% 1.88 

A9. It allows one to appreciate historic 

centers and increases accessibility to city 

services 

51 2.4% 83 3.9% 238 11.2% 430 20.2% 1326 62.3% 4.36 

A10. No need for cycling gear 279 13.1% 484 22.7% 713 33.5% 355 16.7% 297 14.0% 2.96 

A11. It contributes to reducing polluting 

emissions 
23 1.1% 18 0.8% 36 1.7% 127 6.0% 1924 90.4% 4.84 

A12. It does not hamper daily activity 

patterns  
244 11.5% 453 21.3% 683 32.1% 373 17.5% 375 17.6% 3.09 

 

The second question concerned the perception of the context in terms of bikeability and 

issues with existing cycle paths. Most individuals agree that existing bike lanes are not useful and 

not safe. This result is certainly due to the lack of a protected and connected system of bike lanes in 

the reference context. Moreover, the majority of respondents prefer to use the existing bike lanes 

than ride in traffic, even if they consider them not secure. 

Table 10. Analysis of the responses regarding the perception of bikeability in terms of usefulness and safety 

SECOND QUESTION “The perception 

of bikeability in terms of usefulness and 

safety” 

1=Totally 

disagree 
2=Disagree 3=Neutral 4=Agree 

5=Totally 

agree AVG 

N. % N. % N. % N. % N. % 

B1. Existing bike lanes are not useful for 

travelling 
302 14.2% 244 11.5% 529 24.9% 387 18.2% 666 31.3% 3.41 

B2. Existing bike lanes and crossings are 

safe, comfortable and well-marked 
791 37.2% 608 28.6% 510 24.0% 146 6.9% 73 3.4% 2.11 

B3. It is better to ride in traffic than use the 

existing bike paths 
1136 53.4% 363 17.1% 370 17.4% 128 6.0% 131 6.2% 1.95 

B4. Car drivers do not respect dedicated 

bike lanes and often invade them  
103 4.8% 165 7.8% 373 17.5% 481 22.6% 1006 47.3% 4.00 

Examination of the facilitating factors revealed that the creation of a network of dedicated 

bike lanes and the possibility of safe bike parking were the most important factors in encouraging 
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individuals to cycle or cycle more. Another decisive element appears to be the possibility of 

combining cycling with public transport, suggesting that people could use the bike as a means of 

transport for intermodal trips.  

Table 11. Analysis of the responses regarding the facilitators of cycling with reference to the context characteristics 

THIRD QUESTION: “The perceived 

importance of context characteristics” 

1=Totally 

disagree 
2=Disagree 3=Neutral 4=Agree 5=Totally agree 

AVG 

N. % N. % N. % N. % N. % 

C1. An extensive network of dedicated bike 

lanes in urban area  
63 3.0% 75 3.5% 206 9.7% 402 18.9% 1382 64.9% 4.39 

C2. The presence of racks and secure 

parking for bicycles 
63 3.0% 104 4.9% 250 11.7% 504 23.7% 1207 56.7% 4.26 

C3. A greater extension of the LTZ or 

pedestrian zones 
168 7.9% 192 9.0% 446 21.0% 471 22.1% 851 40.0% 3.77 

C4. A bike-sharing station close to home or 

at public transport stops 
180 8.5% 239 11.2% 403 18.9% 467 21.9% 839 39.4% 3.73 

C5. If other people use it  473 22.2% 373 17.5% 485 22.8% 371 17.4% 426 20.0% 2.95 

C6. Dedicated services at work / study 

(parking, showers, lockers for equipment, 

etc.) 

130 6.1% 156 7.3% 365 17.2% 520 24.4% 957 45.0% 3.95 

C7. An integrated ticket for bike-sharing and 

public transport services 
153 7.2% 220 10.3% 353 16.6% 485 22.8% 917 43.1% 3.84 

C8. Combination with public transport 

services  
126 5.9% 176 8.3% 328 15.4% 508 23.9% 990 46.5% 3.97 

C9. Increase of car parking fee 910 42.8% 380 17.9% 428 20.1% 178 8.4% 232 10.9% 2.27 

 

2.3.5.1. Comparisons: psycho-attitudinal characteristics for different levels of 

cycling 

Table 12 shows the results of the statistical test analysis for individuals with different levels of 

cycling experience with regard to the attitudinal factors. There are items that are not statistically 

significantly different among categories. For example, no differences were detected for the item 

regarding the benefits of bicycling in terms of cost, accessibility and reduced level of pollution. 

Interestingly, there were no significant differences between the groups for those aspects regarding 

the implementation of certain measures, such as a greater extension of limited traffic zones and 

presence of end-of-trip facilities. This latter result suggests that all the individuals consider the 

existence of this type of facilities important, regardless of their level of cycling experience.  

However, in general, the z-test analyses reveal that more experienced cyclists have more 

positive perceptions of bicycling than less experienced ones, as found in other works (Heinen et al., 

2011; Namgung and Jun, 2019). More specifically, frequent cyclists have a greater perception of 

bikeability than infrequent cyclists and non-cyclists (items A8, A10 and A12). We also found 

differences in the perception of safety (items A2 and B1). In particular, the results suggest that 

more experienced cyclists tend to be less bothered by mixed traffic situations. Nevertheless, it 

should be noted that, in general, cyclists and non-cyclists agree about the inadequacy, in terms of 
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safety, of the current bicycling network. The t-test analyses also show that bicycling willingness in 

case of integration with the public transit service (items C4 and C7) is greater among non-cyclists 

and infrequent cyclists. 

Table 12. Psycho-attitudinal characteristics for different levels of cycling (0 = never, 1=1-10 times per year, 2=1-5 times 

per month, 3= more than once a week, 4 = everyday). * Significant at 90% confidence. ** Significant at 95% confidence. 

 Avg 

0 

Avg 

1 

Avg 

2 

Avg 

3 

Avg 

4 

Z-stat 

0-1 

Z-stat 

1-2 

Z-stat 

2-3 

Z-stat 

3-4 

A1. It is a rapid means of 
transport  

3.99 3.90 4.15 4.46 4.83 1.12 -2.79** -3.72** -5.31** 

A2. Cycling in traffic is not 

dangerous 
1.72 1.56 1.75 1.86 2.22 2.47** -2.38** -1.32 -2.98** 

A3. It is not likely to be stolen 

and there are no adequate 

parking areas 
2.32 2.25 2.12 2.03 2.11 0.80 1.35 0.86 -0.60 

A4. It is not expensive 4.66 4.65 4.72 4.73 4.84 0.16 -1.01 -0.26 -1.78* 

A5. It does not imply exposure to 

bad weather and air pollution 
2.24 2.49 2.65 2.69 2.78 -3.31** -1.79* -0.41 -0.64 

A6. It avoids wasting time looking 
for parking 

4.30 4.24 4.46 4.55 4.78 0.79 -2.61** -1.24 -2.70** 

A7. It is healthy 4.57 4.67 4.85 4.85 4.86 -1.93* -3.53** -0.04 -0.16 

A8. It is easy to carry heavy items 1.70 1.83 2.01 2.18 2.41 -1.91* -1.99** -1.81* -1.91* 

A9. It allows one to appreciate 
historic centers and increases 

accessibility to city services 
4.31 4.25 4.38 4.50 4.63 0.96 -1.54 -1.59 -1.50 

A10. No need for cycling gear 2.83 2.83 2.95 3.18 3.70 0.10 -1.35 -2.36** -3.86** 

A11. It contributes to reducing 
polluting emissions 

4.83 4.79 4.86 4.86 4.93 0.78 -1.31 0.04 -1.78* 

A12. It does not hamper daily 

activity patterns 
2.89 3.08 3.08 3.39 3.91 -2.35** -0.05 -3.18** -4.24** 

B1. Existing bike lanes are not 
useful for travelling 

3.57 3.42 3.22 3.14 3.16 1.73* 1.77* 0.73 -0.10 

B2. Existing bike lanes and 

crossings are safe, comfortable 
and well-marked 

2.02 2.16 2.21 2.22 2.16 -1.98** -0.55 -0.07 0.47 

B3. It is better to ride in traffic 

than use the existing bike paths 
1.97 1.86 1.81 1.98 2.17 1.29 0.56 -1.76* -1.34 

B4. Car drivers do not respect 

dedicated bike lanes and often 

invade them 
3.88 3.93 4.13 4.19 4.30 -0.63 -2.08** -0.78 -0.95 

C1. An extensive network of 

dedicated bike lanes in urban 

area 
4.23 4.44 4.61 4.61 4.61 -3.19** -2.51** 0.06 0.01 

C2. The presence of racks and 

secure parking for bicycles 
4.15 4.23 4.42 4.43 4.46 -1.11 -2.49** -0.16 -0.26 

C3. A greater extension of the 
LTZ or pedestrian zones 

3.67 3.78 3.81 3.94 4.12 -1.28 -0.28 -1.36 -1.50 

C4. A bike-sharing station close 

to home or at public transport 
stops 

3.87 3.72 3.53 3.57 3.42 1.71* 1.71* -0.30 1.01 

C5. If other people use it 2.99 2.83 2.75 3.08 3.13 1.79* 0.69 -2.81** -0.29 

C6. Dedicated services at work / 

study (parking, showers, lockers 
for equipment, etc.) 

3.86 3.93 4.04 4.17 4.01 -0.91 -1.25 -1.32 1.19 

C7. An integrated ticket for bike-

sharing and public transport 
services 

3.92 3.57 3.81 3.90 3.78 4.21** -2.22** -0.85 0.90 

C8. Combination with public 

transport services 
3.98 3.72 3.97 4.15 4.04 3.19** -2.50** -1.76* 0.88 

C9. Increase of car parking fee 2.24 2.20 2.16 2.40 2.53 0.50 0.36 -2.17** -0.87 

 



 

61 

 

2.3.6. Comparison: who chooses to cycle to work vs those who do not 

Only 1,105 individuals of the 2,128 examined, i.e. 52%, reported having access to a bicycle for the 

home-work trip. For these 1,105 commuters, we examined the stated availability, checking, 

especially for those who did not choose that alternative, the feasibility of bike commuting in terms 

of distance traveled, route (urban or non-urban), access to at least one bicycle in the household. In 

no cases was cycling not a feasible option, the distance to be traveled by bike being at the most 25 

km. 64% of the routes are on urban roads while the suburban routes are on minor roads and thus 

suitable for cycling, and all had access to at least one bicycle in the household. Thus, the 

availability stated in the questionnaire was considered correct. 

Out of the subsample of 1,105 individuals who could commute by bicycle, 15.2% (168 

individuals)2, actually chose to do so, while 85% (937 individuals) travel to the workplace by other 

means of transport. 

2.3.6.1. Socio-economic characteristics 

No significant differences were observed between bike commuters and commuters who choose 

other forms of transportation in terms of socio-economic characteristics, as the sample was fairly 

homogeneous (public sector employees). The most interesting difference concerns car and bicycle 

ownership per household. In fact, bike commuters tend to own more bicycles and fewer cars in 

their household than individuals who commute by other means of transport (Table 13). 

 

 

 

 

 

 

 

 

 

                                                      

2 The percentage of individuals who commute by bike is different than that shown in paragraph 2.3.2 since 

only habitual bicycle commuters were considered here, namely those who had a ratio 
𝑏𝑖𝑐𝑦𝑐𝑙ⅇ 𝑐𝑜𝑚𝑚𝑢𝑡ⅇ 𝑓𝑟ⅇ𝑞𝑢ⅇ𝑛𝑐𝑦 

 𝑐𝑜𝑚𝑚𝑢𝑡ⅇ 𝑓𝑟ⅇ𝑞𝑢ⅇ𝑛𝑐𝑦 
≥

0.8 .  
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Table 13. Comparison: who chooses to cycle to work vs those who do not. Socio-economic characteristics 

 
Total 

Choice = commute by 

bicycle 

Choice ≠ commute by 

bicycle 

 N. % N. % N. % 

Sample 1,105  168 15.2% 937 84.8% 

Gender (male) 602 54.5% 130 77.4% 472 50.4% 

Age (average) 47.92 47.36 48.02 

18-30 47 4.3% 8 4.8% 39 4.2% 

31-40 165 14.9% 31 18.5% 134 14.3% 

41-60 822 74.4% 121 72.0% 701 74.8% 

>60 71 6.4% 8 4.8% 63 6.7% 

Level of education       

Low (High school and lower) 470 42.5% 78 46.4% 392 41.8% 

Medium (Graduate) 386 34.9% 53 31.5% 333 35.5% 

High (Higher than Master’s 

degree) 
249 22.5% 37 22.0% 212 22.6% 

Employment status       

Student 65 5.9% 7 4.2% 58 6.2% 

Employed 1033 93.5% 158 94.0% 875 93.4% 

Unemployed or retired 7 0.6% 3 1.8% 4 0.4% 

With Children 622 56.3% 90 53.6% 532 56.8% 

Married 821 74.3% 128 76.2% 693 74.0% 

# members of household (average) 2.92  2.95  2.91  

Driving License 1085 98.2% 163 97.0% 922 98.4% 

Own car 997 90.2% 144 85.7% 853 91.0% 

# of cars (average) 1.74 1.59 1.77 

# of bikes (average) 2.01 2.32 1.95 

Monthly personal income       

Income 0-1000 € 78 7.1% 14 8.3% 64 6.8% 

Income 1000-2000 € 702 63.5% 104 61.9% 598 63.8% 

Income 2000-3000 € 168 15.2% 27 16.1% 141 15.0% 

Income >3000 € 157 14.2% 23 13.7% 134 14.3% 
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2.3.6.2. Analysis of bicycle use for non-commuting purposes 

With respect to the frequency of bicycle use for non-commuting trips (Table 14), it appears that the 

vast majority of respondents use the bicycle for leisure and sport (74.9%). Interestingly, a not 

negligible percentage of individuals (26.5%) reported to bicycle for leisure and sport more than 

once a week. It is found that 56.0% never used the bicycle for shopping. Only about 15.9% 

reported regular usage (one day per week or more) of the bicycle for shopping.  

Table 14. Analysis of bicycle use 

Level of frequency 
Leisure and sport Shopping 

N. % N. % 

Never 277 25.1% 619 56.0% 

1-10 times per year 262 23.7% 190 17.2% 

1-5 times per month 273 24.7% 120 10.9% 

More than once a week 243 22.0% 176 15.9% 

Daily 50 4.5% 0 0.0% 

 

2.3.6.3. Psycho-attitudinal characteristics 

For each item, Table 15, Table 16 and Table 17 provide the mean calculated for the bike 

commuters (168 individuals), and separately the mean for the non-active commuters who had 

access to a bicycle (937 individuals) and the difference and t-stat between the means (mean bike 

commuters – mean commuters using other forms of transport). 

The statements that warrant attention are those with the significant difference between the 

means obtained for the two groups. Compared to bike commuters, commuters who choose not to 

travel by bike, in order of importance: 1) are more likely to agree that cyclists need proper cycling 

gear and 2) that going by bike hampers daily activity patterns; are more likely to disagree 3) that it 

is a rapid means of transport 4) that it is not dangerous to cycle in traffic, 5) that it saves time 

looking for a parking place and 6) agree more that cyclists are exposed to bad weather and air 

pollution. All respondents recognized the advantages associated with cycling in terms of cost, 

travel times, benefits for health and the environment, as can be seen from the average values 

approaching 5 for items 1, 4, 6, 7, 8 and 11. 

These differences, as reported in the literature, are also associated with the 

experience/inexperience of the two groups, who thus perceive cycling differently. 
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Table 15. Differences in perception of the bicycle as a means of transport 

FIRST QUESTION: "The perception of 

the bicycle as a means of transport at the 

personal and societal level" 

Total 
Choice = commute 

by bicycle 

Choice ≠ commute 

by bicycle Diff Z-stat 

Mean St dev Mean St dev Mean St dev 

A1. It is a rapid means of transport (it avoids 
queues and traffic)  

4.22 1.18 4.74 0.46 4.12 1.27 0.62 9.75 

A2. Cycling in traffic is not dangerous 1.84 1.24 2.23 1.47 1.78 1.17 0.45 4.50 

A3. It is not likely to be stolen and there are 

no adequate parking areas  
2.16 1.65 2.05 1.52 2.18 1.67 -0.14 -1.32 

A4. It is not expensive 4.73 0.55 4.75 0.48 4.71 0.58 0.04 0.63 

A5. It does not imply exposure to bad weather 

and air pollution 
2.53 1.46 2.82 1.43 2.47 1.45 0.35 3.49 

A6. It avoids wasting time looking for parking 4.43 1.04 4.79 0.42 4.36 1.13 0.42 6.96 

A7. It is healthy 4.76 0.41 4.83 0.30 4.74 0.45 0.09 1.91 

A8. It is easy to carry heavy items 2.01 1.37 2.23 1.24 1.97 1.38 0.26 2.72 

A9. It allows one to appreciate historic 
centers and increases accessibility to city 

services 
4.36 1.09 4.60 0.78 4.31 1.15 0.29 3.73 

A10. No Need for cycling gear 3.08 1.53 3.80 1.51 2.94 1.41 0.86 8.41 

A11. It contributes to reducing polluting 

emissions 
4.85 0.34 4.93 0.09 4.83 0.39 0.10 3.28 

A12. It does not hamper daily activity patterns  3.22 1.55 3.90 1.33 3.09 1.49 0.81 8.35 

The second question concerned the perception of the context at hand in terms of bikeability. 

Generally speaking, compared to the first question, the differences between the two groups are less 

marked, and they both agree that existing bike lanes are not useful and not safe. This result is 

certainly due to the lack of bike lanes in the reference context, which respondents are well aware 

of. Commuters who traveled using other means of transport, despite agreeing with the fact that car 

drivers do not respect dedicated bike lanes, ranked this item lower than bike commuters. They are 

also less likely to agree that it is better to ride in traffic than in existing bike lanes. 

Table 16. Differences in perception of the bikeability 

SECOND QUESTION: "The 

perception of bikeability in terms of 

usefulness and safety" 

Total 
Choice = commute 

by bicycle 

Choice ≠ commute 

by bicycle Diff Z-stat 

Mean St dev Mean St dev Mean St dev 

B1. Existing bike lanes are not useful for 

travelling 
3.31 2.00 3.18 2.24 3.34 1.96 -0.16 -1.32 

B2. Existing bike lanes and crossings are 
safe, comfortable and well-marked 

2.14 1.21 2.20 1.40 2.13 1.19 0.07 0.70 

B3. It is better to ride in traffic than use the 

existing bike paths 
2.01 1.61 2.18 1.77 1.97 1.58 0.21 1.91 

B4. Car drivers do not respect dedicated bike 

lanes and often invade them  
4.09 1.34 4.30 1.00 4.04 1.40 0.26 3.04 

The third question aimed to understand those factors that could encourage the use/greater use 

of the bicycle. Here, compared to cyclists, non-cyclists would have a greater incentive to cycle if 1) 

restricted traffic zones were extended, 2) other people cycled, hence social norms come into play 

and 3) there was a bike-sharing station near home or at bus stops/train stations. 
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Table 17. Differences in the perceived importance of context characteristics 

THIRD QUESTION: "The perceived 

importance of context characteristics" 

Total 
Choice = commute 

by bicycle 

Choice ≠ commute 

by bicycle Diff Z-stat 

Mean St dev Mean St dev Mean St dev 
C1. An extensive network of dedicated bike 

lanes in urban area  
4.43 0.98 4.58 0.84 4.40 1.01 0.18 2.32 

C2. The presence of racks and secure parking 

for bicycles 
4.28 1.08 4.38 1.09 4.25 1.08 0.13 1.45 

C3. A greater extension of the LTZ or 
pedestrian zones 

3.84 1.54 4.14 1.32 3.78 1.57 0.36 3.65 

C4. A bike-sharing station close to home or at 

public transport stops 
3.54 1.88 3.30 2.02 3.59 1.84 -0.29 -2.49 

C5. If other people use it  2.92 2.15 3.22 2.35 2.87 2.07 0.35 2.75 

C6. Dedicated services at work / study 

(parking, showers, lockers for equipment, 

etc.) 
3.99 1.46 3.89 1.77 4.01 1.40 -0.12 -1.10 

C7. An integrated ticket for bike-sharing and 

public transport services 
3.75 1.77 3.67 1.84 3.77 1.75 -0.10 -0.90 

C8. Combination with public transport 
services  

3.93 1.56 3.95 1.46 3.93 1.58 0.02 0.24 

C9. Increase of car parking fee 2.29 1.94 2.42 2.10 2.26 1.90 0.16 1.31 

 

2.3.6.4. Trip characteristics 

Another aspect we examined in detail concerns the trip characteristics that in certain cases 

may be a deterrent to cycling (Table 18). Note that for the 937 respondents who choose not to cycle 

to work the private car predominates in modal split (72%) and 20% of drivers make one stop on the 

way. 

The distance and times by bike were simulated for the non-bike commuters for each O/D 

pair by means of an algorithm that uses Google Maps APIs, assuming the same route traveled by 

car, given the almost total lack of bike lanes. One important factor to consider is that the average 

distance traveled by bike commuters is around 4 km compared to the 6.7 km that non-bike 

commuters would have to travel. Clearly, bike commuters also spend less time traveling: 18 

minutes compared to 33 minutes for those who do not commute by bike. 

No differences were observed for departure time, as 78% of both groups left home during the 

morning peak hours between 7:30 and 9:30 am. 83% of trips by bike commuters are on urban roads 

within the same municipality of residence, while this percentage decreases to around 64% for non-

bike commuters. 
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Table 18. Differences in trip characteristics 

 Distance bike 

[km] 

Time bike 

[min] 
HP Urban 

Choice = commute by 

bicycle 3,9 18 77,4% 83,3% 

Choice ≠ commute by 

bicycle 6,7 33 78,9% 63,6% 

 

 

Figure 4. Distribution of travel time by bicycle 

One important aspect for bike-commuting is certainly topography. Most of the trips examined here 

are made within the Cagliari municipality which lies mostly on hilly terrain. For this reason, we 

calculated the slopes along the routes travelled, also because this feature is often overlooked in 

studies on this topic. 

Using the 10 m Digital Elevation Model (DEM) downloaded from the website of the 

Sardinian regional government, we extracted the routes with Google Maps and calculated slopes 

using GIS software. The results show similar average slopes for the two groups of commuters. 

Average down- and uphill slope was calculated to be around 2%. Figure 5 shows the percentage of 

routes identified for each class of slope. 
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Figure 5. Percentage of trips for each slope class 

For non-cyclists there is a slight prevalence over cyclists of routes that fall into the slope classes 

between 5 and 10% and >10%, while for both groups the majority of routes (around 86%) have 

slopes of less than 2%. 

However, mean slope is calculated as the mean slope of each stretch of the route. 

Consequently, the existence of just one 10% uphill slope along the route, which could deter 

commuters from cycling to work, also considering the particularly hot summer temperatures in 

Sardinia, if the remainder of the route is downhill, mean slope along the entire route will be low. In 

light of the above we preferred to calculate the mean of maximum and minimum slopes, that can 

represent the real barrier (note that we only considered the home-work trip, but on the return 

journey an uphill slope becomes a downhill slope and viceversa). In fact, these values are much 

higher, much more so for non-cyclists (Table 19). 

Table 19. Average value of slopes 

 Uphill slope 

[%] 

Downhill slope 

[%] 

Max Slope 

 [%] 

Min Slope 

 [%] 

Choice = commute 

by bicycle 
2.1 -2.2 4.6 -5.1 

Choice ≠ commute 

by bicycle 
2.4 -2.5 5.6 -6.3 
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2.4. THE ROLE OF INERTIA IN THE CHOICE OF COMMUTING 

TO WORK BY BIKE 

2.4.1. Introduction 

As seen in 2.2, several studies have investigated the explanatory variables, objective and 

subjective, that affect the propensity to cycle to work. All this research has emphasized the 

deliberate nature of individual decisions, assuming that individuals choose to cycle to work only 

reasoning on the good and bad consequences of their behavior. However, individuals may not go 

through such a conscious process when behavior is performed repeatedly and has become habitual 

(Aarts et al.,1997). 

In the psychological literature habit is usually measured as the number of times the same trip 

is made using the same mode, but adopting such a methodology the transport choice would not be 

related to level of service characteristics. In fact, until behavior becomes habitual, individuals still 

look at the characteristics of the alternatives and adopt compensatory rules as well (Aarts et al., 

1998). Then it is crucial to account for the effect of both possible habitual behavior, leading to 

inertia, and trade-off among objective characteristics. Moreover, while frequency of usage (i.e. a 

repeated behavior) is probably the best indicator of habit, this is only an indicator of the tendency 

to repeat the same course of action. 

The aim of this section is to study specifically the impact of habitual cycling behavior on the 

choice to commute by bike. To do so, we estimate a mode choice model where cycling is one of 

four alternatives modes and we use a rich specification for all the modes to understand the relation 

between habit and compensatory evaluation of objective characteristics of the alternative modes. 

Following Cherchi et al. (2013) habitual behavior is measured as a latent variable, where three 

indicators reveal past behavior related to the use of the bike for different purposes. The discrete 

choice part of the model includes disaggregate level of service attributes for all modes, systematic 

heterogeneity, non-linear effects as well as other land use attributes such as topography. 

The data used in this study originates from the survey “Bike I like you” conducted in 2014-2016 

(see 2.2). The sample was composed of 2128 individuals who could choose at least two of four 

modes of travel (to ensure that their choice was actually a discrete choice and not mandatory) and 

the commute trip was made at least once a week. 

2.4.2. Model specification 

The methodology used to analyze the effect of habitual behavior is an Integrated Choice Latent 

Variable model, where it is assumed that the habitual behavior is latent and is revealed by the 

current frequency of bicycle usage. A graphical framework is shown in Figure 6. 
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Figure 6. Methodology framework 

 

Let Ujq be the utility that each individual q associates to the alternative j. Under the 

assumption that latent habitual behavior affects the current choice, the utility can be written as:  

𝑈𝑗𝑞 = 𝐴𝑆𝐶𝑗 + 𝜷𝑗,𝐿𝑂𝑆𝑳𝑶𝑺𝑗𝑞 + 𝜷𝑞,𝑆𝐸𝑺𝑬𝑞 + 𝛽𝑗,𝐿𝐼𝐿𝐼𝑞 + 𝜀𝑗𝑞                                                                 (2.1)   

where SEq is a vector of individual background characteristics; LOSjq is the vector of vehicle 

attributes; LIq is the latent variable that measures the habitual behavior of each individual q; βj,LOS, 

βq,SE and βj,LI are the sets of coefficients associated with the attributes; and ASCj are the typical 

alternative specific constants. 

The structural equation for the LI has the following structure: 

𝐿𝐼𝑞 = 𝝀𝑆𝐸𝑺𝑬𝑞 + 𝜔𝑞                                                                                                                                 (2.2) 

where SEq is a vector of individual background characteristics that can be different from the vector 

included in the discrete choice model; λSE is a vector of coefficients associated with these 

characteristics; and ωq. is a normal distributed error term with zero mean and standard deviation σω. 

The measurement equation of the indicator is specified as: 

𝐼𝑟 = 𝛿𝑟 + 𝜁𝑟,𝐿𝐼𝐿𝐼𝑞 + 𝜐𝑟𝑞                                                                                                                              (2.3) 

where δr is a constant of the rth indicator, ζr,LI is the estimated effect of the LIq on the rth indicator, 

and υrq is a random disturbance term with zero mean and standard deviation συ. 

Three indicators were used in our study to measure habitual behavior: (1) the frequency of 

cycling for leisure and sport, (2) whether or not an individual uses the bike for shopping, and (3) 

whether or not an individual uses the bike for work.  

The frequency of cycling for leisure and sport is measured using a four-point numerical 

scale, so the measurement equation of the indicator (Ilq) is expressed as an ordered logit model: 
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(𝐼𝑙𝑞 = 1) =
1

1 + ⅇ[𝛿𝑙+𝜻𝑙,𝐿𝐼𝑳𝑰𝑞−𝜂1]
      

𝑃(1 < 𝐼𝑙𝑞 < 4) =
1

1 + ⅇ[𝛿𝑙+𝜻𝑙,𝐿𝐼𝑳𝑰𝑞−𝜂𝐼]
−

1

1 + ⅇ[𝛿𝑙+𝜻𝑙,𝐿𝐼𝑳𝑰𝑞−𝜂𝐼−1]
                                                   (2.4)     

𝑃(𝐼𝑙𝑞 = 4) = 1 −
1

1 + ⅇ[𝛿𝑙+𝜻𝑙,𝐿𝐼𝑳𝑰𝑞−𝜂3]
        

where ηi are thresholds defined respectively as: 1-10 trips per year, 1-5 trips per month, more than 

once a week, every day. For convenience we also defined η1 = 0; η2 = η1 + δ1; η3 = η2 + δ2. 

The other two indicators (Isq and Iwq) are measured as dummy variables, so their 

measurement equations are binary logit models: 

𝑃(𝐼𝑠𝑞 = 1) =
1

1 + ⅇ[𝛿𝑠+𝜻𝑠,𝐿𝐼𝑳𝑰𝑞]
                                                                                                                (2.5)  

𝑃(𝐼𝑤𝑞 = 1) =
1

1 + ⅇ[𝛿𝑤+𝜻𝑤,𝐿𝐼𝑳𝑰𝑞]
                                                                                                              (2.6) 

Because we assumed that 𝜀𝑖𝑞 is i.i.d. Gumbel across alternatives, the probability that decision-

maker q chooses alternative i is given by: 

𝑃𝑖𝑞(𝜔𝑞) =
ⅇ𝑥 𝑝(𝐴𝑆𝐶𝑖 + 𝜷𝑖,𝐿𝑂𝑆𝑳𝑶𝑺𝑖𝑞 + 𝜷𝑞,𝑆𝐸𝑺𝑬𝑞 + 𝛽𝑗,𝐿𝐼𝐿𝐼𝑞)

∑ ⅇ𝑥 𝑝(𝐴𝑆𝐶𝑗 + 𝜷𝑗,𝐿𝑂𝑆𝑳𝑶𝑺𝑗𝑞 + 𝜷𝑞,𝑆𝐸𝑺𝑬𝑞 + 𝛽𝑗,𝐿𝐼𝐿𝐼𝑞)𝑗∈𝐷𝑞

                                             (2.7) 

The joint probability for an individual q making the choice i over the distribution 𝜔𝑞 is: 

𝑃𝑖𝑞 = ∫ 𝑃𝑖𝑞(𝜔𝑞)𝑓𝐿𝐼(𝜔𝑞) ∏ 𝑓𝐼𝑟
𝑤 (𝐼𝑟𝑞|𝐿𝐼𝑞(𝜔𝑞)) 𝑑𝜔

𝑟

                                                                           (2.8)

𝜔

 

where 𝑓𝐿𝐼(𝜔𝑞) and 𝑓𝐼𝑟
𝑤 (𝐼𝑟𝑞|𝐿𝐼𝑞(𝜔𝑞)) are the distribution of the latent variable and the indicators, 

respectively. 

The log-likelihood function is given by the logarithm of the product of the unconditional 

probability: 

𝐿𝐿 = ∑ 𝑙𝑛 (𝑃𝑖𝑞)
𝑞∈𝑄

                                                                                                                                   (2.9) 

 All the models were estimated using PythonBiogeme (Bierlaire, 2016). 

2.4.3. Results of model estimation  

In this section we will discuss the results of the estimation of the ICLV model accounting for 

inertia. The choice set in the discrete choice model consists of four different modes of transport: 1) 

private car, 2) public transport, 3) walking, 4) cycling. The time and cost of travel for each mode 

were determined for each commuter, based on the location of the person’s home and work. We 

simulated, for each individual, the values of the attributes of the non-chosen available alternatives 

using an algorithm that utilizes Google Maps APIs. This service determines the travel times taking 
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into account the historical traffic conditions at specific times of the day. The algorithm was set so 

that it considered the route of shortest duration for trip departure time by car, bicycle and on foot, 

the option with the least number of interchanges for trips using public transport.  

The following attributes were tested for each of the four alternatives: 

• Motorised mobility 

o Car as a driver 

▪ Walking time from home to where car is parked; 

▪ In-vehicle travel time; 

▪ Time taken looking for a parking space; 

▪ Walking time from car park to final destination 

▪ Type of parking (dummy: 1 if paid, 0 otherwise) 

▪ Stops on the way (dummy: 1 if yes, 0 otherwise) 

▪ Cost (0.22 €/km that takes into account amortization, fuel, tyres, 

maintenance and repairs) 

o Public transport: 

▪ Walking time from home to bus stop/station; 

▪ In-vehicle travel time (if any transfers are involved this is given by the 

sum of travel time on each bus/train taken); 

▪ Walking time to transfer between different public transport lines or mode 

if any transfers are involved 

▪ Time taken on alighting from bus/train to walk to final destination 

▪ Waiting time (if any transfers are involved this is given by the sum of 

waiting times for each bus/train taken) 

• Equal to half the frequency for frequent services 

• Equal to a randomly assigned value between 5 and 15 minutes for 

scheduled services 

▪ Number of transfers 

▪ Cost (depending on type of ticket and trip frequency) 

▪ Departure time (dummy: 1 if trip is made between morning peak hours 

7:30 to 9:30 am, 0 otherwise) 

• Non-motorized mobility (active mobility) 

o Walking 

▪ Walking time 

o Cycling 

▪ Travel time 
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▪ Parking (dummy: 1 if protected parking at the workplace, 0 otherwise) 

▪ Slope of route: 

• Mean slope of uphill stretches (continuous variable) 

• Maximum uphill slope along the route (continuous variable) 

▪ Trip frequency by bike for work purpose 

 

We tested several ICLV models and the estimation results of the best model are shown in 

Table 20. In arriving at the final specification, we also tested a number of interaction terms between 

mode specific attributes and latent inertia, but none of them were statistically significant. 

The negative signs of travel times, travel costs, walking time to/from the bus station, walking 

time to/from the car park and time taken looking for a parking place are consistent with 

microeconomic theory. It is interesting to note the non-linear effect of waiting time, shown by the 

significant positive coefficient for the quadratic estimation of this attribute, indicating a threshold 

above which additional increases in waiting time have a declining effect on the likelihood of mode 

choice. The negative effect of the peak hour coefficient in the public transport utility function 

suggests that public transport passengers are more likely to travel during off-peak times to avoid 

crowds. In fact, as shown in other studies (e.g. Tirachini et al., 2013), when the occupancy of buses 

or trains approaches capacity there might be an increase in both waiting and in-vehicle times, in 

addition to the discomfort of sharing a limited space with several people. 

In terms of network characteristics, not surprisingly, the existence of bike lanes within 400m 

of home positively affects the utility of the bicycle mode, suggesting that investments in bicycle 

infrastructure could have a positive impact on the choice to cycle. On the other hand, hilly terrain 

has a negative impact on the choice to cycle: among the different specifications we tested, the mean 

slope of uphill stretches was the most significant. 

A range of socio-economic variables were found to have a statistically significant influence 

on mode choice. Males are less likely to travel by car, while, by contrast, individuals with children 

are more likely to do so. Moreover, as expected, the number of cars per household positively 

affects the utility to commute to work by car, while the number of bikes positively influences the 

cycle to work choice. 

The specification of the discrete part of the model included the coefficient frequency of 

going to work by bicycle, which measures the number of times per week an individual commutes 

by bike. The positive sign of the coefficient shows that as bicycle usage increases, the likelihood to 

commute to work by bike does so too.  

The latent variable inertia, when included in the utility of the bike alternative, is both highly 

significant and positive. This result indicates that, like other modes of transport, commuting by 

bike is habit forming and guided by retrieved mental representation of past travel behavior. 
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Analysis of the estimated parameters of the structural equation shows that the latent variable 

inertia is positively affected by gender (the propensity to use the bike is greater among men) and 

the number of bikes in the household. Because the number of bicycles has a positive impact on 

habitual behavior, it may indicate the existence of a normative social influence. 

At the same time, four factors were found to negatively affect bike habits. First, bike travel 

time from home to workplace negatively impacts the latent variable. Not surprisingly, the 

increasing number of cars in the family diminishes the probability of an individual’s bike habit 

behavior, a finding that reflects the convenient aspects of owning a private vehicle. The results also 

show that the presence of children in the household negatively impacts bike habit. A feasible 

reason for this is that individuals with children have less flexible schedules than people without 

children, meaning that they do not perceive cycling as the best option to travel between multiple 

commitments. Lastly, a high level of education (degree or PhD) has a negative influence on bike 

habit.  

Age and income effects were also considered, but they did not turn out to be statistically 

significant. This is probably because the majority of the sample is composed of public employees, 

resulting in a limited age and income range. 
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Table 20. Model results 

  DCM alone HCM 

Attributes Values Robust t-test Values Robust t-test 

Constant Public Transport 0.92 2.05 0.91 2.04 

Constant Walking 1.38 4.28 1.37 4.25 

Constant Cycling -3.48 -4.51 -4.25 -4.98 

Car as a driver attributes 

Travel time -0.04 -1.56 -0.04 -1.58 

Parking time -0.01 -0.71 -0.01 -0.67 

Walking time -0.02 -0.91 -0.02 -0.95 

Travel cost -0.46 -4.62 -0.46 -4.61 

# of cars in the household 0.40 3.97 0.39 3.89 

Male -0.30 -2.44 -0.28 -2.25 

Children 0.37 2.99 0.37 2.97 

Public transport attributes 

Travel time -0.04 -3.26 -0.04 -3.27 

Walking time -0.05 -3.31 -0.05 -3.31 

Waiting time -0.12 -3.31 -0.12 -3.31 

Waiting time ^2 0.002 2.28 0.002 2.29 

# of transfers -0.23 -0.94 -0.23 -0.96 

Travel cost -0.29 -2.83 -0.29 -2.84 

Peak hour -0.54 -2.94 -0.54 -2.97 

Walking attributes 

Travel time -0.09 -7.02 -0.09 -7.02 

Cycling attributes 

Travel time -0.08 -4.55 -0.08 -4.63 

AVG Slope Max -0.30 -2.35 -0.30 -2.35 

Presence of bike lanes within 400m of home 0.55 1.55 0.57 1.54 

# of bikes in the household 0.66 3.37 0.64 3.22 

Frequency of bike usage for going to work   1.53 9.18 1.37 7.73 

Latent inertia n/a n/a 0.81 2.32 

Latent inertia structural equation 

Intercept n/a n/a 0.82 5.26 

Sigma n/a n/a 0.82 13.95 

Male n/a n/a 0.62 6.71 

Children n/a n/a -0.33 -3.62 

Graduate n/a n/a -0.23 -2.55 

# of cars in the household n/a n/a -0.25 -4.07 

# of bikes in the household n/a n/a 0.25 4.30 

Bike travel time to workplace n/a n/a -0.007 -4.51 

Indicator: shopping 

Latent inertia n/a n/a 2.42 5.4 

Intercept n/a n/a -1.23 -4.1 

Indicator: work 

Latent inertia n/a n/a 3.14 3.72 

Intercept n/a n/a -2.98 -3.75 

Statistics 

Number of individuals 2128 2128 

LL(max) -1023.927 -3074.595 

ρ2 adj 0.744 0.517 
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2.4.3.1. Validation 

To validate the ICLV model, we randomly split the sample into two parts: the first part contains 

80% of the observations of the original data set (estimation set) and the second part contains the 

remaining 20% of the observations (validation set). We then proceed as follows: 

• We first re-estimate the parameters of the model on 80% of the data 

• We apply the estimated model to the remaining 20% 

• We test the prediction capabilities on the estimation and validation set 

Table 21 gives the results of the validation process. Confidence bounds (5% and 95%) were 

generated by simulation, based on the values of the standard errors of the parameters. We observe 

that the choice probabilities are quite similar for the two datasets, indicating the robustness of 

model performance in terms of prediction. 

Table 21. Validation of ICLV model 

Variables 
Alternative car 

Alternative 

Public Transport 

Alternative 

walking 

Alternative 

cycling 

20% 80% 20% 80% 20% 80% 20% 80% 

Average choice 

probability 
71.10% 72.39% 12.36% 11.34% 35.16% 35.12% 15.02% 14.44% 

Average 5% 

confidence bound 
64.47% 65.87% 8.70% 7.98% 28.70% 28.55% 12.10% 11.40% 

Average 95% 

confidence bound 
76.62% 77.79% 17.13% 15.95% 41.89% 41.80% 18.89% 18.44% 

2.4.3.2. Demand elasticity 

Table 22 shows the elasticity of the demand for bike commuter respect to travel time by bike and 

the probability of choosing the bike, computed using both models, the DCM and ICLV. Since the 

latent variable does not modify the marginal utilities, the value of elasticities is similar in both 

models. Nevertheless, the latent inertia influences the overall utilities and hence the probabilities. 

The DCM slightly overestimates the probability of choice and it is possible to see this effect also 

for those categories that are relevant in explaining the latent variable. 
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Table 22. Elasticity and probability 

 Elasticity of the demand for bike 

commuter with respect to travel time 

by bike 

Probability of choosing to commute 

by bicycle 

 DCM alone ICLV DCM alone ICLV 

Sample average -2.2162 -2.3501 15.2% 14.51% 

Male -2.2069 -2.3318 21.2% 20.82% 

Graduate -2.0261 -2.1548 13.9% 12.89% 

Children -2.4070 -2.5533 14.1% 13.45% 

 

2.4.3.3. Forecasting 

Based on the results obtained, which provide the scientific evidence to be expected, two different 

project scenarios are formulated: 

• Project 1: creation of a bicycle lane within 400 m of home with no connections with a 

metropolitan bike network. 

• Project 2: creation of a dense network of cycle lanes evenly distributed throughout the 

areas concerned to enable destinations to be reached safely, using the least cost route 

(minimum distance) to avoid mixing with vehicle traffic. This would result in a reduction 

in travel time, in the first place due to the shorter distances traveled, but also due to the fact 

that being segregated from vehicle traffic, speed increases and less time is wasted at 

junctions. By way of example, at a conservative estimate this would produce a 20% 

reduction in travel time by bicycle, clearly to be verified at the design stage.  

Both the projects result in an increase of bicycle use percentage compared to the current 

situation, though, as can be seen, project 2 produced a more marked effect (Table 23). 

Table 23. Forecasting scenarios for different categories of individuals 

 Current 

situation 
Project 1 Project 2 

 Probability of commuting by bicycle 

Total 14.51% 15.30% 16.60% 

Male 20.82% 21.81% 23.46% 

Female 6.96% 7.51% 8.39% 

High level of education (bachelor’s degree 

or higher) 
12.89% 13.57% 14.82% 

Low level of education 16.54% 17.45% 18.82% 

Presence of children in the household 13.45% 14.16% 15.28% 

No children in the household 15.88% 16.76% 18.31% 
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2.5. THE INFLUENCE OF PSYCHO-ATTITUDINAL FACTORS IN 

CYCLING USAGE AND FREQUENCY 

2.5.1. Introduction 

Although the vast literature on biking has emphasized the importance of psychosocial factors in 

understanding what contributes to shaping individual preferences (see 2.2.6), little work has been 

conducted on the effect of attitudes and perceptions on cycling frequency. In fact, people with 

different frequency levels are likely to have different attitudes towards cycling.  

Heinen et al. (2011) studied differences in attitudes between cyclists and non-cyclists, and 

between full-time and part-time cyclists and analyzed the influence of attitudinal factors on bike 

commuting over different distances using multiple binary logit models. Fernández-Heredia et al. 

(2014) used a structural equation modeling approach to investigate the difference between the 

perceptions of users with cycling experience and non-habitual cyclists. Recently, Namgung and Jun 

(2019) examined attitudes among bicycle users with different experience levels and how these 

attitudes influence bicycle use in Ohio State University’s campus, employing binary logit models.  

However, some works (Heinen et al., 2011; Namgung and Jun 2019) used a two-stage 

sequential approach without integration for the estimation of their models, that can potentially lead 

to measurement errors and result in inconsistent estimates. Others (Fernández-Heredia et al., 2014) 

have considered the frequency variable as a continuous variable, though they measured it in ordinal 

discrete categories, which is inappropriate from an econometric point of view (Bhat et al., 2017). 

A much more systematic approach would be advantageous from both a policy point of view 

and for representing the decision-making process. In fact, the implementation of effective strategies 

for the promotion of bike use, such as information campaigns that focus on those factors that could 

increase cycling, can benefit from an improved understanding of this phenomenon and help to 

avoid wasting limited resources, as well as failures that would reduce public support (Handy et al., 

2014).  

In light of these considerations, the object of our research is to study specifically whether 

psycho-attitudinal factors vary among people with different cycling experience, for any purpose, 

and to quantify the determinants influencing cycling frequency. The second key contribution is the 

implementation of an Integrated Choice Latent Variable model with a generalized ordered probit 

choice kernel. By generalizing the ordered response model, the thresholds themselves are a 

function of both objectives and psycho-attitudinal variables.  

The data used in this study were obtained from the survey “Bici Mi Piaci”. The sample of 

interest is composed of 2128 individuals. The current research was built around the cycling 

frequency questions asked in the survey. As seen in 2.2, we asked to individuals to identify their 

cycling frequency in five levels: 
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• I never cycle 

• 1-10 times per year 

• 1-5 times in the past 30 days 

• 1-5 days per week 

• Everyday 

The trips considered for the individuals here are not confined simply to bicycle commuting, so the 

model developed examines bicycle frequency in general.  

2.5.2. Factor analysis 

Prior to the modeling phase, a factor analysis (Bollen, 1989; Spearman, 1904) was performed to 

identify the latent factors underpinning the set of our attitudinal statements. Kaiser-Meyer-Olkin 

(KMO) measure is used for sample adequacy. 

Only two of the three latent constructs included in the survey were found to be suitable for 

factor analysis: perception of the bicycle as a means of transport (KMO = 0.765) and perception of 

the context (KMO = 0.806), whereas perception of bikeability (in terms of usefulness and safety) 

was below the reliability threshold (KMO = 0.572). 

Principal axis factoring (PAF) with orthogonal “Varimax” rotation generated two factors for 

the perception of the bicycle as a means of transport and one factor for the perception of the 

context. Table 24 shows the results of FA, reporting the loadings of the survey items (table rows) 

on each of the three identified factors (table columns). Most of the Cronbach's alpha values are 

above 0.7, except for LV2 that is just acceptable since it is around the “criterion-in-use” of 0.6. 

Table 24. Factor scores of the psycho-attitudinal factors towards the bike mode (values below 0.4 are not reported) 

Factor Variables Loading 
Cronbach’

s alpha 

LV1 

A1. It is a rapid means of transport (avoids queues and traffic) 0.582 

0.690 

A4. It is not expensive 0.540 

A6. It avoids wasting time looking for parking 0.594 

A7. It is healthy 0.744 

A9. It allows one to appreciate historic centers and increases 

accessibility to city services 
0.699 

A11. It contributes to reducing polluting emissions 0.621 

LV2 

A5. It involves exposure to bad weather and air pollution 0.554 

0.597 A8. It is difficult to carry heavy items 0.629 

A10. Need for cycling gear 0.629 

A12. It limits daily activity patterns 0.693 

LV3 

C1. An extensive network of dedicated bike lanes in urban area  0.907 

0.778 C2. The presence of racks and secure parking for bicycles  0.861 

C3. A greater extension of the LTZ or pedestrian zones  0.721 
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The factors obtained can be interpreted as follow: 

• Six items can be considered capturing the Perception of bike benefits (LV1) which 

expresses the agreement related to generally recognized positive features of bikes 

(inexpensive, healthy, no need to look for parking, non polluting, better appreciation of 

historic city centers). 

• Four items can be considered capturing the Perception of bikeability (LV2), which 

expresses the agreement related to generally recognized negative features of bikes 

(exposure to bad weather, carrying heavy items, limitations in daily activity patterns, 

fatigue) 

• Three items can be considered capturing the Perceived Importance of Bike Infrastructures 

(LV3), i.e. the appeal related to the improvement of bike lanes, racks, parking, traffic 

calming and pedestrian zones. 

2.5.3. Methodology framework 

To perform our analysis, we employ an Integrated Latent Variable Choice Model (ICLV) approach 

with an ordered probit choice kernel (Figure 7).  

 

Figure 7. Methodology framework 

In our case, the latent propensity underlying the ordered response observation, which is the 

cycling frequency reported for each individual, has been specified as a function of observed and 

latent variables:  

𝑦𝑞
∗ = 𝜷𝒙𝑞 + 𝜷∗𝑳𝑽𝑞 + 𝜀𝑞                                                                                                                          (2.10) 
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where xq is the vector of explanatory variables, LVq is the vector of individual specific latent 

variables, β and β* are the vectors of unknown parameters to be estimated and εq is the error term 

capturing the effects of unobserved factors on the latent propensity. In the usual ordered-response 

fashion, the latent propensity 𝑦𝑞
∗ is linked to the observed level 𝑦𝑞 through the thresholds 𝝁𝒒,𝒌 

(𝝁𝒒,𝟎 = −∞ 𝐚𝐧𝐝 𝝁𝒒,𝑲 = ∞; 𝝁𝒒,𝟏 < 𝝁𝒒,𝟐 < ⋯ < 𝝁𝒒,𝑲−𝟏  ∀𝒒). To allow heterogeneity (across 

observations) in the thresholds, they are parametrized as a function of both objectives and latent 

variables, as in Williams (2006): 

𝜇𝑞,𝑘 = 𝜇𝑞,𝑘−1 + 𝛼𝑘 +  𝝑𝑘
′ 𝒙𝑞 + 𝜸𝑘

′ 𝑳𝑽𝑞                                                                                                  (2.11) 

Where 𝛼𝑘 is a scalar, 𝝑𝑘
′  and 𝜸𝑘

′  are vectors of coefficients associated with level k=1,2, …, K-1. 

For identifications reasons, we impose the normalization 𝜇𝑞,𝑘 = 𝑐𝑜𝑛𝑠𝑡 for all q. Following the 

framework of ICLV models, the structural equation for each latent variable is specified as a linear 

function of respondent's individual and household characteristics: 

𝑳𝑽𝒒 = 𝛋 + 𝝀𝒙𝒒 + 𝝎𝒒                                                                                                                                (2.12) 

where 𝛋 is the intercept, 𝒙𝒒 is a vector of individual background characteristics that can be different 

from the vector included in the discrete choice model; λ is a vector of coefficients associated with 

these characteristics; and 𝝎𝒒 is a normal distributed error term with zero mean and standard 

deviation 𝜎𝜔. As in the typical ICLV theory, the measurement equation of the indicators is 

specified as 

𝐼𝑟𝑞 = 𝛿𝑟 + 𝜁𝑟𝐿𝑉𝑞 + 𝜐𝑟𝑞                                                                                                                               (2.13) 

where 𝛿𝑟 is a constant of the rth indicator, 𝜁𝑟 is the estimated effect of the LV on the rth indicator, 

and 𝜐𝑟𝑞 is a random disturbance with a mean of zero and a standard deviation of 𝜎𝐼 (𝛿𝑟and 𝜁𝑟 are 

normalized respectively to zero and 1 for one of the indicators of each latent variable for 

identification purposes). The distribution of the indicators 𝐼𝑟𝑞 is then defined by allocating the 

variables 𝐼𝑟𝑞 to intervals given by the thresholds 𝜌𝑘
(0)

, . . . , 𝜌𝑘
(𝑆)

 : 

𝐼𝑟𝑞 = 1 𝑖𝑓 𝜌
𝑟
(0) <  𝐼𝑟𝑞 ≤ 𝜌

𝑟
(1) 

𝐼𝑟𝑞 = 2 𝑖𝑓 𝜌
𝑟
(1) < 𝐼𝑟𝑞 ≤ 𝜌

𝑟
(2)                                                                                                                   (2.14)            

𝐼𝑟𝑞 = ⋯                                           

𝐼𝑟𝑞 = 5 𝑖𝑓 𝜌
𝑟
(𝑆−1) < 𝐼𝑟𝑞 ≤ 𝜌

𝑟
(𝑆−1) 

Assuming the error components 𝜐𝑟𝑞 are i.i.d. and follow a Gumbel distribution for all n and 

k, we obtain an ordered logit model. The probability for a certain response s to the r-th indicator 

given the latent variables and the parameters 𝜁𝑟 is thus given by: 

𝑃(𝐼𝑟𝑞 = 1) =
ⅇ[− 𝛿𝑟− 𝜁𝑟𝐿𝑉𝑞]

1 + ⅇ[− 𝛿𝑟− 𝜁𝑟𝐿𝑉𝑞]
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𝑃(1 < 𝐼𝑟𝑞 < 𝐼) =
ⅇ

[ 𝛿𝑟+ 𝜁𝑟𝐿𝑉𝑞−𝜌𝐼𝑟𝑞−1]

1 + ⅇ
[ 𝛿𝑟+ 𝜁𝑟𝐿𝑉𝑞−𝜌𝐼𝑟𝑞−1]

−
ⅇ

[ 𝛿𝑟+ 𝜁𝑟𝐿𝑉𝑞−𝜌𝐼𝑟𝑞]

1 + ⅇⅇ
[ 𝛿𝑟+ 𝜁𝑟𝐿𝑉𝑞−𝜌𝐼𝑟𝑞]

                                                (2.15) 

𝑃(𝐼𝑟𝑞 = 𝐼) =
ⅇ[ 𝛿𝑟+ 𝜁𝑟𝐿𝑉𝑞−𝜌𝐼−1]

1 + ⅇ[ 𝛿𝑟+ 𝜁𝑟𝐿𝑉𝑞−𝜌𝐼−1]
 

where I = 5. Because we assumed that 𝜀𝑞 is normal distributed the unconditional probability that 

decision-maker q belongs to category k is given by: 

𝑃𝑟𝑜𝑏(𝑦 = 𝑘) = Ф(𝜇𝑘 − 𝜷𝒙𝑞 − 𝜷∗𝑳𝑽𝑞)

− Ф(𝜇𝑘−1 − 𝜷𝒙𝑞 − 𝜷∗𝑳𝑽𝑞)                                         (2.16) 

Hence, the joint likelihood function for individual q may be written as follows: 

𝑃(𝑦, 𝐼|𝒙; 𝜻, 𝜷, 𝜷∗, 𝝀, 𝛴𝜀 , 𝛴𝜐, 𝛴𝜔)

= ∫ 𝑃(𝑦|𝒙, 𝐿𝑉; 𝜷, 𝜷∗, 𝜇𝑘 , 𝛴𝜀)𝑓(𝐼|𝒙, 𝒙∗; 𝜻, 𝛴𝜐)

𝒙∗

𝑔(𝒙∗|𝒙; 𝝀, 𝛴𝜔)𝑑𝒙∗                                                  (2.17) 

Simulation techniques are applied to approximate the multidimensional integral in the likelihood 

function, and the resulting simulated log-likelihood function is maximized. The models were 

estimated using PythonBiogeme software (Bierlaire, 2016).  

2.5.4. Model results  

Table 25 presents results of the structural equation component of the model.   

The Perception of bike benefits construct is affected by both the level of education and 

number of bikes in the household. It is clear that people with a lower level of education are more 

inclined to recognize the positive aspects of cycling. Owning several bikes has a significant 

influence on this latent construct as well. 

The second construct is the Perception of bikeability. Compared to the female respondents, it 

seems that males are more comfortable with cycling, indicating a better perception of bikeability. 

This can be partly explained by the fact that in Italy women tend to make more trips for household 

activities (ISTAT, 2014), which often require the transport of goods or passengers (e.g. children) or 

trip chaining. The positive sign associated with the dummy variable 18 to 30 years old indicates 

that younger people feel less strongly about the limitations of the bike mode. In line with other 

studies (Heinen et al., 2010; Hamre and Buehler, 2014), we also found that the presence of children 

at home means that people are less inclined to cycle as they need to accompany youngsters usually 

by other means of transport. The possession of a personal car and the number of cars in the 

household negatively influence the latent construct. This effect could reflect the fact that car-

addicted individuals, since they are used to the car’s comfort, tend to overestimate the 

disadvantages of cycling. On the other hand, the number of bicycles in the household has a positive 
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effect on the latent variable. Furthermore, people with a high level of education (bachelor’s degree 

or higher) are likely to notice the negative aspects of cycling.  

The structural model related to the Perceived importance of bike infrastructure indicates that 

women tend to consider the presence of bike infrastructure more important than men. This gender-

based effect could reflect the fact that women are more concerned about traffic and safety, a 

finding consistent with the literature (Akar et al., 2013; Bhat et al., 2015; Manton et al., 2016). 

Furthermore, people with a lower education (high school degree or lower) consider the presence of 

some complementary facilitators encouraging cycling more important than those with a higher 

education. Interestingly, the presence of children in the household negatively influences the latent 

construct, indicating the presence of barriers of other kinds for this segment of individuals. 

Table 25. Determinants of latent constructs. “--”in a cell indicates that the variable in the corresponding row does not 

have a significant impact on the utility of the alternative in the corresponding column.  

Explanatory Variables 

LV1 - Attitudes on 

bike performances & 

benefits 

LV2 -Attitudes on bike 

limitations 

LV3 - Perceived 

importance of bike 

infrastructure 

 Coeff R T-stat Coeff R T-stat Coeff R T-stat 

18 to 30 years old -- -- 0.119 1.07 -- -- 

Gender (base: female) -- -- 0.090 1.93 -0.169 -2.48 

Bachelor's degree or higher -0.389 -3.28 -0.114 -2.40 -0.130 -1.74 

# of bikes in the household 0.276 5.02 0.151 6.39 0.123 3.28 

# of cars in the household -- -- -0.078 -2.36 -- -- 

Presence of children -- -- -0.153 -3.01 -0.124 -1.73 

Constant 5.930 32.06 1.950 24.65 2.650 27.15 

Variance 1.770 10.80 0.704 23.41 1.230 20.11 

 

Table 26 presents the results of the measurement model. Several indicators were 

considered in the latent variable measurement model, which linked the latent variables of the 

responses to the qualitative attitudinal questions in the survey. The α parameters that indicate the 

associations between the responses to the scale items and the psychometric scale, all have the 

expected signs. For example, a more positive Perception of bike benefits will lead to respondents 

being more in agreement with the statements about the bike as a healthy and environmentally 

friendly mode of transport.  
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 Table 26. Impact of Latent Variables on Non-nominal Dependent Variables. “n/a” not applicable. 

Latent Variable Indicators Const R T-stat Coef. R T-stat 

Perception of bike 

benefits 

A1. It is a rapid means of transport  -0.642 -1.46 0.803 8.79 

A4. It is not expensive 0.184 0.48 0.744 9.23 

A6. It avoids wasting time looking for 

parking 
-0.747 -1.84 0.802 9.26 

A7. It is healthy -1.560 -2.70 1.310 9.90 

A9. It allows one to appreciate historic 

centers and increases accessibility to city 

services 

-0.606 -1.58 0.842 10.48 

A11. It contributes to reducing polluting 

emissions 
0.000 n/a 1.000 n/a 

Perception of 

bikeability 

A5. It does not involve exposure to bad 

weather and air pollution 
-1.050 -5.65 1.520 10.91 

A8. It is easy to carry heavy items -2.740 -10.96 1.840 11.00 

A10. No need for cycling gear 0.000 n/a 1.000 n/a 

A12. It does not limit daily activity 

patterns 
0.104 0.70 1.670 14.01 

Perceived 

importance of bike 

infrastructure 

C1. Presence of an extensive network of 

dedicated bike lanes  
-0.878 -2.31 3.330 10.79 

C2. Presence of racks and secure parking 

for bicycles 
-1.060 -2.70 3.560 12.12 

C3. Greater extension of the LTZ or 

pedestrian zones 
0.000 n/a 1.00 n/a 

 

The estimation results of the discrete part of the model are shown in Table 27. For reasons of 

identification, there is no constant in the latent bicycle propensity and the first threshold is 

considered fixed, with no socio-demographic attributes or latent variables in its specification. 

Table 27 presents three columns. The first column corresponds to the estimate of the 

parameters characterizing the latent bicycle propensity. The second column corresponds to the 

estimates of constant and the parameters for the 𝜇2 threshold (threshold between occasional cycling 

and infrequent cycling). The third and the fourth columns correspond to the constants and the 

parameters linked to the third threshold, delimiting the infrequent and frequent cycling categories, 

and to the fourth threshold, delimiting the frequent and everyday cycling categories. 

Some socio-economic variables were found to have a significant effect on the propensity to 

bike. In agreement with several other previous studies, males are more likely to cycle. In addition 

to the effect on cycling propensity, the gender variable also impacts the thresholds in the 

framework of the model. A negative coefficient in the vector 𝜇𝑘 for a variable has the effect of 

shifting the corresponding threshold to the left. In this case, the pattern of threshold effects 

indicates that men, compared to women are more likely to be infrequent cyclists than would be 

predicted by the standard-response model. Regarding age, older individuals have a lower 

propensity to cycle, which has been found in many other studies too. Interestingly, the Body Mass 

Index (a biometric datum used as an indicator of ideal weight) negatively affects the propensity to 

bike. The causal relationship underlying this correlation could go in either or both directions: 
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healthier people are more likely to use the bike or people who bicycle are likely to be healthier due 

to the benefits of physical activity gained from bicycling.  

The household demographics that play an important role in bicycling frequency decisions 

are: number of cars, number of bicycles, presence of children. As expected, the number of bikes per 

family positively affects the utility of using the bike. By contrast, individuals with children are less 

likely to do so. This makes sense because cars are still the major means of transport for most 

individuals with children, who are less likely to bicycle. Also, the number of cars in the household 

has a significant negative impact on bicycle use. The effect on the threshold indicates that, 

compared to the standard ordered probit, the generalized ordered probit predicts a higher 

probability of individuals with a large number of cars not belonging in the everyday cyclists 

category.  

All the attitudinal factors have positive effects on the propensity to bicycle. The positive 

influence of the latent variable Perceived importance of bike infrastructure emphasizes the 

importance of providing bicycle facilities such as bike paths or bike lanes, rental bikes, and bike 

storage. People who are aware of bicycling benefits, such as protecting the environment as well as 

keeping fit (latent variable Perception of bike benefits), were more likely to be cyclists. This 

finding suggests that if benefits of bicycling are better understood, more people are likely to cycle 

more frequently. Perception of bikeability is also positively associated with the propensity to cycle. 

This can be explained as follows: as the level of experience rises, people feel that bicycling is 

easier and more accessible and consequently they use the bicycle with greater frequency. 

Interestingly, the effects on the thresholds show that the generalized ordered probit predicts a lower 

probability with a higher value of the LV2 and LV3 of not being cyclists. 
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Table 27. Estimation results of the hybrid generalized ordered probit. “--”in a cell indicates that the variable in the corresponding row does not have a significant impact on the utility of the alternative in 

the corresponding column. “n/a” not applicable. 

Variables 
Latent propensity to cycle 

Threshold between occasional 

cycling and infrequent cycling 

Threshold between infrequent 

bicycling and frequent cycling 

Threshold between frequent 

bicycling and everyday bicycling 

Estimate R t-stat Estimate R t-stat Estimate R t-stat Estimate R t-stat 

Threshold constants n/a n/a 0.972 6.67 0.819 6.30 0.738 5.42 

Age -0.185 -6.58 -- -- -- -- -- -- 

Gender (male = 1; female =0) 0.591 9.15 -0.216 -3.81 -- -- -- -- 

Bachelor’s degree or higher  -0.231 -3.90 0.107 1.87 -- -- -- -- 

Body Mass Index -0.067 -8.66 -- -- -- -- -- -- 

# of bikes in the household 0.804 25.00 -- -- -- -- -- -- 

# of cars in the household -0.066 -1.39 -- -- -- -- 0.148 1.84 

# of household members -0.299 -10.56 -- -- -- -- -- -- 

Residential location (urban) 0.089 1.45 -- -- -- -- -- -- 

Presence of bike paths within 400m of 

home 
0.090 1.66 -- -- -- -- -- -- 

LV1 – Perception of benefits 0.061 2.96 -- -- -- -- -- -- 

LV2 – Perception of bikeability 0.265 4.64 -0.119 -2.05 -0.127 -1.71 -- -- 

LV3 - Perceived importance of bike 

infrastructure 
0.055 1.81 -0.065 -2.20 -- -- -- -- 
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2.5.5. Elasticities effect 

The coefficients in Table 27 do not provide a sense of the magnitude and direction of effects of 

each variable on each bicycling frequency category. But we can compute aggregate-level “pseudo-

elasticity effects” of exogenous variables, that can be calculated as: 

∆𝑃(𝑦 = 𝑘|𝑥𝑞 , 𝑥̃𝑞) = 𝑃(𝑦𝑞 = 𝑘|𝑥̃𝑞) − 𝑃(𝑦𝑞 = 𝑘|𝑥𝑞)                                                                        (2.18) 

where all elements of 𝑥̃𝑞are equal to 𝑥𝑞 except for the vth element, which is equal to 𝑥̃𝑞𝑣 = 𝑥𝑞𝑣 +

∆𝑥𝑞𝑣 for the discrete change ∆𝑥𝑞𝑣 in the variable 𝑥𝑣 . Hence, for dummy variables, we first predict 

the probabilities of each bicycling frequency level for each individual, assigning the base value of 

“1” for all individuals. All other exogenous variables take their values from the original data. Then 

we compute the percentage change in the expected number of individuals at each bicycling 

frequency level. It is important to note here that, since the latent variables influencing each level of 

cycling frequency are a function of exogenous variables, a change in the exogenous variables leads 

to a change in the value of the latent variables as well.  

Table 28 provides the pseudo-elasticity effects. The numbers in the table may be interpreted 

as the percentage change in the probability of each bicycling frequency level due to a change in the 

exogenous variable. For example, the first entry in the table indicates that the probability of a man 

not being a cyclist is 16.1% lower than the probability of a woman not being a cyclist, everything 

else being equal. For the bike lanes variable, the probability of an individual not being a cyclist 

reduces by 2.4% if bicycle lanes are provided in the individual's residential neighbourhood. The 

directions of the elasticity effects of the model are consistent with the discussions in the previous 

section.  

Table 28. Pseudo-elasticities effect 

Variables 
I never 

cycle 
 

1-10 times 

per year 

1-5 times in 

the past 30 

days 

1-5 days 

per week 
Everyday 

Gender (male) -16.1% -11.1% 15.9% 28.2% 48.9% 

Education (bachelor's degree or 

higher level of education) 
9.3% 9.5% -8.5% -17.9% -32.8% 

Residence location choice (urban) -3.8% 1.8% 2.9% 4.6% 8.0% 

Bike lanes within 400m of home -2.4% 1.1% 1.8% 2.9% 5.2% 
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2.6.  SUBJECTIVE AND OBJECTIVE FACTORS INFLUENCING 

THE CHOICE TO CYCLE FOR DIFFERENT PURPOSES 

2.6.1. Introduction 

One aspect often overlooked in transportation research is how sociodemographic, territorial and 

psycho-attitudinal factors influence cycling for different purposes. Much of the research has 

focused on cycling for all purposes, mixing utilitarian and recreational trips, but the determinants 

(both objective and subjective) triggering the choice to travel by bike may be different, depending 

on the reason people cycle. The other question concerns the existence of a relationship between 

cycling for leisure and the choice to cycle for utilitarian purposes. Some studies found that cycling 

for leisure may increase the likelihood to cycle for commuting or shopping, but others argue that 

the direction of causality may not be very clear.  

To better understand the interplay between the use of the bike for different purposes, we 

conduct a multivariate analysis. In particular, a hybrid multidimensional choice model, capable of 

jointly accounting for mixed types of dependent variables, was developed and estimated. Three 

behavioral choice variables were considered: the choice to use the bike for commuting, the choice 

to use the bike for shopping and errands and the frequency of bicycling for leisure and sport. 

Further, we included in our analysis some psychological latent constructs that allowed us to 

identify differences in cycling proclivity within a context with non-cycling culture. 

The data used in this study are derived from the survey called “Bike I like you”. The sample of 

interest is composed of 1,105 individuals, namely those reporting they had access to a bicycle for 

the home-work trip (see 2.3.6 for a complete analysis of the sample).  

2.6.2. Behavioral framework  

The choice variables are estimated simultaneously with a comprehensive modeling framework in 

which latent constructs and individual and household characteristics serve as explanatory variables. 

There are three simultaneous choice models for the following endogenous outcomes: 

• One ordered choice variable representing the frequency of using the bike for leisure 

• Two binomial choice variables, including: 

o Using/Not using the bike for commuting 

o Using/Not using the bike for shopping and errands 

To identify hidden latent constructs an exploratory factor analysis is carried out. The factor 

loadings are estimated using principal component analysis with varimax rotation. To establish if the 

dataset is suitable for exploratory factor analysis, sample adequacy and strength of the inter-

correlation of items must be examined. Kaiser-Meyer-Olkin (KMO) measure is used for sample 
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adequacy: KMO values between 0.8 and 1 indicate the sampling is adequate. The Bartlett test of 

sphericity is used to test the hypothesis that the correlation matrix is an identity matrix, which 

would indicate that variables are unrelated and therefore unsuitable for structure detection. 

Furthermore, to examine reliability Cronbach's alpha value is used. A Cronbach's alpha value 

higher than 0.6 indicates that the dataset is reliable and acceptable.  

Six factors were retained based on percentage of total variance in the original variables 

explained by the factors. However, it is clear from Table 29 that Cronbach's alpha value is higher 

than 0.6 only for constructs 1, 3 and 4. Therefore, only these two constructs are extracted and 

included in the analysis. 

Table 29. Results of Factor Analysis. Extraction method: principal component analysis, rotation method: varimax with 

Kaiser normalization. 

Item Loading Factor Cronbach’s alpha 

A1 0.588 

1 0.677 

A4 0.484 

A6 0.608 

A7 0.719 

A9 0.699 

A11 0.607 

A3 0.761 

2 0.412 A5 0.646 

A8 0.505 

    

C1 0.859 

3 0.762 C2 0.812 

C3 0.703 

C4 0.655 

4 0.820 
C6 0.555 

C7 0.912 

C8 0.871 

 

The latent variable Perceived importance of bike infrastructure uses indicators capturing the appeal 

of some factors that would facilitate use of the bike, while the latent variable Attitudes on bikes 

performance & benefits expresses the agreement related to generally recognized positive features 

of bikes. We will not include factor 4 in our behavioral framework as it regards the integration of 

bicycle use with transit service, and our dependent variables do not explicitly consider it. 
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Figure 8 presents the conceptual framework of the model. The latent variables (constructs) 

are represented by the ovals, while the endogenous outcomes (i.e., commute mode choice) 

considered are identified in the rectangular boxes.  

 

 

Figure 8. Methodology framework 

2.6.3. Modeling framework 

The econometric approach taken in this study is a special case of the GHDM model proposed 

by Bhat (2015). In this approach, a series of sub-models are formulated for different choice 

dimensions - a binary probit that models the choice to use vs not to use the bike for commuting, a 

binary probit that models the choice to use vs not to use the bike for shopping and errands and an 

ordered probit model of bicycling frequency for leisure and sport, a structural equation model for 

the latent variables. All the models are econometrically joined together by means of the presence of 

common random coefficients included in latent variables specification.  

Following the framework of ICLV models, the structural equation for each latent variable is 

specified as a linear function of the respondent's sociodemographic factors: 

𝐿𝑉𝑤𝑞 = κ𝑤 + 𝝀𝒘𝒙𝒒 + 𝜔𝑤𝑞                                                                                                                        (2.19) 

where 𝒙𝒒 is a vector of individual sociodemographic characteristics; λ is a vector of coefficients 

associated with these characteristics; and 𝜔𝑤𝑞 is a normal distributed error term with zero mean 

and standard deviation 𝜎𝜔. As in the typical ICLV theory, the measurement equation of the 

indicators is specified as 

𝐼𝑟𝑞 = 𝛿𝑟 + 𝜁𝑟𝐿𝑉𝑤𝑞 + 𝜐𝑟𝑞                                                                                                                           (2.20) 
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where 𝛿𝑟 is a constant of the rth indicator, 𝜁𝑟 is the estimated effect of the LV on the rth indicator, 

and 𝜐𝑟𝑞 is a random disturbance with a mean of zero and a standard deviation of 𝜎𝐼 (𝛿𝑟and 𝜁𝑟 are 

normalized respectively to zero and 1 for one of the indicators of each latent variable for 

identification purposes). Since the psychometric indicators revealing the latent variables were 

coded using a Likert scale, we treat them as ordered choices.  

Let 𝑈𝑘𝑞 be the utility that each individual q associates with the alternative of cycling for 

commuting. The utility function for the alternative k can be written as:  

𝑈𝑘𝑞 = 𝛽𝑘,0 + 𝜷𝑘,𝐿𝑂𝑆𝑳𝑶𝑺𝑘𝑞 + 𝜷𝑘,𝑆𝐸𝑺𝑬𝑞 + 𝜷𝑘,𝐿𝑉𝑳𝑽𝑞 + 𝜈𝑘𝑞 ;  alternative k chosen if 𝑢𝑘𝑞

> max 𝑢𝑑𝑞;                                                                                                                    (2.21)  

where 𝑳𝑶𝑺𝑘𝑞 is the vector of level-of-service (LOS) characteristics for the mode bicycle , 𝑺𝑬𝑞 is a 

vector of socio-demographics characteristics, 𝑳𝑽𝑞 is a vector of latent variables associated with 

each individual q, 𝛽𝑘,0 is the alternative specific constant, 𝜷𝑘,𝐿𝑂𝑆 is a vector of coefficients 

associated with LOS characteristics, 𝜷𝑘,𝑆𝐸  is a vector of coefficients associated with socio-

demographics attributes and 𝜷𝑘,𝐿𝑉 are the sets of coefficients associated to latent variables. 𝜈𝑘𝑞 is a 

an independent and identically distributed normal error term. 

The utility associated with the choice to cycle for shopping and errands is: 

𝑧𝑖𝑞 = 𝜑𝑖,0 + 𝝋𝑖,𝑠 𝒔𝑞 + 𝝋𝑖,𝐿𝑉𝑳𝑽𝑞 + 𝜀𝑞𝑖 ;  alternative k chosen if 𝑧𝑖𝑞 > max 𝑧𝑗𝑞;                       (2.22) 

 𝑠𝑞 is a vector of sociodemographic characteristics associated with individual q, 𝑳𝑽𝑞 is a vector of 

latent variables associated with each individual q, 𝜑𝑖,0 is a constant term, 𝜑𝑖,𝑠 is a vector of the 

effects of the variables 𝑠𝑞 on the latent utility and 𝜑𝑖,𝐿𝑉 is a vector of coefficients associated with 

the latent variables. Finally, ε𝑞𝑖 is a random-error term assumed to be identically and independently 

normal distributed across individuals q. 

Finally, the latent propensity underlying the ordered response observation, that is the bicycling 

frequency for non-commuting purposes, has been specified as a function of observed and latent 

cycling variables:  

𝑦𝑞
∗ = 𝜶𝒙𝑞 + 𝜶𝐿𝑉𝑳𝑽𝑞 + 𝜉𝑞 ,  𝑦𝑞 = 𝑛𝑖𝑓𝜇𝑛 < 𝑦𝑞

∗ < 𝜇𝑛+1  𝜇𝑞,0 = −∞ 𝑎𝑛𝑑 𝜇𝑞,𝑁+1 = ∞                (2.23) 

where xq is the vector of explanatory variables, 𝑳𝑽𝑞 is the vector of individual specific latent 

variables, 𝜶 and 𝜶𝑳𝑽 are the vectors of unknown parameters to be estimated. 𝜉𝑞 is an independently 

and identically distributed normal error term.  
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2.6.3.1. Model estimation 

Let 𝛯 represent a vector of the parameters to be estimated, 𝛯𝛴 a vector of all parameters 

except the variance terms and 𝛺𝑞 a vector that stacks all the error terms of the structural equations 

that define the latent variables. Also, define  

𝑎𝑘𝑞 = 1 if individual q chooses to commute by bicycle and 0 otherwise 

𝑏𝑖𝑞 = 1 if individual q chooses to bicycle for shopping and 0 otherwise 

𝑐𝑛𝑞 = 1 if individual q cycles for leisure and sport with frequency n and 0 otherwise 

The conditional likelihood function for an individual q is then:  

𝐿𝐿𝑞(𝛯𝛴)|𝛺𝑞 = ∏ ∏ ∏{[𝐷(𝛽𝑘,0 + 𝜷𝑘,𝐿𝑂𝑆𝑳𝑶𝑺𝑘𝑞 + 𝜷𝑘,𝑆𝐸𝑺𝑬𝑞 + 𝜷𝑘,𝐿𝑉𝑳𝑽𝑞  − 𝛽𝑑,0

𝑁

𝑛=1

𝐾

𝑘=1

𝐽

𝑗=1

− 𝜷𝑑,𝐿𝑂𝑆𝑳𝑶𝑺𝑘𝑞 − 𝜷𝑑,𝑆𝐸𝑺𝑬𝑞 − 𝜷𝑑,𝐿𝑉𝑳𝑽𝑞)]

× [𝐷(𝜑𝑖,0 + 𝝋𝑖,𝑠 𝒔𝑞 + 𝜑𝑖,𝐿𝑉𝑳𝑽𝑞  − 𝜑𝑖,0 − 𝝋𝑖,𝑠 𝒔𝑞 − 𝜑𝑖,𝐿𝑉𝑳𝑽𝑞)]

× [𝐷(𝜇𝑛+1 −  𝜶𝒙𝑞 − 𝜶𝐿𝑉𝑳𝑽𝑞− 𝜂𝑖𝑞  − 𝜍𝑘𝑞)

− 𝐷(𝜇𝑛 −  𝜶𝒙𝑞 − 𝜶𝐿𝑉𝑳𝑽𝑞− 𝜂𝑖𝑞  − 𝜍𝑘𝑞)]}
𝑎𝑖𝑞×𝑏𝑘𝑞×𝑐𝑛𝑞                                         (2.24) 

where 𝐷(∙) is the cumulative distribution of the standard normal distribution. Finally, the 

unconditional likelihood can be computed as: 

𝐿𝐿𝑞(𝛺) = ∫ (LL𝑞(𝛯𝛴)|𝛺𝑞)𝑓𝐿𝑉(𝛺𝑞) ∏ 𝑓𝐼𝑟
(𝐼𝑟𝑞|𝐿𝑉𝑞(𝛺𝑞)) 𝑑𝛺                                                      (2.25)

𝑟𝛺𝑞

 

The log-likelihood function for the entire data set is: 

𝐿𝐿(𝛺) = ∑ 𝑙𝑛(𝐿𝐿𝑞(𝛺))                                                                                                                          (2.26)

𝑞

 

We apply simulation techniques to approximate the integral in (2.25) and maximize the 

resulting simulated log-likelihood function. All of the parameters in the model are estimated by 

maximizing the log-likelihood function using PythonBiogeme software (Bierlaire, 2016). 

2.6.4. Model results 

This section presents a discussion of the model estimation results. To arrive at the final model 

specification, we tested and examined, with respect to statistical measures of fit, several model 

specifications. In some cases, variables with marginally significant statistical effect were left in the 

specification, because of the intuitiveness of the effect of the variable and the ability to explain the 

phenomenon.  

Table 30 shows the results of the determinants of latent constructs. The latent construct 

Perception of bike benefits is affected by age, level of education and level of bike ownership. The 

age related perception difference can be explained by the fact that, as shown in other studies (Sener 



 

93 

 

et al., 2009) younger individuals are more conscious of the benefits of using the bike. People with a 

lower level of education are more likely to recognize the positive aspect of cycling. Owning more 

bikes has a positive and significant influence on this latent construct as well. 

The second construct is the Perceived Importance of bike infrastructure. The presence of 

children in the household negatively influences the latent construct, suggesting that the existence of 

bicycle lockers or safe storage rooms and the presence of a dense bicycle network are not sufficient 

to encourage these individuals to cycle. The level of income also significantly impacts the latent 

factor, individuals with a lower income being more likely to recognize the importance of bike 

infrastructure in the choice to cycle. One possible explanation is that this segment of population, 

due to their fewer financial resources, value safe paths and secure parking much more highly, as the 

bicycle is a relatively expensive possession that can be stolen or damaged due to an accident. 

Further, the number of bicycles in the household has a positive effect on the latent variable. 

Table 30. Determinants of latent constructs. “--”in a cell indicates that the variable in the corresponding row does not 

have a significant impact on the utility of the alternative in the corresponding column. 

Explanatory Variables 
LV1 – Perception of bike 

benefits 

LV3 - Perceived importance 

of bike infrastructure 

 Coeff R T-stat Coeff R T-stat 

Age -0.059 -1.34 -- -- 

Bachelor’s degree or higher -0.324 -3.92 -- -- 

Presence of children in the 

household 
-- -- -0.193 -1.79 

# of bikes in the household 0.187 3.87 0.166 2.51 

Personal Income -- -- -0.102 -1.59 

Mean 2.030 8.34 2.800 13.25 

Sigma 0.962 11.52 1.100 10.09 

 

Estimation results for the measurement equations component are given in Table 31. The 

variables included 9 ordinal indicators, six measuring the Perception of bike benefits and three 

corresponding to the Perceived Importance of bike infrastructure. The constants indicate the 

overall preferences of the respondents but do not have a behavioral interpretation. All the loadings 

of the latent constructs on the indicators are, as expected, positive and significant. For example, the 

latent variable Perception of bike benefits has a positive effect on the indicators regarding the 

positive aspects linked to the use of the bike.  
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Table 31. Impact of Latent Variables on Non-nominal Dependent Variables 

Latent Variable Indicators Const T-stat Coef. T-stat 

LV1. Perception of 

bike benefits 

A1. It is a rapid means of transport -0.012 -0.05 1.66 8.7 

A4. It is not expensive 1.65 6.47 1.25 7.48 

A6. It avoids wasting time looking for 

parking 
0.245 0.95 1.69 8.87 

A7. It is healthy 1.66 4.53 2.2 6.54 

A9. It allows one to appreciate historic 

centers and increases accessibility to city 

services 

0 n/a 1 n/a 

A11. It contributes to reducing polluting 

emissions 
1.85 5.63 1.53 6.59 

LV3. Perceived 

importance of bike 

infrastructure 

C1. Presence of an extensive network of 

dedicated bike lanes 
-2.59 -2.46 4.38 5.21 

C2. Presence of racks and secure parking 

for bicycles 
-1.71 -2.03 3.38 5.73 

C3. Greater extension of the LTZ or 

pedestrian zones 
0 n/a 1 n/a 

 

Table 32 presents the estimation results for the measurement equation components 

associated with the binary and ordered variables. 

Males exhibit a greater propensity to use the bike for utilitarian purposes than females. The 

effect here could be attributed to the fact that in general women tend to make more trips for 

household activities, which sometimes require the transport of goods or passengers (Emond et al., 

2009). For this reason, they may prefer the use of more convenient, in terms of travel time, means 

of transport. Also, for recreational purposes men tend to be more inclined to cycle than women. 

This result is in line with other studies (Heesch et al., 2012; Menai et al., 2015) showing that males 

possess extra motivation when it comes to cycling for recreational purposes. 

Further, individuals with children are less likely to travel for utilitarian purposes, as they 

often have to trip chain and complete pick up/drop off tasks, which is burdensome especially if 

these drop off/pick-up locations are not close to their route. As stated in other studies (Sener et al., 

2009; Hamre and Buehler, 2014; Ton et al., 2019) this more complex travel pattern makes biking 

to work less feasible. We observe the same effect for the propensity to cycle for leisure, but here 

the interpretation of the result may be different. In fact, it may be that individuals with children 

have less free time to pursue leisure activities, due to their parental duties. 

Consistently with previous research (Parkin et al., 2008; Pinjari et al., 2011), as the number 

of cars per household rises, the likelihood to commute by bike falls. Instead, the level of bike 

ownership positively influences the choice to cycle to work, as well as the choices to cycle for 

shopping and leisure. 
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A strong determinant in the choice to use active mobility is distance. In agreement with 

previous studies (Parkin et al., 2008; Portoghese et al., 2011), people who live closer to their 

workplace are more likely to active commute than those with longer commutes. Interestingly, 

living in urban areas, positively influences the propensity to cycle for leisure and sport, presumably 

because of the existence of better biking facilities, such as cycle lanes and a bike-sharing service, as 

well as the presence of recreation activity locations nearby. From a policy point of view, these 

outcomes emphasize the importance of the built-environment in the choice to use active mobility.  

We also account for observed endogenous effects, and in particular we found that cycling for 

leisure and sport positively influences the choice to cycle for utilitarian purposes, consistent with 

the previous literature (Stinson and Bhat, 2004; Park et al., 2011). Note that this is a “true” causal 

effect because of the presence of the common error terms of the latent variables in the utility 

functions of choice dimensions. 

Regarding the latent variables, they were found to positively influence the choice to cycle, 

for commuting, shopping and leisure. This means that, regardless of purpose, psychological factors 

must be taken into account to evaluate individual’s propensity to cycle. Furthermore, since all the 

latent variables come with a positive sign, the indirect effect of the exogenous variables in the 

latent constructs influence all the outcomes with the same directionality. This means that a change 

in those variables influence, though with a different weight in each utility function, the propensity 

to cycle for all purposes. 
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Table 32. Parameter estimates of the binary and ordered variables. “--”in a cell indicates that the variable in the 

corresponding row does not have a significant impact on the utility of the alternative in the corresponding column. “n/a” 

not applicable. 

Explanatory variables 

Commuting 

(binary) 

Shopping 

(binary) 

Leisure and sport 

(ordinal) 

Coeff T-stat Coeff T-stat Coeff T-stat 

Constant -3.540 -9.68 -2.160 -6.71 -- -- 

Gender ( male =1 , female = 0) 0.603 4.85 0.595 6.38 0.586 7.89 

Age -- -- -0.152 -2.85 -0.093 -2.47 

Body Mass Index -- -- -- -- -0.255 -2.66 

Children (base: No) -0.366 -2.74 -0.121 -1.11 -0.155 -1.52 

# of components in the household -- -- -- -- -0.145 -3.18 

# of bikes in the household 0.337 3.94 0.173 2.64 0.529 10.81 

# of cars in the household -0.213 -2.42 -0.202 -2.88 -0.119 -2.03 

Log commuting distance -0.314 -5.16 -- -- -- -- 

Commuting AVG Slope Max -0.025 -0.70 -- -- -- -- 

Presence of bike lanes within 400m of 

home 
0.396 3.43 -- -- -- -- 

Urban (Urban = 1; Suburban and rural = 

0) 
-- -- -- -- 0.241 3.08 

Frequency of bicycle use for leisure and 

sport 
0.414 7.25 0.688 15.49 -- -- 

Loading of latent variables  

LV1 – Perception of bike benefits 0.451 3.81 0.322 3.86 0.32 5.49 

LV2 - Perceived importance of bike 

infrastructure 
-- -- -- -- 0.129 2.86 

2.6.5. Data Fit 

The data fit from jointly modeling the three choice dimensions (Table 33) can be assessed by 

comparing the joint model with an independent model that does not include any error term and the 

latent psychological variables do not enter into the specification of the utility functions. This model 

is an independent model because error term correlations across the choice dimensions are ignored. 

The value of the adjusted likelihood ratio index for the joint model is slightly higher than the 

independent model, suggesting that the joint model offers a superior goodness-of-fit. The two 

models can also be compared with a likelihood ratio test. The probability that the adjusted 

likelihood ratio index between the joint and the independent models could have occurred by chance 

is close to zero.  
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Table 33. Model Measures of Goodness-of-Fit 

Disaggregate measures of fit 
Model 

Joint model Independent model 

Log-likelihood value at convergence 
-9,319.989 -9,939.426 

Loglikelihood of null model  
-22,756.385 -22,756.385 

Number of parameters (not including 

constants) 
68 62 

Adjusted likelihood ratio index 0.590 0.560 

Likelihood Ratio Test (LRT) between the 

Joint and Independent models 

χ2=-2[-9,319.989- (-9,939.426)] = 1,238.874,  

6 df, p = 0.000<<0.0001 
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2.7. PERCEIVED IMPORTANCE OF FACILITATORS TO 

CYCLING: A MULTIVARIATE ORDERED APPROACH 

2.7.1. Introduction 

As seen in 2.2, much research has focused on which determinants influence bike use, but few 

studies have focused on how different segments of individuals would perceive the implementation 

of policy measures aimed at encouraging more frequent bike usage. Higher urban densities, the 

provision of bike facilities or the presence of a bike-sharing service are considered as facilities that 

can affect individuals’ choice to cycle. However, not all those who have access to these facilities 

travel by bike, as their behavior may depend on their individual characteristics or their perception 

of the built-environment. In fact, while one person may consider the presence of secure bike 

parking important, another may feel it is relatively safe to park in an open and unsheltered space.  

Improved understanding of the different effects of these factors may support practitioners in 

developing strategies and interventions in a way that can effectively increase bike use and 

researchers in gaining a better knowledge of the mechanism underlying the built environment-

cycling relationship. Therefore, the major goal of this study was to understand and explore how 

facilitators to cycling are perceived by different segments of individuals, in view of assessing how 

to best promote cycling in an urban area. 

2.7.2. Data sample 

The data for this study is drawn from the survey Bici Mi Piaci. The sample comprises 2128 

observations. As seen in paragraph 2.3.5, all participants were asked to rate, by means of a 5 point 

Likert Scale, the importance of specified factors that would encourage them to start cycling or to 

cycle more often: 

• P1. Presence of an extensive network of dedicated bike lanes  

• P2. Presence of racks and secure parking for bicycles 

• P3. Greater extension of the LTZ or pedestrian zones 

• P4. A bike-sharing station close to home or at public transport stops 

• P5. If other people cycle  

• P6. Dedicated services at work / study (parking, showers, lockers for equipment, etc.) 

• P7. Combination with public transport services  

• P8. Increase in car parking fees 

In our analysis, the dependent variables are the factors mentioned above, while the regressors are 

the individual (gender, age, level of education, type of occupation, etc.) and household 
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characteristics (presence of children and number of bicycles) along with some built environment 

attributes (neighborhood residence characteristics and presence of bike facilities close to home).  

2.7.3. Modeling framework 

The eight ordinal dependent variables are jointly estimated as common unobserved factors might 

be present. For this reason, a multivariate ordered probit modeling methodology is adopted in this 

study.  

Let J represent repeated measurements on n different subjects q, where each repeated ordinal 

observation (indexed by j ∈ J, where J = 8 in our study) is denoted by Yqj. Each observable 

categorical outcome Yqj and the unobservable latent variable 𝑌̃𝑞𝑗 are connected by: 

          𝑌𝑞𝑗 = 𝑟𝑞𝑗 ⇔ 𝜗𝑗,𝑟𝑞𝑗−1 < 𝑌̃𝑞𝑗 ≤ 𝜗𝑗,𝑟𝑞𝑗
       𝑟𝑞𝑗 ∈ 1, . . . , 𝐾𝑗                                                            (2.27) 

where 𝑟𝑞𝑗 is a category out of K𝑗 ordered categories (in our case 𝐾𝑗 = 4 ) and 𝜗𝑗is a vector of 

threshold parameters for outcome j with the following restriction: 

          −∞ =  𝜗𝑗,0 < 𝜗𝑗,1 < · · · <  𝜗𝑗,𝐾𝑗
= ∞                                                                                         (2.28) 

The threshold parameters can vary across outcome dimensions j ∈ J in order to account for 

differences in the repeated measurements. Given an n × p matrix Xj of covariates for each j ∈ J, 

where each xqj is a p-dimensional vector (q-th row of Xj) for subject q and repeated measurement j, 

the following linear model for the relationship between 𝑌̃𝑞𝑗and the vector of covariates xqj is 

assumed: 

𝑌̃𝑞𝑗 = 𝒙𝑞𝑗
𝑇 𝜷𝑗 + 𝜀𝑞𝑗,     𝜀𝑞 = (𝜀𝑞1, 𝜀𝑞2, . . . , 𝜀𝑞8)

𝑇
~   𝑁(0, 𝛴),                                                              (2.29) 

where 

• 𝜷𝑗 is a vector of regression coefficients corresponding to outcome j, 

• 𝜀𝑞𝑗is an error term with mean zero and multivariate normal distributed with a covariance 𝛴. 

The regression parameters βj can vary between the repeated measurements j. The errors are 

assumed to be independent across subjects and orthogonal to the covariates xij. Let the actual 

observed measurement level for individual q and measurement variable j be mqj. The likelihood 

function for individual q may be written as follows: 

𝐿𝐿𝑞 = 𝑃𝑟(𝑦𝑞1 = 𝑚𝑞1, 𝑦𝑞2 = 𝑚𝑞2, . . . , 𝑦𝑞𝐽 = 𝑚𝑞𝐽)                                                                            (2.30) 

𝐿𝐿𝑞 = ∫      ∫ . . . ∫ 𝜙𝐽(𝑣1, 𝑣2, . . . , 𝑣𝐽|𝑹)

𝜗𝐽

𝑚𝑞𝐽+1
−𝛽𝐽𝑥𝑞𝐽

𝑣𝐽 = 𝜗𝐽

𝑚𝑞𝐽
−𝛽𝐽𝑥𝑞𝐽

𝜗2

𝑚𝑞2+1
−𝛽2𝑥𝑞2

𝑣2= 𝜗2

𝑚𝑞2
−𝛽2𝑥𝑞2

𝜗1

𝑚𝑞1+1
−𝛽1𝑥𝑞1

𝑣1= 𝜗1

𝑚𝑞1
−𝛽1𝑥𝑞1

𝑑𝑣1𝑑𝑣2. . . 𝑑𝑣𝐽                   (2.31)  

Where 𝜙𝐽 in the above expression represents the standard multivariate normal density function and 

R are the off-diagonal elements of the covariance matrix 𝜮. Computing the high-order I-

dimensional rectangular integral in Equation (2.31) could be burdensome. However, the idea 
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behind a recent efficient matrix-based approach, known as the univariate bivariate screening 

devised by Bhat (2018), has been used to compute the rectangular integral shown above and 

estimate parameters of the multivariate ordered response model. The mathematical formulations for 

the method can be found in Bhat (2018). All the parameters are estimated using the GAUSS matrix 

program language3. 

2.7.4. Model estimation results 

Different types of variables were considered in the model specification as explanatory factors that 

influence the perception of various facilitators to cycling. These included individual characteristics, 

household characteristics and built environment attributes.  

Model results are presented in Table 34. The specification of the model was based on a systematic 

process of removing statistically insignificant variables and combining variables when their effects 

were not significantly different.  

2.7.4.1. Effects of Individual Attributes 

The results indicate the presence of a distinct gender effect. Specifically, females are more likely to 

place importance on the presence of bike racks and secure parking. This result reveals that women 

are more concerned about bike theft than men, supporting the hypothesis of a large body of 

academic research that, on average, females are more concerned with safety issues and tend to 

avoid risky practices. Instead, an increase in car parking fees would be a stronger incentive to cycle 

for males. This is not surprising, given that usually women in Italy frequently need to run various 

errands on the way to or from work (e.g. pick up children from school, shopping) and a higher car 

parking charge might not be sufficient to stimulate use of the bicycle. For the same reason females 

exhibit a stronger willingness to cycle in the presence of a bike-sharing station close to home or at 

public transport stops. In this case cycling would limit daily activity patterns to a lesser extent and 

could help transport intermodality.  

Highly educated individuals are, in general, less inclined to use the bike. This is in contrast 

with other studies (e.g. Bhat et al., 2017) that indicate that higher education is linked to increased 

cycle use. One possible explanation could be that usually university graduates have a more 

prestigious job, where often a dress code is required, not compatible with bicycle usage. 

Furthermore, because of their position, they may be expected to use the car, especially in Italy, 

                                                      

3 The author is grateful to Dr. Chandra R. Bhat and Gopindra S. Nair for their help in code specification. The 

code was made available by Dr. Bhat when the author was at UT Austin as visiting scholar. 
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where a strong car-centric culture exists, and its ownership is considered as a symbol of social 

prestige. 

Individuals with a lower income are more likely to recognize the importance of the existence 

of an extensive bike lane network and the presence of bike parking spots. One possible explanation 

is that this segment of population, due to their fewer financial resources, value safe paths and 

secure parking much more highly, as the bicycle is a relatively more expensive possession that can 

be stolen or damaged due to an accident. 

Non-students are more inclined than students to use the bike if other people do so, suggesting the 

presence of a social norm. On the other hand, students are less likely to consider higher parking 

fees as an important factor in the willingness to cycle. This may be due to the fact that as they have 

less access to a car, students are less concerned about increases in parking charges. 

Interestingly, the willingness to cycle did not significantly differ across age groups, except for the 

outcome regarding the presence of facilities at the workplace, with younger respondents valuing 

them more highly than the older individuals. 

Not surprisingly, the results indicate the presence of a distinct effect among people who 

already cycle (both for recreational and utilitarian purposes) and non-bikers. Specifically, 

individuals who already use the bike (compared to those who do not) are more likely to place 

importance on more bicycle lanes and limited traffic zones, presence of a safe parking spot and 

provision of facilities at workplaces.  

2.7.4.2. Effects of Household Attributes 

Individuals living in a household with a small number of bikes would have a greater incentive to 

use the bike if other people did so. This outcome implies that who already possesses a bike does 

not need to see other people cycling to use it. On the other hand, individuals with less bike access 

need to be persuaded by other cyclists to use it, suggesting the presence of a social norm 

component in the decisional process to use the bike. The results also indicate that individuals with 

no children would have a greater propensity to cycle were there dedicated facilities at the 

workplace. 

2.7.4.3. Effects of Built Environment Attributes 

Residential location choice is another important determinant. Individuals who live in suburban 

areas exhibit a greater willingness to cycle when cycling can be combined with public transport, 

both in terms of presence of bicycle lockers and covered parking facilities or bike sharing services 

in proximity to public transport stops. This may reflect the fact that people living in suburban areas 

feel that cycling is a non-competitive transport alternative but would consider intermodality if an 

integrated service existed. In particular, the implementation of policies supporting the bike and ride 
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mode would render the public transport service competitive for those trips with a distance from 

home to the bus/train stop too long to walk but within a competitive cycling distance. 
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Table 34. Multivariate ordered probit model results 

Variables 
P1 P2 P3 P4 P5 P6 P7 P8 

Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat Coeff T-stat 

Bicyclist (Yes = 1; No = 0) 0.490 7.94 0.301 5.01 0.175 3.92 -0.134 -2.83 -- -- 0.158 3.77 -- -- -- -- 

Gender (male = 1; female = 0) -- -- -0.104 -2.05 -- -- -0.113 -2.98 -- -- -- -- -- -- 0.179 3.88 

Male * Bicyclist -0.198 -3.06 -0.120 -1.58 -- -- -- -- -- -- -- -- -- -- -- -- 

Age -- -- -- -- -- -- -- -- -- -- -0.897 -3.63 -- -- -- -- 

Bachelor’s degree or higher education level -- -- -0.154 -4.27 -0.060 -1.40 -0.264 -5.90 -0.138 -3.04 -0.219 -4.52 -0.271 -5.88 -- -- 

Student -- -- -- -- -- -- -- -- -0.266 -2.83 -- -- -- -- -0.230 -2.15 

Income -0.068 -2.48 -0.064 -2.49 -- -- -- -- -- -- -- -- -- -- -- -- 

Presence of children (Yes = 1; No = 0) -- -- -- -- -- -- -- -- -- -- -0.127 -2.89 -- -- -- -- 

Children * Bicyclist -- -- -- -- -- -- -- -- -- -- -- -- -0.115 -2.85 -0.081 -1.71 

# of bicycles in the household -- -- -- -- -- -- -0.062 -2.95 -0.062 -2.98 -- -- -- -- -- -- 

Flexible working hours -- -- -- -- -- -- -- -- -- -- 0.139 2.82 -- -- -- -- 

Presence of bike lanes within 400m of 

home 
-- -- -0.067 -2.00 -- -- -0.074 -2.23 -- -- -- -- -0.074 -2.23 -- -- 

Urban  -- -- -- -- -- -- -0.152 -3.18 -- -- -0.080 -1.59 -0.077 -1.47 -- -- 

Threshold                                 

Threshold1 -1.954 -21.20 -2.150 -22.18 -1.342 -24.69 -1.892 -24.52 -0.952 -17.78 -2.137 -14.72 -1.879 -25.27 -0.155 -3.38 

Threshold2 -1.499 -18.41 -1.588 -19.20 -0.883 -18.62 -1.372 -19.42 -0.456 -9.04 -1.675 -11.85 -1.372 -19.85 0.291 6.38 

Threshold3 -0.946 -12.32 -1.037 -13.05 -0.253 -5.88 -0.821 -12.41 0.122 2.47 -1.078 -7.75 -0.842 -12.87 0.892 18.83 

Threshold4 -0.357 -4.80 -0.384 -4.98 0.300 6.81 -0.261 -4.01 0.650 12.69 -0.452 -3.29 -0.235 -3.66 1.266 24.46 

Correlation terms                                 

P1 n/a n/a               

P2 0.829 83.38 n/a n/a             

P3 0.561 27.78 0.564 29.52 n/a n/a           

P4 0.511 25.13 0.600 33.61 0.513 29.16 n/a n/a         

P5 0.198 7.42 0.241 9.25 0.198 8.65 0.314 14.40 n/a n/a       

P6 0.461 20.99 0.522 26.76 0.360 16.96 0.486 25.87 0.376 17.34 n/a n/a     

P7 0.481 22.57 0.508 25.58 0.392 18.77 0.637 42.12 0.347 15.58 0.587 35.02 n/a n/a   

P8 0.155 5.39 0.174 6.09 0.282 11.28 0.280 11.01 0.294 13.26 0.194 7.20 0.249 9.60 n/a n/a 
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2.7.4.4. Model Goodness of fit 

Model goodness-of-fit measures are shown in Table 35. In addition to the joint model, an 

independent ordered probit model system was estimated by setting all correlation terms to zero. 

The performance of the joint model was then assessed comparing goodness-of-fit metrics. The 

value of the adjusted likelihood ratio index for the joint model is slightly higher than that for the 

independent model, suggesting that the joint model offers a superior goodness-of-fit than the 

independent model. The χ2 test statistic of the likelihood ratio test (LRT) between the joint and 

independent models is statistically significant at any degree of confidence. 

All the error correlation terms are significant (Table 34), suggesting that a multivariate 

ordered response model that accommodates error correlations is appropriate in this particular 

context. The error correlation terms indicate the presence of significant unobserved attributes that 

simultaneously affect the dependent variables considered in the study. For example, it is found that 

the error correlation for a better bicycle network and the existence of more bike parking spots is 

positive and significant (0.829 with a t-stat of 83.38). This indicates that unobserved attributes, that 

contribute to increasing the latent utility of the importance of the presence of an extended bicycle 

network, are positively correlated with unobserved attributes that contribute to the latent utility of 

the importance of more safe parking spots. One reason for this correlation may be the existence of 

some unobserved behavior traits, such as safety concerns about road obstacles and theft, that could 

impact the willingness to use the bike. 

Table 35. Model Goodness of fit 

Goodness of fit measures Joint model Independent model 

Log likelihood at convergence -20,630.45 -23,004.74 

Log likelihood at constants -23,190.73 -23,190.73 

Number of parameters 95 67 

Adjusted likelihood ratio index 0.1063 0.0051 

Likelihood Ratio Test (LRT) between the Joint 

and Independent models 
χ2=-2[-23,004.74 - (-20,630.45)] = 4,748.58, 28 df, p = 0.000 
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PART 3 - EVALUATION OVER TIME OF TRAVEL 

DEMAND MANAGEMENT STRATEGIES 

3.1. INTRODUCTION 

To reduce car dependence in favor of more sustainable alternative modes of travel requires 

promoting appropriate policies that ensure an efficient organization of the transportation system. 

Public transport has a major role to play in reducing private car use. The introduction of new routes 

for improving accessibility, density, and frequency of public transport services, so as to be able to 

compete effectively with the private car, may be one solution for reducing vehicle kilometers 

traveled. Service quality is perceived as an important determinant of users’ travel demand. 

Therefore, analyzing travel behavior is not a simple task for car use (Sanjust et al., 2015), as 

it embraces individuals’ attitudes, perceptions, habits, and knowledge. The so-called voluntary 

travel behavior change (VTBC) programs were conceived to take these aspects into account (Ampt, 

2003). These programs use information and communication tools to encourage people to change 

their travel behavior, and their implementation has proven to be effective in reducing private car 

use (Brög et al., 2009). Analysis of several projects conducted over the past 20 years has 

pinpointed the strengths and weaknesses of these measures (see 1.2.3). In particular, information 

provision is just one of the elements of the process, and alone, without any intervention in the 

choice context, it may well be ineffective. For these reasons, the implementation of an integrated 

system of structural and information measures could yield better results and enhance the effect of 

each measure. 

Another aspect that warrants further investigation concerns the long-term effects, given that 

individuals’ socio-economic (SE) characteristics may change over time. and consequently, their 

psycho-attitudinal and motivational characteristics, which are known to strongly influence travel 

behavior and which soft measures focus upon. Some authors have found that behavior changes 

persist and may even increase over time (Taylor and Ampt, 2003) if appropriately monitored and 

reinforced. 

Addressing the question of when soft policy measures are effective, the development of 

useful programs requires longitudinal panel studies that examine behavioral changes (Richter et al., 

2011). Longitudinal data are also required for constructing integrated choice latent variable (ICLV) 

models. As explained in 1.3.9.2 these models do not support the derivation of policies that aim to 

change travel behavior by simply changing the value of a latent variable, so carefully designed 

(longitudinal) experiments are needed to provide a more solid foundation for deriving policy 

implications related in particular to latent variables in ICLVs (Chorus and Kroesen, 2014). 
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Notwithstanding this requirement, the majority of recent papers infer policy implications that are 

not adequately supported by the data used for ICLV estimation, whereas others, despite having 

longitudinal data at hand, simply employ structural equations (Bamberg et al., 2003; Jariyasunant 

et al., 2015).  

Given this background, the aim of the first part of this work is to analyze the short-term 

effect on travel mode choice of introducing a new sustainable form of transport into the choice set 

(hard measure) when implementing a VTBC program (soft measure). The transport context chosen 

for this experiment is a corridor linking the city center of Cagliari (Italy) to a university/hospital 

complex, where a new light rail route went into service in February 2015. A survey called 

“Cittadella Mobility Styles” was designed. It included the new light rail line in the choice set of a 

large-scale VTBC program conducted in the metropolitan area of Cagliari. In particular, an attempt 

was made to overcome the critical issue concerning evaluation of the measure by creating a control 

group, so as to disentangle the effect of the structural measure from that of personalized 

information provision. 

In the second part of the research we evaluate, on the one hand, the long-term effects on 

travel mode choice of the implementation of a new light rail line, on the other we investigate if any 

changes in the psycho-attitudinal factors and/or in socio-economic characteristics exist after 

implementation of those measures. In particular, the objective of the study is to analyze whether 

these changes in individual characteristics are able to affect mode choice from a modeling 

perspective, through the specification and estimation of hybrid choice models that use, for the same 

sample, the data collected for these two moments in time. This second part attempts to provide a 

contribution to the research, analyzing, from a statistical and modeling perspective, the evolution of 

travel behavior over time as well as individuals’ intrinsic characteristics (socioeconomic and 

attitudinal) following a change in the context characteristics. The results of model estimation were 

not intended to derive policy implications, but rather to understand whether the criticism raised 

about these models can actually be supported, for the case at hand, by a scientific result.   

The remainder of the chapter is organized as follows. Section 3.2 provides a review of TDM 

strategies on university campuses. Section 3.3 describes the study context and data collection. 

Section 3.4 presents the results of behavioral change a few months after the implementation of the 

new light rail line. Section 3.5 presents an exploratory analysis of the data gathered in the third 

wave survey. In the same section the ICLV model devised is presented, followed by discussion of 

the model results.  



 

107 

 

3.2. TRAVEL DEMAND MANAGEMENT STRATEGIES ON 

UNIVERSITY CAMPUSES  

This section provides a review of the travel demand management measures implemented in 

different university campuses worldwide.  

One of the most widely implemented TDM strategies at universities campus is parking 

management. Two main approaches have been adopted: political and economic (Shoup, 2008). The 

political approach relies upon rules and regulations (e.g. the restriction of the number of parking 

spots), while the economic approach is based on pricing parking at market value. Different 

campuses in the USA are restricting parking permits only to people who do not have a viable 

alternative mode of transportation to the university (Isler et al., 2005). Other campuses are stopping 

providing free parking spaces (Balsas, 2003; Isler et al., 2005). Barla et al. (2012) evaluated the 

potential for reducing the commute mode share of cars at Université Laval in Quebec City 

(Canada) using stated preference data. They found that the cost of parking diminishes the 

probability of commuting by car, with clear differences across professional status and income 

groups. In the context of the University of Idaho, USA, Delmelle and Delmelle (2012) reported that 

increasing the price of parking for students on the campus is a disincentive to driving. Rotaris and 

Danielis (2014) tested different hypothetical transport policies at the University of Trieste, in Italy, 

and highlight three policies that lead to a decrease in car use and are also considered as socially and 

economically efficient: subsidizing bus fares, a mix of bus subsidies with parking restrictions and 

both increased parking prices and restrictions. Cruz et al. (2017) found that the effective control of 

illegal parking and the banning of this practice could help to reduce the number of cars in the 

university campus area of Coimbra, Portugal, by approximately 10%.  

Other policies involve the implementation of rideshare programs, such as carpooling 

incentives. Aoun et al. (2013) proposed for the American University of Beirut, Lebanon, a dynamic 

taxi-sharing service which combines the higher vehicle occupancy of a shared taxi with the 

reliability and comfort of a private taxi at the reduced cost of a public transport fare. Erdoğan et al. 

(2015) indicated that providing priority parking and cheaper parking options to rideshare program 

members would help to increase interest in ridesharing and discourage single occupancy vehicle 

trips. 

Often universities work in collaboration with transit agencies to offer students special 

discounts or free transit passes. These programs have different potential benefits, such as increased 

student transit ridership, reduced demand for campus parking, use of off-peak transit capacity and 

improved transit agency performance (Yu and Beimborn 2018). In USA more than 50 colleges and 

universities provides fare-free transit for over 800,000 people (Brown et al., 2001; Brown et al., 

2003; Han et al., 2019). Another example is the U-Pass or Reduced-Fare Ticket measures 
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implemented in Canada and Germany. Upon enrolment students, have the possibility of paying a 

sum additional to their tuition fee, to allow them to use all the public transport lines involved in the 

agreement for free. For example, Letarte et al. (2016) showed an increase of public transit share 

(+18%) and a decrease of car share at the University of Ottawa, Canada, after the program was 

launched. In Germany, such arrangements benefit one third of the 1.9 million German students (De 

Witte, 2006). 

Some studies have focused on providing information on available transport alternatives. 

Rose (2008) analyzed the effects of a voluntary travel behavior change program targeted incoming 

first-year students at the Clayton Campus of Monash University in Melbourne, Australia. He found 

a significant effect of the program in terms of reducing single occupant commuting and increasing 

public transport use (up 5.9%).  

In the field of soft measures, the possibility of using new technologies to influence students’ 

travel behavior habits is gaining increasing attention. Jariyasunant et al. (2015) designed a 

computational travel feedback system, Quantified Traveler, in which feedback about movements 

(carbon emissions, calories burned, travel time and cost) is used to change travelers’ mode or trip 

choice. In an experiment conducted at the University of California Berkley, USA, they found a 

statistically significant decrease in the average distance driven, the average reduction being 39 

kilometers or 33% lower than the first week. Di Dio et al. (2015) developed a smartphone app 

called “TrafficO2” that aims to nudge commuters towards more sustainable mobility by providing 

monetary incentives for each responsible choice. In a test conducted with a selected sample of 

students at Palermo University, Italy, they observed a reduction by almost half of the carbon 

dioxide equivalent emissions when compared to their previous habits. 

Only a few studies have investigated changes in cognitive factors after the implementation of 

TDM measures at Universities. Heath and Gifford (2002) used an expanded version of the TPB to 

evaluate the change after implementation of U-pass program in the university of British Columbia, 

Canada. Similarly, Bamberg et al. (2003) investigated the changes in the constructs of the TPB 

after introduction of a prepaid bus ticket at the University of Giessen in Germany. Jariyasunant et 

al. (2015) evaluated the efficacy of the Quantified Travel platform not only in terms of travel 

behavior, but also in terms of change in the cognitive factors. 

3.3. STUDY CONTEXT AND DATA COLLECTION 

The transport context chosen for this study is a corridor linking the city center of Cagliari (Italy) to 

a university/hospital complex (Cittadella Universitaria), where in February 2015 a new light rail 

route (METROCAGLIARI) went into service. Unexpectedly, in September 2015, the public 

transport agency of the metropolitan area of Cagliari introduced a new bus route (“University 

Express”), that connects one of Cagliari’s largest residential areas with the complex. Note that the 
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light rail line serves a fairly short corridor, and for some people is more convenient, in terms of 

travel time, to use the bus because of its more extensive network. The Cittadella is a major trip 

attractor, thus a large number of people could be intercepted. The number of people potentially 

attracted daily to the Cittadella is just over 10,200: 1,784 university and hospital employees 

(17.5%), 7,872 students (77.2%) and 580 (5.7%) for hospital admissions, medical examinations, 

patients’ visitors, etc.  

The program, called Cittadella Mobility Style, comprised four macro-phases: 

• first wave survey: a preliminary survey to capture the travel patterns of individuals 

traveling the Cittadella; 

• Personalized Travel Plan (PTP): creation and delivery of a PTP containing suggestions for 

a sustainable travel alternative to the Cittadella (designed on the basis of the information 

collected with the first wave survey); 

• second wave survey: assessment of the effectiveness of the measure and monitoring by 

administering a second questionnaire after deliver of the PTP; 

• third wave survey: conducted two years later the second one to evaluate the effectiveness 

of the measure in the long-term effects and to detect any change in individuals’ 

characteristics 

 

Figure 9. The program Cittadella Mobility Styles 

3.3.1. First wave survey 

The first survey was implemented in April 2013. The aim was to intercept as many university 

students, university and hospital staff and visitors to the hospital for medical examinations, 

admissions, etc., as possible. Potential candidates were contacted both via mailing lists provided by 

the university and hospital (8,847 invitation mails were sent) and through a promotional campaign 

conducted via traditional communication channels (postcards, press conferences, TV and daily 

newspapers) and social media, inviting them to complete an on-line questionnaire hosted on the 
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project’s web site (the web site recorded 6,402 visits during the promotional campaign period). The 

possibility of winning an iPad or a €100 gift voucher was offered as an incentive to filling complete 

the questionnaire.  

 

Figure 10. Promotional postcard 

The objective of the first wave survey was to gather detailed information about commuters and 

individuals travelling occasionally to the Cittadella, so as to be able to define, with a high degree of 

personalisation, the information to be presented in the PTP delivered to the selected target. In 

particular, the questions concerned: 

• Trip description: 

o trip origin and frequency  

o mode used 

o trip characteristics (walking time, waiting time, time aboard, etc.)  

o fare 

• Personal perceptions, propensities, attitudes, beliefs: 

o attachment to car  

o dislike of public transport  

o propensity to use the light rail  

o pro-environmental behavior 

o environmental awareness  

o level of confidence with information systems  

• Personal Information: 

o age 

o gender 

o education 
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o occupation 

o income 

o household structure 

o car ownership 

Questions concerning personal perception, propensities and attitudes were identified as 

follows. We selected two focus groups, in order to understand the peculiarities, 

benefits/disadvantages, motivation and limits associated with use of the private car and of public 

transport in general. The first group was made up of habitual public transport users, the second of 

car drivers. Both groups were invited to discuss identical topics, so as to capture the differences 

associated with diverse travel habits. Analysis of the results enabled to identify, under the 

supervision of a team of environmental psychologists, 36 items, measured by means of the 5-point 

Likert scale. 

The questionnaire was filled in by 2,886 individuals; 2,163 questionnaires were completed 

(74.9%) and 723 partially completed (25.1%). Regarding individual characteristics, the analysis 

revealed a larger percentage of females than males (59.4% vs 40.6%). In terms of age distribution, 

the sample was composed as follows 18-30 (71.4%), 31-40 (10.3%), 41-80 (18.3%). For age and 

gender, the intercepted sample is representative of the statistical population. The majority are 

highly-educated (68.4% had a high school education, 28.3% an undergraduate or higher degree). 

The sample consists mainly of students (69.4%) who do not have children (86.1%). Students living 

away from home account for 36.2% of the sample. Average number of household members is 2.4. 

As for personal monthly income, 61.9% stated they earned less than € 1,000 a month 25.1% € 

1.000-2.000,  10.5% € 2.000-3.000,  2.5% >€ 3.000. Analysis of trip purpose revealed a prevalence 

of trips for study purposes (69.5%), followed by work (18.0%) and trips to the hospital for medical 

treatment or visits to patients (9.9%). Comparison of these percentages with the statistical 

population shows them to match perfectly those detected at an aggregate level. The most widely 

used mode of travel stated by respondents was public transport with a percentage of around 52.7% 

(which reflects the large number of students in the sample), followed by car as driver, 37.7%, car as 

passenger 7.7% and motorbike/moped 2%. Cross analysis of travel mode and trip purpose shows 

that the majority of work trips are made by car as driver (75.6%). A similar situation is observed 

for hospital trips for medical treatment or visits to patients, car users accounting for 43.2% and 

55.1% respectively. The majority of students (66.9%) travel by public transport, as they are 

practically obliged to do so, 74.3% stating they had no alternative means of transport. 
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Table 36. Data collected in the first wave survey and socio-economic characteristics 

Variables Total By car as 

driver 

By car as 

passenger 

By 

motorbike 

By bus 

Questionnaires completed 2,163 816 (37.7%) 166 (7.7%) 42 (1.9%) 1,139 (52.7%) 

Socio-economic characteristics      

Male 40.6% 49.4% 30.7% 73.8% 34.5% 

Age      

18-30 71.4% 47.1% 71.1% 47.6% 89.7% 

31-40 10.3% 17.5% 7.8% 14.3% 5.3% 

41-80 18.3% 35.4% 21.1% 38.1% 5.0% 

Level of education      

Low (High school and lower) 71.7% 56.6% 74.7% 64.3% 82.2% 

Medium (Undergraduate and 

Master degree) 
20.2% 26.5% 18.7% 19.0% 16.0% 

High (Higher than Master 

degree) 
8.1% 16.9% 6.6% 16.7% 1.8% 

Employment status      

Student 69.4% 45.0% 68.1% 40.5% 88.2% 

Employed 28.1% 52.8% 22.9% 57.1% 10.0% 

Unemployed or retired 2.5% 2.2% 9.0% 2.4% 1.8% 

Children 13.9% 27.6% 15.7% 26.2% 3.4% 

Monthly personal income      

Low (<1,000 euro) 61.9% 43.8% 72.3% 42.8% 74.1% 

Medium (1,000-2,000 euro) 25.1% 35.7% 19.9% 28.6% 18.1% 

High (>2,000 euro) 13.0% 20.6% 7.8% 28.6% 7.8% 

Trip characteristics      

Purpose      

Study 69.5% 48.4% 59.0% 47.6% 87.0% 

Work 18.0% 36.3% 9.7% 40.5% 5.3% 

Medical treatment 6.3% 7.5% 16.3% 4.8% 4.1% 

Visiting patients 3.6% 5.4% 7.8% 0.0% 1.8% 

Other 2.6% 2.4% 7.2% 7.1% 1.8% 

Travel distance (average) [km] - 10.72 14.04 7.62 9.2 

Travel time aboard (average) [min] - 17.68 19.04 11.93 27.54 

Walking time from origin to PT-

stop (average - bus only) [min] 
- - - - 5.19 

Number of changes (bus only)      

0 - - - - 80.1% 

1 - - - - 17.2% 

2 - - - - 2.7% 
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3.3.2. The PTP 

The PTP is one of the key components of a VTBC program. The choice to opt for a personalized 

approach was based on the findings of several works that demonstrated personalized information to 

be more effective in evoking travel behavior change than mass communication, as car drivers 

cannot simply ignore it (Gärling and Fujii, 2009). 

Analysis of the questionnaire responses, particularly place of residence and means of 

transportation used to reach the Cittadella, made it possible to identify the target population. We 

considered as potential users all car drivers living within the metropolitan area of Cagliari, along 

the light rail corridor. These numbered 544 out of a total of 2,163 car drivers. The PTP were not 

delivered to all 544 car drivers identified, as a sub-sample of 20% (109 users) was randomly 

chosen as a control group for evaluating the effectiveness of the VTBC program. In this way it was 

possible to disentangle the effect of the information (soft) measure from the structural (hard) 

measure and vice versa and at the same time assess the combined effect of the hard + soft 

measures.  

The travel alternative was created on the basis of the travel patterns reported by respondents to the 

preliminary questionnaire. We analyzed all the travel information and quantitative feedback on 

weekly use of the car, distance traveled and journey time. To create the PTP using the light railway 

as an alternative means of travel, we took into account the departure station, walking time and 

distance to the nearest station, waiting time at the station, journey time and distance and fare paid. 

The alternatives were processed using Citilabs CUBE software. 

Special attention was devoted to the graphics of the PTP and to the information contained therein 

as it has been demonstrated (Gaker and Walker, 2011) that accuracy is important, and that the 

information needs to be conveyed in a manner that is easily understood. 

The PTP contained the following information (Figure 11): 

• a practical map showing the route to reach the light railway station;  

• a detailed description of the actual individual and environmental effects of the travel 

behavior adopted. In fact, the PTPs presented a daily, weekly and annual evaluation of the 

key factors that come into play in travel choice: monetary cost, journey time, calories 

burned and CO2 emissions. We also indicated the disadvantages associated with car use 

with respect to the light rail, so as to offer new viewpoints and food for thought regarding 

mobility and its effects, with a view to evoking travel behavior change; 

• personalized slogans and other useful information on sustainable travel in general and 

specifically on use of the light railway; 

• links that provide useful information on mobility. 
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The PTP was e-mailed to the participants at the address indicated in the preliminary survey. The 

information contained therein could be read from any mobile device (pc, tablet, smartphone), so 

that participants always had the information on hand. 

The cost of the marketing campaign, staff and creation of the PTP was around € 30,000.00. 

 

Figure 11. The Personalized Travel Plan 

3.3.3. Second wave survey 

Once the light rail service had become operational (February 2015), PTPs were delivered to the 

selected target. A few months later a second wave survey was implemented to give participants 

time to process the information and try the proposed alternative. The aim of the second survey was 

to: 

• monitor users’ behavior after PTP delivery and the introduction of the light rail service; 

• obtain feedback on the design and layout of the PTP and on the information contained; 

• collect the necessary information for modeling the phenomenon. 

The questions in the second wave survey concerned: 

• Trip description: 

o trip origin and frequency  

o mode used 

o trip characteristics (walking time, waiting time, time aboard, etc.) 

o fare 

• The light rail service: 

o level of knowledge about the light rail service 

o motivation for using or not using the light rail service 
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• Information about PTPs: 

o design and layout of the PTP 

o quality of information provided 

o quantity of information provided 

The second questionnaire was sent to all individuals who accurately completed the first 

one, not simply to the potential light rail users in the target. The reason for this was not to preclude 

the possibility of analysing the behavior of those users who were not included in the target. So, the 

results of the second wave survey were analyzed distinguishing three different categories: 

• PTP: participants who received the PTP; 

• CG: participants who formed part of the control group; 

• No PTP: participants who did not receive the PTP and were not included in the CG. These 

were users of bus services or car drivers who did not benefit from using the light rail service as 

they did not live along the corridor served by light railway. 

Fully completed questionnaires numbered 740, 34.2% of the total sent. Unfortunately, with 

surveys comprising different phases spread over time, a large number of the initial participants may 

fall by the wayside. On the other hand, in this way it is possible to collect detailed information from 

those who made the effort to fill in both questionnaires, and to examine the phenomenon in depth. 

Analysis of the socio-economic characteristics of respondents to the second wave survey, 

limited to those who traveled to the Cittadella at least once (516 individuals), revealed that the 

sample reproduces both the first wave survey sample and the population gravitating towards the 

Cittadella. Table 37 summarizes individuals’ socio-economic characteristics, split into the three 

categories mentioned above. 
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Table 37. Data collected in the second wave survey 

Variables PTP CG No PTP Total 

Questionnaires sent 435 109 1,619 2,163 

Questionnaires completed 169 (38.9%) 45 (41.3%) 526 (32.5%) 740 (34.2%) 

Participants traveling to the 

Cittadella 
113 (66.9%) 29 (64.4%) 374 (71.1%) 516 (69.7%) 

Socio-economic characteristics     

Male 42.5% 41.4% 36.4% 38.0% 

Age     

18–30 39.8% 48.3% 78.6% 68.4% 

31–40 17.7% 17.2% 9.4% 11.6% 

41–80 42.5% 34.5% 12.0% 20.0% 

Level of education    

Low (High school and 

lower) 
44.3% 51.8% 78.3% 69.4% 

Medium (Undergraduate 

and Master degree) 
32.7% 24.1% 16.1% 20.2% 

High (Higher than Master 

degree) 
23.0% 24.1% 5.6% 10.4% 

Employment status    

Student 38.1% 37.9% 78.3% 67.2% 

Employed 59.3% 62.1% 19.5% 30.6% 

Unemployed or retired 2.7% 0.0% 2.1% 2.1% 

Children  27.4% 31.0% 8.8% 14.1% 

Monthly personal income   

Low (<1,000 euro) 42.5% 48.3% 65.2% 59.3% 

Medium (1,000-2,000 

euro) 
34.5% 34.5% 24.1% 26.9% 

High (>2,000 euro) 23.0% 17.2% 10.7% 13.8% 

3.3.4. Third wave survey 

The third wave was conducted two years after the second, following the introduction of the new 

bus service and light rail to assess 1) whether the measures had long term effects and 2) to detect 

any change in individuals’ SE and psycho-attitudinal characteristics. 

This survey was designed such that the data collected were perfectly comparable with those 

gathered in the first wave and included the same questions that appeared in the first questionnaire. 

However, having analyzed the responses to the second wave, it was deemed useful to include some 

questions about long term travel behavior. As in the two years that had passed, some of the 

participants might no longer travel to the Cittadella (students had graduated, contracts finished, 
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etc.) the participants were asked whether they used the light rail to travel to other destinations/for 

other reasons and the trip characteristics (frequency, purpose, etc.). The third questionnaire was 

also e-mailed to all 2,163 individuals who accurately completed the first one, 522 (24.1%) 

questionnaires were completed and 464 (88.9%) of respondents traveled to the Cittadella. Table 38 

summarizes individuals’ socio-economic characteristics, split into the three categories mentioned 

above. 

Table 38. Data collected in the third wave survey 

Variables PTP CG No PTP Total 

Questionnaires sent 435 109 1,619 2,163 

Participants traveling to the Cittadella 
115 

(26.4%) 

28 

(25.7%) 

321 

(19.8%) 

464 

(21.5%) 

Socio-economic characteristics     

Male 48.7% 35.7% 37.7% 40.3% 

Age     

18–30 26.1% 32.1% 62.0% 51.3% 

31–40 17.4% 14.3% 16.5% 16.6% 

41–80 56.5% 53.6% 21.5% 32.1% 

Level of education     

Low (High school and lower) 31.3% 35.7% 39.3% 37.1% 

Medium (Undergraduate and Master degree) 32.2% 35.7% 50.5% 45.0% 

High (Higher than Master degree) 36.5% 28.6% 10.3% 17.9% 

Employment status     

Student 16.5% 14.3% 42.7% 34.5% 

Employed 80.9% 82.1% 48.3% 58.4% 

Unemployed or retired 2.6% 3.6% 9.0% 7.1% 

Children  34.8% 35.7% 14.0% 20.5% 

Monthly personal income      

Low (<1,000 euro) 24.3% 32.1% 57.6% 47.8% 

Medium (1,000-2,000 euro) 47.8% 57.1% 32.4% 37.7% 

High (>2,000 euro) 27.8% 10.7% 10.0% 14.4% 
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3.4.  ANALYSIS OF SECOND WAVE SURVEY 

Analysis of the results was limited to those users who participated in the first wave survey and 

reported traveling to the Cittadella at least once (516 individuals), the reason being that only these 

individuals could be compared to understand whether they had changed their travel habits after 

implementation of the hard and soft measures. Note that the hard measure involved all individuals 

(PTP, CG and No PTP), whereas the effect of the soft measure is divided into two categories: 1) 

one related to mass communication and advertising campaign of the light rail service, which 

involved all individuals 2) the second related to the personalized measure represented by the PTP, 

which involved all those who had received and read the PTP. Hence it is worth noting that all the 

individuals, in addition to the hard measure, were intercepted by a generalized soft measure which 

could have had an effect, though not quantifiable, on travel behavior. 

3.4.1. PTP results 

Note that 54 out of the 113 participants (47.8%) in the PTP group who had traveled to the 

Cittadella at least once after the introduction of the light rail service, stated they had not 

received/read the PTP. Hence, from now on, they will be included in the control group as they have 

the same characteristics (they belonged to the potential light rail users’ target but did not 

receive/read any personalized information).  

The overall effect of evaluating the measure was not distorted by this assumption as not 

having received/read the PTP neutralizes the effect of the personalized measure. Thus, these 

individuals are only liable to be influenced by mass communication and the hard measure. Treating 

these individuals as PTP recipients would, conversely, have resulted in erroneously evaluating the 

effect of the personalized measure as it was not actually delivered.  

It was decided to send the PTP via e-mail as most people are now familiar with modern 

technology and it enabled the measure to be implemented on a large scale. Moreover, as 65% of the 

sample of the first wave survey possessed a smartphone, the PTP was always on hand making it 

possible to test the proposed alternative without any prearrangement. However, this was not 

sufficient to lead people to read the PTP: direct contact, though costlier and affecting sample size, 

seems to still be the best way to attract people’s interest. 

Special attention was devoted to assessing the effectiveness of the PTP both in terms of 

design and layout and quality of the information contained. In particular, analysis of the responses 

of participants who read the PTP, revealed that the information was well-organized (97%), not 

excessive (85%) and the colours used facilitated reading (95%). The suggested alternative was 

explained clearly and links to the maps were considered useful for understanding it. Therefore, we 

can reasonably claim that the objective of providing participants with a graphically pleasing 

personalized plan and a clear description of the suggested alternative has been achieved. 
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As far as the PTP is concerned, the respondents stated that it also provided information on 

aspects they were unaware of or unable to quantify such as CO2 emissions and kcal burned (75%), 

so they were able to appreciate the benefits of using the light rail (71%). This shows that the PTP 

was successful in delivering precise information about the alternative available to car drivers: in 

fact, 65% stated that the PTP provided them with information that enabled them to make a 

decision. 

Analysis of the second wave questionnaire indicated that 47.5% had tried the travel 

alternative suggested in the PTP, 28.8% stated they would try it in the future while 23.7% stated 

they had not tried it and did not intend to do so in the future.  

3.4.2. Behavior Change Analysis 

To evaluate any changes in travel behavior we analyzed the modal share observed in the second 

wave survey (Figure 12 a). First of all, 49% of respondents had chosen to use the light railway, of 

whom 41% already traveled by public transport, 7% were car drivers and 1% used other means of 

transport. 

The diagram (b) of Figure 12 quantifies the effect of each measure implemented on the 

switch from car driver to light rail user. Roughly half (46%) the participants who read the PTP (27 

individuals) changed their travel behavior against just 34% of the control group, that also included 

those who had not received/read the PTP, demonstrating the greater effectiveness of a personalized 

measure compared to mass communication. Another significant aspect is the duration of the use of 

the light rail: 27.9% who read the PTP and 21.7% of control group became a frequent user (the 

ratio of light rail use frequency to total frequency was greater than 0.5). Considering this result, we 

can reasonably claim that, all other conditions being equal (hard measure and mass 

communication), the personalized measure can contribute by 12% to behavior change for those 

participants in the potential light rail user target. This is in line with the findings of the few studies 

reported in the literature that quantify the contribution of VTBC programs to behavior change as 

between 5 and 15% (see 1.2.3.1). However, it should be stressed that in these cases the effects of 

behavior change may well have been overestimated as monitoring was limited to a very short 

period of time.  

Nevertheless, it is important to note that mass communication and introduction of a new 

line of light service also played an important role in travel behavior change. 

A moderate percentage (23%) of participants who were not included in the potential light 

rail user target (No PTP) also changed their behavior, but the percentage is lower than the other two 

cases, as was to be expected. 

Lastly, we evaluated which information contained in the PTP had the greatest effect on 

travel behavior change. Respondents' answers were measured on a 5-point Likert scale. Participants 
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considered all the information provided important for deciding whether to change their travel 

behavior: CO2 emissions (3.67 AVG), journey time (3.56 AVG), cost (3.44 AVG), calories burned 

(3.26 AVG) in that order. Though the results for journey time and costs were predictable, 

surprisingly CO2 emissions were considered the most important. As mentioned previously, people 

are usually unaware of this aspect or are unable to quantify emissions. This information was 

considered significant by 51.7% of those who changed their travel behavior.  

 

Figure 12 a) Comparison of modal share first and second survey waves, and (b) behavior change (switch from car as 

driver to light rail).  
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3.5. ANALYSIS OF THIRD WAVE SURVEY 

Only a total of 350 people participated in all three surveys. However only 61% (215 individuals) 

who traveled to the Cittadella were included in the sample analyzed for assessing travel behavior. 

The sample analyzed for studying psycho-attitudinal factors and for hybrid model estimation 

comprised instead 149 individuals, as out of the 215 identified, we eliminated those who could not 

use at least two of the alternative travel modes considered (car, bus and light-rail). Thus, all those 

included in the final sample had access to a car for the commute to the Cittadella (Table 39). Note 

that, since the sample is now composed by only 149 individuals, it is not be possible to assess the 

effect of the information measure. In fact, the paucity of responses did not allow to perform 

significant analysis regarding this topic. 

Table 39. Data collection 

 First survey wave 

(wave A) 

Second survey wave 

(wave B) 

Third survey wave 

(wave C) 

People contacted 8,847 2,163 2,163 

Questionnaires completed 2,163 (24.4%) 740 (34.2%) 522 (24.1%) 

Participants traveling to the 

Cittadella 

2,163 (24.4%) 516 (23.8%) 464 (21.4%) 

Individuals who participated in all three waves 350 (16.1%) 

Individuals who traveled to Cittadella 215 (9.9%) 

Individuals who had available at least two alternatives among car, bus and light rail 149 (6.9%) 

 

Table 40 provides an overview of the socio-economic variables and their descriptive characteristics 

in the first (2013) and third wave (2017). Socio-economic characteristics included gender, age, 

occupation, educational level, household composition and household income. 

Clearly the number of students decreased significantly in the third wave, due to the fact that 

the majority of them had graduated (percentage of graduates passed from 26.8% to 40.3%) and had 

started work. Consequently, respondents’ levels of income have also increased, and as a result we 

also observe an increase in car ownership in the third wave, in line with other studies (Dargay, 

2007; Oakil et al., 2016). Moreover, some participants no longer live with their parents, proven by 

a slight decrease in the average number of household members. 
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Table 40. Socio-economic characteristics between first wave and third wave survey 

Variables 
First wave  

(wave A) 

Third wave  

(wave C) 

 N. % AVG N. % AVG 

Tot 149 - - 149 - - 

Gender (male) 66 44.3% - 66 44.3% - 

Age   35.1   39.1 

Age 18_30 73 49.0% - 60 40.3% - 

Age 31_40 23 15.4% - 30 20.1% - 

Age 41_60 51 34.2% - 48 32.2% - 

Over 60 2 1.3% - 11 7.4% - 

Employment status       

Student 71 47.7% - 38 25.5% - 

Employed 76 51.0% - 102 68.5% - 

Unemployed or retired 2 1.3% - 9 6.0% - 

Level of education       

Low (High school and 

lower) 
81 54.4% - 49 32.9% - 

Medium (graduates 

or master degree) 
40 26.8% - 60 40.3% - 

High (Higher than master 

degree) 
8 5.4% - 40 26.8% - 

Number of household members  - - 2.94 - - 2.8 

Children 35 23.5% - 33 22.1% - 

Own car 118 79.2% - 138 92.6% - 

Number of cars per household - - 1.9 - - 1.8 

Personal income per month       

Income € 0 - 1,000  76 51.0% - 59 39.6% - 

Income € 1,000 - 2,000 50 33.6% - 66 44.3% - 

Income € 2,000 - 4,000 18 12.1% - 21 14.1% - 

Income > € 4,000 5 3.4% - 3 2.0% - 

 

Note that 26.1 % of the sample changed trip origins, and the number people who moved 

from a location close to or distant from the metro corridor and viceversa is equal to 9.3%. 

Analyzing the responses to the third questionnaire, it was possible to examine travel 

behavior, and hence modal share, of all the respondents who traveled to the Cittadella following 

implementation of the measures. Figure 13 shows the modal share for the first and third waves. 

Generally, there has been a slight decrease (-6.0%) in the use of the private car for traveling to the 
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Cittadella between the two waves. Interestingly there is a sharp drop in the number of people using 

the bus and an increase in travelers by light rail. This is in line with the findings of other works, 

which argue that a rail transit service is able to attract significantly more passengers than an express 

bus service.  

 

Figure 13. Modal share first and third waves 

Examining the data in detail, we observe that 16.1% individuals changed from private car 

to bus and light rail, but 10.7% changed from bus to private car. This increase in private car use 

could be attributed to a change in the SE characteristics of the sample, especially the average 

increase in income and a higher level of car ownership (note that in the meantime many students 

had received research grants for furthering their education or for medical specialisation or are now 

working) which are certainly two determinants of travel mode choice.  
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3.5.1. Evolution of psycho-attitudinal factors 

One important aspect of the study concerned the definition and subsequent evaluation, in 

two different moments of time, wave A and wave C, of those psycho-attitudinal factors that are 

able to impact on travel behavior and/or viceversa. Table 41 shows the questions asked, along with 

summary statistics of the responses in both waves of the survey. T-tests were used to detect any 

significant relationship between the scores of the two waves. Note that no significant differences 

were detected in attitudes between who dropped out in wave 3 and who participated in the other 

waves. 

 

Table 41. Psycho-attitudinal factors between first wave and third wave survey 

ITEMS  

To what extent do you agree with the following statements?  

(Assign a score from 1=not at all to 5=very much) 

Wave A Wave C 

Diff T-stat 
Mean St dev Mean St dev 

A
T

T
A

C
H

M
E

N
T

 T
O

 T
H

E
 C

A
R

 

A1. The car is the most convenient means of transport in 

terms of trip time 
3.37 1.22 3.56 1.11 -0.19 -1.39 

A2. The car offers a high level of comfort (comfort, 
privacy, flexibility, etc.) that other forms of transport do 

not provide 

3.90 1.09 4.03 0.96 -0.13 -1.07 

A3. The car is the only means of transport compatible 
with daily commitments (work, school runs, shopping, 

etc.) 

3.05 1.29 3.33 1.26 -0.27 -1.86 

A4. Driving is a pleasurable experience 2.86 1.31 2.76 1.31 0.10 0.66 

A5. Driving gives a feeling of freedom that other means 

of transport cannot provide 
2.98 1.28 3.01 1.29 -0.03 -0.18 

A6. Car use is a habit: one does not consider available 

alternatives every time  
3.50 1.24 3.45 1.37 0.05 0.33 

A7. Owning a nice car is a sign of prestige and a status 

symbol  
1.83 1.13 1.91 1.18 -0.08 -0.6 

A8. The car is a means of self-expression and a reflection 

of personal taste  
1.72 1.00 1.81 1.05 -0.09 -0.73 

A
V

E
R

S
IO

N
 T

O
 P

U
B

L
IC

  

T
R

A
N

S
P

O
R

T
 

B1. Travel times are too long 3.52 1.11 3.44 1.14 0.08 0.62 

B2. Services are not reliable in that they do not guarantee 

regularity and certainty of travel times 
3.44 1.09 2.92 1.25 0.52 3.81 

B3. Comfort is poor (overcrowding, carrying bulky 
goods, etc.) 

3.47 1.10 3.17 1.18 0.30 2.28 

B4. The service is not compatible with daily 

commitments (work, school runs, shopping, etc.) 
3.36 1.16 3.45 1.22 -0.09 -0.63 

B5. Traveling on public transport is not a pleasurable 
experience 

2.69 1.14 2.48 1.11 0.21 1.65 

B6. Public transport is unpopular because people do not 

like depending on others to get around  
2.99 1.27 3.03 1.24 -0.04 -0.28 

B7. Only those who do not have alternatives use public 
transport as they are obliged to do so. 

2.84 1.27 2.41 1.14 0.43 3.07 

B8. Public transport use is commonly associated with 

modest social and economic condition  
2.03 1.24 1.91 1.13 0.13 0.93 

W
IL

L
IN

G
N

E
S

S
 T

O
 U

S
E

 T
H

E
 

L
IG

H
T

 R
A

IL
 

C1. I would use the light rail if travel times were shorter 4.23 1.09 3.86 1.25 0.37 2.72 

C2. I would use the light rail if fares were cheaper 4.33 0.93 3.83 1.22 0.50 4.01 

C3. I would use the light rail if CO2 emissions were 

reduced 
4.30 0.97 3.96 1.14 0.34 2.79 

C4. I would use the light rail if it was less stressful than 

driving 
4.52 0.81 4.31 0.97 0.21 2.01 

C5. I would use the light rail if the network was extended 
and the number of lines increased 

4.67 0.67 4.56 0.85 0.11 1.29 

C6. I would use the light rail if the service was free 4.31 1.15 3.93 1.35 0.39 2.68 

C7. I would use the light rail if there was a free wi-fi 

service on board 
3.94 1.23 3.41 1.40 0.54 3.51 



 

125 

 

P
R

O
 E

N
V

IR
O

N
M

E
N

T
A

L
 

B
E

H
A

V
IO

R
 

D1. I unplug electronic devices when they are not in use 

(e.g. TV, phone charger, etc.) 
3.98 1.23 3.82 1.16 0.15 1.11 

D2. I use low-energy light bulbs 4.36 0.94 4.40 0.90 -0.04 -0.38 

D3. I do not waste water 4.20 1.03 4.30 0.98 -0.10 -0.87 

D4. I buy local fruit and vegetables, which are not 

transported by plane or lorries 
3.95 1.15 4.12 1.05 -0.17 -1.36 

D5. When shopping, I use my own reusable bag instead 

of the plastic bag provided by the supermarket 
4.46 0.98 4.40 0.91 0.06 0.55 

D6. I use public transport to deliberately reduce the air 
pollution caused by car use 

2.98 1.40 3.04 1.27 -0.06 -0.39 

D7. For short trips, I cycle or walk, rather than taking the 

car 
3.97 1.23 4.03 1.15 -0.06 -0.44 

E
N

V
IR

O
N

M
E

N
T

A
L

 

A
W

A
R

E
N

E
S

S
 

E1. It is very important to be aware of how one’s own 

actions can impact the environment  
4.56 0.73 4.50 0.85 0.05 0.58 

E2. Environmental awareness is a very important 

personal characteristic  
4.49 0.75 4.42 0.90 0.07 0.77 

E3. Human activities are seriously abusing the 

environment and its resources  
4.62 0.71 4.67 0.72 -0.05 -0.57 

E4. Pro-environmental behavior is very satisfying  4.32 0.90 4.33 0.89 -0.01 -0.06 

E5. Daily use of the car is one the most environmentally 

harmful human activities  
3.91 0.97 3.91 1.07 0 0 

E6. Using public transport for daily trips helps 

considerably to improve our environment  
4.23 0.84 4.20 0.90 0.03 0.33 

 

At an aggregate level, some differences were detected in the answers to psycho-attitudinal 

questions, with some average responses being significantly different over the two waves. 

Examining the psycho-attitudinal factors measured, it emerges that during the time elapsed 

between the two surveys: 

1. Users reported greater attachment to their cars, consistent with the greater number of car 

owners. In particular, there was a significant difference in the indicator A3, suggesting that the 

perception of the car as the only means of transport compatible with daily commitments is greater 

in spite of the introduction of the light rail and the new bus line. This is due to the limited coverage 

of the light rail service in the urban area and to the fact that the new bus route only serves a 

residential corridor, where few shops or public offices exist. Moreover, note that in the third wave 

some students had started work, and therefore have less flexible working hours than students.  

2. By contrast, the sample were less unwilling to use public transport, in keeping with the 

findings of a well-controlled field experiment conducted in Sweden by Pedersen et al. (2011). It is 

interesting to observe a significant difference in the indicators B2 and B7. The first, related to the 

regularity of the public transport service, scored lower in wave C, indicating that after introduction 

of the light rail, that runs along a rail corridor and is not slowed by vehicle traffic, the sample 

consider the public transport service more reliable in terms of punctuality of the service and fixed 

travel times. The second, concerning what kind of people use public transport, also scored lower in 

the third wave. This is because the light rail is used not only by people who cannot afford a car but 

also by high-income earners, who appreciate the benefits in terms of travel time and a greater level 

of comfort than the bus. 

3. Individuals were less willing to use the light rail. A possible explanation for this result is 

that before it went into service, the expectations surrounding the new alternative stirred people’s 
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curiosity, mainly because, as found in other works, the light rail could be perceived to offer a 

higher service quality than the bus. 

4. For pro-environmental behavior and environmental awareness statements, on average we 

did not find any significant differences. This result shows a weak correlation between these two 

constructs and the introduction of a structural measure in the choice context.  

Interestingly, there are some differences in psycho-attitudinal factors across population 

segments. For instance, taking into account the construct Attachment to the car several distinctions 

can be observed in the answers provided by men and women across the two waves, confirming that 

the psycho-attitudinal factors can change over time and this variation may depend on individuals’ 

characteristics. 

A confirmatory factor analysis was performed prior to modeling choices in order to 

identify one or more latent dimensions (called factors or components) underpinning a set of items 

or variables. Table 42 shows the factors with the linked items. 

Table 42. Factor analysis 

Attachment to the car 

A1. A2. A3. A4. A5. 

Unwillingness to use public transport 

B1. B2. B3. B4. B5. 

Willingness to use the light rail 

C1. C2. C3. C4. C5. 

Pro-environmental behavior 

D1. D2. D3. D4. D5. 

Environmental awareness 

E1. E2. E3. E4. E5. E6. 

 

3.5.2. Model specification   

The model framework we used is a latent variable model jointly estimated on a two-wave panel 

dataset as shown in Figure 14. The discrete choice model (DCM) in our ICLV model is a 

multinomial logit that incorporates latent variables to measure individual attitudes.  
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Figure 14. Model framework

 

Because we collected data in two different time waves, before and after implementation of 

the new light rail, the hybrid structure for each wave is jointly estimated to control for scale 

differences between the two datasets, to detect any differences in individual preferences and 

attitudes between the two waves.  

As in typical discrete choice models, we define 𝑈𝑗𝑞
𝑤 the utility that each individual q 

associates with alternative j in the first (w = A) and third wave (w = C) respectively. The discrete 

part of the joint discrete choice model can be specified as: 

𝑈𝑗𝑞
𝐴 = 𝐴𝑆𝐶𝑗 + 𝜷𝑗𝑳𝑶𝑺𝑳𝑶𝑺𝑗𝑞

𝐴 + 𝜷𝑗𝑺𝑬𝑺𝑬𝑞
𝐴 + 𝛽𝑗𝐿𝑉

𝐴 𝐿𝑉𝑞
𝐴 + 𝜀𝑗𝑞

𝐴                                                                   (3.1) 

𝑈𝑗𝑞
𝐶 = 𝜃(𝐴𝑆𝐶𝑗 + 𝜷𝑗𝑳𝑶𝑺𝑳𝑶𝑺𝑗𝑞

𝐶 + 𝜷𝑗𝑺𝑬𝑺𝑬𝑞
𝐶 + 𝛽𝑗𝐿𝑉

𝐶 𝐿𝑉𝑞
𝐶 + 𝜀𝑗𝑞

𝐶 )                                                            (3.2) 

where 𝑆𝐸𝑞
𝑤 is a vector of individual socio-economic characteristics, 𝐿𝑂𝑆𝑗𝑛

𝑤is a vector of travel 

mode alternative attributes, 𝐿𝑉𝑞
𝑤is a latent variable, 𝛽𝑗𝑳𝑶𝑺, 𝛽𝑗𝑺𝑬 ,𝛽𝑗𝐿𝑉

𝑤  are vectors of coefficients 

associated with the variables and 𝐴𝑆𝐶𝑗
𝑤 are the alternative constants. 𝜀𝑗𝑞

𝑤  are the independently and 

identically distributed Gumbel error terms for each wave and 𝜃 = 𝜎𝐴 𝜎𝐶⁄  is the scale parameter 

that yields the same variance in both wave utilities. 

Following the framework of hybrid choice models, we model each psychological construct 

as a latent variable that depends on the socio-economic characteristics of each individual q: 

𝐿𝑉𝑞
𝑤 = 𝜅𝑤 + 𝝀𝑤𝑺𝑬𝑞

𝑤 + 𝜔𝑞
𝑤                                                                                                                        (3.3) 

where 𝜅𝑤 is the intercept, 𝜆𝑤 is the vector of the coefficients associated with the socio-economic 

characteristics and 𝜔𝑞
𝑤 is the normally distributed error term, with zero mean and standard 

deviation 𝜎𝜔
𝑤. 𝑆𝐸𝑞

𝑤 can be different from the socio-economic characteristics included in the discrete 

choice model and all coefficients are allowed to vary between waves. 

The measurement equation of the discrete choice model is defined by a dummy variable 

that takes the value one if the alternative chosen has the highest utility, zero otherwise: 
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𝑦𝑗𝑞
𝑤 = {

1𝑖𝑓𝑈𝑗𝑞
𝑤 = 𝑚𝑎𝑥𝑖{𝑈𝑖𝑞

𝑤}

0  𝑜𝑡ℎⅇ𝑟𝑤𝑖𝑠ⅇ
   ∀ 𝑖 ∈ 𝐷𝑤(𝑞)                                                                                             (3.3)    

where 𝐷𝑤(𝑞) is the set of alternatives available to individual q in each wave.  

The measurement equation of the latent variable is given by a set of R indicators according 

to the following expression: 

𝐼𝑟𝑞
𝑤 = 𝛾𝑟

𝑤 + 𝛼𝑟
𝑤𝐿𝑉𝑞

𝑤 + 𝜐𝑟𝑞
𝑤                                                                                                                            (3.4) 

where 𝛾𝑟
𝑤 is the intercept, 𝛼𝑟

𝑤 is the coefficient associated with the latent variable and 𝜐𝑟𝑛
𝑤  is an 

error term that can have any distribution Q (assumed to have zero mean and standard deviation 

𝜎𝜐
𝑤). All the coefficients are also allowed to vary between the first and third wave. 

Indicators are expressed in a five-point numerical scale, so the measurement equation of the 

indicators is expressed as an ordered logit: 

𝑃(𝐼𝑟𝑞
𝑤 = 1) =

1

1 + ⅇ[𝛾𝑟
𝑤+𝛼𝑟

𝑤𝐿𝑉𝑞
𝑤−𝜂1]

 

𝑃(1 < 𝐼𝑟𝑞
𝑤 < 5) =

1

1+ⅇ
[𝛾𝑟

𝑤+𝛼𝑟
𝑤𝐿𝑉𝑞

𝑤−𝜂𝐼]
−

1

1+ⅇ
[𝛾𝑟

𝑤+𝛼𝑟
𝑤𝐿𝑉𝑞

𝑤−𝜂𝐼−1]
                                                                  (3.5)               

𝑃(𝐼𝑟𝑞
𝑤 = 5) = 1 −

1

1 + ⅇ[𝛾𝑟
𝑤+𝛼𝑟

𝑤𝐿𝑉𝑞
𝑤−𝜂𝐼−1]

 

where 𝜂𝐼 are thresholds defined respectively as 𝜂1 = 0, 𝜂2 = 𝜂1 + 𝛿1, 𝜂3 = 𝜂2 + 𝛿2, 𝜂4 = 𝜂3 + 𝛿3. 

Because we assumed that 𝜀𝑗𝑞
𝑤  is i.i.d. Gumbel across alternatives, in each wave, the 

probability that decision-maker q chooses alternative j is given by: 

𝑃𝑗𝑞
𝐴 (𝜔𝑞

𝐴) =
ⅇ𝑥 𝑝 (𝐴𝑆𝐶𝑗 + 𝛽𝑗𝑳𝑶𝑺𝑳𝑶𝑺𝑗𝑞

𝐴 + 𝛽𝑗𝑆𝐸𝑺𝑬𝑞
𝐴 + 𝛽𝑗𝐿𝑉

𝐴 𝐿𝑉𝑞
𝐴(𝜔𝑞

𝐴))

∑ ⅇ𝑥 𝑝 (𝐴𝑆𝐶𝑗 + 𝛽𝑗𝑳𝑶𝑺𝑳𝑶𝑺𝑗𝑞
𝐴 + 𝛽𝑗𝑺𝑬𝑺𝑬𝑞

𝐴 + 𝛽𝑗𝐿𝑉
𝐴 𝐿𝑉𝑞

𝐴(𝜔𝑞
𝐴))𝑗∈𝐷𝑞

                                  (3.6) 

𝑃𝑗𝑞
𝐶 (𝜔𝑞

𝐶) =
ex p (𝜃 (𝐴𝑆𝐶𝑗 + 𝛽𝑗𝑳𝑶𝑺𝑳𝑶𝑺𝑗𝑞

𝐶 + 𝛽𝑗𝑺𝑬𝑺𝑬𝑞
𝐶 + 𝛽𝑗𝐿𝑉

𝐶 𝐿𝑉𝑞
𝐶(𝜔𝑞

𝐶)))

∑ exp (𝜃(𝐴𝑆𝐶𝑗 + 𝛽𝑗𝑳𝑶𝑺𝑳𝑶𝑺𝑗𝑞
𝐶 + 𝛽𝑗𝑺𝑬𝑺𝑬𝑞

𝐶 + 𝛽𝑗𝐿𝑉
𝐶 𝐿𝑉𝑞

𝐶(𝜔𝑞
𝐶)))𝑗∈𝐷𝑞

                              (3.7) 

The joint probability for an individual q making the choice j for each period w is the 

integral over the distribution 𝜔𝑞: 

𝑃𝑗𝑞
𝑤 = ∫ 𝑃𝑗𝑞

𝑤(𝜔𝑞
𝑤)𝑓𝐿𝑉

𝑤 (𝜔𝑞) ∏ 𝑓𝐼𝑟
𝑤 (𝐼𝑟𝑞|𝐿𝑉𝑞

𝑤(𝜔𝑞
𝑤)) 𝑑𝜔                                                                      (3.8)

𝑟𝜔

 

where 𝑓𝐿𝑉
𝑤 (𝜔𝑞) and 𝑓𝐼𝑟

𝑤 (𝐼𝑟𝑞|𝐿𝑉𝑞
𝑤(𝜔𝑞)) are the distribution of the latent variable and the indicators, 

respectively. All the models were estimated using PythonBiogeme (Bierlaire, 2016). 

3.5.3. Model results 

Three modes were considered to be available for the trip to Cittadella: 1) private car, 2) bus, 3) 

light rail. Travel times and costs for each mode were determined for each commuter, based on the 

location of the person’s home and work. We simulated, for each individual, the values of the 
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attributes of the non-chosen available alternatives using Citlabs CUBE software. Travel time was 

differentiated as walk time (for private car, bus and light rail) and in-vehicle time (for private car, 

bus and light rail). Walking time enters separately for car, public transport and light rail. In-vehicle 

time enters separately for car, public transport and light rail. The cost was entered specific in the 

utility function of car, bus and light rail. Before estimating the joint hybrid choice model, we tested 

various discrete choice models to gain a better knowledge of the phenomenon. The most relevant 

estimation results of the best specifications are summarized in Table 43.  

The estimation of the discrete part alone is shown in the first column of Table 43. The sign 

of all level of service (LOS) coefficients is in line with microeconomic theory. The frequency 

attribute, which measures the number of times/year the trip to the Cittadella is made, was positive 

when incorporated into the utility function of the car, indicating a habit effect in car use. In terms of 

socio-economic characteristics, not surprisingly, the level of personal income, the number of cars 

per household and car ownership positively affect the utility of the car mode. The scale parameter 

(θ) that allows for heteroskedasticity between waves was not significantly different from one, 

meaning that the two datasets have the same variance. 

Several hybrid choice models are estimated for measuring the effect of individual 

characteristics on mode choice, accounting for attitudes and perceptions collected at two different 

moments in time (first and third wave surveys). Importantly only the latent variable Attachment to 

the car was found relevant for the purpose of the study. We also tested a number of interaction 

terms between LOS variables (i.e. car travel time and public transport (PT) travel time) and the 

latent variable Attachment to the car but none of the results turned out to be statistically significant. 

The last four columns in Table 43 show the results of estimating two hybrid choice models 

that also include the latent variable Attachment to The Car. In model AC1 we used the indicators of 

the psychological factor collected only in the first wave while model AC2 was estimated using 

indicators of the psychosocial factor collected in both the first and third waves. This kind of 

specification allowed us to quantify the error committed using the indicators of the psychological 

factor collected in the first wave, for both waves.  

As can be observed all the coefficients of the discrete part in the two hybrid choice models 

are in line with the results of the DCM alone.  

The latent variable was positive in both models for each wave, indicating that people who are more 

attracted by the car for its high level of comfort, flexibility and shorter travel time have a lower 

level of disutility associated with the private vehicle.  

As the coefficients of the latent variable model were introduced specific for each wave, we 

were able to take into account whether 1) the Attachment to the car changed over time, even if the 

analysis of indicator values (Table 41) did not detect significant changes, and 2) Attachment to the 

car affects mode choice in different ways. We found that, for both models, the coefficients 
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associated with the latent variable were not significantly different over waves, showing that the 

impact of the psychological construct remained stable over time, even after introduction of the new 

light rail and bus line. There is an intuitive explanation for this phenomenon: a certain number of 

people during the timeframe of the survey started to use the car, developing a stronger car 

dependence, so those who showed less attachment to the car due to the introduction of the light rail 

and the new bus route were replaced by these.  

The structural model for the first wave indicates that men have a higher level of attachment 

to the car. This result is in line with the findings of other works, showing that men, generally, tend 

to be more car dependent. Also, the number of cars per driver in the household positively impacts 

car attachment, in keeping with the results of the discrete part of the model. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

131 

 

Table 43. Model results. n/a not applicable. 

 
DCM alone 

ATTACHMENT TO THE CAR 

 ICLV - AC1 ICLV - AC2 

Attributes values R t-test values R t-test values R t-test 

Discrete part 

Constant car -5.05 -3.21 -4.14 -1.50 -4.65 -1.65 

Constant bus -3.61 -2.85 -2.16 -1.28 -2.24 -1.31 

Car attributes 

Travel time -0.08 -1.70 -0.07 -2.02 -0.07 -2.05 

Travel Cost  -0.34 -1.39 -0.22 -0.99 -0.22 -0.98 

Walking Time from/to parking area -0.02 -0.40 -0.02 -0.68 -0.01 -0.58 

Bus attributes 

Travel Time -0.05 -2.66 -0.04 -2.47 -0.01 -2.53 

Walking Time from/to Bus stop  -0.06 -1.70 -0.06 -1.84 -0.06 -1.80 

Light rail attributes 

Travel Time -0.10 -3.39 -0.07 -2.22 -0.07 -2.23 

Walking Time from/to Light rail station -0.18 -2.82 -0.12 -1.50 -0.12 -1.57 

Bus and Light rail attributes 

Cost -0.81 -1.87 -0.63 -1.54 -0.60 -1.45 

Socio-economic characteristics (specific to car) 

Personal income 0.28 1.30 0.22 1.01 0.24 1.06 

Number of cars per driver in the household 0.87 1.73 0.45 0.84 0.48 1.00 

Car ownership (Yes = 1; No = 0) 0.85 2.03 0.68 1.35 0.68 1.38 

Other characteristics of the trip (specific to car) 

Frequency of trips from origin to Cittadella  0.003 1.57 0.002 1.23 0.002 1.31 

Scale factor θ (R t-test against 1)  1.30 1.03 2.10 0.79 2.09 0.79 

LV attachment to car wave A  n/a n/a 0.40 1.49 0.52 1.28 

LV attachment to car wave C  n/a n/a 0.20 0.74 0.31 2.08 

Latent variable model 

Latent variable Attachment to the CAR wave A structural equation 

Intercept n/a n/a 3.74 10.50 3.83 13.19 

Standard deviation of error term n/a n/a 0.80 5.95 0.78 5.78 

Gender (Man = 1; Woman = 0)  n/a n/a 0.33 2.00 0.30 1.90 

Number of cars per driver in the household n/a n/a 0.44 1.40 0.46 1.48 

Worker dummy (Yes = 1; No = 0) n/a n/a -0.70 -1.90 -0.78 -2.63 

Student dummy (Yes = 1; No = 0) n/a n/a -0.36 -1.02 -0.45 -1.73 

Latent variable Attachment to the CAR wave C structural equation 

Intercept n/a n/a n/a n/a 4.01 13.53 

Standard deviation of error term n/a n/a n/a n/a 0.54 3.47 

Age  n/a n/a n/a n/a -0.01 -1.69 

Number of cars per driver in the household n/a n/a n/a n/a 0.28 1.39 

Initial log-likelihood -251.16 -1,563.60 -2,846.83 

Final log-likelihood -134.74 -1211.96 -2,278.60 

Adjusted ρ2  0.41 0.20 0.18 
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Noteworthy is the fact that the explanatory variables relevant in the structural equation of 

the first wave were no longer relevant in the structural equation of the third wave, except for the 

number of cars per driver in the household. This result shows that the explanatory variables related 

to the latent variable can change over time, validating the criticism raised in Chorus and Kroesen 

(2014), whereby using cross-sectional data does not allow for within-person comparisons.  

Table 44 shows the probability of choosing car and elasticity of demand for car with 

respect to cost by car. The disaggregate direct elasticity is computed according to the following 

expression: 

𝐸𝑐𝑗𝑞

𝑗
=

𝜕𝑃𝑞(𝑗)

𝜕𝑈𝑐𝑗𝑞 

𝑐𝑗𝑞

𝑃𝑞(𝑗)
                                                                                                                                     (3.9)  

where Pq is the choice probability that individual q chooses the car and cjq is the cost, 

expressed in euros, associated with the alternative car for individual q. The results are similar in all 

models, since the latent variable does not modify the marginal utilities.  

However, the latent variable affects overall utility, hence choice probability. The model 

AC1 slightly underestimates the choice probability in the third wave, compared to model AC2, and 

this effect is more pronounced when the analysis is performed for those categories which we found 

relevant for explaining the Attachment to the car. Nevertheless, the difference in choice probability 

is quite small, and this might be viewed as an additional proof of the stability in the overall level of 

the latent attitude between the two waves.  

Table 44. Probability and elasticity 

 
Probability of choosing car 

Elasticity of the demand respect to cost by 

car 

 MODEL AC1 MODEL AC2 MODEL AC1 MODEL AC2 

First wave  83.3% 83.2% -0.075 -0.075 

Female 83.5% 83.1% -0.075 -0.076 

Student 81.0% 81.1% -0.084 -0.083 

Worker 85.4% 85.0% -0.064 -0.065 

Third wave  77.9% 78.3% -0.197 -0.194 

Female 75.9% 77.2% -0.206 -0.194 

Student 67.9% 68.4% -0.315 -0.309 

Worker 81.9% 82.7% -0.151 -0.144 
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CONCLUSIONS 

The primary objective of this thesis is to explore the methodological processes able to guarantee 

that sustainable mobility policies seeking to reduce car use are accompanied by a quantitative 

assessment of the effects that this generates in the transport context. In particular, we focused on 

the role and weight of psycho-attitudinal variables (attitudes, perceptions, habits, etc.) in the 

process of choosing a sustainable mode of transport. Addressing these aspects is far from 

straightforward and has motivated the development of the models presented in this thesis. 

ASSESSMENT AND FORECASTING OF BIKE USE IN AN URBAN CONTEXT. The first 

part of the thesis presents the findings of a study focusing on unraveling the linkage among psycho-

attitudinal factors related to bike use and the choice to cycle. We used different econometric 

approaches that allow to jointly model multiple outcomes of mixed types. The data used are drawn 

from a survey conducted in Sardinia (Italy), where cycling is mainly considered as a form of 

exercise and recreation.  

Our research findings indicate that is essential to consider people’s psychological 

characteristics in order to develop better bike promoting strategies. From the results of the first 

modeling application it emerged that the choice to travel to work by bike, besides level-of-service 

and network characteristics, such as travel time and topography, is significantly affected by latent 

inertia. The positive effect of the latent variable inertia in the bike alternative suggests that, like 

other modes of transport, bike commuting is habit forming. So, it appears that the frequency of past 

cycling behavior is a crucial factor in the mode choice process that leads to prefer commuting by 

bike rather than by other means of transport. These findings provide further support for policy 

initiatives like the implementation of programs in which streets are temporarily closed to traffic 

allowing access to individuals for leisure activities, which are based on the assumption that 

convincing people to take up cycling could lead to an increase in cycling for work and non-work 

purposes.  

In the second application we specifically studied whether psycho-attitudinal factors vary 

among people with different cycling experience through the estimation of an integrated choice 

latent variable model with a generalized ordered probit choice kernel, where we allowed the 

thresholds themselves to be a function of both objectives and psycho-attitudinal variables. The 

results indicate that all three latent variables, related to the perceptions of the positive aspects of 

biking, positively influence the propensity to cycle, supporting the idea of a relationship between 

attitudes and the cycling experience. In the third application we conducted a multivariate analysis 

to explore the interplay among psycho-attitudinal factors related to cycling and the choices to cycle 

to work, for shopping and for leisure. In doing so, we estimated a multivariate ICLV model, that 

allows to jointly model a large set of mixed data outcomes. We found that both explanatory 
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variables and cycling perceptions, as captured by our latent variables, are similar for the three 

outcomes (commute, shopping and leisure). Further, through the presence of common error terms 

in the utility functions of choice dimensions, we account for observed endogenous effects, and in 

particular we found that cycling for leisure positively influences the choice to cycle for utilitarian 

purposes. Outcomes of the second and third application reinforce the idea that promoting cycling 

through the implementation of awareness campaigns and educational programs, intended to 

improve peoples’ perceptions of the bike mode, can persuade them to consider the bike as an 

alternative means of transport to private motorized vehicles. Further, investments aimed at 

supporting use of the bike for leisure (e.g. cycle routes) may increase the number of people who 

choose to use the bike as an alternative means of transport for commuting or shopping. 

In the last application, we explored how facilitators to cycling were perceived by different 

segments of individuals, in view of assessing how to best promote cycling in an urban area. To 

perform this analysis, we estimate a multivariate ordered probit. Results indicate that how people 

perceive the implementation of policy measures aimed to encourage more frequent cycling, 

depends on their socio-demographic characteristics. Hence, a holistic approach with a variety of 

activities is needed, as improvements in cycling infrastructure may not be enough. Changes in 

driving culture and promotional campaigns targeted at specific population segments would be the 

best approach to promote this green mode of transport. 

Nevertheless, the current study also contains some limitations that need to be stressed and 

potentially addressed by future research. First, the sample was not representative of the whole 

population, but was composed predominantly of public sector employees, whose socio-

demographic characteristics and work-related factors are fairly homogeneous. Understanding the 

decision to commute by bicycle of the entire population, without excluding any segment of 

workers, is crucial for policy makers who intend to implement effective strategies for promoting 

bike use. Another limitation is that all the latent variables included in our analysis were related to 

bike use, when it is plausible that other psycho-social factors, such as a green lifestyle or a strong 

attachment to the car, influence commute mode choice.  

Lastly, it should be stressed that because this research adopted revealed preference data, we 

only provided associations between latent variables and outcome variables. As suggested by 

Chorus and Kroesen, 2014, latent variables and choice variables are likely to have influenced each 

other over time, and only the use of longitudinal data may help in establishing causality. 

Notwithstanding this limitation, cross-sectional studies, like ours, which allow to jointly model a 

large set of mixed data outcomes can lead to more accurate policy assessment of strategies 

designed to encourage bike use. 

EVALUATION OVER TIME OF TRAVEL DEMAND MANAGEMENT STRATEGIES. 

The second part of the work attempted to assess in quantitative terms the role that a combination of 
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hard (i.e., new mode of sustainable transport—light railway line in the choice set) and soft 

measures (differentiated with respect to the degree of personalization—mass communication versus 

personalized travel planning) can have in travel mode choice (switch from car driver to light rail).  

A comparison was carried out of the data collected in three survey waves before and after a 

new light railway line went into service. The research analyzed the short- and long-term additional 

effect of the personalized soft measure versus the combination of hard and soft (mass 

communication) measures usually implemented when a new service becomes operational.  

First of all, this study brought to light the importance of, and at the same time the difficulties 

encountered in, collecting longitudinal data. Unfortunately, with surveys comprising different 

phases spread over time a large number of the initial participants may fall by the wayside, in spite 

of a major promotional campaign. In the case at hand however, note that the metropolitan area of 

Cagliari is relatively small (population 431,819), and for this reason it is difficult to intercept a 

large number of individuals to ensure, after processing the responses, that sufficiently large 

samples are obtained. Clearly this problem has repercussions on the results obtained for behavior 

change, as in numerical terms they may appear irrelevant. Moreover, the time gap between the 

survey and implementation of the light rail (2 months and 2 years) may influence attitudes towards 

a certain means of transport and be a limitation when analyzing the results. 

Next, we evaluated the overall effect of all the implemented measures in the short term. We 

described in detail the methodology and procedure adopted for implementing the sensitization 

campaign (soft measure). Validation of the results depends both on the methodological framework 

and on how the different phases of the campaign are conducted, so as to be able to distinguish the 

contribution of hard from soft measures and a combination thereof. For the design of the 

personalized soft measures (VTBC program) the key factors that distinguish successful VTBC 

programs were used, in an attempt to overcome those problems that generally affect this kind of 

measure (e.g., lack of a control group). For assessing changes in travel behavior, the modal shares 

observed in the first and second wave surveys were compared. Considering the results, it can 

reasonably be claimed that the awareness campaign (soft measure + VTBC program) in the specific 

context contributes by 12% to behavior change. This is in line with the findings of the few studies 

reported in the literature that quantify the contribution of VTBC programs to behavior change as 5 

to 15%. Further, the combination of hard and soft measures achieved a change in travel behavior of 

34%, when the measure is not personalized, and 46% with the VTBC program. This confirms the 

importance of adopting TDM measures on a large scale, with a combination of measures that 

changes the choice context and information measure, both generalized and personalized. 

Finally, we attempted to assess, in quantitative terms, the evolution of psycho-attitudinal 

factors over time before and after implementation of the new travel alternative and their role in the 

change process. The first important result obtained concerns confirmation of considering data 
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gathered before and after implementation of policy measures, also with respect to those psycho-

social attributes that could play a crucial role in change processes and might vary over time. If 

these are not constantly and sufficiently measured, they would deprive us of the opportunity both to 

measure them in modeling terms and analyze and evaluate whether they influence travel behavior 

or viceversa are affected by behavior. Even more so when modeling results are intended to provide 

indications for intervention policies aimed at incentivizing preferably car drivers to change their 

travel behavior. 

From a modeling perspective, our results show that the explanatory variables used in the 

structural equation of the latent variable changed between the two waves, accounting for within-

person comparisons. As discussed by Chorus and Kroesen (2014) the use of cross-sectional data 

would not have allowed us to understand this kind of aspect and would have led us to derive 

inappropriate policy implications from the model. However, we are also aware that the estimation 

of the ICLV model allowed us to understand that the latent factor attachment to the car remains 

unchanged, even after introduction of the new bus route and light rail line. But, if these kinds of 

variables are stable over time, this means for policy makers that the implementation of a structural 

measure does not suffice to significantly impact individuals’ cognitive factors. These findings 

support the idea of other studies that only the presence of a strong shock in the choice context (such 

as the prohibition of a mode alternative) or the constant provision over years of personalized 

information (in our study we implemented the soft measure only once, a few weeks after the new 

light rail line went into service), which focus on those factors that could diminish this emotional 

attachment, are able to trigger a shift in people’s psycho-attitudinal characteristics. Because of the 

small sample size, the study did not allow to define a rule about the implications of ICLV, but it 

does provide a cue to investigate this issue in different contexts using a robust sample. If other 

studies focused on the same aspects of our work and found the same conclusions, these could 

become the correct answer to the criticism surrounding ICLVs.  
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